[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016190188A1 - 熱伝導性組成物 - Google Patents

熱伝導性組成物 Download PDF

Info

Publication number
WO2016190188A1
WO2016190188A1 PCT/JP2016/064724 JP2016064724W WO2016190188A1 WO 2016190188 A1 WO2016190188 A1 WO 2016190188A1 JP 2016064724 W JP2016064724 W JP 2016064724W WO 2016190188 A1 WO2016190188 A1 WO 2016190188A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
mass
average particle
filler
thermally conductive
Prior art date
Application number
PCT/JP2016/064724
Other languages
English (en)
French (fr)
Inventor
高梨正則
平川大悟
Original Assignee
モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 filed Critical モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority to EP16799894.7A priority Critical patent/EP3299419B1/en
Priority to JP2016554299A priority patent/JP6223590B2/ja
Priority to US15/574,638 priority patent/US10683444B2/en
Priority to CN201680029424.8A priority patent/CN107532000B/zh
Priority to KR1020177031966A priority patent/KR102544343B1/ko
Publication of WO2016190188A1 publication Critical patent/WO2016190188A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a thermally conductive composition that can be used as a heat dissipation material and a heat dissipation material using the same.
  • Japanese Patent Laid-Open No. 62-43493 describes an invention of a heat conductive silicone grease having good heat conductivity and electrical insulation. Although it is described that boron nitride having a particle size of 0.01 to 100 ⁇ m is used as a component imparting thermal conductivity (lower right column on page 2), in the examples, boron nitride having a particle size of 1 to 5 ⁇ m is described. Is used.
  • Japanese Patent Application Laid-Open No. 2003-176414 describes an invention of a thermally conductive silicone composition.
  • (B) low melting point metal powder (paragraph number 0011) having an average particle size of 0.1 to 100 ⁇ m, preferably 20 to 50 ⁇ m, and (D) filler (paragraph number 0014) are described. ing.
  • Japanese Patent Application Laid-Open No. 2003-218296 describes an invention of a silicone resin composition containing a silicone resin and a thermally conductive filler.
  • the heat conductive filler low melting point metal powder, aluminum powder having an average particle size of 0.1 to 100 ⁇ m, preferably 20 to 50 ⁇ m, zinc oxide powder, alumina powder, etc. are described (paragraph numbers 0017 to 0021). .
  • Japanese Patent Application Laid-Open No. 2003-301189 describes an invention of a heat dissipating silicone grease composition. It is described that a heat conductive filler having an average particle size of 0.1 to 100 ⁇ m, preferably 1 to 20 ⁇ m is used (paragraph numbers 0012 and 0013).
  • JP 2005-112961 describes an invention of a curable organopolysiloxane composition. It is described that a heat conductive filler having an average particle size of 0.1 to 100 ⁇ m, preferably 1 to 20 ⁇ m is used (paragraph numbers 0030 to 0032).
  • Japanese Patent Application Laid-Open No. 2007-99821 describes an invention of a thermally conductive silicone grease composition.
  • the metal oxide powder and metal nitride powder of component (B) it is described that an average particle size of 0.1 to 10 ⁇ m, preferably 0.2 to 8 ⁇ m is used in order to obtain desired thermal conductivity. (Paragraph numbers 0016 and 0017).
  • Japanese Patent Application Laid-Open No. 2008-184549 describes an invention of a method for manufacturing a heat dissipation material.
  • aluminum oxide (D-1) having an average particle diameter of 14 ⁇ m, aluminum oxide (D-2) having an average particle diameter of 2 ⁇ m, and zinc oxide (D-3) having an average particle diameter of 0.5 ⁇ m are used in combination. .
  • Japanese Patent Application Laid-Open No. 2009-96961 describes an invention of a thermally conductive silicone grease composition.
  • (B-1) a thermally conductive filler having an average particle size of 12 to 100 ⁇ m (preferably 15 to 30 ⁇ m) and (B-2) an average particle size of 0.1 to 10 ⁇ m (preferably 0.3 to 5 ⁇ m)
  • B-1 a thermally conductive filler having an average particle size of 12 to 100 ⁇ m (preferably 15 to 30 ⁇ m) and
  • B-2) an average particle size of 0.1 to 10 ⁇ m (preferably 0.3 to 5 ⁇ m)
  • the use of a thermally conductive filler is described (claims, paragraphs 0028-0030).
  • Japanese Patent Application Laid-Open No. 2010-13563 describes an invention of a thermally conductive silicone grease. It is described that the heat conductive inorganic filler (A) preferably has an average particle size of 0.1 to 100 ⁇ m, particularly 1 to 70 ⁇ m (paragraph 0025).
  • B-1 zinc oxide powder (indefinite shape, average particle size: 1.0 ⁇ m)
  • B-2 alumina powder (spherical shape, average particle size: 2.0 ⁇ m)
  • B-3 aluminum powder (indefinite Regular, average particle size of 7.0 ⁇ m) is used.
  • Japanese Patent Application Laid-Open No. 2010-126568 describes an invention of a silicone grease composition for heat dissipation.
  • the thermally conductive inorganic filler is required to have an average particle diameter in the range of 0.1 to 100 ⁇ m, and preferably 0.5 to 50 ⁇ m.
  • C-1 alumina powder (average particle size 10 ⁇ m, specific surface area 1.5 m 2 / g)
  • C-2 alumina powder (average particle size 1 ⁇ m, specific surface area 8 m 2 / g)
  • C-3 Zinc oxide powder (average particle size 0.3 ⁇ m, specific surface area 4 m 2 / g)
  • C-4 aluminum powder (average particle size 10 ⁇ m, specific surface area 3 m 2 / g)
  • C-5 alumina powder (average particle size 0) 0.01 ⁇ m and a specific surface area of 160 m 2 / g) are used.
  • Japanese Patent Application Laid-Open No. 2011-122000 describes an invention of a silicone composition for a high thermal conductivity potting material.
  • a heat conductive filler having an average particle size of 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m is used (paragraph number 0018).
  • alumina powder is used as the thermally conductive filler, (B1) spherical alumina having an average particle size of more than 5 ⁇ m to 50 ⁇ m and (B2) spherical or non-spherical particles having an average particle size of 0.1 ⁇ m to 5 ⁇ m. It is described that it is preferable to use regular alumina together (paragraph number 0018).
  • the thermally conductive filler as the component (B) mainly contains alumina, (Ci) amorphous alumina having an average particle diameter of 10 to 30 ⁇ m, and (Cii) average particle diameter of 30 to 85 ⁇ m. (C-iii) It is described that it is made of an insulating inorganic filler having an average particle size of 0.1 to 6 ⁇ m (paragraph number 0032), and amorphous alumina and spherical alumina are combined. In this way, a unique effect can be obtained. Summary of the Invention
  • An object of the present invention is to provide a thermally conductive composition having a low thermal viscosity and good thermal conductivity, and a heat dissipation material using the thermal conductive composition.
  • thermoly conductive composition containing a spherical thermally conductive filler and (B) an alkoxysilane compound or dimethylpolysiloxane, wherein (A) is It is a mixture formed by blending fillers having different average particle diameters at a specific ratio, and the mixture is formed by blending 30% by mass or more of fillers having an average particle diameter of 50 ⁇ m or more, and (A) 100 parts by mass of component
  • a thermally conductive composition containing 0.01 to 20 parts by mass of an alkoxysilane compound or a dimethylpolysiloxane (B) component.
  • the present invention provides a heat dissipation material using the composition according to the first or second embodiment.
  • composition of the present invention has a high thermal conductivity, it can have a low viscosity, and therefore, when used as a heat dissipation material, it can be easily applied to an application target.
  • the heat conductive composition of the first embodiment of the present invention contains (A) a spherical heat conductive filler and (B) an alkoxysilane compound or dimethylpolysiloxane.
  • the component (A) is a spherical heat conductive filler and does not include an amorphous heat conductive filler.
  • a sphere does not need to be a perfect sphere, but when a major axis and a minor axis exist, it indicates that the major axis / minor axis is about 1.0 ⁇ 0.2. It is.
  • the spherical heat conductive filler of component (A) is a mixture obtained by blending fillers having different average particle diameters at a specific ratio, and since the heat conductivity can be increased, the mixture has an average particle diameter of 50 ⁇ m or more. It is preferable that 30% by mass or more of the filler is blended, and 35% by mass or more is blended.
  • the spherical thermal conductive filler of component (A) is a mixture obtained by blending fillers having different average particle sizes in a specific ratio, and (A-1) a filler having an average particle size of 50 ⁇ m or more. 30% by mass or more, preferably 35% by mass or more, and (A-2) a filler having an average particle size of 40 ⁇ m or less is less than 70% by mass, preferably less than 65% by mass.
  • the spherical heat conductive filler of component (A) is a mixture obtained by blending fillers having different average particle diameters at a specific ratio, and (A-1) a filler having an average particle diameter of 50 ⁇ m or more. 30 to 60% by mass, preferably 35 to 55% by mass, and (A-2) 15 to 30% by mass of a filler having an average particle size of 40 ⁇ m or less, preferably an average particle size of 8 to 25 ⁇ m, preferably 18 to 28% by mass, and (A-3) a filler having an average particle diameter of less than 8 ⁇ m is blended in the remaining proportion (100% by mass in total).
  • the spherical heat conductive filler of the component (A) is not particularly limited as long as it is spherical, but a material selected from metal oxide powder, metal nitride powder, and metal powder can be used.
  • the spherical thermal conductive filler of component (A) is preferably selected from aluminum oxide, zinc oxide, and aluminum, and more preferably spherical aluminum oxide.
  • Component (B) As the alkoxysilane compound as the component (B), at least the following general formula per molecule: —SiR 11 3-a (OR 12 ) a (II) (Wherein R 11 is an alkyl group having 1 to 6 carbon atoms, preferably a methyl group, R 12 is an alkyl group having 1 to 6 carbon atoms, preferably a methyl group, and a is 1, 2 or 3) A compound having an alkoxysilyl group is preferred.
  • alkoxysilane compound having an alkoxysilyl group of general formula (II) examples include the following compounds of general formula (II-1) and general formula (II-2).
  • alkoxysilane compound as the component (B), a compound represented by the following general formula (III) can also be used.
  • R 21 a R 22 b Si (OR 23 ) 4-ab (III) wherein R 21 is independently an alkyl group having 6 to 15 carbon atoms, R 22 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, and R 23 is independently And an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b is an integer of 1 to 3.)
  • examples of the alkyl group represented by R 21 include a hexyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, and a tetradecyl group.
  • examples of the unsubstituted or substituted monovalent hydrocarbon group represented by R 22 include a methyl group, an ethyl group, a propyl group, a chloromethyl group, a bromoethyl group, a 3,3,3-trifluoropropyl group, and a cyanoethyl group.
  • R 23 is preferably a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group or the like.
  • R ′ — O— or —CH 2 CH 2 —
  • R 31 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100, preferably 5 to 70, particularly preferably 10 to 50.
  • a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and the like are preferable.
  • a surface treatment agent (wetter) (paragraph numbers 0041 to 0048) of the component (D) described in JP-A-2009-221111 can also be used.
  • the content of component (B) in the composition of the first invention is 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 100 parts by weight of component (A). 1.0 to 5 parts by mass.
  • the heat conductive composition according to the second embodiment of the present invention further comprises a poly (C) component. It contains an organosiloxane.
  • the polyorganosiloxane (C) does not include the dimethylpolysiloxane (B).
  • compositional formula (I) As a polyorganosiloxane of a component, what is represented by the following average compositional formula (I) can be used. R 1 a R 2 b SiO [4- (a + b)] / 2 (I)
  • R 1 is an alkenyl group.
  • the alkenyl group preferably has 2 to 8 carbon atoms, and examples thereof include a vinyl group, an allyl group, a propenyl group, a 1-butenyl group, and a 1-hexenyl group, preferably a vinyl group. is there.
  • an alkenyl group is contained, one or more, preferably two or more are contained in one molecule.
  • the component (C) can be adjusted between gel and rubber.
  • the alkenyl group may be bonded to the silicon atom at the end of the molecular chain, may be bonded to the silicon atom in the middle of the molecular chain, or may be bonded to both.
  • R 2 is a substituted or unsubstituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond.
  • the substituted or unsubstituted monovalent hydrocarbon group which does not contain an aliphatic unsaturated bond has 1 to 12 carbon atoms, preferably 1 to 10 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group.
  • Alkyl groups such as butyl, hexyl, octyl, decyl and dodecyl; cycloalkyl groups such as cyclopentyl, cyclohexyl and cyclobutyl; aryl groups such as phenyl, tolyl, xylyl and naphthyl; Aralkyl groups such as benzyl group, phenylethyl group, phenylpropyl group; groups in which some or all of the hydrogen atoms of these hydrocarbon groups are substituted with halogen atoms such as chlorine, fluorine, bromine, and cyan groups, such as chloromethyl Group, trifluoropropyl group, chlorophenyl group, bromophenyl group, dibromophenyl group, tetrachlorophenyl group Group, fluorophenyl group, a halogenated hydrocarbon group or ⁇ - cyanoethyl groups such as difluoroph
  • a and b are positive numbers satisfying 0 ⁇ a ⁇ 3, 0 ⁇ b ⁇ 3, 1 ⁇ a + b ⁇ 3, preferably 0.0005 ⁇ a ⁇ 1, 1.5 ⁇ b ⁇ 2.4, 1.5 ⁇ a + b ⁇ 2.5, more preferably a number satisfying 0.001 ⁇ a ⁇ 0.5, 1.8 ⁇ b ⁇ 2.1, and 1.8 ⁇ a + b ⁇ 2.2. .
  • the molecular structure of component (C) is preferably linear or branched.
  • the viscosity of component (C) at 23 ° C. is preferably 0.01 to 10 Pa ⁇ s. More preferably, it is 0.02 to 1.0 Pa ⁇ s.
  • Content of (B) component and (C) component in the composition of 2nd Embodiment of this invention is 1 (B) component and (C) component by total amount with respect to 100 mass parts of (A) component. 0.5 to 35 parts by mass, preferably 1.5 to 30 parts by mass, more preferably 1.5 to 28 parts by mass.
  • Component (B) and component (C) have a content ratio of component (C) in the total amount of component (B) and component (C) of 15 to 98% by mass, preferably 18 to 98% by mass. And more preferably 20 to 98% by mass.
  • composition of the present invention includes, as necessary, a reaction inhibitor, reinforcing silica, flame retardant imparting agent, heat resistance improver, plasticizer, colorant, adhesion imparting agent, diluent and the like. Can be contained in a range that does not impair.
  • compositions of the first and second embodiments of the present invention are in the form of a grease (paste).
  • the substituent of the component (C) is selected so as to contain an unsaturated group, the following components (D) and (E)
  • the hardness can be adjusted from gel-like to rubber-like.
  • rubber-like ones they include everything from elastic ones to hard ones such as stones.
  • the component (D) is a polyorganohydrogensiloxane and is a component that serves as a crosslinking agent for the component (C).
  • the polyorganohydrogensiloxane as component (D) has 2 or more, preferably 3 or more hydrogen atoms bonded to silicon atoms in one molecule. This hydrogen atom may be bonded to the silicon atom at the end of the molecular chain, may be bonded to the silicon atom in the middle of the molecular chain, or may be bonded to both.
  • a polyorganohydrogensiloxane having hydrogen atoms bonded to silicon atoms only at both ends may be used in combination.
  • component (D) may be any of linear, branched, cyclic or three-dimensional network, and may be used alone or in combination of two or more.
  • the polyorganohydrogensiloxane of component (D) is known, and for example, component (B) described in JP-A-2008-184549 can be used.
  • the component (E) is a platinum-based catalyst, and is a component that accelerates curing after the components (C) and (D) are kneaded.
  • the well-known catalyst used for hydrosilylation reaction can be used.
  • platinum black, platinum chloride, chloroplatinic acid, a reaction product of chloroplatinic acid and a monohydric alcohol, a complex of chloroplatinic acid and olefins or vinyl siloxane, platinum bisacetoacetate and the like can be mentioned.
  • the content of the component (E) can be adjusted as appropriate according to the desired curing rate, and the content of the component (C) and the component (D) is 0. A range of 1 to 1000 ppm is preferred.
  • composition of the present invention is in the form of a grease that does not contain the component (D) and the component (E), the component (A), the component (B), and optionally the component (C) and other optional components
  • the components can be obtained by mixing with a mixer such as a planetary mixer. At the time of mixing, mixing may be performed while heating in the range of 50 to 150 ° C. as necessary. Furthermore, for uniform finishing, it is preferable to perform a kneading operation under a high shearing force.
  • a kneading apparatus there are a three roll, a colloid mill, a sand grinder, etc. Among them, a method using a three roll is preferable.
  • composition of the present invention when the composition of the present invention is further in the form of a gel containing the component (D) and the component (E), it can be obtained in the same manner as the method for producing a heat dissipation material described in JP-A-2008-184549. .
  • the heat dissipating material made of the composition of the present invention is made of the heat conductive composition described above.
  • the heat dissipating material comprising the composition of the present invention is a grease-like material that does not contain the component (D) and the component (E)
  • the viscosity viscosity determined by the measuring method described in the examples
  • the range of 10 to 1000 Pa ⁇ s is preferable because of easy application.
  • the heat dissipating material made of the composition is a rubber-like material containing the component (D) and the component (E)
  • the hardness measured with a hardness meter Type E type is, for example, 5 or more. Is preferred.
  • the heat dissipating material comprising the composition of the present invention has a thermal conductivity at 23 ° C. of 1.0 W / (m ⁇ K) or more, preferably 1.5 W / (m ⁇ K) or more as measured by a hot wire method. .
  • the content ratio of the component (A) in the composition is preferably 80% by mass or more, depending on the required thermal conductivity (A). The content ratio of the components can be increased.
  • the heat-dissipating material of the present invention is not only a PC / server equipped with a CPU that generates a large amount of heat, but also power modules, VLSI, electronic devices equipped with optical components (optical pickups and LEDs), and home appliances (DVD / HDD). It can be used as a heat dissipation material for recorders (players, AV devices such as FPDs), PC peripheral devices, home game machines, automobiles, and industrial devices such as inverters and switching power supplies.
  • the heat dissipating material can have a grease form (paste form), a gel form, a rubber form, or the like.
  • thermoly conductive composition containing a spherical thermally conductive filler and (B) an alkoxysilane compound or dimethylpolysiloxane
  • the (A) is a mixture formed by blending fillers having different average particle diameters in a specific ratio, and the mixture is blended with 30% by mass or more, preferably 35% by mass or more of fillers having an average particle diameter of 50 ⁇ m or more.
  • the alkoxysilane compound or the dimethylpolysiloxane (B) component is 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 1.0 to 5 parts by weight with respect to 100 parts by weight of the component (A).
  • a thermally conductive composition comprising: The (A) is a mixture formed by blending fillers having different average particle diameters in a specific ratio, and the mixture is blended with 30% by mass or more, preferably 35% by mass or more of fillers having an average particle diameter of 50 ⁇ m or more.
  • the total amount of the component (B) and the component (C) with respect to 100 parts by weight of the component (A) is 1.5 to 35 parts by weight, preferably 1.5 to 30 parts by weight, more preferably 1.5 to 28 parts by weight.
  • Containing Thermal conductivity in which the content ratio of the component (C) in the total amount of the component (B) and the component (C) is 15 to 98% by mass, preferably 18 to 97% by mass, more preferably 20 to 98% by mass. Composition.
  • the spherical heat conductive filler of the component (A) is 30% by mass or more, preferably 35% by mass or more, and less than 70% by mass of the filler having an average particle size of 40 ⁇ m or less.
  • the spherical heat conductive filler of the component (A) is 30% to 60% by weight, preferably 35 to 55% by weight, and the average particle diameter is 40 ⁇ m or less, preferably an average particle diameter of 50 ⁇ m or more.
  • ⁇ 1> or ⁇ 2> which is a mixture obtained by blending 15 to 30% by mass, preferably 18 to 28% by mass of a filler having a particle size of 8 to 25 ⁇ m, and a filler having an average particle size of less than 8 ⁇ m.
  • the heat conductive composition as described.
  • thermoconductive composition according to any one of ⁇ 1> to ⁇ 4>, wherein the spherical thermal conductive filler of the component (A) is selected from metal oxide powder and metal powder.
  • thermoconductive composition according to ⁇ 5> wherein the spherical thermal conductive filler of component (A) is selected from aluminum oxide, zinc oxide, and aluminum.
  • a heat dissipation material comprising the thermally conductive composition according to any one of ⁇ 1> to ⁇ 6>.
  • the (A) is a mixture formed by blending fillers having different average particle diameters in a specific ratio, and the mixture is blended with 30% by mass or more, preferably 35% by mass or more of fillers having an average particle diameter of 50 ⁇ m or more.
  • a method for producing a thermally conductive composition is a method for producing a thermally conductive composition.
  • composition, heat dissipation material or production method according to any one of ⁇ 1> to ⁇ 9>, wherein the component (B) is an alkoxysilane compound having an alkoxysilyl group of the general formula (II).
  • composition, heat dissipation material or production method according to ⁇ 10>, wherein the component (B) is a compound of the general formula (II-1) or the general formula (II-2).
  • composition, heat dissipation material or production method according to any one of ⁇ 1> to ⁇ 9>, wherein the component (B) is dimethylpolysiloxane represented by the general formula (IV).
  • composition the heat dissipation material or the production method according to any one of ⁇ 1> to ⁇ 9>, wherein the component (C) is a polyorganosiloxane represented by an average composition formula (I).
  • D polyorganohydrogensiloxane
  • E platinum-based catalyst
  • Examples 1 to 10 The components (A) and (B) shown in Table 1 or the components (A), (B) and (C) are charged into a planetary mixer (manufactured by Dalton Co.), stirred and mixed at room temperature for 1 hour, and further 120 The mixture was stirred and mixed at 0 ° C. for 1 hour to obtain a heat conductive composition.
  • the quantity of (B) and (C) component is the mass part display with respect to 100 mass parts of (A) component.
  • (A) The average particle diameter of the component, the viscosity of the composition, and the thermal conductivity were measured by the following methods. The results are shown in Table 1.
  • Average particle size The average particle diameter (median diameter d 50 ) was measured by a call counter method.
  • Viscosity 1 Conforms to JIS K6249. Rotational viscometer rotor No. 4, the number of revolutions is 60 rpm, the viscosity of 1 minute value is shown.
  • Thermal conductivity was performed at 23 ° C. using a thermal conductivity meter (QTM-500, manufactured by Kyoto Electronics Industry Co., Ltd.) according to the hot wire method.
  • Component (A) (A-1): Spherical alumina (alumina beads) from Showa Denko KK, average particle size 100 ⁇ m (A-11): Showa Denko Co., Ltd. spherical alumina (alumina beads), average particle size 20 ⁇ m (A-21): Sumitomo Chemical Co., Ltd. round alumina (Sumicorundum), average particle size 3 ⁇ m (A-22): Sumitomo Chemical Co., Ltd.
  • Examples 11-13 The components (A) to (C) shown in Table 2 were charged into a planetary mixer (Dalton Co., Ltd.), stirred and mixed at room temperature for 1 hour, and further stirred and mixed at 120 ° C for 1 hour to obtain a thermally conductive composition. I got a thing.
  • the quantity of (B) and (C) component is the mass part display with respect to 100 mass parts of (A) component. The viscosity and thermal conductivity of the composition were measured. The results are shown in Table 2.
  • Examples 14 to 16 (A) to (C) components (parts by mass) shown in Table 3 were charged into a planetary mixer (manufactured by Dalton Co.), stirred and mixed at room temperature for 1 hour, and further stirred and mixed at 120 ° C. for 1 hour. A thermally conductive composition was obtained.
  • the quantity of (B) and (C) component is the mass part display with respect to 100 mass parts of (A) component. The viscosity and thermal conductivity of the composition were measured. The results are shown in Table 3.
  • A-3 Showa Denko Co., Ltd. spherical alumina (alumina beads), average particle size 50 ⁇ m
  • A-12 Showa Denko Co., Ltd. spherical alumina (alumina beads), average particle size 10 ⁇ m
  • Comparative Examples 1 to 3 (A) to (C) components (parts by mass) shown in Table 4 were charged into a planetary mixer (manufactured by Dalton Co.), stirred and mixed at room temperature for 1 hour, and further stirred and mixed at 120 ° C for 1 hour. A comparative heat conductive composition was obtained. The quantity of (B) and (C) component is the mass part display with respect to 100 mass parts of (A) component. The viscosity and thermal conductivity of the composition were measured. The results are shown in Table 4.
  • Example 8 (containing 100 ⁇ m alumina), Example 11 (containing 70 ⁇ m alumina), Example 14 (containing 50 ⁇ m alumina) and Comparative Example 1 (containing 0.4 to 20 ⁇ m alumina) are all compositions.
  • the alumina content was the same as 92.5% by mass, but the thermal conductivity was in the order of Example 8>
  • the heat conductive composition of the present invention can be used as a heat dissipation material for various devices having a heat generating portion such as an electronic device such as a personal computer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

熱伝導率が良く、粘度が低く塗布し易い熱伝導性組成物の提供。 (A)球状の熱伝導性充填剤、(B)アルコキシシラン化合物またはジメチルポリシロキサンおよび(C)ポリオルガノシロキサン(ただし、(B)成分のジメチルポリシロキサンは含まれない)を含有する熱伝導性組成物であって、前記(A)が平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、前記混合物が、平均粒子径50μm以上の充填剤を30質量%以上配合してなり、(A)成分100質量部に対して(B)成分と(C)成分を合計量で1.5~35質量分含有しており、(B)成分と(C)成分の合計量中の(C)成分の含有割合が15~98質量%である、熱伝導性組成物。

Description

熱伝導性組成物
 本発明は、放熱材料として使用できる熱伝導性組成物と、それを使用した放熱材料に関する。
背景技術
 電子機器は、年々高集積化・高速化しており、それに応じて熱対策のための放熱材料の需要が高まっている。
 特開昭62-43493号公報には、熱伝導性と電気絶縁性の良い熱伝導性シリコーングリースの発明が記載されている。熱伝導性を付与する成分として、粒子径が0.01~100μmのボロンナイトライドを使用することが記載されているが(2頁右下欄)、実施例では粒度1~5μmのボロンナイトライドが使用されている。
 特開2003-176414号公報には、熱伝導性シリコーン組成物の発明が記載されている。熱伝導性を付与する成分として、(B)平均粒子径0.1~100μm、好ましくは20~50μmの低融点金属粉末(段落番号0011)、(D)充填剤(段落番号0014)が記載されている。
 特開2003-218296号公報には、シリコーン樹脂、熱伝導性充填剤を含むシリコーン樹脂組成物の発明が記載されている。熱伝導性充填剤としては、低融点金属粉末、平均粒子径0.1~100μm、好ましくは20~50μmのアルミニウム粉末、酸化亜鉛粉末、アルミナ粉末などが記載されている(段落番号0017~0021)。
 特開2003-301189号公報には、放熱性シリコーングリース組成物の発明が記載されている。熱伝導性充填剤として、平均粒子径が0.1~100μm、好ましくは1~20μmの範囲のものを使用することが記載されている(段落番号0012、0013)。
 2005-112961号公報には、硬化性オルガノポリシロキサン組成物の発明が記載されている。平均粒子径が0.1~100μm、好ましくは1~20μmの熱伝導性充填剤を使用することが記載されている(段落番号0030~0032)
 特開2007-99821号公報には、熱伝導性シリコーングリース組成物の発明が記載されている。(B)成分の金属酸化物粉末、金属窒化物粉末として、所望の熱伝導性を得るため、平均粒子径が0.1~10μm、好ましくは0.2~8μmのものを使用することが記載されている(段落番号0016、0017)。
 特開2008-184549号公報には、放熱材の製造方法の発明が記載されている。(D)熱伝導性充填剤として、平均粒子径が100μm以下、好ましくは0.1~80μmのものが使用されている(段落番号0027、0028)。実施例1では、平均粒子径14μmの酸化アルミニウム(D-1)、平均粒子径2μmの酸化アルミニウム(D-2)、平均粒子径0.5μmの酸化亜鉛(D-3)が併用されている。
 特開2009-96961号公報には、熱伝導性シリコーングリース組成物の発明が記載されている。(B-1)平均粒子径が12~100μm(好ましくは15~30μm)の熱伝導性充填剤と、(B-2)平均粒子径が0.1~10μm(好ましくは0.3~5μm)の熱伝導性充填剤を使用することが記載されている(特許請求の範囲、段落番号0028~0030)。
 特開2010-13563号公報には、熱伝導性シリコーングリースの発明が記載されている。(A)の熱伝導性無機充填剤は、平均粒子径0.1~100μm、特に1~70μmの範囲であることが好ましいと記載されている(段落番号0025)。実施例では、B-1:酸化亜鉛粉末(不定形、平均粒子径:1.0μm)、B-2:アルミナ粉末(球形、平均粒子径:2.0μm)、B-3:アルミニウム粉末(不定形、平均粒子径7.0μm)が使用されている。
 特開2010-126568号公報には、放熱用シリコーングリース組成物の発明が記載されている。(B)熱伝導性無機充填剤は、平均粒子径0.1~100μmの範囲であることが必要であり、好ましくは0.5~50μmであると記載されている。
 実施例では、C-1:アルミナ粉末(平均粒子径10μm、比表面積1.5m/g)、C-2:アルミナ粉末(平均粒子径1μm、比表面積8m/g)、C-3:酸化亜鉛粉末(平均粒子径0.3μm、比表面積4m/g)、C-4:アルミ粉末(平均粒子径10μm、比表面積3m/g)、C-5:アルミナ粉末(平均粒子径0.01μm、比表面積160m/g)が使用されている。
 特開2011-122000号公報には、高熱伝導性ポッティング材用シリコーン組成物の発明が記載されている。(A)熱伝導性充填剤として、平均粒子径1~100μm、好ましくは5~50μmのものを使用することが記載されている(段落番号0018)。(A)熱伝導性充填剤としてアルミナ粉末を使用するときは、(B1)平均粒子径が5μm超~50μm以下の球状アルミナと、(B2)平均粒子径が0.1μm~5μmの球状または不定形アルミナを併用することが好ましいことが記載されている(段落番号0018)。
 特開2013-147600号公報には、熱伝導性シリコーン組成物の発明が記載されている。(B)成分である熱伝導性充填材は、主にアルミナを含有するもので、(C-i)平均粒子径10~30μmである不定形アルミナ、(C-ii)平均粒子径30~85μmである球状アルミナ、(C-iii)平均粒子径0.1~6μmである絶縁性無機フィラーからなるものであると記載されており(段落番号0032)、不定形のアルミナと球状のアルミナを組み合わせることで特有の効果が得られるものである。
発明の概要
 本発明は、低粘度にすることができ、熱伝導性の良い熱伝導性組成物、及びそれを使用した放熱材料を提供することを課題とする。
 本発明の第1の実施形態によれば、(A)球状の熱伝導性充填剤と(B)アルコキシシラン化合物またはジメチルポリシロキサンを含有する熱伝導性組成物であって、前記(A)が平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、前記混合物が、平均粒子径50μm以上の充填剤を30質量%以上配合してなり、(A)成分100質量部に対してアルコキシシラン化合物またはジメチルポリシロキサン(B)成分0.01~20質量部を含有する、熱伝導性組成物が提供される。
 また本発明の第2の実施形態によれば、(A)球状の熱伝導性充填剤、(B)アルコキシシラン化合物またはジメチルポリシロキサン、および(C)ポリオルガノシロキサン(ただし、(B)成分のジメチルポリシロキサンは含まれない)を含有する熱伝導性組成物であって、前記(A)が平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、前記混合物が、平均粒子径50μm以上の充填剤を30質量%以上配合してなり、(A)成分100質量部に対して(B)成分と(C)成分を合計量で1.5~35質量部含有しており、(B)成分と(C)成分の合計量中の(C)成分の含有割合が15~98質量%である、熱伝導性組成物が提供される。
 さらに本発明は、上記第1又は第2の実施形態による組成物を使用した放熱材料を提供する。
 本発明の組成物は、高い熱伝導率を有しているが、低粘度にすることができるため、放熱材料として使用したとき、適用対象に塗布することが容易になる。
発明を実施するための形態
 <第1実施形態の熱伝導性組成物>
 本発明の第1の実施形態の熱伝導性組成物は、(A)球状の熱伝導性充填剤と(B)アルコキシシラン化合物またはジメチルポリシロキサンを含有するものである。
 [(A)成分]
 (A)成分は球状の熱伝導性充填剤であり、不定形の熱伝導性充填剤は含まれない。球状は、完全な球であることを要するものではないが、長軸と短軸が存在している場合には、長軸/短軸=1.0±0.2程度であるものを示すものである。
 (A)成分の球状の熱伝導性充填剤は平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、熱伝導性を高くできることから、前記混合物が、平均粒子径50μm以上の充填剤を30質量%以上配合してなり、35質量%以上配合してなることが好ましい。
 一つの例では、(A)成分の球状の熱伝導性充填剤は平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、(A-1)平均粒子径50μm以上の充填剤30質量%以上、好ましくは35質量%以上を配合してなり、(A-2)平均粒子径40μm以下の充填剤70質量%未満、好ましくは65質量%未満配合してなる。
 別の例では、(A)成分の球状の熱伝導性充填剤は平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、(A-1)平均粒子径50μm以上の充填剤30~60質量%、好ましくは35~55質量%配合してなり、(A-2)平均粒子径40μm以下、好ましくは平均粒子径が8~25μmの充填剤を15~30質量%、好ましくは18~28質量%配合してなり、(A-3)平均粒子径8μm未満の充填剤を残部割合(合計で100質量%)配合してなる。
 (A)成分の球状の熱伝導性充填剤は、球状のものならば特に制限がないが、金属酸化物粉末、金属窒化物粉末、金属粉末から選ばれるものを使用することができる。一つの例では、(A)成分の球状の熱伝導性充填剤は、酸化アルミニウム、酸化亜鉛、アルミニウムから選ばれるものが好ましく、球状の酸化アルミニウムがより好ましい。(A)成分の球状の熱伝導性充填剤としては、例えば、昭和電工(株)から販売されている球状アルミナである「アルミナビーズ CB(登録商標)」のCBシリーズ(平均粒子径d50=2~71μm)、住友化学(株)から販売されている「スミコランダム(登録商標)」シリーズ(平均粒子径0.3~18μm)などを使用することができる。
 [(B)成分]
 (B)成分のアルコキシシラン化合物としては、1分子中に少なくとも次の一般式:-SiR11 3-a(OR12 (II)
(式中、R11は炭素数1~6のアルキル基、好ましくはメチル基、R12は炭素数1~6のアルキル基、好ましくはメチル基、aは1、2または3)で表されるアルコキシシリル基を有している化合物が好ましい。
 一般式(II)のアルコキシシリル基を有するアルコキシシラン化合物としては、次のような一般式(II-1)及び一般式(II-2)の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
 式中、
 x=10~500
 Y=Si(CHCH=CHまたはSi(CHである。
 また、(B)成分のアルコキシシラン化合物としては、次の一般式(III)で表される化合物も使用することができる。
  R21 22 Si(OR234-a-b   (III)
(式中、R21は独立に炭素原子数6~15のアルキル基であり、R22は独立に非置換または置換の炭素原子数1~12の1価炭化水素基であり、R23は独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
 一般式(III)において、R21で表されるアルキル基としては、例えば、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基などを挙げることができる。R22で表される非置換または置換の1価炭化水素基としては、メチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3-トリフルオロプロピル基、シアノエチル基等の炭素原子数1~3の非置換または置換のアルキル基、およびフェニル基、クロロフェニル基、フルオロフェニル基などの非置換または置換のフェニル基などが好ましい。R23としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基などが好ましい。
 (B)成分のジメチルポリシロキサンとしては、下記一般式(IV)で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンを挙げることができる。
Figure JPOXMLDOC01-appb-C000002
 R’=-O-または-CHCH
(式中、R31は独立に炭素原子数1~6のアルキル基であり、cは5~100、好ましくは5~70、特に好ましくは10~50の整数である。)
 R31で表されるアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基などが好ましい。
 (B)成分としては、さらに例えば特開2009-221311号公報に記載の(D)成分の表面処理剤(ウェッター)(段落番号0041~0048)を使用することもできる。
 第1発明の組成物中の(B)成分の含有量は、(A)成分100質量部に対して0.01~20質量部であり、好ましくは0.1~10質量部、より好ましくは1.0~5質量部である。
 <第2実施形態の熱伝導性組成物>
 本発明の第2の実施形態の熱伝導性組成物は、上記した(A)球状の熱伝導性充填剤と(B)アルコキシシラン化合物またはジメチルポリシロキサンに加えて、さらに(C)成分のポリオルガノシロキサンを含有するものである。(C)成分のポリオルガノシロキサンには、(B)成分のジメチルポリシロキサンは含まれない。
 [(C)成分]
 (C)成分のポリオルガノシロキサンとしては、次の平均組成式(I)で表されるものを使用することができる。
 R SiO[4-(a+b)]/2  (I)
 式中、Rは、アルケニル基である。アルケニル基は、炭素原子数が2~8の範囲にあるものが好ましく、例えばビニル基、アリル基、プロペニル基、1-ブテニル基、1-ヘキセニル基などを挙げることができ、好ましくはビニル基である。アルケニル基を含有するときは、好ましくは1分子中に1個以上、好ましくは2個以上含有される。アルケニル基が1個以上であると、(C)成分をゲル状からゴム状の間で調整することができる。また、アルケニル基は、分子鎖末端のケイ素原子に結合していても、分子鎖途中のケイ素原子に結合していても、両者に結合していてもよい。
 Rは、脂肪族不飽和結合を含まない置換又は非置換の1価炭化水素基である。脂肪族不飽和結合を含まない置換又は非置換の1価炭化水素基は、炭素原子数が1~12、好ましくは1~10のものであり、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、オクチル基、デシル基、ドデシル基などのアルキル基;シクロペンチル基、シクロヘキシル基、シクロブチル基などのシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基などのアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの炭化水素基の水素原子の一部又は全部を塩素、フッ素、臭素などのハロゲン原子、シアン基などで置換した基、例えばクロロメチル基、トリフルオロプロピル基、クロロフェニル基、ブロモフェニル基、ジブロモフェニル基、テトラクロロフェニル基、フルオロフェニル基、ジフルオロフェニル基などのハロゲン化炭化水素基やα-シアノエチル基、β-シアノプロピル基、γ-シアノプロピル基等のシアノアルキル基などを挙げることができる。これらのなかでも好ましくはアルキル基、アリール基であり、より好ましくはメチル基、フェニル基である。
 a,bは、0≦a<3、0<b<3、1<a+b<3を満足する正数であり、好ましくは0.0005≦a≦1、1.5≦b<2.4、1.5<a+b<2.5であり、より好ましくは0.001≦a≦0.5、1.8≦b≦2.1、1.8<a+b≦2.2を満足する数である。
 (C)成分の分子構造は、直鎖状、分岐状のものが好ましい。
 (C)成分の23℃における粘度は、0.01~10Pa・sであることが好ましい。より好ましくは0.02~1.0Pa・sである。
 本発明の第2実施形態の組成物中の(B)成分と(C)成分の含有量は、(A)成分100質量部に対して(B)成分と(C)成分を合計量で1.5~35質量部含有しており、好ましくは1.5~30質量部、より好ましくは1.5~28質量部含有している。また(B)成分と(C)成分は、(B)成分と(C)成分の合計量中の(C)成分の含有割合が15~98質量%であり、好ましくは18~98質量%であり、より好ましくは20~98質量%であるように配合される。
 本発明の組成物は、必要に応じて、反応抑制剤、補強性シリカ、難燃性付与剤、耐熱性向上剤、可塑剤、着色剤、接着性付与材、希釈剤などを本発明の目的を損なわない範囲で含有することができる。
 本発明の第1および第2の実施形態の組成物は、グリース状(ペースト状)のものである。本発明の第1の実施形態の(B)成分がアルコキシシラン化合物(II-1,2)でY=Si(CHCH=CHの場合、或いは第2の実施形態の組成物で同様の(B)成分を用い、それに加えて又はそれに代えて上記したとおり(C)成分の置換基を不飽和基を含むように選択した場合、下記の(D)成分、(E)成分を併用することによりゲル状のものからゴム状のものまで硬さを調整することができる。ここでゴム状のものにしたときには、弾力性のあるものから、例えば石のように硬いものまでを含むものである。
 [(D)成分]
 (D)成分は、ポリオルガノハイドロジェンシロキサンであり、(C)成分の架橋剤となる成分である。(D)成分のポリオルガノハイドロジェンシロキサンは、1分子中にケイ素原子に結合した水素原子を2個以上、好ましくは3個以上有するものである。この水素原子は、分子鎖末端のケイ素原子に結合していても、分子鎖途中のケイ素原子に結合していても、両方に結合していてもよい。さらに両末端のみにケイ素原子に結合した水素原子を有するポリオルガノハイドロジェンシロキサンを併用してもよい。(D)成分の分子構造は、直鎖状、分岐鎖状、環状あるいは三次元網目状のいずれでもよく、1種単独又は2種以上を併用してもよい。(D)成分のポリオルガノハイドロジェンシロキサンは公知のものであり、例えば特開2008-184549号公報に記載されている(B)成分を使用することができる。
 [(E)成分]
 (E)成分は白金系触媒であり、(C)成分と(D)成分を混練した後の硬化を促進させる成分である。(E)成分としては、ヒドロシリル化反応に用いられる周知の触媒を用いることができる。例えば白金黒、塩化第二白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類やビニルシロキサンとの錯体、白金ビスアセトアセテートなどを挙げることができる。(E)成分の含有量は、所望の硬化速度などに応じて適宜調整することができるものであり、(C)成分と(D)成分の合計量に対し、白金元素に換算して0.1~1000ppmの範囲とすることが好ましい。
 本発明の組成物が(D)成分および(E)成分を含まないグリース状のものであるときは、(A)成分、(B)成分、さらに必要に応じて(C)成分と他の任意成分をプラネタリーミキサーなどの混合機で混合することにより得ることができる。混合時には、必要に応じて50~150℃の範囲で加熱しながら混合してもよい。さらに均一仕上げのためには、高剪断力下で混練操作を行うことが好ましい。混練装置としては、3本ロール、コロイドミル、サンドグラインダー等があるが、中でも3本ロールによる方法が好ましい。
 また本発明の組成物がさらに(D)成分と(E)成分を含むゲル状のものであるとき、特開2008-184549号公報に記載の放熱材の製造方法と同様にして得ることができる。
 本発明の組成物からなる放熱材料は、上記した熱伝導性組成物からなるものである。本発明の組成物からなる放熱材料は、(D)成分および(E)成分を含まないグリース状のものであるとき、粘度(実施例に記載の測定方法により求められる粘度)は、発熱部位に対する塗布の容易さから、10~1000Pa・sの範囲であることが好ましい。
 上記したように本発明の第1の実施形態の(B)成分がアルコキシシラン化合物(II-1,2)でY=Si(CHCH=CHの場合や第2の実施形態の組成物からなる放熱材料は、(D)成分および(E)成分を含むゴム状のものであるとき、硬度計TypeE型(JISK6249準拠)で測定した硬さがたとえば5以上のものであることが好ましい。
 本発明の組成物からなる放熱材料は、熱線法で測定した23℃における熱伝導率が1.0W/(m・K)以上、好ましくは1.5W/(m・K)以上のものである。前記熱伝導率を調整して放熱効果を高めるためには、組成物中の(A)成分の含有割合が80質量%以上であることが好ましく、要求される熱伝導率に応じて(A)成分の含有割合を増加させることができる。
 本発明の放熱材料は、発熱量の多いCPUを搭載しているPC/サーバーの他、パワーモジュール、超LSI、光部品(光ピックアップやLED)を搭載した各電子機器、家電機器(DVD/HDDレコーダー(プレイヤー)、FPDなどのAV機器など)、PC周辺機器、家庭用ゲーム機、自動車のほか、インバーターやスイッチング電源などの産業用機器などの放熱材料として使用することができる。放熱材料はグリース状(ペースト状)、ゲル状、ゴム状等の形態を有することができる。
 以下では本発明の種々の実施態様を示す。
<1>(A)球状の熱伝導性充填剤と(B)アルコキシシラン化合物またはジメチルポリシロキサンを含有する熱伝導性組成物であって、
 前記(A)が平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、前記混合物が、平均粒子径50μm以上の充填剤を30質量%以上、好ましくは35質量%以上配合してなり、
 (A)成分100質量部に対してアルコキシシラン化合物またはジメチルポリシロキサン(B)成分0.01~20質量部、好ましくは0.1~10質量部、より好ましくは1.0~5質量部を含有する、熱伝導性組成物。
<2>(A)球状の熱伝導性充填剤、(B)アルコキシシラン化合物またはジメチルポリシロキサンおよび(C)ポリオルガノシロキサン(ただし、(B)成分のジメチルポリシロキサンは含まれない)を含有する熱伝導性組成物であって、
 前記(A)が平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、前記混合物が、平均粒子径50μm以上の充填剤を30質量%以上、好ましくは35質量%以上配合してなり、
 (A)成分100質量部に対して(B)成分と(C)成分を合計量で1.5~35質量部、好ましくは1.5~30質量部、より好ましくは1.5~28質量部含有しており、
 (B)成分と(C)成分の合計量中の(C)成分の含有割合が15~98質量%、好ましくは18~97質量%、より好ましくは20~98質量%である、熱伝導性組成物。
<3>(A)成分の球状の熱伝導性充填剤が、平均粒子径50μm以上の充填剤30質量%以上、好ましくは35質量%以上と、平均粒子径40μm以下の充填剤70質量%未満、好ましくは65質量%未満を配合してなる混合物である、<1>又は<2>記載の熱伝導性組成物。
<4>(A)成分の球状の熱伝導性充填剤が、平均粒子径50μm以上の充填剤30質量%~60質量%、好ましくは35~55質量%、平均粒子径40μm以下、好ましくは平均粒子径8~25μmの充填剤15~30質量%、好ましくは18~28質量%および残部割合の平均粒子径が8μm未満の充填剤を配合してなる混合物である、<1>又は<2>記載の熱伝導性組成物。
<5>(A)成分の球状の熱伝導性充填剤が、金属酸化物粉末、金属粉末から選ばれるものである、<1>から<4>の何れか1記載の熱伝導性組成物。
<6>(A)成分の球状の熱伝導性充填剤が、酸化アルミニウム、酸化亜鉛、アルミニウムから選ばれるものである、<5>記載の熱伝導性組成物。
<7><1>~<6>のいずれか1項に記載の熱伝導性組成物からなる放熱材料。
<8>(A)球状の熱伝導性充填剤100質量部に対して、(B)アルコキシシラン化合物またはジメチルポリシロキサン0.01~20質量部、好ましくは0.1~10質量部、より好ましくは1.0~5質量部を混合する、熱伝導性組成物の製造方法であって、
 前記(A)が平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、前記混合物が、平均粒子径50μm以上の充填剤を30質量%以上、好ましくは35質量%以上配合してなる、熱伝導性組成物の製造方法。
<9>(A)球状の熱伝導性充填剤100質量部に対して、(B)アルコキシシラン化合物またはジメチルポリシロキサンおよび(C)ポリオルガノシロキサン(ただし、(B)成分のジメチルポリシロキサンは含まれない)を合計量で1.5~35質量部、好ましくは1.5~30質量部、より好ましくは1.5~28質量部混合する、熱伝導性組成物の製造方法であって、
 前記(A)が平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、前記混合物が、平均粒子径50μm以上の充填剤を30質量%以上、好ましくは35質量%以上配合してなり、
 前記(B)成分と(C)成分の合計量中の(C)成分の含有割合が15~98質量%、好ましくは18~97質量%、より好ましくは20~98質量%である、熱伝導性組成物の製造方法。
<10>前記(B)成分が一般式(II)のアルコキシシリル基を有するアルコキシシラン化合物である、<1>~<9>の何れかの組成物、放熱材料又は製造方法。
<11>前記(B)成分が一般式(II-1)又は一般式(II-2)の化合物である、<10>の組成物、放熱材料又は製造方法。
<12>前記(B)成分が一般式(III)で表される化合物である、<1>~<9>の何れかの組成物、放熱材料又は製造方法。
<13>前記(B)成分が一般式(IV)で表されるジメチルポリシロキサンである、<1>~<9>の何れかの組成物、放熱材料又は製造方法。
<14>前記(C)成分が平均組成式(I)で表されるポリオルガノシロキサンである、<1>~<9>の何れかの組成物、放熱材料又は製造方法。
<15>さらに(D)成分としてポリオルガノハイドロジェンシロキサンを含み、(E)成分として白金系触媒を含む、<1>~<9>の何れかの組成物、放熱材料又は製造方法。
実施例
 実施例1~10
 表1に示す(A)および(B)成分、または(A)、(B)および(C)成分をプラネタリー型ミキサー(ダルトン社製)に仕込み、室温にて1時間撹拌混合し、さらに120℃にて1時間撹拌混合して、熱伝導性組成物を得た。(B)および(C)成分の量は、(A)成分100質量部に対する質量部表示である。(A)成分の平均粒子径、組成物の粘度、熱伝導率を下記の方法で測定した。結果を表1に示す。
[平均粒子径]
 平均粒子径(メジアン径d50)は、コールカウンター法により測定した。
[粘度1]
 JIS K6249に準拠。回転粘度計ローターNo.4、回転数60rpm、1分値の粘度を示す。
[粘度2]
 JIS K6249に準拠。回転粘度計ローターNo.7、回転数20rpm、1分値の粘度を示す。
[熱伝導率]
 23℃において、熱線法に従い、熱伝導率計(京都電子工業社製、QTM-500)を用いて測定した。
Figure JPOXMLDOC01-appb-T000003
 (A)成分
 (A-1):昭和電工(株)の球状アルミナ(アルミナビーズ),平均粒子径100μm
 (A-11):昭和電工(株)の球状アルミナ(アルミナビーズ),平均粒子径20μm
 (A-21):住友化学(株)の丸み状アルミナ(スミコランダム),平均粒子径3μm
 (A-22):住友化学(株)の丸み状アルミナ(スミコランダム),平均粒子径0.4μm
 (B)成分:アルコキシシラン(一般式(II-1)において、x:20、Y:Si(CHCH=CH
 (C)成分:両末端がジメチルビニルシリル基で封鎖されたポリオルガノシロキサン(60cSt)
 実施例11~13
 表2に示す(A)~(C)成分をプラネタリー型ミキサー(ダルトン社製)に仕込み、室温にて1時間撹拌混合し、さらに120℃にて1時間撹拌混合して、熱伝導性組成物を得た。(B)および(C)成分の量は、(A)成分100質量部に対する質量部表示である。組成物の粘度、熱伝導率を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 (A-2):昭和電工(株)の球状アルミナ(アルミナビーズ),平均粒子径70μm
 実施例14~16
 表3に示す(A)~(C)成分(質量部)をプラネタリー型ミキサー(ダルトン社製)に仕込み、室温にて1時間撹拌混合し、さらに120℃にて1時間撹拌混合して、熱伝導性組成物を得た。
 (B)および(C)成分の量は、(A)成分100質量部に対する質量部表示である。
 組成物の粘度、熱伝導率を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
 (A-3):昭和電工(株)の球状アルミナ(アルミナビーズ),平均粒子径50μm
 (A-12):昭和電工(株)の球状アルミナ(アルミナビーズ),平均粒子径10μm
 比較例1~3
 表4に示す(A)~(C)成分(質量部)をプラネタリー型ミキサー(ダルトン社製)に仕込み、室温にて1時間撹拌混合し、さらに120℃にて1時間撹拌混合して、比較用の熱伝導性組成物を得た。(B)および(C)成分の量は、(A)成分100質量部に対する質量部表示である。組成物の粘度、熱伝導率を測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000006
 表1~表3の実施例と表4の比較例との対比から、実施例の組成物は、大粒子径の球状アルミナの割合が大きいため、熱伝導率を高く、粘度を低くできたことが確認された。また、表1~表3の実施例と表4の比較例との対比から、同程度の熱伝導率であれば、粘度を低くできたことも確認された。
 さらに実施例8(100μmのアルミナ含有)、実施例11(70μmのアルミナ含有)、実施例14(50μmのアルミナ含有)と比較例1(0.4~20μmのアルミナ含有)は、いずれも組成物中のアルミナ含有量は92.5質量%と同じであるが、熱伝導率の高さは、実施例8>実施例11>実施例14>比較例1の順であった。他の組成物中のアルミナ含有量が同じ実施例と比較例を対比してみても、やはり平均粒子径の大きなアルミナを含有している実施例の方の熱伝導率が高かった。
 これらの結果は、平均粒子径の小さな熱伝導性無機充填剤を使用することで熱伝導性を高めている従来技術からは予測できない効果であった。
産業上の利用可能性
 本発明の熱伝導性組成物は、パーソナルコンピューターなどの電子機器のような発熱部位を有する各種機器用の放熱材料として使用することができる。

Claims (7)

  1.  (A)球状の熱伝導性充填剤と(B)アルコキシシラン化合物またはジメチルポリシロキサンを含有する熱伝導性組成物であって、
     前記(A)が平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、前記混合物が、平均粒子径50μm以上の充填剤を30質量%以上配合してなり、
     (A)成分100質量部に対してアルコキシシラン化合物またはジメチルポリシロキサン(B)成分0.01~20質量部を含有する、熱伝導性組成物。
  2.  (A)球状の熱伝導性充填剤、(B)アルコキシシラン化合物またはジメチルポリシロキサンおよび(C)ポリオルガノシロキサン(ただし、(B)成分のジメチルポリシロキサンは含まれない)を含有する熱伝導性組成物であって、
     前記(A)が平均粒子径の異なる充填剤を特定割合で配合してなる混合物であり、前記混合物が、平均粒子径50μm以上の充填剤を30質量%以上配合してなり、
     (A)成分100質量部に対して(B)成分と(C)成分を合計量で1.5~35質量部含有しており、
     (B)成分と(C)成分の合計量中の(C)成分の含有割合が15~98質量%である、熱伝導性組成物。
  3.  (A)成分の球状の熱伝導性充填剤が、平均粒子径50μm以上の充填剤30質量%以上と、平均粒子径40μm以下の充填剤70質量%未満を配合してなる混合物である、請求項1または2記載の熱伝導性組成物。
  4.  (A)成分の球状の熱伝導性充填剤が、平均粒子径50μm以上の充填剤30~60質量%、平均粒子径8~25μmの充填剤15~30質量%、および残部割合の平均粒子径が8μm未満の充填剤を配合してなる混合物である、請求項1または2記載の熱伝導性組成物。
  5.  (A)成分の球状の熱伝導性充填剤が、金属酸化物粉末、金属粉末から選ばれるものである、請求項1から4の何れか1記載の熱伝導性組成物。
  6.  (A)成分の球状の熱伝導性充填剤が、酸化アルミニウム、酸化亜鉛、アルミニウムから選ばれるものである、請求項5記載の熱伝導性組成物。
  7.  請求項1~6のいずれか1項に記載の熱伝導性組成物からなる放熱材料。

     
PCT/JP2016/064724 2015-05-22 2016-05-18 熱伝導性組成物 WO2016190188A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16799894.7A EP3299419B1 (en) 2015-05-22 2016-05-18 Thermally conductive composition
JP2016554299A JP6223590B2 (ja) 2015-05-22 2016-05-18 熱伝導性組成物
US15/574,638 US10683444B2 (en) 2015-05-22 2016-05-18 Thermally conductive composition
CN201680029424.8A CN107532000B (zh) 2015-05-22 2016-05-18 导热性组合物
KR1020177031966A KR102544343B1 (ko) 2015-05-22 2016-05-18 열전도성 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015104112 2015-05-22
JP2015-104112 2015-05-22

Publications (1)

Publication Number Publication Date
WO2016190188A1 true WO2016190188A1 (ja) 2016-12-01

Family

ID=57393335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064724 WO2016190188A1 (ja) 2015-05-22 2016-05-18 熱伝導性組成物

Country Status (7)

Country Link
US (1) US10683444B2 (ja)
EP (1) EP3299419B1 (ja)
JP (1) JP6223590B2 (ja)
KR (1) KR102544343B1 (ja)
CN (1) CN107532000B (ja)
TW (1) TWI705996B (ja)
WO (1) WO2016190188A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016566A1 (ja) * 2016-07-22 2018-01-25 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性ポリシロキサン組成物
CN110719939A (zh) * 2017-05-31 2020-01-21 迈图高新材料日本合同公司 导热性聚硅氧烷组合物
EP3626770A4 (en) * 2017-05-16 2020-05-13 LG Chem, Ltd. RESIN COMPOSITION
US11254849B2 (en) 2015-11-05 2022-02-22 Momentive Performance Materials Japan Llc Method for producing a thermally conductive polysiloxane composition
US11286349B2 (en) 2016-07-22 2022-03-29 Momentive Performance Materials Japan Llc Surface treatment agent for thermally conductive polyorganosiloxane composition
JP2022544819A (ja) * 2019-08-19 2022-10-21 エルジー・ケム・リミテッド 樹脂組成物
JP2022544966A (ja) * 2019-08-19 2022-10-24 エルジー・ケム・リミテッド 樹脂組成物
US11781002B2 (en) 2017-11-02 2023-10-10 Daikin Industries, Ltd. Fluorine-containing elastomer composition for heat dissipation material and sheet thereof
JP7586940B2 (ja) 2020-06-29 2024-11-19 ダウ グローバル テクノロジーズ エルエルシー 熱伝導性ポリウレタン組成物

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088685A (ja) * 2015-11-05 2017-05-25 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性ポリシロキサン組成物
WO2018110613A1 (ja) * 2016-12-13 2018-06-21 三菱ケミカル株式会社 ポリオルガノシロキサン、ポリオルガノシロキサン組成物、及びその硬化物、並びにポリオルガノシロキサンを含む電解コンデンサ用電解液及びそれを用いた電解コンデンサ
KR102162493B1 (ko) * 2018-03-28 2020-10-07 주식회사 엘지화학 수지 조성물
JP6866877B2 (ja) * 2018-05-31 2021-04-28 信越化学工業株式会社 低熱抵抗シリコーン組成物
CN109909494B (zh) * 2019-03-14 2021-05-04 昆山市中迪新材料技术有限公司 一种高导热粉体及其制备方法和应用
EP3992250A4 (en) * 2019-06-26 2023-07-19 Momentive Performance Materials Japan LLC THERMALLY CONDUCTIVE POLYSILOXA COMPOSITION
WO2021109051A1 (en) * 2019-12-05 2021-06-10 Dow Silicones Corporation Highly thermally conductive flowable silicone composition
EP4119616A4 (en) * 2020-03-11 2024-04-10 Sumitomo Metal Mining Co., Ltd. THERMALLY CONDUCTIVE COMPOSITION
WO2021182550A1 (ja) * 2020-03-11 2021-09-16 住友金属鉱山株式会社 熱伝導性ペースト
JP2024510937A (ja) * 2021-03-04 2024-03-12 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド サーマルゲル組成物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145351A (ja) * 1997-11-07 1999-05-28 Denki Kagaku Kogyo Kk 放熱スペーサー
JP2002299533A (ja) * 2001-03-29 2002-10-11 Denki Kagaku Kogyo Kk 放熱スペーサー
JP2007277406A (ja) * 2006-04-06 2007-10-25 Micron:Kk 高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート用配合粒子、高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート、および、その製造方法
JP2010155870A (ja) * 2007-04-20 2010-07-15 Denki Kagaku Kogyo Kk 熱伝導性コンパウンドおよびその製造方法
JP2011089079A (ja) * 2009-10-26 2011-05-06 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーン組成物及びその硬化物
JP2012214612A (ja) * 2011-03-31 2012-11-08 Aica Kogyo Co Ltd シリコーン放熱部材
JP2014208728A (ja) * 2013-04-16 2014-11-06 富士高分子工業株式会社 蓄熱性シリコーン材料及びその製造方法

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066715B2 (ja) 1985-08-20 1994-01-26 東芝シリコ−ン株式会社 熱伝導性シリコ−ングリ−ス
US5633213A (en) * 1986-09-17 1997-05-27 Lanxide Technology Company, Lp Method for in situ tailoring the component of ceramic articles
JPS63251466A (ja) * 1987-04-06 1988-10-18 Shin Etsu Chem Co Ltd 熱伝導性液状シリコ−ンゴム組成物
JP3029680B2 (ja) * 1991-01-29 2000-04-04 東レ・ダウコーニング・シリコーン株式会社 オルガノペンタシロキサンおよびその製造方法
US5591034A (en) * 1994-02-14 1997-01-07 W. L. Gore & Associates, Inc. Thermally conductive adhesive interface
JP3576639B2 (ja) * 1995-05-29 2004-10-13 東レ・ダウコーニング・シリコーン株式会社 熱伝導性シリコーンゴム組成物
JP2000095896A (ja) * 1998-09-24 2000-04-04 Denki Kagaku Kogyo Kk 樹脂添加用粉末、それを用いた樹脂組成物と放熱スペーサ
JP3543663B2 (ja) * 1999-03-11 2004-07-14 信越化学工業株式会社 熱伝導性シリコーンゴム組成物及びその製造方法
JP3474839B2 (ja) * 1999-09-01 2003-12-08 北川工業株式会社 熱伝導シート及びその製造方法
US6500891B1 (en) * 2000-05-19 2002-12-31 Loctite Corporation Low viscosity thermally conductive compositions containing spherical thermally conductive particles
JP3580366B2 (ja) * 2001-05-01 2004-10-20 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置
DE60230142D1 (de) * 2001-05-14 2009-01-15 Dow Corning Toray Co Ltd Wärmeleitende silikonzusammensetzung
JP3803058B2 (ja) 2001-12-11 2006-08-02 信越化学工業株式会社 熱伝導性シリコーン組成物、その硬化物及び敷設方法並びにそれを用いた半導体装置の放熱構造体
JP3844125B2 (ja) 2002-01-22 2006-11-08 信越化学工業株式会社 放熱部材、その製造方法及びその敷設方法
JP3807995B2 (ja) * 2002-03-05 2006-08-09 ポリマテック株式会社 熱伝導性シート
JP4130091B2 (ja) 2002-04-10 2008-08-06 信越化学工業株式会社 放熱用シリコーングリース組成物
JP4587636B2 (ja) * 2002-11-08 2010-11-24 東レ・ダウコーニング株式会社 熱伝導性シリコーン組成物
US7153583B2 (en) * 2003-05-07 2006-12-26 Shin-Etsu Chemical Co., Ltd. Liquid silicone rubber coating composition and airbag
JP2004352947A (ja) * 2003-05-30 2004-12-16 Shin Etsu Chem Co Ltd 室温硬化型熱伝導性シリコーンゴム組成物
DE112004001779B4 (de) * 2003-09-29 2021-03-25 Momentive Performance Materials Japan Llc Wärmeleitfähige Siliconzusammensetzung
JP4551074B2 (ja) 2003-10-07 2010-09-22 信越化学工業株式会社 硬化性オルガノポリシロキサン組成物および半導体装置
JP4828145B2 (ja) 2005-03-30 2011-11-30 東レ・ダウコーニング株式会社 熱伝導性シリコーンゴム組成物
JP4828146B2 (ja) * 2005-03-30 2011-11-30 東レ・ダウコーニング株式会社 熱伝導性シリコーンゴム組成物
JP4634891B2 (ja) * 2005-08-18 2011-02-16 信越化学工業株式会社 熱伝導性シリコーングリース組成物およびその硬化物
WO2007037440A1 (ja) * 2005-09-29 2007-04-05 Alpha Scientific, Corporation 導電粉およびその製造方法、導電粉ペースト、導電粉ペーストの製造方法
JP4942978B2 (ja) 2005-09-30 2012-05-30 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性シリコーングリース組成物及びそれを用いた半導体装置
JP5154010B2 (ja) * 2005-10-27 2013-02-27 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性シリコーンゴム組成物
JP4933094B2 (ja) * 2005-12-27 2012-05-16 信越化学工業株式会社 熱伝導性シリコーングリース組成物
EP1983568B1 (en) * 2006-01-26 2014-07-16 Momentive Performance Materials Japan LLC Heat dissipating member and semiconductor device using same
EP1878767A1 (en) * 2006-07-12 2008-01-16 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone grease composition and cured product thereof
JP4987496B2 (ja) 2007-01-30 2012-07-25 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 放熱材の製造方法
JP2009096961A (ja) 2007-10-19 2009-05-07 Shin Etsu Chem Co Ltd リワーク性に優れた熱伝導性シリコーングリース組成物
JP2009120437A (ja) * 2007-11-14 2009-06-04 Niigata Univ シロキサンをグラフト化したシリカ及び高透明シリコーン組成物並びに該組成物で封止した発光半導体装置
US8106119B2 (en) * 2007-12-04 2012-01-31 Sea-Fue Wang Thermally conductive silicone composition
JP5233325B2 (ja) * 2008-02-29 2013-07-10 信越化学工業株式会社 熱伝導性硬化物及びその製造方法
JP2009221311A (ja) 2008-03-14 2009-10-01 Momentive Performance Materials Inc 熱伝導性グリース組成物
JP5507059B2 (ja) * 2008-05-27 2014-05-28 東レ・ダウコーニング株式会社 熱伝導性シリコーン組成物および電子装置
JP5155033B2 (ja) * 2008-06-26 2013-02-27 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性シリコーン組成物
JP2010013563A (ja) 2008-07-03 2010-01-21 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーングリース
JP5388329B2 (ja) 2008-11-26 2014-01-15 株式会社デンソー 放熱用シリコーングリース組成物
JP5304623B2 (ja) 2009-12-08 2013-10-02 信越化学工業株式会社 高熱伝導性ポッティング材の選定方法
JP5619487B2 (ja) 2010-06-24 2014-11-05 東レ・ダウコーニング株式会社 熱伝導性シリコーングリース組成物
CN101962528A (zh) 2010-09-30 2011-02-02 烟台德邦科技有限公司 一种低粘度高导热率的双组分灌封硅胶及其制备方法
JP5553006B2 (ja) * 2010-11-12 2014-07-16 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP5664563B2 (ja) * 2012-01-23 2015-02-04 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP5783128B2 (ja) * 2012-04-24 2015-09-24 信越化学工業株式会社 加熱硬化型熱伝導性シリコーングリース組成物
EP2848677B1 (en) * 2012-05-11 2016-12-28 Shin-Etsu Chemical Co., Ltd. Thermally conductive silicone grease composition
JP2014003152A (ja) * 2012-06-18 2014-01-09 Dow Corning Toray Co Ltd サーマルインターフェース材の形成方法および放熱構造体
CN102924924A (zh) * 2012-11-13 2013-02-13 东莞兆舜有机硅新材料科技有限公司 一种膏体导热硅脂及其制备方法
US9698077B2 (en) * 2013-01-22 2017-07-04 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone composition based on combination of components, heat conductive layer, and semiconductor device
JP5843368B2 (ja) * 2013-05-07 2016-01-13 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP5853989B2 (ja) * 2013-05-16 2016-02-09 信越化学工業株式会社 リアクトル用熱伝導性シリコーン接着剤組成物及びリアクトル
JP5898139B2 (ja) * 2013-05-24 2016-04-06 信越化学工業株式会社 熱伝導性シリコーン組成物
CN104592763A (zh) * 2015-02-13 2015-05-06 北京天山新材料技术有限公司 导热阻燃室温硫化硅橡胶及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145351A (ja) * 1997-11-07 1999-05-28 Denki Kagaku Kogyo Kk 放熱スペーサー
JP2002299533A (ja) * 2001-03-29 2002-10-11 Denki Kagaku Kogyo Kk 放熱スペーサー
JP2007277406A (ja) * 2006-04-06 2007-10-25 Micron:Kk 高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート用配合粒子、高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート、および、その製造方法
JP2010155870A (ja) * 2007-04-20 2010-07-15 Denki Kagaku Kogyo Kk 熱伝導性コンパウンドおよびその製造方法
JP2011089079A (ja) * 2009-10-26 2011-05-06 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーン組成物及びその硬化物
JP2012214612A (ja) * 2011-03-31 2012-11-08 Aica Kogyo Co Ltd シリコーン放熱部材
JP2014208728A (ja) * 2013-04-16 2014-11-06 富士高分子工業株式会社 蓄熱性シリコーン材料及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3299419A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254849B2 (en) 2015-11-05 2022-02-22 Momentive Performance Materials Japan Llc Method for producing a thermally conductive polysiloxane composition
US20210147681A1 (en) 2016-07-22 2021-05-20 Momentive Performance Materials Japan Llc Thermally conductive polysiloxane composition
US11286349B2 (en) 2016-07-22 2022-03-29 Momentive Performance Materials Japan Llc Surface treatment agent for thermally conductive polyorganosiloxane composition
US11118056B2 (en) 2016-07-22 2021-09-14 Momentive Performance Materials Japan Llc Thermally conductive polysiloxane composition
WO2018016566A1 (ja) * 2016-07-22 2018-01-25 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性ポリシロキサン組成物
US10988656B2 (en) 2017-05-16 2021-04-27 Lg Chem, Ltd. Resin composition
EP3626770A4 (en) * 2017-05-16 2020-05-13 LG Chem, Ltd. RESIN COMPOSITION
EP3632987A4 (en) * 2017-05-31 2021-03-10 Momentive Performance Materials Japan LLC THERMOCONDUCTIVE POLYSILOXANE COMPOSITION
CN110719939B (zh) * 2017-05-31 2022-02-18 迈图高新材料日本合同公司 导热性聚硅氧烷组合物
CN110719939A (zh) * 2017-05-31 2020-01-21 迈图高新材料日本合同公司 导热性聚硅氧烷组合物
US11359124B2 (en) 2017-05-31 2022-06-14 Momentive Performance Materials Japan Llc Thermally conductive polysiloxane composition
US11781002B2 (en) 2017-11-02 2023-10-10 Daikin Industries, Ltd. Fluorine-containing elastomer composition for heat dissipation material and sheet thereof
JP2022544819A (ja) * 2019-08-19 2022-10-21 エルジー・ケム・リミテッド 樹脂組成物
JP2022544966A (ja) * 2019-08-19 2022-10-24 エルジー・ケム・リミテッド 樹脂組成物
JP7357995B2 (ja) 2019-08-19 2023-10-10 エルジー・ケム・リミテッド 樹脂組成物
JP7466951B2 (ja) 2019-08-19 2024-04-15 エルジー・ケム・リミテッド 樹脂組成物
JP7586940B2 (ja) 2020-06-29 2024-11-19 ダウ グローバル テクノロジーズ エルエルシー 熱伝導性ポリウレタン組成物

Also Published As

Publication number Publication date
US20180127629A1 (en) 2018-05-10
US10683444B2 (en) 2020-06-16
JP6223590B2 (ja) 2017-11-01
KR20180011080A (ko) 2018-01-31
KR102544343B1 (ko) 2023-06-19
CN107532000A (zh) 2018-01-02
TW201708337A (zh) 2017-03-01
JPWO2016190188A1 (ja) 2017-06-15
EP3299419A4 (en) 2019-03-06
CN107532000B (zh) 2021-07-13
TWI705996B (zh) 2020-10-01
EP3299419B1 (en) 2021-07-07
EP3299419A1 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP6223590B2 (ja) 熱伝導性組成物
JP6223591B2 (ja) 熱伝導性組成物
JP5664563B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
TWI746856B (zh) 熱傳導性聚矽氧烷組成物
WO2018016566A1 (ja) 熱伝導性ポリシロキサン組成物
JP6302145B1 (ja) 熱伝導性ポリオルガノシロキサン組成物
JP6246986B1 (ja) 熱伝導性ポリシロキサン組成物
JP6625749B2 (ja) 熱伝導性ポリオルガノシロキサン組成物
JP7039157B2 (ja) 熱伝導性ポリシロキサン組成物
JP2022060340A (ja) 熱伝導性シリコーン組成物
TWI853961B (zh) 熱傳導性聚矽氧烷組成物
WO2022264715A1 (ja) 熱伝導性ポリシロキサン組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016554299

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177031966

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15574638

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE