[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016186075A1 - Method for manufacturing gas-barrier layered product - Google Patents

Method for manufacturing gas-barrier layered product Download PDF

Info

Publication number
WO2016186075A1
WO2016186075A1 PCT/JP2016/064464 JP2016064464W WO2016186075A1 WO 2016186075 A1 WO2016186075 A1 WO 2016186075A1 JP 2016064464 W JP2016064464 W JP 2016064464W WO 2016186075 A1 WO2016186075 A1 WO 2016186075A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
polycarboxylic acid
gas
layer
acid
Prior art date
Application number
PCT/JP2016/064464
Other languages
French (fr)
Japanese (ja)
Inventor
雅子 城所
英一 守屋
野本 晃
Original Assignee
三井化学東セロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学東セロ株式会社 filed Critical 三井化学東セロ株式会社
Priority to JP2017519356A priority Critical patent/JP7002935B2/en
Publication of WO2016186075A1 publication Critical patent/WO2016186075A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides

Definitions

  • the present invention relates to a method for producing a gas barrier laminate.
  • a gas barrier material a laminate in which an inorganic layer which is a gas barrier layer is provided on a base material layer is used.
  • this inorganic layer is weak against friction and the like, and such a gas barrier laminate has a gas barrier property due to cracks and elongation caused by rubbing and elongation at the time of post-processing printing, lamination or filling of contents. May decrease. Therefore, as a gas barrier material, a laminate using an organic layer as a gas barrier layer is also used.
  • a laminate including a gas barrier layer formed of a mixture containing a polycarboxylic acid and a polyamine compound is known.
  • Examples of the technology relating to such a gas barrier laminate include those described in Patent Document 1 (Japanese Patent Laid-Open No. 2005-225940) and Patent Document 2 (Japanese Patent Laid-Open No. 2013-10857).
  • Patent Document 1 discloses a gas barrier film having a gas barrier layer formed from a polycarboxylic acid and a polyamine and / or polyol, and having a degree of crosslinking of the polycarboxylic acid of 40% or more. Patent Document 1 describes that such a gas barrier film has excellent gas barrier properties similar to those under low humidity conditions even under high humidity conditions.
  • a film coated with a mixture obtained by mixing with is disclosed.
  • Patent Document 2 describes that such a gas barrier film is excellent in gas barrier properties, particularly oxygen barrier properties, and excellent in flexibility, transparency, moisture resistance, chemical resistance, etc. even after the boil treatment.
  • the gas barrier film as described in Patent Documents 1 and 2 requires heating at a high temperature for a long time in order to crosslink the polycarboxylic acid and the polyamine. It became clear that there is still room for improvement in terms of productivity.
  • the present invention has been made in view of the above circumstances, and provides a production method capable of efficiently producing a gas barrier laminate having an amide crosslinked structure formed by a polyamine compound and a polycarboxylic acid, which is excellent in gas barrier performance. To do.
  • the inventors of the present invention have intensively studied in order to achieve the above-mentioned problems.
  • a dehydration condensation reaction between the carboxyl group contained in the polycarboxylic acid and the amino group contained in the polyamine compound occurs efficiently.
  • the present invention was completed by obtaining the knowledge that a gas barrier laminate having an amide crosslinked structure formed of a polyamine compound and a polycarboxylic acid, which is excellent in gas barrier performance, can be efficiently produced.
  • the following method for producing a gas barrier laminate is provided.
  • a gas barrier laminate manufacturing method comprising: a base material layer; and a gas barrier polymer layer provided on at least one surface of the base material layer, Applying a mixture containing a polycarboxylic acid and a polyamine compound to a base material layer to obtain a coating layer; The coating layer is heated by a heating means, and a gas barrier polymer layer having an amide bond is formed by dehydration condensation reaction between a carboxyl group contained in the polycarboxylic acid and an amino group contained in the polyamine compound.
  • the present invention it is possible to provide a production method capable of efficiently producing a gas barrier laminate having an amide crosslinked structure formed by a polyamine compound and a polycarboxylic acid, which is excellent in gas barrier performance.
  • ⁇ Method for producing gas barrier laminate> 1 and 2 are cross-sectional views schematically showing an example of the structure of a gas barrier laminate 100 according to an embodiment of the present invention.
  • the gas barrier laminate 100 is provided on the base layer 101 and at least one surface of the base layer 101, and heats a mixture containing a polycarboxylic acid and a polyamine compound (hereinafter also referred to as a gas barrier coating material). And a gas barrier polymer layer 103 formed by doing so.
  • the manufacturing method of the gas barrier laminate 100 according to the present embodiment includes (1) a step of applying a mixture containing a polycarboxylic acid and a polyamine compound to the base material layer 101 to obtain a coating layer, and (2) a heating means.
  • the heating means includes at least one selected from a conduction heat transfer method and a radiation heat transfer method.
  • the gas barrier coating material can be prepared, for example, as follows.
  • the carboxyl group of the polycarboxylic acid is completely or partially neutralized by adding a base to the polycarboxylic acid.
  • the polyamine compound is added to the polycarboxylic acid in which the carboxyl group is completely or partially neutralized.
  • the polycarboxylic acid By neutralizing the polycarboxylic acid with the base according to the present embodiment, gelation can be suppressed when the polyamine compound and the polycarboxylic acid are mixed. Therefore, in the polycarboxylic acid, it is preferable to use a partially neutralized product or a completely neutralized product of the carboxyl group with a base from the viewpoint of preventing gelation.
  • the neutralized product can be obtained by partially or completely neutralizing the carboxyl group of the polycarboxylic acid with a base (that is, partially or completely converting the carboxyl group of the polycarboxylic acid into a carboxylate). . Thereby, gelatinization can be prevented when adding a polyamine compound.
  • the partially neutralized product is prepared by adding a base to an aqueous solution of a polycarboxylic acid, but a desired degree of neutralization can be achieved by adjusting the amount ratio of the polycarboxylic acid and the base.
  • the degree of neutralization of the polycarboxylic acid with the base is preferably from 30 to 100 equivalent%, from the viewpoint of sufficiently suppressing gelation due to the neutralization reaction with the amino group of the polyamine compound, and preferably from 40 to 100 Equivalent%, more preferably 50 to 100 equivalent% is more preferable.
  • any water-soluble base can be used as the base.
  • the water-soluble base either or both of a volatile base and a nonvolatile base can be used.
  • the volatile property is easy to remove during drying and curing.
  • a base is preferred.
  • the volatile base include ammonia, morpholine, alkylamine, 2-dimethylaminoethanol, N-methylmonophorin, tertiary amines such as ethylenediamine and triethylamine, aqueous solutions thereof, and mixtures thereof.
  • an aqueous ammonia solution is preferred.
  • the non-volatile base include sodium hydroxide, lithium hydroxide, potassium hydroxide, an aqueous solution thereof, or a mixture thereof.
  • the solid content concentration of the gas barrier coating material is preferably set to 0.5 to 15% by mass, more preferably 1 to 10% by mass from the viewpoint of improving the coating property.
  • (Blend ratio of polycarboxylic acid and polyamine compound) is preferably 100. / 22, more preferably 100/25 or more, particularly preferably 100/29 or more.
  • (the number of moles of —COO— groups contained in the polycarboxylic acid in the gas barrier coating material) / (the number of moles of amino groups contained in the polyamine compound in the gas barrier coating material) is preferably Is 100/99 or less, more preferably 100/86 or less, and particularly preferably 100/75 or less.
  • the gas barrier polymer layer 103 In order to obtain the gas barrier polymer layer 103 according to this embodiment, (the number of moles of —COO— group contained in the polycarboxylic acid in the gas barrier coating material) / (included in the polyamine compound in the gas barrier coating material) It is preferable to adjust the blending ratio of the polycarboxylic acid and the polyamine compound in the gas barrier coating material so that the number of moles of amino groups to be within the above range.
  • the polycarboxylic acid according to this embodiment has two or more carboxyl groups in the molecule. Specifically, homopolymers of ⁇ , ⁇ -unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, crotonic acid, cinnamic acid, 3-hexenoic acid, 3-hexenedioic acid, or the like A copolymer is mentioned. Further, it may be a copolymer of the above ⁇ , ⁇ -unsaturated carboxylic acid with esters such as ethyl ester, olefins such as ethylene, and the like.
  • a homopolymer of acrylic acid, methacrylic acid, itaconic acid, fumaric acid, crotonic acid, cinnamic acid or a copolymer thereof is preferable, and polyacrylic acid, polymethacrylic acid, a copolymer of acrylic acid and methacrylic acid is preferable. More preferably, it is one or two or more polymers selected from polymers, more preferably at least one polymer selected from polyacrylic acid and polymethacrylic acid, and a homopolymer of acrylic acid Particularly preferred is at least one polymer selected from homopolymers of methacrylic acid.
  • polyacrylic acid includes both a homopolymer of acrylic acid and a copolymer of acrylic acid and other monomers.
  • polyacrylic acid has a structural unit derived from acrylic acid in 100% by mass of the polymer, usually 90% by mass or more, preferably 95% by mass or more. Preferably it contains 99 mass% or more.
  • polymethacrylic acid includes both a homopolymer of methacrylic acid and a copolymer of methacrylic acid and other monomers.
  • polymethacrylic acid has a structural unit derived from methacrylic acid, usually 90% by mass or more, preferably 95% by mass or more, in 100% by mass of the polymer. Preferably it contains 99 mass% or more.
  • the polycarboxylic acid according to this embodiment is a polymer obtained by polymerizing carboxylic acid monomers, and the molecular weight of the polycarboxylic acid is preferably 500 to 2,000,000 from the viewpoint of excellent balance between gas barrier properties and handleability. 500 to 1,000,000 is more preferable. Further, 5,000 to 500,000 is preferable, and 10,000 to 100,000 is particularly preferable.
  • the molecular weight of the polycarboxylic acid is a weight average molecular weight in terms of polyethylene oxide, and can be measured using gel permeation chromatography (GPC).
  • the polyamine compound according to this embodiment is a polymer having two or more amino groups in the main chain, side chain, or terminal.
  • Specific examples include aliphatic polyamines such as polyallylamine, polyvinylamine, polyethyleneimine, and poly (trimethyleneimine); polyamides having an amino group in the side chain such as polylysine and polyarginine; and the like.
  • the polyamine which modified some amino groups may be sufficient. From the viewpoint of obtaining good gas barrier properties, polyethyleneimine is more preferable.
  • the weight average molecular weight of the polyamine compound according to this embodiment is preferably 50 to 5,000,000, more preferably 100 to 2,000,000, and more preferably 1,500 to 5,000,000 from the viewpoint of excellent balance between gas barrier properties and handling properties. 1,000,000 is more preferred, 1,500 to 500,000 is still more preferred, and 1,500 to 100,000 is particularly preferred.
  • the molecular weight of the polyamine compound can be measured using a boiling point increase method or a viscosity method.
  • the gas barrier coating material it is preferable to further add a surfactant to the gas barrier coating material from the viewpoint of preventing the occurrence of repelling during coating.
  • the addition amount of the surfactant is preferably 0.01 to 3% by mass, and more preferably 0.01 to 1% by mass when the total solid content of the gas barrier coating material is 100% by mass.
  • surfactant according to this embodiment examples include an anionic surfactant, a nonionic surfactant, a cationic surfactant, an amphoteric surfactant, and the like, from the viewpoint of obtaining good coatability. Therefore, nonionic surfactants are preferable, and polyoxyethylene alkyl ethers are more preferable.
  • nonionic surfactants include polyoxyalkylene alkyl aryl ethers, polyoxyalkylene alkyl ethers, polyoxyalkylene fatty acid esters, sorbitan fatty acid esters, silicone surfactants, and acetylene alcohol surfactants. And fluorine-containing surfactants.
  • polyoxyalkylene alkylaryl ethers examples include polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene dodecyl phenyl ether, and the like.
  • polyoxyalkylene alkyl ethers examples include polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether and polyoxyethylene lauryl ether.
  • polyoxyalkylene fatty acid esters include polyoxyethylene oleate, polyoxyethylene laurate, polyoxyethylene distearate, and the like.
  • sorbitan fatty acid esters examples include sorbitan laurate, sorbitan monostearate, sorbitan monooleate, sorbitan sesquioleate, polyoxyethylene monooleate, polyoxyethylene stearate and the like.
  • silicone surfactants include dimethylpolysiloxane.
  • acetylene alcohol surfactants include 2,4,7,9-tetramethyl-5-decyne-4,7-diol, 3,6-dimethyl-4-octyne-3,6-diol, 3, 5-dimethyl-1-hexyn-3-ol and the like can be mentioned.
  • fluorine-containing surfactant examples include a fluorine alkyl ester.
  • the gas barrier coating material according to this embodiment may contain other additives as long as the object of the present invention is not impaired.
  • various additives such as a lubricant, slip agent, anti-blocking agent, antistatic agent, antifogging agent, pigment, dye, inorganic or organic filler, and polyvalent metal compound may be added.
  • a gas barrier coating material is applied to the base material layer 101 to obtain a coating layer.
  • the method for applying the gas barrier coating material according to the present embodiment to the base material layer 101 is not particularly limited, and a normal method can be used.
  • reverse rolls such as Mayer bar coater, air knife coater, direct gravure coater, gravure offset, arc gravure coater, gravure reverse and jet nozzle type gravure coater, top feed reverse coater, bottom feed reverse coater and nozzle feed reverse coater
  • the coating method include a coater, a five-roll coater, a lip coater, a bar coater, a bar reverse coater, a die coater, and an applicator.
  • the thickness (wet thickness) of the coating layer is preferably 0.05 to 300 ⁇ m, more preferably 1 to 200 ⁇ m, still more preferably 1 to 100 ⁇ m, and particularly preferably 0.05 to 30 ⁇ m. It can suppress that the gas barrier laminated body 100 obtained as the thickness of a coating layer is below the said upper limit, curls. Further, when the thickness of the coating layer is not more than the above upper limit value, the dehydration condensation reaction between the —COO— group contained in the polycarboxylic acid and the amino group contained in the polyamine compound can be promoted more effectively. . Moreover, the barrier performance of the gas-barrier laminated body 100 obtained as the thickness of a coating layer is more than the said lower limit can be made more favorable.
  • the thickness of the gas barrier polymer layer 103 after the heat treatment is preferably 0.01 to 15 ⁇ m, more preferably 0.05 to 5 ⁇ m, still more preferably 0.1 to 1 ⁇ m, and the gas barrier property and stability with the base material layer 101 are stable. In particular, it is preferably 0.15 to 0.45 ⁇ m or less because of excellent adhesion balance.
  • the gas barrier laminate 100 of the present embodiment in order to obtain the gas barrier polymer layer 103 according to the present embodiment, as a means for heating the coating layer, “conduction conduction” by contact with a high temperature body. At least one selected from “thermal system” and “radiant heat transfer system” by heat radiation from a high temperature body is adopted. Thereby, the dehydration condensation reaction of the carboxyl group contained in the polycarboxylic acid and the amino group contained in the polyamine compound can be efficiently advanced.
  • the conduction heat transfer method is a method of heating a material in contact with a high-temperature body by heat conduction, and examples of a device that performs heating by the conduction heat transfer method include a heating roll.
  • heating is performed by bringing the heating roll into contact with the material.
  • the heating roll is preferable from the viewpoint of being excellent in the efficiency of heat conduction to the film.
  • the radiant heat transfer method is a method in which infrared radiation energy emitted from a high-temperature body is used as a heat source. Infrared light absorbed by the material is changed into heat in the material to heat the material.
  • an infrared heater, an infrared lamp, or the like is used as the infrared source.
  • the heat treatment temperature is 160 to 250 ° C.
  • the heat treatment time is 1 second to 10 minutes, preferably the heat treatment temperature is 180 to 240 ° C., and the heat treatment time is 5 seconds to 5 seconds. It is desirable that the heat treatment be performed under the conditions that the heat treatment temperature is 190 ° C. to 230 ° C. and the heat treatment time is 10 seconds to 2 minutes.
  • the coating layer When the coating layer is heated, it may be heated from the base material layer 101 side or from the coating layer side, but the gas barrier polymer layer 103 having excellent gas barrier performance can be made more stable. From the viewpoint of obtaining, it is preferable to heat from the base material layer 101 side.
  • heating by the convection heat transfer method is a heating method in which heated air is used as hot air and is brought into direct contact with the material. The heat transfer is caused by the relative speed between the material and hot air and the temperature difference between the material and hot air. It is controlled by the amount of heat.
  • Examples of the apparatus that performs heating by the convection heat transfer method include a hot air dryer, a hot air oven, and a dryer.
  • the heat treatment temperature and the heat treatment time depend on the wet thickness of the gas barrier coating material. It is important to make adjustments.
  • the coating layer may be dried before the heating of the coating layer. In addition, you may perform the said drying and heat processing simultaneously.
  • the drying when drying is performed before the heat treatment of the coating layer, the drying may be performed under conditions of a drying temperature: 60 to 150 ° C. and a drying time: 1 second to 60 seconds. desirable.
  • the gas barrier polymer layer 103 according to the present embodiment is formed by the gas barrier coating material described above. After the gas barrier coating material is applied to the base material layer 101 or the inorganic layer 102 described later, the gas barrier polymer layer 103 is dried. It is obtained by performing a heat treatment to cure the gas barrier coating material.
  • the total peak area in the range from 1493 cm ⁇ 1 to 1780 cm ⁇ 1 is A
  • the absorption band when the total peak area in the range of 1598cm -1 or 1690 cm -1 or less as B, B / is preferably the area ratio of the amide bond from the viewpoint of gas barrier properties represented by a 0.330 or more, more preferably 0.370
  • the gas-barrier laminated body 100 which was further excellent in gas barrier performance can be obtained.
  • the upper limit of the area ratio of the amide bond represented by B / A is preferably 0.700 or less, more preferably 0.680 or less, particularly from the viewpoint of further improving the balance of appearance, dimensional stability, and productivity. Preferably it is 0.650 or less.
  • the absorption based on ⁇ C ⁇ O of the unreacted carboxylic acid in the infrared absorption spectrum is observed in the vicinity of 1700 cm ⁇ 1
  • the absorption based on ⁇ C ⁇ O of the amide bond which is a crosslinked structure is observed in the vicinity of 1630 to 1685 cm ⁇ 1
  • absorption based on ⁇ C ⁇ O of the carboxylate is observed in the vicinity of 1540 to 1560 cm ⁇ 1 .
  • the total peak area A in the 1780 cm -1 or less in the range absorption band 1493cm -1 or more in the infrared absorption spectrum represent an indication of the total amount of carboxylic acid amide bond with a carboxylic acid salt
  • the absorption band 1598cm total peak area B in the range of -1 to 1690 cm -1 or less represents an indication of the presence of the amide bond
  • the total peak area C in the following ranges absorption band 1690 cm -1 or more 1780 cm -1, which will be described later unreacted carboxylic acid represents an indication of the abundance
  • the total peak area D in the range of less absorption band 1493cm -1 or 1598cm -1 to be described later represents a carboxylate, i.e., an indication of the presence of ionic crosslinking of the carboxyl group and an amino group it is conceivable that.
  • the total peak areas A to D can be measured by the following procedure. First, a measurement sample of 1 cm ⁇ 3 cm is cut out from the gas barrier polymer layer 103 of the present embodiment. Next, an infrared absorption spectrum of the surface of the gas barrier polymer layer 103 is obtained by infrared total reflection measurement (ATR method). The total peak areas A to D are calculated from the obtained infrared absorption spectrum by the following procedures (1) to (4). (1) 1780 cm connected by -1 and the linear absorbance 1493cm -1 (N), the area surrounded by the absorption spectra and N of the absorption band 1493Cm -1 or 1780 cm -1 or less in the range that the total peak area A.
  • a straight line (O) is dropped vertically from the absorbance (Q) at 1690 cm ⁇ 1 , the intersection of N and O is taken as P, and a straight line (S) is dropped vertically from the absorbance (R) at 1598 cm ⁇ 1.
  • the intersection S is T, the absorption spectrum and the straight line S of the absorption band 1598cm -1 or 1690 cm -1 or less in the range, the point T, the straight line N, the point P, the straight line O, absorbance Q, the total peak area surrounded by absorbance R It is assumed that area B.
  • the measurement of the infrared absorption spectrum of this embodiment is performed using, for example, an IRT-5200 apparatus manufactured by JASCO Corporation, and a PKM-GE-S (Germanium) crystal attached thereto.
  • the measurement can be performed under the conditions of 45 degrees, room temperature, resolution of 4 cm ⁇ 1 , and accumulation count of 100 times.
  • the gas barrier polymer layer 103 formed of a mixture containing a polycarboxylic acid and a polyamine compound has two types of cross-linked structures, ionic cross-linking and amide cross-linking, and the presence ratio of these cross-linked structures improves the gas barrier performance. Is important.
  • the ionic crosslinking is generated by causing an acid-base reaction between a carboxyl group contained in the polycarboxylic acid and an amino group contained in the polyamine compound, and the amide crosslinking is contained in the polycarboxylic acid. It is produced by causing a dehydration condensation reaction between the carboxyl group to be produced and the amino group contained in the polyamine compound.
  • a scale of area ratio of amide bond represented by B / A can be applied.
  • the area ratio of the amide bond represented by B / A of the gas barrier polymer layer 103 it becomes possible to adjust the area ratio of the amide bond represented by B / A of the gas barrier polymer layer 103 to a specific value or more, and the gas barrier polymer layer having such characteristics.
  • No. 103 exhibits more effective gas barrier properties under both high humidity and after boil-retort treatment, and also has an excellent balance of appearance, dimensional stability, and productivity.
  • the gas barrier laminate 100 having an excellent balance of appearance, dimensional stability, and productivity can be obtained.
  • the area ratio of the carboxylic acid represented by C / A is preferably 0.040 or more, more preferably 0.060 or more, and particularly preferably 0.8. Heat until 080 or higher.
  • the upper limit of the area ratio of the carboxylic acid represented by C / A is from the viewpoint of further improving the oxygen barrier property and the water vapor barrier property under both high humidity and after boil-retort treatment. Preferably it is 0.500 or less, More preferably, it is 0.450 or less, Most preferably, it is 0.400 or less.
  • the area ratio of the carboxylate salt represented by D / A is preferably from the viewpoint of further improving oxygen barrier properties and water vapor barrier properties under both high humidity and after boil-retort treatment. Heating is performed to 100 or more, more preferably 0.150 or more.
  • the upper limit of the area ratio of the carboxylate represented by D / A is preferably 0.450 or less, more preferably 0.420 or less, from the viewpoint of further improving the balance of appearance, dimensional stability, and productivity. Especially preferably, it is 0.400 or less.
  • the area ratio of the amide bond indicated by B / A, the area ratio of carboxylic acid indicated by C / A, and the area ratio of carboxylate indicated by D / A of the gas barrier polymer layer 103 according to the present embodiment are as follows: It can be controlled by appropriately adjusting the manufacturing conditions of the gas barrier polymer layer 103.
  • the mixing ratio of the polycarboxylic acid and the polyamine compound, the method for preparing the gas barrier coating material, the heat treatment method, the temperature, the time, etc. of the gas barrier coating material are the amides represented by B / A. It is mentioned as a factor for controlling the area ratio of the bond, the area ratio of the carboxylic acid represented by C / A and the area ratio of the carboxylate represented by D / A.
  • the base material layer 101 of the present embodiment is formed of, for example, an organic material such as a thermosetting resin, a thermoplastic resin, or paper, and includes at least one selected from a thermosetting resin and a thermoplastic resin. Is preferred.
  • thermosetting resin examples include known thermosetting resins such as epoxy resins, unsaturated polyester resins, phenol resins, urea / melamine resins, polyurethane resins, silicone resins, and polyimides.
  • thermoplastic resin examples include known thermoplastic resins such as polyolefin (polyethylene, polypropylene, poly (4-methyl-1-pentene), poly (1-butene), etc.), polyester (polyethylene terephthalate, polybutylene terephthalate, polyethylene). Naphthalate, etc.), polyamide (nylon-6, nylon-66, polymetaxylene adipamide, etc.), polyvinyl chloride, polyimide, ethylene vinyl acetate copolymer or saponified product thereof, polyvinyl alcohol, polyacrylonitrile, polycarbonate, polystyrene , Ionomer, fluororesin, or a mixture thereof.
  • polyolefin polyethylene, polypropylene, poly (4-methyl-1-pentene), poly (1-butene), etc.
  • polyester polyethylene terephthalate, polybutylene terephthalate, polyethylene. Naphthalate, etc.
  • polyamide nylon-6, nylon-66, polymetaxylene adipamide
  • the base material layer 101 formed of the thermoplastic resin may be a single layer or two or more layers depending on the application of the gas barrier laminate 100.
  • thermosetting resin or thermoplastic resin may be stretched in at least one direction, preferably in a biaxial direction to form a base material layer.
  • the base material layer 101 of this embodiment from the viewpoint of excellent transparency, rigidity, and heat resistance, one or two or more kinds of heat selected from polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyamide, and polyimide are used.
  • a biaxially stretched film formed of a plastic resin is preferable, and a biaxially stretched film formed of one or more thermoplastic resins selected from polyethylene terephthalate and polyethylene naphthalate is more preferable.
  • the surface of the base material layer 101 may be coated with polyvinylidene chloride, polyvinyl alcohol, an ethylene / vinyl alcohol copolymer, an acrylic resin, a urethane resin, or the like. Furthermore, the base material layer 101 may be subjected to a surface treatment in order to improve adhesion with the gas barrier polymer layer 103. Specifically, surface activation treatment such as corona treatment, flame treatment, plasma treatment, undercoat treatment, and primer coat treatment may be performed.
  • the thickness of the base material layer 101 is preferably 1 to 1000 ⁇ m, more preferably 1 to 500 ⁇ m, and further preferably 1 to 300 ⁇ m from the viewpoint of obtaining good film characteristics.
  • the shape of the base material layer 101 is not particularly limited, and examples thereof include sheet or film shapes, trays, cups, hollow bodies, and the like.
  • the inorganic layer 102 may be further laminated between the base material layer 101 and the gas barrier polymer layer 103.
  • barrier performance such as oxygen barrier property and water vapor
  • Examples of the inorganic material constituting the inorganic material layer 102 of the present embodiment include metals, metal oxides, metal nitrides, metal fluorides, and metal oxynitrides that can form a thin film having a barrier property.
  • Examples of the inorganic substance constituting the inorganic layer 102 include periodic table 2A elements such as beryllium, magnesium, calcium, strontium, and barium; periodic table transition elements such as titanium, zirconium, ruthenium, hafnium, and tantalum; and a periodic table such as zinc.
  • Period table 3A element such as aluminum, gallium, indium, thallium
  • periodic table 4A element such as silicon, germanium, tin
  • simple substance such as 6A group element of periodic table such as selenium, tellurium, oxide, nitriding 1 type, or 2 or more types selected from the thing, fluoride, oxynitride, etc. can be mentioned.
  • the family name of the periodic table is shown by the old CAS formula.
  • one or two or more inorganic materials selected from the group consisting of silicon oxide, aluminum oxide, and aluminum are preferable because of excellent balance between barrier properties and cost.
  • silicon oxide may contain silicon monoxide and silicon suboxide.
  • the inorganic layer 102 is made of the above inorganic material.
  • the inorganic layer 102 may be composed of a single inorganic layer or a plurality of inorganic layers. Further, when the inorganic layer 102 is composed of a plurality of inorganic layers, it may be composed of the same kind of inorganic layer, or may be composed of different kinds of inorganic layers.
  • the thickness of the inorganic layer 102 is usually 1 nm or more and 1000 nm or less, preferably 1 nm or more and 500 nm or less, from the viewpoint of the balance of barrier properties, adhesion, handling properties and the like.
  • the thickness of the inorganic layer 102 can be obtained from an observation image obtained by a transmission electron microscope or a scanning electron microscope.
  • the formation method of the inorganic layer 102 is not particularly limited, and for example, a vacuum deposition method, an ion plating method, a sputtering method, a chemical vapor deposition method, a physical vapor deposition method, a chemical vapor deposition method (CVD method), plasma CVD.
  • the inorganic layer 102 can be formed on one surface or both surfaces of the base material layer 101 by a method, a sol-gel method, or the like. Of these, film formation under reduced pressure such as sputtering, ion plating, chemical vapor deposition (CVD), physical vapor deposition (PVD), and plasma CVD is desirable.
  • the chemically active molecular species containing silicon such as silicon nitride and silicon oxynitride, react quickly to improve the surface smoothness of the inorganic layer 102 and reduce the number of holes. It is expected to be.
  • the inorganic atom or compound is a chemically active molecular species or atomic species.
  • the gas barrier laminate 100 of the present embodiment is excellent in gas barrier performance and includes various materials such as packaging materials, food packaging materials of contents requiring particularly high gas barrier properties, medical uses, industrial uses, daily miscellaneous goods, and the like. It can also be suitably used as a packaging material. Further, the gas barrier laminate 100 of the present embodiment is suitable as, for example, a vacuum heat insulating film that requires high barrier performance; a sealing film for sealing electroluminescent elements, solar cells, and the like. Can be used for
  • Example 1-1 79 g of the ammonium polyacrylate aqueous solution (Z) and 21 g of the polyethylene imine aqueous solution (Y) were mixed and stirred to prepare a mixed solution. Furthermore, after adding purified water so that the solid content concentration of the mixed solution is 2.5% by mass and stirring until a uniform solution is obtained, a nonionic surfactant (polyoxyethylene lauryl ether, manufactured by Kao Corporation) is added. , Trade name: Emulgen 120) was mixed at 0.3% by mass with respect to the solid content of the mixed solution to prepare a solution (V).
  • a nonionic surfactant polyoxyethylene lauryl ether, manufactured by Kao Corporation
  • the obtained solution (V) was subjected to heat treatment with a Mayer bar on the corona-treated surface of a 12 ⁇ m-thick biaxially stretched polyethylene terephthalate film (Unitika, PET12) (that is, the film thickness of the gas barrier polymer layer). ) Is 0.3 ⁇ m, dried using a hot air dryer at a temperature of 100 ° C. for a time of 30 seconds, and further heated by a hot roll at a temperature of 200 ° C. for a time of 60 seconds. Was subjected to heat treatment to obtain a gas barrier laminate film.
  • Example 1-2 A gas barrier laminate film was obtained in the same manner as in Example 1-1 except that the heating roll was a dryer using both a far infrared heater and hot air.
  • Example 1 A gas barrier laminate film was obtained in the same manner as in Example 1-1 except that the hot roll was a hot air dryer.
  • Example 2-1 A gas barrier laminate film was obtained in the same manner as in Example 1-1 except that heat treatment was performed under the conditions of temperature: 210 ° C., time: 60 seconds.
  • Example 2-2 A gas barrier laminate film was obtained in the same manner as in Example 2-1, except that the heat roll was a dryer using both a far infrared heater and hot air.
  • Example 2 A gas barrier laminate film was obtained in the same manner as in Example 2-1, except that the hot roll was a hot air dryer.
  • Example 3 A gas barrier laminate film was obtained in the same manner as in Example 1-1 except that the heat treatment was performed under the conditions of temperature; 220 ° C., time; 45 seconds.
  • Example 3 A gas barrier laminate film was obtained in the same manner as in Example 3 except that the hot roll was a hot air dryer.
  • Infrared absorption spectrum measurement (infrared total reflection measurement: ATR method) was performed using an IRT-5200 apparatus manufactured by JASCO Corporation, with a PKM-GE-S (Germanium) crystal attached and an incident angle of 45 degrees. The measurement was performed under the conditions of room temperature, resolution of 4 cm ⁇ 1 , and accumulation count of 100 times. The obtained absorption spectrum was analyzed by the method described above, and the total peak areas A to D were calculated. Then, the area ratios B / A, C / A, and D / A were determined from the total peak areas A to D.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

This method for manufacturing a gas-barrier layered product (100) is a method for manufacturing a gas-barrier layered product (100) equipped with a base material layer (101) and a gas-barrier polymer layer (103) provided to at least one surface of the base material layer (101). The method for manufacturing a gas-barrier layered product (100) includes a step for applying a mixture including a polycarboxylic acid and polyamine compound to the base material layer (101) and obtaining a coating layer, and a step for forming a gas-barrier polymer layer (103) having amide bonds by heating the coating layer by a heating means and dehydrocondensing the carboxyl groups included in the polycarboxylic acid and the amino groups included in the polyamine compound. The heating means includes at least one selected from a conductive heat transfer type and a radiant heat transfer type.

Description

ガスバリア性積層体の製造方法Method for producing gas barrier laminate
 本発明は、ガスバリア性積層体の製造方法に関する。 The present invention relates to a method for producing a gas barrier laminate.
 一般に、ガスバリア性材料として、基材層上にガスバリア層である無機物層を設けた積層体が用いられている。
 しかしながら、この無機物層は摩擦等に対して弱く、このようなガスバリア性積層体は、後加工の印刷時、ラミネート時または内容物の充填時に、擦れや伸びにより無機物層にクラックが入りガスバリア性が低下することがある。
 そのため、ガスバリア性材料として、ガスバリア層として有機物層を用いた積層体も用いられている。
In general, as a gas barrier material, a laminate in which an inorganic layer which is a gas barrier layer is provided on a base material layer is used.
However, this inorganic layer is weak against friction and the like, and such a gas barrier laminate has a gas barrier property due to cracks and elongation caused by rubbing and elongation at the time of post-processing printing, lamination or filling of contents. May decrease.
Therefore, as a gas barrier material, a laminate using an organic layer as a gas barrier layer is also used.
 ガスバリア層として有機物層を用いたガスバリア性材料として、ポリカルボン酸およびポリアミン化合物を含む混合物により形成されたガスバリア層を備える積層体が知られている。
 このようなガスバリア性積層体に関する技術としては、例えば、特許文献1(特開2005-225940号公報)および特許文献2(特開2013-10857号公報)に記載のものが挙げられる。
As a gas barrier material using an organic material layer as a gas barrier layer, a laminate including a gas barrier layer formed of a mixture containing a polycarboxylic acid and a polyamine compound is known.
Examples of the technology relating to such a gas barrier laminate include those described in Patent Document 1 (Japanese Patent Laid-Open No. 2005-225940) and Patent Document 2 (Japanese Patent Laid-Open No. 2013-10857).
 特許文献1には、ポリカルボン酸と、ポリアミンおよび/またはポリオールから製膜されたガスバリア層を有し、ポリカルボン酸の架橋度が40%以上であるガスバリア性フィルムが開示されている。
 特許文献1には、このようなガスバリア性フィルムは高湿度条件下においても低湿度条件下と同様の優れたガスバリア性を有すると記載されている。
Patent Document 1 discloses a gas barrier film having a gas barrier layer formed from a polycarboxylic acid and a polyamine and / or polyol, and having a degree of crosslinking of the polycarboxylic acid of 40% or more.
Patent Document 1 describes that such a gas barrier film has excellent gas barrier properties similar to those under low humidity conditions even under high humidity conditions.
 特許文献2には、プラスチックフィルムからなる基材の少なくとも片面に、ポリアミンとポリカルボン酸を重量比でポリアミン/ポリカルボン酸=12.5/87.5~27.5 /72.5となるように混合してなる混合物が塗布されたフィルムが開示されている。
 特許文献2には、このようなガスバリア性フィルムはボイル処理後もガスバリア性、特に酸素遮断性に優れ、かつ可撓性、透明性、耐湿性、耐薬品性等に優れると記載されている。
In Patent Document 2, at least one surface of a base material made of a plastic film has a polyamine / polycarboxylic acid weight ratio of polyamine / polycarboxylic acid = 12.5 / 87.5 to 27.5 / 72.5. A film coated with a mixture obtained by mixing with is disclosed.
Patent Document 2 describes that such a gas barrier film is excellent in gas barrier properties, particularly oxygen barrier properties, and excellent in flexibility, transparency, moisture resistance, chemical resistance, etc. even after the boil treatment.
特開2005-225940号公報JP 2005-225940 A 特開2013-10857号公報JP 2013-10857 A
 本発明者らの検討によると、特許文献1および2に記載されているようなガスバリア性フィルムは、ポリカルボン酸とポリアミンとを架橋させるために、高温で長時間の加熱が必要になるため、生産性の面でまだまだ改善の余地があることが明らかになった。 According to the study by the present inventors, the gas barrier film as described in Patent Documents 1 and 2 requires heating at a high temperature for a long time in order to crosslink the polycarboxylic acid and the polyamine. It became clear that there is still room for improvement in terms of productivity.
 本発明は上記事情に鑑みてなされたものであり、ガスバリア性能に優れる、ポリアミン化合物とポリカルボン酸によって形成されたアミド架橋構造を有するガスバリア性積層体を効率良く製造することができる製造方法を提供するものである。 The present invention has been made in view of the above circumstances, and provides a production method capable of efficiently producing a gas barrier laminate having an amide crosslinked structure formed by a polyamine compound and a polycarboxylic acid, which is excellent in gas barrier performance. To do.
 本発明者らは、上記課題を達成するために鋭意研究を重ねた。その結果、ポリカルボン酸およびポリアミン化合物を含む混合物を特定の加熱手段により加熱することにより、ポリカルボン酸に含まれるカルボキシル基とポリアミン化合物に含まれるアミノ基との脱水縮合反応が効率的に起こり、ガスバリア性能に優れる、ポリアミン化合物とポリカルボン酸によって形成されたアミド架橋構造を有するガスバリア性積層体を効率良く製造することができるという知見を得て、本発明を完成させた。 The inventors of the present invention have intensively studied in order to achieve the above-mentioned problems. As a result, by heating the mixture containing the polycarboxylic acid and the polyamine compound by a specific heating means, a dehydration condensation reaction between the carboxyl group contained in the polycarboxylic acid and the amino group contained in the polyamine compound occurs efficiently, The present invention was completed by obtaining the knowledge that a gas barrier laminate having an amide crosslinked structure formed of a polyamine compound and a polycarboxylic acid, which is excellent in gas barrier performance, can be efficiently produced.
 すなわち、本発明によれば、以下に示すガスバリア性積層体の製造方法が提供される。 That is, according to the present invention, the following method for producing a gas barrier laminate is provided.
[1]
 基材層と、上記基材層の少なくとも一方の面に設けられたガスバリア性重合体層と、を備えるガスバリア性積層体の製造方法であって、
 ポリカルボン酸およびポリアミン化合物を含む混合物を基材層に塗工し、塗工層を得る工程と、
 加熱手段により上記塗工層を加熱し、上記ポリカルボン酸に含まれるカルボキシル基と上記ポリアミン化合物に含まれるアミノ基とを脱水縮合反応させることにより、アミド結合を有するガスバリア性重合体層を形成する工程と、
を含み、
 上記加熱手段が伝導伝熱方式および輻射伝熱方式から選択される少なくとも一種を含む、ガスバリア性積層体の製造方法。
[2]
 上記加熱手段が加熱ロールによる伝導伝熱および赤外線による輻射伝熱から選択される少なくとも一種を含む、上記[1]に記載のガスバリア性積層体の製造方法。
[3]
 上記加熱手段が対流伝熱方式をさらに含む、上記[1]または[2]に記載のガスバリア性積層体の製造方法。
[4]
 上記ガスバリア性重合体層を形成する工程では、
 得られる上記ガスバリア性重合体層の赤外線吸収スペクトルにおいて、
 吸収帯1493cm-1以上1780cm-1以下の範囲における全ピーク面積をAとし、
 吸収帯1598cm-1以上1690cm-1以下の範囲における全ピーク面積をBとしたとき、
 B/Aで示されるアミド結合の面積比率が0.330以上となるまで加熱をおこなう、上記[1]乃至[3]いずれか一つに記載のガスバリア性積層体の製造方法。
[5]
 (上記混合物中の上記ポリカルボン酸に含まれる-COO-基のモル数)/(上記混合物中の上記ポリアミン化合物に含まれるアミノ基のモル数)=100/22超100/99以下である、上記[1]乃至[4]いずれか一つに記載のガスバリア性積層体の製造方法。
[6]
 上記ポリカルボン酸が、ポリアクリル酸、ポリメタクリル酸、アクリル酸とメタクリル酸との共重合体から選択される一種または二種以上の重合体を含む、上記[1]乃至[5]いずれか一つに記載のガスバリア性積層体の製造方法。
[7]
 上記ポリアミン化合物が、ポリエチレンイミンを含む、上記[1]乃至[6]いずれか一つに記載のガスバリア性積層体の製造方法。
[1]
A gas barrier laminate manufacturing method comprising: a base material layer; and a gas barrier polymer layer provided on at least one surface of the base material layer,
Applying a mixture containing a polycarboxylic acid and a polyamine compound to a base material layer to obtain a coating layer;
The coating layer is heated by a heating means, and a gas barrier polymer layer having an amide bond is formed by dehydration condensation reaction between a carboxyl group contained in the polycarboxylic acid and an amino group contained in the polyamine compound. Process,
Including
The manufacturing method of the gas-barrier laminated body in which the said heating means contains at least 1 type selected from a conduction heat transfer system and a radiation heat transfer system.
[2]
The method for producing a gas barrier laminate according to the above [1], wherein the heating means includes at least one selected from conduction heat transfer by a heating roll and radiation heat transfer by infrared rays.
[3]
The method for producing a gas barrier laminate according to the above [1] or [2], wherein the heating means further comprises a convection heat transfer system.
[4]
In the step of forming the gas barrier polymer layer,
In the infrared absorption spectrum of the obtained gas barrier polymer layer,
The total peak area in the range of absorption band 1493 cm −1 to 1780 cm −1 is A,
When the total peak area in the range of the absorption band 1598cm -1 or 1690 cm -1 and is B,
The method for producing a gas barrier laminate according to any one of [1] to [3], wherein heating is performed until the area ratio of the amide bond represented by B / A is 0.330 or more.
[5]
(The number of moles of —COO— groups contained in the polycarboxylic acid in the mixture) / (the number of moles of amino groups contained in the polyamine compound in the mixture) = 100/22 and 100/99 or less, The method for producing a gas barrier laminate according to any one of the above [1] to [4].
[6]
Any one of the above [1] to [5], wherein the polycarboxylic acid includes one or two or more polymers selected from polyacrylic acid, polymethacrylic acid, and a copolymer of acrylic acid and methacrylic acid. The manufacturing method of the gas-barrier laminated body as described in one.
[7]
The method for producing a gas barrier laminate according to any one of [1] to [6], wherein the polyamine compound includes polyethyleneimine.
 本発明によれば、ガスバリア性能に優れる、ポリアミン化合物とポリカルボン酸によって形成されたアミド架橋構造を有するガスバリア性積層体を効率良く製造することができる製造方法を提供することができる。 According to the present invention, it is possible to provide a production method capable of efficiently producing a gas barrier laminate having an amide crosslinked structure formed by a polyamine compound and a polycarboxylic acid, which is excellent in gas barrier performance.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
本発明に係る実施形態のガスバリア性積層体の構造の一例を模式的に示した断面図である。It is sectional drawing which showed typically an example of the structure of the gas-barrier laminated body of embodiment which concerns on this invention. 本発明に係る実施形態のガスバリア性積層体の構造の一例を模式的に示した断面図である。It is sectional drawing which showed typically an example of the structure of the gas-barrier laminated body of embodiment which concerns on this invention.
 以下に、本発明の実施形態について、図面を用いて説明する。なお、図は概略図であり、実際の寸法比率とは一致していない。なお、文中の数字の間にある「~」は特に断りがなければ、以上から以下を表す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the figure is a schematic diagram and does not match the actual dimensional ratio. Unless otherwise specified, “˜” between numbers in the sentence represents the following.
<ガスバリア性積層体の製造方法>
 図1および2は、本発明に係る実施形態のガスバリア性積層体100の構造の一例を模式的に示した断面図である。
 ガスバリア性積層体100は、基材層101と、基材層101の少なくとも一方の面に設けられ、かつ、ポリカルボン酸およびポリアミン化合物を含む混合物(以下、ガスバリア用塗材とも呼ぶ。)を加熱することにより形成されたガスバリア性重合体層103と、を備える。
<Method for producing gas barrier laminate>
1 and 2 are cross-sectional views schematically showing an example of the structure of a gas barrier laminate 100 according to an embodiment of the present invention.
The gas barrier laminate 100 is provided on the base layer 101 and at least one surface of the base layer 101, and heats a mixture containing a polycarboxylic acid and a polyamine compound (hereinafter also referred to as a gas barrier coating material). And a gas barrier polymer layer 103 formed by doing so.
 以下、本実施形態に係るガスバリア性積層体100の製造方法の一例について説明する。
 本実施形態に係るガスバリア性積層体100の製造方法は、(1)ポリカルボン酸およびポリアミン化合物を含む混合物を基材層101に塗工し、塗工層を得る工程と、(2)加熱手段により上記塗工層を加熱し、上記ポリカルボン酸に含まれるカルボキシル基と上記ポリアミン化合物に含まれるアミノ基とを脱水縮合反応させることにより、アミド結合を有するガスバリア性重合体層103を形成する工程と、を含む。そして、上記(2)工程において、上記加熱手段が伝導伝熱方式および輻射伝熱方式から選択される少なくとも一種を含む。
Hereinafter, an example of the manufacturing method of the gas barrier laminate 100 according to the present embodiment will be described.
The manufacturing method of the gas barrier laminate 100 according to the present embodiment includes (1) a step of applying a mixture containing a polycarboxylic acid and a polyamine compound to the base material layer 101 to obtain a coating layer, and (2) a heating means. The step of forming the gas barrier polymer layer 103 having an amide bond by heating the coating layer by dehydration condensation reaction between the carboxyl group contained in the polycarboxylic acid and the amino group contained in the polyamine compound And including. In the step (2), the heating means includes at least one selected from a conduction heat transfer method and a radiation heat transfer method.
 まず、(1)ポリカルボン酸およびポリアミン化合物を含む混合物を基材層101に塗工し、塗工層を得る工程について説明する。 First, (1) a step of applying a mixture containing a polycarboxylic acid and a polyamine compound to the base material layer 101 to obtain a coating layer will be described.
 はじめに、ガスバリア用塗材を調製する。
 ガスバリア用塗材は、例えば、以下のようにして調製することができる。
First, a gas barrier coating material is prepared.
The gas barrier coating material can be prepared, for example, as follows.
 まず、ポリカルボン酸に、塩基を加えることによりポリカルボン酸のカルボキシル基を完全にまたは部分的に中和する。次いで、カルボキシル基を完全にまたは部分的に中和したポリカルボン酸にポリアミン化合物を添加する。このような手順でポリカルボン酸およびポリアミン化合物を混合することにより、ポリカルボン酸およびポリアミン化合物の凝集物の生成を抑制でき、均一なガスバリア用塗材を得ることができる。これにより、ポリカルボン酸に含まれる-COO-基とポリアミン化合物に含まれるアミノ基との脱水縮合反応をより効果的に進めることが可能となる。 First, the carboxyl group of the polycarboxylic acid is completely or partially neutralized by adding a base to the polycarboxylic acid. Next, the polyamine compound is added to the polycarboxylic acid in which the carboxyl group is completely or partially neutralized. By mixing the polycarboxylic acid and the polyamine compound in such a procedure, the formation of aggregates of the polycarboxylic acid and the polyamine compound can be suppressed, and a uniform gas barrier coating material can be obtained. Thereby, the dehydration condensation reaction between the —COO— group contained in the polycarboxylic acid and the amino group contained in the polyamine compound can be promoted more effectively.
 本実施形態に係る塩基で、ポリカルボン酸を中和することにより、ポリアミン化合物とポリカルボン酸とを混合する際に、ゲル化が起こることを抑制することができる。したがって、ポリカルボン酸において、ゲル化防止の観点から塩基によってカルボキシル基の部分中和物または完全中和物とすることが好ましい。中和物は、ポリカルボン酸のカルボキシル基を塩基で部分的にまたは完全に中和する(すなわち、ポリカルボン酸のカルボキシル基を部分的または完全にカルボン酸塩とする)ことにより得ることができる。これにより、ポリアミン化合物を添加する際、ゲル化を防止できる。
 部分中和物は、ポリカルボン酸の水溶液に塩基を添加することにより調製するが、ポリカルボン酸と塩基の量比を調節することにより、所望の中和度とすることができる。本実施形態においてはポリカルボン酸の塩基による中和度は、ポリアミン化合物のアミノ基との中和反応に起因するゲル化を十分に抑制する観点から、30~100当量%が好ましく、40~100当量%、さらには50~100当量%がより好ましい。
By neutralizing the polycarboxylic acid with the base according to the present embodiment, gelation can be suppressed when the polyamine compound and the polycarboxylic acid are mixed. Therefore, in the polycarboxylic acid, it is preferable to use a partially neutralized product or a completely neutralized product of the carboxyl group with a base from the viewpoint of preventing gelation. The neutralized product can be obtained by partially or completely neutralizing the carboxyl group of the polycarboxylic acid with a base (that is, partially or completely converting the carboxyl group of the polycarboxylic acid into a carboxylate). . Thereby, gelatinization can be prevented when adding a polyamine compound.
The partially neutralized product is prepared by adding a base to an aqueous solution of a polycarboxylic acid, but a desired degree of neutralization can be achieved by adjusting the amount ratio of the polycarboxylic acid and the base. In the present embodiment, the degree of neutralization of the polycarboxylic acid with the base is preferably from 30 to 100 equivalent%, from the viewpoint of sufficiently suppressing gelation due to the neutralization reaction with the amino group of the polyamine compound, and preferably from 40 to 100 Equivalent%, more preferably 50 to 100 equivalent% is more preferable.
 塩基としては、任意の水溶性塩基を用いることができる。水溶性塩基として、揮発性塩基と不揮発性塩基のいずれかまたは双方を使用することができるが、残存した遊離塩基によるガスバリア性低下を抑制する観点から乾燥・硬化の際に除去が容易な揮発性塩基であることが好ましい。
 揮発性塩基としては、例えば、アンモニア、モルホリン、アルキルアミン、2-ジメチルアミノエタノール、N-メチルモノホリン、エチレンジアミン、トリエチルアミン等の三級アミンまたはこれらの水溶液、あるいはこれらの混合物が挙げられる。良好なガスバリア性を得る観点から、アンモニア水溶液が好ましい。
 不揮発性塩基としては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウムまたはこれらの水溶液、あるいはこれらの混合物が挙げられる。
Any water-soluble base can be used as the base. As the water-soluble base, either or both of a volatile base and a nonvolatile base can be used. However, from the viewpoint of suppressing a decrease in gas barrier properties due to the remaining free base, the volatile property is easy to remove during drying and curing. A base is preferred.
Examples of the volatile base include ammonia, morpholine, alkylamine, 2-dimethylaminoethanol, N-methylmonophorin, tertiary amines such as ethylenediamine and triethylamine, aqueous solutions thereof, and mixtures thereof. From the viewpoint of obtaining good gas barrier properties, an aqueous ammonia solution is preferred.
Examples of the non-volatile base include sodium hydroxide, lithium hydroxide, potassium hydroxide, an aqueous solution thereof, or a mixture thereof.
 また、ガスバリア用塗材の固形分濃度は、塗工性を向上させる観点から、0.5~15質量%に設定することが好ましく、1~10質量%に設定することがさらに好ましい。 Further, the solid content concentration of the gas barrier coating material is preferably set to 0.5 to 15% by mass, more preferably 1 to 10% by mass from the viewpoint of improving the coating property.
(ポリカルボン酸およびポリアミン化合物の配合比率)
 本実施形態において、(ガスバリア用塗材中のポリカルボン酸に含まれる-COO-基のモル数)/(ガスバリア用塗材中のポリアミン化合物に含まれるアミノ基のモル数)は、好ましくは100/22超、より好ましくは100/25以上、特に好ましくは100/29以上である。
 一方、本実施形態において、(ガスバリア用塗材中のポリカルボン酸に含まれる-COO-基のモル数)/(ガスバリア用塗材中のポリアミン化合物に含まれるアミノ基のモル数)は、好ましくは100/99以下、より好ましくは100/86以下、特に好ましくは100/75以下である。本実施形態に係るガスバリア性重合体層103を得るためには、(ガスバリア用塗材中のポリカルボン酸に含まれる-COO-基のモル数)/(ガスバリア用塗材中のポリアミン化合物に含まれるアミノ基のモル数)が上記範囲内になるように、ガスバリア用塗材中のポリカルボン酸およびポリアミン化合物の配合比率を調整することが好ましい。
(Blend ratio of polycarboxylic acid and polyamine compound)
In the present embodiment, (the number of moles of —COO— groups contained in the polycarboxylic acid in the gas barrier coating material) / (the number of moles of amino groups contained in the polyamine compound in the gas barrier coating material) is preferably 100. / 22, more preferably 100/25 or more, particularly preferably 100/29 or more.
On the other hand, in this embodiment, (the number of moles of —COO— groups contained in the polycarboxylic acid in the gas barrier coating material) / (the number of moles of amino groups contained in the polyamine compound in the gas barrier coating material) is preferably Is 100/99 or less, more preferably 100/86 or less, and particularly preferably 100/75 or less. In order to obtain the gas barrier polymer layer 103 according to this embodiment, (the number of moles of —COO— group contained in the polycarboxylic acid in the gas barrier coating material) / (included in the polyamine compound in the gas barrier coating material) It is preferable to adjust the blending ratio of the polycarboxylic acid and the polyamine compound in the gas barrier coating material so that the number of moles of amino groups to be within the above range.
(ポリカルボン酸)
 本実施形態に係るポリカルボン酸は、分子内に2個以上のカルボキシル基を有するものである。具体的には、アクリル酸、メタクリル酸、イタコン酸、フマル酸、クロトン酸、桂皮酸、3-ヘキセン酸、3-ヘキセン二酸等のα,β-不飽和カルボン酸の単独重合体またはこれらの共重合体が挙げられる。また、上記α,β-不飽和カルボン酸と、エチルエステル等のエステル類、エチレン等のオレフィン類等との共重合体であってもよい。
 これらの中でも、アクリル酸、メタクリル酸、イタコン酸、フマル酸、クロトン酸、桂皮酸の単独重合体またはこれらの共重合体が好ましく、ポリアクリル酸、ポリメタクリル酸、アクリル酸とメタクリル酸との共重合体から選択される一種または二種以上の重合体であることがより好ましく、ポリアクリル酸、ポリメタクリル酸から選択される少なくとも一種の重合体であることがさらに好ましく、アクリル酸の単独重合体、メタクリル酸の単独重合体から選択される少なくとも一種の重合体であることが特に好ましい。
 ここで、本実施形態において、ポリアクリル酸とは、アクリル酸の単独重合体、アクリル酸と他のモノマーとの共重合体の両方を含む。アクリル酸と他のモノマーとの共重合体の場合、ポリアクリル酸は、重合体100質量%中に、アクリル酸由来の構成単位を、通常は90質量%以上、好ましくは95質量%以上、より好ましくは99質量%以上含む。
 また、本実施形態において、ポリメタクリル酸とは、メタクリル酸の単独重合体、メタクリル酸と他のモノマーとの共重合体の両方を含む。メタクリル酸と他のモノマーとの共重合体の場合、ポリメタクリル酸は、重合体100質量%中に、メタクリル酸由来の構成単位を、通常は90質量%以上、好ましくは95質量%以上、より好ましくは99質量%以上含む。
(Polycarboxylic acid)
The polycarboxylic acid according to this embodiment has two or more carboxyl groups in the molecule. Specifically, homopolymers of α, β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, crotonic acid, cinnamic acid, 3-hexenoic acid, 3-hexenedioic acid, or the like A copolymer is mentioned. Further, it may be a copolymer of the above α, β-unsaturated carboxylic acid with esters such as ethyl ester, olefins such as ethylene, and the like.
Among these, a homopolymer of acrylic acid, methacrylic acid, itaconic acid, fumaric acid, crotonic acid, cinnamic acid or a copolymer thereof is preferable, and polyacrylic acid, polymethacrylic acid, a copolymer of acrylic acid and methacrylic acid is preferable. More preferably, it is one or two or more polymers selected from polymers, more preferably at least one polymer selected from polyacrylic acid and polymethacrylic acid, and a homopolymer of acrylic acid Particularly preferred is at least one polymer selected from homopolymers of methacrylic acid.
Here, in this embodiment, polyacrylic acid includes both a homopolymer of acrylic acid and a copolymer of acrylic acid and other monomers. In the case of a copolymer of acrylic acid and another monomer, polyacrylic acid has a structural unit derived from acrylic acid in 100% by mass of the polymer, usually 90% by mass or more, preferably 95% by mass or more. Preferably it contains 99 mass% or more.
In the present embodiment, polymethacrylic acid includes both a homopolymer of methacrylic acid and a copolymer of methacrylic acid and other monomers. In the case of a copolymer of methacrylic acid and another monomer, polymethacrylic acid has a structural unit derived from methacrylic acid, usually 90% by mass or more, preferably 95% by mass or more, in 100% by mass of the polymer. Preferably it contains 99 mass% or more.
 本実施形態に係るポリカルボン酸はカルボン酸モノマーが重合した重合体であり、ポリカルボン酸の分子量としては、ガスバリア性および取扱い性のバランスに優れる観点から500~2,000,000が好ましく、1,500~1,000,000がより好ましい。さらに5,000~500,000が好ましく、10,000~100,000が特に好ましい。
 ここで、本実施形態において、ポリカルボン酸の分子量はポリエチレンオキサイド換算の重量平均分子量であり、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができる。
The polycarboxylic acid according to this embodiment is a polymer obtained by polymerizing carboxylic acid monomers, and the molecular weight of the polycarboxylic acid is preferably 500 to 2,000,000 from the viewpoint of excellent balance between gas barrier properties and handleability. 500 to 1,000,000 is more preferable. Further, 5,000 to 500,000 is preferable, and 10,000 to 100,000 is particularly preferable.
Here, in this embodiment, the molecular weight of the polycarboxylic acid is a weight average molecular weight in terms of polyethylene oxide, and can be measured using gel permeation chromatography (GPC).
(ポリアミン化合物)
 本実施形態に係るポリアミン化合物は、主鎖あるいは側鎖あるいは末端にアミノ基を2つ以上有するポリマーである。具体的には、ポリアリルアミン、ポリビニルアミン、ポリエチレンイミン、ポリ(トリメチレンイミン)等の脂肪族系ポリアミン類;ポリリジン、ポリアルギニンのように側鎖にアミノ基を有するポリアミド類;等が挙げられる。また、アミノ基の一部を変性したポリアミンでもよい。良好なガスバリア性を得る観点から、ポリエチレンイミンがより好ましい。
(Polyamine compound)
The polyamine compound according to this embodiment is a polymer having two or more amino groups in the main chain, side chain, or terminal. Specific examples include aliphatic polyamines such as polyallylamine, polyvinylamine, polyethyleneimine, and poly (trimethyleneimine); polyamides having an amino group in the side chain such as polylysine and polyarginine; and the like. Moreover, the polyamine which modified some amino groups may be sufficient. From the viewpoint of obtaining good gas barrier properties, polyethyleneimine is more preferable.
 本実施形態に係るポリアミン化合物の重量平均分子量は、ガスバリア性および取扱い性のバランスに優れる観点から、50~5,000,000が好ましく、100~2,000,000がより好ましく、1,500~1,000,000がさらに好ましく、1,500~500,000がよりさらに好ましく、1,500~100,000が特に好ましい。
 ここで、本実施形態において、ポリアミン化合物の分子量は沸点上昇法や粘度法を用いて測定することができる。
The weight average molecular weight of the polyamine compound according to this embodiment is preferably 50 to 5,000,000, more preferably 100 to 2,000,000, and more preferably 1,500 to 5,000,000 from the viewpoint of excellent balance between gas barrier properties and handling properties. 1,000,000 is more preferred, 1,500 to 500,000 is still more preferred, and 1,500 to 100,000 is particularly preferred.
Here, in this embodiment, the molecular weight of the polyamine compound can be measured using a boiling point increase method or a viscosity method.
 また、ガスバリア用塗材には、塗布の際にはじきが発生するのを防止する観点から、界面活性剤をさらに添加することが好ましい。界面活性剤の添加量は、ガスバリア用塗材の固形分全体を100質量%としたとき、0.01~3質量%が好ましく、0.01~1質量%がより好ましい。 In addition, it is preferable to further add a surfactant to the gas barrier coating material from the viewpoint of preventing the occurrence of repelling during coating. The addition amount of the surfactant is preferably 0.01 to 3% by mass, and more preferably 0.01 to 1% by mass when the total solid content of the gas barrier coating material is 100% by mass.
 本実施形態に係る界面活性剤としては、例えば、陰イオン性界面活性剤、非イオン性界面活性剤、陽イオン界面活性剤、両性界面活性剤等が挙げられ、良好な塗工性を得る観点から、非イオン性界面活性剤が好ましく、ポリオキシエチレンアルキルエーテル類がより好ましい。 Examples of the surfactant according to this embodiment include an anionic surfactant, a nonionic surfactant, a cationic surfactant, an amphoteric surfactant, and the like, from the viewpoint of obtaining good coatability. Therefore, nonionic surfactants are preferable, and polyoxyethylene alkyl ethers are more preferable.
 非イオン性界面活性剤としては、例えば、ポリオキシアルキレンアルキルアリールエーテル類、ポリオキシアルキレンアルキルエーテル類、ポリオキシアルキレン脂肪酸エステル類、ソルビタン脂肪酸エステル類、シリコーン系界面活性剤、アセチレンアルコール系界面活性剤、含フッ素界面活性剤等が挙げられる。 Examples of nonionic surfactants include polyoxyalkylene alkyl aryl ethers, polyoxyalkylene alkyl ethers, polyoxyalkylene fatty acid esters, sorbitan fatty acid esters, silicone surfactants, and acetylene alcohol surfactants. And fluorine-containing surfactants.
 ポリオキシアルキレンアルキルアリールエーテル類としては、例えば、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル等を挙げることができる。
 ポリオキシアルキレンアルキルエーテル類としては、例えば、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル等のポリオキシエチレンアルキルエーテル類を挙げることができる。
 ポリオキシアルキレン脂肪酸エステル類としては、例えば、ポリオキシエチレンオレイン酸エステル、ポリオキシエチレンラウリン酸エステル、ポリオキシエチレンジステアリン酸エステル等を挙げることができる。
 ソルビタン脂肪酸エステル類としては、例えば、ソルビタンラウレート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタンセスキオレート、ポリオキシエチレンモノオレエート、ポリオキシエチレンステアレート等を挙げることができる。
 シリコーン系界面活性剤としては、例えば、ジメチルポリシロキサン等を挙げることができる。
 アセチレンアルコール系界面活性剤としては、例えば、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール、3,6-ジメチル-4-オクチン-3,6-ジオール、3,5-ジメチル-1-ヘキシン-3オール等を挙げることができる。
 含フッ素系界面活性剤としては、例えば、フッ素アルキルエステル等を挙げることができる。
Examples of the polyoxyalkylene alkylaryl ethers include polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene dodecyl phenyl ether, and the like.
Examples of polyoxyalkylene alkyl ethers include polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether and polyoxyethylene lauryl ether.
Examples of polyoxyalkylene fatty acid esters include polyoxyethylene oleate, polyoxyethylene laurate, polyoxyethylene distearate, and the like.
Examples of sorbitan fatty acid esters include sorbitan laurate, sorbitan monostearate, sorbitan monooleate, sorbitan sesquioleate, polyoxyethylene monooleate, polyoxyethylene stearate and the like.
Examples of silicone surfactants include dimethylpolysiloxane.
Examples of acetylene alcohol surfactants include 2,4,7,9-tetramethyl-5-decyne-4,7-diol, 3,6-dimethyl-4-octyne-3,6-diol, 3, 5-dimethyl-1-hexyn-3-ol and the like can be mentioned.
Examples of the fluorine-containing surfactant include a fluorine alkyl ester.
 本実施形態に係るガスバリア用塗材は、本発明の目的を損なわない範囲で、他の添加剤を含んでもよい。例えば、滑剤、スリップ剤、アンチ・ブロッキング剤、帯電防止剤、防曇剤、顔料、染料、無機また有機の充填剤、多価金属化合物等の各種添加剤を添加してよい。 The gas barrier coating material according to this embodiment may contain other additives as long as the object of the present invention is not impaired. For example, various additives such as a lubricant, slip agent, anti-blocking agent, antistatic agent, antifogging agent, pigment, dye, inorganic or organic filler, and polyvalent metal compound may be added.
 次いで、ガスバリア用塗材を基材層101に塗工し、塗工層を得る。 Next, a gas barrier coating material is applied to the base material layer 101 to obtain a coating layer.
 本実施形態に係るガスバリア用塗材を基材層101に塗布する方法は、特に限定されず、通常の方法を用いることができる。例えば、メイヤーバーコーター、エアーナイフコーター、ダイレクトグラビアコーター、グラビアオフセット、アークグラビアコーター、グラビアリバースおよびジェットノズル方式等のグラビアコーター、トップフィードリバースコーター、ボトムフィードリバースコーターおよびノズルフィードリバースコーター等のリバースロールコーター、5本ロールコーター、リップコーター、バーコーター、バーリバースコーター、ダイコーター、アプリケーター等種々公知の塗工機を用いて塗工する方法が挙げられる。 The method for applying the gas barrier coating material according to the present embodiment to the base material layer 101 is not particularly limited, and a normal method can be used. For example, reverse rolls such as Mayer bar coater, air knife coater, direct gravure coater, gravure offset, arc gravure coater, gravure reverse and jet nozzle type gravure coater, top feed reverse coater, bottom feed reverse coater and nozzle feed reverse coater Examples of the coating method include a coater, a five-roll coater, a lip coater, a bar coater, a bar reverse coater, a die coater, and an applicator.
 塗工層の厚み(ウエット厚み)は、0.05~300μmが好ましく、1~200μmがより好ましく、1~100μmとなることがさらに好ましく、0.05~30μmが特に好ましい。
 塗工層の厚みが上記上限値以下であると、得られるガスバリア性積層体100がカールすることを抑制できる。また、塗工層の厚みが上記上限値以下であると、ポリカルボン酸に含まれる-COO-基とポリアミン化合物に含まれるアミノ基との脱水縮合反応をより効果的に進めることが可能となる。
 また、塗工層の厚みが上記下限値以上であると、得られるガスバリア性積層体100のバリア性能をより良好なものとすることができる。
 加熱処理後のガスバリア性重合体層103の厚みは0.01~15μmが好ましく、0.05~5μmがより好ましく、0.1~1μmがさらに好ましく、ガスバリア性および基材層101との安定的な接着のバランスに優れることから、0.15~0.45μm以下が特に好ましい。
The thickness (wet thickness) of the coating layer is preferably 0.05 to 300 μm, more preferably 1 to 200 μm, still more preferably 1 to 100 μm, and particularly preferably 0.05 to 30 μm.
It can suppress that the gas barrier laminated body 100 obtained as the thickness of a coating layer is below the said upper limit, curls. Further, when the thickness of the coating layer is not more than the above upper limit value, the dehydration condensation reaction between the —COO— group contained in the polycarboxylic acid and the amino group contained in the polyamine compound can be promoted more effectively. .
Moreover, the barrier performance of the gas-barrier laminated body 100 obtained as the thickness of a coating layer is more than the said lower limit can be made more favorable.
The thickness of the gas barrier polymer layer 103 after the heat treatment is preferably 0.01 to 15 μm, more preferably 0.05 to 5 μm, still more preferably 0.1 to 1 μm, and the gas barrier property and stability with the base material layer 101 are stable. In particular, it is preferably 0.15 to 0.45 μm or less because of excellent adhesion balance.
 つづいて、(2)加熱手段により上記塗工層を加熱し、上記ポリカルボン酸に含まれるカルボキシル基と上記ポリアミン化合物に含まれるアミノ基とを脱水縮合反応させることにより、アミド結合を有するガスバリア性重合体層103を形成する工程について説明する。 Subsequently, (2) gas barrier properties having an amide bond by heating the coating layer by a heating means and causing a dehydration condensation reaction between a carboxyl group contained in the polycarboxylic acid and an amino group contained in the polyamine compound. A process for forming the polymer layer 103 will be described.
 本実施形態のガスバリア性積層体100の製造方法において、本実施形態に係るガスバリア性重合体層103を得るためには、上記塗工層を加熱する手段として、高温体との接触による「伝導伝熱方式」および高温体からの熱輻射による「輻射伝熱方式」から選択される少なくとも一種を採用する。
 これにより、上記ポリカルボン酸に含まれるカルボキシル基と上記ポリアミン化合物に含まれるアミノ基との脱水縮合反応を効率的に進めることができる。
In the method for producing the gas barrier laminate 100 of the present embodiment, in order to obtain the gas barrier polymer layer 103 according to the present embodiment, as a means for heating the coating layer, “conduction conduction” by contact with a high temperature body. At least one selected from “thermal system” and “radiant heat transfer system” by heat radiation from a high temperature body is adopted.
Thereby, the dehydration condensation reaction of the carboxyl group contained in the polycarboxylic acid and the amino group contained in the polyamine compound can be efficiently advanced.
 伝導伝熱方式とは、高温体に接触する材料を熱伝導によって加熱する方法であり、伝導伝熱方式による加熱をおこなう装置としては、例えば、加熱ロール等が挙げられる。加熱ロールによる加熱の場合、加熱ロールを材料に接触させることにより加熱がおこなわれる。加熱ロールは、フィルムへの熱伝導効率に優れているという観点から好ましい。
 輻射伝熱方式とは、高温体が放出する赤外線の放射エネルギーを熱源として利用する方法であり、材料に吸収された赤外線が材料内で熱に変わり材料を加熱するものである。赤外線源としては、赤外線ヒーターや赤外線ランプなどが用いられる。
The conduction heat transfer method is a method of heating a material in contact with a high-temperature body by heat conduction, and examples of a device that performs heating by the conduction heat transfer method include a heating roll. In the case of heating with a heating roll, heating is performed by bringing the heating roll into contact with the material. The heating roll is preferable from the viewpoint of being excellent in the efficiency of heat conduction to the film.
The radiant heat transfer method is a method in which infrared radiation energy emitted from a high-temperature body is used as a heat source. Infrared light absorbed by the material is changed into heat in the material to heat the material. As the infrared source, an infrared heater, an infrared lamp, or the like is used.
 ガスバリア性重合体層103を形成する工程において、加熱処理温度は160~250℃、加熱処理時間は1秒~10分、好ましくは加熱処理温度が180~240℃、加熱処理時間が5秒~5分、より好ましく加熱処理温度が190℃~230℃、加熱処理時間が10秒~2分の条件で加熱処理をおこなうことが望ましい。 In the step of forming the gas barrier polymer layer 103, the heat treatment temperature is 160 to 250 ° C., the heat treatment time is 1 second to 10 minutes, preferably the heat treatment temperature is 180 to 240 ° C., and the heat treatment time is 5 seconds to 5 seconds. It is desirable that the heat treatment be performed under the conditions that the heat treatment temperature is 190 ° C. to 230 ° C. and the heat treatment time is 10 seconds to 2 minutes.
 上記塗工層を加熱するとき、基材層101側から加熱してもよいし、上記塗工層側から加熱してもよいが、ガスバリア性能に優れるガスバリア性重合体層103をより安定的に得る観点から、基材層101側から加熱することが好ましい。 When the coating layer is heated, it may be heated from the base material layer 101 side or from the coating layer side, but the gas barrier polymer layer 103 having excellent gas barrier performance can be made more stable. From the viewpoint of obtaining, it is preferable to heat from the base material layer 101 side.
 また、上記塗工層を加熱するとき、対流伝熱方式による加熱手段を適宜組み合わせてもよい。ここで、対流伝熱方式による加熱とは、加熱空気を熱風として用い、これを材料に直接接触させて行う加熱方法で、材料と熱風の相対速度、および材料と熱風の温度差に起因する伝熱量によって制御するものである。
 対流伝熱方式による加熱をおこなう装置としては、例えば、熱風乾燥器、熱風オーブン、ドライヤー等が挙げられる。
Moreover, when heating the said coating layer, you may combine suitably the heating means by a convection heat transfer system. Here, heating by the convection heat transfer method is a heating method in which heated air is used as hot air and is brought into direct contact with the material. The heat transfer is caused by the relative speed between the material and hot air and the temperature difference between the material and hot air. It is controlled by the amount of heat.
Examples of the apparatus that performs heating by the convection heat transfer method include a hot air dryer, a hot air oven, and a dryer.
 なお、ポリカルボン酸に含まれる-COO-基とポリアミン化合物に含まれるアミノ基との脱水縮合反応を効果的に進める観点から、加熱処理温度および加熱処理時間はガスバリア用塗材のウエット厚みに応じて調整することが重要である。 From the viewpoint of effectively promoting the dehydration condensation reaction between the —COO— group contained in the polycarboxylic acid and the amino group contained in the polyamine compound, the heat treatment temperature and the heat treatment time depend on the wet thickness of the gas barrier coating material. It is important to make adjustments.
 ガスバリア性重合体層103を形成する工程において、塗工層の上記加熱の前に、上記塗工層の乾燥をおこなってもよい。なお、上記乾燥と加熱処理を同時におこなってもよい。
 ガスバリア性重合体層103を形成する工程において、塗工層の加熱処理の前に乾燥をおこなう場合、乾燥温度:60~150℃、乾燥時間:1秒~60秒の条件で乾燥をおこなうことが望ましい。
In the step of forming the gas barrier polymer layer 103, the coating layer may be dried before the heating of the coating layer. In addition, you may perform the said drying and heat processing simultaneously.
In the step of forming the gas barrier polymer layer 103, when drying is performed before the heat treatment of the coating layer, the drying may be performed under conditions of a drying temperature: 60 to 150 ° C. and a drying time: 1 second to 60 seconds. desirable.
 本実施形態に係るガスバリア性重合体層103は、上記のガスバリア用塗材により形成されたものであり、ガスバリア用塗材を、基材層101や後述の無機物層102に塗布した後、乾燥、熱処理を行い、ガスバリア用塗材を硬化させることによって得られるものである。 The gas barrier polymer layer 103 according to the present embodiment is formed by the gas barrier coating material described above. After the gas barrier coating material is applied to the base material layer 101 or the inorganic layer 102 described later, the gas barrier polymer layer 103 is dried. It is obtained by performing a heat treatment to cure the gas barrier coating material.
 また、ガスバリア性重合体層103を形成する工程では、得られるガスバリア性重合体層103の赤外線吸収スペクトルにおいて、吸収帯1493cm-1以上1780cm-1以下の範囲における全ピーク面積をAとし、吸収帯1598cm-1以上1690cm-1以下の範囲における全ピーク面積をBとしたとき、B/Aで示されるアミド結合の面積比率がガスバリア性の観点から好ましくは0.330以上、より好ましくは0.370以上、さらに好ましくは0.400以上、特に好ましくは0.420以上となるまで加熱をおこなう。これにより、より一層ガスバリア性能に優れたガスバリア性積層体100を得ることができる。また、B/Aで示されるアミド結合の面積比率の上限は、外観、寸法安定性、生産性のバランスをより向上させる観点から、好ましくは0.700以下、より好ましくは0.680以下、特に好ましくは0.650以下である。 In the step of forming the gas barrier polymer layer 103, in the infrared absorption spectrum of the obtained gas barrier polymer layer 103, the total peak area in the range from 1493 cm −1 to 1780 cm −1 is A, and the absorption band when the total peak area in the range of 1598cm -1 or 1690 cm -1 or less as B, B / is preferably the area ratio of the amide bond from the viewpoint of gas barrier properties represented by a 0.330 or more, more preferably 0.370 As mentioned above, it heats until it becomes 0.400 or more, Especially preferably, it becomes 0.420 or more more preferably. Thereby, the gas-barrier laminated body 100 which was further excellent in gas barrier performance can be obtained. The upper limit of the area ratio of the amide bond represented by B / A is preferably 0.700 or less, more preferably 0.680 or less, particularly from the viewpoint of further improving the balance of appearance, dimensional stability, and productivity. Preferably it is 0.650 or less.
 本実施形態に係るガスバリア性重合体層103は赤外線吸収スペクトルにおける未反応のカルボン酸のνC=Oに基づく吸収が1700cm-1付近にみられ、架橋構造であるアミド結合のνC=Oに基づく吸収が1630~1685cm-1付近にみられ、カルボン酸塩のνC=Oに基づく吸収が1540~1560cm-1付近にみられる。
 すなわち、本実施形態において、赤外線吸収スペクトルにおける吸収帯1493cm-1以上1780cm-1以下の範囲における全ピーク面積Aは、カルボン酸とアミド結合とカルボン酸塩の合計量の指標を表し、吸収帯1598cm-1以上1690cm-1以下の範囲における全ピーク面積Bはアミド結合の存在量の指標を表し、後述する吸収帯1690cm-1以上1780cm-1以下の範囲における全ピーク面積Cは未反応のカルボン酸の存在量の指標を表し、後述する吸収帯1493cm-1以上1598cm-1以下の範囲における全ピーク面積Dはカルボン酸塩、すなわちカルボキシル基とアミノ基のイオン架橋の存在量の指標を表していると考えられる。
In the gas barrier polymer layer 103 according to this embodiment, the absorption based on νC═O of the unreacted carboxylic acid in the infrared absorption spectrum is observed in the vicinity of 1700 cm −1 , and the absorption based on νC═O of the amide bond which is a crosslinked structure. Is observed in the vicinity of 1630 to 1685 cm −1 , and absorption based on νC═O of the carboxylate is observed in the vicinity of 1540 to 1560 cm −1 .
That is, in this embodiment, the total peak area A in the 1780 cm -1 or less in the range absorption band 1493cm -1 or more in the infrared absorption spectrum, represent an indication of the total amount of carboxylic acid amide bond with a carboxylic acid salt, the absorption band 1598cm total peak area B in the range of -1 to 1690 cm -1 or less represents an indication of the presence of the amide bond, the total peak area C in the following ranges absorption band 1690 cm -1 or more 1780 cm -1, which will be described later unreacted carboxylic acid represents an indication of the abundance, the total peak area D in the range of less absorption band 1493cm -1 or 1598cm -1 to be described later represents a carboxylate, i.e., an indication of the presence of ionic crosslinking of the carboxyl group and an amino group it is conceivable that.
 なお、本実施形態において、上記全ピーク面積A~Dは、以下の手順で測定できる。
 まず、本実施形態のガスバリア性重合体層103から1cm×3cmの測定用サンプルを切り出す。次いで、そのガスバリア性重合体層103の表面の赤外線吸収スペクトルを赤外線全反射測定(ATR法)により得る。得られた赤外線吸収スペクトルから、以下の手順(1)~(4)で上記全ピーク面積A~Dを算出する。
(1)1780cm-1と1493cm-1の吸光度を直線(N)で結び、吸収帯1493cm-1以上1780cm-1以下の範囲の吸光スペクトルとNで囲まれる面積を全ピーク面積Aとする。
(2)1690cm-1の吸光度(Q)から垂直に直線(O)を下ろし、NとOの交差点をPとし、1598cm-1の吸光度(R)から垂直に直線(S)を下ろし、NとSの交差点をTとし、吸収帯1598cm-1以上1690cm-1以下の範囲の吸収スペクトルと直線S、点T、直線N、点P、直線O、吸光度Q、吸光度Rで囲まれる面積を全ピーク面積Bとする。
(3)吸収帯1690cm-1以上1780cm-1以下の範囲の吸収スペクトルと吸光度Q、直線O,点P、直線Nで囲まれる面積を全ピーク面積Cとする。
(4)吸収帯1493cm-1以上1598cm-1以下の範囲の吸収スペクトルと吸光度R、直線S、点T、直線Nで囲まれる面積を全ピーク面積Dとする。
 次いで、上記の方法で求めた面積から面積比B/A、C/A、D/Aを求める。
 なお、本実施形態の赤外線吸収スペクトルの測定(赤外線全反射測定:ATR法)は、例えば、日本分光社製IRT-5200装置を用い、PKM-GE-S(Germanium)結晶を装着して入射角度45度、室温、分解能4cm-1、積算回数100回の条件で行うことができる。
In the present embodiment, the total peak areas A to D can be measured by the following procedure.
First, a measurement sample of 1 cm × 3 cm is cut out from the gas barrier polymer layer 103 of the present embodiment. Next, an infrared absorption spectrum of the surface of the gas barrier polymer layer 103 is obtained by infrared total reflection measurement (ATR method). The total peak areas A to D are calculated from the obtained infrared absorption spectrum by the following procedures (1) to (4).
(1) 1780 cm connected by -1 and the linear absorbance 1493cm -1 (N), the area surrounded by the absorption spectra and N of the absorption band 1493Cm -1 or 1780 cm -1 or less in the range that the total peak area A.
(2) A straight line (O) is dropped vertically from the absorbance (Q) at 1690 cm −1 , the intersection of N and O is taken as P, and a straight line (S) is dropped vertically from the absorbance (R) at 1598 cm −1. the intersection S is T, the absorption spectrum and the straight line S of the absorption band 1598cm -1 or 1690 cm -1 or less in the range, the point T, the straight line N, the point P, the straight line O, absorbance Q, the total peak area surrounded by absorbance R It is assumed that area B.
(3) the absorption spectrum and absorbance Q absorption bands 1690 cm -1 or 1780 cm -1 or less in the range, the linear O, a point P, and the area surrounded by straight lines N and total peak area C.
(4) The total peak area D is defined as the area surrounded by the absorption spectrum, absorbance R, straight line S, point T, and straight line N in the absorption band range of 1493 cm −1 to 1598 cm −1 .
Next, area ratios B / A, C / A, and D / A are obtained from the areas obtained by the above method.
The measurement of the infrared absorption spectrum of this embodiment (infrared total reflection measurement: ATR method) is performed using, for example, an IRT-5200 apparatus manufactured by JASCO Corporation, and a PKM-GE-S (Germanium) crystal attached thereto. The measurement can be performed under the conditions of 45 degrees, room temperature, resolution of 4 cm −1 , and accumulation count of 100 times.
 ポリカルボン酸およびポリアミン化合物を含む混合物により形成されたガスバリア性重合体層103にはイオン架橋とアミド架橋という2種類の架橋構造が存在し、これらの架橋構造の存在比率がガスバリア性能を向上させる観点において重要である。なお、上記イオン架橋とは、ポリカルボン酸に含まれるカルボキシル基とポリアミン化合物に含まれるアミノ基とが酸塩基反応を起こすことによって生成するものであり、上記アミド架橋とは、ポリカルボン酸に含まれるカルボキシル基とポリアミン化合物に含まれるアミノ基とが脱水縮合反応を起こすことによって生成するものである。
 そこで、高湿度下およびボイル・レトルト処理後での双方の条件下での酸素バリア性、水蒸気バリア性等のガスバリア性能を向上させつつ、外観、寸法安定性、生産性の性能バランスを向上させるための設計指針として、上記B/Aで示されるアミド結合の面積比率という尺度を適用できる。製造条件を制御することにより、ガスバリア性重合体層103の上記B/Aで示されるアミド結合の面積比率を特定値以上に調整することが可能となり、このような特性を有するガスバリア性重合体層103は高湿度下およびボイル・レトルト処理後での双方の条件下でのガスバリア性がより効果的に発現し、さらに外観、寸法安定性、生産性のバランスにも優れている。
 すなわち、B/Aで示されるアミド結合の面積比率を上記下限値以上とすることにより、高湿度下およびボイル・レトルト処理後での双方の条件下での酸素バリア性、水蒸気バリア性により一層優れながら、外観、寸法安定性、生産性のバランスにも優れるガスバリア性積層体100を得ることができる。
The gas barrier polymer layer 103 formed of a mixture containing a polycarboxylic acid and a polyamine compound has two types of cross-linked structures, ionic cross-linking and amide cross-linking, and the presence ratio of these cross-linked structures improves the gas barrier performance. Is important. The ionic crosslinking is generated by causing an acid-base reaction between a carboxyl group contained in the polycarboxylic acid and an amino group contained in the polyamine compound, and the amide crosslinking is contained in the polycarboxylic acid. It is produced by causing a dehydration condensation reaction between the carboxyl group to be produced and the amino group contained in the polyamine compound.
Therefore, to improve the performance balance of appearance, dimensional stability, and productivity while improving gas barrier performance such as oxygen barrier properties and water vapor barrier properties under both high humidity and after boil / retort treatment As a design guideline, a scale of area ratio of amide bond represented by B / A can be applied. By controlling the production conditions, it becomes possible to adjust the area ratio of the amide bond represented by B / A of the gas barrier polymer layer 103 to a specific value or more, and the gas barrier polymer layer having such characteristics. No. 103 exhibits more effective gas barrier properties under both high humidity and after boil-retort treatment, and also has an excellent balance of appearance, dimensional stability, and productivity.
That is, by setting the area ratio of the amide bond represented by B / A to the above lower limit value or more, the oxygen barrier property and the water vapor barrier property under both high humidity and after the boil / retort treatment are further improved. However, the gas barrier laminate 100 having an excellent balance of appearance, dimensional stability, and productivity can be obtained.
 このようなガスバリア性重合体層103が上記の性能バランスに優れる理由は必ずしも明らかではないが、B/Aで示されるアミド結合の面積比率が上記範囲内であるガスバリア性重合体層は、前述したイオン架橋とアミド架橋という2種類の架橋構造がバランス良く緻密な構造を形成しているためであると考えられる。
 すなわち、上記B/Aで示されるアミド結合の面積比率が上記範囲内であることは、イオン架橋とアミド架橋という2種類の架橋構造がバランス良く形成していることを意味していると考えられる。
The reason why such a gas barrier polymer layer 103 is excellent in the above performance balance is not necessarily clear, but the gas barrier polymer layer in which the area ratio of amide bonds represented by B / A is within the above range is described above. This is probably because the two types of cross-linking structures, ionic cross-linking and amide cross-linking, form a dense structure with a good balance.
That is, if the area ratio of the amide bond represented by B / A is within the above range, it is considered that the two types of cross-linked structures, ionic cross-linking and amide cross-linking, are formed in a well-balanced manner. .
 また、ガスバリア性重合体層103を形成する工程では、得られるガスバリア性重合体層103の赤外線吸収スペクトルにおいて、吸収帯1690cm-1以上1780cm-1以下の範囲における全ピーク面積をCとしたとき、C/Aで示されるカルボン酸の面積比率が、外観、寸法安定性、生産性のバランスをより向上させる観点から、好ましくは0.040以上、より好ましくは0.060以上、特に好ましくは0.080以上となるまで加熱をおこなう。
 また、上記C/Aで示されるカルボン酸の面積比率の上限は、高湿度下およびボイル・レトルト処理後での双方の条件下での酸素バリア性、水蒸気バリア性をより一層向上させる観点から、好ましくは0.500以下、より好ましくは0.450以下、特に好ましくは0.400以下である。
Further, in the step of forming a gas barrier polymer layer 103, in the infrared absorption spectrum of the gas barrier polymer layer 103 obtained when the total peak area in the range of the absorption band 1690 cm -1 or 1780 cm -1 and as C, From the viewpoint of further improving the balance of appearance, dimensional stability, and productivity, the area ratio of the carboxylic acid represented by C / A is preferably 0.040 or more, more preferably 0.060 or more, and particularly preferably 0.8. Heat until 080 or higher.
In addition, the upper limit of the area ratio of the carboxylic acid represented by C / A is from the viewpoint of further improving the oxygen barrier property and the water vapor barrier property under both high humidity and after boil-retort treatment. Preferably it is 0.500 or less, More preferably, it is 0.450 or less, Most preferably, it is 0.400 or less.
 また、ガスバリア性重合体層103を形成する工程では、得られるガスバリア性重合体層103の赤外線吸収スペクトルにおいて、吸収帯1493cm-1以上1598cm-1以下の範囲における全ピーク面積をDとしたとき、D/Aで示されるカルボン酸塩の面積比率が、高湿度下およびボイル・レトルト処理後での双方の条件下での酸素バリア性、水蒸気バリア性をより一層向上させる観点から、好ましくは0.100以上、より好ましくは0.150以上となるまで加熱をおこなう。
 また、上記D/Aで示されるカルボン酸塩の面積比率の上限は、外観、寸法安定性、生産性のバランスをより向上させる観点から、好ましくは0.450以下、より好ましくは0.420以下、特に好ましくは0.400以下である。
In the step of forming the gas barrier polymer layer 103, in the infrared absorption spectrum of the obtained gas barrier polymer layer 103, when the total peak area in the range of the absorption band 1493 cm −1 to 1598 cm −1 is D, The area ratio of the carboxylate salt represented by D / A is preferably from the viewpoint of further improving oxygen barrier properties and water vapor barrier properties under both high humidity and after boil-retort treatment. Heating is performed to 100 or more, more preferably 0.150 or more.
Moreover, the upper limit of the area ratio of the carboxylate represented by D / A is preferably 0.450 or less, more preferably 0.420 or less, from the viewpoint of further improving the balance of appearance, dimensional stability, and productivity. Especially preferably, it is 0.400 or less.
 本実施形態に係るガスバリア性重合体層103のB/Aで示されるアミド結合の面積比率、C/Aで示されるカルボン酸の面積比率およびD/Aで示されるカルボン酸塩の面積比率は、ガスバリア性重合体層103の製造条件を適切に調節することにより制御することが可能である。本実施形態においては、とくにポリカルボン酸およびポリアミン化合物の配合比率、ガスバリア用塗材の調製方法、上記ガスバリア用塗材の加熱処理の方法・温度・時間等が、上記B/Aで示されるアミド結合の面積比率、上記C/Aで示されるカルボン酸の面積比率および上記D/Aで示されるカルボン酸塩の面積比率を制御するための因子として挙げられる。 The area ratio of the amide bond indicated by B / A, the area ratio of carboxylic acid indicated by C / A, and the area ratio of carboxylate indicated by D / A of the gas barrier polymer layer 103 according to the present embodiment are as follows: It can be controlled by appropriately adjusting the manufacturing conditions of the gas barrier polymer layer 103. In the present embodiment, the mixing ratio of the polycarboxylic acid and the polyamine compound, the method for preparing the gas barrier coating material, the heat treatment method, the temperature, the time, etc. of the gas barrier coating material are the amides represented by B / A. It is mentioned as a factor for controlling the area ratio of the bond, the area ratio of the carboxylic acid represented by C / A and the area ratio of the carboxylate represented by D / A.
(基材層)
 本実施形態の基材層101は、例えば、熱硬化性樹脂、熱可塑性樹脂、または紙等の有機質材料により形成されており、熱硬化性樹脂および熱可塑性樹脂から選択される少なくとも一方を含むことが好ましい。
(Base material layer)
The base material layer 101 of the present embodiment is formed of, for example, an organic material such as a thermosetting resin, a thermoplastic resin, or paper, and includes at least one selected from a thermosetting resin and a thermoplastic resin. Is preferred.
 熱硬化性樹脂としては、公知の熱硬化性樹脂、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ユリア・メラミン樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリイミド等が挙げられる。 Examples of the thermosetting resin include known thermosetting resins such as epoxy resins, unsaturated polyester resins, phenol resins, urea / melamine resins, polyurethane resins, silicone resins, and polyimides.
 熱可塑性樹脂としては、公知の熱可塑性樹脂、例えば、ポリオレフィン(ポリエチレン、ポリプロピレン、ポリ(4-メチル-1-ペンテン)、ポリ(1-ブテン)等)、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等)、ポリアミド(ナイロン-6、ナイロン-66、ポリメタキシレンアジパミド等)、ポリ塩化ビニル、ポリイミド、エチレン酢酸ビニル共重合体もしくはその鹸化物、ポリビニルアルコール、ポリアクリロニトリル、ポリカーボネート、ポリスチレン、アイオノマー、フッ素樹脂あるいはこれらの混合物等が挙げられる。
 これらの中でも、透明性を良好にする観点から、ポリプロピレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリアミド、ポリイミドから選択される一種または二種以上が好ましく、ポリエチレンテレフタレート、ポリエチレンナフタレートから選択される一種または二種以上がより好ましい。
 また、熱可塑性樹脂により形成された基材層101は、ガスバリア性積層体100の用途に応じて、単層であっても、二種以上の層であってもよい。
Examples of the thermoplastic resin include known thermoplastic resins such as polyolefin (polyethylene, polypropylene, poly (4-methyl-1-pentene), poly (1-butene), etc.), polyester (polyethylene terephthalate, polybutylene terephthalate, polyethylene). Naphthalate, etc.), polyamide (nylon-6, nylon-66, polymetaxylene adipamide, etc.), polyvinyl chloride, polyimide, ethylene vinyl acetate copolymer or saponified product thereof, polyvinyl alcohol, polyacrylonitrile, polycarbonate, polystyrene , Ionomer, fluororesin, or a mixture thereof.
Among these, from the viewpoint of improving transparency, one or more selected from polypropylene, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyamide, and polyimide are preferable, and selected from polyethylene terephthalate and polyethylene naphthalate. One type or two or more types are more preferable.
Moreover, the base material layer 101 formed of the thermoplastic resin may be a single layer or two or more layers depending on the application of the gas barrier laminate 100.
 また、上記熱硬化性樹脂、熱可塑性樹脂により形成されたフィルムを少なくとも一方向、好ましくは二軸方向に延伸して基材層としてもよい。 Further, a film formed of the above thermosetting resin or thermoplastic resin may be stretched in at least one direction, preferably in a biaxial direction to form a base material layer.
 本実施形態の基材層101としては、透明性、剛性、耐熱性に優れる観点から、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリイミドから選択される一種または二種以上の熱可塑性樹脂により形成された二軸延伸フィルムが好ましく、ポリエチレンテレフタレート、ポリエチレンナフタレートから選択される一種または二種以上の熱可塑性樹脂により形成された二軸延伸フィルムがより好ましい。 As the base material layer 101 of this embodiment, from the viewpoint of excellent transparency, rigidity, and heat resistance, one or two or more kinds of heat selected from polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyamide, and polyimide are used. A biaxially stretched film formed of a plastic resin is preferable, and a biaxially stretched film formed of one or more thermoplastic resins selected from polyethylene terephthalate and polyethylene naphthalate is more preferable.
 また、基材層101の表面に、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン・ビニルアルコール共重合体、アクリル樹脂、ウレタン系樹脂等がコーティングされていてもよい。
 さらに、基材層101はガスバリア性重合体層103との接着性を改良するために、表面処理を行ってもよい。具体的には、コロナ処理、火炎処理、プラズマ処理、アンダーコート処理、プライマーコート処理等の表面活性化処理を行ってもよい。
The surface of the base material layer 101 may be coated with polyvinylidene chloride, polyvinyl alcohol, an ethylene / vinyl alcohol copolymer, an acrylic resin, a urethane resin, or the like.
Furthermore, the base material layer 101 may be subjected to a surface treatment in order to improve adhesion with the gas barrier polymer layer 103. Specifically, surface activation treatment such as corona treatment, flame treatment, plasma treatment, undercoat treatment, and primer coat treatment may be performed.
 基材層101の厚さは、良好なフィルム特性を得る観点から、1~1000μmが好ましく、1~500μmがより好ましく、1~300μmがさらに好ましい。 The thickness of the base material layer 101 is preferably 1 to 1000 μm, more preferably 1 to 500 μm, and further preferably 1 to 300 μm from the viewpoint of obtaining good film characteristics.
 基材層101の形状は、特に限定されないが、例えば、シートまたはフィルム形状、トレー、カップ、中空体等の形状が挙げられる。 The shape of the base material layer 101 is not particularly limited, and examples thereof include sheet or film shapes, trays, cups, hollow bodies, and the like.
(無機物層)
 図2に示すように、ガスバリア性積層体100において、無機物層102が基材層101とガスバリア性重合体層103との間にさらに積層されていてもよい。これにより、酸素バリア性や水蒸気バリア性等のバリア性能をさらに向上させることができる。
(Inorganic layer)
As shown in FIG. 2, in the gas barrier laminate 100, the inorganic layer 102 may be further laminated between the base material layer 101 and the gas barrier polymer layer 103. Thereby, barrier performance, such as oxygen barrier property and water vapor | steam barrier property, can further be improved.
 本実施形態の無機物層102を構成する無機物は、例えば、バリア性を有する薄膜を形成できる金属、金属酸化物、金属窒化物、金属弗化物、金属酸窒化物等が挙げられる。
 無機物層102を構成する無機物としては、例えば、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等の周期表2A族元素;チタン、ジルコニウム、ルテニウム、ハフニウム、タンタル等の周期表遷移元素;亜鉛等の周期表2B族元素;アルミニウム、ガリウム、インジウム、タリウム等の周期表3A族元素;ケイ素、ゲルマニウム、錫等の周期表4A族元素;セレン、テルル等の周期表6A族元素等の単体、酸化物、窒化物、弗化物、または酸窒化物等から選択される一種または二種以上を挙げることができる。
 なお、本実施形態では、周期表の族名は旧CAS式で示している。
Examples of the inorganic material constituting the inorganic material layer 102 of the present embodiment include metals, metal oxides, metal nitrides, metal fluorides, and metal oxynitrides that can form a thin film having a barrier property.
Examples of the inorganic substance constituting the inorganic layer 102 include periodic table 2A elements such as beryllium, magnesium, calcium, strontium, and barium; periodic table transition elements such as titanium, zirconium, ruthenium, hafnium, and tantalum; and a periodic table such as zinc. Group 2B element; periodic table 3A element such as aluminum, gallium, indium, thallium; periodic table 4A element such as silicon, germanium, tin; simple substance such as 6A group element of periodic table such as selenium, tellurium, oxide, nitriding 1 type, or 2 or more types selected from the thing, fluoride, oxynitride, etc. can be mentioned.
In the present embodiment, the family name of the periodic table is shown by the old CAS formula.
 さらに、上記無機物の中でも、バリア性、コスト等のバランスに優れていることから、酸化ケイ素、酸化アルミニウム、アルミニウムからなる群から選択される一種または二種以上の無機物が好ましい。
 なお、酸化ケイ素には、二酸化ケイ素の他、一酸化ケイ素、亜酸化ケイ素が含有されていてもよい。
Furthermore, among the inorganic materials, one or two or more inorganic materials selected from the group consisting of silicon oxide, aluminum oxide, and aluminum are preferable because of excellent balance between barrier properties and cost.
In addition to silicon dioxide, silicon oxide may contain silicon monoxide and silicon suboxide.
 無機物層102は上記無機物により構成されている。無機物層102は単層の無機物層から構成されていてもよいし、複数の無機物層から構成されていてもよい。また、無機物層102が複数の無機物層から構成されている場合には同一種類の無機物層から構成されていてもよいし、異なった種類の無機物層から構成されていてもよい。 The inorganic layer 102 is made of the above inorganic material. The inorganic layer 102 may be composed of a single inorganic layer or a plurality of inorganic layers. Further, when the inorganic layer 102 is composed of a plurality of inorganic layers, it may be composed of the same kind of inorganic layer, or may be composed of different kinds of inorganic layers.
 無機物層102の厚さは、バリア性、密着性、取扱い性等のバランスの観点から、通常1nm以上1000nm以下、好ましくは1nm以上500nm以下である。
 本実施形態において、無機物層102の厚さは、透過型電子顕微鏡や走査型電子顕微鏡による観察画像により求めることができる。
The thickness of the inorganic layer 102 is usually 1 nm or more and 1000 nm or less, preferably 1 nm or more and 500 nm or less, from the viewpoint of the balance of barrier properties, adhesion, handling properties and the like.
In the present embodiment, the thickness of the inorganic layer 102 can be obtained from an observation image obtained by a transmission electron microscope or a scanning electron microscope.
 無機物層102の形成方法は特に限定されず、例えば、真空蒸着法、イオンプレーティング法、スパッタリング法、化学気相成長法、物理気相蒸着法、化学気相蒸着法(CVD法)、プラズマCVD法、ゾルゲル法等により基材層101の片面または両面に無機物層102を形成することができる。中でも、スパッタリング法、イオンプレーティング法、化学気相蒸着法(CVD)、物理気相蒸着法(PVD)、プラズマCVD法等の減圧下での製膜が望ましい。これにより、窒化珪素や酸化窒化珪素等の珪素を含有する化学的に活性な分子種が速やかに反応することにより、無機物層102の表面の平滑性が改良され、孔を少なくすることができるものと予想される。
 これらの結合反応を迅速に行うには、その無機原子や化合物が化学的に活性な分子種もしくは原子種であることが望ましい。
The formation method of the inorganic layer 102 is not particularly limited, and for example, a vacuum deposition method, an ion plating method, a sputtering method, a chemical vapor deposition method, a physical vapor deposition method, a chemical vapor deposition method (CVD method), plasma CVD. The inorganic layer 102 can be formed on one surface or both surfaces of the base material layer 101 by a method, a sol-gel method, or the like. Of these, film formation under reduced pressure such as sputtering, ion plating, chemical vapor deposition (CVD), physical vapor deposition (PVD), and plasma CVD is desirable. As a result, the chemically active molecular species containing silicon, such as silicon nitride and silicon oxynitride, react quickly to improve the surface smoothness of the inorganic layer 102 and reduce the number of holes. It is expected to be.
In order to perform these bonding reactions quickly, it is desirable that the inorganic atom or compound is a chemically active molecular species or atomic species.
 本実施形態のガスバリア性積層体100は、ガスバリア性能に優れており、包装材料、特に高いガスバリア性が要求される内容物の食品包装材料を始め、医療用途、工業用途、日常雑貨用途等さまざまな包装材料としても好適に使用し得る。
 また、本実施形態のガスバリア性積層体100は、例えば、高いバリア性能が要求される、真空断熱用フィルム;エレクトロルミネセンス素子、太陽電池等を封止するための封止用フィルム;等として好適に使用することができる。
The gas barrier laminate 100 of the present embodiment is excellent in gas barrier performance and includes various materials such as packaging materials, food packaging materials of contents requiring particularly high gas barrier properties, medical uses, industrial uses, daily miscellaneous goods, and the like. It can also be suitably used as a packaging material.
Further, the gas barrier laminate 100 of the present embodiment is suitable as, for example, a vacuum heat insulating film that requires high barrier performance; a sealing film for sealing electroluminescent elements, solar cells, and the like. Can be used for
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As described above, the embodiments of the present invention have been described with reference to the drawings. However, these are exemplifications of the present invention, and various configurations other than the above can be adopted.
 以下、本実施形態を、実施例・比較例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。 Hereinafter, the present embodiment will be described in detail with reference to examples and comparative examples. In addition, this embodiment is not limited to description of these Examples at all.
<溶液(Z)の作製>
 ポリアクリル酸アンモニウム(東亜合成株式会社製、製品名:アロンA-30、30質量%水溶液、分子量:100,000)の混合物に精製水を添加して10質量%溶液にしたポリアクリル酸アンモニウム水溶液を得た。
<溶液(Y)の作製>
 ポリエチレンイミン(和光純薬工業株式会社製、製品名:ポリエチレンイミン、平均分子量:約10,000)に精製水を添加して10質量%溶液にしたポリエチレンイミン水溶液を得た。
<Preparation of solution (Z)>
Ammonium polyacrylate aqueous solution prepared by adding purified water to a mixture of ammonium polyacrylate (product of Toa Gosei Co., Ltd., product name: Aron A-30, 30% by mass aqueous solution, molecular weight: 100,000) to make a 10% by mass solution Got.
<Preparation of solution (Y)>
Purified water was added to polyethyleneimine (manufactured by Wako Pure Chemical Industries, Ltd., product name: polyethyleneimine, average molecular weight: about 10,000) to obtain a polyethyleneimine aqueous solution in a 10% by mass solution.
〔実施例1-1〕
 上記ポリアクリル酸アンモニウム水溶液(Z)79gと上記ポリエチレンイミン水溶液(Y)21gを混合・撹拌して混合液を調製した。
 さらに上記混合液の固形分濃度が2.5質量%になるように精製水を添加し、均一溶液になるまで撹拌したのちに、非イオン性界面活性剤(ポリオキシエチレンラウリルエーテル、花王社製、商品名:エマルゲン120)を混合液の固形分に対して0.3質量%となるように混合し、溶液(V)を調製した。
 得られた溶液(V)を厚さ12μmの二軸延伸ポリエチレンテレフタレートフィルム(ユニチカ社製、PET12)のコロナ処理面に、メイヤバーにて加熱処理後の厚み(すなわち、ガスバリア性重合体層の膜厚)が0.3μmになるように塗布し、熱風乾燥器を使用して温度;100℃、時間;30秒の条件で乾燥し、さらに熱ロールにて温度;200℃、時間;60秒の条件で加熱処理をして、ガスバリア性積層フィルムを得た。
Example 1-1
79 g of the ammonium polyacrylate aqueous solution (Z) and 21 g of the polyethylene imine aqueous solution (Y) were mixed and stirred to prepare a mixed solution.
Furthermore, after adding purified water so that the solid content concentration of the mixed solution is 2.5% by mass and stirring until a uniform solution is obtained, a nonionic surfactant (polyoxyethylene lauryl ether, manufactured by Kao Corporation) is added. , Trade name: Emulgen 120) was mixed at 0.3% by mass with respect to the solid content of the mixed solution to prepare a solution (V).
The obtained solution (V) was subjected to heat treatment with a Mayer bar on the corona-treated surface of a 12 μm-thick biaxially stretched polyethylene terephthalate film (Unitika, PET12) (that is, the film thickness of the gas barrier polymer layer). ) Is 0.3 μm, dried using a hot air dryer at a temperature of 100 ° C. for a time of 30 seconds, and further heated by a hot roll at a temperature of 200 ° C. for a time of 60 seconds. Was subjected to heat treatment to obtain a gas barrier laminate film.
〔実施例1-2〕
 熱ロールを遠赤外線加熱ヒーターと熱風を併用した乾燥器にした以外は実施例1-1と同様にしてガスバリア性積層フィルムを得た。
Example 1-2
A gas barrier laminate film was obtained in the same manner as in Example 1-1 except that the heating roll was a dryer using both a far infrared heater and hot air.
〔比較例1〕
 熱ロールを熱風乾燥器にした以外は実施例1-1と同様にしてガスバリア性積層フィルムを得た。
[Comparative Example 1]
A gas barrier laminate film was obtained in the same manner as in Example 1-1 except that the hot roll was a hot air dryer.
〔実施例2-1〕
 温度;210℃、時間;60秒の条件で加熱熱処理した以外は実施例1-1と同様にしてガスバリア性積層フィルムを得た。
[Example 2-1]
A gas barrier laminate film was obtained in the same manner as in Example 1-1 except that heat treatment was performed under the conditions of temperature: 210 ° C., time: 60 seconds.
〔実施例2-2〕
 熱ロールを遠赤外線加熱ヒーターと熱風を併用した乾燥器にした以外は実施例2-1と同様にしてガスバリア性積層フィルムを得た。
[Example 2-2]
A gas barrier laminate film was obtained in the same manner as in Example 2-1, except that the heat roll was a dryer using both a far infrared heater and hot air.
〔比較例2〕
 熱ロールを熱風乾燥器にした以外は実施例2-1と同様にしてガスバリア性積層フィルムを得た。
[Comparative Example 2]
A gas barrier laminate film was obtained in the same manner as in Example 2-1, except that the hot roll was a hot air dryer.
〔実施例3〕
 温度;220℃、時間;45秒の条件で加熱処理した以外は実施例1-1と同様にしてガスバリア性積層フィルムを得た。
Example 3
A gas barrier laminate film was obtained in the same manner as in Example 1-1 except that the heat treatment was performed under the conditions of temperature; 220 ° C., time; 45 seconds.
〔比較例3〕
 熱ロールを熱風乾燥器にした以外は実施例3と同様にしてガスバリア性積層フィルムを得た。
[Comparative Example 3]
A gas barrier laminate film was obtained in the same manner as in Example 3 except that the hot roll was a hot air dryer.
 実施例および比較例で得られたガスバリア性積層フィルムについて、以下の評価をおこなった。得られた結果を表1に示す。 The following evaluations were performed on the gas barrier laminate films obtained in Examples and Comparative Examples. The obtained results are shown in Table 1.
<物性評価用多層フィルムの作製>
(1)厚さ70μmの無延伸ポリプロピレンフィルム(三井化学東セロ社製 商品名:RXC-22)の片面に、エステル系接着剤(ポリウレタン系接着剤(三井化学社製 商品名:タケラックA525S):9質量部、イソシアネート系硬化剤(三井化学社製 商品名:タケネートA50):1質量部および酢酸エチル:7.5質量部)を塗布した。乾燥後、実施例、比較例で得られたガスバリア性積層フィルムのガスバリア性重合体層面と貼り合わせ(ドライラミネート)、多層フィルムを得た。
<Production of multilayer film for physical property evaluation>
(1) An ester-based adhesive (polyurethane-based adhesive (trade name: Takelac A525S) manufactured by Mitsui Chemicals, Inc.) on one side of a 70 μm-thick unstretched polypropylene film (trade name: RXC-22, manufactured by Mitsui Chemical Tosero): Part by mass, an isocyanate curing agent (trade name: Takenate A50, manufactured by Mitsui Chemicals Co., Ltd .: 1 part by mass and ethyl acetate: 7.5 parts by mass) were applied. After drying, the gas barrier polymer layer surfaces of the gas barrier laminated films obtained in Examples and Comparative Examples were bonded together (dry lamination) to obtain a multilayer film.
(2)レトルト処理
 上記(1)で得られた多層フィルムを無延伸ポリプロピレンフィルムが内面になるように折り返し、2方をヒートシールして袋状にした後、内容物として水を70cc入れ、もう1方をヒートシールにより袋を作成し、これを高温高圧レトルト殺菌装置で130℃、30分間の条件でレトルト処理を行った。レトルト処理後、内容物の水を抜き、レトルト処理後の多層フィルムを得た。
(2) Retort treatment The multi-layer film obtained in (1) above is folded so that the unstretched polypropylene film becomes the inner surface, heat-sealed on both sides and formed into a bag shape, and then 70 cc of water is added as the contents. One side was heat-sealed to make a bag, and this was retort-treated at 130 ° C. for 30 minutes with a high-temperature and high-pressure retort sterilizer. After the retort treatment, the contents were drained to obtain a multilayer film after the retort treatment.
(3)酸素透過度[ml/(m・day・MPa)]
 上記方法で得られた多層フィルムを、モコン社製OX-TRAN2/21を用いて、JIS K 7126に準じ、温度20℃、湿度90%RHの条件で測定した。
(3) Oxygen permeability [ml / (m 2 · day · MPa)]
The multilayer film obtained by the above method was measured under the conditions of a temperature of 20 ° C. and a humidity of 90% RH according to JIS K 7126 using OX-TRAN 2/21 manufactured by Mocon.
(4)IR面積比
 赤外線吸収スペクトルの測定(赤外線全反射測定:ATR法)は日本分光社製IRT-5200装置を用い、PKM-GE-S(Germanium)結晶を装着して入射角度45度、室温、分解能4cm-1、積算回数100回の条件で測定した。得られた吸収スペクトを前述した方法で解析し、全ピーク面積A~Dを算出した。そして、全ピーク面積A~Dから面積比B/A、C/A、D/Aを求めた。
(4) IR area ratio Infrared absorption spectrum measurement (infrared total reflection measurement: ATR method) was performed using an IRT-5200 apparatus manufactured by JASCO Corporation, with a PKM-GE-S (Germanium) crystal attached and an incident angle of 45 degrees. The measurement was performed under the conditions of room temperature, resolution of 4 cm −1 , and accumulation count of 100 times. The obtained absorption spectrum was analyzed by the method described above, and the total peak areas A to D were calculated. Then, the area ratios B / A, C / A, and D / A were determined from the total peak areas A to D.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 加熱処理時間および温度が同一である実施例1-1、1-2および比較例1を比較すると、塗工層の加熱手段として熱風乾燥器のみを用いた比較例1よりも、熱ロールや遠赤外線加熱を用いた実施例1-1および1-2の方がアミド結合(B/A)の割合が多くなった。すなわち、実施例1-1および1-2の方が、比較例1よりもアミド架橋構造を有するガスバリア性重合体層103を効率良く製造できていることが分かった。また、このようなガスバリア性積層フィルムは酸素透過度が低く、ガスバリア性能により優れることが分かった。
 また、加熱処理時間および温度が同一である実施例2-1、2-2および比較例2との比較例や、実施例3および比較例3との比較例からも、塗工層の加熱手段として熱風乾燥器のみを用いた比較例よりも、熱ロールや遠赤外線加熱を用いた実施例の方がアミド結合(B/A)の割合が多くなることが分かった。
 以上から、本発明の製造方法によれば、ガスバリア性能に優れるガスバリア性積層体を効率良く製造できることが分かった。
Comparing Examples 1-1, 1-2 and Comparative Example 1 having the same heat treatment time and temperature, compared with Comparative Example 1 using only a hot air dryer as a heating means for the coating layer, a hot roll and a farther In Examples 1-1 and 1-2 using infrared heating, the ratio of amide bonds (B / A) was increased. That is, it was found that the gas barrier polymer layer 103 having an amide crosslinked structure was more efficiently produced in Examples 1-1 and 1-2 than in Comparative Example 1. Further, it was found that such a gas barrier laminate film has a low oxygen permeability and is superior in gas barrier performance.
Also, from the comparative examples with Examples 2-1 and 2-2 and Comparative Example 2 having the same heat treatment time and temperature, and the comparative examples with Example 3 and Comparative Example 3, heating means for the coating layer It was found that the ratio of the amide bond (B / A) was higher in the example using a hot roll or far infrared heating than in the comparative example using only a hot air dryer.
From the above, it has been found that according to the production method of the present invention, a gas barrier laminate excellent in gas barrier performance can be produced efficiently.
 この出願は、2015年5月21日に出願された日本出願特願2015-103500号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-103500 filed on May 21, 2015, the entire disclosure of which is incorporated herein.

Claims (7)

  1.  基材層と、前記基材層の少なくとも一方の面に設けられたガスバリア性重合体層と、を備えるガスバリア性積層体の製造方法であって、
     ポリカルボン酸およびポリアミン化合物を含む混合物を基材層に塗工し、塗工層を得る工程と、
     加熱手段により前記塗工層を加熱し、前記ポリカルボン酸に含まれるカルボキシル基と前記ポリアミン化合物に含まれるアミノ基とを脱水縮合反応させることにより、アミド結合を有するガスバリア性重合体層を形成する工程と、
    を含み、
     前記加熱手段が伝導伝熱方式および輻射伝熱方式から選択される少なくとも一種を含む、ガスバリア性積層体の製造方法。
    A gas barrier laminate manufacturing method comprising: a base material layer; and a gas barrier polymer layer provided on at least one surface of the base material layer,
    Applying a mixture containing a polycarboxylic acid and a polyamine compound to a base material layer to obtain a coating layer;
    The coating layer is heated by a heating means, and a gas barrier polymer layer having an amide bond is formed by dehydration condensation reaction between a carboxyl group contained in the polycarboxylic acid and an amino group contained in the polyamine compound. Process,
    Including
    The manufacturing method of the gas-barrier laminated body in which the said heating means contains at least 1 type selected from a conduction heat transfer system and a radiation heat transfer system.
  2.  前記加熱手段が加熱ロールによる伝導伝熱および赤外線による輻射伝熱から選択される少なくとも一種を含む、請求項1に記載のガスバリア性積層体の製造方法。 The method for producing a gas barrier laminate according to claim 1, wherein the heating means includes at least one selected from conduction heat transfer by a heating roll and radiation heat transfer by infrared rays.
  3.  前記加熱手段が対流伝熱方式をさらに含む、請求項1または2に記載のガスバリア性積層体の製造方法。 The method for producing a gas barrier laminate according to claim 1 or 2, wherein the heating means further includes a convection heat transfer system.
  4.  前記ガスバリア性重合体層を形成する工程では、
     得られる前記ガスバリア性重合体層の赤外線吸収スペクトルにおいて、
     吸収帯1493cm-1以上1780cm-1以下の範囲における全ピーク面積をAとし、
     吸収帯1598cm-1以上1690cm-1以下の範囲における全ピーク面積をBとしたとき、
     B/Aで示されるアミド結合の面積比率が0.330以上となるまで加熱をおこなう、請求項1乃至3いずれか一項に記載のガスバリア性積層体の製造方法。
    In the step of forming the gas barrier polymer layer,
    In the infrared absorption spectrum of the gas barrier polymer layer obtained,
    The total peak area in the range of absorption band 1493 cm −1 to 1780 cm −1 is A,
    When the total peak area in the range of the absorption band 1598cm -1 or 1690 cm -1 and is B,
    The manufacturing method of the gas-barrier laminated body as described in any one of Claims 1 thru | or 3 which heats until the area ratio of the amide bond shown by B / A becomes 0.330 or more.
  5.  (前記混合物中の前記ポリカルボン酸に含まれる-COO-基のモル数)/(前記混合物中の前記ポリアミン化合物に含まれるアミノ基のモル数)=100/22超100/99以下である、請求項1乃至4いずれか一項に記載のガスバリア性積層体の製造方法。 (The number of moles of —COO— groups contained in the polycarboxylic acid in the mixture) / (the number of moles of amino groups contained in the polyamine compound in the mixture) = 100/22 and 100/99 or less, The manufacturing method of the gas-barrier laminated body as described in any one of Claims 1 thru | or 4.
  6.  前記ポリカルボン酸が、ポリアクリル酸、ポリメタクリル酸、アクリル酸とメタクリル酸との共重合体から選択される一種または二種以上の重合体を含む、請求項1乃至5いずれか一項に記載のガスバリア性積層体の製造方法。 The said polycarboxylic acid contains the polymer of 1 type, or 2 or more types selected from the copolymer of polyacrylic acid, polymethacrylic acid, and acrylic acid and methacrylic acid, The Claim 1 thru | or 5 characterized by the above-mentioned. A method for producing a gas barrier laminate.
  7.  前記ポリアミン化合物が、ポリエチレンイミンを含む、請求項1乃至6いずれか一項に記載のガスバリア性積層体の製造方法。 The method for producing a gas barrier laminate according to any one of claims 1 to 6, wherein the polyamine compound contains polyethyleneimine.
PCT/JP2016/064464 2015-05-21 2016-05-16 Method for manufacturing gas-barrier layered product WO2016186075A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017519356A JP7002935B2 (en) 2015-05-21 2016-05-16 Manufacturing method of gas barrier laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-103500 2015-05-21
JP2015103500 2015-05-21

Publications (1)

Publication Number Publication Date
WO2016186075A1 true WO2016186075A1 (en) 2016-11-24

Family

ID=57319916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064464 WO2016186075A1 (en) 2015-05-21 2016-05-16 Method for manufacturing gas-barrier layered product

Country Status (3)

Country Link
JP (1) JP7002935B2 (en)
TW (1) TWI692495B (en)
WO (1) WO2016186075A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019011097A (en) * 2017-06-30 2019-01-24 大日本印刷株式会社 Packaging material for high-pressure treatment
JP2019034460A (en) * 2017-08-14 2019-03-07 三井化学東セロ株式会社 Gas barrier laminate, manufacturing method therefor and package

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225940A (en) * 2004-02-12 2005-08-25 Toray Ind Inc Gas barrier film
JP2006077089A (en) * 2004-09-08 2006-03-23 Unitika Ltd Gas barrier composition precursor, composition, and gas barrier film
WO2009125801A1 (en) * 2008-04-09 2009-10-15 株式会社クラレ Laminate having gas barrier properties, and manufacturing method therefor
JP2011213037A (en) * 2010-04-01 2011-10-27 Kohjin Co Ltd Gas barrier film and method for manufacturing the same
JP2014184678A (en) * 2013-03-25 2014-10-02 Kohjin Film & Chemicals Co Ltd Gas barrier film and method for producing the same
WO2014192685A1 (en) * 2013-05-27 2014-12-04 コニカミノルタ株式会社 Drying apparatus and drying method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258910A (en) * 1994-03-18 1995-10-09 Unitika Ltd Production of hot water-resistant polyvinyl alcohol fiber
JP2000268152A (en) 1999-03-19 2000-09-29 Denso Corp Manufacture of ic card
JP2003094517A (en) * 2001-09-21 2003-04-03 Toray Ind Inc Aromatic polyamide film and method for manufacturing the same
JP4210050B2 (en) * 2001-09-25 2009-01-14 新日本製鐵株式会社 Method for continuous casting of molten metal
WO2013180036A1 (en) 2012-05-28 2013-12-05 三菱化学株式会社 Method for producing conductive thin film laminate
JP5905788B2 (en) * 2012-07-17 2016-04-20 積水化学工業株式会社 Thermoplastic resin foam manufacturing method and thermoplastic resin foam manufacturing apparatus
JP5792208B2 (en) 2013-01-10 2015-10-07 株式会社Tkx Resin bond wire saw
WO2014189021A1 (en) 2013-05-24 2014-11-27 東レ株式会社 Polylactide sheet and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225940A (en) * 2004-02-12 2005-08-25 Toray Ind Inc Gas barrier film
JP2006077089A (en) * 2004-09-08 2006-03-23 Unitika Ltd Gas barrier composition precursor, composition, and gas barrier film
WO2009125801A1 (en) * 2008-04-09 2009-10-15 株式会社クラレ Laminate having gas barrier properties, and manufacturing method therefor
JP2011213037A (en) * 2010-04-01 2011-10-27 Kohjin Co Ltd Gas barrier film and method for manufacturing the same
JP2014184678A (en) * 2013-03-25 2014-10-02 Kohjin Film & Chemicals Co Ltd Gas barrier film and method for producing the same
WO2014192685A1 (en) * 2013-05-27 2014-12-04 コニカミノルタ株式会社 Drying apparatus and drying method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019011097A (en) * 2017-06-30 2019-01-24 大日本印刷株式会社 Packaging material for high-pressure treatment
JP7144130B2 (en) 2017-06-30 2022-09-29 大日本印刷株式会社 Packaging materials for high-pressure processing
JP2019034460A (en) * 2017-08-14 2019-03-07 三井化学東セロ株式会社 Gas barrier laminate, manufacturing method therefor and package

Also Published As

Publication number Publication date
TW201700566A (en) 2017-01-01
JP7002935B2 (en) 2022-01-20
JPWO2016186075A1 (en) 2018-03-01
TWI692495B (en) 2020-05-01

Similar Documents

Publication Publication Date Title
EP3228654B1 (en) Gas barrier polymer, gas barrier film, and gas barrier laminate
TWI711538B (en) Gas-barrier laminate
TWI778040B (en) Barrier laminate film
WO2016186075A1 (en) Method for manufacturing gas-barrier layered product
JP7269261B2 (en) Gas barrier laminate
JP6983599B2 (en) Gas barrier laminates and packages
JP6983598B2 (en) Gas barrier laminate for infusion bag and packaging for infusion bag
JP7519181B2 (en) Gas barrier film and gas barrier laminate
JP6956563B2 (en) Gas barrier laminate and its manufacturing method and packaging
JP2022090976A (en) Gas barrier laminate
JP7389645B2 (en) Gas barrier coating material, gas barrier film, gas barrier laminate, and method for producing gas barrier laminate
JP7372147B2 (en) Gas barrier films and gas barrier laminates
CN114901477B (en) Coating material for gas barrier, gas barrier film, gas barrier laminate, and method for producing gas barrier laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017519356

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796468

Country of ref document: EP

Kind code of ref document: A1