WO2016192401A1 - P2mp-te组播网络中端到端的检测方法和装置 - Google Patents
P2mp-te组播网络中端到端的检测方法和装置 Download PDFInfo
- Publication number
- WO2016192401A1 WO2016192401A1 PCT/CN2016/072155 CN2016072155W WO2016192401A1 WO 2016192401 A1 WO2016192401 A1 WO 2016192401A1 CN 2016072155 W CN2016072155 W CN 2016072155W WO 2016192401 A1 WO2016192401 A1 WO 2016192401A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unicast
- sub
- p2mp
- tunnel
- label switching
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/16—Arrangements for providing special services to substations
- H04L12/18—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
Definitions
- This document relates to but not limited to the field of data network communication, and in particular to a P2MP-TE (Point 2 Multiple Point Traffic Engineering) multicast network end-to-end detection method and apparatus.
- P2MP-TE Point 2 Multiple Point Traffic Engineering
- the RFC (Request For Comments) provides a detailed description of the Internet communication protocol.
- the P2MP-TE described in the RFC only supports the link FRR (Fast ReRoute). Protection, so as long as there is link BFD (Bidirectional Forwarding Detection) detection is sufficient to support.
- link FRR protection cannot protect the entire device node. If a node is restarted, the protection will be invalid and the FRR deployment of the link is difficult. So I hope to introduce end-to-end protection for P2MP-TE. But if you want to achieve end-to-end protection, you need to have end-to-end fast detection.
- the draft-ietf-bfd-multipoint-04.txt describes a BFD detection scheme for a multicast network.
- the scheme first extends the protocol of the existing BFD, and the implementation complexity is high. It can be seen that the relevant detection schemes are insufficient. Therefore, how to maximize the connectivity of the P2MP-TE LSP (Label Switch Path) by using the existing BFD implementation becomes a technical problem to be solved by the present invention.
- the embodiment of the invention provides an end-to-end detection method and device in a P2MP-TE multicast network, which is used to solve the problem of maximizing the connectivity of the P2MP-TE LSP by using the existing BFD.
- the embodiment of the invention provides an end-to-end detection method in a P2MP-TE multicast network, including:
- the established P2P bidirectional unicast tunnel is generated by referring to a record routing object corresponding to the sub-label switching path.
- the establishing a P2P bidirectional unicast tunnel corresponding to the sub-label switching path of the P2MP-TE includes:
- the detecting, for the link corresponding to the sub-label switching path of the P2MP-TE includes:
- the link fault of the P2MP-TE sub-label switching path corresponding to the P2P bidirectional unicast tunnel in which the unicast BFD is dropped is determined.
- the method of the present invention further includes:
- the sub-label switching path corresponding to the P2MP-TE tunnel is notified to perform protection switching.
- the embodiment of the invention further provides an end-to-end detection device in a P2MP-TE multicast network, including:
- the tunnel establishment module is configured to establish a P2P bidirectional unicast tunnel corresponding to the P2MP-TE sub-label switching path along the physical path of the P2MP-TE sub-label switching path.
- a detecting module configured to establish a unicast bidirectional forwarding detection BFD for the P2P bidirectional unicast tunnel, and, according to the unicast BFD, a chain corresponding to the sub label switching path corresponding to the unicast BFD in the P2MP-TE The road is tested.
- the P2P bidirectional established by the tunnel establishment module The unicast tunnel is generated by referring to the record routing object corresponding to the sub-label switching path.
- the tunnel establishing module is specifically configured to obtain a recording route object of a sub-label switching path of the P2MP-TE, and determine a physical path of the corresponding sub-label switching path according to the recording routing object.
- Information establishing a corresponding P2P bidirectional unicast tunnel according to the physical path information.
- the detecting module is specifically configured to detect a unicast BFD session of the P2P bidirectional unicast tunnel; when the unicast BFD session of the P2P bidirectional unicast tunnel is dropped, A link fault of the P2MP-TE sub-label switching path corresponding to the P2P bidirectional unicast tunnel in which the unicast BFD call is dropped.
- the detecting module is further configured to notify the sub-label switching path corresponding to the P2MP-TE tunnel when detecting a link failure corresponding to one or more sub-label switching paths. Protection switching.
- the solution in the embodiment of the present invention establishes a P2P bidirectional unicast tunnel along the path of the sub-LSP (sub-label switching path) of the P2MP-TE tunnel, and establishes BFD detection to implement the correlation chain of the Sub-LSP of the P2MP-TE.
- Road detection which lays the foundation for the end-to-end protection of P2MP-TE.
- the solution in the embodiment of the present invention does not need to separately implement the multicast BFD function for the P2MP-TE, and reuses the existing unicast BFD and adopts the bidirectional tunnel, so as to maximize the connectivity of the P2MP-TE LSP by using the existing BFD.
- the use of bidirectional tunneling also avoids the uncontrollability of the BFD return path.
- FIG. 1 is a flowchart of an end-to-end detection method in a P2MP-TE multicast network according to an embodiment of the present invention
- FIG. 2 is a schematic diagram of a specific application example of a detection method according to an embodiment of the present invention.
- FIG. 3 is a structural block diagram of an apparatus for detecting end-to-end in a P2MP-TE multicast network according to an embodiment of the present invention.
- the embodiment of the invention provides an end-to-end detection method in a P2MP-TE multicast network, which can be applied to a router or a switch.
- the method includes:
- Step S101 Establish a P2P bidirectional unicast tunnel corresponding to the P2MP-TE sub-label switching path along the physical path of the P2MP-TE sub-label switching path.
- the specific implementation manner of the step includes:
- the established P2P bidirectional unicast tunnel is generated by referring to the path calculation object of the corresponding sub-label switching path.
- the display route object of the established P2P bidirectional unicast tunnel is generated by referring to the record routing object of the corresponding sub-label switching path, where the explicit routing object is RSVP (Resource Reservation Protocol)
- RSVP Resource Reservation Protocol
- the RSVP protocol family is adopted in both P2P and P2MP.
- Step S102 Establish a corresponding unicast BFD for the P2P bidirectional unicast tunnel, and detect, according to the unicast BFD, a link corresponding to the sub-label switching path corresponding to the unicast BFD in the P2MP-TE.
- P2MP-TE may have multiple sub-label switching paths, and one-to-one unicast BFD may be established for one or more sub-label switching paths.
- P2MP-TE has three sub-label switching paths: Sub-LSP1, Sub-LSP2, and Sub-LSP3.
- the unicast BFD1 is only used to detect the link corresponding to Sub-LSP1, and is not used to detect the link corresponding to Sub-LSP2 or Sub-LSP3.
- unicast BFD1, unicast BFD2, and unicast BFD2 are established is not specifically limited herein.
- the unicast BFD can be established only for the part of the sub-label switching path. For example, only the unicast BFD1 is established.
- the link corresponding to the P2MP-TE sub-label switching path is detected, including: detecting a unicast BFD session corresponding to the P2P bidirectional unicast tunnel, and the unicast BFD session corresponding to the P2P bidirectional unicast tunnel is dropped.
- the link fault of the P2MP-TE sub-label switching path corresponding to the P2P bidirectional unicast tunnel in which the unicast BFD call is dropped is determined.
- the method of the embodiment of the present invention further includes: when detecting a link failure corresponding to the sub-label switching path, sending a notification message that the link of the corresponding sub-label switching path is faulty to the P2MP-TE tunnel, In order to enable the P2MP-TE tunnel to trigger protection switching.
- the embodiment of the present invention establishes a P2P bidirectional unicast tunnel along the P2MP-TE tunnel Sub-LSP path, and establishes BFD detection, and then performs association link detection on the P2MP-TE Sub-LSP, which is P2MP- TE's end-to-end protection lays the foundation for detection.
- the embodiment of the present invention expounds the end-to-end detection method in the P2MP-TE multicast network provided by the embodiment of the present invention by exposing more details, specifically:
- the P2MP-TE LSP can be subdivided into Sub LSPs to the tail (tail node).
- the P2MP-TE tunnel source node provides the RRO (Record Route Object) of the Sub LSP to the management component of the P2P-TE (Point 2 Point Traffic Engineering).
- RRO Record Route Object
- P2P-TE Point 2 Point Traffic Engineering
- Two-way unicast tunnel establishment is initiated by P2P-TE.
- An RRO using a P2MP Sub LSP is established as a constraint path to perform path calculation, and an ERO (Explicit Route Object) of the P2P tunnel is generated.
- the one-to-one mapping between the P2P (P2P) tunnel and the Sub LSP is adopted. This ensures that the P2P bidirectional unicast tunnel path is identical to the P2MP tunnel Sub LSP path.
- the unicast BFD session is established for the P2P bidirectional unicast tunnel.
- the BFD packet is also transmitted along the tunnel. This ensures that the BFD packet transmission path is consistent.
- the P2MP tunnel is notified of the abnormality of the Sub-LSP, and the protection switch is triggered, so as to quickly detect the Sub-LSP of the P2MP tunnel.
- the application example has two sub-label switching paths, one is a sub-label switching path 1Sub-LSP1, and the other is a sub-label.
- Switching path 2Sub-LSP 2 Sub-LSP1 is established from node R1 to node R4, Sub-LSP2 is established from node R1 to node R5, bidirectional unicast tunnel 1P2P tunnel1 is established along Sub-LSP1, and bidirectional single is established along Sub-LSP2 After the tunnel is successfully established, the corresponding unicast BFD is established in P2P tunnel1 and P2P tunnel2 respectively.
- the BFD session of the P2P tunnel 2 is down.
- the sub-LSP 2 of the R1 node is triggered to perform end-to-end protection switching. If the link between the R3 and the R4 is faulty, the BFD session of the P2P tunnel1 and the P2P tunnel2 are dropped.
- the sub-LSP1 and the sub-LSP2 of the P2MP-TE of the R1 node are respectively notified to perform end-to-end protection switching.
- An embodiment of the present invention provides an end-to-end detection device in a P2MP-TE multicast network, as shown in FIG. 3, including:
- the tunnel establishment module 310 is configured to establish a P2P bidirectional unicast tunnel corresponding to the P2MP-TE sub-label switching path along the physical path of the P2MP-TE sub-label switching path.
- the detecting module 320 is configured to establish a corresponding unicast bidirectional rotation for the P2P bidirectional unicast tunnel.
- the BFD is detected, and the link corresponding to the sub-label switching path corresponding to the unicast BFD in the P2MP-TE is detected according to the unicast BFD.
- the P2P bidirectional unicast tunnel established by the tunnel establishment module 310 is generated by referring to the record routing object of the corresponding sub-label switching path.
- the tunnel establishment module 310 is configured to obtain a record routing object of the sub-label switching path of the P2MP-TE, and determine the physical path information of the corresponding sub-label switching path according to the recording routing object; The physical path information is used to establish a corresponding P2P bidirectional unicast tunnel.
- the detecting module 320 is configured to detect a unicast BFD session of the P2P bidirectional unicast tunnel; when the unicast BFD session of the P2P bidirectional unicast tunnel is dropped, it is determined that unicast occurs.
- the detecting module is further configured to notify the sub-label switching path corresponding to the P2MP-TE tunnel to perform protection switching when detecting a link failure corresponding to one or more sub-label switching paths.
- the device in the embodiment of the present invention is applied in P2P-TE.
- the embodiment of the present invention establishes a P2P bidirectional unicast tunnel along the P2MP-TE tunnel Sub-LSP path, and establishes BFD detection, and then performs association link detection on the P2MP-TE Sub-LSP, which is P2MP- TE's end-to-end protection lays the foundation for detection.
- the above technical solution does not require the development of a multicast BFD function for the P2MP-TE, and the connectivity of the P2MP-TE LSP is maximized by using the existing BFD. In addition, the uncontrollability of the BFD return path is also avoided.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
一种P2MP-TE组播网络中端到端的检测方法和装置,所述方法包括:沿着P2MP-TE子标签交换路径的物理路径,建立与所述P2MP-TE子标签交换路径对应的P2P双向单播隧道;为所述P2P双向单播隧道建立单播双向转发检测BFD,根据所述单播BFD,对P2MP-TE中所述BFD对应的子标签交换路径所对应的链路进行检测。
Description
本文涉及但不限于数据网络通信领域,尤其涉及一种P2MP-TE(Point 2Multiple Point Traffic Engineering,点到多点流量工程)组播网络中端到端的检测方法和装置。
在P2MP-TE组播网络中,相关技术中,RFC(Request For Comments,请求评议)对互联网通信协议进行了详细的说明,RFC描述的P2MP-TE只支持链路FRR(Fast ReRoute,快速重路由)保护,所以只要有链路BFD(Bidirectional Forwarding Detection,双向转发检测)检测就足够支撑。但是链路FRR保护无法保护设备整机节点,如果某个节点整机重启,那么此时保护就会失效,而且链路的FRR部署难度也比较高。所以希望能引入针对P2MP-TE的端到端保护。但是如果要实现端到端保护,就需要有端到端的快速检测。draft-ietf-bfd-multipoint-04.txt描述了一种组播网络的BFD检测方案,但是该方案首先要对现有BFD进行协议扩展,实现复杂度高。可见,相关检测方案存在不足。所以,如何能够最大化利用现有BFD实现检测P2MP-TE LSP(Label Switch Path,标签交换路径)的连通性,成为本发明所要解决的技术问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种P2MP-TE组播网络中端到端的检测方法和装置,用于解决最大化利用现有BFD实现检测P2MP-TE LSP的连通性的问题。
本发明实施例提供一种P2MP-TE组播网络中端到端的检测方法,包括:
沿着P2MP-TE子标签交换路径的物理路径,建立与P2MP-TE标签交换路径对应的点到点P2P双向单播隧道;
为所述P2P双向单播隧道建立单播双向转发检测BFD,根据所述单播BFD,对P2MP-TE中所述单播BFD对应的子标签交换路径所对应的链路进行检测。
可选地,本发明所述方法中,建立的所述P2P双向单播隧道参照对应子标签交换路径的记录路由对象进行路径计算产生。
可选地,本发明所述方法中,所述建立与P2MP-TE的子标签交换路径对应的P2P双向单播隧道,包括:
获取P2MP-TE的子标签交换路径的记录路由对象;
根据记录路由对象,确定对应子标签交换路径的物理路径信息;
按照所述物理路径信息建立对应的P2P双向单播隧道。
可选地,本发明所述方法中,所述对P2MP-TE的子标签交换路径对应的链路进行检测,包括:
检测P2P双向单播隧道的单播BFD会话;
当所述P2P双向单播隧道的单播BFD会话掉话时,判定发生单播BFD掉话的P2P双向单播隧道对应的P2MP-TE子标签交换路径的链路故障。
可选地,本发明所述方法还包括:
当检测到一个或多个子标签交换路径对应的链路故障时,通知P2MP-TE隧道对应的子标签交换路径进行保护切换。
本发明实施例还提供一种P2MP-TE组播网络中端到端的检测装置,包括:
隧道建立模块,设置为沿着P2MP-TE子标签交换路径的物理路径,建立与P2MP-TE子标签交换路径对应的P2P双向单播隧道;
检测模块,设置为为所述P2P双向单播隧道建立单播双向转发检测BFD,根据所述单播BFD,对所述P2MP-TE中所述单播BFD对应的子标签交换路径所对应的链路进行检测。
可选地,本发明实施例所述装置中,所述隧道建立模块建立的P2P双向
单播隧道参照对应子标签交换路径的记录路由对象进行路径计算产生。
可选地,本发明实施例所述装置中,所述隧道建立模块,具体设置为获取P2MP-TE的子标签交换路径的记录路由对象,根据记录路由对象,确定对应子标签交换路径的物理路径信息;按照所述物理路径信息建立对应的P2P双向单播隧道。
可选地,本发明实施例所述装置中,所述检测模块,具体设置为检测P2P双向单播隧道的单播BFD会话;当所述P2P双向单播隧道的单播BFD会话掉话时,判定发生单播BFD掉话的P2P双向单播隧道对应的P2MP-TE子标签交换路径的链路故障。
可选地,本发明实施例所述装置中,所述检测模块,还设置为当检测到一个或多个子标签交换路径对应的链路故障时,通知P2MP-TE隧道对应的子标签交换路径进行保护切换。
本发明实施例有益效果如下:
本发明实施例所述方案通过沿P2MP-TE隧道Sub-LSP(子标签交换路径)路径建立P2P双向单播隧道,并建立起BFD检测,实现了对P2MP-TE的Sub-LSP进行关联性链路检测,为P2MP-TE的端到端保护打下检测基础。
本发明实施例所述方案不需要另外对P2MP-TE开发组播BFD功能,复用已有单播BFD并采用双向隧道,实现了最大化利用现有BFD实现检测P2MP-TE LSP的连通性。另外,采用双向隧道还避免了BFD回包路径的不可控性。
在阅读并理解了附图和详细描述后,可以明白其它方面。
图1为本发明实施例提供的一种P2MP-TE组播网络中端到端的检测方法的流程图;
图2为本发明实施例提供的检测方法的具体应用示例图;
图3为本发明提供实施例的一种P2MP-TE组播网络中端到端的检测装置的结构框图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本文一部分实施例,而不是全部的实施例。基于本文中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本文保护的范围。
实施例一
本发明实施例提供一种P2MP-TE组播网络中端到端的检测方法,可以应用于路由器或者交换机。
如图1所示,所述方法包括:
步骤S101,沿着P2MP-TE子标签交换路径的物理路径,建立与P2MP-TE的子标签交换路径对应的P2P双向单播隧道;
可选地,该步骤具体实现方式包括:
(1)获取P2MP-TE的子标签交换路径的记录路由对象;
(2)根据记录路由对象,确定对应子标签交换路径的物理路径信息;
(3)按照所述物理路径信息建立对应的点到点P2P双向单播隧道。
也就是说,建立的P2P双向单播隧道是参照对应子标签交换路径的记录路由对象进行路径计算产生的。具体的,建立的P2P双向单播隧道的显示路由对象是参照对应子标签交换路径的记录路由对象进行路径计算产生的,其中,显式路由对象是RSVP(Resource Reservation Protocol,资源预留协议)的一个基本对象,RSVP协议的path报文会携带,建立路径时按照ERO规定的路径进行,而本文无论P2P还是P2MP都是采用的RSVP协议族。
步骤S102,为P2P双向单播隧道建立对应的单播BFD,根据所述单播BFD,对P2MP-TE中与所述单播BFD对应的子标签交换路径所对应的链路进行检测。
需要说明的是,:P2MP-TE可以有多个子标签交换路径,可以对其中一个或多个子标签交换路径建立一一对应的单播BFD。
例如,P2MP-TE有三个子标签交换路径:Sub-LSP1、Sub-LSP2、Sub-LSP3,
为Sub-LSP1建立对应的P2P双向单播隧道1,然后为P2P双向单播隧道1建立对应的单播BFD1;
为Sub-LSP2建立对应的P2P双向单播隧道2,然后为P2P双向单播隧道2建立对应的单播BFD2;
为Sub-LSP3建立对应的P2P双向单播隧道3,然后为P2P双向单播隧道3建立对应的单播BFD3;
单播BFD1只用于检测Sub-LSP1对应的链路,不用于检测Sub-LSP2或Sub-LSP3对应的链路。
需要说明的是单播BFD1、单播BFD2、单播BFD2建立的顺序在此不做具体限定。同时,在其他实施例中,也可以只对部分子标签交换路径建立对应的单播BFD,例如,只建立单播BFD1。
该步骤中,对P2MP-TE的子标签交换路径对应的链路进行检测,包括:检测P2P双向单播隧道对应的单播BFD会话,当所述P2P双向单播隧道对应的单播BFD会话掉话时,判定发生单播BFD掉话的P2P双向单播隧道对应的P2MP-TE子标签交换路径的链路故障。
可选地,本发明实施例所述方法还包括:当检测到子标签交换路径对应的链路故障时,向P2MP-TE的隧道发送对应的子标签交换路径的链路有故障的通知消息,以使P2MP-TE的隧道触发保护切换。
综上可知,本发明实施例通过沿P2MP-TE隧道Sub-LSP路径建立P2P双向单播隧道,并建立起BFD检测,进而对P2MP-TE的Sub-LSP进行关联性链路检测,为P2MP-TE的端到端保护打下检测基础。
实施例二
本发明实施例通过公开更多的细节,对本发明实施例提供的P2MP-TE组播网络中端到端的检测方法进行阐述,具体的:
P2MP-TE的LSP可以细分为到tail(尾部节点)的Sub LSP。
P2MP-TE的隧道源节点把Sub LSP的RRO(Record Route Object,记录路由对象)提供给P2P-TE(Point 2Point Traffic Engineering,点到点流量工程)的管理组件。由P2P-TE发起双向单播隧道建立。建立采用P2MP Sub LSP的RRO作为约束路径,进行路径计算,产生P2P隧道的ERO(Explicit Route Object,显式路由对象)。采用P2P(Point 2Point,点到点)隧道与Sub LSP的一一映射关系,这样就保证了P2P双向单播隧道路径与P2MP隧道Sub LSP路径完全一致。
为P2P双向单播隧道建立单播BFD,由于建立的是双向隧道,BFD回包也沿隧道传递,这样就保证了BFD收发包路径的一致。在P2P双向单播隧道BFD的会话down之后,通知P2MP隧道对应Sub-LSP的检测异常,进而触发保护切换,从而起到对P2MP隧道Sub-LSP的快速检测作用。
如图2所示,为本发明实施例所述方法的一个具体应用示例,参照图2,该应用示例中有二条子标签交换路径,一个是子标签交换路径1Sub-LSP1,另一个是子标签交换路径2Sub-LSP 2,Sub-LSP1是从节点R1建向节点R4,Sub-LSP2是从节点R1建向节点R5,沿Sub-LSP1建立双向单播隧道1P2P tunnel1,沿Sub-LSP2建立双向单播隧道2P2P tunnel2,待隧道建立成功后,分别在P2P tunnel1和P2P tunnel2建立相应的单播BFD。
如果R4与R5之间的链路故障,那么P2P tunnel2的BFD会话掉话down,触发R1节点的Sub-LSP2进行端到端保护切换。如果R3和R4之间链路故障,那么P2P tunnel1和P2P tunnel2的BFD会话都掉话down,通知R1节点P2MP-TE的Sub-LSP1和Sub-LSP2分别进行端到端保护切换。
实施例三
本发明实施例提供一种P2MP-TE组播网络中端到端的检测装置,如图3所示,包括:
隧道建立模块310,设置为沿着P2MP-TE子标签交换路径的物理路径,建立与P2MP-TE的子标签交换路径对应的P2P双向单播隧道;
检测模块320,设置为为所述P2P双向单播隧道建立相应的单播双向转
发检测BFD,根据所述单播BFD,对P2MP-TE中所述单播BFD对应的子标签交换路径所对应的链路进行检测。
基于上述结构框架及实施原理,下面给出在上述结构下的几个具体及优选实施方式,用以细化和优化本发明所述装置的功能,以使本发明方案的实施更方便,准确。需要说明的是,在不冲突的情况下,如下特征可以任意组合。
本发明实施例中,隧道建立模块310建立的P2P双向单播隧道参照对应子标签交换路径的记录路由对象进行路径计算产生。
可选地,本发明实施例中,隧道建立模块310,是设置为获取P2MP-TE的子标签交换路径的记录路由对象,根据记录路由对象,确定对应子标签交换路径的物理路径信息;按照所述物理路径信息建立对应的P2P双向单播隧道。
可选地,本发明实施例中,检测模块320,时设置为检测P2P双向单播隧道的单播BFD会话;当所述P2P双向单播隧道的单播BFD会话掉话时,判定发生单播BFD掉话的P2P双向单播隧道对应的P2MP-TE子标签交换路径的链路故障。
可选地,本发明实施例中,所述检测模块,还设置为当检测到一个或多个子标签交换路径对应的链路故障时,通知P2MP-TE隧道对应的子标签交换路径进行保护切换。
可选地,本发明实施例所述装置应用在P2P–TE中。
综上可知,本发明实施例通过沿P2MP-TE隧道Sub-LSP路径建立P2P双向单播隧道,并建立起BFD检测,进而对P2MP-TE的Sub-LSP进行关联性链路检测,为P2MP-TE的端到端保护打下检测基础。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模
块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本发明不限制于任何特定形式的硬件和软件的结合。本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。
上述技术方案不需要另外对P2MP-TE开发组播BFD功能,实现了最大化利用现有BFD实现检测P2MP-TE LSP的连通性。另外,还避免了BFD回包路径的不可控性。
Claims (11)
- 一种点到多点流量工程P2MP-TE组播网络中端到端的检测方法,包括:沿着P2MP-TE子标签交换路径的物理路径,建立与所述P2MP-TE子标签交换路径对应的点到点P2P双向单播隧道;为所述P2P双向单播隧道建立对应的单播双向转发检测BFD,根据所述单播BFD,对P2MP-TE中所述单播BFD对应的子标签交换路径所对应的链路进行检测。
- 如权利要求1所述的方法,其特征在于,建立的各所述P2P双向单播隧道参照对应子标签交换路径的记录路由对象进行路径计算产生。
- 如权利要求2所述的方法,其特征在于,所述建立与P2MP-TE的子标签交换路径对应的P2P双向单播隧道,包括:获取P2MP-TE的子标签交换路径的记录路由对象;根据记录路由对象,确定对应子标签交换路径的物理路径信息;按照所述物理路径信息建立对应的P2P双向单播隧道。
- 如权利要求1所述的方法,其中,所述根据所述单播BFD,对P2MP-TE中所述单播BFD对应的子标签交换路径所对应的链路进行检测,包括:检测P2P双向单播隧道的单播BFD会话;当所述P2P双向单播隧道的单播BFD会话掉话时,判定所述发生单播BFD掉话的P2P双向单播隧道对应的P2MP-TE子标签交换路径的链路故障。
- 如权利要求1至4任意一项所述的方法,其中,所述方法还包括:当检测到一个或多个子标签交换路径对应的链路故障时,通知P2MP-TE隧道对应的子标签交换路径进行保护切换。
- 一种点到多点流量工程P2MP-TE组播网络中端到端的检测装置,包括:隧道建立模块,设置为沿着P2MP-TE子标签交换路径的物理路径,建立与P2MP-TE子标签交换路径对应的P2P双向单播隧道;检测模块,设置为为所述P2P双向单播隧道建立单播双向转发检测BFD,根据所述单播BFD,对所述P2MP-TE中所述单播BFD对应的子标签交换路径所对应的链路进行检测。
- 如权利要求6所述的装置,其特征在于,所述隧道建立模块建立的P2P双向单播隧道的对象参照对应子标签交换路径的记录路由对象进行路径计算产生。
- 如权利要求7所述的装置,其中,所述隧道建立模块,是设置于通过如下方式实现建立与P2MP-TE的每个子标签交换路径一一对应的P2P双向单播隧道:获取P2MP-TE的每个子标签交换路径的记录路由对象,根据记录路由对象,确定对应子标签交换路径的物理路径信息;按照所述物理路径信息建立对应的P2P双向单播隧道。
- 如权利要求6所述的装置,其中,所述检测模块,是设置为通过如下方式实现对P2MP-TE的每个子标签交换路径对应的链路进行检测:检测每个P2P双向单播隧道的单播BFD会话;当一个或多个P2P双向单播隧道的单播BFD会话掉话时,判定发生单播BFD掉话的P2P双向单播隧道对应的P2MP-TE子标签交换路径的链路故障。
- 如权利要求6至9任意一项所述的装置,所述检测模块,还设置为当检测到一个或多个子标签交换路径对应的链路故障时,通知P2MP-TE隧道对应的子标签交换路径进行保护切换。
- 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1~5中任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510295539.9A CN106301813A (zh) | 2015-06-02 | 2015-06-02 | P2mp-te组播网络中端到端的检测方法和装置 |
CN201510295539.9 | 2015-06-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016192401A1 true WO2016192401A1 (zh) | 2016-12-08 |
Family
ID=57440107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/072155 WO2016192401A1 (zh) | 2015-06-02 | 2016-01-26 | P2mp-te组播网络中端到端的检测方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106301813A (zh) |
WO (1) | WO2016192401A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101420342A (zh) * | 2008-11-25 | 2009-04-29 | 华为技术有限公司 | 一种定位故障网络的方法、装置及系统 |
CN101771577A (zh) * | 2008-12-31 | 2010-07-07 | 华为技术有限公司 | 一种为双向lsp建立双向转发检测的方法、系统及设备 |
US20110286324A1 (en) * | 2010-05-19 | 2011-11-24 | Elisa Bellagamba | Link Failure Detection and Traffic Redirection in an Openflow Network |
CN103023665A (zh) * | 2011-09-23 | 2013-04-03 | 华为技术有限公司 | 一种组播业务保护的方法、网络设备和系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102291307B (zh) * | 2011-08-18 | 2014-09-10 | 福建星网锐捷网络有限公司 | 一种跨vpn组播实现方法、装置及网络设备 |
US9112713B2 (en) * | 2012-06-27 | 2015-08-18 | Cisco Technology, Inc. | System and method for efficient point-to-multi-point traffic engineering (P2MP-TE) path protection |
CN102780593B (zh) * | 2012-07-25 | 2015-08-26 | 中兴通讯股份有限公司 | 基于bfd协议检测链路的方法、装置和网络处理器 |
US8798050B1 (en) * | 2012-07-30 | 2014-08-05 | Cisco Technology, Inc. | Re-optimization of loosely routed P2MP-TE sub-trees |
CN103825766B (zh) * | 2014-02-28 | 2017-04-12 | 杭州华三通信技术有限公司 | 一种bfd链路检测装置和方法 |
CN103916275A (zh) * | 2014-03-31 | 2014-07-09 | 杭州华三通信技术有限公司 | 一种bfd检测装置和方法 |
-
2015
- 2015-06-02 CN CN201510295539.9A patent/CN106301813A/zh not_active Withdrawn
-
2016
- 2016-01-26 WO PCT/CN2016/072155 patent/WO2016192401A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101420342A (zh) * | 2008-11-25 | 2009-04-29 | 华为技术有限公司 | 一种定位故障网络的方法、装置及系统 |
CN101771577A (zh) * | 2008-12-31 | 2010-07-07 | 华为技术有限公司 | 一种为双向lsp建立双向转发检测的方法、系统及设备 |
US20110286324A1 (en) * | 2010-05-19 | 2011-11-24 | Elisa Bellagamba | Link Failure Detection and Traffic Redirection in an Openflow Network |
CN103023665A (zh) * | 2011-09-23 | 2013-04-03 | 华为技术有限公司 | 一种组播业务保护的方法、网络设备和系统 |
Non-Patent Citations (1)
Title |
---|
KATZ, D. ET AL.: "BFD for Multipoint Networks", DRAFT-IETF-BFD-MULTIPOINT-04, 12 August 2014 (2014-08-12), pages 1 - 27, XP015101255 * |
Also Published As
Publication number | Publication date |
---|---|
CN106301813A (zh) | 2017-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019128950A1 (zh) | 一种报文处理的方法、网络节点和系统 | |
ES2523574T3 (es) | Sistema y método de cálculo de entrada de reserva de ruta de conmutación de etiquetas punto a multipunto | |
US7489695B1 (en) | Automatic LSP stitching with protocol signaling | |
TW201134151A (en) | RSVP-TE graceful restart under fast re-route conditions | |
US11595441B2 (en) | Systems and methods for securing network paths | |
KR101671657B1 (ko) | 양방향 lsp의 접속을 검사하기 위한 방법 및 장치 | |
US8427970B2 (en) | Apparatus and method for determining a service interruption time measurement | |
WO2012083790A1 (zh) | 建立备份路径的方法及设备、选取备份路径的方法及设备 | |
CN101335689A (zh) | 跟踪路由的实现方法及设备 | |
US20140355419A1 (en) | Pseudo wire end-to-end redundancy setup over disjoint mpls transport paths | |
TWI492575B (zh) | 快速標籤交換路徑警示機制 | |
WO2014000643A1 (zh) | 三层虚拟专用网的性能检测方法、节点和系统 | |
CN108924044A (zh) | 链路维持方法、pe设备及可读存储介质 | |
WO2021027828A1 (zh) | 一种链路状态信息的处理方法及装置 | |
WO2012142888A1 (zh) | 基于多协议标签交换网络的隧道组保护实现方法及装置 | |
WO2017128752A1 (zh) | 链路故障检测方法及装置 | |
US20200044964A1 (en) | Defect detection in ip/mpls network tunnels | |
CN107181689B (zh) | 路由器之间的消息交互方法和装置 | |
CN110601979B (zh) | 具有标签栈的标签交换路径的平滑重启过程 | |
WO2012106914A1 (zh) | 动态隧道故障诊断方法及设备和系统 | |
US10587488B2 (en) | Performance monitoring support for CFM over EVPN | |
CN102769552A (zh) | 一种通过bfd检测lsp时传输bfd报文的方法和设备 | |
CN103716236A (zh) | 一种基于is-is协议的路由计算方法和设备 | |
WO2021143524A1 (zh) | 一种故障检测方法及设备 | |
WO2011144111A2 (zh) | 链路状态数据库同步检测方法及路由设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16802324 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16802324 Country of ref document: EP Kind code of ref document: A1 |