[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016198797A1 - Module photovoltaique et procede d'interconnexion de cellules photovoltaiques pour fabriquer un tel module - Google Patents

Module photovoltaique et procede d'interconnexion de cellules photovoltaiques pour fabriquer un tel module Download PDF

Info

Publication number
WO2016198797A1
WO2016198797A1 PCT/FR2016/051395 FR2016051395W WO2016198797A1 WO 2016198797 A1 WO2016198797 A1 WO 2016198797A1 FR 2016051395 W FR2016051395 W FR 2016051395W WO 2016198797 A1 WO2016198797 A1 WO 2016198797A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
edge
wires
face
module according
Prior art date
Application number
PCT/FR2016/051395
Other languages
English (en)
Inventor
Armand Bettinelli
Benjamin NOVEL
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2016198797A1 publication Critical patent/WO2016198797A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photovoltaic module and a method of interconnecting photovoltaic cells for manufacturing such a module.
  • photovoltaic modules which consist of several electrically interconnected photovoltaic cells, have seen less progress.
  • the photovoltaic cells are interconnected by copper ribbons (generally three copper ribbons 1.5 mm wide and 0.20 to 0.25 mm thick for cells of 156 mm side). With these 156 mm cells, the most common module format uses 60 cells per module, consisting of 6 rows of 10 cells, all of these cells being in series. Thus the electrical voltage of the module is about 60 times that of a unit cell. With a cell having an open circuit voltage (Voc) of 0.65V, a module having a voltage Voc of the order of 39 volts is thus obtained. The electric current produced by the module corresponds approximately to the current produced by each unit cell (limited by the current of the least efficient cell of the module). Advances in cell processes cause currents greater than 9A to flow through the modules.
  • the cells are metallized to form a contact structure typically comprising an H-pattern composed of a plurality of metal collecting fingers (generally 60 to 100 fingers), narrow (width less than 100 ⁇ ), and bus perpendicular to said fingers (generally 3 buses per cell of 156 mm), wide (often of the order of 1, 5 mm).
  • a contact structure typically comprising an H-pattern composed of a plurality of metal collecting fingers (generally 60 to 100 fingers), narrow (width less than 100 ⁇ ), and bus perpendicular to said fingers (generally 3 buses per cell of 156 mm), wide (often of the order of 1, 5 mm).
  • Increasing the section of the copper ribbons makes it possible to limit the resistive losses between cells but generates mechanical stresses due to a differential expansion between the copper and the silicon, which can alter the reliability of the modules.
  • Increasing the number of ribbons (and buses) on the cell for example to go from 3 to 4, makes it possible to limit the resistive losses but by increasing the complexity and the cost of the equipment used
  • the desired voltage can be adjusted by making cells of other sizes, including rectangular sizes.
  • the interconnection technology generally used to connect the cells in the modules is copper ribbon welding.
  • the silicon substrate of 156 mm side has been cut into 3 or 4 cells in one direction, it can be satisfied with a single ribbon per cell of reduced width.
  • the current that is extracted is not 3 or 4 times smaller but 9 or 16 times lower than with a 156 mm cell. This makes it possible to significantly reduce the section of the ribbons. If it is possible to reduce the thickness of the ribbons, it will be preferred to use narrower copper ribbons to reduce shading.
  • the minimum width of the ribbons is limited to about 0.8 mm, on the one hand for lack of availability of narrower ribbons and on the other hand because the welding of such narrower ribbons would become complex in terms of alignment, weldability and adhesion of ribbons.
  • SWCT SmartWire Connection Technology
  • MBB Schmid's Multi Busbar Connect
  • the electrically conductive wires are arranged in the form of a sheet in which they are secured to one another by a support film; said wires are also covered with an alloy coating having a melting temperature of less than 150 ° C, which allows the welding of the wires during the lamination step of the module which is implemented at 150-160 ° About C; cells of 156 mm side are thus interconnected by 18 to 38 son of 200 or 300 ⁇ of diameter.
  • cells of 156 mm side are interconnected by wires of 250 or 300 ⁇ independent (non-integral) of each other; said wires are furthermore covered with an alloy coating having a melting temperature greater than 170 ° C., which requires a solder at each point of contact between a wire and a collecting finger at a temperature greater than 200 ° C.
  • Figure 1 is a block diagram of the interconnection of two photovoltaic cells according to the SWCT method mentioned above.
  • the photovoltaic cells 1 and 2 are two bifacial cells having on each of their main faces a contact structure formed of a plurality of metal fingers 10,11, respectively 20, 21.
  • front face denoted 1A for cell 1 and 2A for cell 2
  • back face denoted 1B for cell 1 and 2B for cell 2 the opposite side to the front face.
  • the electrical interconnection of the cells 1 and 2 is carried out by means of a sheet
  • the sheet of son has a first portion 40 of support film arranged on the son to be welded to the contact structure 10 of the cell 1 and a second portion 41 of support film arranged under the son to be welded to the contact structure 21 of the cell 2.
  • each portion 40, 41 of the support film is arranged on the side of the wires 3. opposite the contact structure 10, 21 on which the son must be welded, so as not to interfere with the establishment of an electrical connection between the son and the contact structures.
  • the two portions 40, 41 are not contiguous but spaced apart by an interval d which is chosen so that the portions 40, 41 of the support film are positioned opposite the respective face 1A, 2B of said cells and set back from at the edges 1 C, 2C of each cell.
  • An object of the invention is to enable the manufacture of photovoltaic modules
  • a photovoltaic module comprising at least two photovoltaic cells, in which two adjacent cells are connected by a sheet of electrically conductive wires electrically connecting a contact structure arranged on a first main face, called the front face, a first cell and a contact structure arranged on a second main face, said rear face, of the second cell on the opposite side to the first face, said wires being secured to each other at least locally by a support film, characterized in that said electrically conductive wires have a diameter of less than or equal to 175 ⁇ and that a first protective film is interposed between the electrically conductive wires and an edge of the front face of the first cell and a second protective film is interposed between said wires and an edge of the rear face of the second cell .
  • the first protective film is a first portion of the support film and the second protective film is a second portion of the support film located on the other side of the sheet of son relative to the first portion;
  • said first and second support film portions are positioned on each side of the sheet of threads in a region extending on either side of the edge of each cell;
  • the support film comprises a first portion extending to the edge of the first cell and a second portion extending backwards from the edge of the front face of said first cell, and an additional portion of film support is interposed between the wires and the edge of the rear face of the second cell;
  • the support film comprises two portions extending only opposite the front face of the cell, respectively of the rear face of the cell, and two additional portions of support film are interposed respectively between the wires and the edge of the front face; the first cell on the one hand, and between the wires and the edge of the rear face of the second cell on the other hand;
  • the contact structure arranged on the front face of each cell comprises a plurality of metal fingers
  • the first protective film extends, on the front face of the first cell, over a distance less than the distance between the edge of the front face of said first cell and the metal finger closest to said edge;
  • said metal fingers are made of a silver paste devoid of organic components
  • the photovoltaic cells are homojunction cells
  • the photovoltaic cells are bifacial cells, the contact structure arranged on the rear face of each cell comprising a plurality of metal fingers;
  • the second protective film extends, on the rear face of the second cell, over a distance less than the distance between the edge of the rear face of said second cell and the metal finger closest to said edge;
  • the second protective film extends, on the rear face of the second cell, over a distance greater than the distance between the edge of the rear face of said second cell and the metal finger closest to said edge, so that said second protective film electrically isolates at least the metal finger closest to the edge vis-à-vis the son, and the contact structure arranged on the rear face of said cell comprises electrically conductive elements perpendicular to the metal fingers for electrically connecting the or the fingers isolated by said protective film to at least one non-insulated finger by the second protective film;
  • the photovoltaic cells are monofacial cells, the contact structure arranged on the rear face of said cell comprising a metal layer;
  • the distance between two adjacent interconnection wires is less than or equal to 20 mm, preferably less than 10 mm;
  • the photovoltaic cells have at least one side whose length is less than or equal to 52 mm, preferably less than or equal to 39 mm;
  • the support film is made of an organic adhesive material; the thickness of the support film is less than 100 ⁇ , preferably less than or equal to 50 ⁇ ;
  • the distance between two adjacent cells is less than 2 mm, preferably less than 1 mm;
  • the diameter of the electrically conductive wires is less than or equal to 150 ⁇ , preferably less than or equal to 100 ⁇ and more preferably less than or equal to 50 ⁇ ;
  • the ratio between the cumulative section of the electrically conductive wires of the module and the width of each cell is less than 0.035 mm 2 / cm, preferably less than 0.02 mm 2 / cm.
  • Another object relates to a method of interconnecting photovoltaic cells in order to manufacture such a module.
  • Said method comprises:
  • said method being characterized in that said wires have a diameter less than or equal to 175 ⁇ and in that, before or during the establishment of said sheet of son, a first protective film is interposed between the electrically conductive wires and the edge of the front face of the first cell and a second protective film is interposed between said wires and the edge of the rear face of the second cell.
  • FIG. 1 shows a sectional view of the interconnection of two photovoltaic cells according to a known technique and a view from above of the sheet of interconnection wires
  • FIG. 2 shows a cross-sectional view of the interconnection of two homojunction bifacial photovoltaic cells and a top view of the interconnecting son ply according to one embodiment of the invention
  • FIG. 3 shows a sectional view of the interconnection of two homojunction bifacial photovoltaic cells and a top view of the interconnection wire ply according to another embodiment of the invention
  • FIG. 4 shows a sectional view of the interconnection of two homojunction monofacial photovoltaic cells and a view from above of the interconnecting son ply according to one embodiment of the invention.
  • the invention proposes the use of electrically conductive wires thinner than those conventionally used for the interconnection of photovoltaic cells, that is to say having a diameter less than or equal to 175 ⁇ .
  • Said electrically conductive son are in the form of a sheet in which the son are made integral with a support film.
  • the arrangement of the support film with respect to the wires and the nature of said support film will be described in detail below.
  • the electrically conductive wires are generally copper wires covered with a coating of an alloy (for example based on indium) having a melting point of less than 150 ° C.
  • the typical coating consists of about 10 ⁇ of a Sn-ln alloy whose melting point is about 120 ° C.
  • a reduced surface cell dedicated to the high voltage will deliver the same current density, of the order of 35 to 40 mA / cm 2 .
  • Gold silver metallization is the largest cost item after the silicon substrate. Reducing the distance between the interconnects reduces the length of the collection fingers and makes it possible to print smaller sections. The use of very fine threads instead of ribbons avoids generating significant shading.
  • the small cells generate much lower currents, in particular 16 times lower for a 39 ⁇ 39 mm cell than for a 156 ⁇ 156 mm cell.
  • the diameter of a wire with a diameter of 100 ⁇ is 0.0050 mm 2 , that of a wire of 50 ⁇ of 0.0020 mm 2 , that of a wire of 30 ⁇ of 0.0007 mm 2 .
  • a wire of 100 ⁇ or 3 wires of 50 ⁇ or 7 wires of 30 ⁇ should be enough to interconnect cells of 39 x 39 mm without inducing significant resistive losses in the interconnections.
  • the shading is greatly reduced compared to an interconnection using copper ribbons of rectangular section, especially since the shading of a round wire used in module is reduced by 30% because of the reflections related to the circular section.
  • R 0.057 mm 2 / cm with son diameter less than ⁇
  • the number of interconnect wires is advantageously chosen to have a length of the collection fingers between adjacent interconnection wires less than 20 mm, preferably less than 10 mm, more preferably less than 5 mm.
  • Reducing the wire section has another important impact on the cost of interconnection when the copper wires are coated with an expensive solder alloy as is the case for wires used with SWCT technology (the wires being covered an indium-based alloy of about ten micrometers thick). With a given alloy thickness, the amount of alloy being proportional to the diameter of the wire, a reduction in the cost of the alloy by 2 can therefore be expected by passing son of 200 ⁇ to 100 ⁇ in diameter, and even more to 50 ⁇ wires or less.
  • the number of interconnection son is greater than 1 and the diameter of said son is less than or equal to 100 m.
  • wires of 150 ⁇ or less provides another advantage over ribbon-based interconnects or with respect to interconnections based on 200 ⁇ diameter wires as implemented in the SWCT and MBB techniques.
  • these very fine and therefore very flexible threads do not create constraints at the edge of the cells when they pass from the front face of a cell to the rear face of the adjacent cell. This makes it possible to bring the cells closer together in the module, an inter-cell distance of less than or equal to 1 mm becoming possible while a gap of 3 to 5 mm must be provided for conventional copper strips that are much more rigid to avoid seeing Cracks appear at the edge of the cells, either during welding or during thermal cycling.
  • a module with photovoltaic cells close together makes it possible to produce more efficient modules because they have more power per unit area.
  • a problem related to the use of very fine son is the risk of rupture of the son on the edges of the cells, possibly during the realization of the interconnections but especially by shearing during the changes of temperature to which a module is subjected, the temperature variations resulting in differential expansion stresses of the materials in the presence, in particular of the substrate (the silicon dilating very little) and interconnections (the copper dilating on the contrary strongly).
  • the protective film is a portion of the support film used to secure the son to form the sheet and positioned appropriately to interpose between the son and the sharp edge of the substrate.
  • Said protective film may then be an organic adhesive film or an organic paste.
  • the support film is transparent to solar radiation and electrically insulating.
  • said support film is adhesive at room temperature and / or hot.
  • the support film is advantageously made of an organic material, such as polyethylene, optionally combined with an adhesive layer, in particular low density polyethylene (LDPE), but other organic materials, such as polyvinylidene fluoride (PVDF) or acrylic, may be suitable.
  • an organic material such as polyethylene
  • LDPE low density polyethylene
  • PVDF polyvinylidene fluoride
  • acrylic acrylic
  • the support film is very thin, that is to say typically having a thickness of less than 100 ⁇ , preferably less than 50 ⁇ .
  • the portion of support film interposed between the wires and the edge of each cell, on either side of said edge, makes it possible to avoid direct contact of the wires on the edge of the cell and thus to minimize the risk of shearing during the realization of the interconnection and / or thermal cycles undergone by the module during its use.
  • wires of less than 150 ⁇ in diameter have a very low thermal mass and therefore great difficulty in being soldered by conventional channels, the contact surfaces between the collecting fingers and the wires being very small.
  • photovoltaic cells are chosen in which the contact structure is formed from so-called high temperature pastes, that is to say silver-based inks, baked beyond 700 °. C and in which the organic components have been burned and the silver has densified by sintering, the metallizations have a dense metal on which is made a real welding, which allows a significant adhesion even with fine son.
  • Figure 2 is a block diagram of an interconnection according to an embodiment of the invention.
  • the cells 1 and 2 are homojunction bifacial photovoltaic cells having on each of their main faces a contact structure formed of a plurality of metal fingers 10, 11 respectively 20, 21.
  • the electrical interconnection of the cells 1 and 2 is produced by means of a ply 30 formed of a plurality of electrically conductive wires 3, the wires being secured to each other by portions of a support film which are alternately arranged on the above and below the wires.
  • the support film has a first portion 40 arranged on the wires intended to be welded to the contact structure of the cell 1 and a second portion 41 arranged under the wires of the contact structure of the cell 2.
  • each support film portion is arranged on the wire side opposite the contact structure 10, 21 on which the wires are to be soldered.
  • the portion 40 of the support film extends to the edge 2C of the rear face 2B of the cell 2, and extends on said rear face 2B by a distance d2 from the edge.
  • the distance d2 is advantageously less than the distance between the edge 2C and the metallization finger 21 closest to said edge, so that the portion 40 does not prevent the electrical connection between the wires and said finger 21.
  • the distance d2 is between 0.5 and 1.5 mm.
  • the portion 41 of the support film extends to the edge 1C of the front face 1A of the cell 1, and extends on said front face 1A a distance d1 from the edge.
  • the distance d1 is advantageously less than the distance between the edge 1 C and the metallization finger 10 closest to said edge, so that the portion 41 does not prevent the electrical connection between the wires and said finger 10.
  • the distance d1 is between 0.5 and 1.5 mm.
  • Figure 3 is a block diagram of an interconnection according to another embodiment of the invention, also applied to bifacial photovoltaic cells.
  • the elements of the same nature as those of Figure 2 are designated by the same reference signs and are not described again in detail.
  • the portion 40 of the support film extends to the edge 2C of the rear face 2B of the cell 2, and extends on said rear face 2B a distance d2 from the edge.
  • the distance d2 is advantageously less than the distance between the edge 2C and the metallization finger 21 closest to said edge, so that the portion 40 does not prevent the electrical connection between the wires and said finger 21.
  • the distance d2 is between 0.5 and 1.5 mm. Otherwise the metallization of the cell will have additional conductors (not shown) perpendicular to the collection fingers to electrically connect the finger or fingers that would be isolated by the portion 40.
  • the portion 41 of the support film is set back with respect to the edge 2C of the rear face 2B of the cell 2.
  • a portion additional 42 support film is interposed between the son and the edge 1 C.
  • the portion 42 extends on the front face 1A a distance d1 from the edge.
  • the distance d1 is advantageously less than the distance between the edge 1 C and the metallization finger 10 closest to said edge, so that said portion 42 does not prevent the electrical connection between the wires and said finger 10.
  • the distance d1 is between 0.5 and 1.5 mm.
  • an alternative would be to place this portion 42 of protective film not on the sheet of son but directly on the cell 1, whether it is an organic adhesive film or an organic paste coating the sharp angle of the substrate.
  • the portion 41 of support film extends to the edge 1C of the cell 1, the portion 40 is set back with respect to the edge 1C of the front face of the cell 1, and a protective film ( may be an additional portion of support film) is interposed between the son and the edge 2C of the rear face 2B of the cell 2 to protect the son of the shear against said edge;
  • the portions 40 and 41 extend only facing the front face 1A of the cell 1, respectively of the rear face 2B of the cell 2, and two protective films (which may be two additional portions of the support film) are interposed respectively between the wires and the edge 1C of the front face 1A of the cell 1 on the one hand, and between the wires and the edge 2C of the rear face 2B of the cell 2 on the other hand.
  • the film portions 40, 41 do not necessarily extend opposite the entire surface of the main face of each respective cell.
  • Figure 4 is a block diagram of an interconnection of two monofacial cells 1 ', 2' to homojunction.
  • the cells 1 'and 2' have, on their back face 1B, 2B, a contact structure 11, 21 formed of a metal layer, for example made of aluminum .
  • the portion 40 of the support film extends to the edge 2C of the rear face 2B of the cell 2 ', and extends on said rear face 2B by a distance d2 from the edge.
  • the distance d2 is typically greater than or equal to 0.5 mm.
  • the portion 41 of the support film is recessed vis-à-vis the edge 2C of the rear face 2B of the cell 2 '.
  • an additional portion 42 of support film is interposed between the wires and the edge 1 C.
  • the portion 42 extends on the front face 1A over a distance d1 from the edge.
  • the distance d1 is advantageously less than the distance between the edge 1 C and the metallization finger 10 closest to said edge, so that said portion 42 does not prevent the electrical connection between the wires and said finger 10.
  • the distance d1 is between 0.5 and 1.5 mm.
  • said ply of wires being put in place so that at least a first portion of the support film is interposed between the electrically conductive wires and the edge of the front face of the first cell and a second portion of the support film is interposed between said wires and the edge of the rear face of the second cell.
  • this step of setting up the protective films is carried out before the electrical connection of the wires with the structures is made. contact of the cells.
  • the support film is adhesive, it adheres to the surface of the cells and is thus maintained until the rolling of the module.
  • the realization of the electrical connection is performed during the rolling of the module.
  • Rolling is a process known per se which will not be described in detail here.
  • This step comprises the encapsulation of the cells and interconnection wires in an encapsulating material and the rolling of this assembly between two glass plates or between a glass plate constituting the front face of the module and a polymer plate for the rear face.
  • module said polymer may or may not be transparent depending on whether the module is monofacial or bifacial).
  • the rolling is carried out at a temperature above the melting temperature of the alloy which is coated son and for a time long enough to allow the alloy to melt and ensure good adhesion vis-à-vis the structures of contact.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention concerne un module photovoltaïque comprenant au moins deux cellules photovoltaïques, dans lequel deux cellules (1, 2) adjacentes sont connectées par une nappe (30) de fils (3) électriquement conducteurs reliant électriquement une structure de contact (10) agencée sur une première face principale (1A), dite face avant, d'une première cellule (1) et une structure de contact (21) agencée sur une seconde face principale (2B), dite face arrière, de la seconde cellule (2) du côté opposé à la première face (1A), lesdits fils (3) étant rendus solidaires les uns des autres au moins localement par un film support, caractérisé en ce que lesdits fils électriquement conducteurs présentent un diamètre inférieur ou égal à 175 µm et en ce qu'un premier film protecteur est interposé entre les fils électriquement conducteurs (3) et un bord (1C) de la face avant de la première cellule et un second film protecteur est interposé entre lesdits fils (3) et un bord (2C) de la face arrière de la seconde cellule.

Description

MODULE PHOTOVOLTAIQUE ET PROCEDE D'INTERCONNEXION DE
CELLULES PHOTOVOLTAIQUES POUR FABRIQUER UN TEL MODULE
DOMAINE DE L'INVENTION
La présente invention concerne un module photovoltaïque et un procédé d'interconnexion de cellules photovoltaïques pour fabriquer un tel module.
ARRIERE PLAN DE L'INVENTION
Le développement du photovoltaïque est en plein essor.
D'importantes évolutions ont été réalisées dans le domaine des cellules à base de silicium, permettant d'augmenter fortement les rendements. En revanche, les modules photovoltaïques, qui sont formés de plusieurs cellules photovoltaïques interconnectées électriquement, ont connu moins de progrès.
Dans les modules mis en œuvre à ce jour, les cellules photovoltaïques sont interconnectées par des rubans de cuivre (en général, trois rubans de cuivre de 1 ,5 mm de large et de 0,20 à 0,25 mm d'épaisseur pour des cellules de 156 mm de côté). Avec ces cellules de 156 mm, le format de module le plus courant utilise 60 cellules par module, constitués de 6 rangées de 10 cellules, toutes ces cellules étant en série. Ainsi la tension électrique du module est environ 60 fois celle d'une cellule unitaire. Avec une cellule présentant une tension de circuit ouvert (Voc) de 0,65V, on obtient donc un module présentant une tension Voc de l'ordre de 39 volts. Le courant électrique produit par le module correspond environ au courant produit par chaque cellule unitaire (limité par le courant de la cellule la moins performante du module). Les progrès apportés aux procédés des cellules font que des courants supérieurs à 9A circulent dans les modules.
Ce courant électrique circule d'une cellule à l'autre par les interconnexions. A cet effet, les cellules sont métallisées pour former une structure de contact comprenant typiquement un motif en H composé d'une pluralité de doigts métalliques de collecte (généralement 60 à 100 doigts), étroits (largeur inférieure à 100 μηη), et de bus perpendiculaires auxdits doigts (généralement 3 bus par cellule de 156 mm), larges (souvent de l'ordre de 1 ,5 mm). Augmenter la section des rubans de cuivre permet de limiter les pertes résistives entre cellules mais génère des contraintes mécaniques en raison d'une dilatation différentielle entre le cuivre et le silicium, ce qui peut altérer la fiabilité des modules. Augmenter le nombre de rubans (et de bus) sur la cellule, par exemple pour passer de 3 à 4, permet de limiter les pertes résistives mais en augmentant la complexité et le coût des équipements utilisés pour réaliser ces interconnexions.
An niveau des installations photovoltaïques, les pertes résistives associées à ces courants élevés produits par les modules existent aussi dans les connectiques entre modules, ce qui oblige à utiliser de fortes sections de cuivre pour relier les modules, ce qui se révèle particulièrement coûteux.
Enfin, le fait de disposer de moins de 40V par module est aussi pénalisant.
Pour toutes ces raisons il semble intéressant de s'intéresser à des modules dits « haute tension », c'est-à-dire produisant directement des tensions nettement plus élevées que les modules conventionnels, par exemple des tensions supérieures à celles utilisées sur le réseau électrique, notamment supérieures à 300V.
A cet égard, il est possible d'augmenter la tension d'un module photovoltaïque en utilisant les technologies des cellules actuelles, en produisant les substrats de silicium de 156 mm de façon classique mais en y découpant plusieurs cellules. Il convient à cet effet d'adapter le motif de métallisation pour éviter des métallisations dans les zones de découpe, notamment si la séparation des cellules se fait par clivage sur un sillon réalisé au laser.
A titre d'exemple, en clivant un substrat de silicium de 156 x 156 mm en trois dans les deux directions on peut en tirer neuf cellules de format 52 x 52 mm. En séparant de 2,5 mm les cellules dans le module, on peut ainsi placer 17 x 29 = 493 cellules de format 52 x 52 mm au lieu de 6 x 10 = 60 cellules de 156 x 156 mm, montant ainsi le voltage du module au-delà de 300V.
Si l'on souhaite un voltage encore supérieur, on peut par exemple tirer 4 x 4 = 16 cellules d'un substrat de silicium de 156 mm de côté, ce qui permet de mettre en série 23 x 38 = 874 cellules de format 39 x 39 mm, montant le voltage du module au-delà de 500V.
On peut ajuster la tension souhaitée en réalisant des cellules d'autres tailles, notamment des formats rectangulaires.
Comme expliqué plus haut, la technologie d'interconnexion généralement utilisée pour relier les cellules dans les modules est la soudure de rubans de cuivre. Dans le cas où le substrat de silicium de 156 mm de côté a été découpé en 3 ou en 4 cellules dans une direction, on peut se contenter d'un seul ruban par cellule de largeur réduite. Cependant, du fait que la cellule est de taille réduite dans les 2 sens, le courant qui en est extrait n'est pas 3 ou 4 fois plus faible mais 9 ou 16 fois plus faible qu'avec une cellule de 156 mm de côté. Ceci permet de réduire notablement la section des rubans. S'il est possible de réduire l'épaisseur des rubans, on préférera utiliser des rubans de cuivre plus étroits afin de réduire l'ombrage. Cependant, la largeur minimale des rubans est limitée à environ 0,8 mm, d'une part par manque de disponibilité de rubans plus étroits et d'autre part parce que la soudure de tels rubans plus étroits deviendrait complexe en termes d'alignement, de soudabilité et d'adhésion des rubans.
Les technologies d'interconnexion classiques par rubans ne sont donc pas bien adaptées aux modules photovoltaïques haute tension. Il est envisageable de remplacer les rubans de cuivre par des nappes de fils électriquement conducteurs (en cuivre) s'étendant entre la face avant d'une cellule et la face arrière d'une cellule adjacente, ce qui permettra de réduire notablement les sections de cuivre utilisées pour les fils d'interconnexions des cellules.
Différents concepts d'interconnexion par fils ont été décrits pour des cellules présentant des métallisations sur leurs deux faces, tels que la SmartWire Connection Technology™ (SWCT) de Meyer Burger Technology AG [1] ou le Multi Busbar Connecter™ (MBB) de Schmid [2].
Dans la solution SWCT, les fils électriquement conducteurs sont agencés sous la forme d'une nappe dans laquelle ils sont rendus solidaires les uns des autres par un film support ; lesdits fils sont par ailleurs recouverts d'un revêtement en alliage présentant une température de fusion inférieure à 150°C, ce qui permet la soudure des fils au cours de l'étape de lamination du module qui est mise en œuvre à 150-160°C environ ; des cellules de 156 mm de côté sont ainsi interconnectées par 18 à 38 fils de 200 ou 300 μηη de diamètre.
Dans la solution MBB, des cellules de 156 mm de côté sont interconnectées par 15 fils de 250 ou 300 μηη indépendants (non solidaires) les uns des autres ; lesdits fils sont par ailleurs recouverts d'un revêtement en alliage présentant une température de fusion supérieure à 170°C, ce qui nécessite une soudure à chaque point de contact entre un fil et un doigt de collecte à une température supérieure à 200°C.
La figure 1 est un schéma de principe de l'interconnexion de deux cellules photovoltaïques selon le procédé SWCT mentionné plus haut.
Les cellules photovoltaïques 1 et 2 sont deux cellules bifaciales présentant sur chacune de leurs faces principales une structure de contact formée d'une pluralité de doigts métalliques 10,11 , respectivement 20, 21. Par convention, on désigne dans l'ensemble du présent texte par « face avant » (notée 1A pour la cellule 1 et 2A pour la cellule 2) la face située du côté du module exposé au rayonnement solaire et « face arrière » (notée 1 B pour la cellule 1 et 2B pour la cellule 2) la face opposée à la face avant.
L'interconnexion électrique des cellules 1 et 2 est réalisée au moyen d'une nappe
30 formée d'une pluralité de fils 3 électriquement conducteurs, les fils étant rendus solidaires entre eux par des portions d'un film support qui sont agencées alternativement sur le dessus et sur le dessous des fils. Plus précisément, la nappe de fils présente une première portion 40 de film support agencée sur les fils destinés à être soudés sur la structure de contact 10 de la cellule 1 et une seconde portion 41 de film support agencée sous les fils destinés à être soudés sur la structure de contact 21 de la cellule 2. En d'autres termes, chaque portion 40, 41 de film support est agencée du côté des fils 3 opposé à la structure de contact 10, 21 sur laquelle les fils doivent être soudés, afin de ne pas gêner l'établissement d'une liaison électrique entre les fils et les structures de contact.
Les deux portions 40, 41 ne sont pas contiguës mais distantes d'un intervalle d qui est choisi de telle sorte que les portions 40, 41 de film support soient positionnées en regard de la face respective 1A, 2B desdites cellules et en retrait par rapport aux bords 1 C, 2C de chaque cellule. Cette solution est en effet facile à mettre en œuvre et ne requiert pas une précision très importante pour la localisation du film support.
Comme expliqué plus haut, la réduction de la densité de courant produite par chaque cellule photovoltaïque permettrait de réduire la section de chacun desdits fils électriquement conducteurs. Cependant, une telle réduction pose deux problèmes : d'une part, la fragilité de tels fils, qui engendre des risques de rupture et, d'autre part, la difficulté de souder des fils aussi fins.
BREVE DESCRIPTION DE L'INVENTION
Un but de l'invention est de permettre la fabrication de modules photovoltaïques
« haute tension » en concevant un système d'interconnexion adapté aux courants destinés à être produits par de tels modules et qui permette de remédier aux inconvénients précités.
Conformément à l'invention, il est proposé un module photovoltaïque comprenant au moins deux cellules photovoltaïques, dans lequel deux cellules adjacentes sont connectées par une nappe de fils électriquement conducteurs reliant électriquement une structure de contact agencée sur une première face principale, dite face avant, d'une première cellule et une structure de contact agencée sur une seconde face principale, dite face arrière, de la seconde cellule du côté opposé à la première face, lesdits fils étant rendus solidaires les uns des autres au moins localement par un film support, caractérisé en ce que lesdits fils électriquement conducteurs présentent un diamètre inférieur ou égal à 175 μηη et en ce qu'un premier film protecteur est interposé entre les fils électriquement conducteurs et un bord de la face avant de la première cellule et un second film protecteur est interposé entre lesdits fils et un bord de la face arrière de la seconde cellule.
Selon d'autres caractéristiques avantageuses mais non limitatives, considérées seules ou en combinaison :
- le premier film protecteur est une première portion du film support et le second film protecteur est une seconde portion du film support située de l'autre côté de la nappe de fils par rapport à la première portion ;
- lesdites première et seconde portions de film support sont positionnées de chaque côté de la nappe de fils dans une région s'étendant de part et d'autre du bord de chaque cellule ; - le film support comprend une première portion s'étendant jusqu'au bord de la première cellule et une seconde portion s'étendant en retrait vis-à-vis du bord de la face avant de ladite première cellule, et une portion additionnelle de film support est interposée entre les fils et le bord de la face arrière de la seconde cellule ;
- le film support comprend deux portions s'étendent uniquement en regard de la face avant de la cellule, respectivement de la face arrière de la cellule, et deux portions additionnelles de film support sont interposés respectivement entre les fils et le bord de la face avant de la première cellule d'une part, et entre les fils et le bord de la face arrière de la seconde cellule d'autre part ;
- la structure de contact agencée sur la face avant de chaque cellule comprend une pluralité de doigts métalliques ;
- le premier film protecteur s'étend, sur la face avant de la première cellule, sur une distance inférieure à la distance entre le bord de la face avant de ladite première cellule et le doigt métallique le plus proche dudit bord ;
- lesdits doigts métalliques sont en une pâte d'argent dépourvue de composants organiques ;
- les cellules photovoltaïques sont des cellules à homojonction ;
- les cellules photovoltaïques sont des cellules bifaciales, la structure de contact agencée sur la face arrière de chaque cellule comprenant une pluralité de doigts métalliques ;
- le second film protecteur s'étend, sur la face arrière de la seconde cellule, sur une distance inférieure à la distance entre le bord de la face arrière de ladite seconde cellule et le doigt métallique le plus proche dudit bord ;
- le second film protecteur s'étend, sur la face arrière de la seconde cellule, sur une distance supérieure à la distance entre le bord de la face arrière de ladite seconde cellule et le doigt métallique le plus proche dudit bord, de sorte que ledit second film protecteur isole électriquement au moins le doigt métallique le plus proche du bord vis-à-vis des fils, et la structure de contact agencée sur la face arrière de ladite cellule comprend des éléments électriquement conducteurs perpendiculaires aux doigts métalliques pour relier électriquement le ou les doigts isolés par ledit film protecteur à au moins un doigt non isolé par le second film protecteur ;
- les cellules photovoltaïques sont des cellules monofaciales, la structure de contact agencée sur la face arrière de ladite cellule comprenant une couche métallique ;
- la distance entre deux fils d'interconnexions adjacents est inférieure ou égale à 20 mm, de préférence inférieure à 10 mm ;
- les cellules photovoltaïques présentent au moins un côté dont la longueur est inférieure ou égale à 52 mm, de préférence inférieure ou égale à 39 mm ;
- le film support est en un matériau organique adhésif ; - l'épaisseur du film support est inférieure à 100 μηι, de préférence inférieure ou égale à 50 μηη ;
- la distance entre deux cellules adjacentes est inférieure à 2 mm, de préférence inférieure à 1 mm ;
- le diamètre des fils électriquement conducteurs est inférieur ou égal à 150 μηη, de préférence inférieur ou égal à 100 μηη et de manière encore préférée inférieur ou égal à 50 μηη ;
- le ratio entre la section cumulée des fils électriquement conducteurs du module et la largeur de chaque cellule est inférieur à 0,035 mm2/cm, de préférence inférieur à 0,02 mm2/cm.
Un autre objet concerne un procédé d'interconnexion de cellules photovoltaïques en vue de fabriquer un tel module.
Ledit procédé comprend :
- la fourniture d'une nappe de fils électriquement conducteurs rendus solidaires les uns des autres au moins localement par un film support,
- la connexion électrique desdits fils avec une structure de contact agencée sur une première face principale, dite face avant, d'une première cellule,
- la connexion électrique desdits fils avec une structure de contact agencée sur une seconde face principale, dite face arrière, d'une seconde cellule adjacente à la première du côté opposé à la première face,
ledit procédé étant caractérisé en ce que lesdits fils présentent un diamètre inférieur ou égal à 175 μηη et en ce que, avant ou pendant la mise en place de ladite nappe de fils, un premier film protecteur est interposé entre les fils électriquement conducteurs et le bord de la face avant de la première cellule et un second film protecteur est interposé entre lesdits fils et le bord de la face arrière de la seconde cellule.
BREVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée qui va suivre, en référence aux dessins annexés sur lesquels :
- la figure 1 présente une vue en coupe de l'interconnexion de deux cellules photovoltaïques selon une technique connue et une vue de dessus de la nappe de fils d'interconnexion,
la figure 2 présente une vue en coupe de l'interconnexion de deux cellules photovoltaïques bifaciales à homojonction et une vue de dessus de la nappe de fils d'interconnexion selon un mode de réalisation de l'invention,
la figure 3 présente une vue en coupe de l'interconnexion de deux cellules photovoltaïques bifaciales à homojonction et une vue de dessus de la nappe de fils d'interconnexion selon un autre mode de réalisation de l'invention, la figure 4 présente une vue en coupe de l'interconnexion de deux cellules photovoltaïques monofaciales à homojonction et une vue de dessus de la nappe de fils d'interconnexion selon un mode de réalisation de l'invention. DESCRIPTION DETAILLEE DE MODES DE REALISATION DE L'INVENTION
L'invention propose l'utilisation de fils électriquement conducteurs plus fins que ceux utilisés classiquement pour l'interconnexion de cellules photovoltaïques, c'est-à-dire présentant un diamètre inférieur ou égal à 175 μηη.
Lesdits fils électriquement conducteurs se présentent sous la forme d'une nappe dans laquelle les fils sont rendus solidaires par un film support. L'agencement du film support par rapport aux fils et la nature dudit film support seront décrits en détail plus bas.
Les fils électriquement conducteurs sont généralement des fils de cuivre recouverts d'un revêtement en un alliage (par exemple à base d'indium) présentant une température de fusion inférieure à 150°C. Le revêtement typique est constitué d'environ 10 μηη d'un alliage Sn-ln dont le point de fusion est d'environ 120°C.
Pour une technologie de cellule photovoltaïque donnée, une cellule de surface réduite dédiée à la haute tension délivrera la même densité de courant, de l'ordre de 35 à 40 mA/cm2. Cela signifie que pour une structure de contact présentant une métallisation identique, les mêmes courants circuleront dans les doigts de collecte, que ce soit pour des cellules standard ou haute tension. Or l'argent nécessaire aux métallisations est le poste coût le plus important après le substrat de silicium. Réduire la distance entre les interconnexions réduit la longueur des doigts de collecte et permet d'imprimer des sections plus faibles. L'utilisation de fils très fins au lieu de rubans évite de générer un ombrage important.
Les efficacités des cellules et des modules photovoltaïques répondent à la formule :
Eff = Isc (courant de court-circuit) x Voc (tension de circuit ouvert) x FF (« Fill Factor », paramètre intégrant les pertes résistives).
Il a été étudié expérimentalement que pour disposer d'interconnexions non limitantes par leur résistance (se traduisant par peu de perte entre le Fill Factor de la cellule et le Fill Factor du module), il est nécessaire d'utiliser 15 ou 18 fils de cuivre de 300 μηη (la perte de FF étant significative avec diamètre 200 ou 250 μηη) ou d'utiliser plus de 30 fils, notamment pour des fils de cuivre de diamètre 200 μηη, ce qui correspond à des sections totale de cuivre de l'ordre de 1 ,2mm2 (1 ,27 mm2 pour de 18 fils de 300 μηη, 1 ,13mm2 pour 36 fils de diamètre 200 μηη).
Comme expliqué précédemment, les cellules de petite taille génèrent des courants beaucoup plus faibles, notamment 16 fois plus faibles pour une cellule 39 x 39 mm que pour une cellule 156 x 156 mm. Or la puissance dissipée par les pertes résistives dues aux interconnexions sont proportionnelles au carré de l'intensité du courant (P = R x I2), d'où, pour l'exemple donné, des pertes résistives divisées par 256. Cela signifie qu'une section totale des fils de cuivre de 0,0047 mm2 sera suffisante sur une cellule de 39mm de côté (1 ,2 /16 = 0,0047). Or, la section d'un fil de diamètre de 100 μηη est de 0,0050mm2, celle d'un fil de 50 μηι de 0,0020mm2, celle d'un fil de 30 μηι de 0,0007 mm2, ce qui signifie qu'un fil de 100 μηη ou 3 fils de 50 μηη ou 7 fils de 30 μηη devraient suffire pour interconnecter des cellules de 39 x 39 mm sans induire de pertes résistives significatives dans les interconnexions. Dans les trois cas l'ombrage est fortement réduit par rapport à une interconnexion utilisant des rubans de cuivre de section rectangulaire, d'autant que l'ombrage d'un fil rond utilisé en module est réduit de 30% du fait des réflexions liées à la section circulaire.
Utiliser sur une cellule de 39x39mm une section de cuivre de 0,0049mm2 permet l'obtention d'un FF module; en doublant cette section, soit 0,01 mm2, des FF excellents seront obtenus en module. Ainsi pour interconnecter 4 rangées de cellules de largeur 39mm équivalant à une largeur cumulée de cellules de 156mm (largeur usuelle des cellules) on pourra obtenir des modules présentant d'excellents FF en n'utilisant que 0.04mm2 de section de cuivre, soit plus de 2 fois moins que les modules classiques et cela avec de meilleurs FF. Ainsi si on définit un ratio R = section cumulée des fils d'interconnexion / largeur de chaque cellule, on passera de R = 0,057 mm2/cm (0,9mm2 /15,6 cm) pour un module utilisant des cellules classiques (cellules 156x156 interconnectées par 3 rubans de 1 ,5x0, 2=0, 9mm2) à R= 0,026 mm2/cm (0,4mm2 /(4x3,9cm) pour un module constitué de 4 rangées de cellules de 39x39mm interconnectées par des fils de diamètre Ι ΟΟμηη. On obtiendra même un ratio R < 0,2 mm2/cm avec des fils de diamètre inférieur à ΙΟΟμητ
Si un seul fil est utilisé par cellule, on doit réaliser des doigts de collecte transportant les courants générés sur d'assez grandes distances (1/2 largeur de la cellule pour une interconnexion au centre, soit 19 mm pour une cellule de 39 x 39 mm) alors qu'en choisissant un nombre plus élevé de fils on perd très légèrement en ombrage mais on peut réaliser des doigts de collecte de plus petites sections donc une cellule moins coûteuse car moins consommatrice en pâte d'argent. Le nombre de fils d'interconnexion est avantageusement choisi pour avoir une longueur des doigts de collecte entre fils d'interconnexion adjacents inférieure à 20 mm, de préférence inférieure à 10 mm, de manière encore préférée inférieure à 5 mm.
Diminuer la section des fils a un autre impact important sur le coût de l'interconnexion lorsque les fils de cuivre sont revêtus d'un alliage de soudure onéreux comme c'est le cas pour les fils utilisés avec la technologie SWCT (les fils étant recouverts d'un alliage à base d'indium d'une dizaine de micromètres d'épaisseur). A épaisseur d'alliage donnée, la quantité d'alliage étant proportionnelle au diamètre du fil, une réduction de coût de l'alliage par 2 peut donc être attendue en passant de fils de 200 μηι à 100 μηι de diamètre, et même davantage en passant à des fils de 50 μηη ou moins.
Ainsi, selon une forme d'exécution préférée de l'invention, le nombre de fils d'interconnexion est supérieur à 1 et le diamètre desdits fils est inférieur ou égal à 100 m.
Par ailleurs, l'utilisation de fils de 150 μηη ou moins procure un autre avantage par rapport à des interconnexions à base de rubans ou par rapport aux interconnexions à base de fils de diamètre 200 μηη telles que mises en œuvre dans les techniques SWCT et MBB. En effet, ces fils très fins donc très souples ne créent pas de contraintes au bord des cellules lorsqu'ils passent de la face avant d'une cellule à la face arrière de la cellule adjacente. Ceci permet de rapprocher davantage les cellules dans le module, une distance inter-cellules inférieure ou égale à 1 mm devenant envisageable alors qu'un intervalle de 3 à 5 mm doit être ménagé pour les rubans de cuivre conventionnels nettement plus rigides pour éviter de voir apparaître des fissures au bord des cellules, soit lors de la soudure, soit durant les cyclages thermiques.
Un module avec des cellules photovoltaïques rapprochées permet de réaliser des modules plus performants car présentant plus de puissance par unité de surface.
Un problème lié à l'utilisation de fils très fins est le risque de rupture des fils sur les bords des cellules, éventuellement lors de la réalisation des interconnexions mais surtout par cisaillement lors des changements de température auquel est soumis un module, les variations de température se traduisant par des contraintes de dilatation différentielle des matériaux en présence, notamment du substrat (le silicium se dilatant très peu) et des interconnexions (le cuivre se dilatant au contraire fortement).
Cet écueil est évité en intercalant, entre lesdits fils et le bord de chaque cellule contre lequel les fils électriquement conducteurs sont susceptibles de s'appuyer, un film protecteur.
De manière particulièrement avantageuse, le film protecteur est une portion du film support utilisé pour solidariser les fils pour former la nappe et positionné de manière appropriée pour s'interposer entre les fils et le bord acéré du substrat.
De manière alternative, le film protecteur déposé directement sur la cellule elle- même de sorte à enrober le bord du substrat. Ledit film protecteur peut alors être un film organique adhésif ou une pâte organique.
Le film support est transparent au rayonnement solaire et électriquement isolant.
De manière particulièrement avantageuse, ledit film support est adhésif à température ambiante et/ou à chaud.
Le film support est avantageusement réalisé en un matériau organique, tel que du polyéthylène, éventuellement associé à une couche adhésive, notamment du polyéthylène basse densité (PEBD), mais d'autres matériaux organiques, tels que du polyfluorure de vinylidène (PVDF) ou de l'acrylique, peuvent convenir.
De préférence, le film support est très fin, c'est-à-dire présentant typiquement une épaisseur inférieure à 100 μηι, de préférence inférieure à 50 μηι.
La portion de film support interposée entre les fils et le bord de chaque cellule, de part et d'autre dudit bord, permet d'éviter un contact direct des fils sur le bord de la cellule et ainsi de minimiser le risque de cisaillement lors de la réalisation de l'interconnexion et/ou des cycles thermiques subis par le module au cours de son utilisation.
Par ailleurs, des fils de moins de 150 μηη de diamètre présentent une très faible masse thermique et donc une grande difficulté à être soudés par des voies classiques, les surfaces de contact entre les doigts de collecte et les fils étant très faibles.
Par conséquent, l'homme du métier évitera d'employer une soudure classique telle qu'utilisée dans la solution MBB, dont la courte durée (quelques secondes au maximum) est insuffisante pour permettre une bonne adhésion des fils sur les doigts de collecte, et choisira plutôt de profiter de l'étape de lamination du module qui est plus longue (plusieurs minutes) pour solidariser les métallisations et les fils. De manière particulièrement avantageuse, on choisit des cellules photovoltaïques dans lesquelles la structure de contact est formée à partir de pâtes dites à haute température, c'est-à-dire d'encres à base d'argent, cuites au-delà de 700°C et dans lesquelles les composants organiques ont été brûlés et l'argent a densifié par frittage, les métallisations présentent un métal dense sur lequel s'effectue une réelle soudure, ce qui permet une adhésion notable même avec des fils fins. Tel est le cas généralement des cellules à homojonction. En cas d'utilisation de cellules, telles que les cellules à hétérojonction, disposant de pâtes dites à basses température, c'est-à-dire des pâtes ayant subi un traitement thermique à une température inférieure à 300°C et dans lesquelles les composants organiques ont été conservés et où l'argent n'a pas vraiment été densifié par frittage, l'étape de lamination au-delà du point de fusion de l'alliage enrobant les fils se traduit plus par une consolidation des points de contact par diffusion que par une réelle soudure, d'où une liaison doigts de collecte / fils moins solide, cela d'autant plus que les conducteurs sont plus fins.
La figure 2 est un schéma de principe d'une interconnexion selon un mode de réalisation de l'invention.
Dans cet exemple, les cellules 1 et 2 sont des cellules photovoltaïques bifaciales à homojonction présentant sur chacune de leurs faces principales une structure de contact formée d'une pluralité de doigts métalliques 10, 11 respectivement 20, 21. L'interconnexion électrique des cellules 1 et 2 est réalisée au moyen d'une nappe 30 formée d'une pluralité de fils 3 électriquement conducteurs, les fils étant rendus solidaires entre eux par des portions d'un film support qui sont agencées alternativement sur le dessus et sur le dessous des fils. Le film support présente une première portion 40 agencée sur les fils destinés à être soudés sur la structure de contact de la cellule 1 et une seconde portion 41 agencée sous les fils de la structure de contact de la cellule 2. En d'autres termes, chaque portion de film support est agencée du côté des fils 30 opposé à la structure de contact 10, 21 sur laquelle les fils doivent être soudés.
Par ailleurs, la portion 40 du film support s'étend jusqu'au bord 2C de la face arrière 2B de la cellule 2, et s'étend sur ladite face arrière 2B sur une distance d2 à partir du bord. La distance d2 est avantageusement inférieure à la distance entre le bord 2C et le doigt de métallisation 21 le plus proche dudit bord, de sorte que la portion 40 n'empêche pas la connexion électrique entre les fils et ledit doigt 21. Typiquement, on peut considérer que la distance d2 est comprise entre 0,5 et 1 ,5 mm.
De manière similaire, la portion 41 du film support s'étend jusqu'au bord 1 C de la face avant 1A de la cellule 1 , et s'étend sur ladite face avant 1A sur une distance d1 à partir du bord. La distance d1 est avantageusement inférieure à la distance entre le bord 1 C et le doigt de métallisation 10 le plus proche dudit bord, de sorte que la portion 41 n'empêche pas la connexion électrique entre les fils et ledit doigt 10. Typiquement, on peut considérer que la distance d1 est comprise entre 0,5 et 1 ,5 mm.
Il existe donc une région de la nappe de fils comprise entre le doigt métallique 10 le plus proche du bord 1 C de la face avant 1A de la cellule 1 et le doigt métallique 21 le plus proche du bord 2C de la face arrière 2B de la cellule 2 dans laquelle les fils sont recouverts d'un côté de la portion 40 de film support et du côté opposé de la portion 41 de film support.
La figure 3 est un schéma de principe d'une interconnexion selon un autre mode de réalisation de l'invention, appliqué également à des cellules photovoltaïques bifaciales. Les éléments de même nature que ceux de la figure 2 sont désignés par les mêmes signes de référence et ne sont pas décrits à nouveau en détail.
Comme sur la figure 2, la portion 40 du film support s'étend jusqu'au bord 2C de la face arrière 2B de la cellule 2, et s'étend sur ladite face arrière 2B sur une distance d2 à partir du bord. La distance d2 est avantageusement inférieure à la distance entre le bord 2C et le doigt de métallisation 21 le plus proche dudit bord, de sorte que la portion 40 n'empêche pas la connexion électrique entre les fils et ledit doigt 21. Typiquement, on peut considérer que la distance d2 est comprise entre 0,5 et 1 ,5 mm. Sinon la métallisation de la cellule devra comporter des conducteurs additionnels (non représentés) perpendiculaires aux doigts de collecte pour relier électriquement le ou les doigts qui seraient isolés par la portion 40.
Dans cette variante de réalisation, la portion 41 de film support est en retrait vis-à- vis du bord 2C de la face arrière 2B de la cellule 2. En revanche, pour protéger les fils 3 du cisaillement contre le bord 1 C de la face avant de la cellule 1 , une portion supplémentaire 42 de film support est interposée entre les fils et le bord 1 C. La portion 42 s'étend sur la face avant 1A sur une distance d1 à partir du bord. La distance d1 est avantageusement inférieure à la distance entre le bord 1 C et le doigt de métallisation 10 le plus proche dudit bord, de sorte que ladite portion 42 n'empêche pas la connexion électrique entre les fils et ledit doigt 10. Typiquement, on peut considérer que la distance d1 est comprise entre 0,5 et 1 ,5 mm. Comme mentionné plus haut, une alternative consisterait à placer cette portion 42 de film protecteur non pas sur la nappe de fils mais directement sur la cellule 1 , qu'il s'agisse d'un film organique adhésif ou d'une pâte organique enrobant l'angle acéré du substrat.
Bien que ces autres variantes ne soient pas représentées, il va de soi que l'invention couvre également les cas suivants :
- la portion 41 de film support s'étend jusqu'au bord 1 C de la cellule 1 , la portion 40 est en retrait vis-à-vis du bord 1 C de la face avant de la cellule 1 , et un film protecteur (pouvant être une portion additionnelle de film support) est interposé entre les fils et le bord 2C de la face arrière 2B de la cellule 2 pour protéger les fils du cisaillement contre ledit bord ;
- les portions 40 et 41 s'étendent uniquement en regard de la face avant 1A de la cellule 1 , respectivement de la face arrière 2B de la cellule 2, et deux films protecteurs (pouvant être deux portions additionnelles de film support) sont interposés respectivement entre les fils et le bord 1 C de la face avant 1 A de la cellule 1 d'une part, et entre les fils et le bord 2C de la face arrière 2B de la cellule 2 d'autre part.
Par ailleurs, les portions de film 40, 41 ne s'étendent pas nécessairement en regard de toute la surface de la face principale de chaque cellule respective.
La figure 4 est un schéma de principe d'une interconnexion de deux cellules 1 ', 2' monofaciales à homojonction. Par rapport aux cellules bifaciales 1 , 2 des figures 2 et 3, les cellules 1 ' et 2' présentent, sur leur face arrière 1 B, 2B, une structure de contact 11 , 21 formée d'une couche métallique, par exemple en aluminium.
La portion 40 du film support s'étend jusqu'au bord 2C de la face arrière 2B de la cellule 2', et s'étend sur ladite face arrière 2B sur une distance d2 à partir du bord. La distance d2 est typiquement supérieure ou égale à 0,5 mm.
La portion 41 de film support est en retrait vis-à-vis du bord 2C de la face arrière 2B de la cellule 2'. Pour protéger les fils 3 du cisaillement contre le bord 1 C de la face avant de la cellule 1 ', une portion supplémentaire 42 de film support est interposée entre les fils et le bord 1 C. La portion 42 s'étend sur la face avant 1A sur une distance d1 à partir du bord. La distance d1 est avantageusement inférieure à la distance entre le bord 1 C et le doigt de métallisation 10 le plus proche dudit bord, de sorte que ladite portion 42 n'empêche pas la connexion électrique entre les fils et ledit doigt 10. Typiquement, on peut considérer que la distance d1 est comprise entre 0,5 et 1 ,5 mm. Pour fabriquer un module photovoltaïque selon l'invention, on met en œuvre les étapes suivantes :
- fourniture de la nappe de fils électriquement conducteurs présentant un diamètre inférieur à 175 μηη rendus solidaires les uns des autres au moins localement par le film support,
- connexion électrique desdits fils avec une structure de contact agencée sur la face avant d'une première cellule,
- connexion électrique desdits fils avec une structure de contact agencée sur la face arrière d'une seconde cellule adjacente à la première,
ladite nappe de fils étant mise en place de telle sorte qu'au moins une première portion de film support soit interposée entre les fils électriquement conducteurs et le bord de la face avant de la première cellule et qu'une seconde portion de film support soit interposée entre lesdits fils et le bord de la face arrière de la seconde cellule.
Lorsque les films protecteurs ne font pas partie du film support solidaire de la nappe de fils mais sont déposés directement sur les bords des cellules, cette étape de mise en place des films protecteurs est réalisée avant la réalisation de la connexion électrique des fils avec les structures de contact des cellules.
Si le film support est adhésif, il adhère à la surface des cellules et est ainsi maintenu jusqu'au laminage du module.
De manière avantageuse, la réalisation de la connexion électrique est réalisée au cours du laminage du module. Le laminage est un procédé connu en lui-même qui ne sera donc pas décrit en détail ici. Cette étape comprend l'encapsulation des cellules et des fils d'interconnexion dans un matériau encapsulant et le laminage de cet ensemble entre deux plaques de verre ou entre une plaque de verre constituant la face avant du module et une plaque en polymère pour la face arrière du module (ledit polymère pouvant être transparent ou non selon que le module est monofacial ou bifacial). Le laminage est réalisé à une température supérieure à la température de fusion de l'alliage dont sont revêtus les fils et pendant une durée suffisamment longue pour permettre à l'alliage de fondre et d'assurer une bonne adhésion vis-à-vis des structures de contact.
REFERENCES
[1] Brochure "SmartWire Connection Technology", Octobre 2014, http://www.meyerburger.com/en/products-systems/technologies/photovoltaic/swct/
[2] Communiqué de presse "SCHMID Présents Multi Busbar Connector Prototype at PVSEC", 19 septembre 2012, http://www.schmid-group.com/en/press- news/a103/schmid-presents-multi-busbar-connector-at-pvsec.html

Claims

REVENDICATIONS
1. Module photovoltaïque comprenant au moins deux cellules photovoltaïques, dans lequel deux cellules (1 , 2) adjacentes sont connectées par une nappe (30) de fils (3) électriquement conducteurs reliant électriquement une structure de contact (10) agencée sur une première face principale (1A), dite face avant, d'une première cellule (1 ) et une structure de contact (21 ) agencée sur une seconde face principale (2B), dite face arrière, de la seconde cellule (2) du côté opposé à la première face (1A), lesdits fils (3) étant rendus solidaires les uns des autres au moins localement par un film support, caractérisé en ce que lesdits fils électriquement conducteurs présentent un diamètre inférieur ou égal à 175 μηη et en ce qu'un premier film protecteur est interposé entre les fils électriquement conducteurs (3) et un bord (1 C) de la face avant de la première cellule et un second film protecteur est interposé entre lesdits fils (3) et un bord (2C) de la face arrière de la seconde cellule.
2. Module selon la revendication 1 , caractérisé en ce que le premier film protecteur est une première portion (41 , 42) du film support et le second film protecteur est une seconde portion (40) du film support située de l'autre côté de la nappe de fils par rapport à la première portion (41 , 42).
3. Module selon la revendication 2, caractérisé en ce que lesdites première et seconde portions de film support sont positionnées de chaque côté de la nappe de fils dans une région s'étendant de part et d'autre du bord (1 C, 2C) de chaque cellule.
4. Module selon la revendication 1 , caractérisé en ce que le film support comprend une première portion s'étendant jusqu'au bord (1 C) de la première cellule (1 ) et une seconde portion (40) s'étendant en retrait vis-à-vis du bord (1 C) de la face avant de ladite première cellule (1 ), et en ce qu'une portion additionnelle de film support est interposée entre les fils (3) et le bord (2C) de la face arrière (2B) de la seconde cellule (2).
5. Module selon la revendication 1 , caractérisé en ce que le film support comprend deux portions (40, 41 ) s'étendent uniquement en regard de la face avant (1A) de la cellule (1 ), respectivement de la face arrière (2B) de la cellule (2), et en ce que deux portions additionnelles de film support sont interposés respectivement entre les fils (3) et le bord (1 C) de la face avant (1 A) de la première cellule (1 ) d'une part, et entre les fils (3) et le bord (2C) de la face arrière (2B) de la seconde cellule (2) d'autre part.
6. Module selon l'une des revendications 1 à 5, caractérisé en ce que la structure de contact (10, 20) agencée sur la face avant de chaque cellule comprend une pluralité de doigts métalliques.
7. Module selon la revendication 6, caractérisé en ce que le premier film protecteur s'étend, sur la face avant de la première cellule, sur une distance (d1 ) inférieure à la distance entre le bord (1 C) de la face avant de ladite première cellule et le doigt métallique le plus proche dudit bord.
8. Module selon l'une des revendications 6 ou 7, caractérisé en ce que lesdits doigts métalliques sont en une pâte d'argent dépourvue de composants organiques.
9. Module selon l'une des revendications 1 à 8, caractérisé en ce que les cellules photovoltaïques sont des cellules à homojonction.
10. Module selon l'une des revendications 1 à 8, caractérisé en ce que les cellules photovoltaïques sont des cellules bifaciales, la structure de contact (11 , 21 ) agencée sur la face arrière de chaque cellule comprenant une pluralité de doigts métalliques.
11. Module selon la revendication 10, caractérisé en ce que le second film protecteur s'étend, sur la face arrière de la seconde cellule, sur une distance (d2) inférieure à la distance entre le bord (2C) de la face arrière de ladite seconde cellule et le doigt métallique le plus proche dudit bord.
12. Module selon la revendication 10, caractérisé en ce que le second film protecteur s'étend, sur la face arrière de la seconde cellule, sur une distance (d2) supérieure à la distance entre le bord (2C) de la face arrière de ladite seconde cellule et le doigt métallique le plus proche dudit bord, de sorte que ledit second film protecteur isole électriquement au moins le doigt métallique le plus proche du bord vis-à-vis des fils (3), et en ce que la structure de contact agencée sur la face arrière de ladite cellule comprend des éléments électriquement conducteurs perpendiculaires aux doigts métalliques pour relier électriquement le ou les doigts isolés par ledit film protecteur à au moins un doigt non isolé par le second film protecteur.
13. Module selon l'une des revendications 1 à 9, caractérisé en ce que les cellules photovoltaïques sont des cellules monofaciales, la structure de contact (11 , 21 ) agencée sur la face arrière de ladite cellule comprenant une couche métallique.
14. Module selon l'une des revendications 1 à 13, caractérisé en ce que la distance entre deux fils d'interconnexions adjacents est inférieure ou égale à 20 mm, de préférence inférieure à 10 mm.
15. Module selon l'une des revendications 1 à 14, caractérisé en ce que les cellules photovoltaïques présentent au moins un côté dont la longueur est inférieure ou égale à 52 mm, de préférence inférieure ou égale à 39 mm.
16. Module selon l'une des revendications 1 à 15, caractérisé en ce que le film support est en un matériau organique adhésif.
17. Module selon l'une des revendications 1 à 16, caractérisé en ce que l'épaisseur du film support est inférieure à 100 μηι, de préférence inférieure ou égale à 50 μηι.
18. Module selon l'une des revendications 1 à 17, caractérisé en ce que la distance entre deux cellules (1 , 2) adjacentes est inférieure à 2 mm, de préférence inférieure à 1 mm.
19. Module selon l'une des revendications 1 à 18, caractérisé en ce que le diamètre des fils électriquement conducteurs est inférieur ou égal à 150 μηη, de préférence inférieur ou égal à 100 μηη et de manière encore préférée inférieur ou égal à 50 μηι.
20. Module selon l'une des revendications 1 à 19, caractérisé en ce que le ratio entre la section cumulée des fils (3) électriquement conducteurs du module et la largeur de chaque cellule est inférieur à 0,035 mm2/cm, de préférence inférieur à 0,02 mm2/cm.
21. Procédé d'interconnexion de cellules photovoltaïques pour fabriquer un module photovoltaïque, comprenant :
- la fourniture d'une nappe (30) de fils (3) électriquement conducteurs rendus solidaires les uns des autres au moins localement par un film support,
- la connexion électrique desdits fils avec une structure de contact (10) agencée sur une première face principale (1A), dite face avant, d'une première cellule (1 ),
- la connexion électrique desdits fils avec une structure de contact (21 ) agencée sur une seconde face principale (2B), dite face arrière, d'une seconde cellule adjacente à la première du côté opposé à la première face (1A), caractérisé en ce que lesdits fils (3) présentent un diamètre inférieur ou égal à 175 μηη et en ce que, avant ou pendant la mise en place de ladite nappe (30) de fils, un premier film protecteur est interposé entre les fils électriquement conducteurs et le bord (1 C) de la face avant (1A) de la première cellule et un second film protecteur est interposé entre lesdits fils et le bord (2C) de la face arrière (2B) de la seconde cellule.
PCT/FR2016/051395 2015-06-10 2016-06-10 Module photovoltaique et procede d'interconnexion de cellules photovoltaiques pour fabriquer un tel module WO2016198797A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1555277 2015-06-10
FR1555277A FR3037441B1 (fr) 2015-06-10 2015-06-10 Module photovoltaique et procede d'interconnexion de cellules photovoltaiques pour fabriquer un tel module

Publications (1)

Publication Number Publication Date
WO2016198797A1 true WO2016198797A1 (fr) 2016-12-15

Family

ID=54291414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/051395 WO2016198797A1 (fr) 2015-06-10 2016-06-10 Module photovoltaique et procede d'interconnexion de cellules photovoltaiques pour fabriquer un tel module

Country Status (3)

Country Link
FR (1) FR3037441B1 (fr)
TW (1) TW201709542A (fr)
WO (1) WO2016198797A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309135A (zh) * 2018-11-09 2019-02-05 武宇涛 光伏电池模组及其制备方法
FR3074360A1 (fr) * 2017-11-30 2019-05-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede d'interconnexion de cellules photovoltaiques avec une electrode pourvue de nanofils metalliques
CN110429143A (zh) * 2019-07-19 2019-11-08 苏州迈展自动化科技有限公司 一种用于光伏电池的电极、光伏电池及光伏电池组件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597277A (zh) * 2022-01-29 2022-06-07 上海德瀛睿创半导体科技有限公司 光伏组件和光伏组件的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184457B1 (en) * 1997-12-22 2001-02-06 Canon Kabushiki Kaisha Photovoltaic device module
EP1770791A1 (fr) * 2005-09-30 2007-04-04 Sanyo Electric Co., Ltd. Module rectangulaire de cellules solaires et sa méthode de fabrication à base de cellules solaires hexagonales
US20070283996A1 (en) * 2006-06-13 2007-12-13 Miasole Photovoltaic module with insulating interconnect carrier
US20090283137A1 (en) * 2008-05-15 2009-11-19 Steven Thomas Croft Solar-cell module with in-laminate diodes and external-connection mechanisms mounted to respective edge regions
US20110132423A1 (en) * 2006-10-11 2011-06-09 Gamma Solar Photovoltaic solar module comprising bifacial solar cells
US20120103383A1 (en) * 2010-11-03 2012-05-03 Miasole Photovoltaic Device and Method and System for Making Photovoltaic Device
EP2525395A1 (fr) * 2011-05-17 2012-11-21 DelSolar Co., Ltd. Machine de fabrication de bandes d'électrode
US8951824B1 (en) * 2011-04-08 2015-02-10 Apollo Precision (Fujian) Limited Adhesives for attaching wire network to photovoltaic cells

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184457B1 (en) * 1997-12-22 2001-02-06 Canon Kabushiki Kaisha Photovoltaic device module
EP1770791A1 (fr) * 2005-09-30 2007-04-04 Sanyo Electric Co., Ltd. Module rectangulaire de cellules solaires et sa méthode de fabrication à base de cellules solaires hexagonales
US20070283996A1 (en) * 2006-06-13 2007-12-13 Miasole Photovoltaic module with insulating interconnect carrier
US20110132423A1 (en) * 2006-10-11 2011-06-09 Gamma Solar Photovoltaic solar module comprising bifacial solar cells
US20090283137A1 (en) * 2008-05-15 2009-11-19 Steven Thomas Croft Solar-cell module with in-laminate diodes and external-connection mechanisms mounted to respective edge regions
US20120103383A1 (en) * 2010-11-03 2012-05-03 Miasole Photovoltaic Device and Method and System for Making Photovoltaic Device
US8951824B1 (en) * 2011-04-08 2015-02-10 Apollo Precision (Fujian) Limited Adhesives for attaching wire network to photovoltaic cells
EP2525395A1 (fr) * 2011-05-17 2012-11-21 DelSolar Co., Ltd. Machine de fabrication de bandes d'électrode

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"SCHMID Présents Multi Busbar Connector Prototype at PVSEC", COMMUNIQUÉ DE PRESSE, 19 September 2012 (2012-09-19), Retrieved from the Internet <URL:http://www.schmid-group.com/en/press-news/a103/schmid-presents-multi-busbar-connector-at-pvsec.html>
SMARTWIRE CONNECTION TECHNOLOGY, October 2014 (2014-10-01), Retrieved from the Internet <URL:http://www.meyerburger.com/en/products-systems/technologies/photovoltaic/swct>

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3074360A1 (fr) * 2017-11-30 2019-05-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede d'interconnexion de cellules photovoltaiques avec une electrode pourvue de nanofils metalliques
EP3493277A1 (fr) * 2017-11-30 2019-06-05 Commissariat à l'énergie atomique et aux énergies alternatives Procédé d'interconnexion de cellules photovoltaïques avec une électrode pourvue de nanofils métalliques
CN109309135A (zh) * 2018-11-09 2019-02-05 武宇涛 光伏电池模组及其制备方法
CN110429143A (zh) * 2019-07-19 2019-11-08 苏州迈展自动化科技有限公司 一种用于光伏电池的电极、光伏电池及光伏电池组件

Also Published As

Publication number Publication date
FR3037441B1 (fr) 2017-07-21
FR3037441A1 (fr) 2016-12-16
TW201709542A (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
EP3493277B1 (fr) Procédé d&#39;interconnexion de cellules photovoltaïques avec une électrode pourvue de nanofils métalliques
JP2015142139A (ja) 太陽電池及びその製造方法
BE1022988B1 (fr) Interconnexion parallele de cellules solaires voisines via un plan arriere commun
EP2510553B1 (fr) Cellule photovoltaïque, procédé d&#39;assemblage d&#39;une pluralité de cellules et assemblage de plusieurs cellules photovoltaïques
WO2006045968A1 (fr) Structure multicouche monolithique pour la connexion de cellules a semi-conducteur
WO2016198797A1 (fr) Module photovoltaique et procede d&#39;interconnexion de cellules photovoltaiques pour fabriquer un tel module
FR3094570A1 (fr) Cellule et chaîne photovoltaïques et procédés associés
EP3888135A1 (fr) Cellule et guirlande photovoltaiques et procedes de fabrication associes
FR3039706A1 (fr) Procede de fabrication d&#39;un module photovoltaique ayant des pertes resistives faibles
EP2981156B1 (fr) Panneau photovoltaïque et un procédé de fabrication d&#39;un tel panneau
EP2497118B1 (fr) Conducteur de cellule photovoltaïque en deux parties serigraphiees haute et basse temperature
EP3809473A1 (fr) Procédé d&#39;interconnexion de cellules photovoltaïques avec des fils métalliques au contact de plots de pâte à braser
EP3496160A1 (fr) Module photovoltaïque comportant des cellules photovoltaïques interconnectées par des éléments d&#39;interconnexion
EP3353816B1 (fr) Procede de fabrication d&#39;un module photovoltaique
EP3276673B1 (fr) Procede de fabrication d&#39;un element photovoltaïque
WO2023062213A1 (fr) Ensemble pour module photovoltaïque, module photovoltaïque et procédé de fabrication de l&#39;ensemble et du module
WO2010070573A2 (fr) Structure d&#39;un module photovoltaïque
EP4348718A1 (fr) Cellules et chaînes photovoltaïques
EP4158693A1 (fr) Chaîne photovoltaïque et procédés associés
EP4447131A1 (fr) Procédés de fabrication d&#39;une chaîne de cellules photovoltaïques électriquement interconnectées et d&#39;un module photovoltaïque comprenant une telle chaîne
FR3026229A1 (fr) Cellule photovoltaique a contacts en face arriere, module photovoltaique et procede de fabrication d&#39;un tel module
EP4102578A1 (fr) Elément d&#39;interconnexion électrique d&#39;au moins deux cellules photovoltaïques
WO2024115696A1 (fr) Ensemble pour module photovoltaïque, module photovoltaïque et procédé de fabrication de l&#39;ensemble et du module
WO2022263127A1 (fr) Chaîne photovoltaïque
WO2017081400A1 (fr) Structure électronique sur support en céramique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16735911

Country of ref document: EP

Kind code of ref document: A1