WO2016103305A1 - Light source unit, light source device, and endoscope device - Google Patents
Light source unit, light source device, and endoscope device Download PDFInfo
- Publication number
- WO2016103305A1 WO2016103305A1 PCT/JP2014/006503 JP2014006503W WO2016103305A1 WO 2016103305 A1 WO2016103305 A1 WO 2016103305A1 JP 2014006503 W JP2014006503 W JP 2014006503W WO 2016103305 A1 WO2016103305 A1 WO 2016103305A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wavelength
- light source
- light
- unit
- light sources
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0638—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
Definitions
- the present invention relates to a light source unit, a light source device, and an endoscope device using them.
- a semiconductor light emitting element (narrow band light source) can be used even if it is a semiconductor light emitting element whose emission wavelength does not fall within the specified wavelength range, and it corresponds to the specified wavelength using a plurality of semiconductor elements.
- Techniques for generating tinted light have been proposed (see, for example, Patent Document 1). Specifically, the light emission amounts of the plurality of semiconductor light emitting elements are individually controlled by the wavelength change table prepared in advance based on the information on the center light emission wavelengths and the light emission amounts of the plurality of semiconductor light emitting elements having different center emission wavelengths. An endoscope apparatus that controls the center wavelength of light to be combined to a predetermined wavelength is described.
- the same number of light-quantity control mechanisms as the narrow-band light sources are required, which may increase the size and cost of the apparatus.
- the amount of light emitted from a plurality of narrow-band light sources is adjusted to a specified wavelength, and as the number of narrow-band light sources increases, there are more solutions for the amount of emitted light, making it difficult to manage the light source and light amount. Become.
- the object of the present invention which has been made by paying attention to these points, is to achieve a desired color with a simple configuration and management method while using a plurality of narrowband light sources including a narrowband light source that cannot achieve a desired color by itself. It is an object of the present invention to provide a light source unit, a light source device, and an endoscope device using them that can emit light included in a taste range.
- the invention of the light source unit that achieves the above object is as follows: A plurality of narrowband light sources selected from a number of narrowband light sources included in the first wavelength region; An optical coupling unit that combines the light emitted from the plurality of narrow-band light sources and outputs the combined light; An output unit for outputting the emitted light output from the optical coupling unit; A light source unit comprising: The first wavelength region includes a second wavelength region and is wider than the second wavelength region, and the plurality of narrow-band light sources has a peak wavelength of light emitted when an input current value is constant.
- At least one narrow-band light source positioned on the long wavelength side and the short wavelength side of the center wavelength of the second wavelength region, respectively, and the color of the emitted light output from the optical coupling unit is It is selected so that it may be contained in the color range corresponding to the narrow-band light in 2 wavelength range.
- the plurality of narrowband light sources includes an average value obtained by weighting a peak wavelength of the plurality of narrowband light sources by an amount of light of the narrowband light source at the peak wavelength, and the center wavelength of the second wavelength region. It is preferable that the difference is selected so as to be 1/2 or less, more preferably 1/4 or less of the wavelength range of the second wavelength region.
- the plurality of narrowband light sources may be configured to include the same number of narrowband light sources having a peak wavelength on the long wavelength side of the center wavelength and narrowband light sources having a peak wavelength on the short wavelength side of the center wavelength. it can.
- each of the plurality of narrow band light sources includes one narrow band light source having a peak wavelength on the long wavelength side of the center wavelength and one narrow band light source having a peak wavelength on the short wavelength side of the center wavelength. Can be configured.
- the plurality of narrow-band light sources can be configured such that none of the peak wavelengths of the emitted light is included in the second wavelength region when the input current value is constant.
- a temperature detecting unit for detecting temperatures of the plurality of narrow band light sources independently; a control unit for controlling the temperatures of the plurality of narrow band light sources; and temperatures of the plurality of narrow band light sources.
- Each of the plurality of narrow band light sources based on the temperature of each of the plurality of narrow band light sources detected by the temperature detection unit. The temperature may be controlled.
- the invention of the light source device that achieves the above object is any one of the above light source units, wherein the first light source unit having the center wavelength of the second wavelength region as a red wavelength, and the second light source unit A second light source unit having a green wavelength as the central wavelength in the wavelength region; a third light source unit having a blue wavelength as the central wavelength in the second wavelength region; and the first to third light sources. And an optical coupling output unit that combines the light emitted from the unit into one output light, and is configured to emit white light as the output light.
- an endoscope apparatus that achieves the above object is to guide the white light emitted from the light source device and the light source device to irradiate the observation object, and receive the light obtained by the irradiation.
- An insertion unit including a light receiving unit and an image processing unit that generates an image from a signal obtained by the light receiving unit are provided.
- color means the appearance of color.
- the color of the combined light can be obtained by arithmetically averaging the wavelengths of each light by the peak light intensity. It becomes substantially equal to the color of light of wavelength.
- the peak wavelength of the light emitted when the input current value is a predetermined constant value is shorter than the longer wavelength side of the central wavelength of the second wavelength region.
- Each including at least one narrow-band light source positioned on the wavelength side, and the color of the emitted light output from the optical coupling unit is selected to be included in the color range corresponding to the second wavelength region Therefore, a light source that can emit light in a desired color range with a simple configuration and management method while using a plurality of narrow band light sources including a narrow band light source that cannot achieve a desired color by itself.
- a unit, a light source device, and an endoscope apparatus using them can be provided.
- FIG. 1 is a block diagram of a light source unit according to the first embodiment.
- the light source unit 1 includes two laser light sources 10A and 10B that are narrow-band light sources, an optical coupler 11 (optical coupling unit), and an output unit 14.
- the laser light sources 10A and 10B are connected to the optical coupler 11 via fibers 12A and 12B, respectively.
- the optical coupler 11 and the output unit 14 are connected via an optical fiber 13.
- the laser light sources 10A and 10B are laser light sources selected from a number of laser light sources that can be procured for a desired wavelength to be output by the light source unit 1.
- the desired wavelength the actual wavelength of the lasers that can be procured varies within a specific wavelength range.
- the wavelength range of the peak wavelength of the laser light source that can be procured is referred to as a first wavelength region.
- the first wavelength region is defined in, for example, a product specification value of a manufacturer that supplies the laser light sources 10A and 10B.
- the narrow band light source is a light source such as a laser or LED having a narrower band than that of a light source normally used for observation.
- a semiconductor laser When a semiconductor laser is used, its spectral width is about 1 to several nm. In addition, when an LED is used, the spectrum width is about several nm to several tens of nm.
- the light emitted from the laser light sources 10A and 10B is output to the optical fibers 12A and 12B, respectively.
- the optical coupler 11 is an optical coupler that can multiplex laser beams from the laser light sources 10A and 10B input via the optical fibers 12A and 12B with little optical loss.
- an optical fiber type multiplexer or the like can be used as the optical coupler 11, an optical fiber type multiplexer or the like.
- the output light obtained by combining the laser light output from the laser light sources 10 ⁇ / b> A and 10 ⁇ / b> B by the optical coupler 11 is configured to be output as output light from the output unit 14 via the optical fiber 13.
- the output unit 14 is appropriately configured according to a method of emitting output light to the outside of the light source unit 1. For example, when the emitted light is connected to an external optical fiber, it can be connected to the optical fiber.
- a multimode fiber can be used as the optical fibers 12A and 12B and the optical fiber 13.
- FIG. 2 is a diagram for explaining the relationship between the wavelength distribution of the emission intensity of a plurality of laser light sources and the first and second wavelength regions.
- the wavelength distribution of the emission intensity when a constant current is input to the four lasers L 1 to L 4 is illustrated.
- the first wavelength region is the wavelength region of the peak wavelength of the laser light source that can be procured as described above.
- ⁇ C is a desired wavelength of the light source unit 1.
- the second wavelength region is a wavelength region of a desired peak wavelength that is determined by an application such as illumination.
- the second wavelength region has a spread on the long wavelength side and the short wavelength side with the desired wavelength ⁇ C as the center wavelength.
- the second wavelength region indicates a peak wavelength range that is allowed as the color of the output light of the light source unit 1.
- the second wavelength region is narrower than the first wavelength region, and the peak wavelength does not belong to the second wavelength region among procurable laser light sources that emit laser light in the first wavelength region. This includes laser light sources that cannot be used alone.
- the peak wavelength of the light emitted straddles the center wavelength ⁇ C of the second wavelength region, and the short wavelength side laser L 1 and the long wavelength side laser L 4 Are selected as the laser light sources 10A and 10B, respectively.
- the color of the emitted light output by combining the laser beams from the laser light sources 10A and 10B is included in the range of the color corresponding to the narrow band light in the second wavelength region. be able to.
- a laser that cannot be used alone for the light source unit 1 is combined with another laser as a light source.
- the unit 1 can be used.
- the laser light sources 10A and 10B have a difference between the average value obtained by weighting the peak wavelength with the light amount at the peak wavelength (hereinafter referred to as “arithmetic combined wavelength”) and the center wavelength ⁇ c in the second wavelength region. It is preferable to select the wavelength range (that is, a value obtained by subtracting the lower limit value from the upper limit value of the wavelength in the second wavelength region) to be 1/2 or less, more preferably 1/4 or less. For example, as shown in FIG. 3, a laser L 1 and a laser L 4 are selected as the laser light sources 10A and 10B, and the absolute value of the difference between the center wavelength ⁇ C and each peak wavelength is ⁇ 1 , ⁇ 4 , respectively.
- the light amount values of the peak wavelengths are LI 1 and LI 4 . Further, it is assumed that the arithmetic combined wavelength ⁇ av is closer to the peak wavelength (short wavelength side) of the laser L 1 than the center wavelength ⁇ c .
- LI 1 ⁇ ( ⁇ 1 ⁇ av ) LI 4 ( ⁇ 4 + ⁇ av )
- the difference ⁇ av between ⁇ av and ⁇ c is made 1 ⁇ 2 of the wavelength width of the second wavelength region, preferably 1 ⁇ 4 or less. . By doing so, the color of the emitted light can be brought close to the color of the light having a desired wavelength.
- ⁇ 1 ⁇ LI 1 and ⁇ 4 ⁇ LI 4 are approximately equal on both sides of the center wavelength ⁇ C , the arithmetic combined wavelength becomes approximately equal to the center wavelength ⁇ c, and optical coupling The color of the emitted light combined by the vessel 11 becomes closer to the color of the desired wavelength.
- the laser light sources 10A and 10B have the peak wavelength of the light emitted when the input current value is constant, the center wavelength ⁇ C of the second wavelength region.
- Each of which has at least one laser positioned on the long wavelength side and the short wavelength side, and the color of the emitted light output from the optical coupler 11 corresponds to the narrow band light in the second wavelength region. Since it is selected so as to be included in the range, it emits light included in the desired color range while using a plurality of narrow-band light sources including lasers L 1 and L 4 that cannot realize a desired color by itself.
- the light source unit 1 that can be provided can be provided.
- the light source unit 1 of the present invention a conversion table for obtaining a desired wavelength from the laser light sources 10A and 10B and control of the input current are not required, and a predetermined current is applied to the laser light sources 10A and 10B. good. Therefore, there is an advantage that the device configuration and the management method are simple.
- An arithmetic combined wavelength ⁇ av that is an average value obtained by weighting the narrow-band light sources 10A and 10B with the peak wavelengths of the narrow-band light sources 10A and 10B by the light amounts of the light sources 10A and 10B at the peak wavelength; Is selected so that the difference from the central wavelength ⁇ c of the wavelength region of the second wavelength region is 1 ⁇ 2 or less, particularly 1 ⁇ 4 or less of the wavelength range of the second wavelength region. It can be close to the color of the desired wavelength.
- the arithmetic combined wavelength ⁇ av is selected so as to be substantially equal to the center wavelength ⁇ c , it is possible to obtain a color substantially equivalent to the color of the desired wavelength.
- the volume of the light source unit 1 can be reduced.
- the light source unit 1 of the present embodiment will be described using a more specific example.
- a semiconductor laser NDG4216 (oscillation wavelength 510 nm to 520 nm manufactured by Nichia Corporation) is available as a narrow-band light source that can be procured and has a chromaticity close to the desired chromaticity. ).
- the chromaticity values of the laser light sources having wavelengths 510 nm and 520 nm that are most different from the desired 515 nm are 510 nm (x: 0.0189, y: 0.75) and 520 nm (x: 0.075, y), respectively.
- a chromaticity value of 515 nm (x: 0.034, y: 0.8) has a maximum difference of 0.041 for x and 0.05 for y.
- an allowable value of the difference in chromaticity value for example, when the chromaticity specification (ANSI C78.377 5700K white) of the white power LED is cited, the allowable value of the error range is 0.0169 for x, and 0.00 for y. 0373, and the difference in the case of 510 nm and 520 nm described above exceeds the allowable value.
- the center wavelength is the desired wavelength of 515 nm
- the difference between the peak wavelength and the center wavelength between the long wavelength side and the short wavelength side is as shown in FIG.
- the laser L 5 (oscillation wavelength: 510 nm) and the laser L 6 (oscillation wavelength: 520 nm) are selected to be a combination in which the multiplication value of the absolute value (5 nm) and the light amount value (10 mW) of the peak wavelength are equal.
- CIE1931 defined by the CIE (International Commission on Illumination) in FIG.
- FIG. 5 the chromaticity of the light having the desired wavelength combined with the lasers L 5 and L 6 is shown in FIG. Shown in Here, FIG. 6 is an enlarged view of the broken line portion of FIG.
- the chromaticity value (x: 0.044, y: 0.792) of this synthetic laser is the chromaticity value (x: 0.034) at the desired wavelength 515 nm represented by the point P 1. , Y: 0.8).
- the laser L 6 of the laser L 5 and the peak wavelength 520nm of peak wavelength 510 nm, laser light sources 10A, used as 10B, to output the light emitted by combining with the optical coupler 11 from the output unit 14 As a result, it is possible to obtain emission light having a color almost equal to that of the narrow-band light having a wavelength of 515 nm.
- the number of laser light sources included in the light source unit 1 is not limited to two, and it is possible to provide three or more narrow-band light sources. Also in this case, at least one narrow-band light source in which the peak wavelength of the light emitted when the input current value is constant is located on the long wavelength side and the short wavelength side of the center wavelength ⁇ C in the second wavelength region, respectively. Narrow band light source by selecting more than one so that the color of the emitted light output from the optical coupler 11 is included in the color range corresponding to the narrow band light in the second wavelength region The same effect as when there are two is obtained.
- the long wavelength side and / or the short wavelength side of the center wavelength lambda C in the case of providing a plurality of narrow-band light sources, the difference of the wavelength range of the second wavelength region of the arithmetic combining wavelength and the center wavelength lambda c By setting it to 1/2 of this, more preferably 1/4 or less, the color of the emitted light can be made closer to the color of the desired wavelength.
- FIG. 7 is a block diagram of a light source unit according to the second embodiment.
- the light source unit 1A has temperature detection units 20A and 20B that detect temperatures and temperature adjustments that adjust the temperatures of the laser light sources 10A and 10B, respectively, with respect to the laser light sources 10A and 10B of the light source unit 1 in the first embodiment.
- the units 30A and 30B are provided, and the control unit 40 is provided.
- the configuration including the temperature detection units 20A and 20B, the temperature adjustment units 30A and 30B, and the control unit 40 is also referred to as a “temperature adjustment mechanism”.
- thermocouple temperature sensor or a semiconductor temperature sensor
- temperature adjustment units 30A and 30B for example, Peltier elements can be used.
- the control unit 40 is electrically connected to the temperature detection units 20A and 20B via connection lines 21A and 21B, respectively.
- the control unit 40 is electrically connected to the temperature adjustment units 30A and 30B via connection lines 31A and 31B.
- the control unit 40 controls the temperatures of the laser light sources 10A and 10B to be within a predetermined range based on the temperatures of the laser light sources 10A and 10B detected by the temperature detection units 20A and 20B. Since other configurations are the same as those of the first embodiment, the same or corresponding components are denoted by the same reference numerals and description thereof is omitted.
- the oscillation wavelength of a laser light source varies depending on the temperature.
- the temperature adjustment mechanism maintains the temperature variation of the laser light sources 10A and 10B within a predetermined range. A change in the oscillation wavelength due to the change can be suppressed. Therefore, the color of the emitted light can be kept constant.
- FIG. 8 is a block diagram of a light source device according to the third embodiment.
- the light source device 50 includes a light source unit 51R (first light source unit) having red chromaticity, a light source unit 51G (second light source unit) having green chromaticity, and a light source unit having blue chromaticity.
- 51B third light source unit
- an optical coupling unit 52 that combines light emitted from each of the light source units 51R, 51G, and 51B into one output light
- an output unit that emits the output light to the outside 55.
- Each light source unit 51R, 51G, 51B and the optical coupler 52 are connected by optical fibers 53R, 53G, 53B, respectively.
- the optical coupler 52 and the output unit 55 are connected by an optical fiber 54.
- the optical coupling output unit includes an optical coupler 52 and an output unit 55.
- each light source unit 51R, 51G, 51B a light source unit configured similarly to the light source unit 1 according to the first embodiment is used. Since each light source unit 51R, 51G, 51B emits the emitted light having a desired color, it is easy to make the light combined with the coupler 52 and output from the output unit 55 white light.
- the light source units 51R, 51G, and 51B can be configured in the same manner as the light source unit 1A according to the second embodiment having a temperature adjustment mechanism. In that case, stable white light can be provided by constantly controlling the temperature.
- FIG. 9 is a block diagram of an endoscope apparatus according to the fourth embodiment.
- the endoscope apparatus 100 is inserted into an object to be detected, the light source device 60, an insertion unit 70 that irradiates an observation target with illumination light from the light source device 60, and detects an image signal.
- the image processing apparatus 80 image processing unit that processes the image signal to generate an image and a monitor 90 that displays the image signal output from the image processing apparatus 80 are configured.
- the light source device 60 uses the light source device 50 according to the third embodiment.
- the insertion unit 70 guides the light emitted from the light source device 60, and the optical fiber 71, which is a multimode optical fiber that emits light from the distal end of the insertion unit 70 toward the observation target, and the distal end of the insertion unit 70.
- a light receiving element 72 (light receiving unit) such as a CCD that two-dimensionally receives light from the observation target, and a signal line 73 for transmitting an electric signal of the light receiving element 72 to the image processing device 80 are provided.
- the white light emitted from the light source device 50 passes through the optical fiber 71 in the insertion unit 70 and is irradiated to the observation target.
- the white light reflected and scattered by the observation target is detected by the light receiving element 72, converted into an electric signal, and transmitted to the image processing unit 80 via the signal line 73.
- the image processing unit 80 can generate an image from the signal of the light receiving element 72 received via the signal line 73 and display it on the screen of the monitor 90.
- the endoscope apparatus 100 uses the light source device 50 according to the third embodiment as the light source device 60, so that a stable white light can be obtained while using a laser light source having a wavelength variation alone. It can be used for endoscopic observation. Further, as the light source unit of the light source device 60, a light source unit configured similarly to the light source unit 1A of the second embodiment may be used. In this case, since the temperature adjustment mechanism is provided, stable white light can be obtained regardless of the heat generation inside the light source device 60.
- the present invention is not limited to the above embodiment, and many variations or modifications are possible.
- the wavelength of light generated by the light source unit is not limited to the R, G, and B wavelengths, and may generate light of other wavelengths.
- the light source device according to the fourth embodiment uses a light source unit corresponding to three wavelengths of R, G, and B. However, four or more light source units corresponding to four or more wavelengths may be provided. . Further, the light source device is not limited to an endoscope application, and can be used for various illumination applications.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Endoscopes (AREA)
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
Abstract
A light source unit 1 is provided with: a plurality of laser light sources 10A and 10B that are selected from among a plurality of light sources of narrow bands included in a first wavelength region; an optical coupler 11, which couples light outputted from the laser light sources 10A and 10B, and outputs the light as one beam of output light; and an output unit 14 that outputs the output light outputted from the optical coupler 11. The first wavelength region includes a second wavelength region, and is broader than the second wavelength region, and the laser light sources 10A and 10B are selected such that the laser light sources include at least each of the laser light sources 10A and 10B wherein the peak wavelengths of light outputted when the value of an inputted current is set constant are positioned on the long wavelength side and the short wavelength side of the center wavelength of the second wavelength region, and that the hue of the output light outputted from the optical coupler 11 is within a hue range corresponding to the narrow band light within the second wavelength region.
Description
本発明は、光源ユニット、光源装置およびそれらを用いた内視鏡装置に関する。
The present invention relates to a light source unit, a light source device, and an endoscope device using them.
近年、レーザなどの狭帯域光源の発光効率が向上し、照明から加工など様々なところで使用されるようになってきた。しかし、狭帯域光源で一般的に使用されているレーザを例にとると、同じ製品型式であっても、その波長帯域において固体差を生ずることがある。このため、例えば、ディスプレイ等で所望の色味が必要とされる用途では、同じ製品型式のレーザでも使用できるものと使用できないものが存在し、使用できないものは、無駄なコストになる。
In recent years, the luminous efficiency of narrow-band light sources such as lasers has improved, and it has come to be used in various places from lighting to processing. However, taking a laser generally used in a narrow band light source as an example, even if the product type is the same, there may be a solid difference in the wavelength band. For this reason, for example, in applications where a desired color tone is required for a display or the like, there are those that can be used even with lasers of the same product type and those that cannot be used, and those that cannot be used are useless costs.
このため、半導体発光素子(狭帯域光源)で、単体では発光波長が規定の波長範囲に収まらない半導体発光素子であっても使用できるように、複数の半導体素子を用いて規定の波長に対応する色味の光を生成する技術が提案されている(例えば、特許文献1参照)。具体的には、中心発光波長の互いに異なる複数の半導体発光素子の中心発光波長と発光光量の情報に基いて、予め用意した波長変更テーブルにより、複数の半導体発光素子の発光光量を個別に制御し、合波される光の中心波長を所定の波長に制御する内視鏡装置が記載されている。
For this reason, a semiconductor light emitting element (narrow band light source) can be used even if it is a semiconductor light emitting element whose emission wavelength does not fall within the specified wavelength range, and it corresponds to the specified wavelength using a plurality of semiconductor elements. Techniques for generating tinted light have been proposed (see, for example, Patent Document 1). Specifically, the light emission amounts of the plurality of semiconductor light emitting elements are individually controlled by the wavelength change table prepared in advance based on the information on the center light emission wavelengths and the light emission amounts of the plurality of semiconductor light emitting elements having different center emission wavelengths. An endoscope apparatus that controls the center wavelength of light to be combined to a predetermined wavelength is described.
しかしながら、複数の狭帯域光源の一つ一つの発光光量を制御するには、狭帯域光源と同じ数の光量制御機構が必要となり、装置の大型化とコストの増加を招くことが懸念される。また、複数個の狭帯域光源の発光光量を調整し、規定の波長とするため、狭帯域光源の個数が増えるほど、多くの発光光量の解が存在することになり光源と光量の管理が難しくなる。さらに、一度選定した複数の狭帯域光源のうち、幾つかを交換する場合には、交換しない狭帯域光源を含めて、全ての狭帯域光源の発光光量の再調整が必要となる可能性があり、手間が掛かる。
However, in order to control the amount of light emitted from each of the plurality of narrow-band light sources, the same number of light-quantity control mechanisms as the narrow-band light sources are required, which may increase the size and cost of the apparatus. In addition, the amount of light emitted from a plurality of narrow-band light sources is adjusted to a specified wavelength, and as the number of narrow-band light sources increases, there are more solutions for the amount of emitted light, making it difficult to manage the light source and light amount. Become. Furthermore, when replacing some of the narrowband light sources that have been selected once, it may be necessary to readjust the amount of light emitted from all narrowband light sources, including those that are not replaced. ,Take the trouble.
したがって、これらの点に着目してなされた本発明の目的は、単体では所望の色味を実現できない狭帯域光源を含む複数の狭帯域光源を用いながら、単純な構成および管理方法で所望の色味範囲に含まれる光を射出することができる光源ユニット、光源装置およびそれらを用いた内視鏡装置を提供することにある。
Therefore, the object of the present invention, which has been made by paying attention to these points, is to achieve a desired color with a simple configuration and management method while using a plurality of narrowband light sources including a narrowband light source that cannot achieve a desired color by itself. It is an object of the present invention to provide a light source unit, a light source device, and an endoscope device using them that can emit light included in a taste range.
上記目的を達成する光源ユニットの発明は、
第1の波長領域に含まれる多数の狭帯域光源から選択した複数の狭帯域光源と、
前記複数の狭帯域光源から射出される光を結合して、1つの射出光として出力する光結合部と、
前記光結合部から出力された射出光を出力する出力部と、
を備えた光源ユニットであって、
前記第1の波長領域は、第2の波長領域を含み該第2の波長領域よりも広く、前記複数の狭帯域光源は、入力する電流値を一定とした場合に射出される光のピーク波長が、前記第2の波長領域の中心波長の長波長側および短波長側に位置する狭帯域光源を各々少なくとも1個以上含み、前記光結合部から出力される射出光の色味が、前記第2の波長領域内の狭帯域光に対応する色味範囲内に含まれるように選択されることを特徴とするものである。 The invention of the light source unit that achieves the above object is as follows:
A plurality of narrowband light sources selected from a number of narrowband light sources included in the first wavelength region;
An optical coupling unit that combines the light emitted from the plurality of narrow-band light sources and outputs the combined light;
An output unit for outputting the emitted light output from the optical coupling unit;
A light source unit comprising:
The first wavelength region includes a second wavelength region and is wider than the second wavelength region, and the plurality of narrow-band light sources has a peak wavelength of light emitted when an input current value is constant. Includes at least one narrow-band light source positioned on the long wavelength side and the short wavelength side of the center wavelength of the second wavelength region, respectively, and the color of the emitted light output from the optical coupling unit is It is selected so that it may be contained in the color range corresponding to the narrow-band light in 2 wavelength range.
第1の波長領域に含まれる多数の狭帯域光源から選択した複数の狭帯域光源と、
前記複数の狭帯域光源から射出される光を結合して、1つの射出光として出力する光結合部と、
前記光結合部から出力された射出光を出力する出力部と、
を備えた光源ユニットであって、
前記第1の波長領域は、第2の波長領域を含み該第2の波長領域よりも広く、前記複数の狭帯域光源は、入力する電流値を一定とした場合に射出される光のピーク波長が、前記第2の波長領域の中心波長の長波長側および短波長側に位置する狭帯域光源を各々少なくとも1個以上含み、前記光結合部から出力される射出光の色味が、前記第2の波長領域内の狭帯域光に対応する色味範囲内に含まれるように選択されることを特徴とするものである。 The invention of the light source unit that achieves the above object is as follows:
A plurality of narrowband light sources selected from a number of narrowband light sources included in the first wavelength region;
An optical coupling unit that combines the light emitted from the plurality of narrow-band light sources and outputs the combined light;
An output unit for outputting the emitted light output from the optical coupling unit;
A light source unit comprising:
The first wavelength region includes a second wavelength region and is wider than the second wavelength region, and the plurality of narrow-band light sources has a peak wavelength of light emitted when an input current value is constant. Includes at least one narrow-band light source positioned on the long wavelength side and the short wavelength side of the center wavelength of the second wavelength region, respectively, and the color of the emitted light output from the optical coupling unit is It is selected so that it may be contained in the color range corresponding to the narrow-band light in 2 wavelength range.
さらに、前記複数の狭帯域光源は、該複数の前記狭帯域光源のピーク波長を該ピーク波長における前記狭帯域光源の光量で重みづけした平均値と、前記第2の波長領域の前記中心波長との差異が、前記第2の波長領域の波長範囲の1/2以下、さらに好ましくは1/4以下になるように選択されることが好ましい。
Further, the plurality of narrowband light sources includes an average value obtained by weighting a peak wavelength of the plurality of narrowband light sources by an amount of light of the narrowband light source at the peak wavelength, and the center wavelength of the second wavelength region. It is preferable that the difference is selected so as to be 1/2 or less, more preferably 1/4 or less of the wavelength range of the second wavelength region.
前記複数の狭帯域光源は、前記中心波長の長波長側にピーク波長を有する狭帯域光源と前記中心波長の短波長側にピーク波長を有する狭帯域光源とを、同数含むように構成することができる。
The plurality of narrowband light sources may be configured to include the same number of narrowband light sources having a peak wavelength on the long wavelength side of the center wavelength and narrowband light sources having a peak wavelength on the short wavelength side of the center wavelength. it can.
また、前記複数の狭帯域光源は、前記中心波長の長波長側にピーク波長を有する狭帯域光源と前記中心波長の短波長側にピーク波長を有する狭帯域光源とを、それぞれ1個ずつ含むように構成することができる。
Further, each of the plurality of narrow band light sources includes one narrow band light source having a peak wavelength on the long wavelength side of the center wavelength and one narrow band light source having a peak wavelength on the short wavelength side of the center wavelength. Can be configured.
さらに、前記複数の狭帯域光源は、入力する電流値を一定とした時に、射出される光のピーク波長が、何れも前記第2の波長領域内に含まれないように構成することができる。
Furthermore, the plurality of narrow-band light sources can be configured such that none of the peak wavelengths of the emitted light is included in the second wavelength region when the input current value is constant.
また、前記複数の狭帯域光源の温度をそれぞれ独立して検出する温度検出部と、前記複数の狭帯域光源のそれぞれの温度を制御する制御部と、前記複数の狭帯域光源のそれぞれの温度を前記制御部からの制御により調整する温度調整部とを含み、前記制御部は、前記温度検出部により検出した前記複数の狭帯域光源のそれぞれの温度に基づいて、前記複数の狭帯域光源のそれぞれの温度を制御するようにしても良い。
A temperature detecting unit for detecting temperatures of the plurality of narrow band light sources independently; a control unit for controlling the temperatures of the plurality of narrow band light sources; and temperatures of the plurality of narrow band light sources. Each of the plurality of narrow band light sources based on the temperature of each of the plurality of narrow band light sources detected by the temperature detection unit. The temperature may be controlled.
さらに、上記目的を達成する光源装置の発明は、上記何れかの光源ユニットであって、前記第2の波長領域の前記中心波長を赤色の波長とする第1の光源ユニットと、前記第2の波長領域の前記中心波長を緑色の波長とする第2の光源ユニットと、前記第2の波長領域の前記中心波長を青色の波長とする第3の光源ユニットと、前記第1から第3の光源ユニットから射出される光を結合して1つの出力光とする光結合出力部とを備え、前記出力光として白色光を射出できるように構成したことを特徴とするものである。
Furthermore, the invention of the light source device that achieves the above object is any one of the above light source units, wherein the first light source unit having the center wavelength of the second wavelength region as a red wavelength, and the second light source unit A second light source unit having a green wavelength as the central wavelength in the wavelength region; a third light source unit having a blue wavelength as the central wavelength in the second wavelength region; and the first to third light sources. And an optical coupling output unit that combines the light emitted from the unit into one output light, and is configured to emit white light as the output light.
また、上記目的を達成する内視鏡装置の発明は、上記光源装置と、該光源装置から射出された白色光を導光して観察対象に照射し、該照射により得られた光を受光する受光部を備える挿入部と、前記受光部により得られた信号から画像を生成する画像処理部とを備えることを特徴とするものである。
Further, the invention of an endoscope apparatus that achieves the above object is to guide the white light emitted from the light source device and the light source device to irradiate the observation object, and receive the light obtained by the irradiation. An insertion unit including a light receiving unit and an image processing unit that generates an image from a signal obtained by the light receiving unit are provided.
なお、この出願で「色味」とは、色の見え方を意味するものである。比較的近い波長範囲にピーク光強度を有する複数の光を合波すると、合波された光の色味は、それぞれの光の波長を、ピーク光強度で重みづけして算術平均して得られる波長の光の色味に略等しくなる。
In this application, “color” means the appearance of color. When a plurality of lights having peak light intensities in a relatively close wavelength range are combined, the color of the combined light can be obtained by arithmetically averaging the wavelengths of each light by the peak light intensity. It becomes substantially equal to the color of light of wavelength.
本発明によれば、複数の狭帯域光源は、入力する電流値を所定の一定値とした場合に射出される光のピーク波長が、前記第2の波長領域の中心波長の長波長側および短波長側に位置する狭帯域光源を各々少なくとも1個以上含み、光結合部から出力される射出光の色味が、第2の波長領域に対応する色味範囲内に含まれるように選択されているので、単体では所望の色味を実現できない狭帯域光源を含む複数の狭帯域光源を用いながら、単純な構成および管理方法で所望の色味の範囲に含まれる光を射出することができる光源ユニット、光源装置およびそれらを用いた内視鏡装置を提供することができる。
According to the present invention, in the plurality of narrowband light sources, the peak wavelength of the light emitted when the input current value is a predetermined constant value is shorter than the longer wavelength side of the central wavelength of the second wavelength region. Each including at least one narrow-band light source positioned on the wavelength side, and the color of the emitted light output from the optical coupling unit is selected to be included in the color range corresponding to the second wavelength region Therefore, a light source that can emit light in a desired color range with a simple configuration and management method while using a plurality of narrow band light sources including a narrow band light source that cannot achieve a desired color by itself. A unit, a light source device, and an endoscope apparatus using them can be provided.
以下、本発明の実施の形態について、図面を参照して説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1実施の形態)
図1は、第1実施の形態に係る光源ユニットのブロック図である。光源ユニット1は、狭帯域光源である2つのレーザ光源10A,10B、光結合器11(光結合部)および出力部14を備える。レーザ光源10A,10Bは、光結合器11とそれぞれファイバ12A,12Bで接続され、光結合器11と出力部14とは光ファイバ13で接続される。 (First embodiment)
FIG. 1 is a block diagram of a light source unit according to the first embodiment. Thelight source unit 1 includes two laser light sources 10A and 10B that are narrow-band light sources, an optical coupler 11 (optical coupling unit), and an output unit 14. The laser light sources 10A and 10B are connected to the optical coupler 11 via fibers 12A and 12B, respectively. The optical coupler 11 and the output unit 14 are connected via an optical fiber 13.
図1は、第1実施の形態に係る光源ユニットのブロック図である。光源ユニット1は、狭帯域光源である2つのレーザ光源10A,10B、光結合器11(光結合部)および出力部14を備える。レーザ光源10A,10Bは、光結合器11とそれぞれファイバ12A,12Bで接続され、光結合器11と出力部14とは光ファイバ13で接続される。 (First embodiment)
FIG. 1 is a block diagram of a light source unit according to the first embodiment. The
レーザ光源10A,10Bは、光源ユニット1で出力しようとする所望の波長に対して、調達可能な多数のレーザ光源から選択されたレーザ光源である。所望の波長に対して、調達可能なレーザの実際の波長は、特定の波長範囲内でバラツキを有している。以下において、この調達可能なレーザ光源のピーク波長の波長範囲のことを第1の波長領域と呼ぶ。第1の波長領域は、例えば、レーザ光源10A,10Bを供給するメーカの製品仕様値に規定されている。なお、狭帯域光源とは、通常観察に使用される光源よりも狭い帯域を有する、レーザやLED等の光源である。半導体レーザを用いた場合は、そのスペクトル幅は、約1~数nmである。また、LEDを用いた場合は、そのスペクトル幅は、約数nmから数十nmである。
The laser light sources 10A and 10B are laser light sources selected from a number of laser light sources that can be procured for a desired wavelength to be output by the light source unit 1. For the desired wavelength, the actual wavelength of the lasers that can be procured varies within a specific wavelength range. Hereinafter, the wavelength range of the peak wavelength of the laser light source that can be procured is referred to as a first wavelength region. The first wavelength region is defined in, for example, a product specification value of a manufacturer that supplies the laser light sources 10A and 10B. The narrow band light source is a light source such as a laser or LED having a narrower band than that of a light source normally used for observation. When a semiconductor laser is used, its spectral width is about 1 to several nm. In addition, when an LED is used, the spectrum width is about several nm to several tens of nm.
レーザ光源10A,10Bの射出光は、それぞれ、光ファイバ12A,12Bに出力される。光結合器11は、光ファイバ12A,12Bを介して入力されるレーザ光源10A,10Bからのレーザ光を、光学損失が少なく合波することができる光結合器である。光結合器11としては、光ファイバ型の合波器などを用いることができる。レーザ光源10A,10Bから出力されたレーザ光が、光結合器11で結合された出力光は、光ファイバ13を介して出力部14から射出光として出力されるように構成される。出力部14は、光源ユニット1の外部への出力光の射出方法に応じて、適宜構成されている。例えば、外部の光ファイバへ射出光を接続する場合は、光ファイバと接続可能に構成される。なお、光ファイバ12A,12Bおよび光ファイバ13としては、マルチモードファイバを用いることができる。
The light emitted from the laser light sources 10A and 10B is output to the optical fibers 12A and 12B, respectively. The optical coupler 11 is an optical coupler that can multiplex laser beams from the laser light sources 10A and 10B input via the optical fibers 12A and 12B with little optical loss. As the optical coupler 11, an optical fiber type multiplexer or the like can be used. The output light obtained by combining the laser light output from the laser light sources 10 </ b> A and 10 </ b> B by the optical coupler 11 is configured to be output as output light from the output unit 14 via the optical fiber 13. The output unit 14 is appropriately configured according to a method of emitting output light to the outside of the light source unit 1. For example, when the emitted light is connected to an external optical fiber, it can be connected to the optical fiber. A multimode fiber can be used as the optical fibers 12A and 12B and the optical fiber 13.
次に、レーザ光源10A,10Bの選択方法について説明する。図2は、複数のレーザ光源の発光強度の波長分布と第1および第2の波長領域との関係を説明する図である。調達可能な多数のレーザ光源のうち、4つのレーザL1~L4に一定値の電流を入力した時の発光強度の波長分布を図示している。図2において、第1の波長領域は上述のように調達可能なレーザ光源のピーク波長の波長領域である。また、λCは光源ユニット1の所望の波長である。さらに、第2の波長領域は、照明等の用途によって定められる所望のピーク波長の波長領域である。第2の波長領域は、所望の波長λCを中心波長として、長波長側および短波長側に広がりを有する。この第2の波長領域は、光源ユニット1の出力光の色味として許容されるピーク波長の範囲を示している。第2の波長領域は、第1の波長領域よりも狭く、第1の波長領域のレーザ光を射出する調達可能なレーザ光源の中には、そのピーク波長が第2の波長領域に属さないので、単体では使用できないレーザ光源が含まれる。
Next, a method for selecting the laser light sources 10A and 10B will be described. FIG. 2 is a diagram for explaining the relationship between the wavelength distribution of the emission intensity of a plurality of laser light sources and the first and second wavelength regions. Of the many laser light sources that can be procured, the wavelength distribution of the emission intensity when a constant current is input to the four lasers L 1 to L 4 is illustrated. In FIG. 2, the first wavelength region is the wavelength region of the peak wavelength of the laser light source that can be procured as described above. Further, λ C is a desired wavelength of the light source unit 1. Furthermore, the second wavelength region is a wavelength region of a desired peak wavelength that is determined by an application such as illumination. The second wavelength region has a spread on the long wavelength side and the short wavelength side with the desired wavelength λ C as the center wavelength. The second wavelength region indicates a peak wavelength range that is allowed as the color of the output light of the light source unit 1. The second wavelength region is narrower than the first wavelength region, and the peak wavelength does not belong to the second wavelength region among procurable laser light sources that emit laser light in the first wavelength region. This includes laser light sources that cannot be used alone.
そこで、入力する電流値を一定とした場合に射出される光のピーク波長が、第2の波長領域の中心波長λCをまたぎ、短波長側のレーザL1と長波長側のレーザL4とを、それぞれレーザ光源10A,10Bとして選択する。これにより、レーザ光源10A,10Bからのレーザ光を合波して出力される射出光の色味が、第2の波長領域内の狭帯域光に対応する色味の範囲に含まれるようにすることができる。また、レーザL1,L4の少なくとも一方のピーク波長が第2の波長領域内に含まれない場合、単体では光源ユニット1に使用することのできなかったレーザを、他のレーザと組み合わせて光源ユニット1で使用できることとなる。
Therefore, when the input current value is constant, the peak wavelength of the light emitted straddles the center wavelength λ C of the second wavelength region, and the short wavelength side laser L 1 and the long wavelength side laser L 4 Are selected as the laser light sources 10A and 10B, respectively. Thereby, the color of the emitted light output by combining the laser beams from the laser light sources 10A and 10B is included in the range of the color corresponding to the narrow band light in the second wavelength region. be able to. When at least one peak wavelength of the lasers L 1 and L 4 is not included in the second wavelength region, a laser that cannot be used alone for the light source unit 1 is combined with another laser as a light source. The unit 1 can be used.
また、レーザ光源10A,10Bは、ピーク波長をピーク波長における光量で重みづけした平均値(以下「算術合波波長」と呼ぶ)と、中心波長λcとの差異が、第2の波長領域の波長範囲(すなわち、第2の波長領域の波長の上限値から下限値を引いた値)の1/2以下、更に好適には1/4以下となるように選択することが好ましい。例えば、図3に示すように、レーザ光源10A,10BとしてレーザL1とレーザL4とを選択し、中心波長λCと各々のピーク波長の差の絶対値は、Δλ1,Δλ4、各々のピーク波長の光量値は、LI1,LI4であるとする。また、算術合波波長λavは、中心波長λcよりもレーザL1のピーク波長寄り(短波長側)にあるとする。ここで、
LI1×(Δλ1-Δλav)=LI4(Δλ4+Δλav)
となる算術合波波長λavを算出したとき、λavとλcとの差Δλavを第2の波長領域の波長の幅の1/2、好適には1/4以下となるようにする。このようにすることによって、射出光の色味を所望の波長の光の色味に近づけることができる。さらに、Δλavの値は、小さいほど好ましい。Δλ1×LI1とΔλ4×LI4が、中心波長λCを挟んで両側において、ほぼ等しくなるように選択することによって、算術合波波長が、中心波長λcと略等しくなり、光結合器11で結合された射出光の色味が、より所望の波長の色味に近くなる。 The laser light sources 10A and 10B have a difference between the average value obtained by weighting the peak wavelength with the light amount at the peak wavelength (hereinafter referred to as “arithmetic combined wavelength”) and the center wavelength λ c in the second wavelength region. It is preferable to select the wavelength range (that is, a value obtained by subtracting the lower limit value from the upper limit value of the wavelength in the second wavelength region) to be 1/2 or less, more preferably 1/4 or less. For example, as shown in FIG. 3, a laser L 1 and a laser L 4 are selected as the laser light sources 10A and 10B, and the absolute value of the difference between the center wavelength λ C and each peak wavelength is Δλ 1 , Δλ 4 , respectively. It is assumed that the light amount values of the peak wavelengths are LI 1 and LI 4 . Further, it is assumed that the arithmetic combined wavelength λ av is closer to the peak wavelength (short wavelength side) of the laser L 1 than the center wavelength λ c . here,
LI 1 × (Δλ 1 −Δλ av ) = LI 4 (Δλ 4 + Δλ av )
When the arithmetic combined wavelength λ av is calculated, the difference Δλ av between λ av and λ c is made ½ of the wavelength width of the second wavelength region, preferably ¼ or less. . By doing so, the color of the emitted light can be brought close to the color of the light having a desired wavelength. Furthermore, the smaller the value of Δλ av, the better. By selecting Δλ 1 × LI 1 and Δλ 4 × LI 4 to be approximately equal on both sides of the center wavelength λ C , the arithmetic combined wavelength becomes approximately equal to the center wavelength λ c, and optical coupling The color of the emitted light combined by thevessel 11 becomes closer to the color of the desired wavelength.
LI1×(Δλ1-Δλav)=LI4(Δλ4+Δλav)
となる算術合波波長λavを算出したとき、λavとλcとの差Δλavを第2の波長領域の波長の幅の1/2、好適には1/4以下となるようにする。このようにすることによって、射出光の色味を所望の波長の光の色味に近づけることができる。さらに、Δλavの値は、小さいほど好ましい。Δλ1×LI1とΔλ4×LI4が、中心波長λCを挟んで両側において、ほぼ等しくなるように選択することによって、算術合波波長が、中心波長λcと略等しくなり、光結合器11で結合された射出光の色味が、より所望の波長の色味に近くなる。 The
LI 1 × (Δλ 1 −Δλ av ) = LI 4 (Δλ 4 + Δλ av )
When the arithmetic combined wavelength λ av is calculated, the difference Δλ av between λ av and λ c is made ½ of the wavelength width of the second wavelength region, preferably ¼ or less. . By doing so, the color of the emitted light can be brought close to the color of the light having a desired wavelength. Furthermore, the smaller the value of Δλ av, the better. By selecting Δλ 1 × LI 1 and Δλ 4 × LI 4 to be approximately equal on both sides of the center wavelength λ C , the arithmetic combined wavelength becomes approximately equal to the center wavelength λ c, and optical coupling The color of the emitted light combined by the
以上説明したように、本実施の形態によれば、レーザ光源10A,10Bは、入力する電流値を一定とした場合に射出される光のピーク波長が、第2の波長領域の中心波長λCの長波長側および短波長側に位置するレーザを各々少なくとも1個以上含み、光結合器11から出力される射出光の色味が、第2の波長領域内の狭帯域光に対応する色味範囲内に含まれるように選択されているので、単体では所望の色味を実現できないレーザL1,L4を含む複数の狭帯域光源を用いながら、所望の色味範囲に含まれる光を射出することができる光源ユニット1を提供することができる。また、本発明の光源ユニット1では、レーザ光源10A,10Bから所望の波長を得るための変換テーブルや、入力電流の制御を必要とせず、レーザ光源10A,10Bには所定の電流を印加すれば良い。したがって、装置構成および管理方法が単純であるという利点を有する。
As described above, according to the present embodiment, the laser light sources 10A and 10B have the peak wavelength of the light emitted when the input current value is constant, the center wavelength λ C of the second wavelength region. Each of which has at least one laser positioned on the long wavelength side and the short wavelength side, and the color of the emitted light output from the optical coupler 11 corresponds to the narrow band light in the second wavelength region. Since it is selected so as to be included in the range, it emits light included in the desired color range while using a plurality of narrow-band light sources including lasers L 1 and L 4 that cannot realize a desired color by itself. The light source unit 1 that can be provided can be provided. In the light source unit 1 of the present invention, a conversion table for obtaining a desired wavelength from the laser light sources 10A and 10B and control of the input current are not required, and a predetermined current is applied to the laser light sources 10A and 10B. good. Therefore, there is an advantage that the device configuration and the management method are simple.
また、複数の狭帯域光源10A,10Bを、該狭帯域光源10A,10Bのピーク波長をピーク波長における光源10A,10Bの光量で重みづけした平均値である算術合波波長λavと、第2の波長領域の前記中心波長λcとの差異が、前記第2の波長領域の波長範囲の1/2以下、特に1/4以下、になるように選択したので、射出光の色味をより所望の波長の色味に近くすることができる。特に、算術合波波長λavを中心波長λcと実質的に等しくするように選択すれば、ほぼ所望の波長の色味と同等の色味を得ることができる。
An arithmetic combined wavelength λ av that is an average value obtained by weighting the narrow- band light sources 10A and 10B with the peak wavelengths of the narrow- band light sources 10A and 10B by the light amounts of the light sources 10A and 10B at the peak wavelength; Is selected so that the difference from the central wavelength λ c of the wavelength region of the second wavelength region is ½ or less, particularly ¼ or less of the wavelength range of the second wavelength region. It can be close to the color of the desired wavelength. In particular, if the arithmetic combined wavelength λ av is selected so as to be substantially equal to the center wavelength λ c , it is possible to obtain a color substantially equivalent to the color of the desired wavelength.
さらに、中心波長λCの長波長側にピーク波長を有するレーザ光源と、短波長側にピーク波長を有するレーザ光源とを同数、特にそれぞれ1個ずつ含むようにしたので、光源のコストを低減し、光源ユニット1の容積を小さくすることができる。
Furthermore, the same number of laser light sources having a peak wavelength on the long wavelength side of the center wavelength λ C and one laser light source having a peak wavelength on the short wavelength side, in particular one each, reduce the cost of the light source. The volume of the light source unit 1 can be reduced.
次に、本実施の形態の光源ユニット1をより具体的な例を用いて説明する。例えば、所望の色度を緑色の515nmとした場合、調達可能で且つ所望の色度に近い色度を有する狭帯域光源として、日亜化学工業株式会社製の半導体レーザNDG4216(発振波長510nm~520nm)を使用する。この場合、所望の515nmと最も差がある波長510nm,520nmを持つレーザ光源の色度値は、それぞれ510nm(x:0.0189,y:0.75),520nm(x:0.075,y:0.835)となり、515nmの色度値(x:0.034,y:0.8)とは、最大でxで0.041,yで0.05の差が生じる。ここで、色度値の差の許容値として、例えば、白色パワーLEDの色度規定(ANSI C78.377 5700K白色)を引用すると、誤差範囲の許容値がxで0.0169,yで0.0373であり、上述の510nmおよび520nmの場合の差は許容値を超えている。したがって、許容値の範囲に入れるには、ND4216の仕様値である510nm~520nmの波長領域内(第1の波長領域)から、更に狭い波長領域513nm~517nm(第2の波長領域)の色味範囲内に含まれるように光源を選定するのが望ましい。
Next, the light source unit 1 of the present embodiment will be described using a more specific example. For example, when the desired chromaticity is 515 nm for green, a semiconductor laser NDG4216 (oscillation wavelength 510 nm to 520 nm manufactured by Nichia Corporation) is available as a narrow-band light source that can be procured and has a chromaticity close to the desired chromaticity. ). In this case, the chromaticity values of the laser light sources having wavelengths 510 nm and 520 nm that are most different from the desired 515 nm are 510 nm (x: 0.0189, y: 0.75) and 520 nm (x: 0.075, y), respectively. : 0.835), and a chromaticity value of 515 nm (x: 0.034, y: 0.8) has a maximum difference of 0.041 for x and 0.05 for y. Here, as an allowable value of the difference in chromaticity value, for example, when the chromaticity specification (ANSI C78.377 5700K white) of the white power LED is cited, the allowable value of the error range is 0.0169 for x, and 0.00 for y. 0373, and the difference in the case of 510 nm and 520 nm described above exceeds the allowable value. Therefore, in order to enter the allowable range, the tint of the narrower wavelength region 513 nm to 517 nm (second wavelength region) from the wavelength range of 510 nm to 520 nm (first wavelength region) which is the specification value of ND4216. It is desirable to select the light source so that it is within the range.
ここで、レーザ光源10A,10Bとして選定する狭帯域光源としては、図4のように、所望波長の515nmを中心波長とし、長波長側と短波長側とでピーク波長と中心波長との差の絶対値(5nm)およびピーク波長の光量値(10mW)の乗算値が等しくなる組合せとなる、レーザL5(発振波長:510nm)とレーザL6(発振波長:520nm)とを選択する。この場合、図5のCIE(国際照明委員会)で規定された色度図(CIE1931)上での、所望の波長の光とレーザL5およびL6を合波した光の色度を図6に示す。ここで、図6は図5の破線部分を拡大して示している。レーザL5とレーザL6との射出光を合成した合成レーザの色度は、前記色度図上において点P2で表され、レーザL5とレーザL6を結ぶ直線上に位置する。表1に示すように、この合成レーザの色度値(x:0.044、y:0.792)は、点P1で表される所望の波長515nmの色度値(x:0.034、y:0.8)とほぼ等しい。
Here, as the narrow-band light source selected as the laser light sources 10A and 10B, as shown in FIG. 4, the center wavelength is the desired wavelength of 515 nm, and the difference between the peak wavelength and the center wavelength between the long wavelength side and the short wavelength side is as shown in FIG. The laser L 5 (oscillation wavelength: 510 nm) and the laser L 6 (oscillation wavelength: 520 nm) are selected to be a combination in which the multiplication value of the absolute value (5 nm) and the light amount value (10 mW) of the peak wavelength are equal. In this case, on the chromaticity diagram (CIE1931) defined by the CIE (International Commission on Illumination) in FIG. 5, the chromaticity of the light having the desired wavelength combined with the lasers L 5 and L 6 is shown in FIG. Shown in Here, FIG. 6 is an enlarged view of the broken line portion of FIG. The laser L 5 and the chromaticity of the combined laser obtained by synthesizing the light emitted laser L 6, the represented on the chromaticity diagram at point P 2, is located on the straight line connecting the laser L 5 and the laser L 6. As shown in Table 1, the chromaticity value (x: 0.044, y: 0.792) of this synthetic laser is the chromaticity value (x: 0.034) at the desired wavelength 515 nm represented by the point P 1. , Y: 0.8).
このように、ピーク波長510nmのレーザL5とピーク波長520nmのレーザL6とを、レーザ光源10A,10Bとして用い、射出される光を光結合器11で結合して出力部14から出力することによって、波長515nmの狭帯域光とほぼ等しい色味を有する射出光が得られる。
Thus, the laser L 6 of the laser L 5 and the peak wavelength 520nm of peak wavelength 510 nm, laser light sources 10A, used as 10B, to output the light emitted by combining with the optical coupler 11 from the output unit 14 As a result, it is possible to obtain emission light having a color almost equal to that of the narrow-band light having a wavelength of 515 nm.
なお、光源ユニット1に含まれるレーザ光源の数は2つに限られず、3つ以上の狭帯域光源を設けることも可能である。その場合も、入力する電流値を一定とした時に射出される光のピーク波長が、第2の波長領域の中心波長λCの長波長側および短波長側に位置する狭帯域光源を各々少なくとも1個以上選択して、光結合器11から出力される射出光の色味が、第2の波長領域内の狭帯域光に対応する色味範囲内に含まれるようにすることによって、狭帯域光源を2つとするときと同様の効果が得られる。
Note that the number of laser light sources included in the light source unit 1 is not limited to two, and it is possible to provide three or more narrow-band light sources. Also in this case, at least one narrow-band light source in which the peak wavelength of the light emitted when the input current value is constant is located on the long wavelength side and the short wavelength side of the center wavelength λ C in the second wavelength region, respectively. Narrow band light source by selecting more than one so that the color of the emitted light output from the optical coupler 11 is included in the color range corresponding to the narrow band light in the second wavelength region The same effect as when there are two is obtained.
また、中心波長λCの長波長側および/または短波長側に、複数の狭帯域光源を設ける場合においても、算術合波波長と中心波長λcとの差異を第2の波長領域の波長範囲の1/2、より好ましくは1/4以下とすることによって、射出光の色味をより所望の波長の色味に近くすることができる。
Also, the long wavelength side and / or the short wavelength side of the center wavelength lambda C, in the case of providing a plurality of narrow-band light sources, the difference of the wavelength range of the second wavelength region of the arithmetic combining wavelength and the center wavelength lambda c By setting it to 1/2 of this, more preferably 1/4 or less, the color of the emitted light can be made closer to the color of the desired wavelength.
(第2実施の形態)
図7は、第2実施の形態に係る光源ユニットのブロック図である。光源ユニット1Aは、第1実施の形態における光源ユニット1の各レーザ光源10A,10Bに対して、それぞれ温度を検出する温度検出部20A,20Bと、レーザ光源10A,10Bの温度を調整する温度調整部30A,30Bとを設けるとともに、制御部40を設けたものである。(以下、これら温度検出部20A,20B、温度調整部30A,30Bおよび制御部40を含む構成を、「温度調整機構」とも呼ぶ。) (Second Embodiment)
FIG. 7 is a block diagram of a light source unit according to the second embodiment. The light source unit 1A has temperature detection units 20A and 20B that detect temperatures and temperature adjustments that adjust the temperatures of the laser light sources 10A and 10B, respectively, with respect to the laser light sources 10A and 10B of the light source unit 1 in the first embodiment. The units 30A and 30B are provided, and the control unit 40 is provided. (Hereinafter, the configuration including the temperature detection units 20A and 20B, the temperature adjustment units 30A and 30B, and the control unit 40 is also referred to as a “temperature adjustment mechanism”.)
図7は、第2実施の形態に係る光源ユニットのブロック図である。光源ユニット1Aは、第1実施の形態における光源ユニット1の各レーザ光源10A,10Bに対して、それぞれ温度を検出する温度検出部20A,20Bと、レーザ光源10A,10Bの温度を調整する温度調整部30A,30Bとを設けるとともに、制御部40を設けたものである。(以下、これら温度検出部20A,20B、温度調整部30A,30Bおよび制御部40を含む構成を、「温度調整機構」とも呼ぶ。) (Second Embodiment)
FIG. 7 is a block diagram of a light source unit according to the second embodiment. The light source unit 1A has
温度検出部20A,20Bとしては、例えば、熱電対温度センサや半導体温度センサを使用することができる。また、温度調整部30A,30Bとしては、例えば、ペルチェ素子を用いることができる。制御部40は、温度検出部20A,20Bに、それぞれ接続線21A,21Bを介して電気的に接続されている。また、制御部40は、温度調整部30A,30Bに、接続線31A,31Bを介して電気的に接続されている。これによって、制御部40は、温度検出部20A,20Bにより検出したレーザ光源10A,10Bの温度に基づいて、レーザ光源10A,10Bの温度を所定の範囲内とするように制御する。その他の構成は、第1実施の形態と同様であるので、同一または対応する構成要素には同一参照符号を付して説明を省略する。
As the temperature detection units 20A and 20B, for example, a thermocouple temperature sensor or a semiconductor temperature sensor can be used. Further, as the temperature adjustment units 30A and 30B, for example, Peltier elements can be used. The control unit 40 is electrically connected to the temperature detection units 20A and 20B via connection lines 21A and 21B, respectively. The control unit 40 is electrically connected to the temperature adjustment units 30A and 30B via connection lines 31A and 31B. Thereby, the control unit 40 controls the temperatures of the laser light sources 10A and 10B to be within a predetermined range based on the temperatures of the laser light sources 10A and 10B detected by the temperature detection units 20A and 20B. Since other configurations are the same as those of the first embodiment, the same or corresponding components are denoted by the same reference numerals and description thereof is omitted.
一般に、レーザ光源は、温度に依存して発振波長が変化するが、本実施の形態によれば、温度調整機構によりレーザ光源10A,10Bの温度変化が所定の範囲内に保たれるので、温度変化による発振波長の変化を抑制することができる。したがって、射出光の色味も一定に保つことができる。
In general, the oscillation wavelength of a laser light source varies depending on the temperature. However, according to this embodiment, the temperature adjustment mechanism maintains the temperature variation of the laser light sources 10A and 10B within a predetermined range. A change in the oscillation wavelength due to the change can be suppressed. Therefore, the color of the emitted light can be kept constant.
(第3実施の形態)
図8は、第3実施の形態に係る光源装置のブロック図である。この光源装置50は、赤の色度を持つ光源ユニット51R(第1の光源ユニット)と、緑の色度を持つ光源ユニット51G(第2の光源ユニット)と、青の色度を持つ光源ユニット51B(第3の光源ユニット)と、各々の光源ユニット51R,51G,51Bから射出される光を結合して、1つの出力光とする光結合部52と、出力光を外部へ射出する出力部55とを備える。各光源ユニット51R,51G,51Bと光結合器52とは、それぞれ光ファイバ53R,53G,53Bによって接続される。また、光結合器52と出力部55との間は光ファイバ54によって接続されている。光結合出力部は、光結合器52と出力部55とを含んで構成される。 (Third embodiment)
FIG. 8 is a block diagram of a light source device according to the third embodiment. Thelight source device 50 includes a light source unit 51R (first light source unit) having red chromaticity, a light source unit 51G (second light source unit) having green chromaticity, and a light source unit having blue chromaticity. 51B (third light source unit), an optical coupling unit 52 that combines light emitted from each of the light source units 51R, 51G, and 51B into one output light, and an output unit that emits the output light to the outside 55. Each light source unit 51R, 51G, 51B and the optical coupler 52 are connected by optical fibers 53R, 53G, 53B, respectively. The optical coupler 52 and the output unit 55 are connected by an optical fiber 54. The optical coupling output unit includes an optical coupler 52 and an output unit 55.
図8は、第3実施の形態に係る光源装置のブロック図である。この光源装置50は、赤の色度を持つ光源ユニット51R(第1の光源ユニット)と、緑の色度を持つ光源ユニット51G(第2の光源ユニット)と、青の色度を持つ光源ユニット51B(第3の光源ユニット)と、各々の光源ユニット51R,51G,51Bから射出される光を結合して、1つの出力光とする光結合部52と、出力光を外部へ射出する出力部55とを備える。各光源ユニット51R,51G,51Bと光結合器52とは、それぞれ光ファイバ53R,53G,53Bによって接続される。また、光結合器52と出力部55との間は光ファイバ54によって接続されている。光結合出力部は、光結合器52と出力部55とを含んで構成される。 (Third embodiment)
FIG. 8 is a block diagram of a light source device according to the third embodiment. The
光源ユニット51R,51G,51Bとしては、第1実施の形態に係る光源ユニット1と同様に構成される光源ユニットを用いる。それぞれの光源ユニット51R,51G,51Bは、所望の色味を有する射出光を射出するので、結合器52で結合され出力部55から出力される光を白色光とすることが容易である。
As the light source units 51R, 51G, and 51B, a light source unit configured similarly to the light source unit 1 according to the first embodiment is used. Since each light source unit 51R, 51G, 51B emits the emitted light having a desired color, it is easy to make the light combined with the coupler 52 and output from the output unit 55 white light.
なお、光源ユニット51R,51G,51Bとしては、温度調整機構を有する第2実施形態に係る光源ユニット1Aと同様に構成することも可能である。その場合、常時温度を制御することによって、安定した白色光を提供することができる。
Note that the light source units 51R, 51G, and 51B can be configured in the same manner as the light source unit 1A according to the second embodiment having a temperature adjustment mechanism. In that case, stable white light can be provided by constantly controlling the temperature.
(第4実施の形態)
図9は、第4実施の形態に係る内視鏡装置のブロック図である。この内視鏡装置100は、被検出物内に挿入して光源装置60と光源装置60からの照明光を観察対象に照射し画像信号を検出する挿入部70と、挿入部70で検出された画像信号を処理して画像を生成する画像処理装置80(画像処理部)と、画像処理装置80から出力される画像信号を表示するモニタ90とを含んで構成される。 (Fourth embodiment)
FIG. 9 is a block diagram of an endoscope apparatus according to the fourth embodiment. The endoscope apparatus 100 is inserted into an object to be detected, thelight source device 60, an insertion unit 70 that irradiates an observation target with illumination light from the light source device 60, and detects an image signal. The image processing apparatus 80 (image processing unit) that processes the image signal to generate an image and a monitor 90 that displays the image signal output from the image processing apparatus 80 are configured.
図9は、第4実施の形態に係る内視鏡装置のブロック図である。この内視鏡装置100は、被検出物内に挿入して光源装置60と光源装置60からの照明光を観察対象に照射し画像信号を検出する挿入部70と、挿入部70で検出された画像信号を処理して画像を生成する画像処理装置80(画像処理部)と、画像処理装置80から出力される画像信号を表示するモニタ90とを含んで構成される。 (Fourth embodiment)
FIG. 9 is a block diagram of an endoscope apparatus according to the fourth embodiment. The endoscope apparatus 100 is inserted into an object to be detected, the
光源装置60は、第3実施の形態にかかる光源装置50を用いる。また、挿入部70は、光源装置60から射出された光を導光し、挿入部70の先端から観察対象に向けて射出するマルチモードの光ファイバである光ファイバ71、挿入部70の先端において観察対象からの光を2次元的に受光するCCD等の受光素子72(受光部)、および、受光素子72の電気信号を画像処理装置80に伝達するための信号線73を備える。
The light source device 60 uses the light source device 50 according to the third embodiment. The insertion unit 70 guides the light emitted from the light source device 60, and the optical fiber 71, which is a multimode optical fiber that emits light from the distal end of the insertion unit 70 toward the observation target, and the distal end of the insertion unit 70. A light receiving element 72 (light receiving unit) such as a CCD that two-dimensionally receives light from the observation target, and a signal line 73 for transmitting an electric signal of the light receiving element 72 to the image processing device 80 are provided.
このような構成によって、光源装置50から射出された白色光は、挿入部70内の光ファイバ71を通り観察対象に照射される。この白色光が、観察対象によって反射、散乱された光は、受光素子72で検出され電気信号に変換され、信号線73を介して画像処理部80に伝達される。画像処理部80は、信号線73を介して受信した受光素子72の信号から画像を生成し、モニタ90の画面上に映し出すことができる。
With such a configuration, the white light emitted from the light source device 50 passes through the optical fiber 71 in the insertion unit 70 and is irradiated to the observation target. The white light reflected and scattered by the observation target is detected by the light receiving element 72, converted into an electric signal, and transmitted to the image processing unit 80 via the signal line 73. The image processing unit 80 can generate an image from the signal of the light receiving element 72 received via the signal line 73 and display it on the screen of the monitor 90.
本実施の形態の内視鏡装置100は、光源装置60として第3実施の形態に係る光源装置50を用いることにより、単体では波長にばらつきのあるレーザ光源を使用しながら、安定した白色光を用いて内視鏡観察を行うことができる。また、光源装置60の光源ユニットとして、第2実施の形態の光源ユニット1Aと同様に構成された光源ユニットを用いることもできる。その場合、温度調整機構を有しているので、光源装置60内部の発熱などによらず、安定した白色光が得られる。
The endoscope apparatus 100 according to the present embodiment uses the light source device 50 according to the third embodiment as the light source device 60, so that a stable white light can be obtained while using a laser light source having a wavelength variation alone. It can be used for endoscopic observation. Further, as the light source unit of the light source device 60, a light source unit configured similarly to the light source unit 1A of the second embodiment may be used. In this case, since the temperature adjustment mechanism is provided, stable white light can be obtained regardless of the heat generation inside the light source device 60.
なお、本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形または変更が可能である。たとえば、光源ユニットが生成する光の波長は、R,G,Bの波長に限られず、他の波長の光を生成するものであっても良い。また、第4実施の形態に係る光源装置は、R,G,Bの3つの波長に対応する光源ユニットを用いているが、4波長以上に対応する4つ以上の光源ユニットを設けても良い。また、光源装置は内視鏡用途に限られず、種々の照明用途に利用することができる。
It should be noted that the present invention is not limited to the above embodiment, and many variations or modifications are possible. For example, the wavelength of light generated by the light source unit is not limited to the R, G, and B wavelengths, and may generate light of other wavelengths. In addition, the light source device according to the fourth embodiment uses a light source unit corresponding to three wavelengths of R, G, and B. However, four or more light source units corresponding to four or more wavelengths may be provided. . Further, the light source device is not limited to an endoscope application, and can be used for various illumination applications.
1 光源ユニット
10A,10B レーザ光源
11 光結合器
12A,12B 光ファイバ
13 光ファイバ
14 出力部
20A,20B 温度検出部
21A,21B 接続線
30A,30B 温度調整部
31A,31B 接続線
40 制御部
50 光源装置
51R,51G,51B 光源ユニット
52 光結合器
53R,53G,53B 光ファイバ
54 光ファイバ
55 出力部
60 光源装置
70 挿入部
71 光ファイバ
72 受光素子
73 信号線
80 画像処理装置
90 モニタ
100 内視鏡装置 DESCRIPTION OFSYMBOLS 1 Light source unit 10A, 10B Laser light source 11 Optical coupler 12A, 12B Optical fiber 13 Optical fiber 14 Output part 20A, 20B Temperature detection part 21A, 21B Connection line 30A, 30B Temperature adjustment part 31A, 31B Connection line 40 Control part 50 Light source Device 51R, 51G, 51B Light source unit 52 Optical coupler 53R, 53G, 53B Optical fiber 54 Optical fiber 55 Output unit 60 Light source device 70 Insertion unit 71 Optical fiber 72 Light receiving element 73 Signal line 80 Image processing device 90 Monitor 100 Endoscope apparatus
10A,10B レーザ光源
11 光結合器
12A,12B 光ファイバ
13 光ファイバ
14 出力部
20A,20B 温度検出部
21A,21B 接続線
30A,30B 温度調整部
31A,31B 接続線
40 制御部
50 光源装置
51R,51G,51B 光源ユニット
52 光結合器
53R,53G,53B 光ファイバ
54 光ファイバ
55 出力部
60 光源装置
70 挿入部
71 光ファイバ
72 受光素子
73 信号線
80 画像処理装置
90 モニタ
100 内視鏡装置 DESCRIPTION OF
Claims (8)
- 第1の波長領域に含まれる多数の狭帯域光源から選択した複数の狭帯域光源と、
前記複数の狭帯域光源から射出される光を結合して、1つの射出光として出力する光結合部と、
前記光結合部から出力された射出光を出力する出力部と、
を備えた光源ユニットであって、
前記第1の波長領域は、第2の波長領域を含み該第2の波長領域よりも広く、前記複数の狭帯域光源は、入力する電流値を一定とした場合に射出される光のピーク波長が、前記第2の波長領域の中心波長の長波長側および短波長側に位置する狭帯域光源を各々少なくとも1個以上含み、前記光結合部から出力される射出光の色味が、前記第2の波長領域内の狭帯域光に対応する色味範囲内に含まれるように選択されることを特徴とする光源ユニット。 A plurality of narrowband light sources selected from a number of narrowband light sources included in the first wavelength region;
An optical coupling unit that combines the light emitted from the plurality of narrow-band light sources and outputs the combined light;
An output unit for outputting the emitted light output from the optical coupling unit;
A light source unit comprising:
The first wavelength region includes a second wavelength region and is wider than the second wavelength region, and the plurality of narrow-band light sources has a peak wavelength of light emitted when an input current value is constant. Includes at least one narrow-band light source positioned on the long wavelength side and the short wavelength side of the center wavelength of the second wavelength region, respectively, and the color of the emitted light output from the optical coupling unit is The light source unit is selected so as to be included in a color range corresponding to narrowband light in the wavelength region of 2. - 前記複数の狭帯域光源は、該複数の前記狭帯域光源のピーク波長を該ピーク波長における前記狭帯域光源の光量で重みづけした平均値と、前記第2の波長領域の前記中心波長との差異が、前記第2の波長領域の波長範囲の1/2以下になるように選択されたことを特徴とする請求項1に記載の光源ユニット。 The plurality of narrowband light sources are different from an average value obtained by weighting a peak wavelength of the plurality of narrowband light sources by a light amount of the narrowband light source at the peak wavelength, and the center wavelength of the second wavelength region. The light source unit according to claim 1, wherein the light source unit is selected to be ½ or less of a wavelength range of the second wavelength region.
- 前記複数の狭帯域光源は、前記中心波長の長波長側にピーク波長を有する狭帯域光源と前記中心波長の短波長側にピーク波長を有する狭帯域光源とを、同数含む請求項2に記載の光源ユニット。 The plurality of narrowband light sources includes the same number of narrowband light sources having a peak wavelength on the long wavelength side of the center wavelength and narrowband light sources having a peak wavelength on the short wavelength side of the center wavelength. Light source unit.
- 前記複数の狭帯域光源は、前記中心波長の長波長側にピーク波長を有する狭帯域光源と前記中心波長の短波長側にピーク波長を有する狭帯域光源とを、それぞれ1個ずつ含む請求項2に記載の光源ユニット。 The plurality of narrow band light sources each include one narrow band light source having a peak wavelength on the long wavelength side of the center wavelength and one narrow band light source having a peak wavelength on the short wavelength side of the center wavelength. The light source unit described in 1.
- 前記複数の狭帯域光源は、入力する電流値を一定とした時に、射出される光のピーク波長が、何れも前記第2の波長領域内に含まれない請求項1から4の何れか一項に記載の光源ユニット。 5. The peak wavelength of emitted light is not included in the second wavelength region when the input current value is constant in the plurality of narrow-band light sources. 6. The light source unit described in 1.
- 前記複数の狭帯域光源の温度をそれぞれ独立して検出する温度検出部と、前記複数の狭帯域光源のそれぞれの温度を制御する制御部と、前記複数の狭帯域光源のそれぞれの温度を前記制御部からの制御により調整する温度調整部とを含み、前記制御部は、前記温度検出部により検出した前記複数の狭帯域光源のそれぞれの温度に基づいて、前記複数の狭帯域光源のそれぞれの温度を制御する請求項1から5の何れか一項に記載の光源ユニット。 A temperature detecting unit for independently detecting temperatures of the plurality of narrow-band light sources; a control unit for controlling the temperatures of the plurality of narrow-band light sources; and the control of the temperatures of the plurality of narrow-band light sources. A temperature adjustment unit that adjusts by control from a unit, wherein the control unit is configured to control each temperature of the plurality of narrowband light sources based on the temperature of each of the plurality of narrowband light sources detected by the temperature detection unit. The light source unit according to claim 1, wherein the light source unit is controlled.
- 請求項1~6の何れか一項に記載の光源ユニットであって、前記第2の波長領域の前記中心波長を赤色の波長とする第1の光源ユニットと、前記第2の波長領域の前記中心波長を緑色の波長とする第2の光源ユニットと、前記第2の波長領域の前記中心波長を青色の波長とする第3の光源ユニットと、前記第1から第3の光源ユニットから射出される光を結合して1つの出力光とする光結合出力部とを備え、前記出力光として白色光を射出できるように構成した光源装置。 The light source unit according to any one of claims 1 to 6, wherein the first light source unit has the center wavelength of the second wavelength region as a red wavelength, and the second wavelength region of the light source unit. A second light source unit having a center wavelength as a green wavelength, a third light source unit having a blue wavelength as the center wavelength in the second wavelength region, and the first to third light source units. A light source device configured to emit white light as the output light.
- 請求項7の光源装置と、該光源装置から射出された白色光を導光して観察対象に照射し、該照射により得られた光を受光する受光部を備える挿入部と、前記受光部により得られた信号から画像を生成する画像処理部とを備えた内視鏡装置。 The light source device according to claim 7, an insertion unit including a light receiving unit that guides white light emitted from the light source device and irradiates the observation target, and receives light obtained by the irradiation, and the light receiving unit An endoscope apparatus comprising: an image processing unit that generates an image from the obtained signal.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016565605A JP6367972B2 (en) | 2014-12-26 | 2014-12-26 | Light source unit, light source device, and endoscope device |
PCT/JP2014/006503 WO2016103305A1 (en) | 2014-12-26 | 2014-12-26 | Light source unit, light source device, and endoscope device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/006503 WO2016103305A1 (en) | 2014-12-26 | 2014-12-26 | Light source unit, light source device, and endoscope device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016103305A1 true WO2016103305A1 (en) | 2016-06-30 |
Family
ID=56149409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/006503 WO2016103305A1 (en) | 2014-12-26 | 2014-12-26 | Light source unit, light source device, and endoscope device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6367972B2 (en) |
WO (1) | WO2016103305A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006166983A (en) * | 2004-12-13 | 2006-06-29 | Olympus Corp | Endoscope apparatus |
JP2011067268A (en) * | 2009-09-24 | 2011-04-07 | Fujifilm Corp | Endoscope apparatus and illumination control method of endoscope apparatus |
JP2011087910A (en) * | 2009-09-24 | 2011-05-06 | Fujifilm Corp | Endoscope system |
JP2011104199A (en) * | 2009-11-19 | 2011-06-02 | Fujifilm Corp | Endoscope apparatus |
JP2012217486A (en) * | 2011-04-04 | 2012-11-12 | Fujifilm Corp | Endoscope system and driving method thereof |
-
2014
- 2014-12-26 JP JP2016565605A patent/JP6367972B2/en active Active
- 2014-12-26 WO PCT/JP2014/006503 patent/WO2016103305A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006166983A (en) * | 2004-12-13 | 2006-06-29 | Olympus Corp | Endoscope apparatus |
JP2011067268A (en) * | 2009-09-24 | 2011-04-07 | Fujifilm Corp | Endoscope apparatus and illumination control method of endoscope apparatus |
JP2011087910A (en) * | 2009-09-24 | 2011-05-06 | Fujifilm Corp | Endoscope system |
JP2011104199A (en) * | 2009-11-19 | 2011-06-02 | Fujifilm Corp | Endoscope apparatus |
JP2012217486A (en) * | 2011-04-04 | 2012-11-12 | Fujifilm Corp | Endoscope system and driving method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016103305A1 (en) | 2017-09-07 |
JP6367972B2 (en) | 2018-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2415518C2 (en) | Led-based illuminator | |
JP5364520B2 (en) | Endoscope apparatus and method for operating endoscope apparatus | |
KR100805396B1 (en) | Luminaire with a multicolored array of leds | |
US10779716B2 (en) | Light source system, light source control method, first light source apparatus, and endoscope system | |
US10560639B2 (en) | Endoscope system | |
JP6659409B2 (en) | Light source device for endoscope | |
WO2016125334A1 (en) | Endoscope device | |
US10834791B2 (en) | Light source device | |
US20160302652A1 (en) | Fluorescence observation apparatus | |
US20190110671A1 (en) | Illuminating device including narrow band light sources | |
WO2016084163A1 (en) | Lighting device and endoscope provided with lighting device | |
US20190328206A1 (en) | Observation apparatus and method of controlling observation apparatus | |
JP2012115514A (en) | Endoscope unit | |
JP6367972B2 (en) | Light source unit, light source device, and endoscope device | |
JP2002238846A (en) | Light source device for endoscope | |
JP6484257B2 (en) | LIGHTING DEVICE, ENDOSCOPE SYSTEM, AND COLOR CORRECTION DEVICE | |
US12078796B2 (en) | Endoscope light source device, endoscope apparatus, operating method of endoscope light source device, and light amount adjusting method | |
US20240314901A1 (en) | Light source device, observation system, and color-balance correction method | |
JP5600568B2 (en) | Endoscope device | |
WO2023276497A1 (en) | Processor for endoscope and endoscope system | |
US20220248512A1 (en) | A control device for lighting apparatus, corresponding lighting apparatus, method of operation and computer program product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14908916 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016565605 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14908916 Country of ref document: EP Kind code of ref document: A1 |