[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016185881A1 - 車両用電動格納式視認装置におけるフレームと支持部材の固定構造 - Google Patents

車両用電動格納式視認装置におけるフレームと支持部材の固定構造 Download PDF

Info

Publication number
WO2016185881A1
WO2016185881A1 PCT/JP2016/063015 JP2016063015W WO2016185881A1 WO 2016185881 A1 WO2016185881 A1 WO 2016185881A1 JP 2016063015 W JP2016063015 W JP 2016063015W WO 2016185881 A1 WO2016185881 A1 WO 2016185881A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
shaft
visual
frame
motor
Prior art date
Application number
PCT/JP2016/063015
Other languages
English (en)
French (fr)
Inventor
正宏 本宮
憲治 市川
隆之 宮▲崎▼
瑞貴 遠山
Original Assignee
株式会社 村上開明堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村上開明堂 filed Critical 株式会社 村上開明堂
Publication of WO2016185881A1 publication Critical patent/WO2016185881A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/06Rear-view mirror arrangements mounted on vehicle exterior
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/06Rear-view mirror arrangements mounted on vehicle exterior
    • B60R1/062Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position
    • B60R1/07Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position by electrically powered actuators
    • B60R1/074Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position by electrically powered actuators for retracting the mirror arrangements to a non-use position alongside the vehicle

Definitions

  • the present invention relates to a fixing structure in an electric retractable viewing device for a vehicle such as an electric retractable mirror for a vehicle and an electric retractable camera for a vehicle, and the fixing structure is driven at a position facing an internal space of a frame housing a driving mechanism.
  • a support member having a function of supporting the mechanism is fixed.
  • the deformation of the support member is suppressed in this fixing structure to prevent problems such as the generation of abnormal noise during motor operation.
  • the electric retractable visual recognition device for a vehicle generally has a structure in which a support member having a function of supporting the drive mechanism is fixed at a position facing the internal space of a frame that accommodates the drive mechanism.
  • a support member having a function of supporting the drive mechanism is fixed at a position facing the internal space of a frame that accommodates the drive mechanism.
  • the support member (17) is screwed at three positions at the position facing the internal space of the frame (2).
  • the support member (50) is screwed at three positions at a position facing the internal space (28) of the frame (14).
  • Reference numerals in parentheses are those used in Patent Documents 1 and 2.
  • This invention solves the above-mentioned problems and provides a structure for fixing a frame and a support member that suppresses the deformation of the support member and prevents the generation of abnormal noise during motor operation.
  • the present invention is a fixing structure in an electric retractable visual recognition device for a vehicle, wherein the electric retractable visual recognition device for a vehicle is provided with a shaft standing on a vehicle body side and a visual device rotation arranged at an axial center of the shaft.
  • a visual recognition device rotating unit supported by the shaft so as to be rotatable in a direction around an axis; and an electric drive mechanism for rotating the visual recognition device rotation unit in a direction around the visual device rotation axis,
  • the visual device rotating unit is fixed to the frame in a state where the frame having an internal space for accommodating the power transmission mechanism and the motor is held at a position facing the internal space of the frame And a support member that transmits the rotation of the motor rotation shaft of the motor to the power transmission mechanism, the motor rotation shaft is disposed substantially parallel to the visual recognition device rotation shaft, and the fixing structure includes The frame and the support member are fixed, and a line connecting the visual device rotation shaft and the motor rotation shaft is a first line passing through the motor rotation shaft when viewed from the axial direction of the visual device rotation shaft.
  • a line orthogonal to the first line is defined as a second line
  • a line passing through the visual axis rotation axis and orthogonal to the first line is defined as a third line
  • the fixing structure includes the frame and the As a fixed position with respect to the support member, as viewed from the axial direction of the visual recognition device rotation axis, a first fixed position existing in a region opposite to the side where the visual recognition device rotation axis exists with respect to the second line; , In a region sandwiched between the second line and the third line Across the first line having a second fixed position and the third fixing position existing in a region opposite to each other is such a fixing structure.
  • the first to third fixed positions close to the position where the motor is held are included in the fixed position, it is possible to effectively suppress the inclination of the motor due to the deformation of the support member, and to drive during motor operation. It is possible to prevent the occurrence of abnormal noise by smoothing the operation of the mechanism.
  • the screwing points between the frame and the support member may exist only at the first to third fixing positions. According to this, it is possible to fix the frame and the support member with a small number of screwing points, suppress deformation of the support member, and prevent abnormal noise during motor operation.
  • the present invention is another fixing structure in the electric retractable visual recognition device for a vehicle, and the electric retractable visual recognition device for a vehicle is arranged to be rotatable around a predetermined visual device rotation axis by an electric drive mechanism.
  • a visual device rotating portion, and the visual device rotating portion includes a frame having an internal space for accommodating at least a part of the electric drive mechanism, and a frame disposed in a position facing the internal space of the frame.
  • a support member that is fixed and supports at least a part of the electric drive mechanism; a motor rotation shaft of the electric drive mechanism is disposed substantially parallel to the visual recognition device rotation shaft; And the support member, and when viewed from the axial direction of the visual device rotation shaft, a line connecting the visual device rotation shaft and the motor rotation shaft is a first line, and the motor rotation
  • the line perpendicular to the first line passing through the first line is defined as the second line, and the line perpendicular to the first line passing through the visual axis rotation axis is defined as the third line.
  • a first fixation exists in a region opposite to the side where the visual axis rotation axis exists with respect to the second line.
  • Position, and a second fixed position and a third fixed position existing in regions opposite to each other across the first line in the region sandwiched between the second line and the third line.
  • a fourth fixing position existing in a region opposite to the side where the motor rotation shaft is present with respect to the third line.
  • the screwing points between the frame and the support member may be present only at the first to fourth fixing positions. According to this, it is possible to fix the frame and the support member with a small number of screwing points, suppress deformation of the support member, and prevent abnormal noise during motor operation.
  • the electric drive mechanism further includes an intermediate gear disposed at a position sandwiched between the visual device rotation shaft and the motor rotation shaft when viewed from the axial direction of the visual device rotation shaft.
  • the shaft of the intermediate gear is disposed in a plane orthogonal to the rotation axis of the visual recognition device, and the support member faces both ends of the shaft of the intermediate gear and suppresses the intermediate gear from floating from the bearing of the intermediate gear.
  • Two pressing parts may be provided, and the second fixing position and the third fixing position may be disposed at positions close to the two pressing parts. According to this, deformation of the support member is suppressed by the two pressing portions, and the intermediate gear is suppressed from floating from the bearing of the intermediate gear, and it is possible to prevent the generation of noise during motor operation.
  • FIG. 1 is an exploded perspective view of a right side electric retractable door mirror according to an embodiment of the present invention.
  • FIG. 3 is an exploded perspective view of the electric storage unit 16 shown in FIG. 2. It is the perspective view which looked at the flame
  • FIG. 8 is a view showing a state in which the door mirror 10 of FIG. 2 is assembled, and is a cut end view taken along the line AA in FIG. It is a top view which shows the state which assembled the door mirror 10 of FIG.
  • FIG. 4 is a plan view of the plate outer 68 shown in FIG. 3.
  • FIG. 4 is a bottom view of the plate outer 68 shown in FIG. 3.
  • FIG. 4 is a perspective side view seen from one side surface of a plate outer 68 shown in FIG. 3.
  • FIG. 4 is a plan view of the plate outer 68 shown in FIG. 3.
  • FIG. 4 is a side view seen from the other side of the plate outer 68 shown in FIG. 3. It is a top view which shows the state which assembled the components of the electric storage unit 16 shown in FIG. 3, and shows the state which removed the plate outer (support member) 68 and the seal cap (cover) 90 (the motor 76 is shown in figure).
  • 2 is a cut end view of the electric storage unit 16 shown in FIG. 2 at the position indicated by the arrow DD in FIG. 15, with the seal cap 90 (FIG. 3) removed.
  • FIG. 7 is a schematic front view showing a state in which deformation of the plate outer 68 is suppressed by fixing the frame 36 and the plate outer 68 at the first to fourth fixing positions shown in FIG. 1; FIG.
  • FIG. 6 is a plan view of a frame 36 ′ showing another embodiment of the present invention, in which the fourth fixing position 117-4 is omitted from the frame 36 of FIG. 1.
  • FIG. 19 is a plan view of the plate outer 68 ′ combined with the frame 36 ′ of FIG. 18, in which the fourth fixing position 127-4 is omitted from the plate outer 68 of FIG. 10.
  • FIG. 2 is an exploded perspective view of a right side electric retractable door mirror to which the present invention is applied.
  • FIG. 2 shows a state in which the mirror rotating unit 15 is viewed from the back side (vehicle front side) in the deployed position. Further, in FIG. 2, the mirror surface adjustment actuator and the mirror plate, which are arranged together in the front opening 14a of the visor 14, the housing cover (reference numeral 17 in FIG. 6) mounted on the back side of the visor 14, and the like are omitted.
  • the door mirror 10 includes a mirror base 12, a mirror rotating unit 15, and an electric storage unit 16 connected between the mirror base 12 and the mirror rotating unit 15.
  • the mirror rotating unit 15 has a visor 14.
  • the mirror base 12 protrudes from the vehicle body (right door) 13 toward the right side of the vehicle.
  • the electric storage unit 16 has a fixed body 16a at the bottom and a rotating body 16b at the top.
  • the rotating body 16b can rotate in the direction around the mirror rotation axis 18 with respect to the fixed body 16a.
  • the rotating body 16 b of the electric storage unit 16 is fixed by screwing two screws 20 into the rotating body 16 b of the electric storage unit 16 from the lower surface of the visor 14.
  • the fixed body 16a of the electric storage unit 16 is screwed into the fixed body 16a of the electric storage unit 16 from the lower surface of the mirror base 12 by screwing three screws 22 into the mirror base 12.
  • the mirror rotating unit 15 including the visor 14 is attached to and supported by the mirror base 12 via the electric storage unit 16 so as to be rotatable around the mirror rotating shaft 18.
  • a housing cover (reference numeral 17 in FIG. 6) not shown in FIG. 2 is attached to the rear surface of the visor 14.
  • the opening 14 b on the back surface of the visor 14 is closed by the housing cover 17, and as a result, the electric storage unit 16 is accommodated in the space surrounded by the visor 14 and the housing cover 17.
  • the mirror rotating unit 15 is rotated by electric drive by the electric storage unit 16 and can be moved alternatively between a storage position and a deployment position. Further, the mirror rotating unit 15 is rotated by an external force, and can move in the opposite direction from the retracted position to the forward tilt position through the deployed position.
  • the electric storage unit 16 has a shaft 24 that constitutes a fixed body 16a.
  • the shaft 24 is constituted by an integrally molded product of reinforced resin such as PA + GF resin (glass fiber reinforced polyamide resin).
  • the shaft 24 has a large-diameter and disk-shaped shaft base portion 24a at the lower portion and a small-diameter and cylindrical shaft shaft portion 24b at the upper portion.
  • the shaft 24 is vertically installed on the mirror base 12 by fixing the lower surface of the shaft base 24a to the mirror base 12 with screws 22 (FIG. 2).
  • a mountain-and-valley repeated shape 26 is formed at the outermost peripheral position.
  • the mountain valley repeating shape 26 is formed by alternately arranging three pairs of peaks 26b and valleys 26a in the direction around the axis of the shaft 24, and repeating each group by 120 degrees.
  • the circumferential length (angle) of one valley 26a is longer than the circumferential length (angle) of one peak 26b.
  • two height maintaining projections 28 are formed on the uppermost surface of the shaft base 24a at the innermost peripheral position. These two height maintaining protrusions 28 are arranged at intervals of 180 degrees in the direction around the axis of the shaft 24, and are connected to the outer peripheral surface of the shaft shaft portion 24b.
  • a bearing surface 30 is configured at a radial position between the mountain-and-valley repeat shape 26 at the outermost peripheral position and the height maintaining protrusion 28 at the innermost peripheral position.
  • the bearing surface 30 is configured in a groove shape with a constant width, and annularly and flatly in the direction around the axis of the shaft 24.
  • a resin washer 34 is placed and accommodated in the groove on the bearing surface 30.
  • the hollow portion 31 of the shaft shaft portion 24b is opened through the shaft base portion 24a.
  • a wire harness (external power supply wiring) (not shown) that supplies power to the electric storage unit 16 and the mirror surface adjustment actuator is passed through the hollow portion 31.
  • An anti-rotation shape 32 is formed on the outer peripheral surface of the shaft shaft portion 24b.
  • the anti-rotation shape 32 is configured by alternately arranging five anti-rotation concave portions 32a and anti-rotation convex portions 32b in the circumferential direction at equal intervals.
  • Each of the rotation stop concave portions 32 a and the rotation stop convex portions 32 b is configured to extend in the axial direction of the shaft 24.
  • the upper end of the rotation stop recess 32a opens upward to allow the mating rotation stop protrusion (rotation stop protrusion 62b formed on the inner peripheral surface of the clutch plate 58 described later) to be fitted into the rotation stop recess 32a.
  • a groove 35 is formed in the upper outer peripheral surface of the shaft shaft portion 24b to insert and rotate a metal plate 66, which will be described later, into the upper portion of the shaft shaft portion 24b and to hold the metal plate 66 on the upper portion of the shaft shaft portion 24b. Yes.
  • the shaft 24 supports a frame 36 of the rotator 16b (which constitutes a casing of the rotator 16b together with a seal cap 90 described later) in a rotatable manner.
  • the frame 36 is composed of an integrally molded product of reinforced resin such as PA + GF resin.
  • the frame 36 has an internal space 38 that opens upward.
  • a cylinder 40 is erected on the bottom surface 38 a of the internal space 38.
  • the hollow portion 43 of the cylinder 40 passes through the bottom surface 38a.
  • the cylinder 39 is larger in diameter and thicker than the cylinder 40.
  • Two height maintaining protrusions 41 are formed on the inner peripheral surface of the cylinder 39. These two height maintaining protrusions 41 are arranged at intervals of 180 degrees in the direction around the axis of the cylinder 39, and are connected to the inner peripheral surface of the cylinder 39. These two height maintaining protrusions 41 are in sliding contact with the two height maintaining protrusions 28 (FIG. 3) of the shaft base portion 24a.
  • the inner peripheral surface of the height maintaining protrusion 41 is at the same radial position as the inner peripheral surface 40a of the cylinder 40, and both the inner peripheral surfaces constitute a continuous surface.
  • the height maintaining protrusions 28 and 41 are at the same radial position.
  • the lower end surface of the cylinder 39 constitutes a bearing surface 45 that faces the bearing surface 30 of the shaft 24.
  • An outer cylinder 49 is arranged coaxially with the cylinder 39 through a gap 47 outside the cylinder 39.
  • a mountain-valley repeated shape 27 that fits into a mountain-valley repeated shape 26 (FIG. 3) on the upper surface of the shaft base 24a is formed.
  • the mountain valley repeating shape 27 is configured by alternately arranging three sets of peaks 27b and valleys 27a in the direction around the axis of the cylinder 39, and repeating each group by 120 degrees.
  • the circumferential length (angle) of one valley 27a is longer than the circumferential length (angle) of one peak 27b.
  • the mountain 27 b is arranged in a state of being connected to the outer peripheral surface of the cylinder 39, the inner peripheral surface of the outer cylinder 49, and the bottom surface of the gap 47.
  • a stopper 51 is configured to protrude downward (upward in FIG. 4) in a partial region of the outer cylinder 49 in the circumferential direction.
  • the stopper 51 is inserted into a stopper groove 57 (FIG. 2) formed in the mirror base 12 so as to be movable in the circumferential direction, and sets the maximum rotation range (from the retracted position to the forward tilt position) of the mirror rotating portion 15.
  • the shaft shaft portion 24b is inserted into the continuous hollow portion 43 of the cylinders 39 and 40 of the frame 36 from the cylinder 39 side.
  • the bearing surface 45 of the frame 36 is supported by the bearing surface 30 of the shaft 24 with the resin washer 34 interposed therebetween. Further, the inner peripheral surface 40a of the upper cylinder 40 is rotatably supported by the shaft shaft portion 24b. As a result, the frame 36 is supported by the shaft 24 so as to be rotatable around the axis of the shaft 24.
  • the crest 26 b of the repetitive crest and valley shape 26 of the shaft 24 enters the gap 47 at the bottom of the frame 36. In this state, the mountain valley repeat shape 26 and the mountain valley repeat shape 27 are slidably fitted to each other in a predetermined angle range in both rotation directions.
  • the mountain-valley repeated shape 26 and the mountain-valley repeated shape 27 are until the inclined surface at the boundary between the mountain 26b and the valley 26a and the inclined surface at the boundary between the mountain 27b and the valley 27a are brought into contact and locked (or in the storage direction). Can slide in both directions of rotation until the stopper 51 is locked at one end of the stopper groove 57). This sliding allows the mirror rotating portion 15 (FIG. 2) to rotate between the retracted position and the deployed position. Further, when an external force of a predetermined value or more forward is applied to the mirror rotating portion 15 at the unfolded position, the mountain 26b and the mountain 27b are inclined with respect to each other against a biasing force of a coil spring 64 described later.
  • screw through holes 46 for screwing and fixing the frame 36 to two upper and lower bosses 44 (FIG. 2) on the back surface of the visor 14 are formed.
  • screw holes 46 are provided at three locations, upper, middle and lower. Of these, screws (not shown) are respectively inserted into the upper and lower screw through holes 46 and screwed into the upper and lower bosses 44 to fix the frame 36 to the back surface of the visor 14.
  • a resin washer 48 is loosely attached to the outer periphery of the cylinder 40 in the internal space 38 of the frame 36.
  • the resin washer 48 is placed and supported on the bottom surface 38 a of the internal space 38.
  • the resin washer 48 is the same product as the resin washer 34.
  • the shaft 52a of the metal worm 52 is inserted into the resin worm wheel 50, and the worm wheel 50 and the worm 52 are assembled so as not to be relatively rotatable.
  • the assembled worm wheel 50 and worm 52 are accommodated in the internal space 38 of the frame 36 and arranged at predetermined positions. At this time, the lower surfaces of both end portions 52b and 52c of the shaft 52a of the worm 52 are placed and supported by bearings (reference numerals 38b and 38c in FIG.
  • a shaft extrapolation gear 54 is rotatably mounted on the outer periphery of the cylinder 40 in the internal space 38 of the frame 36.
  • the shaft extrapolation gear 54 is formed of an integrally molded product of reinforced resin such as PA + GF resin.
  • a hollow portion 55 is formed at the center of the surface of the shaft extrapolation gear 54 as viewed from the axial direction. In the hollow portion 55, the cylinder 40 and the shaft shaft portion 24b of the frame 36 are rotatably inserted.
  • the bearing surface 106 (FIG. 6) on the lower surface of the shaft extrapolation gear 54 is slidably mounted and supported on the resin washer 48 (FIG. 6).
  • gear teeth 54 b are formed of helical teeth.
  • the shaft extrapolation gear 54 comprises the worm wheel.
  • the gear teeth 54 b are engaged with the worm 52.
  • the shaft extrapolation gear 54 and the worm 52 constitute a worm gear.
  • a shaft extrapolation gear side clutch surface 56 is configured on the upper surface of the shaft extrapolation gear 54.
  • the shaft extrapolation gear side clutch surface 56 is configured by alternately arranging five clutch valleys 56a and clutch peaks 56b in the direction around the axis of the shaft extrapolation gear 54, and repeating them at equal intervals.
  • the circumferential length (angle) of one clutch valley 56a is set equal to the circumferential length (angle) of one clutch peak 56b.
  • the clutch plate 58 is inserted into the shaft shaft portion 24b.
  • the clutch plate 58 is placed and supported concentrically with the shaft extrapolation gear 54 on the shaft extrapolation gear 54.
  • the clutch plate 58 is formed of an integrally molded product of reinforced resin such as PA + GF resin.
  • a hollow portion 59 into which the shaft shaft portion 24b is inserted so as not to rotate but to be movable in the axial direction is formed at the center portion of the surface of the clutch plate 58 viewed from the axial direction.
  • a shaft side clutch surface 60 is formed on the lower surface of the clutch plate 58.
  • the shaft-side clutch surface 60 is configured by repeatedly arranging five clutch valleys 60 a and clutch peaks 60 b in the direction around the axis of the clutch plate 58, and repeating them at equal intervals.
  • the shaft extrapolation gear side clutch surface 56 and the shaft side clutch surface 60 constitute a clutch mechanism 61.
  • the circumferential length (angle) of one clutch valley 60a of the shaft-side clutch surface 60 and the circumferential length (angle) of one clutch peak 60b are set equal.
  • the shaft extrapolation gear side clutch surface 56 and the shaft side clutch surface 60 have the same inner diameter and outer diameter.
  • the clutch valley 56a and the clutch peak 56b of the shaft extrapolation gear side clutch surface 56 are fitted to the clutch peak 60b and the clutch valley 60a of the shaft side clutch surface 60 without rattling.
  • the step at the boundary position between the clutch valley 56a and the clutch peak 56b and the step at the boundary position between the clutch valley 60a and the clutch peak 60b are respectively configured by inclined surfaces having the same inclination angle. Thereby, the fitting of the shaft extrapolation gear side clutch surface 56 and the shaft side clutch surface 60 can be disengaged by the rotational force acting between these clutch surfaces 56, 60.
  • a rotation stop shape 62 is formed on the inner peripheral surface of the clutch plate 58.
  • the anti-rotation shape 62 is configured by arranging five anti-rotation concave portions 62a and anti-rotation convex portions 62b in the circumferential direction and extending in the axial direction.
  • the anti-rotation concave part 62a and the anti-rotation convex part 62b face the anti-rotation convex part 32b and the anti-rotation concave part 32a formed on the outer peripheral surface of the shaft shaft part 24b, respectively, through a slight gap.
  • the anti-rotation concave portion 62a and the anti-rotation convex portion 62b are fitted to the anti-rotation convex portion 32b and the anti-rotation concave portion 32a so as not to rotate around the axis but to slide in the axial direction.
  • the clutch plate 58 is mounted on the shaft shaft portion 24b so as not to rotate around the shaft shaft portion 24b and to move in the axial direction.
  • a coil spring 64 is inserted into the shaft shaft portion 24b.
  • the coil spring 64 is placed and supported concentrically with the clutch plate 58 on the clutch plate 58.
  • a metal plate 66 is disposed on the coil spring 64.
  • the protrusion 66a formed on the inner peripheral surface of the metal plate 66 is inserted into the groove 35 formed on the upper outer peripheral surface of the shaft shaft portion 24b, the metal plate 66 is pushed downward, and then the metal plate 66 is rotated to The plate 66 is mounted on the upper portion of the shaft shaft portion 24b.
  • the coil spring 64 is attached to the shaft shaft portion 24b in a compressed state.
  • the extension force of the coil spring 64 acts between the upper surface of the clutch plate 58 and the lower surface of the metal plate 66. Due to this extension force, between the peak-and-valley repeat shape 26 on the upper surface of the shaft base 24 a and the peak-and-valley repeat shape 27 (FIG. 4) on the lower surface of the frame 36, and the shaft extrapolation gear side clutch surface 56 on the upper surface of the shaft extrapolation gear 54. A fitting force is applied between the lower surface of the clutch plate 58 and the shaft-side clutch surface 60. However, when the mirror rotating portion 15 is between the retracted position and the deployed position, the extension force applied from the coil spring 64 to the frame 36 is received by the bearing surface 30 from the bearing surface 45 via the resin washer 34.
  • the rotating portion 15 is rotated by sliding the bearing surfaces 45 and 30 with the resin washer 34 interposed therebetween.
  • the rotation of the mirror rotating portion 15 is supported by the bearing by the abutting sliding of the bearing surfaces 45 and 30 with the resin washer 34 interposed therebetween. Therefore, at this time, the opposing surfaces of the Yamatani repetitive shapes 26 and 27 are separated from each other and do not contact and slide (see FIG. 6).
  • a plate outer (support member) 68 is placed on the inner peripheral side step 36b of the opening 36a at the upper end of the frame 36, and the opening 36a is closed.
  • the plate outer 68 is constituted by an integrally molded product of resin such as POM (polyacetal).
  • the plate outer 68 has a cylindrical portion 72 and a dome 74 on the upper surface thereof.
  • the cylinder part 72 accommodates and holds the motor 76.
  • the dome 74 surrounds the upper portion of the shaft shaft portion 24 b protruding upward from the opening 36 a of the frame 36, the coil spring 64, and the metal plate 66. Thereby, the motor 76 is arrange
  • the rotating shaft of the motor 76 (motor rotating shaft 76a, FIG. 5 etc.) is parallel to the shaft 24 (corresponding to the mirror rotating shaft 18).
  • a round hole 74a is formed in the center of the surface of the dome 74 as viewed from the axial direction to project the upper portion of the shaft shaft portion 24b.
  • a worm 80 is attached to the motor shaft 78. With the plate outer 68 holding the motor 76 and the worm 80 in this way, the plate outer 68 is placed on the stepped portion 36 b on the inner peripheral side of the opening 36 a of the frame 36. At this time, the worm 80 and the worm wheel 50 are engaged with each other to form a worm gear.
  • the worm 80, the worm wheel 50, the worm 52, the shaft extrapolation gear 54, and the clutch plate 58 constitute a power transmission mechanism 81 that transmits the driving force of the motor 76 to the shaft shaft portion 24b, and the inner space 38 of the frame 36. Is contained and held.
  • the motor 76 and the power transmission mechanism 81 constitute an electric drive mechanism 87.
  • two projecting pieces 77 are configured to protrude downward from the lower surface.
  • the lower end surfaces of the two projecting pieces 77 face the upper surfaces of both end portions 52b and 52c of the shaft 52a of the worm 52 through a slight gap, respectively, and restrict the worm 52 and the worm wheel 50 from moving upward.
  • the plate outer 68 is placed on the step 36 b on the inner peripheral side of the opening 36 a of the frame 36, the plate outer 68 is fixed to the frame 36 with four screws 82.
  • the circuit board is placed in the space 75 between the cylindrical portion 72 and the dome 74 (in other words, the space between the motor 76 and the shaft shaft portion 24b) on the upper surface of the plate outer 68.
  • (Printed circuit board) 84 is arranged upright. Since the shaft extrapolation gear 54 is made of a resin-based material, the shaft extrapolation gear 54 is compared with a metal shaft extrapolation gear in order to ensure the necessary strength as a shaft extrapolation gear. Large diameter. Accordingly, a space 75 between the motor 76 and the shaft shaft portion 24b is expanded.
  • the circuit board 84 is mounted with the connector holder (socket) 88 and the like, even if the entire thickness of the circuit board 84 including the mounted components is thick, the circuit board 84 is made into the space 75. Can be easily arranged.
  • the circuit board 84 is mounted with a motor drive circuit, a motor connection terminal 86 (male terminal), and a connector receiver 88 (socket, connector receiver).
  • the motor drive circuit supplies drive power to the motor 76.
  • the motor connection terminal 86 connects the motor drive circuit and the terminal 85 (motor terminal, female terminal, FIG. 7) of the motor 76.
  • the connector receiver 88 is inserted with a connector 89 (FIG. 7) at the tip of a wire harness (not shown).
  • the connector receiver 88 connects the wire harness and the motor drive circuit.
  • a connector connection terminal 91 (FIG. 7) that is electrically connected to a terminal (not shown) of the connector 89 at the tip of the wire harness is disposed.
  • the lower end 84 a of the circuit board 84 is inserted into and supported by a groove 75 a formed at the bottom of the space 75 between the cylindrical portion 72 and the dome 74 of the plate outer 68.
  • the tip of the motor connection terminal 86 is inserted into the motor terminal 85 and supported.
  • the circuit board 84 is placed upright in the space 75 and the motor connection terminal 86 and the motor terminal 85 are electrically connected.
  • the seal cap 90 is put on the plate outer 68.
  • the seal cap 90 is formed of an integrally molded product of resin such as PP (polypropylene).
  • PP polypropylene
  • a connector insertion port 94 communicating with the connector insertion port 88a (FIG. 5) of the connector receiver 88 of the circuit board 84 is provided on one side surface of the seal cap 90.
  • a claw locking frame 98 is formed at four locations around the opening 96 at the lower end of the seal cap 90.
  • the seal cap 90 When the seal cap 90 is put on the plate outer 68 and pressed down, the claws 100 that are configured to project at four locations around the upper outer peripheral surface of the frame 36 engage with the claw locking frame 98 of the seal cap 90. Thereby, the frame 36 and the seal cap 90 are connected, and the electric storage unit 16 is assembled as a unit.
  • a wire harness is passed through the hollow portion 31 of the shaft shaft portion 24b of the electric storage unit 16 assembled in this manner.
  • the wire harness includes wiring for the electric storage unit 16.
  • the wire harness includes mirror surface adjustment actuator wiring, turn lamp wiring, and the like according to the function to be mounted on the door mirror 10. The end of the wire harness on the mirror rotating portion 15 side is discharged from the round hole 92 of the seal cap 90.
  • the end of the wire harness on the vehicle body side is discharged from the lower end of the hollow portion 31 of the shaft 24 and guided into the vehicle body.
  • a connector is attached to each end of the wiring of the wire harness on the mirror rotating unit 15 side.
  • the connector 89 (FIG. 7) at the tip of the wiring for the electric storage unit 16 is inserted into the connector insertion port 94 and connected to the connector receiver 88 of the circuit board 84.
  • FIG. 5 shows a state where the circuit board 84 and the seal cap 90 are assembled to the product in the middle of the assembly of the electric storage unit 16 shown in the lower part of FIG.
  • the product in the middle of the assembly is the assembly of the parts shown on the right side of FIG. 3, and the plate outer 68 holding the motor 76 and the worm 80 is fitted on the inner peripheral side of the opening 36a at the upper end of the frame 36.
  • This product is fixed to the frame 36 with a screw 82.
  • the holding state of the motor main body 69 with respect to the cylindrical portion 72 of the plate outer 68 appears well. That is, the motor 76 is held by the plate outer 68 with the motor shaft 78 (FIG. 3) facing downward.
  • the motor main body 69 is held by the plate outer 68 in a state where the entire motor main body 69 is buried in the internal space 129 of the cylindrical portion 72 of the plate outer 68.
  • the motor 76 is locked against movement in the direction perpendicular to the motor rotation shaft 76a with respect to the cylindrical portion 72 and rotation in the direction around the motor rotation shaft 76a. Further, the movement of the motor 76 in the direction of the motor rotating shaft 76 a relative to the cylindrical portion 72 is locked by the claw engaging piece 139. Details of the motor holding configuration will be described later.
  • the circuit board 84 is inserted into a space 75 between the cylindrical portion 72 and the dome 74 on the upper surface of the plate outer 68.
  • the lower end 84 a of the circuit board 84 is detachably inserted into the groove 75 a of the plate outer 68.
  • the tip of the motor connection terminal 86 is detachably inserted into the motor terminal 85 (FIG. 7).
  • the circuit board 84 is detachably supported by the groove 75a and the motor terminal 85.
  • the seal cap 90 is put on the product. Thereby, the claw 100 of the frame 36 is detachably engaged with the claw locking frame 98 of the seal cap 90, and the seal cap 90 is assembled to the product.
  • the wire harness is passed through the hollow portion 31 of the shaft shaft portion 24b.
  • the connector insertion port 88a of the connector receiver 88 of the circuit board 84 and the connector insertion port 94 of the seal cap 90 communicate with each other.
  • the connector 89 of the wiring for the electric storage unit 16 of the wire harness is inserted into the connector insertion port 88a from the connector insertion port 94 and can be connected to the connector receiver 88.
  • FIG. 6 shows the door mirror 10 having the above configuration cut at a position passing through the shaft 24 and the central axes 18 and 76 a of the motor 76. This corresponds to the cut end surface structure at the position of the arrow AA in FIG.
  • FIG. 6 shows a state in which the housing cover 17 is attached to the visor 14, the mirror rotating portion 15 is in the deployed position, and the shaft external gear side clutch surface 56 and the shaft side clutch surface 60 are engaged with each other. Show. At this time, the mountain valley repeated shape 26 and the mountain valley repeated shape 27 do not appear in FIG. 6, but the inclined surface at the boundary between the mountain 26b and the valley 26a and the inclined surface at the boundary between the mountain 27b and the valley 27a abut, They are locked together.
  • the motor 76 When the storage switch is given by operating the mirror switch in the unfolded position in FIG. 6, the motor 76 is activated. The rotation of the motor 76 is transmitted to the shaft extrapolation gear 54 via the worm 80, the worm wheel 50, and the worm 52. At this time, the shaft extrapolation gear side clutch surface 56 and the shaft side clutch surface 60 are engaged with each other, and the shaft extrapolation gear 54 cannot rotate with respect to the shaft shaft portion 24b. Instead, the frame 36 is attached to the shaft shaft portion 24b. A force acts to rotate the surrounding direction.
  • the mirror rotating unit 15 rotates in the retracted direction.
  • the stopper 51 (FIG. 4) and one end of the stopper groove 57 (FIG. 2) at the retracted position
  • the stop is detected and the motor 76
  • the drive is stopped.
  • the mirror rotating unit 15 is held at the storage position.
  • the motor 76 is activated in the reverse direction, and the mirror rotating unit 15 rotates in the deployment direction.
  • the rotation of the mirror rotating portion 15 is stopped at the unfolded position by the engagement of the inclined surface at the boundary between the peak 26b and the valley 26a of the repetitive shape 26 of the mountain valley and the inclined surface at the boundary between the peak 27b of the repetitive shape 27 and the valley 27a.
  • the stop is detected and the drive of the motor 76 is stopped.
  • the mirror rotating unit 15 is held at the unfolded position.
  • FIG. 7 shows a state in which the door mirror 10 of FIG. 2 is assembled and mounted on the vehicle.
  • the mirror rotating unit 15 is shown in a posture at the unfolded position and viewed from above.
  • 7 shows the door mirror 10 in a state in which the housing cover 17 (FIG. 6) is removed and the inside of the electric storage unit 16 is seen through.
  • FIG. 7 shows the door mirror 10 in a state in which the connector 89 of the wiring harness for the electric storage unit 16 of the wire harness is inserted into the connector holder 88 with the rubber packing 101 attached thereto.
  • the motor connection terminal 86 of the circuit board 84 is inserted into the motor terminal 85.
  • a lower end 84 a of the circuit board 84 is inserted into a groove 75 a (FIGS. 3, 5, and 6) formed in the plate outer 68. With the circuit board 84 supported in this manner, the entire circuit board 84 is vertically arranged in the space 75 between the motor 76 and the shaft shaft portion 24b.
  • FIG. 9 is a view of the frame 36 as seen in the direction of arrow B from obliquely above the position of arrow B in FIG.
  • FIG. 8 illustrates a region at a relatively high position (a shallow position in the opening 36a) in the region on the inner peripheral side of the opening 36a of the frame 36 in gray.
  • the worm wheel housing space 111, the surrounding wall 121, the inner peripheral side space 113 of the surrounding wall 121, the outer peripheral side space 123 of the surrounding wall 121, the internal space 38 and the inner peripheral side space 113 are communicated 115, four screw holes 117 (117-1, 117-2, 117-3, 117-4) and the like are formed.
  • the surrounding wall 121 has an annular portion (cylindrical portion) 121a.
  • the annular portion 121a has an annular shape when viewed in the axial direction and has a circumferential angle range (circumferential length) of a semicircle (180 degrees) or more.
  • the outer diameter of the annular portion 121 a is configured to be smaller than the outer diameter of the motor main body 69.
  • the surrounding wall 121 has an opening 126 in a partial region in the circumferential direction of the annular portion 121a (region facing the worm wheel housing space 111).
  • the surrounding wall 121 is connected to both ends of the opening 126 and has flat portions 121b and 121c facing each other in parallel.
  • a communication path 115 is formed between the flat portions 121b and 121c.
  • the surrounding wall 121 is connected to both end portions of the planar portions 121b and 121c, and has folded portions 121d and 121e that are folded outward.
  • Both end portions of the folded portions 121 d and 121 e are connected to a portion 36 c located on the outer peripheral side of the outer peripheral side space 123 of the frame 36.
  • the portion 36c is an outer wall of the frame 36 in this embodiment.
  • the shape of the surrounding wall 121 in the axial direction is substantially “ ⁇ ” as a whole with a certain thickness.
  • the worm wheel accommodating space 111 accommodates the worm wheel 50 fixedly mounted coaxially on the shaft 52 a of the worm 52. At this time, both end portions 52b and 52c of the shaft 52a of the worm 52 are supported by the bearings 38b and 38c.
  • the inner peripheral space 113 is a cylindrical space having a larger diameter than the worm 80 and has a closed bottom, and accommodates the worm 80 coaxially.
  • the communication path 115 allows the worm wheel housing space 111 and the inner circumferential space 113 to communicate with each other. As a result, the communication path 115 causes the outer peripheral surface of the worm wheel 50 to enter the inner peripheral space 113 through the communication path 115. As a result, the worm wheel 50 and the worm 80 mesh with each other.
  • the four screw holes 117 are screw holes for screwing four screws 82 (FIG. 3) for fixing the plate outer 68 onto the frame 36.
  • a bearing recess 93 having a smaller diameter than the general diameter of the inner peripheral space 113 is formed at the bottom of the inner peripheral space 113.
  • the bearing recess 93 is filled with grease, and the tip 80 a (FIG. 16) of the worm 80 is accommodated in the bearing recess 93.
  • the front end 80 a of the worm 80 is supported by the bearing recess 93.
  • the upper part of the inner peripheral space 113 forms a recess 113a having a circular shape in the axial direction.
  • a convex portion 119 (FIGS.
  • the convex portion 119 has a circular shape in the axial direction as in the concave portion 113a.
  • a hole 73a (FIGS. 16 and 6) for passing the motor shaft 78 is formed at the center of the convex portion 119.
  • the convex portion 119 has a recess 119a (FIG. 11) having a circular shape in the axial direction on the inner peripheral side thereof. Accordingly, the convex portion 119 is formed in a cylindrical shape having a constant thickness.
  • the bottom of the recess 119a is closed.
  • a hole 73a is formed at the center of the bottom.
  • the recess 119a functions as a lightening part of the convex part 119. That is, the recess 119a suppresses sink marks associated with resin molding of the plate outer 68, and increases the molding accuracy of the convex portion 119.
  • a region of a half circumference (180 degrees) or more of the entire outer periphery of the convex portion 119 is surrounded and supported by the inner peripheral surface of the concave portion 113a.
  • the motor shaft 78 protruding from the central hole 73 a of the convex portion 119 is positioned on the central axis of the inner peripheral space 113.
  • the opening end surface 113b of the recess 113a is formed as an inwardly inclined surface, thereby facilitating the entry of the projection 119 into the recess 113a.
  • the outer peripheral space 123 is configured in a shape in which the axial view shape is continuous in an annular shape (generally “C” shape) along the outer periphery of the surrounding wall 121.
  • the outer peripheral space 123 is formed in a groove-like space concentric with the surrounding wall 121 and closed at the bottom.
  • the outer peripheral portion of the outer peripheral space 123 constitutes the outer wall of the frame 36.
  • the outer peripheral space 123 is formed in the depth direction so as to reach a position deeper than the central portion in the vertical direction of the inner peripheral space 113.
  • the outer peripheral space 123 functions as a thinned portion of the outer wall of the frame 36 at the outer peripheral position of the inner peripheral space 113. That is, the outer peripheral side recess 123 suppresses sink marks accompanying the resin molding of the frame 36 and increases the molding accuracy of the inner peripheral side cavity 113. Since the convex portion 119 of the plate outer 68 has a molding accuracy enhanced by the recess 119a, and the concave portion 113a of the frame 36 has a molding accuracy enhanced by the outer peripheral recess 123, a motor for the inner peripheral cavity 113 is provided.
  • the positioning accuracy of the shaft 78 in the surface direction orthogonal to the axis of the motor shaft 78 is improved.
  • the meshing state of the worm 80 and the worm wheel 50 is maintained in a normal state, the operation sound when the worm 80 and the worm wheel 50 are meshed and rotated is maintained at a normal level, and the worm 80 and the worm wheel 50 are maintained.
  • the burden on the wheel 50 can be reduced.
  • the structure of the plate outer 68 constituting the support member will be described with reference to FIGS.
  • the plate outer 68 has a flat plate-like portion 125.
  • a cylindrical portion 72 and a dome 74 are provided so as to protrude from each other with the space 75 interposed therebetween, perpendicular to the plate-like portion 125.
  • the plate-like portion 125 is placed and supported on the frame 36.
  • the lower peripheral edge 125 a (FIG. 11, etc.) of the plate-like portion 125 abuts on the inner peripheral step 36 b (FIG. 8) of the upper opening 36 a of the frame 36.
  • Two projecting pieces 77 project downward from the lower surface of the plate-shaped portion 125.
  • each protruding piece 77 faces the upper surfaces of both end portions 52b and 52c of the shaft 52a of the worm 52 (FIG. 15) via a slight gap between the upper surfaces. Thereby, these protrusions 77 restrict the worm 52 and the worm wheel 50 from moving upward.
  • Four screws communicating with four screw holes 117 (117-1, 117-2, 117-3, 117-4, FIG. 8) of the frame 36 are provided on the periphery of the plate-like portion 125 in the plane. Through holes 127 (127-1, 127-2, 127-3, 127-4) are opened.
  • the plate outer 68 is placed and supported on a step 36b on the inner peripheral side of the opening 36a at the upper end of the frame 36, and four screws 82 (FIG. 3) are screwed into the screw holes 117 through the screw through holes 127, whereby the plate The outer 68 is fixed to the frame 36.
  • the cylindrical portion 72 has an internal space 129.
  • the internal space 129 accommodates and holds the motor main body 69 (FIG. 16 and the like).
  • the depth of the internal space 129 (the height from the surface of the bottom 73 of the internal space 129 to the opening end 129a) is the axial length of the motor main body 69 (from the front end surface 69a to the rear end surface 69b of the motor main body 69). Length (see FIG. 16).
  • the entire motor main body 69 is accommodated in the internal space 129 of the cylindrical portion 72.
  • the cylinder portion 72 has a pair of opposed arcuate surface portions 72a and 72b and a pair of opposed flat surface portions 72c and 72d in accordance with the shape of the motor main body 69 (FIG. 10 and the like).
  • the internal space 129 opens upward.
  • the motor 76 can enter the internal space 129 from the open end 129 a of the internal space 129.
  • On the peripheral wall surface of the internal space 129 a plurality of protrusions 131 (FIGS. 10 and 13) extend in the vertical direction. These ridges 131 are in contact with the outer peripheral surface of the motor 76 to hold the motor 76 in the internal space 129 without rattling.
  • the ridge 131 is configured in a total of six locations, one each at the center in the width direction of the arcuate surface portions 72a and 72b and two at each end in the width direction of the flat portions 72c and 72d. These ridges 131 are configured to extend from the surface position of the bottom 73 of the internal space 129 to the height position of the central portion of the internal space 129.
  • the upper end surface 131 a (FIG. 13) of each protrusion 131 is configured as an inclined surface that is inclined in the direction of entry of the motor main body 69 (direction toward the motor main body 69 attempting to enter the internal space 129).
  • the flat part 72c of the cylindrical part 72 is formed with a notch 133 that opens upward (FIG. 13 and the like).
  • the motor connection terminal 86 of the circuit board 84 is connected to the motor terminal 85 through the notch 133 (FIGS. 5 and 7).
  • notches 135 and 137 are formed in the vertical direction along the boundary lines of the respective boundary portions (the cylindrical portion).
  • the upper ends of the notches 135 and 137 open to the upper end of the cylindrical portion 72 (open end 129a of the internal space 129).
  • the lower ends of the notches 135 and 137 are located approximately in the middle of the cylindrical portion 72 in the vertical direction.
  • the upper half portion of the cylindrical portion 72 has a portion separated in the circumferential direction by the notches 135 and 137.
  • the separated portion constitutes a claw engaging piece 139. That is, the claw engaging piece 139 is configured by a part in the circumferential direction of the upper half portion of the cylindrical portion 72.
  • the lower end of the claw engaging piece 139 is connected to the lower half of the cylindrical portion 72 as a fixed end 139a.
  • the upper end of the claw engaging piece 139 constitutes a free end 139b.
  • the claw engaging piece 139 can be bent by elastic deformation in the inner and outer directions of the cylindrical portion 72 by an external force with the fixed end 139a as a fulcrum.
  • the tip of the free end 139 b is at the same height as the open end 129 a of the internal space 129 of the cylindrical portion 72.
  • the claw engaging piece 139 has a leg portion 141 and an engaging claw 143.
  • the leg 141 is supported by the fixed end 139a.
  • the engaging claw 143 protrudes from the inner peripheral surface of the central portion in the width direction of the leg portion 141 so as to face the internal space 129 at a position immediately below the free end 139 b at the upper portion of the leg portion 141.
  • the width of the leg portion 141 is much wider than the width of the engaging claw 143. Even if the width of the opening 145 described later is subtracted from the width of the leg 141, the width of the leg 141 after the subtraction is wider than the width of the engaging claw 143. Therefore, the leg 141 is configured with high rigidity.
  • the lower surface (undercut surface) of the engaging claw 143 constitutes an engaging surface 143a.
  • the engaging surface 143a is a surface that is substantially orthogonal to the direction in which the motor 76 enters.
  • the engagement surface 143a is disposed at a position below the opening end 129a of the internal space 129 (that is, a position at the back of the internal space 129 relative to the opening end 129a).
  • the engagement surface 143a abuts on the rear end surface 69b of the motor main body 69 and stops the movement of the motor main body 69 in the direction of exiting from the internal space 129.
  • the upper surface of the engaging claw 143 has an inclined surface 143b.
  • An opening 145 is formed at the center in the width direction of the leg 141.
  • the opening 145 extends linearly downward from a position immediately below the engagement surface 143a.
  • the width of the opening 145 is equal to the width of the engaging surface 143a or wider than the width of the engaging surface 143a.
  • the width of the leg portion 141 is wider than the width of the engaging claw 143, a design for forming the opening 145 in the leg portion 141 is possible.
  • the upper end surface 145a (FIG. 14) of the opening 145 is configured at the same height as the engaging surface 143a. The opening 145 is opened when the slide outer mold is inserted into the position where the opening 145 is formed and the engagement surface 143a, which is an undercut surface, is formed during resin molding of the plate outer 68.
  • a hole 73a and a flat circular recess 147 are formed at the center of the bottom 73 of the internal space 129 of the cylindrical portion 72 (FIGS. 10 and 16).
  • the hole 73 a is for discharging the motor shaft 78 from the internal space 129.
  • the recess 147 is disposed concentrically with the hole 73a on the outer peripheral side of the hole 73a.
  • a convex portion 149 having a circular shape in the axial direction is formed coaxially with the motor shaft 78 at the center of the front end surface 69a (FIG. 16) of the motor main body 69.
  • the convex part 149 is fitted into the concave part 147.
  • a support table 151 having a minute height is projected and formed (FIG. 10).
  • the support base 151 abuts on the four corners of the front end surface 69a of the motor main body 69 and supports the front end surface 69a.
  • the height from the surface of the support base 151 to the engagement surface 143a is just set to the axial length of the motor main body 69 (the length from the front end surface 69a to the rear end surface 69b of the motor main body 69).
  • FIG. 15 is a plan view of the electric storage unit 16 with the plate outer 68 and the seal cap 90 removed.
  • FIG. 16 shows a cut end view of the electric storage unit 16 at the position indicated by the arrow DD in FIG. The arrangement of FIG. 16 will be described.
  • the plate outer 68 is supported in contact with the stepped portion 36b of the frame 36, and is fixed to the frame 36 with screws 82 (FIG. 3).
  • the motor main body 69 is accommodated and held in the cylindrical portion 72 of the plate outer 68.
  • An engagement surface 143 a of the claw engagement piece 139 is engaged with the rear end surface 69 b of the motor main body 69.
  • a worm 80 is loosely attached to the motor shaft 78.
  • the motor shaft 78 has a round bar portion 78a on the proximal end side and an engagement rod portion 78b on the distal end side along the axial direction thereof.
  • the central hole 83 of the worm 80 into which the motor shaft 78 is inserted has a round hole portion 83a on the proximal end side and an engagement hole portion 83b on the distal end side along the axial direction.
  • the round hole part 83a accommodates the round bar part 78a
  • the engagement hole part 83b accommodates the engagement bar part 78b. Since the engagement rod portion 78b and the engagement hole portion 83b are non-circular in cross section, they engage in the rotation direction. Thus, when the motor shaft 78 rotates, the worm 80 rotates following the rotation of the motor shaft 78, and the worm wheel 50 rotates following the rotation of the worm 80.
  • FIG. 1 is a plan view of the frame 36 of FIG. 8, showing the positions of screw holes 117-1 to 117-4 corresponding to the first to third lines L1 to L3 and the first to fourth fixing positions according to the present invention. It is what you entered.
  • the line connecting the mirror rotation shaft 18 and the motor rotation shaft 76a is orthogonal to the first line L1 through the motor rotation shaft 76a.
  • a line to be defined is defined as a second line L2, and a line passing through the mirror rotation axis 18 and orthogonal to the first line L1 is defined as a third line L3.
  • the screw holes 117-1 to 117-4 corresponding to the four fixed positions are respectively arranged at the following positions.
  • -Screw hole 117-1 Position opposite to the side where the mirror rotation shaft 18 exists with respect to the second line L2-Screw hole 117-2 (second fixed position): second In the region sandwiched between the second line L2 and the third line L3, the one-side position / screw hole 117-3 (third fixed position) across the first line L1: the second line L2 and the second line L2 In the region sandwiched by the third line L3, the position opposite to the screw hole 117-2 with the first line L1 and the screw hole 117-4 (fourth fixed position): the third line L3
  • the screw holes 117-2 and 117-3 are arranged at positions close to the bearings 38b and 38c.
  • the screw holes 117-2 and 117-3 are arranged on both sides of the center line M of the shaft 52a of the worm 52. Both ends 52b and 52c (FIG. 15) of the shaft 52a of the worm 52 are supported by the bearings 38b and 38c.
  • the lower end surfaces of the two projecting pieces 77 (pressing portions) on the lower surface of the plate outer 68 face the upper surfaces of the both end portions 52b and 52c through a slight gap. As a result, the two protruding pieces 77 restrict the worm 52 and the worm wheel 50 from moving upward.
  • the four screw holes 127-1 to 127-4 (FIGS. 10, 11, and 13) of the plate outer 68 are arranged at positions that communicate with the four screw holes 117-1 to 117-4 of the frame 36, respectively. Has been.
  • FIG. 17 shows the effect of the arrangement of the four fixed positions in FIG. Since the plate outer 68 is made of resin, the plate outer 68 is deformed so that both sides in the longitudinal direction warp upward as shown by an arrow E after molding, or both sides in the longitudinal direction as shown by an arrow E ′. Deforms to warp downward. The plate outer 68 is similarly deformed in the lateral direction. Arrows F1 to F4 in FIG. 17 indicate directions of fixing force for fixing the plate outer 68 to the frame 36 with screws 82 at the first to fourth fixing positions, respectively. The deformation E in which both sides in the longitudinal direction of the plate outer 68 warp upward is corrected by the fixing forces F1 and F4 at the first and fourth fixing positions on both sides in the longitudinal direction.
  • the second and third fixing positions are such that the lower end surfaces of the two projecting pieces 77 on the lower surface of the plate outer 68 are opposed to the upper surfaces of both end portions 52b and 52c of the shaft 52a of the worm 52 through a slight gap. Therefore, it is possible to prevent a gap between the lower end surface of the projecting piece 77 and the upper surfaces of both end portions 52b and 52c of the shaft 52a of the worm 52 from being opened. As a result, the shaft 52a of the worm 52 is prevented from floating from the bearings 38b, 38c, and abnormal noise from the worm 52 and the worm wheel 50 is prevented.
  • FIG. 18 is a plan view of a frame 36 ′ according to this embodiment. 18, the same reference numerals as those used in FIG. 1 are used for portions corresponding to those in FIG.
  • the frame 36 ′ is obtained by omitting the screw hole 117-4 corresponding to the fourth fixing position from the frame 36 of the above embodiment.
  • FIG. 19 is a plan view of the plate outer 68 ′ combined with the frame 36 ′. 19, the same reference numerals as those used in FIG. 10 are used for portions corresponding to those in FIG.
  • This plate outer 68 ′ is obtained by omitting the screw through hole 127-4 corresponding to the fourth fixed position with respect to the plate outer 68 of the embodiment.
  • the configuration is the same as that of the above embodiment except that the screw hole 117-4 and the screw through hole 127-4 corresponding to the fourth fixing position are omitted.
  • the screwing positions of the frame 36 ′ and the plate outer 68 ′ with the screws 82 are three positions, ie, the first to third fixing positions.
  • frame 36 'and plate outer 68' can be simplified.
  • the fixing positions of the frame 36 ′ and the plate outer 68 ′ include the first to third fixing positions close to the position where the motor 76 is held.
  • the present invention is not limited to a door mirror and is mounted on a vehicle door or the like so as to protrude laterally on the vehicle, and is used for a vehicle other than a vehicle. It can also be applied to an electric retractable visual recognition device for vehicles.
  • the vehicle retractable rear view camera for a vehicle for example, has a small visor 14 shown in FIG. 2, and the camera is replaced with a mirror plate so that the optical axis of the camera faces the rear of the vehicle when the visor 14 is in the use position.
  • it can be configured as being mounted on the visor 14.
  • SYMBOLS 10 Electric retractable door mirror (electrically retractable visual recognition device for vehicles), 13 ... Vehicle body (right door), 15 ... Mirror rotating part (visualizing device rotating part), 18 ... Mirror rotating shaft (visualizing device rotating shaft), 24 ... Shaft 36, 36 '... Frame 38 ... Internal space 38b, 38c ... Worm (intermediate gear) bearing 50 ... Worm wheel (intermediate gear) 52 ... Worm (intermediate gear) 52a ... Worm (intermediate gear) Shafts 52b, 52c ... both ends of the shaft of the worm (intermediate gear), 68, 68 '... plate outer (support member), 76 ... motor, 76a ... motor rotating shaft, 77 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Rear-View Mirror Devices That Are Mounted On The Exterior Of The Vehicle (AREA)

Abstract

【課題】駆動機構を収容するフレームの、内部空間に臨む位置に、駆動機構を支持する機能を有する支持部材を固定する構造において、支持部材の変形を抑制して、モータ作動時の異音発生等を防止する。 【解決手段】視認装置回転軸とモータ回転軸を結ぶ線を第1の線L1、モータ回転軸を通り第1の線に直交する線を第2の線L2、視認装置回転軸を通り第1の線に直交する線を第3の線L3と定義する。フレームと支持部材との固定位置は、視認装置回転軸の軸方向から見て、第2の線に対し視認装置回転軸が存在する側と反対側の領域に存在する第1の固定位置117-1と、第2の線と第3の線に挟まれた領域内で、第1の線を挟んで互いに反対側の領域に存在する第2の固定位置117-2および第3の固定位置117-3を有する。第3の線に対しモータ回転軸が存在する側と反対側の領域に存在する第4の固定位置117-4をさらに有することもできる。

Description

車両用電動格納式視認装置におけるフレームと支持部材の固定構造
 この発明は車両用電動格納式ミラー、車両用電動格納式カメラ等の車両用電動格納式視認装置における固定構造に関し、該固定構造は駆動機構を収容するフレームの、内部空間に臨む位置に、駆動機構を支持する機能を有する支持部材を固定する構造である。この発明は、この固定構造において、支持部材の変形を抑制して、モータ作動時の異音発生等の不具合を防止したものである。
 車両用電動格納式視認装置は一般に、駆動機構を収容するフレームの、内部空間に臨む位置に、駆動機構を支持する機能を有する支持部材を固定する構造を有している。例えば特許文献1に記載の電動格納式ミラーでは、フレーム(2)の、内部空間に臨む位置に、支持部材(17)を3箇所でねじ止めしている。また特許文献2に記載の電動格納式ミラーでは、フレーム(14)の、内部空間(28)に臨む位置に、支持部材(50)を3箇所でねじ止めしている。なお、カッコ内の符号は特許文献1,2で使用されている符号である。
特開平08-072613号公報(図4) 特開2002-067805号公報(図1)
 特許文献1,2に記載の固定構造によれば、支持部材は一般に樹脂製であるため変形が生じやすく、該変形により駆動機構にがたつきが生じ、モータ作動時に異音を発生させることがあった。
 この発明は上記の問題を解決して、支持部材の変形を抑制して、モータ作動時の異音発生等を防止したフレームと支持部材の固定構造を提供するものである。
 この発明は、車両用電動格納式視認装置における固定構造であって、前記車両用電動格納式視認装置は、車体側に立設されるシャフトと、前記シャフトの軸中心に配置される視認装置回転軸の周り方向に回転可能に該シャフトに支持される視認装置回転部と、前記視認装置回転部を前記視認装置回転軸周り方向に回転駆動する電動駆動機構を有し、前記電動駆動機構は、前記視認装置回転部に搭載されるモータと、前記モータの駆動力を前記シャフトに伝達して、前記視認装置回転部を前記視認装置回転軸の周り方向に回転させる動力伝達機構とを有し、前記視認装置回転部は、前記動力伝達機構を収容する内部空間を有するフレームと、前記モータを保持して前記フレームの前記内部空間に臨む位置に配置された状態で該フレームに固定されて、前記モータのモータ回転軸の回転を前記動力伝達機構に伝達させる支持部材を有し、前記モータ回転軸は前記視認装置回転軸と概ね平行に配置されており、前記固定構造は、前記フレームと前記支持部材とを固定する構造であり、前記視認装置回転軸の軸方向から見て、前記視認装置回転軸と前記モータ回転軸を結ぶ線を第1の線、前記モータ回転軸を通り前記第1の線に直交する線を第2の線、前記視認装置回転軸を通り前記第1の線に直交する線を第3の線と定義して、前記固定構造は、前記フレームと前記支持部材との固定位置として、前記視認装置回転軸の軸方向から見て、前記第2の線に対し前記視認装置回転軸が存在する側と反対側の領域に存在する第1の固定位置と、前記第2の線と前記第3の線に挟まれた領域内で、前記第1の線を挟んで互いに反対側の領域に存在する第2の固定位置および第3の固定位置を有する、そのような固定構造である。これによれば、モータを保持する位置に近い第1~第3の固定位置を固定位置に含んでいるので、支持部材の変形によるモータの傾きを効果的に抑制して、モータ作動時の駆動機構の動作を円滑にして異音発生を防止することができる。
 この発明の固定構造において、前記フレームと前記支持部材とのねじ止め箇所は前記第1から第3の3箇所の固定位置にのみ存在しているものとすることができる。これによれば、フレームと支持部材とを少ないねじ止め箇所で固定して、支持部材の変形を抑制して、モータ作動時の異音発生を防止することができる。
 この発明は、車両用電動格納式視認装置における別の固定構造であって、前記車両用電動格納式視認装置は、電動駆動機構により所定の視認装置回転軸の周り方向に回転可能に配置された視認装置回転部を有し、前記視認装置回転部は前記電動駆動機構の少なくとも一部を収容する内部空間を有するフレームと、前記フレームの前記内部空間に臨む位置に配置された状態で該フレームに固定されて前記電動駆動機構の少なくとも一部を支持する支持部材を有し、前記電動駆動機構のモータ回転軸は前記視認装置回転軸と概ね平行に配置されており、前記固定構造は、前記フレームと前記支持部材とを固定する構造であり、前記視認装置回転軸の軸方向から見て、前記視認装置回転軸と前記モータ回転軸を結ぶ線を第1の線、前記モータ回転軸を通り前記第1の線に直交する線を第2の線、前記視認装置回転軸を通り前記第1の線に直交する線を第3の線と定義して、前記固定構造は、前記フレームと前記支持部材との固定位置として、前記視認装置回転軸の軸方向から見て、前記第2の線に対し前記視認装置回転軸が存在する側と反対側の領域に存在する第1の固定位置と、前記第2の線と前記第3の線に挟まれた領域内で、前記第1の線を挟んで互いに反対側の領域に存在する第2の固定位置および第3の固定位置と、前記第3の線に対し前記モータ回転軸が存在する側と反対側の領域に存在する第4の固定位置とを有する、そのような固定構造である。これによれば、フレームと支持部材とを第1~第4の位置で固定することにより、支持部材の変形をより確実に抑制することができ、これによりモータ作動時の駆動機構の動作をより円滑にして異音発生をより確実に防止することができる。
 この発明の別の固定構造において、前記フレームと前記支持部材とのねじ止め箇所は前記第1から第4の4箇所の固定位置にのみ存在しているものとすることができる。これによれば、フレームと支持部材とを少ないねじ止め箇所で固定して、支持部材の変形を抑制して、モータ作動時の異音発生を防止することができる。
 この発明はさらに、前記電動駆動機構は前記視認装置回転軸の軸方向から見て、前記視認装置回転軸と前記モータ回転軸との間に挟まれた位置に配置された中間ギヤを有し、前記中間ギヤの軸は前記視認装置回転軸に直交する面内に配置され、前記支持部材は前記中間ギヤの軸の両端部に対面して該中間ギヤが該中間ギヤの軸受から浮くのを押さえる2箇所の押さえ部を有し、前記第2の固定位置および前記第3の固定位置は前記2箇所の押さえ部に近接した位置に配置されているものとすることができる。これによれば、2箇所の押さえ部で支持部材の変形を抑制して、中間ギヤが該中間ギヤの軸受から浮くのが押さえられ、モータ作動時の異音発生を防止することができる。
図8のフレーム36の平面図に、この発明による第1~第3の線および第1~第4の固定位置を記入したものである。 この発明の実施の形態に係る車両右側用電動格納式ドアミラーの分解斜視図である。 図2に示す電動格納ユニット16の分解斜視図である。 図3に示すフレーム36を底面側から見た斜視図である。 図3に示す電動格納ユニット16の各部品を組み付ける途中の状態を示す斜視図である。 図2のドアミラー10を組み立てた状態を示す図で、図7のA-A矢視位置の切断端面図である。 図2のドアミラー10を組み立てた状態を示す平面図で(ハウジングカバーを外した状態で示す)、ミラー回転部15が展開位置にある姿勢で示す。 図3に示すフレーム36の平面図である。 図8に示すフレーム36の囲い壁121の周辺部分の拡大図で、図8のB矢視位置の斜め上方から見た斜視図である。 図3に示すプレートアウタ68の平面図である。 図3に示すプレートアウタ68の底面図である。 図3に示すプレートアウタ68の正面図である。 図3に示すプレートアウタ68の一側面から見た斜視側面図である。 図3に示すプレートアウタ68の他側面から見た側面図である。 図3に示す電動格納ユニット16の部品を組み立てた状態を示す平面図で、プレートアウタ(支持部材)68およびシールキャップ(カバー)90を外した状態で示す(モータ76は図示する)。 図2に示す電動格納ユニット16の、図15のD-D矢視位置での切断端面図で、シールキャップ90(図3)を外した状態で示す。 図1に示す第1~第4の固定位置でのフレーム36とプレートアウタ68との固定により、プレートアウタ68の変形が抑制される様子を示す模式正面図である。 この発明の他の実施の形態を示すフレーム36’の平面図で、図1のフレーム36から第4の固定位置117-4を省いたものである。 図18のフレーム36’に組み合わされるプレートアウタ68’の平面図で、図10のプレートアウタ68から第4の固定位置127-4を省いたものである。
《4点固定の実施の形態》
 この発明の実施の形態を説明する。図2はこの発明が適用された車両右側用電動格納式ドアミラーの分解斜視図を示す。図2ではミラー回転部15を展開位置の姿勢で背面側(車両前方側)から見た状態を示す。また、図2ではバイザー14の正面開口14a内に共に配置される鏡面調整用アクチュエータおよびミラー板、バイザー14の背面側に装着するハウジングカバー(図6の符号17)等は図示を省略している。このドアミラー10は、ミラーベース12と、ミラー回転部15と、これらミラーベース12とミラー回転部15の間に接続される電動格納ユニット16を具える。ミラー回転部15はバイザー14を有する。ミラーベース12は車体(右ドア)13から車両右方に向けて突設されている。電動格納ユニット16は下部に固定体16aと上部に回転体16bを有する。回転体16bは固定体16aに対しミラー回転軸18の周り方向に回転可能である。バイザー14の背面側には、電動格納ユニット16の回転体16bが、2本のねじ20をバイザー14の下面から電動格納ユニット16の回転体16bにねじ込んで固定される。回転体16bがバイザー14に固定された状態で、電動格納ユニット16の固定体16aは、3本のねじ22をミラーベース12の下面から電動格納ユニット16の固定体16aにねじ込んでミラーベース12に固定される。これによりバイザー14を含むミラー回転部15は、電動格納ユニット16を介して、ミラー回転軸18の周り方向に回転可能にミラーベース12に取り付け支持される。バイザー14の背面には、図2には図示しないハウジングカバー(図6の符号17)が装着される。これによりバイザー14の背面の開口部14bはハウジングカバー17で塞がれて、その結果電動格納ユニット16はバイザー14とハウジングカバー17で包囲される空間に収容される。ミラー回転部15は電動格納ユニット16による電動駆動で回転して、格納位置と展開位置に択一的に移動可能である。また、ミラー回転部15は外力により回転して、格納位置から展開位置を経て前方傾倒位置まで、またその逆方向に移動可能である。
 電動格納ユニット16内の全体の構成を図3を中心に参照して説明する。図3の全部品は着脱可能に組み付けられて、電動格納ユニット16を構成する。電動格納ユニット16は固定体16aを構成するシャフト24を有する。シャフト24はPA+GF樹脂(ガラス繊維強化ポリアミド樹脂)等の強化樹脂の一体成形品で構成されている。シャフト24は、下部に大径で円板状のシャフト基部24aと、上部に小径で円筒状のシャフト軸部24bを同軸に有する。シャフト24は、シャフト基部24aの下面をねじ22(図2)でミラーベース12に固定することにより、ミラーベース12に垂直に立設される。シャフト基部24aの上面には、その最外周位置に、山谷反復形状26が構成されている。山谷反復形状26は、シャフト24の軸周り方向に山26bと谷26aを交互に3組、各組120度ずつ繰り返し配列して構成されている。1つの谷26aの周方向の長さ(角度)は、1つの山26bの周方向の長さ(角度)よりも長い。また、シャフト基部24aの上面には、その最内周位置に、2個の高さ維持突起28が構成されている。これら2個の高さ維持突起28は、シャフト24の軸周り方向に相互に180度間隔で配置され、シャフト軸部24bの外周面に接続されている。高さ維持突起28は、ミラー回転部15が外力で展開位置から前方傾倒位置方向に移動する際に、後述するフレーム36の高さ維持突起41と頂面どうしが当接摺動する。この頂面どうしの当接摺動により、高さ維持突起28は、シャフト24に対するフレーム36の高さを維持して、ミラー回転部15を前方傾倒位置から展開位置まで電動で戻せるようにする。また、シャフト基部24aの上面には、最外周位置の山谷反復形状26と最内周位置の高さ維持突起28の間の径方向位置に、軸受け面30が構成されている。軸受け面30は、一定幅で溝状に、かつシャフト24の軸周り方向に環状にかつ平坦に構成されている。軸受け面30にはその溝内に樹脂ワッシャ34が載置収容される。シャフト軸部24bの中空部31は、シャフト基部24aを貫通して開設されている。中空部31には電動格納ユニット16および鏡面調整用アクチュエータ等に電源を供給する、図示しないワイヤハーネス(外部給電配線)が通される。シャフト軸部24bの外周面には、回転止め形状32が構成されている。回転止め形状32は、回転止め凹部32aと回転止め凸部32bを、周方向に交互に5組、各組等間隔で繰り返し配列して構成されている。個々の回転止め凹部32aと回転止め凸部32bはシャフト24の軸方向に延在して構成されている。回転止め凹部32aの上端は、回転止め凹部32aに嵌合する相手方回転止め凸部(後述するクラッチプレート58の内周面に構成された回転止め凸部62b)を進入させるために上方に開口している。シャフト軸部24bの上部外周面には、後述する金属プレート66をシャフト軸部24bの上部に差し込みかつ回転させて、金属プレート66をシャフト軸部24bの上部に留めるための溝35が構成されている。
 シャフト24には回転体16bのフレーム36(後述するシールキャップ90と共に回転体16bの筐体を構成する)が回転可能に支持される。フレーム36はPA+GF樹脂等の強化樹脂の一体成形品で構成されている。フレーム36は上方に開口した内部空間38を有する。内部空間38の底面38aには円筒40が立設されている。円筒40の中空部43は底面38aを貫通している。ここで図3を一旦離れ、図4を参照してフレーム36の下面の構成を説明する。フレーム36の下面には円筒39が下方(図4の上方)に向けて突設されている。円筒39は円筒40と同軸に配置されている。また、円筒39は、円筒40よりも、大径で厚肉である。円筒39の内周面には、2個の高さ維持突起41が構成されている。これら2個の高さ維持突起41は、円筒39の軸周り方向に相互に180度間隔で配置され、円筒39の内周面に接続されている。これら2個の高さ維持突起41はシャフト基部24aの2個の高さ維持突起28(図3)と頂面どうしが当接摺動する。高さ維持突起41の内周面は円筒40の内周面40aと同一径方向位置にあり、両内周面は連続した面を構成している。高さ維持突起28,41は同一径方向位置にある。円筒39の下端面はシャフト24の軸受け面30と対面する軸受け面45を構成する。円筒39の外方には空隙47を介して外筒49が円筒39と同軸に配置されている。空隙47内にはシャフト基部24aの上面の山谷反復形状26(図3)に嵌合する山谷反復形状27が構成されている。山谷反復形状27は円筒39の軸周り方向に山27bと谷27aを交互に3組、各組120度ずつ繰り返し配列して構成されている。1つの谷27aの周方向の長さ(角度)は、1つの山27bの周方向の長さ(角度)よりも長い。山27bは、円筒39の外周面と外筒49の内周面と空隙47の底面に接続された状態で、配置されている。外筒49の周方向の一部の領域にはストッパ51が、下方(図4の上方)に向けて突出した状態に、構成されている。ストッパ51はミラーベース12に構成されたストッパ溝57(図2)に周方向に移動自在に差し込まれて、ミラー回転部15の最大回転範囲(格納位置から前方傾倒位置まで)を設定する。フレーム36の円筒39,40の連続した中空部43には円筒39側からシャフト軸部24bが差し込まれる。このときフレーム36の軸受け面45は樹脂ワッシャ34を挟んでシャフト24の軸受け面30に軸受け支持される。また、シャフト軸部24bには上側の円筒40の内周面40aが回転可能に支持される。これにより、フレーム36はシャフト24の軸周り方向に回転可能にシャフト24に支持される。シャフト24の山谷反復形状26の山26bはフレーム36の底部の空隙47に入り込む。この状態では、山谷反復形状26と山谷反復形状27は、両回転方向に所定角度範囲で相互に摺動可能に嵌合する。すなわち、山谷反復形状26と山谷反復形状27は、山26bと谷26aの境界の傾斜面と、山27bと谷27aの境界の傾斜面とが当接して係止されるまで(または格納方向についてはストッパ51がストッパ溝57の一端で係止されるまで)の両回転方向に相互に摺動することができる。この摺動により、ミラー回転部15(図2)が格納位置と展開位置との間で回転するのが許容される。また、展開位置にあるミラー回転部15に車両前方への所定値以上の外力が与えられたときは、後述するコイルスプリング64の付勢力に抗して山26bと山27bどうしが互いに相手方の傾斜面を摺動して登り、さらに相手方の山の頂面に乗り上げて、山谷反復形状26と山谷反復形状27の嵌合が解除される。この嵌合の解除により、ミラー回転部15が前方傾倒位置まで回転するのが許容される。フレーム36の一側には、フレーム36をバイザー14の裏面の上下2箇所のボス44(図2)にねじ止め固定するためのねじ通し穴46が構成されている。この実施の形態ではねじ通し穴46が上中下の3箇所設けられている。このうち上下2箇所のねじ通し穴46にそれぞれねじ(図示せず)を差し込んで上下2箇所のボス44にねじ込むことにより、フレーム36をバイザー14の裏面に固定する。
 図3に戻って、フレーム36の内部空間38の円筒40の外周には、樹脂ワッシャ48が緩く装着される。樹脂ワッシャ48は内部空間38の底面38aに載置支持される。樹脂ワッシャ48は前記樹脂ワッシャ34と同一製品である。樹脂製のウォームホイール50に金属製のウォーム52の軸52aが差し込まれて、ウォームホイール50とウォーム52どうしは相対回転不能に組み付けられる。組み付けられたウォームホイール50とウォーム52はフレーム36の内部空間38に収容され、所定位置に配置される。このとき、ウォーム52の軸52aの両端部52b,52cの下面が内部空間38内の軸受(図8の符号38b,38c)に載置支持される(図15参照)。これによりウォームホイール50とウォーム52は内部空間38で一体に回転することが可能となる。ウォーム52の軸52aはミラー回転軸18に直交する面内に配置されている。フレーム36の内部空間38の円筒40の外周には、シャフト外挿ギヤ54が回転可能に装着される。シャフト外挿ギヤ54はPA+GF樹脂等の強化樹脂の一体成形品で構成されている。シャフト外挿ギヤ54の、軸方向から見た面の中央部には中空部55が構成されている。中空部55には、フレーム36の円筒40およびシャフト軸部24bが回転可能に差し込まれる。シャフト外挿ギヤ54の下面の軸受け面106(図6)は樹脂ワッシャ48の上に摺動可能に載置支持される(図6)。シャフト外挿ギヤ54の外周面には、はす歯によるギヤ歯54bが構成されている。これにより、シャフト外挿ギヤ54はウォームホイールを構成している。ギヤ歯54bはウォーム52と噛み合わされる。これにより、シャフト外挿ギヤ54とウォーム52は、ウォームギヤを構成する。シャフト外挿ギヤ54の上面には、シャフト外挿ギヤ側クラッチ面56が構成されている。シャフト外挿ギヤ側クラッチ面56は、クラッチ谷56aとクラッチ山56bをシャフト外挿ギヤ54の軸周り方向に交互に5組、各組等間隔で繰り返し配列して構成されている。1つのクラッチ谷56aの周方向の長さ(角度)と、1つのクラッチ山56bの周方向の長さ(角度)は等しく設定されている。
 シャフト軸部24bにはクラッチプレート58が差し込まれる。これにより、シャフト外挿ギヤ54の上にはクラッチプレート58が、シャフト外挿ギヤ54と同心状に載置支持される。クラッチプレート58はPA+GF樹脂等の強化樹脂の一体成形品で構成されている。クラッチプレート58の、軸方向から見た面の中央部にはシャフト軸部24bが回転不能にかつ軸方向に移動可能に差し込まれる中空部59が構成されている。クラッチプレート58の下面には、シャフト側クラッチ面60が構成されている。シャフト側クラッチ面60は、クラッチ谷60aとクラッチ山60bをクラッチプレート58の軸周り方向に交互に5組、各組等間隔で繰り返し配列て構成されている。シャフト外挿ギヤ側クラッチ面56とシャフト側クラッチ面60はクラッチ機構61を構成する。シャフト側クラッチ面60の1つのクラッチ谷60aの周方向の長さ(角度)と、1つのクラッチ山60bの周方向の長さ(角度)は等しく設定されている。また、シャフト外挿ギヤ側クラッチ面56とシャフト側クラッチ面60とは内径および外径が等しい。したがって、シャフト外挿ギヤ側クラッチ面56のクラッチ谷56aとクラッチ山56bは、シャフト側クラッチ面60のクラッチ山60bとクラッチ谷60aにがたつきなく嵌合する。クラッチ谷56aとクラッチ山56bの境界位置の段差、クラッチ谷60aとクラッチ山60bの境界位置の段差は傾斜角度が互いに等しい傾斜面でそれぞれ構成されている。これにより、シャフト外挿ギヤ側クラッチ面56とシャフト側クラッチ面60の嵌合は、これら両クラッチ面56,60の相互間に作用する回転力により外れることができる。クラッチプレート58の内周面には、回転止め形状62が構成されている。回転止め形状62は、回転止め凹部62aと回転止め凸部62bを、周方向に5組配列し、かつ軸方向に延在させて構成されている。回転止め凹部62aと回転止め凸部62bは、シャフト軸部24bの外周面に構成された回転止め凸部32bと回転止め凹部32aに、それぞれ僅かな隙間を介して対面する。これにより、回転止め凹部62aと回転止め凸部62bは、回転止め凸部32bと回転止め凹部32aに対し、軸周り方向に回転不能にかつ軸方向に摺動可能に嵌合する。その結果、クラッチプレート58は、シャフト軸部24bの軸周り方向に回転不能で軸方向に移動可能に、シャフト軸部24bに装着される。
 シャフト軸部24bにはコイルスプリング64が差し込まれる。これにより、クラッチプレート58の上にはコイルスプリング64が、クラッチプレート58と同心状に載置支持される。コイルスプリング64の上には金属プレート66が配置される。金属プレート66でコイルスプリング64を押圧圧縮することにより、金属プレート66はシャフト軸部24bに差し込まれる。金属プレート66の内周面に構成された突起66aをシャフト軸部24bの上部外周面に構成された溝35に差し込み、金属プレート66を下方に押し下げ、次いで金属プレート66を回転させることで、金属プレート66はシャフト軸部24bの上部に装着される。これにより、コイルスプリング64は圧縮状態でシャフト軸部24bに装着される。このとき、コイルスプリング64の伸長力がクラッチプレート58の上面と金属プレート66の下面との間に作用する。この伸長力によりシャフト基部24aの上面の山谷反復形状26とフレーム36の下面の山谷反復形状27(図4)との間、およびシャフト外挿ギヤ54の上面のシャフト外挿ギヤ側クラッチ面56とクラッチプレート58の下面のシャフト側クラッチ面60との間にそれぞれ嵌合力が与えられる。ただし、ミラー回転部15が格納位置と展開位置の間にあるときは、コイルスプリング64からフレーム36に与えられる伸長力は軸受け面45から樹脂ワッシャ34を介して軸受け面30で受けられるので、ミラー回転部15の回転は軸受け面45,30どうしが樹脂ワッシャ34を挟んで摺動することにより行われる。すなわち樹脂ワッシャ34を挟んだ軸受け面45,30どうしの当接摺動でミラー回転部15の回転が軸受け支持される。したがって、このとき山谷反復形状26,27の対向面どうしは離されていて当接摺動しない(図6参照)。
 図3の右側に示した各部品を全て組み付けた後、フレーム36の上端の開口36aの内周側の段部36bにプレートアウタ(支持部材)68が載置されて、開口36aが閉じられる。プレートアウタ68はPOM(ポリアセタール)等の樹脂の一体成形品で構成されている。プレートアウタ68は、その上面に、筒部72およびドーム74を有する。筒部72はモータ76を収容保持する。ドーム74は、フレーム36の開口36aから上方に突出しているシャフト軸部24bの上部とコイルスプリング64と金属プレート66を包囲する。これにより、モータ76はシャフト軸部24bの側方位置に配置されることになる。このとき、モータ76の回転軸(モータ回転軸76a、図5等)はシャフト24の軸(ミラー回転軸18に相当)と平行である。ドーム74の、軸方向から見た面の中央部にはシャフト軸部24bの上部を突き出させる丸穴74aが開設されている。プレートアウタ68がフレーム36に被せられる前に、筒部72にモータ76が上方から挿入されて、プレートアウタ68にモータ76が装着される。モータ76のモータシャフト(モータ出力軸)78は、筒部72内の底部73(図6、図10)の中央部に構成された穴73aを貫通して鉛直下方に向けてプレートアウタ68の下方に突出している。モータシャフト78にはウォーム80が装着される。プレートアウタ68がこのようにモータ76およびウォーム80を保持した状態で、プレートアウタ68はフレーム36の開口36aの内周側の段部36bに載置される。このときウォーム80とウォームホイール50どうしは噛み合わされて、ウォームギヤを構成する。また、ウォーム80、ウォームホイール50、ウォーム52、シャフト外挿ギヤ54、クラッチプレート58は、モータ76の駆動力をシャフト軸部24bに伝達する動力伝達機構81を構成し、フレーム36の内部空間38に収容保持される。モータ76および動力伝達機構81は電動駆動機構87を構成する。また、プレートアウタ68の下面には、該下面から下方に向けて突出して2本の突片77(押さえ部、図11、図12、図14)が構成されている。2本の突片77の下端面は、ウォーム52の軸52aの両端部52b,52cの上面に、僅かな隙間を介してそれぞれ対面し、ウォーム52とウォームホイール50が上方に移動するのを規制する。プレートアウタ68がフレーム36の開口36aの内周側の段部36bに載置された後、プレートアウタ68は4本のねじ82でフレーム36に固定される。
 プレートアウタ68がフレーム36に固定された後、プレートアウタ68の上面の、筒部72とドーム74の間の空間(言い換えれば、モータ76とシャフト軸部24bの間の空間)75内に回路基板(プリント基板)84が立てて配置される。シャフト外挿ギヤ54は樹脂を基材とする材料で構成されているので、シャフト外挿ギヤとして必要な強度を確保するために、シャフト外挿ギヤ54は金属製のシャフト外挿ギヤに比べて大径となる。これに伴いモータ76とシャフト軸部24bの間の空間75は拡げられている。したがって、回路基板84がコネクタ受け具(ソケット)88等を搭載しているために、該搭載部品を含めた回路基板84の全体の厚さが厚くなっていても、該回路基板84を空間75に容易に配置することができる。回路基板84には、モータ駆動回路と、モータ接続端子86(雄型端子)と、コネクタ受け具88(ソケット、コネクタ受部)が搭載されている。モータ駆動回路はモータ76に駆動電力を供給する。モータ接続端子86はモータ駆動回路とモータ76の端子85(モータ端子、雌型端子、図7)を接続する。コネクタ受け具88はワイヤハーネス(図示せず)の先端のコネクタ89(図7)が差し込まれ、その結果、コネクタ受け具88はワイヤハーネスとモータ駆動回路を接続する。コネクタ受け具88内には、ワイヤハーネスの先端のコネクタ89の端子(図示せず)と電気的に接続されるコネクタ接続端子91(図7)が配置されている。回路基板84の下端84aは、プレートアウタ68の、筒部72とドーム74の間の空間75の底部に構成された溝75aに差し込まれて支持される。モータ接続端子86の先端はモータ端子85に差し込まれて支持される。これにより回路基板84は空間75に立てて配置されると共にモータ接続端子86とモータ端子85が電気的に接続される。
 フレーム36にプレートアウタ68が固定され、プレートアウタ68に回路基板84が取り付けられた後、プレートアウタ68の上にはシールキャップ90が被せられる。シールキャップ90はPP(ポリプロピレン)等の樹脂の一体成形品で構成されている。シールキャップ90の上面には、シャフト軸部24bの中空部31の上部開口31aに連通する丸穴92が開設されている。また、シールキャップ90の一側面には、回路基板84のコネクタ受け具88のコネクタ差込口88a(図5)に連通するコネクタ挿入口94が開設されている。また、シールキャップ90の下端の開口96の周囲4箇所には爪係止枠98が構成されている。シールキャップ90をプレートアウタ68に被せて押下すると、フレーム36の上部外周面の周囲4箇所に突出構成された爪100がシールキャップ90の爪係止枠98に係合する。これにより、フレーム36とシールキャップ90が連結され、電動格納ユニット16が一体に組み立てられた状態となる。このようにして組み立てられた電動格納ユニット16のシャフト軸部24bの中空部31にはワイヤハーネスが通される。ワイヤハーネスは電動格納ユニット16用配線を含んでいる。ワイヤハーネスは、このほか、ドアミラー10に搭載する機能に応じて、鏡面調整用アクチュエータ用配線、ターンランプ用配線等を含んでいる。ワイヤハーネスのミラー回転部15側の端部はシールキャップ90の丸穴92から排出される。ワイヤハーネスの車体側の端部はシャフト24の中空部31の下端から排出されて、車体内に導かれる。ワイヤハーネスの各配線の、ミラー回転部15側の端部にはコネクタがそれぞれ装着されている。このうち、電動格納ユニット16用配線の先端のコネクタ89(図7)は、コネクタ挿入口94に差し込まれて、回路基板84のコネクタ受け具88に接続される。
 図5は、図5の下段に示す、電動格納ユニット16の組み立て途中の製品に、回路基板84とシールキャップ90を組み付ける様子を示す。該組み立て途中の製品とは、図3の右側に示した各部品を組み付け、さらにモータ76とウォーム80を保持したプレートアウタ68をフレーム36の上端の開口36aの内周側に嵌めて、4本のねじ82でフレーム36に固定した状態の製品である。この図5ではプレートアウタ68の筒部72に対するモータ本体部69の保持状態がよく現れている。すなわち、モータ76は、モータシャフト78(図3)を下に向けた状態で、プレートアウタ68に保持されている。ここで、モータ本体部69は、その全体がプレートアウタ68の筒部72の内部空間129に埋没した状態で、プレートアウタ68に保持されている。これにより、モータ76は、筒部72に対するモータ回転軸76aに直交する方向の移動およびモータ回転軸76aの周り方向の回転が係止されている。また、モータ76は、爪係合片139により、筒部72に対するモータ回転軸76aの方向の移動が係止されている。このモータ保持構成の詳細については後述する。回路基板84はプレートアウタ68の上面の、筒部72とドーム74の間の空間75内に挿入される。回路基板84の下端84aはプレートアウタ68の溝75aに着脱可能に差し込まれる。モータ接続端子86の先端はモータ端子85(図7)に着脱可能に差し込まれる。このようにして、回路基板84は溝75aとモータ端子85で着脱可能に支持される。これにより、回路基板84は空間75内に立てた姿勢で製品に組み付けられる。回路基板84が製品に組み付けられた後、製品の上からシールキャップ90が被せられる。これにより、シールキャップ90の爪係止枠98にフレーム36の爪100が着脱可能に係合して、シールキャップ90は製品に組み付けられる。シールキャップ90が製品に組み付けられた後、シャフト軸部24bの中空部31にはワイヤハーネスが通される。シールキャップ90が製品に組み付けられた状態では、回路基板84のコネクタ受け具88のコネクタ差込口88aとシールキャップ90のコネクタ挿入口94が連通する。これにより、ワイヤハーネスの電動格納ユニット16用配線のコネクタ89をコネクタ挿入口94からコネクタ差込口88aに差し込んでコネクタ受け具88に連結できる状態となる。
 図6は以上の構成を有するドアミラー10をシャフト24およびモータ76の各中心軸18,76aを通る位置で切断して示したものである。これは、図7のA-A矢視位置での切断端面構造に相当する。この図6は、バイザー14にハウジングカバー17を装着し、ミラー回転部15が展開位置の姿勢にあり、かつシャフト外挿ギヤ側クラッチ面56とシャフト側クラッチ面60が噛み合っているときの状態を示す。このとき、山谷反復形状26と山谷反復形状27は、図6では現れていないが、山26bと谷26aの境界の傾斜面と、山27bと谷27aの境界の傾斜面とが当接して、互いに係止されている。図6の展開位置にある状態で、ミラースイッチを操作して格納指令を与えると、モータ76が起動される。モータ76の回転はウォーム80、ウォームホイール50、ウォーム52を介してシャフト外挿ギヤ54に伝達される。このときシャフト外挿ギヤ側クラッチ面56とシャフト側クラッチ面60どうしは噛み合っていて、シャフト外挿ギヤ54はシャフト軸部24bに対して回転できないので、代わりにフレーム36をシャフト軸部24bの軸周り方向を回転させるように力が作用する。これにより、軸受け面30と軸受け面45どうしが樹脂ワッシャ34を挟んで摺動し、かつ、フレーム36の内部空間38の底面38aとシャフト外挿ギヤ54の下面の軸受け面106どうしが樹脂ワッシャ48を挟んで摺動して、ミラー回転部15は格納方向に回転する。ミラー回転部15の回転が、格納位置で、ストッパ51(図4)とストッパ溝57(図2)の一端との係合により物理的に停止されると、該停止が検知されてモータ76の駆動は停止される。これでミラー回転部15が格納位置に保持される。この状態で、ミラースイッチを操作して展開指令を与えると、モータ76が逆方向に起動され、ミラー回転部15は展開方向に回転する。ミラー回転部15の回転が、展開位置で、山谷反復形状26の山26bと谷26aの境界の傾斜面と、山谷反復形状27の山27bと谷27aの境界の傾斜面との係合により停止されると、該停止が検知されて、モータ76の駆動は停止される。これでミラー回転部15は展開位置に保持される。
 図7は、図2のドアミラー10を組み立てて車両に搭載した状態を示す。ミラー回転部15は、展開位置にある姿勢で、かつ上方から見た状態で示されている。また、図7は、ドアミラー10を、ハウジングカバー17(図6)を外し、かつ電動格納ユニット16内を透視した状態で示す。また、図7は、ドアミラー10を、コネクタ受け具88にワイヤハーネスの電動格納ユニット16用配線のコネクタ89をゴムパッキン101を付けて差し込んだ状態で示す。図7において、回路基板84のモータ接続端子86はモータ端子85に差し込まれている。回路基板84の下端84aはプレートアウタ68に構成された溝75a(図3、図5、図6)に差し込まれている。回路基板84はこのようにして支持された状態で、モータ76とシャフト軸部24bの間の空間75に全体が縦置きに配置されている。
 フレーム36の内部空間38内の構成を図8および図9を参照して説明する。図9はフレーム36を図8のB矢視位置の斜め上方からB矢視方向に見た図である。理解を容易にするために、図8はフレーム36の開口36aの内周側の領域のうち、比較的高い位置(開口36a内の浅い位置)にある領域を灰色に塗り潰して図示している。フレーム36の内部空間38内には、既に説明した構成のほか、ウォームホイール収容空間111、囲い壁121、囲い壁121の内周側空所113、囲い壁121の外周側空所123、内部空間38と内周側空所113を連通させる連通路115、4個のねじ穴117(117-1,117-2,117-3,117-4)等が構成されている。囲い壁121は円環状部分(円筒状部分)121aを有する。円環状部分121aは、軸方向視形状が円環状で半円(180度)以上の周方向角度範囲(周長)を有する。円環状部分121aの外径はモータ本体部69の外径よりも小径に構成されている。また、囲い壁121は、円環状部分121aの周方向の一部の領域(ウォームホイール収容空間111に対面する領域)に、開口126を有している。囲い壁121は、開口126の両端部に繋がって、互いに平行に対面する平面部分121b,121cを有する。該平面部分121b,121cの間に連通路115が構成されている。さらに、囲い壁121は平面部分121b,121cの両端部に繋がって、互いに外向きに折り返す折り返し部分121d,121eを有する。折り返し部分121d,121eの両端部はフレーム36の外周側空所123の外周側に位置する部分36cに繋がっている。部分36cは、この実施の形態ではフレーム36の外壁である。これにより、囲い壁121は軸方向視形状が、一定の肉厚の全体として概ね「Ω」形状に構成されている。ウォームホイール収容空間111はウォーム52の軸52aに同軸に固定装着されたウォームホイール50を収容する。このときウォーム52の軸52aの両端部52b,52cが軸受38b,38cに支持される。内周側空所113はウォーム80よりも大径の円柱状の、底部が閉じた空間で構成され、ウォーム80を同軸に収容する。連通路115は、ウォームホイール収容空間111と内周側空所113を相互に連通させる。これにより、連通路115は、ウォームホイール50の外周面を、連通路115を通して内周側空所113に進入させる。その結果、ウォームホイール50とウォーム80どうしが噛み合う。4個のねじ穴117はプレートアウタ68をフレーム36の上に固定するための4本のねじ82(図3)をねじ込むためのねじ穴である。内周側空所113の底部には内周側空所113の一般径よりも小径の軸受凹部93が構成されている。軸受凹部93にはグリースが充填され、ウォーム80の先端部80a(図16)が軸受凹部93に収容される。これにより、ウォーム80の先端部80aは軸受凹部93に軸受け支持される。内周側空所113の上部は軸方向視形状が円形の凹部113aを構成する。凹部113aには、プレートアウタ68の下面の凸部119(図11、図12等)が、連通路115に臨む箇所を除き周囲に隙間なく(またはほぼ隙間なく)収容されて嵌合する(図16、図6)。凸部119は軸方向視形状が凹部113aと同じく円形である。凸部119の中心部にモータシャフト78を通すための穴73a(図16、図6)が構成されている。凸部119は、その内周側に、軸方向視形状が円形の凹所119a(図11)を有する。これに伴い凸部119は一定肉厚の円筒状に構成されている。凹所119aの底部は閉じられている。該底部の中心位置に穴73aが構成されている。凹所119aは凸部119の肉抜き部として機能する。すなわち、凹所119aは、プレートアウタ68の樹脂成形に伴うヒケを抑制して、凸部119の成形精度を高めている。凸部119が凹部113aに嵌合することにより、凸部119の外周面の全周の半周(180度)以上の領域は、凹部113aの内周面に包囲されて支持される。その結果、凸部119の中心の穴73aから突出するモータシャフト78は、内周側空所113の中心軸上に位置決めされる。凹部113aの開口端面113bは内向きの傾斜面に構成され、これにより凹部113aに対する凸部119の進入を容易にしている。外周側空所123は、囲い壁121の外周に沿って、軸方向視形状が円環状(概ね「C」形状)に連続した形状に、構成されている。また、外周側空所123は、囲い壁121と同心の溝状の、底部が閉じた空間に構成されている。外周側空所123の外周部分はフレーム36の外壁を構成する。外周側空所123は、深さ方向に、内周側空所113の上下方向の中央部よりも深い位置まで達して形成されている。外周側空所123は内周側空所113の外周位置でフレーム36の外壁の肉抜き部として機能する。すなわち、外周側凹所123は、フレーム36の樹脂成形に伴うヒケを抑制して、内周側空所113の成形精度を高めている。プレートアウタ68の凸部119は凹所119aにより成形精度が高められており、しかもフレーム36の凹部113aは外周側凹所123により成形精度が高められているので、内周側空所113に対するモータシャフト78の、モータシャフト78の軸に直交する面方向の位置決め精度が向上する。その結果、ウォーム80とウォームホイール50との噛み合い状態を正常な状態に維持して、ウォーム80とウォームホイール50とが噛み合って回転する際の動作音を正常なレベルに保つとともに、ウォーム80とウォームホイール50の負担を軽減することができる。
 支持部材を構成するプレートアウタ68の構成を図10~図14を参照して説明する。プレートアウタ68は平板状の板状部125を有する。板状部125の上面には、板状部125に垂直に、筒部72とドーム74が、空間75を挟んで相互に並べて突設されている。板状部125はフレーム36の上に載置支持される。このとき板状部125の下面周縁部125a(図11等)は、フレーム36の上端の開口36aの内周側の段部36b(図8)に当接する。板状部125の下面には2本の突片77が下方に向けて突設されている。各突片77の下端面は、ウォーム52(図15)の軸52aの両端部52b,52cの上面に、該上面との間の僅かな隙間を介して、それぞれ対面する。これにより、これら突片77は、ウォーム52とウォームホイール50が上方に移動するのを規制する。板状部125の面内の周辺部には、フレーム36の4個のねじ穴117(117-1,117-2,117-3,117-4、図8)にそれぞれ連通する4個のねじ通し穴127(127-1,127-2,127-3,127-4)が開設されている。プレートアウタ68をフレーム36の上端の開口36aの内周側の段部36bに載置支持し、かつ4本のねじ82(図3)をねじ通し穴127を通してねじ穴117にねじ込むことにより、プレートアウタ68はフレーム36に固定される。
 筒部72の構成を説明する。図10~図14において、筒部72は内部空間129を有する。内部空間129はモータ本体部69を収容保持する(図16等)。内部空間129の深さ(内部空間129の底部73の表面から開口端129aまでの高さ)はモータ本体部69の軸方向の長さ(モータ本体部69の前端面69aから後端面69bまでの長さ。図16参照)よりも長い。これにより、モータ本体部69は筒部72の内部空間129に全体が収容される。筒部72はモータ本体部69の形状に合わせて、対向する一対の円弧面部72a,72bと、対向する一対の平面部72c,72dを有する(図10等)。内部空間129は上方に開口する。内部空間129の開口端129aからモータ76を内部空間129に進入させることができる。内部空間129の周壁面には、複数本の突条131(図10、図13)が上下方向に延在して構成されている。これら突条131は、モータ76の外周面に当接して、モータ76をがたつきなく内部空間129に保持するためのものである。すなわち、突条131は、円弧面部72a,72bの幅方向の中央部の各1箇所と、平面部72c,72dの幅方向の両端部の各2箇所の合計6箇所に構成されている。これら突条131は、内部空間129の底部73の表面位置から内部空間129の中央部の高さ位置まで延在して構成されている。各突条131の上端面131a(図13)は、モータ本体部69の進入方向向き(内部空間129に進入しようとするモータ本体部69に向く方向)に傾斜する傾斜面に構成されている。これら傾斜面は、内部空間129にモータ本体部69を進入させる際に、モータ本体部69の前端面69aが該上端面131aに引っ掛かって係止されないようにするためのものである。筒部72の平面部72cには上方に開口した切欠133が構成されている(図13等)。回路基板84のモータ接続端子86はこの切欠133を通ってモータ端子85に接続される(図5、図7)。筒部72の平面部72dと円弧面部72aとの境界部分および平面部72dと円弧面部72bとの境界部分には、該各境界部分の境界線に沿って切欠135,137が上下方向(筒部72の内部空間129の軸方向)に延在して開設されている(図13、図14等)。切欠135,137の上端は筒部72の上端(内部空間129の開口端129a)に開口している。切欠135,137の下端は筒部72の上下方向のほぼ中間に位置している。筒部72の上側約半分の部分は切欠135,137により周方向に分離された部分を有する。該分離された部分は爪係合片139を構成する。すなわち、筒部72の上側約半分の部分の周方向の一部で爪係合片139が構成されている。爪係合片139の下端は固定端139aとして筒部72の下側約半分の部分に接続されている。爪係合片139の上端は自由端139bを構成する。これにより、爪係合片139は、固定端139aを支点として、外力により筒部72の内外方向に弾性変形して撓むことができる。自由端139bの先端は筒部72の内部空間129の開口端129aと同一高さ位置にある。爪係合片139は脚部141と係合爪143を有する。脚部141は固定端139aに支持されている。係合爪143は、脚部141の上部の自由端139bのすぐ下の位置で、脚部141の幅方向の中央部の内周面に、内部空間129に臨んで突設されている。脚部141の幅は係合爪143の幅よりも格段に広い。脚部141の幅から後述する開口部145の幅を差し引いたとしてもなお、差し引き後の脚部141の幅は係合爪143の幅よりも広い。したがって脚部141は剛性が高く構成されている。係合爪143の下面(アンダーカット面)は係合面143aを構成する。係合面143aはモータ76の進入方向に概ね直交する面である。係合面143aは内部空間129の開口端129aよりも下側の位置(すなわち開口端129aよりも内部空間129の奥側の位置)に配置されている。係合面143aはモータ本体部69の後端面69bに当接して、内部空間129から抜け出る方向についてモータ本体部69の移動を係止する。係合爪143の上面は傾斜面143bを有する。脚部141の幅方向の中央部には開口部145が開設されている。開口部145は、係合面143aのすぐ下の位置から下方に直線状に延在している。開口部145の幅は係合面143aの幅と等しくまたは係合面143aの幅よりも広く構成されている。脚部141の幅が係合爪143の幅よりも広いので、脚部141に開口部145を形成する設計が可能になっている。開口部145の上端面145a(図14)は係合面143aと同一高さ位置に構成されている。開口部145は、プレートアウタ68の樹脂成形時に、開口部145を形成する位置にスライド金型を進入させてアンダーカット面である係合面143aを成形することに伴い開設される。
 図10~図14において、筒部72の内部空間129の底部73の中央部には、穴73aと、平面円形の凹部147が構成されている(図10、図16)。穴73aは、モータシャフト78を内部空間129から排出するためのものである。凹部147は、穴73aの外周側に穴73aと同心状に配置されている。モータ本体部69の前端面69a(図16)の中央部には、モータシャフト78と同軸に、軸方向視形状が円形の凸部149が構成されている。凸部149は凹部147に嵌合する。この嵌合により、穴73aを貫通するモータシャフト78の軸心は穴73aの中心に高精度に位置決めされる。筒部72の内部空間129の底部73の四隅には、微少な高さの支持台151が突出構成されている(図10)。支持台151は、モータ本体部69の前端面69aの四隅に当接して該前端面69aを支持する。支持台151の表面から係合面143aまでの高さが丁度モータ本体部69の軸方向の長さ(モータ本体部69の前端面69aから後端面69bまでの長さ)に設定されている。
 図15はプレートアウタ68およびシールキャップ90を外した状態で示した電動格納ユニット16の平面図である。図15のD-D矢視位置での電動格納ユニット16の切断端面図を図16に示す。図16の配置を説明する。プレートアウタ68はフレーム36の段部36bに当接支持されて、ねじ82(図3)でフレーム36に固定されている。モータ本体部69はプレートアウタ68の筒部72に収容保持されている。モータ本体部69の後端面69bには、爪係合片139の係合面143aが係合している。これにより、筒部72に対するモータ76の戻り、すなわちモータ76が内部空間129へ進入する方向とは逆の方向へのモータ76の移動が阻止される。モータシャフト78にはウォーム80が緩く装着されている。モータシャフト78には、その軸方向に沿って、基端側に丸棒部78aが構成され、先端側に係合棒部78bが構成されている。モータシャフト78が差し込まれるウォーム80の中心穴83は、その軸方向に沿って、基端側に丸穴部83aが構成され、先端側に係合穴部83bが構成されている。丸穴部83aは丸棒部78aを収容し、係合穴部83bは係合棒部78bを収容する。係合棒部78bと係合穴部83bは断面が非円形であるため回転方向に係合する。これにより、モータシャフト78が回転すると、モータシャフト78の回転に従動してウォーム80が回転し、ウォーム80の回転に従動してウォームホイール50が回転する。
 以上説明したドアミラー10における、4本のねじ82(図3)によるフレーム36とプレートアウタ(支持部材)68との固定位置について説明する。図1は図8のフレーム36の平面図に、この発明による第1~第3の線L1~L3および第1~第4の固定位置に相当するねじ穴117-1~117-4の位置を記入したものである。図1に示すように、ミラー回転軸18の軸方向から見て、ミラー回転軸18とモータ回転軸76aを結ぶ線を第1の線L1、モータ回転軸76aを通り第1の線L1に直交する線を第2の線L2、ミラー回転軸18を通り第1の線L1に直交する線を第3の線L3と定義する。4箇所の固定位置に相当するねじ穴117-1~117-4はそれぞれ次の位置に配置されている。

・ねじ穴117-1(第1の固定位置):第2の線L2に対しミラー回転軸18が存在する側と反対側の位置
・ねじ穴117-2(第2の固定位置):第2の線L2と第3の線L3に挟まれた領域内で、第1の線L1を挟んで一方側の位置
・ねじ穴117-3(第3の固定位置):第2の線L2と第3の線L3に挟まれた領域内で、第1の線L1を挟んでねじ穴117-2と反対側の位置
・ねじ穴117-4(第4の固定位置):第3の線L3に対しモータ回転軸76aが存在する側と反対側の位置

また、ねじ穴117-2,117-3(第2、第3の固定位置)は、軸受38b,38cに近接した位置に配置される。特にここではねじ穴117-2,117-3を、ウォーム52の軸52aの中心線Mを挟んだ両側に配置している。軸受38b,38cには、ウォーム52の軸52aの両端部52b,52c(図15)が支持される。プレートアウタ68の下面の2本の突片77(押さえ部)の下端面は、該両端部52b,52cの上面に僅かな隙間を介してそれぞれ対面する。これにより2本の突片77は、ウォーム52とウォームホイール50が上方に移動するのを規制している。プレートアウタ68の4個のねじ通し穴127-1~127-4(図10、図11、図13)はフレーム36の4個のねじ穴117-1~117-4に連通する位置にそれぞれ配置されている。
 図1の4箇所の固定位置の配置による作用を図17に示す。プレートアウタ68は樹脂で構成されているため、プレートアウタ68は成形後に矢印Eに示すように長手方向の両側が上向きに反るように変形し、あるいは矢印E’に示すように長手方向の両側が下向きに反るように変形する。プレートアウタ68は短手方向についても同様に変形する。図17の矢印F1~F4は第1~第4の固定位置でねじ82によりプレートアウタ68をフレーム36に固定する固定力の方向をそれぞれ示す。プレートアウタ68の長手方向の両側が上向きに反る変形Eは、該長手方向両側の第1および第4の固定位置での固定力F1およびF4により矯正される。プレートアウタ68の長手方向の両側が下向きに反る変形E’は、長手方向中央部の第2および第3の固定位置での固定力F2およびF3により矯正される。また、プレートアウタ68の短手方向の両側が上向きに反る変形は長手方向中央部の短手方向両側の第2および第3の固定位置での固定力F2およびF3により矯正される。このようにして、プレートアウタ68の変形は全体的に矯正されるので、モータ76が作動時の異音発生を防止することができる。また、第2および第3の固定位置は、プレートアウタ68の下面の2本の突片77の下端面がウォーム52の軸52aの両端部52b,52cの上面に僅かな隙間を介してそれぞれ対面する位置に近接した位置にあるので、突片77の下端面とウォーム52の軸52aの両端部52b,52cの上面との隙間が開くのが防止される。その結果、ウォーム52の軸52aが軸受38b,38cから浮くのが防止されて、ウォーム52やウォームホイール50からの異音発生が防止される。
《3点固定の実施の形態》
 この発明の他の実施の形態を説明する。図18はこの実施の形態によるフレーム36’の平面図である。図18において、図1と対応する箇所には、図1で使用されているものと同一の符号を用いる。このフレーム36’は、前記実施の形態のフレーム36に対し、第4の固定位置に相当するねじ穴117-4を省いたものである。図19はフレーム36’に組み合わされるプレートアウタ68’の平面図である。図19において、図10と対応する箇所には、図10で使用されているものと同一の符号を用いる。このプレートアウタ68’は、前記実施の形態のプレートアウタ68に対し、第4の固定位置に相当するねじ通し穴127-4を省いたものである。第4の固定位置に相当するねじ穴117-4およびねじ通し穴127-4を省いたこと以外の構成は前記実施の形態と同じである。このような変更により、フレーム36’とプレートアウタ68’の、ねじ82によるねじ止め箇所は、第1~第3の固定位置の3箇所となる。これによりフレーム36’とプレートアウタ68’のねじ止め作業を簡略化できる。第4の固定位置を省いても、フレーム36’とプレートアウタ68’の固定位置には、モータ76を保持する位置に近い第1~第3の固定位置が含まれているので、プレートアウタ68’の変形によるモータ76の傾きを効果的に抑制して、モータ作動時の異音発生を防止することができる。第4の固定位置ではプレートアウタ68’に多少の変形があっても駆動機構の噛み合いにさほど影響しない(つまり異音発生の原因になりにくい)ので、このような省略が可能である。
 前記実施の形態ではこの発明を車両用電動格納式後方視認ミラーに適用した場合について説明したが、この発明はこれに限らない。すなわち、この発明はドアミラーに代えて車両のドア等に車両側方に突出して搭載される車両用電動格納式後方視認カメラや、その他の車両用電動格納式後方視認装置さらには後方視認用途以外の車両用電動格納式視認装置に適用することもできる。車両用電動格納式後方視認カメラは、例えば図2のバイザー14を小型に構成して、ミラー板に代えてカメラを、バイザー14が使用位置にあるときに該カメラの光軸が車両後方に向くようにバイザー14に搭載したものとして構成することができる。
10…電動格納式ドアミラー(車両用電動格納式視認装置)、13…車体(右ドア)、15…ミラー回転部(視認装置回転部)、18…ミラー回転軸(視認装置回転軸)、24…シャフト、36,36’…フレーム、38…内部空間、38b,38c…ウォーム(中間ギヤ)の軸受、50…ウォームホイール(中間ギヤ)、52…ウォーム(中間ギヤ)、52a…ウォーム(中間ギヤ)の軸、52b,52c…ウォーム(中間ギヤ)の軸の両端部、68,68’…プレートアウタ(支持部材)、76…モータ、76a…モータ回転軸、77…突片(押さえ部)、81…動力伝達機構、82…ねじ、87…電動駆動機構、117…ねじ穴(117-1…第1の固定位置に相当、117-2…第2の固定位置に相当、117-3…第3の固定位置に相当、117-4…第4の固定位置に相当)、127…ねじ通し穴(127-1…第1の固定位置に相当、127-2…第2の固定位置に相当、127-3…第3の固定位置に相当、127-4…第4の固定位置に相当)、L1…第1の線、L2…第2の線、L3…第3の線

Claims (5)

  1.  車両用電動格納式視認装置における固定構造であって、
     前記車両用電動格納式視認装置は、車体側に立設されるシャフトと、前記シャフトの軸中心に配置される視認装置回転軸の周り方向に回転可能に該シャフトに支持される視認装置回転部と、前記視認装置回転部を前記視認装置回転軸周り方向に回転駆動する電動駆動機構を有し、
     前記電動駆動機構は、前記視認装置回転部に搭載されるモータと、前記モータの駆動力を前記シャフトに伝達して、前記視認装置回転部を前記視認装置回転軸の周り方向に回転させる動力伝達機構とを有し、
     前記視認装置回転部は、前記動力伝達機構を収容する内部空間を有するフレームと、前記モータを保持して前記フレームの前記内部空間に臨む位置に配置された状態で該フレームに固定されて、前記モータのモータ回転軸の回転を前記動力伝達機構に伝達させる支持部材を有し、
     前記モータ回転軸は前記視認装置回転軸と概ね平行に配置されており、
     前記固定構造は、前記フレームと前記支持部材とを固定する構造であり、
     前記視認装置回転軸の軸方向から見て、前記視認装置回転軸と前記モータ回転軸を結ぶ線を第1の線、前記モータ回転軸を通り前記第1の線に直交する線を第2の線、前記視認装置回転軸を通り前記第1の線に直交する線を第3の線と定義して、
     前記固定構造は、前記フレームと前記支持部材との固定位置として、前記視認装置回転軸の軸方向から見て、前記第2の線に対し前記視認装置回転軸が存在する側と反対側の領域に存在する第1の固定位置と、前記第2の線と前記第3の線に挟まれた領域内で、前記第1の線を挟んで互いに反対側の領域に存在する第2の固定位置および第3の固定位置を有する、
     そのような固定構造。
  2.  前記フレームと前記支持部材とのねじ止め箇所は前記第1から第3の3箇所の固定位置にのみ存在している請求項1に記載の固定構造。
  3.  車両用電動格納式視認装置における固定構造であって、
     前記車両用電動格納式視認装置は、電動駆動機構により所定の視認装置回転軸の周り方向に回転可能に配置された視認装置回転部を有し、
     前記視認装置回転部は前記電動駆動機構の少なくとも一部を収容する内部空間を有するフレームと、前記フレームの前記内部空間に臨む位置に配置された状態で該フレームに固定されて前記電動駆動機構の少なくとも一部を支持する支持部材を有し、
     前記電動駆動機構のモータ回転軸は前記視認装置回転軸と概ね平行に配置されており、
     前記固定構造は、前記フレームと前記支持部材とを固定する構造であり、
     前記視認装置回転軸の軸方向から見て、前記視認装置回転軸と前記モータ回転軸を結ぶ線を第1の線、前記モータ回転軸を通り前記第1の線に直交する線を第2の線、前記視認装置回転軸を通り前記第1の線に直交する線を第3の線と定義して、
     前記固定構造は、前記フレームと前記支持部材との固定位置として、前記視認装置回転軸の軸方向から見て、前記第2の線に対し前記視認装置回転軸が存在する側と反対側の領域に存在する第1の固定位置と、前記第2の線と前記第3の線に挟まれた領域内で、前記第1の線を挟んで互いに反対側の領域に存在する第2の固定位置および第3の固定位置と、前記第3の線に対し前記モータ回転軸が存在する側と反対側の領域に存在する第4の固定位置とを有する、
     そのような固定構造。
  4.  前記フレームと前記支持部材とのねじ止め箇所は前記第1から第4の4箇所の固定位置にのみ存在している請求項3に記載の固定構造。
  5.  前記電動駆動機構は前記視認装置回転軸の軸方向から見て、前記視認装置回転軸と前記モータ回転軸との間に挟まれた位置に配置された中間ギヤを有し、
     前記中間ギヤの軸は前記視認装置回転軸に直交する面内に配置され、
     前記支持部材は前記中間ギヤの軸の両端部に対面して該中間ギヤが該中間ギヤの軸受から浮くのを押さえる2箇所の押さえ部を有し、
     前記第2の固定位置および前記第3の固定位置は前記2箇所の押さえ部に近接した位置に配置されている請求項1から4のいずれか1つに記載の固定構造。
PCT/JP2016/063015 2015-05-19 2016-04-26 車両用電動格納式視認装置におけるフレームと支持部材の固定構造 WO2016185881A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015102290A JP6788330B2 (ja) 2015-05-19 2015-05-19 車両用電動格納式視認装置におけるフレームと支持部材の固定構造
JP2015-102290 2015-05-19

Publications (1)

Publication Number Publication Date
WO2016185881A1 true WO2016185881A1 (ja) 2016-11-24

Family

ID=57320012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063015 WO2016185881A1 (ja) 2015-05-19 2016-04-26 車両用電動格納式視認装置におけるフレームと支持部材の固定構造

Country Status (2)

Country Link
JP (1) JP6788330B2 (ja)
WO (1) WO2016185881A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018002363A1 (de) 2017-03-31 2018-10-04 Murakami Corporation Welle für eine einklappbare sichtvorrichtung für ein fahrzeug und elektrische einklappeinheit für eine einklappbare elektrische sichtvorrichtung für ein fahrzeug
DE102018002305A1 (de) 2017-03-31 2018-10-04 Murakami Corporation Elektrische einklappeinheit für eine einklappbare elektrische sichtvorrichtung für ein fahrzeug
DE102018002304A1 (de) 2017-03-31 2018-10-04 Murakami Corporation Einklappbare elektrische Sichtvorrichtung für ein Fahrzeug
CN112758025A (zh) * 2021-02-03 2021-05-07 长安大学 一种基于北斗定位的汽车安全行驶实时监测装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0872613A (ja) * 1994-06-30 1996-03-19 Ishizaki Honten:Kk 電動ミラー
JP2002067805A (ja) * 2000-08-31 2002-03-08 Murakami Corp 電動格納式ドアミラー

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5602699B2 (ja) * 2011-09-22 2014-10-08 株式会社東海理化電機製作所 車両用ミラー装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0872613A (ja) * 1994-06-30 1996-03-19 Ishizaki Honten:Kk 電動ミラー
JP2002067805A (ja) * 2000-08-31 2002-03-08 Murakami Corp 電動格納式ドアミラー

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018002363A1 (de) 2017-03-31 2018-10-04 Murakami Corporation Welle für eine einklappbare sichtvorrichtung für ein fahrzeug und elektrische einklappeinheit für eine einklappbare elektrische sichtvorrichtung für ein fahrzeug
DE102018002305A1 (de) 2017-03-31 2018-10-04 Murakami Corporation Elektrische einklappeinheit für eine einklappbare elektrische sichtvorrichtung für ein fahrzeug
DE102018002304A1 (de) 2017-03-31 2018-10-04 Murakami Corporation Einklappbare elektrische Sichtvorrichtung für ein Fahrzeug
CN108688568A (zh) * 2017-03-31 2018-10-23 株式会社村上开明堂 车辆用电动收纳式视觉辨认装置
CN108688568B (zh) * 2017-03-31 2023-01-10 株式会社村上开明堂 车辆用电动收纳式视觉辨认装置
CN112758025A (zh) * 2021-02-03 2021-05-07 长安大学 一种基于北斗定位的汽车安全行驶实时监测装置
CN112758025B (zh) * 2021-02-03 2022-08-16 陕西国防工业职业技术学院 一种基于北斗定位的汽车安全行驶实时监测装置

Also Published As

Publication number Publication date
JP2016215800A (ja) 2016-12-22
JP6788330B2 (ja) 2020-11-25

Similar Documents

Publication Publication Date Title
JP6494371B2 (ja) 車両用電動格納式視認装置
JP6604733B2 (ja) 車両用電動格納式視認装置
WO2016158502A1 (ja) 車両用電動格納式視認装置
WO2016158498A1 (ja) 車両用電動格納式視認装置および該装置に組み込まれるシャフト外挿ギヤ
WO2016185881A1 (ja) 車両用電動格納式視認装置におけるフレームと支持部材の固定構造
US7441912B2 (en) Vehicle outside mirror device
KR101837755B1 (ko) 차량용 아웃사이드 미러 장치
JP6019664B2 (ja) 車両用アウトサイドミラー装置
KR100909016B1 (ko) 차량용 아웃사이드 미러 장치
JP3197994U (ja) 車両用電動格納式視認装置
JP3197992U (ja) 車両用電動格納式視認装置および該装置の電動格納ユニットのフレーム
US20110255188A1 (en) Vehicle outside mirror device
CN107264409B (zh) 视觉辨认装置的视觉辨认角度调整机构
JP6832393B2 (ja) 車両用電動格納式視認装置におけるフレームと支持部材の固定構造
US9033529B2 (en) Vehicle outside mirror device
CN107264407B (zh) 视觉辨认装置的视觉辨认角度调整机构
JP3197995U (ja) 車両用電動格納式視認装置における電動格納ユニットの位置決め構造
JP2008296720A (ja) 車両用アウトサイドミラー装置
JP2010052631A (ja) 車載用ディスプレイ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796275

Country of ref document: EP

Kind code of ref document: A1