[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016182413A1 - 무선 통신 시스템에서 단말의 phich 수신 방법 및 상기 방법을 이용하는 단말 - Google Patents

무선 통신 시스템에서 단말의 phich 수신 방법 및 상기 방법을 이용하는 단말 Download PDF

Info

Publication number
WO2016182413A1
WO2016182413A1 PCT/KR2016/005175 KR2016005175W WO2016182413A1 WO 2016182413 A1 WO2016182413 A1 WO 2016182413A1 KR 2016005175 W KR2016005175 W KR 2016005175W WO 2016182413 A1 WO2016182413 A1 WO 2016182413A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
phich
cell
phich resource
resource
Prior art date
Application number
PCT/KR2016/005175
Other languages
English (en)
French (fr)
Inventor
이승민
양석철
안준기
황대성
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/573,713 priority Critical patent/US10499419B2/en
Publication of WO2016182413A1 publication Critical patent/WO2016182413A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/0858Random access procedures, e.g. with 4-step access with collision treatment collision detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method of receiving a PHICH by a terminal in a wireless communication system and a terminal using the method.
  • ITU-R International Telecommunication Union Radio communication sector
  • IP Internet Protocol
  • 3rd Generation Partnership Project is a system standard that meets the requirements of IMT-Advanced.
  • Long Term Evolution is based on Orthogonal Frequency Division Multiple Access (OFDMA) / Single Carrier-Frequency Division Multiple Access (SC-FDMA) transmission.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • LTE-A LTE-Advanced
  • LTE-A is one of the potential candidates for IMT-Advanced.
  • CA carrier aggregation
  • eCA enhanced CA
  • eCA may be referred to as a massive CA.
  • the PHICH resource is determined on the premise that up to five cells can be configured for the UE. As the number of cells increases, the PHICH resources collide with each other. It can also happen.
  • the terminal may receive a plurality of uplink cells scheduled through one downlink cell.
  • Acknowledgment / not-acknowledgements (ACK / NACKs) for a transport block transmitted in each of the plurality of uplink cells are transmitted through PHICHs of the one downlink cell.
  • a resource for transmitting each PHICH that is, a PHICH resource is determined in association with a specific resource of an uplink data channel through which the transport block is transmitted, for example, a resource having the lowest resource index.
  • a method of receiving a PHICH of a terminal and a terminal device using the method are provided.
  • a method of receiving a PHICH of a terminal in a wireless communication system transmits a physical uplink shared channel (PUSCH), determines whether a first PHICH resource corresponding to the PUSCH collides with a second PHICH resource corresponding to another PUSCH, and in the PHICH resource determined according to the determination result
  • PUSCH physical uplink shared channel
  • the PHICH for the PUSCH is received from the new PHICH resource determined by applying an offset value.
  • the first PHICH resource may be determined based on a lowest physical resource block (PRB) index on which the PUSCH is transmitted and a cyclic shift index of a reference signal transmitted on the PUSCH. .
  • PRB physical resource block
  • the first PHICH resource is the same when the lowest PRB index for determining the first PHICH resource and the cyclic shift index of the reference signal are the same as the lowest PRB index for determining the second PHICH resource and the cyclic shift index of the reference signal. It may be determined that the collision with the second PHICH resource.
  • the offset value may be a lowest CCE index value among control channel element (CCE) index values of resources that receive downlink control information (DCI) for scheduling the PUSCH.
  • CCE control channel element
  • the offset value may be the lowest ECCE index value among enhanced control channel element (ECCE) index values of resources receiving downlink control information (DCI) for scheduling the PUSCH.
  • ECCE enhanced control channel element
  • the offset value may be a carrier indicator field (CIF) value included in downlink control information (DCI) for scheduling the PUSCH.
  • CIF carrier indicator field
  • the offset value may be preset to the terminal.
  • the offset value may be a value added to a cyclic shift index of a reference signal transmitted in the PUSCH.
  • the PUSCH and the other PUSCH may be simultaneously transmitted by the UE, the PUSCH may be transmitted by the UE through a first cell, and the other PUSCH may be transmitted by the UE through a second cell.
  • the first cell and the second cell may have different frequencies.
  • the PUSCH and the other PUSCH may be scheduled by DCIs received in one downlink cell.
  • the new PHICH resource may be determined not to collide with the second PHICH resource due to the offset value.
  • the PHICH for the PUSCH may be received through the first PHICH resource.
  • the terminal includes an RF unit for transmitting and receiving a radio signal and a processor connected to the RF unit, wherein the processor transmits a physical uplink shared channel (PUSCH) and a first PHICH resource corresponding to the PUSCH corresponds to another PUSCH.
  • PUSCH physical uplink shared channel
  • the processor transmits a physical uplink shared channel (PUSCH) and a first PHICH resource corresponding to the PUSCH corresponds to another PUSCH.
  • the terminal can improve the ACK / NACK reception performance for the transport block transmitted in the uplink, and can also prevent unnecessary retransmission.
  • 1 shows a structure of a radio frame in 3GPP LTE / LTE-A.
  • FIG. 2 shows an example of a resource grid for one slot.
  • 3 shows a structure of an uplink subframe.
  • FIG. 6 is an exemplary diagram illustrating monitoring of a search space (SS) and a control channel.
  • SS search space
  • FIG. 7 is a comparative example of a conventional single carrier system and a carrier aggregation system.
  • 11 shows an ACK / NACK transmission method through a PHICH.
  • FIG. 12 is a block diagram illustrating a base station and a terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), or the like.
  • IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is part of Evolved UMTS (E-UMTS) using Evolved-UMTS Terrestrial Radio Access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted.
  • LTE-A Advanced
  • LTE-A Advanced
  • 1 shows a structure of a radio frame in 3GPP LTE / LTE-A.
  • a radio frame consists of 10 subframes, and one subframe consists of two slots. Slots in a radio frame are numbered with slots # 0 through # 19. The time taken for one subframe to be transmitted is called a Transmission Time Interval (TTI). TTI may be referred to as a scheduling unit for data transmission. For example, one radio frame may have a length of 10 ms, one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • the structure of the radio frame is merely an example. Therefore, the number of subframes included in the radio frame or the number of slots included in the subframe may be variously changed.
  • FIG. 2 shows an example of a resource grid for one slot.
  • the downlink slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • the OFDM symbol indicates a specific time interval and may be called an SC-FDMA symbol according to a transmission scheme.
  • the downlink slot includes N RB resource blocks (RBs) in the frequency domain.
  • the RB includes one slot in the time domain and a plurality of consecutive subcarriers in the frequency domain in resource allocation units.
  • the number N RB of resource blocks included in the downlink slot depends on a downlink transmission bandwidth set in a cell.
  • N RB may be any one of 6 to 110.
  • the structure of the uplink slot may also be the same as that of the downlink slot.
  • Each element on the resource grid is called a resource element (RE).
  • One resource block includes 7 OFDM symbols in the time domain and 12 subcarriers in the frequency domain to include 7 ⁇ 12 resource elements, but the number of OFDM symbols and the number of subcarriers in the resource block is limited thereto. It is not.
  • the number of OFDM symbols and the number of subcarriers can be variously changed according to the length of the CP, frequency spacing, and the like. For example, the number of OFDM symbols is 7 for a normal cyclic prifix (CP) and the number of OFDM symbols is 6 for an extended cyclic prefix (CP).
  • the number of subcarriers in one OFDM symbol may be selected and used among 128, 256, 512, 1024, 1536 and 2048.
  • 3 shows a structure of an uplink subframe.
  • the uplink subframe may be divided into a control region and a data region in the frequency domain.
  • the control region is allocated a physical uplink control channel (PUCCH) for transmitting uplink control information.
  • the data region is allocated a physical uplink shared channel (PUSCH) for transmitting data.
  • the UE may not simultaneously transmit or simultaneously transmit PUCCH and PUSCH according to configuration.
  • PUCCH for one UE is allocated to an RB pair in a subframe.
  • Resource blocks belonging to a resource block pair occupy different subcarriers in each of a first slot and a second slot.
  • the frequency occupied by RBs belonging to the RB pair allocated to the PUCCH is changed based on a slot boundary. This is called that the RB pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • the UE may obtain frequency diversity gain by transmitting uplink control information through different subcarriers over time.
  • the uplink control information transmitted on the PUCCH includes ACK / NACK, channel state information (CSI) indicating a downlink channel state, and a scheduling request (SR) that is an uplink radio resource allocation request.
  • the CSI includes a precoding matrix index (PMI) indicating a precoding matrix, a rank indicator (RI) indicating a rank value preferred by the UE, a channel quality indicator (CQI) indicating a channel state, and the like.
  • the uplink data transmitted on the PUSCH may be a transport block which is a data block for the UL-SCH transmitted during the TTI.
  • the transport block may be user information.
  • the uplink data may be multiplexed data.
  • the multiplexed data may be a multiplexed transport block and control information for the UL-SCH.
  • control information multiplexed with data may include CQI, PMI, ACK / NACK, RI, and the like.
  • the uplink data may consist of control information only.
  • the downlink subframe includes two slots in the time domain, and each slot includes seven OFDM symbols in the normal CP (six in the extended CP).
  • the leading up to 3 OFDM symbols (up to 4 OFDM symbols for 1.4Mhz bandwidth) of the first slot in the subframe are the control regions to which control channels are allocated, and the remaining OFDM symbols are the PDSCH (Physical Downlink Shared Channel). Becomes the data area to be allocated.
  • PDSCH refers to a channel through which a base station or node transmits data to a terminal.
  • Control channels transmitted in the control region include a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Downlink Control Channel (PDCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • the PCFICH transmitted in the first OFDM symbol of the subframe carries a Control Format Indicator (CFI), which is information about the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI Control Format Indicator
  • the terminal first receives the CFI on the PCFICH, and then monitors the PDCCH.
  • PCFICH is transmitted on the fixed PCFICH resources of the subframe.
  • the PHICH carries an acknowledgment (ACK) / not-acknowledgement (NACK) signal for an uplink hybrid automatic repeat request (HARQ).
  • ACK acknowledgment
  • NACK not-acknowledgement
  • HARQ uplink hybrid automatic repeat request
  • the PDCCH is a control channel for transmitting downlink control information (DCI).
  • DCI may be defined as resource allocation of PDSCH (also called downlink grant (DL grant)), resource allocation of physical uplink shared channel (PUSCH) (also called uplink grant (UL grant)), arbitrary A set of transmit power control commands and / or activation of Voice over Internet Protocol (VoIP) for individual terminals in the terminal group.
  • DL grant downlink grant
  • PUSCH physical uplink shared channel
  • VoIP Voice over Internet Protocol
  • the EPDCCH may be located after the existing control region in the time domain. For example, if an existing control region is transmitted in the first three OFDM symbols of the subframe, the EPDCCH may be located in OFDM symbols located after the three OFDM symbols. In the frequency domain, the existing control region and the EPDCCH may coincide or may be set differently. For example, the PDCCH is transmitted in the entire system band, whereas the EPDCCH may be transmitted only in the same frequency band as the PDSCH transmitted for a specific terminal. 5 shows an example in which the EPDCCH is transmitted only in some frequency bands of the existing control region.
  • control information for an advanced UE may be transmitted.
  • a reference signal transmitted for demodulation of the PDSCH may be transmitted.
  • FIG. 6 is an exemplary diagram illustrating monitoring of a search space (SS) and a control channel.
  • SS search space
  • the control region in the subframe includes a plurality of control channel elements (CCEs).
  • the CCE is a logical allocation unit used to provide a coding rate according to the state of a radio channel to a PDCCH and corresponds to a plurality of resource element groups (REGs).
  • the REG includes a plurality of resource elements.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • One REG includes four REs and one CCE includes nine REGs. ⁇ 1, 2, 4, 8 ⁇ CCEs may be used to configure one PDCCH, and each element of ⁇ 1, 2, 4, 8 ⁇ is called a CCE aggregation level (AL).
  • AL CCE aggregation level
  • blind decoding is used to detect a PDCCH.
  • the UE does not know in advance where its PDCCH is transmitted in the control region. Accordingly, the UE checks whether the PDCCH is its control channel by checking a cyclic redundancy check (CRC) error on the PDCCH received from each of the resources in which the PDCCH may exist (this is called a PDCCH candidate). This is called blind decoding.
  • CRC cyclic redundancy check
  • a plurality of PDCCHs may be transmitted in the control region within each subframe.
  • the UE monitors the plurality of PDCCHs in every subframe.
  • monitoring means that the UE attempts blind decoding of the PDCCH.
  • a search space is used to reduce the burden of blind decoding.
  • the search space may be referred to as a monitoring set of the CCE for the PDCCH, and may be referred to as a set of PDCCH candidates.
  • the UE monitors the PDCCH in the corresponding search space.
  • the search space is divided into a common search space (CSS) and a UE-specific search space (USS).
  • the common search space is a space for searching for a PDCCH having common control information.
  • the common search space includes 16 CCEs up to CCE (Control Channel Element) indexes 0 to 15, and supports a PDCCH having a CCE aggregation level of ⁇ 4, 8 ⁇ .
  • PDCCHs (DCI formats 0 and 1A) carrying UE specific information may also be transmitted in the common search space.
  • the UE-specific search space supports a PDCCH having a CCE aggregation level of ⁇ 1, 2, 4, 8 ⁇ .
  • the starting point of the search space is defined differently from the common search space and the terminal specific search space.
  • the starting point of the common search space is fixed regardless of the subframe, but the starting point of the UE-specific search space is for each subframe according to the terminal identifier (eg, C-RNTI), the CCE aggregation level, and / or the slot number in the radio frame. Can vary.
  • the terminal identifier eg, C-RNTI
  • the CCE aggregation level e.g, C-RNTI
  • the slot number in the radio frame can vary.
  • the terminal specific search space and the common search space may overlap.
  • a search space may be set in the same way for the EPDCCH.
  • the search space of EPDCCH is composed of ECCE.
  • CA Carrier aggregation
  • FIG. 7 is a comparative example of a conventional single carrier system and a carrier aggregation system.
  • a single carrier system supports only one carrier for uplink and downlink to a user equipment.
  • the bandwidth of the carrier may vary, but only one carrier is allocated to the terminal.
  • a carrier aggregation (CA) system a plurality of CCs (DL CC A to C, UL CC A to C) may be allocated to the UE.
  • a component carrier (CC) refers to a carrier used in a carrier aggregation system and may be abbreviated as a carrier. For example, three 20 MHz component carriers may be allocated to allocate a 60 MHz bandwidth to the terminal.
  • the carrier aggregation system may be divided into a continuous carrier aggregation system in which aggregated carriers are continuous and a non-contiguous carrier aggregation system in which carriers aggregated are separated from each other.
  • a carrier aggregation system simply referred to as a carrier aggregation system, it should be understood to include both the case where the component carrier is continuous and the case where it is discontinuous.
  • the target carrier may use the bandwidth used by the existing system as it is for backward compatibility with the existing system.
  • the 3GPP LTE system supports bandwidths of 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz, and the 3GPP LTE-A system may configure a bandwidth of 20 MHz or more using only the bandwidth of the 3GPP LTE system.
  • broadband can be configured by defining new bandwidth without using the bandwidth of the existing system.
  • the system frequency band of a wireless communication system is divided into a plurality of carrier frequencies.
  • the carrier frequency means a center frequency of a cell.
  • a cell may mean a downlink frequency resource and an uplink frequency resource.
  • the cell may mean a combination of a downlink frequency resource and an optional uplink frequency resource.
  • CA carrier aggregation
  • the terminal In order to transmit and receive packet data through a specific cell, the terminal must first complete configuration for the specific cell.
  • the configuration refers to a state in which reception of system information necessary for data transmission and reception for a corresponding cell is completed.
  • the configuration may include a general process of receiving common physical layer parameters required for data transmission and reception, media access control (MAC) layer parameters, or parameters required for a specific operation in the RRC layer.
  • MAC media access control
  • the cell in the configuration complete state may exist in an activation or deactivation state.
  • activation means that data is transmitted or received or is in a ready state.
  • the UE may monitor or receive a control channel (PDCCH) and a data channel (PDSCH) of an activated cell in order to identify resources (which may be frequency, time, etc.) allocated thereto.
  • PDCCH control channel
  • PDSCH data channel
  • Deactivation means that transmission or reception of traffic data is impossible, and measurement or transmission of minimum information is possible.
  • the terminal may receive system information (SI) required for packet reception from the deactivated cell.
  • SI system information
  • the terminal does not monitor or receive the control channel (PDCCH) and data channel (PDSCH) of the deactivated cell in order to check the resources (may be frequency, time, etc.) allocated to them.
  • PDCH control channel
  • PDSCH data channel
  • the cell may be divided into a primary cell, a secondary cell, and a serving cell.
  • the primary cell refers to a cell operating at a primary frequency, and is a cell in which the terminal performs an initial connection establishment procedure or connection reestablishment with the base station, or is indicated as a primary cell in a handover process. It means a cell.
  • the secondary cell refers to a cell operating at the secondary frequency, and is established and used to provide additional radio resources once the RRC connection is established.
  • the serving cell is configured as a primary cell when the carrier aggregation is not set or the terminal cannot provide carrier aggregation.
  • the term serving cell indicates a cell configured for the terminal and may be configured in plural.
  • One serving cell may be configured with one downlink component carrier or a pair of ⁇ downlink component carrier, uplink component carrier ⁇ .
  • the plurality of serving cells may be configured as a set consisting of one or a plurality of primary cells and all secondary cells.
  • a primary component carrier refers to a component carrier (CC) corresponding to a primary cell.
  • the PCC is a CC in which the terminal initially makes a connection (connection or RRC connection) with the base station among several CCs.
  • the PCC is a special CC that manages a connection (Connection or RRC Connection) for signaling regarding a plurality of CCs and manages UE context, which is connection information related to a terminal.
  • the PCC is connected to the terminal and always exists in the active state in the RRC connected mode.
  • the downlink component carrier corresponding to the primary cell is called a downlink primary component carrier (DL PCC), and the uplink component carrier corresponding to the primary cell is called an uplink major carrier (UL PCC).
  • DL PCC downlink primary component carrier
  • U PCC uplink major carrier
  • Secondary component carrier refers to a CC corresponding to the secondary cell. That is, the SCC is a CC allocated to the terminal other than the PCC, and the SCC is an extended carrier for the additional resource allocation other than the PCC and may be divided into an activated or deactivated state.
  • the downlink component carrier corresponding to the secondary cell is referred to as a DL secondary CC (DL SCC), and the uplink component carrier corresponding to the secondary cell is referred to as an uplink secondary component carrier (UL SCC).
  • DL SCC DL secondary CC
  • UL SCC uplink secondary component carrier
  • the primary cell and the secondary cell have the following characteristics.
  • the primary cell is used for transmission of the PUCCH.
  • the primary cell is always activated, while the secondary cell is a carrier that is activated / deactivated according to specific conditions.
  • RLF Radio Link Failure
  • the primary cell may be changed by a security key change or a handover procedure accompanying a RACH (Random Access CHannel) procedure.
  • NAS non-access stratum
  • the primary cell is always configured with a pair of DL PCC and UL PCC.
  • a different CC may be configured as a primary cell for each UE.
  • the primary cell can be replaced only through a handover, cell selection / cell reselection process.
  • RRC signaling may be used to transmit system information of a dedicated secondary cell.
  • the downlink component carrier may configure one serving cell, and the downlink component carrier and the uplink component carrier may be connected to configure one serving cell.
  • the serving cell is not configured with only one uplink component carrier.
  • the activation / deactivation of the component carrier is equivalent to the concept of activation / deactivation of the serving cell.
  • activation of serving cell 1 means activation of DL CC1.
  • serving cell 2 assumes that DL CC2 and UL CC2 are configured to be configured, activation of serving cell 2 means activation of DL CC2 and UL CC2.
  • each component carrier may correspond to a serving cell.
  • the number of component carriers aggregated between the downlink and the uplink may be set differently.
  • the case where the number of downlink CCs and the number of uplink CCs are the same is called symmetric aggregation, and when the number is different, it is called asymmetric aggregation.
  • the size (ie bandwidth) of the CCs may be different. For example, assuming that 5 CCs are used for a 70 MHz band configuration, 5 MHz CC (carrier # 0) + 20 MHz CC (carrier # 1) + 20 MHz CC (carrier # 2) + 20 MHz CC (carrier # 3) It may be configured as + 5MHz CC (carrier # 4).
  • a plurality of component carriers (CCs), that is, a plurality of serving cells may be supported.
  • Such a carrier aggregation system may support non-cross carrier scheduling and cross carrier scheduling.
  • Non-cross carrier scheduling may be referred to simply applying a conventional scheduling method within a single cell to a plurality of cells.
  • the PDCCH / PDSCH is transmitted through the same CC, and the PDCCH may schedule a PUSCH transmitted through the CC which is basically linked with a specific CC.
  • Non-cross carrier scheduling may also be referred to as self scheduling.
  • Cross-carrier scheduling is a resource allocation of a PDSCH transmitted on another component carrier through a PDCCH transmitted on a specific component carrier and / or other than the component carrier basically linked with the specific component carrier.
  • a scheduling method for resource allocation of a PUSCH transmitted on another CC That is, a PDCCH and a PDSCH may be transmitted through different downlink CCs, and a PUSCH may be transmitted through a downlink CC on which a PDCCH including a UL grant is transmitted and an uplink CC other than the uplink CC basically linked. Can be.
  • a carrier indicator indicating a DL CC / UL CC through which a PDSCH / PUSCH for which PDCCH provides control information is transmitted is required.
  • a field including such a carrier indicator is hereinafter called a carrier indication field (CIF).
  • a carrier aggregation system supporting cross carrier scheduling may include a carrier indication field (CIF) in a conventional downlink control information (DCI) format.
  • CIF carrier indication field
  • DCI downlink control information
  • 3 bits may be extended, and the PDCCH structure may include an existing coding method, Resource allocation methods (ie, CCE-based resource mapping) can be reused.
  • the present invention proposes a method for efficiently solving a collision problem of a physical hybrid ARQ indicator channel (PHICH) resource.
  • PHICH physical hybrid ARQ indicator channel
  • a method of efficiently solving a collision problem of PHICH resources for a terminal in which more cells than 5 existing cells can be aggregated is proposed.
  • the terminal may be a terminal capable of supporting the aggregation of more than five cells.
  • the problem of collision of PHICH resources is basically that the number of orthogonal sequences multiplexed on the same resource block is limited, the number of PHICH groups is limited, and parameters that can specify or allocate different PHICH resources.
  • the reason may be at least one of a DM-RS cyclic shift (CS-CS) field value in the UL DCI format and a number of the lowest PRB index (on the first slot) associated with PUSCH transmission. .
  • CS-CS DM-RS cyclic shift
  • the PHICH resource conflict problem may occur in two cases.
  • a plurality of uplink cells are cross carrier scheduling (CCS) from one downlink cell from a specific UE perspective, and the PUSCH transmissions on some or all uplink cells are the same ' Is performed or scheduled based on the lowest PRB index '(in the first slot) and / or the same' DM-RS CS index 'for the PUSCH
  • CASE # A a plurality of uplink cells are cross carrier scheduling (CCS) from one downlink cell from a specific UE perspective
  • the PUSCH transmissions on some or all uplink cells are the same ' Is performed or scheduled based on the lowest PRB index '(in the first slot) and / or the same' DM-RS CS index 'for the PUSCH
  • CASE # B different terminals (same or PUSCH transmissions on different uplink cells may be performed or scheduled based on the same 'lowest PRB index' (in the first slot) and / or the
  • LCELL a licensed band-based cell and an unlicensed band (LTE-U) -based cell
  • UCELL a licensed band-based cell and an unlicensed band (LTE-U) -based cell
  • RRP reserved resource resource
  • Downlink subframe (DL SF) of the RRP section that is, PDSCH-related control information channel transmitted on the subframe designated for downlink use or uplink subframe (UPLINK SUBFRAME: UL SF) of the RRP section, that is, uplink PUSCH-related control information channel transmitted on a subframe designated for the purpose is set to be transmitted from a predefined LCELL (ie, CCS) or transmitted from the same UCELL (ie, self-scheduling, which is referred to as SFS-SELED-SCHEDULING). Rules can be defined to
  • the PDSCH reception related downlink control information channel on the RRP interval may be configured to schedule one PDSCH in which one downlink control information channel is received at the same (or specific) time point (ie, downlink control information).
  • a channel and a PDSCH scheduled by this channel are received in the same subframe, which may be implemented as SSFS (named SINGLE SUBFRAME SCHEDULING).
  • SSFS named SINGLE SUBFRAME SCHEDULING
  • one downlink control information channel may be implemented in the form of scheduling not only one PDSCH received at the same (or specific) time point but also a predefined (or signaled) number of PDSCHs received at another time. This is called MULTI-SUBFRAME SCHEDULING (MSFS).
  • MSFS MULTI-SUBFRAME SCHEDULING
  • the RRP interval on the UCELL is a resource that is configured aperiodically or discontinuously depending on the result of the cyclic shift (CS)
  • the corresponding RRP interval may be redefined or reinterpreted in view of UE operation and assumption.
  • the RRP interval in the UCELL is a period in which the terminal performs a time / frequency synchronization operation for the UCELL or a synchronization signal (for example, PSS, SSS) for the transmission from the base station and / or the terminal is DCI detection operation related to the data transmission (/ reception) in the UCELL and / or the interval in which the CSI measurement operation for the UCELL or a reference signal (for example, CRS, CSI-RS) is assumed to be transmitted from the base station and / or the terminal is transmitted. It can be redefined to the interval for performing the and / or the interval for the terminal performs a (temporary or temporary) buffering operation for the signal received from the UCELL.
  • a synchronization signal for example, PSS, SSS
  • the proposed scheme will be described based on the 3GPP LTE / LTE-A system.
  • the scope of the system to which the proposed method is applied can be extended to other systems besides the 3GPP LTE / LTE-A system.
  • the corresponding PHICH resource in subframe n + k PHICH of serving cell c may be determined as follows. First, a method of determining k PHICH in various situations will be described, and then a method of determining specific resources in a corresponding subframe will be described.
  • k PHICH is always 4 for FDD.
  • k PHICH is 6 if serving cell c is for another serving cell with TDD (ie, frame structure type 2) and PUSCH transmission is FDD (ie, frame structure type 1).
  • k PHICH is 4 when serving cell c is for a serving cell with FDD (ie, frame structure type 1) and PUSCH transmission is FDD (ie, frame structure type 1).
  • k PHICH is as shown in the following table. Can be given.
  • 'EIMTA-MainConfigServCell-r12' for any serving cell is not configured in the terminal and one serving cell is configured in the terminal, or two or more serving cells are configured in the terminal and TDD of all configured serving cells If the UL-DL configuration is the same, for PUSCH transmission scheduled from serving cell c in subframe n, the terminal determines a corresponding PHICH resource in subframe n + k PHICH of serving cell c, where k PHICH is It is given by Table 1 above.
  • TDD when two or more serving cells are configured in the UE and the TDD UL-DL configuration of the at least two configured serving cells is not the same, or when 'EIMTA-MainConfigServCell-r12' is configured for at least one serving cell.
  • serving cell c which is TDD in the carrier aggregation of FDD-TDD
  • the UE determines a corresponding PHICH resource in subframe n + k PHICH of serving cell c
  • the k PHICH is given by Table 1.
  • TDD UL-DL configuration means UL-based UL-DL configuration of a serving cell corresponding to PUSCH transmission.
  • the UL-reference UL-DL configuration may be referred to as a UL-DL configuration used to determine HARQ timing, and may be the same as or different from a cell-specific UL-DL configuration.
  • the PHICH may be determined as follows.
  • TDD when two or more serving cells are configured in the terminal and the TDD UL-DL configuration of the at least two configured serving cells is not the same, or when 'EIMTA-MainConfigServCell-r12' is configured for at least one serving cell,
  • TDD UL-DL configuration means UL-based UL-DL configuration of secondary cell c corresponding to PUSCH transmission.
  • the UE If the UE is not configured to monitor a PDCCH / EPDCCH having a carrier indicator field (CIF) corresponding to the secondary cell c in another serving cell (that is, no cross-carrier scheduling is configured), the UE The corresponding PHICH resource is determined in the subframe n + k PHICH of the secondary cell c, where k PHICH may be determined as follows.
  • CIF carrier indicator field
  • K PHICH is 4 for the secondary cell c which is FDD in FDD-TDD carrier aggregation.
  • k PHICH is given by Table 1 above.
  • the terminal is configured to monitor a PDCCH / EPDCCH having a carrier indicator field (CIF) corresponding to the secondary cell c in another serving cell c1 (that is, when cross-carrier scheduling is configured), a plurality of TAGs
  • the configured UE determines the corresponding PHICH resource in the subframe n + k PHICH of the secondary cell c1, where k PHICH may be determined as follows.
  • k PHICH is given by Table 1 above.
  • k PHICH is 4 for the primary cell of FDD and the secondary cells c and c1 of TDD.
  • k PHICH is given by Table 1 above.
  • K PHICH is 6 for the serving cell c which is FDD and the serving cell c1 which is TDD in FDD-TDD carrier aggregation.
  • the PHICH resource is associated with the last subframe of the bundling.
  • the PHICH is a control channel through which the base station transmits ACK / NACK for uplink data transmission of the terminal.
  • a plurality of PHICHs may be mapped to the same set of resource elements forming a PHICH group.
  • PHICHs in the same PHICH group are distinguished by different orthogonal sequences.
  • the resource on which the PHICH is transmitted is called a PHICH resource, and the PHICH resource may be identified by an index pair such as (n group PHICH , n seq PHICH ).
  • n group PHICH represents a PHICH group number
  • n seq PHICH is an index of an orthogonal sequence within the PHICH group.
  • the following equation represents an index pair representing a PHICH resource.
  • n DMRS may be a value indicating a cyclic shift of a demodulation reference signal (DMRS) in a corresponding PUSCH transmission.
  • DMRS demodulation reference signal
  • n DMRS is mapped from the cyclic shift for the DMRS field in the most recent PDCCH having an uplink DCI format for the transport block associated with the corresponding PUSCH transmission. That is, n DMRS may be indicated by a DMRA field in an uplink grant (uplink DCI format) for scheduling a transport block associated with a corresponding PUSCH transmission.
  • n DMRS may be set to 0 if there is no PDCCH including the uplink DCI format for the transport block.
  • n DMRS and DMRS field may be mapped as shown in the following table.
  • N PHICH SF is a spreading factor size used for PHICH modulation.
  • N group PHICH indicates the number of PHICH groups set by a higher layer.
  • I PRB _ RA may be given by the following equation.
  • I PRB _ RA is a transport block in which the number of transport blocks that have received a NACK in the case of the first transport block of a PUSCH having an associated PDCCH or in the absence of an associated PDCCH is indicated in the most recent PDCCH associated with the corresponding PUSCH. If it is different from the number of, I lowest_index is given as PRB_RA . It is given as 'I lowest_index PRB_RA + 1' for the second transport block of the PUSCH having an associated PDCCH.
  • I lowest _ index PRB _ RA is the lowest physical resource block (PRB) index in the first slot of the corresponding PUSCH transmission.
  • PRB physical resource block
  • N group PHICH of PHICH groups is constant for all subframes, and is given as follows.
  • n group PHICH has a range from 0 to N group PHICH -1.
  • the number of PHICH groups may vary between subframes.
  • the number of PHICH groups may be given as m i N group PHICH and m i may be given as shown in the following table.
  • N group PHICH is given as in Equation 3 above, and the index n group PHICH has a range from 0 to m i N group PHICH ⁇ 1 for a downlink subframe having PHICH resources.
  • BPSK binary phase shift keying
  • modulation symbols z (0), ..., z (M s -1) are multiplied by a symbol-wise orthogonal sequence, scrambled, and the modulation symbols d (0), ..., d ( M symb -1) is generated as
  • c (i) is a cell-specific scrambling sequence.
  • the initial value c init of c (i) may be given as follows for each subframe.
  • N cell ID means a physical layer cell ID
  • n s is a slot number in a radio frame.
  • n seq PHICH corresponds to a PHICH number in the PHICH group.
  • the terminal receives UL grants # 1 and # 2 in a downlink cell.
  • the uplink grant may also be referred to as an uplink DCI format.
  • Each uplink grant may include resource allocation information for scheduling PUSCH transmission and a field indicating a PUSCH DM-RS cyclic shift index.
  • uplink grant # 1 schedules PUSCH # 1 transmission of uplink cell # 1
  • uplink grant # 2 schedules PUSCH # 2 transmission of uplink cell # 2.
  • ACK / NACK for PUSCH # 1 is transmitted by the base station through PHICH # 1 of the downlink cell (ie, the UE receives ACK / NACK in PHICH # 1), and ACK / NACK for PUSCH # 2 is downlink
  • the cell is transmitted by the base station through PHICH # 2 of the cell (ie, the UE receives ACK / NACK in PHICH # 2).
  • PHICH # 1 and PHICH # 2 may be transmitted in the same PHICH resource.
  • the present invention can efficiently solve the PHICH resource collision problem.
  • the present invention may be applied to prevent the collision of PHICH resources.
  • These proposed schemes may be defined such that the rule is applied only to solve the above-described PHICH resource conflict problem of CASE # A, CASE # B.
  • a large carrier aggregation mode (MASSIVE CA MODE) is set and / or uplink cell (or uplink LCELL or uplink UCELL or uplink LCELL (S) / UCELL (S)) Or the number of configured uplink cells (or configured uplink LCELL or configured uplink LCELL or configured uplink LCELL (S) / UCELL (S)) is predefined or signaled or more And / or an activated uplink cell (or an activated uplink LCELL (S) or an activated uplink UCELL or an activated uplink LCELL (S) / UCELL (S)) is previously defined or signaled.
  • the cell group (CG) is predefined or set to greater than the signaled number and / or is defined in advance Or when a PUCCH transmission is configured on a signaled secondary cell and / or an uplink cell (CC configured) that is cross-carrier scheduled (CCS) from one configured or activated downlink cell is predefined or signaled
  • CC configured uplink cell
  • CCS cross-carrier scheduled
  • the rule may be defined to be limited only when the number is greater than the number (eg, 6) and / or when the uplink cross-carrier scheduling scheme is configured.
  • the (lowest) CCE index or ECCE index associated with the corresponding uplink grant, or the predefined terminal or cell / cell group offset previously defined or signaled is the PHICH resource index offset. It can be set to be used.
  • the "lowest PRB index in the first slot" and "PUSCH DM-RS cyclic shift index" related to PUSCH transmissions (or scheduling) on a plurality of uplink cells cross-carrier scheduled from one downlink cell are If both PUSCH transmissions are the same, use the CIF value (and / or the cell index of the uplink cell being cross-carrier scheduled) on the corresponding uplink grant as an offset of the PHICH resource index according to a predefined or signaled rule. Can be set to In particular, when the timing of the uplink grant is different but the PHICH timing is the same, it is possible to effectively alleviate the PHICH resource collision problem. That is, although the uplink grants are received in different subframes, the PHICH resource collision problem can be effectively alleviated when PHICHs for PUSCHs scheduled by each of the uplink grants are received in the same subframe. have.
  • the lowest CCE or ECCE index of the UL grant (and / or the CIF value on the UL grant and / or the cell index of the uplink cell being CCS and / or used as the offset of the PHICH resource index in [Proposed Method # 1])
  • the predefined or signaled UE-specific offset or cell / cell group offset hereinafter identical
  • the index of the CCE / ECCE may be set to be inserted into specific (partial) location (s) previously defined or signaled.
  • the positions where the CCE / ECCE indexes can be inserted are indicated by (A) to (L).
  • the lowest CCE / ECCE index of the corresponding UL grant (and / or the CIF value on the UL grant and / or the cell index of the uplink cell being CCS and / or the offset for each UE or cell / cell group previously defined or signaled) It may be limited to be used only for offset usage for n seq PHICH which is an orthogonal sequence index and / or offset usage for n group PHICH which is a PHICH group number.
  • the specific some uplink cell excludes a predefined (one) uplink cell or a predefined (or signaled) number of uplink cells having a relatively low (or high) cell index.
  • the remaining uplink cells may be configured.
  • the UE transmits a PUSCH (S151).
  • the UE determines whether a first PHICH resource corresponding to the PUSCH collides with a second PHICH resource corresponding to another PUSCH (S152).
  • the PUSCH and the other PUSCH may be simultaneously transmitted by the UE, the PUSCH may be transmitted by the UE through a first cell, and the other PUSCH may be transmitted by the UE through a second cell.
  • the first cell and the second cell may be cells having different frequencies.
  • the PUSCH and the other PUSCH may be scheduled by DCIs received in one downlink cell. How the PHICH resource corresponding to the PUSCH is determined has been described with reference to Equations 1 to 3.
  • the terminal receives the PHICH for the PUSCH in the new PHICH resource determined by applying an offset value (S153).
  • the PHICH resource may include a lowest physical resource block (PRB) index (in the first slot) in which the PUSCH is transmitted and a reference signal transmitted in the PUSCH (more specifically).
  • Demodulation reference signal: DM-RS) is determined based on a cyclic shift index.
  • the UE may determine that the first PHICH resource is the same when the lowest PRB index for determining the first PHICH resource and the cyclic shift index of the reference signal are the same as the lowest PRB index for determining the second PHICH resource and the cyclic shift index of the reference signal. It may be determined that the collision with the second PHICH resource.
  • the offset value used to prevent the collision between the first PHICH resource and the second PHICH resource is the lowest among the CCE / ECCE index values of the resources that receive downlink control information (also referred to as an uplink grant) for scheduling a PUSCH. It may be a CCE / ECCE index value. Since DCIs scheduling different PUSCHs are received in a resource region composed of different CCEs / ECCEs, the lowest CCE / ECCE index values of the DCIs do not overlap each other. Therefore, when the lowest CCE / ECCE index value is used as an offset value, collision of PHICH resources can be prevented.
  • the offset value used to prevent collision between the first PHICH resource and the second PHICH resource may be a carrier indicator field (CIF) value included in downlink control information (DCI) for scheduling the PUSCH.
  • CIF carrier indicator field
  • DCI downlink control information
  • the offset value may be preset to the terminal.
  • the offset value may be a value added to a cyclic shift index of a reference signal transmitted in the PUSCH.
  • the PHICH for the PUSCH is received from the first PHICH resource corresponding to the PUSCH (S154). That is, when the first PHICH resource and the second PHICH resource do not collide, the PHICH is received from the PHICH resource determined according to the existing method.
  • 11 shows an ACK / NACK transmission method through a PHICH.
  • a plurality of modulation symbols are generated by repeatedly coding ACK / NACK information (S161). That is, one bit of HARQ-ACK information (i.e., NACK is 1, ACK is 0, and vice versa) of one bit transmitted through the PHICH is three complex values according to a predefined repetition coding (REPETITION CODING). It can be repeated in the form of a modulation BPSK symbol (COMPLEX-VALUED MODULATION BPSK SYMBOL). For example, NACK and ACK may be repeated as in the following equation.
  • the orthogonal sequence is applied to each complex value modulation symbol and then transmitted (S162).
  • An orthogonal sequence may be expressed as [w (0) ... w (N PHICH SF -1)].
  • the result of multiplying the orthogonal sequence by the complex value modulated BPSK symbol can be expressed as follows.
  • the three complex value modulated BPSK symbols derived through the above-described step S161 may have a predefined length (for example, L PHICH SF ) (before step S162).
  • the orthogonal sequence may be, for example, [e (0) ... e (L PHICH SF- 1)].
  • step S162 may be applied to the NACK and the ACK.
  • Information related to an orthogonal sequence i.e., [e (0) ... e (L PHICH SF- 1)]
  • the base station to the terminal (physical layer or higher layer). It can be configured to inform via signaling.
  • the (downlink / uplink) scheduling information related to a plurality of pre-configured or signaled cells may be configured to be transmitted through one DCI (or control channel).
  • one DCI scheduling the plurality of cells may be referred to hereinafter as (DL / UL) “MUCC-DCI”.
  • Cells scheduled simultaneously via MUCC-DCI are configured with cells of the same cell type and / or the same transmission mode (TM) and / or the same system bandwidth and / or the same communication type and / or the same cell group (CG) Or may be limited.
  • the cell type means UCELL and LCELL
  • the communication type means FDD and TDD.
  • the following schemes suggest an efficient PUSCH DM-RS CS and / or PHICH resource allocation method when PUSCH transmissions on a plurality of uplink cells are scheduled through one UL MUCC-DCI.
  • the (one or common) DM-RS CS value included in the UL MUCC-DCI may be commonly applied to PUSCH transmissions on a plurality of uplink cells scheduled at the same time.
  • At least one of the cell group offsets may be configured to be used or utilized as an offset of the PHICH resource index.
  • a different DM-RS CS value may be applied to a plurality of uplink cells scheduled at the same time.
  • the (one) DM-RS CS (index) value (let's say "CS # X") on the UL MUCC-DCI is the lowest (or small) CIF value (and / or cell index).
  • Branch applies only to PUSCH transmission on the uplink cell (scheduled) (ie, uplink cell # 0) and PUSCH transmission on the remaining (scheduled) uplink cell (ie, uplink cell # 1, uplink cell # 2)
  • the offset value may be applied to (s) in the ascending (or descending) direction of the (uplink) cell index (and / or CIF value (s)).
  • the DM-RS CS value applied to uplink cell # 1 is CS # (X + CYC_OFFSET)
  • the DM-RS CS value applied to uplink cell # 2 is CS # (X + CYC_OFFSET * 2). Can be.
  • DM-RS CS (index) values applied to PUSCH transmissions on uplink cell # 1 and uplink cell # 2 are (uplink) cell index (and / or) to CS # X applied to uplink cell # 0.
  • a predefined or signaled offset (denoted as "CYC_OFFSET”) may be interpreted as a cumulative application (sequentially or cyclically shifted).
  • the offset value may be a positive value (meaning an increase) or a negative value (meaning a decrease). According to this method, since the DM-RS CS value is different for each uplink cell, PHICH resource collision does not occur.
  • a UE may be configured in advance.
  • UL MUCC-DCI may be set to be transmitted. That is, the terminal may be configured to detect the MUCC-DCI only through the USS / CSS of a specific cell which is predetermined or set within a cell group to which multicarrier scheduling is applied.
  • cell # 1, cell # 2, and cell # 3 are cell groups to which multi-carrier scheduling to which a cell is scheduled based on one MUCC-DCI is applied.
  • USS (and / or CSS) of cells # 1 and # 2 may be used for MUCC-DCI transmission.
  • (1) only one cell of cell # 1 and cell # 2 is set as a cell for MUCC-DCI transmission and the MUCC-DCI is transmitted through cell # 1 and cell # 2 related USS (and / or CSS) in that one cell.
  • Cell # 1 and Cell # 2 are both configured as MUCC-DCI transmission cells and MUCC-DCI is configured to be received / detected via USS (and / or CSS) on each cell. Can be.
  • the MUCC-DCI may include a field or indicator indicating whether a specific cell is scheduled by the MUCC-DCI. This field or indicator may be in the form of a bitmap. Call the field "ONFIELD". If ONFIELD indicates that the DEACTIVATED cell is scheduled, the UE may assume (or consider) that the entire MUCC-DCI is invalid.
  • the UE may assume (or consider) that only scheduling information related to the deactivated cell is invalid in the corresponding MUCC-DCI. That is, it may be assumed (or considered) that the remaining MUCC-DCI except the corresponding inactive cell related scheduling information, that is, the active cell related scheduling information, is valid.
  • the UE configured with the MUCC-DCI based multi-carrier scheduling mode may be configured to generate a corresponding MUCC-DCI only when all cells configured as targets of the MUCC-DCI-based multi-carrier scheduling are deactivated (the MUCC-DCI). May be configured not to monitor (or blind decode) the (E) PDCCH search space of a specific cell configured to receive / detect.
  • a corresponding UE in which a MUCC-DCI based multi-carrier scheduling mode is set may use the corresponding MUCC-DCI (if the MUCC-DCI is activated), when at least one of the cells configured as MUCC-DCI-based multi-carrier scheduling is activated.
  • Monitor or blind decode) the (E) PDCCH search space of a particular cell configured to receive / detect DCI.
  • the examples of the proposed schemes described above can be considered as a kind of proposed schemes because they can be included as one of the implementation methods of the present invention.
  • the above-described proposal schemes may be independently implemented, some proposal schemes may be implemented in combination (or merge).
  • the proposed schemes described above may be limited to only a cell group consisting of a specific cell type (eg, UCELL or LCELL) and / or a specific cell type (eg, UCELL or LCELL) previously defined or signaled. Rules may be defined.
  • the above-described proposed schemes may be defined such that the cell types and / or cell groups (and / or cells) are applied differently (or independently).
  • FIG. 12 is a block diagram illustrating a base station and a terminal.
  • the base station 100 includes a processor 110, a memory 120, and an RF unit 130.
  • the processor 110 implements the proposed functions, processes and / or methods.
  • the memory 120 is connected to the processor 110 and stores various information for driving the processor 110.
  • the RF unit 130 is connected to the processor 110 and transmits and / or receives a radio signal.
  • FIGS. 9 to 10 have been described as reception methods of the PHICH from the terminal point of view, it may also be seen as a PHICH transmission method from the base station point of view.
  • the processor 110 may implement the methods of FIGS. 9 through 11.
  • the terminal 200 includes a processor 210, a memory 220, and an RF unit 230.
  • the processor 210 implements the proposed functions, processes and / or methods.
  • the memory 220 is connected to the processor 210 and stores various information for driving the processor 210.
  • the RF unit 230 is connected to the processor 210 to transmit and / or receive a radio signal.
  • FIG. 11 is described as an ACK / NACK transmission method in a PHICH from a viewpoint of a base station, it can be seen as an ACK / NACK reception method through a PHICH from a terminal perspective.
  • the processor 210 may implement the methods of FIGS. 9-11.
  • Processors 110 and 210 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters for interconverting baseband signals and wireless signals.
  • the memory 120, 220 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the RF unit 130 and 230 may include one or more antennas for transmitting and / or receiving a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memories 120 and 220 and executed by the processors 110 and 210.
  • the memories 120 and 220 may be inside or outside the processors 110 and 210, and may be connected to the processors 110 and 210 by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선통신 시스템에서 단말의 PHICH 수신 방법 및 상기 방법을 이용하는 단말을 제공한다. 상기 방법은 PUSCH를 전송하고, 상기 PUSCH에 대응하는 제1 PHICH 자원이 다른 PUSCH에 대응하는 제2 PHICH 자원과 충돌하는지를 판단하고, 상기 판단 결과에 따라 결정되는 PHICH 자원에서 상기 PUSCH에 대한 PHICH를 수신하되, 상기 제1 PHICH 자원과 상기 제2 PHICH 자원이 충돌하는 경우, 오프셋 값을 적용하여 결정한 새로운 PHICH 자원에서 상기 PUSCH에 대한 PHICH를 수신하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 단말의 PHICH 수신 방법 및 상기 방법을 이용하는 단말
본 발명은 무선 통신에 관한 것으로, 보다 상세하게는 무선 통신 시스템에서 단말이 PHICH를 수신하는 방법 및 이러한 방법을 이용하는 단말에 관한 것이다.
ITU-R(International Telecommunication Union Radio communication sector)에서는 3세대 이후의 차세대 이동통신 시스템인 IMT(International Mobile Telecommunication)-Advanced의 표준화 작업을 진행하고 있다. IMT-Advanced는 정지 및 저속 이동 상태에서 1Gbps, 고속 이동 상태에서 100Mbps의 데이터 전송률로 IP(Internet Protocol)기반의 멀티미디어 서비스 지원을 목표로 한다.
3GPP(3rd Generation Partnership Project)는 IMT-Advanced의 요구 사항을 충족시키는 시스템 표준으로 OFDMA(Orthogonal Frequency Division Multiple Access)/SC-FDMA(Single Carrier-Frequency Division Multiple Access) 전송방식 기반인 LTE(Long Term Evolution)를 개선한 LTE-Advanced(LTE-A)를 제공한다. LTE-A는 IMT-Advanced를 위한 유력한 후보 중의 하나이다.
기존 LTE-A에서는 최대 5개의 반송파(셀)들을 집성하여 반송파 집성(Carrier Aggregation: CA)를 제공하였으나, 장래의 무선통신 시스템에서는 최대 32개의 반송파(셀)들을 집성하는 eCA(enhanced CA)도 고려하고 있다. eCA는 대규모(massive) CA라 칭할 수도 있다.
이처럼 집성되는 반송파(셀)들의 개수가 많아지면, 여러가지 문제점이 있을 수 있다. 예를 들어, 기존 PHICH(physical hybrid-ARQ indicator channel) 전송 방법에서는 단말에게 최대 5개의 셀들이 설정될 수 있다는 것을 전제로 하여 PHICH 자원을 결정하였는데, 셀들의 개수가 증가함에 따라 PHICH 자원이 서로 충돌하는 경우도 발생할 수 있다.
예를 들어, 단말이 하나의 하향링크 셀을 통해 복수의 상향링크 셀들을 스케줄링 받을 수 있다. 상기 복수의 상향링크 셀들에서 각각 전송한 전송 블록에 대한 ACK/NACK(acknowledgement/not-acknowledgement)들은 상기 하나의 하향링크 셀의 PHICH들을 통해 전송된다. 이 때, 각 PHICH가 전송되는 자원, 즉 PHICH 자원은 상기 전송 블록이 전송되는 상향링크 데이터 채널의 특정 자원 예컨대, 가장 자원 인덱스가 낮은 자원에 연관되어 결정된다. 복수의 상향링크 셀들 중 적어도 2개의 상향링크 셀들 각각에서의 상향링크 데이터 채널들이 동일한 자원 인덱스를 가지는 자원을 사용할 경우, PHICH 자원의 충돌이 발생할 수 있다. 그러면, 단말은 상향링크 데이터 채널을 통해 전송한 전송 블록에 대하여 ACK/NACK을 제대로 수신하기 어렵게 된다.
집성될 수 있는 셀 또는 반송파의 개수가 증가함에 따라 PHICH 자원이 충돌하게 될 확률이 증가하는데, 이를 해결할 수 있는 방법 및 장치가 필요하다.
무선 통신 시스템에서 단말의 PHICH 수신 방법 및 상기 방법을 이용하는 단말 장치를 제공하고자 한다.
일 측면에서, 무선통신 시스템에서 단말의 PHICH 수신 방법을 제공한다. 상기 방법은 PUSCH(physical uplink shared channel)를 전송하고, 상기 PUSCH에 대응하는 제1 PHICH 자원이 다른 PUSCH에 대응하는 제2 PHICH 자원과 충돌하는지를 판단하고, 상기 판단 결과에 따라 결정되는 PHICH 자원에서 상기 PUSCH에 대한 PHICH를 수신하되, 상기 제1 PHICH 자원과 상기 제2 PHICH 자원이 충돌하는 경우, 오프셋 값을 적용하여 결정한 새로운 PHICH 자원에서 상기 PUSCH에 대한 PHICH를 수신하는 것을 특징으로 한다.
상기 제1 PHICH 자원은 상기 PUSCH가 전송되는 가장 낮은 물리적 자원 블록(physical resource block: PRB) 인덱스 및 상기 PUSCH에서 전송되는 참조 신호(reference signal)의 순환 쉬프트(cyclic shift) 인덱스에 기반하여 결정될 수 있다.
상기 제1 PHICH 자원을 결정하는 가장 낮은 PRB 인덱스 및 참조 신호의 순환 쉬프트 인덱스가 상기 제2 PHICH 자원을 결정하는 가장 낮은 PRB 인덱스 및 참조 신호의 순환 쉬프트 인덱스와 동일한 경우에 상기 제1 PHICH 자원이 상기 제2 PHICH 자원과 충돌하는 것으로 판단할 수 있다.
상기 오프셋 값은 상기 PUSCH를 스케줄링하는 DCI(downlink control information)를 수신한 자원들의 CCE(control channel element) 인덱스 값들 중에서 가장 낮은 CCE 인덱스 값일 수 있다.
상기 오프셋 값은 상기 PUSCH를 스케줄링하는 DCI(downlink control information)를 수신한 자원들의 ECCE(enhanced control channel element) 인덱스 값들 중에서 가장 낮은 ECCE 인덱스 값일 수 있다.
상기 오프셋 값은 상기 PUSCH를 스케줄링하는 DCI(downlink control information)에 포함된 CIF(carrier indicator field) 값일 수 있다.
상기 오프셋 값은 상기 단말에게 미리 설정될 수 있다.
상기 오프셋 값은 상기 PUSCH에서 전송되는 참조 신호(reference signal)의 순환 쉬프트(cyclic shift) 인덱스에 더해지는 값일 수 있다.
상기 PUSCH 및 상기 다른 PUSCH는 상기 단말이 동시에 전송하되, 상기 PUSCH는 상기 단말이 제1 셀을 통해 전송하고, 상기 다른 PUSCH는 단말이 제2 셀을 통해 전송하는 것일 수 있다.
상기 제 1 셀 및 제 2 셀은 서로 다른 주파수를 가질 수 있다.
상기 PUSCH 및 상기 다른 PUSCH는 하나의 하향링크 셀에서 수신한 DCI들에 의하여 스케줄링될 수 있다.
상기 새로운 PHICH 자원은 상기 오프셋 값으로 인해 상기 제2 PHICH 자원과 충돌하지 않도록 결정될 수 있다.
상기 제1 PHICH 자원과 상기 제2 PHICH 자원이 충돌하지 않으면, 상기 제1 PHICH 자원을 통해 상기 PUSCH에 대한 PHICH를 수신할 수 있다.
단말은, 무선신호를 송수신하는 RF부 및 상기 RF부에 연결되는 프로세서를 포함하되, 상기 프로세서는 PUSCH(physical uplink shared channel)를 전송하고, 상기 PUSCH에 대응하는 제1 PHICH 자원이 다른 PUSCH에 대응하는 제2 PHICH 자원과 충돌하는지를 판단하고, 상기 판단 결과에 따라 결정되는 PHICH 자원에서 상기 PUSCH에 대한 PHICH를 수신하되, 상기 제1 PHICH 자원과 상기 제2 PHICH 자원이 충돌하는 경우, 오프셋 값을 적용하여 결정한 새로운 PHICH 자원에서 상기 PUSCH에 대한 PHICH를 수신하는 것을 특징으로 한다.
5개보다 많은 반송파(셀)들의 집성을 지원하는 무선통신 시스템에서, PHICH 자원들의 충돌을 방지할 수 있다. 따라서, 단말은 상향링크로 전송한 전송 블록에 대한 ACK/NACK 수신 성능이 개선되며, 불필요한 재전송도 방지할 수 있다.
도 1은 3GPP LTE/LTE-A에서 무선 프레임의 구조를 나타낸다.
도 2는 하나의 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
도 3은 상향링크 서브프레임의 구조를 나타낸다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 5는 EPDCCH를 예시한다.
도 6은 검색 공간(Search Space: SS)와 제어 채널의 모니터링을 나타낸 예시도이다.
도 7은 기존의 단일 반송파 시스템과 반송파 집성 시스템의 비교 예이다.
도 8은 비교차 반송파 스케줄링 및 교차 반송파 스케줄링을 예시한다.
도 9는 종래의 PHICH 수신 방법을 나타낸다.
도 10은 제안 방법#1 또는 #2를 적용하는 일 예를 나타낸다.
도 11은 PHICH를 통한 ACK/NACK 전송 방법을 나타낸다.
도 12는 기지국 및 단말을 나타내는 블록도이다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA(Evolved-UMTS Terrestrial Radio Access)를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다. 설명을 명확하게 하기 위해, LTE-A 시스템에 적용되는 상황을 가정하여 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 3GPP LTE/LTE-A에서 무선 프레임의 구조를 나타낸다.
도 1을 참조하면, 무선 프레임은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 무선 프레임 내 슬롯은 #0부터 #19까지 슬롯 번호가 매겨진다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(Transmission Time Interval)라 한다. TTI는 데이터 전송을 위한 스케줄링 단위라 할 수 있다. 예를 들어, 하나의 무선 프레임의 길이는 10ms이고, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 상기 무선 프레임의 구조는 일 예에 불과하다. 따라서 무선 프레임에 포함되는 서브프레임의 개수나 서브프레임에 포함되는 슬롯의 개수는 다양하게 변경될 수 있다.
도 2는 하나의 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
슬롯은 하향링크 슬롯과 상향링크 슬롯이 있다. 하향링크 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함한다. OFDM 심벌은 특정 시간 구간을 나타내는 것이며 전송 방식에 따라 SC-FDMA 심벌이라 칭할 수도 있다. 하향링크 슬롯은 주파수 영역에서 NRB개의 자원블록(RB; Resource Block)을 포함한다. 자원블록은 자원 할당 단위로 시간 영역에서 하나의 슬롯, 주파수 영역에서 복수의 연속하는 부반송파(subcarrier)를 포함한다.
하향링크 슬롯에 포함되는 자원블록의 수 NRB은 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다. 예를 들어, LTE 시스템에서 NRB은 6 내지 110 중 어느 하나일 수 있다. 상향링크 슬롯의 구조도 상기 하향링크 슬롯의 구조와 동일할 수 있다.
자원 그리드 상의 각 요소(element)를 자원 요소(resource element, RE)라 한다. 자원 그리드 상의 자원 요소는 슬롯 내 인덱스 쌍(pair) (k,l)에 의해 식별될 수 있다. 여기서, k(k=0,...,NRB×12-1)는 주파수 영역 내 부반송파 인덱스이고, l(l=0,...,6)은 시간 영역 내 OFDM 심벌 인덱스이다.
하나의 자원블록은 시간 영역에서 7 OFDM 심벌, 주파수 영역에서 12 부반송파로 구성되어 7×12 자원 요소를 포함하는 것을 예시적으로 기술하나, 자원블록 내 OFDM 심벌의 수와 부반송파의 수는 이에 제한되는 것은 아니다. OFDM 심벌의 수와 부반송파의 수는 CP의 길이, 주파수 간격(frequency spacing) 등에 따라 다양하게 변경될 수 있다. 예를 들어, 노멀 CP(normal cyclic prifix)의 경우 OFDM 심벌의 수는 7이고, 확장된 CP(extended cyclic prefix)의 경우 OFDM 심벌의 수는 6이다. 하나의 OFDM 심벌에서 부반송파의 수는 128, 256, 512, 1024, 1536 및 2048 중 하나를 선정하여 사용할 수 있다.
도 3은 상향링크 서브프레임의 구조를 나타낸다.
상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나뉠 수 있다. 제어 영역은 상향링크 제어 정보가 전송되기 위한 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 데이터가 전송되기 위한 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단말은 설정에 따라 PUCCH와 PUSCH를 동시에 전송하지 않거나, 동시에 전송할 수 있다.
하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)으로 할당된다. 자원블록 쌍에 속하는 자원블록들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUCCH에 할당되는 자원블록 쌍에 속하는 자원블록이 차지하는 주파수는 슬롯 경계(slot boundary)를 기준으로 변경된다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계에서 주파수가 홉핑(frequency-hopped)되었다고 한다. 단말이 상향링크 제어 정보를 시간에 따라 서로 다른 부반송파를 통해 전송함으로써, 주파수 다이버시티(diversity) 이득을 얻을 수 있다.
PUCCH 상으로 전송되는 상향링크 제어정보에는 ACK/NACK, 하향링크 채널 상태를 나타내는 CSI(Channel State Information), 상향링크 무선 자원 할당 요청인 SR(Scheduling Request) 등이 있다. CSI에는 프리코딩 행렬을 지시하는 PMI(precoding matrix index), 단말이 선호하는 랭크 값을 나타내는 RI(rank indicator), 채널 상태를 나타내는 CQI(channel quality indicator) 등이 있다.
PUSCH는 전송 채널(transport channel)인 UL-SCH(Uplink Shared Channel)에 맵핑된다. PUSCH 상으로 전송되는 상향링크 데이터는 TTI 동안 전송되는 UL-SCH를 위한 데이터 블록인 전송 블록(transport block)일 수 있다. 상기 전송 블록은 사용자 정보일 수 있다. 또는, 상향링크 데이터는 다중화된(multiplexed) 데이터일 수 있다. 다중화된 데이터는 UL-SCH를 위한 전송 블록과 제어정보가 다중화된 것일 수 있다. 예를 들어, 데이터에 다중화되는 제어정보에는 CQI, PMI, ACK/NACK, RI 등이 있을 수 있다. 또는 상향링크 데이터는 제어정보만으로 구성될 수도 있다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
하향링크 서브프레임은 시간 영역에서 2개의 슬롯을 포함하고, 각 슬롯은 노멀 CP에서 7개(확장 CP에서는 6개)의 OFDM 심벌을 포함한다. 서브프레임 내의 첫 번째 슬롯의 앞선 최대 3 OFDM 심벌들(1.4Mhz 대역폭에 대해서는 최대 4 OFDM 심벌들)이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심벌들은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역이 된다. PDSCH는 기지국 또는 노드가 단말에게 데이터를 전송하는 채널을 의미한다.
제어 영역에서 전송되는 제어채널에는 PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel), PDCCH(Physical Downlink Control Channel)가 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임 내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 개수(즉, 제어영역의 크기)에 관한 정보인 CFI(Control Format Indicator)를 나른다. 단말은 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다. PCFICH는 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 상향링크 HARQ(hybrid automatic repeat request)를 위한 ACK(acknowledgement)/ NACK(not-acknowledgement) 신호를 나른다. 단말이 전송한 상향링크 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PDCCH는 하향링크 제어정보(Downlink Control Information: DCI)를 전송하는 제어 채널이다. DCI는 PDSCH의 자원 할당(이를 하향링크 그랜트(downlink grant: DL 그랜트)라고도 한다), PUSCH(physical uplink shared channel)의 자원 할당(이를 상향링크 그랜트(uplink grant: UL 그랜트)라고도 한다), 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
도 5는 EPDCCH를 예시한다.
도 5를 참조하면, EPDCCH는, 시간 영역에서 보면 기존의 제어 영역 다음에 위치할 수 있다. 예를 들어, 서브프레임의 첫 3개의 OFDM 심벌에서 기존의 제어 영역이 전송된다면 상기 3개의 OFDM 심벌 다음에 위치하는 OFDM 심벌들에 EPDCCH가 위치할 수 있다. 주파수 영역에서 보면, 기존의 제어 영역과 EPDCCH는 일치할 수도 있고 서로 다르게 설정될 수도 있다. 예컨대, PDCCH는 전 시스템 대역에서 전송되는데 반해, EPDCCH는 특정 단말에 대하여 전송되는 PDSCH와 동일한 주파수 대역에서만 전송될 수 있다. 도 5에서는 기존의 제어 영역의 일부 주파수 대역에서만 EPDCCH가 전송되는 예를 나타내었다. EPDCCH에서는 개선된 단말(advanced UE)을 위한 제어 정보가 전송될 수 있다. EPDCCH에서는 PDSCH의 복조를 위해 전송되는 참조 신호가 전송될 수 있다.
도 6은 검색 공간(Search Space: SS)와 제어 채널의 모니터링을 나타낸 예시도이다.
서브프레임내의 제어영역은 복수의 CCE(control channel element)를 포함한다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위로, 복수의 REG(resource element group)에 대응된다. REG는 복수의 자원요소(resource element)를 포함한다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다. 하나의 REG는 4개의 RE를 포함하고, 하나의 CCE는 9개의 REG를 포함한다. 하나의 PDCCH를 구성하기 위해 {1, 2, 4, 8}개의 CCE를 사용할 수 있으며, {1, 2, 4, 8} 각각의 요소를 CCE 집성 레벨(aggregation level: AL)이라 한다.
3GPP LTE/LTE-A에서는 PDCCH의 검출을 위해 블라인드 디코딩(blind decoding: BD)을 사용한다. 단말은 자신의 PDCCH가 제어영역 내에서 어느 위치에서 전송되는지 미리 알지 못한다. 따라서, 단말은 PDCCH가 존재할 수 있는 자원(이를 PDCCH 후보(candidate)라 함)들 각각에서 수신한 PDCCH에 CRC(cyclic redundancy check) 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는데, 이를 블라인드 디코딩이라 칭한다.
즉, 각 서브프레임 내 제어 영역에서는 복수의 PDCCH가 전송될 수 있다. 단말은 매 서브프레임마다 복수의 PDCCH들을 모니터링한다. 여기서, 모니터링이란 단말이 PDCCH의 블라인드 디코딩을 시도하는 것을 말한다.
3GPP LTE에서는 블라인드 디코딩으로 인한 부담을 줄이기 위해, 검색 공간(search space: SS)을 사용한다. 검색 공간은 PDCCH를 위한 CCE의 모니터링 집합(monitoring set)이라 할 수 있으며, PDCCH 후보들의 집합이라고 할 수도 있다. 단말은 해당되는 검색 공간 내에서 PDCCH를 모니터링한다.
검색 공간은 공용 검색 공간(common search space: CSS)과 단말 특정 검색 공간(UE-specific search space: USS)로 나뉜다. 공용 검색 공간은 공용 제어정보를 갖는 PDCCH를 검색하는 공간으로 CCE(Control Channel Element) 인덱스 0~15까지 16개 CCE로 구성되고, {4, 8}의 CCE 집성 레벨을 갖는 PDCCH을 지원한다. 하지만 공용 검색 공간에도 단말 특정 정보를 나르는 PDCCH (DCI 포맷 0, 1A)가 전송될 수도 있다. 단말 특정 검색 공간은 {1, 2, 4, 8}의 CCE 집성 레벨을 갖는 PDCCH을 지원한다.
검색 공간의 시작점은 공용 검색 공간과 단말 특정 검색 공간이 다르게 정의된다. 공용 검색 공간의 시작점은 서브프레임에 상관없이 고정되어 있지만, 단말 특정 검색 공간의 시작점은 단말 식별자(예를 들어, C-RNTI), CCE 집성 레벨 및/또는 무선프레임내의 슬롯 번호에 따라 서브프레임마다 달라질 수 있다. 단말 특정 검색 공간의 시작점이 공용 검색 공간 내에 있을 경우, 단말 특정 검색 공간과 공용 검색 공간은 중복될(overlap) 수 있다. 도 6에서는 PDCCH에 대해 설명하였으나, EPDCCH에 대해서도 마찬가지로 검색 공간이 설정될 수 있다. EPDCCH의 검색 공간은 ECCE로 구성된다.
<반송파 집성(carrier aggregation: CA)>
이제 반송파 집성에 대해 설명한다.
도 7은 기존의 단일 반송파 시스템과 반송파 집성 시스템의 비교 예이다.
도 7을 참조하면, 단일 반송파 시스템에서는 상향링크와 하향링크에 하나의 반송파만을 단말에게 지원한다. 반송파의 대역폭은 다양할 수 있으나, 단말에게 할당되는 반송파는 하나이다. 반면, 반송파 집성(carrier aggregation, CA) 시스템에서는 단말에게 복수의 요소 반송파(DL CC A 내지 C, UL CC A 내지 C)가 할당될 수 있다. 요소 반송파(component carrier: CC)는 반송파 집성 시스템에서 사용되는 반송파를 의미하며 반송파로 약칭할 수 있다. 예를 들어, 단말에게 60MHz의 대역폭을 할당하기 위해 3개의 20MHz의 요소 반송파가 할당될 수 있다.
반송파 집성 시스템은 집성되는 반송파들이 연속한 연속(contiguous) 반송파 집성 시스템과 집성되는 반송파들이 서로 떨어져 있는 불연속(non-contiguous) 반송파 집성 시스템으로 구분될 수 있다. 이하에서 단순히 반송파 집성 시스템이라 할 때, 이는 요소 반송파가 연속인 경우와 불연속인 경우를 모두 포함하는 것으로 이해되어야 한다.
1개 이상의 요소 반송파를 집성할 때 대상이 되는 요소 반송파는 기존 시스템과의 하위 호환성(backward compatibility)을 위하여 기존 시스템에서 사용하는 대역폭을 그대로 사용할 수 있다. 예를 들어 3GPP LTE 시스템에서는 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz 및 20MHz의 대역폭을 지원하며, 3GPP LTE-A 시스템에서는 상기 3GPP LTE 시스템의 대역폭만을 이용하여 20MHz 이상의 광대역을 구성할 수 있다. 또는 기존 시스템의 대역폭을 그대로 사용하지 않고 새로운 대역폭을 정의하여 광대역을 구성할 수도 있다.
무선 통신 시스템의 시스템 주파수 대역은 복수의 반송파 주파수(Carrier-frequency)로 구분된다. 여기서, 반송파 주파수는 셀의 중심 주파수(Center frequency of a cell)를 의미한다. 이하에서 셀(cell)은 하향링크 주파수 자원과 상향링크 주파수 자원을 의미할 수 있다. 또는 셀은 하향링크 주파수 자원과 선택적인(optional) 상향링크 주파수 자원의 조합(combination)을 의미할 수 있다. 또한, 일반적으로 반송파 집성(CA)을 고려하지 않은 경우, 하나의 셀(cell)은 상향 및 하향링크 주파수 자원이 항상 쌍으로 존재할 수 있다.
특정 셀을 통하여 패킷(packet) 데이터의 송수신이 이루어지기 위해서는, 단말은 먼저 특정 셀에 대해 설정(configuration)을 완료해야 한다. 여기서, 설정(configuration)이란 해당 셀에 대한 데이터 송수신에 필요한 시스템 정보 수신을 완료한 상태를 의미한다. 예를 들어, 설정(configuration)은 데이터 송수신에 필요한 공통 물리계층 파라미터들, 또는 MAC(media access control) 계층 파라미터들, 또는 RRC 계층에서 특정 동작에 필요한 파라미터들을 수신하는 전반의 과정을 포함할 수 있다. 설정 완료된 셀은, 패킷 데이터가 전송될 수 있다는 정보만 수신하면, 즉시 패킷의 송수신이 가능해지는 상태이다.
설정완료 상태의 셀은 활성화(Activation) 혹은 비활성화(Deactivation) 상태로 존재할 수 있다. 여기서, 활성화는 데이터의 송신 또는 수신이 행해지거나 준비 상태(ready state)에 있는 것을 말한다. 단말은 자신에게 할당된 자원(주파수, 시간 등일 수 있음)을 확인하기 위하여 활성화된 셀의 제어채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신할 수 있다.
비활성화는 트래픽 데이터의 송신 또는 수신이 불가능하고, 측정이나 최소 정보의 송신/수신이 가능한 것을 말한다. 단말은 비활성화 셀로부터 패킷 수신을 위해 필요한 시스템 정보(SI)를 수신할 수 있다. 반면, 단말은 자신에게 할당된 자원(주파수, 시간 등일 수도 있음)을 확인하기 위하여 비활성화된 셀의 제어채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신하지 않는다.
셀은 프라이머리 셀(primary cell)과 세컨더리 셀(secondary cell), 서빙 셀(serving cell)로 구분될 수 있다.
프라이머리 셀은 프라이머리 주파수에서 동작하는 셀을 의미하며, 단말이 기지국과의 최초 연결 확립 과정(initial connection establishment procedure) 또는 연결 재확립 과정을 수행하는 셀, 또는 핸드오버 과정에서 프라이머리 셀로 지시된 셀을 의미한다.
세컨더리 셀은 세컨더리 주파수에서 동작하는 셀을 의미하며, 일단 RRC 연결이 확립되면 설정되고 추가적인 무선 자원을 제공하는데 사용된다.
서빙 셀은 반송파 집성이 설정되지 않거나 반송파 집성을 제공할 수 없는 단말인 경우에는 프라이머리 셀로 구성된다. 반송파 집성이 설정된 경우 서빙 셀이라는 용어는 단말에게 설정된 셀을 나타내며 복수로 구성될 수 있다. 하나의 서빙 셀은 하나의 하향링크 요소 반송파 또는 {하향링크 요소 반송파, 상향링크 요소 반송파}의 쌍으로 구성될 수 있다. 복수의 서빙 셀은 프라이머리 셀 및 모든 세컨더리 셀들 중 하나 또는 복수로 구성된 집합으로 구성될 수 있다.
PCC(primary component carrier)는 프라이머리 셀에 대응하는 요소 반송파(component carrier: CC)를 의미한다. PCC는 단말이 여러 CC 중에 초기에 기지국과 접속(Connection 혹은 RRC Connection)을 이루게 되는 CC이다. PCC는 다수의 CC에 관한 시그널링을 위한 연결(Connection 혹은 RRC Connection)을 담당하고, 단말과 관련된 연결정보인 단말문맥정보(UE Context)를 관리하는 특별한 CC이다. 또한, PCC는 단말과 접속을 이루게 되어 RRC 연결상태(RRC Connected Mode)일 경우에는 항상 활성화 상태로 존재한다. 프라이머리 셀에 대응하는 하향링크 요소 반송파를 하향링크 주요소 반송파(DownLink Primary Component Carrier, DL PCC)라 하고, 프라이머리 셀에 대응하는 상향링크 요소 반송파를 상향링크 주요소 반송파(UL PCC)라 한다.
SCC(secondary component carrier)는 세컨더리 셀에 대응하는 CC를 의미한다. 즉, SCC는 PCC 이외에 단말에 할당된 CC로서, SCC는 단말이 PCC 이외에 추가적인 자원할당 등을 위하여 확장된 반송파(Extended Carrier)이며 활성화 혹은 비활성화 상태로 나뉠 수 있다. 세컨더리 셀에 대응하는 하향링크 요소 반송파를 하향링크 부요소 반송파(DL Secondary CC, DL SCC)라 하고, 세컨더리 셀에 대응하는 상향링크 요소 반송파를 상향링크 부요소 반송파(UL SCC)라 한다.
프라이머리 셀과 세컨더리 셀은 다음과 같은 특징을 가진다.
첫째, 프라이머리 셀은 PUCCH의 전송을 위해 사용된다. 둘째, 프라이머리 셀은 항상 활성화되어 있는 반면, 세컨더리 셀은 특정 조건에 따라 활성화/비활성화되는 반송파이다. 셋째, 프라이머리 셀이 무선링크실패(Radio Link Failure; 이하 RLF)를 경험할 때, RRC 재연결이 트리거링(triggering)된다. 넷째, 프리이머리 셀은 보안키(security key) 변경이나 RACH(Random Access CHannel) 절차와 동반하는 핸드오버 절차에 의해서 변경될 수 있다. 다섯째, NAS(non-access stratum) 정보는 프라이머리 셀을 통해서 수신한다. 여섯째, FDD 시스템의 경우 언제나 프라이머리 셀은 DL PCC와 UL PCC가 쌍(pair)으로 구성된다. 일곱째, 각 단말마다 다른 요소 반송파(CC)가 프라이머리 셀로 설정될 수 있다. 여덟째, 프라이머리 셀은 핸드오버, 셀 선택/셀 재선택 과정을 통해서만 교체될 수 있다. 신규 세컨더리 셀의 추가에 있어서, 전용(dedicated) 세컨더리 셀의 시스템 정보를 전송하는데 RRC 시그널링이 사용될 수 있다.
서빙 셀을 구성하는 요소 반송파는, 하향링크 요소 반송파가 하나의 서빙 셀을 구성할 수도 있고, 하향링크 요소 반송파와 상향링크 요소 반송파가 연결 설정되어 하나의 서빙 셀을 구성할 수 있다. 그러나, 하나의 상향링크 요소 반송파만으로는 서빙 셀이 구성되지 않는다.
요소 반송파의 활성화/비활성화는 곧 서빙 셀의 활성화/비활성화의 개념과 동등하다. 예를 들어, 서빙 셀1이 DL CC1으로 구성되어 있다고 가정할 때, 서빙 셀1의 활성화는 DL CC1의 활성화를 의미한다. 만약, 서빙 셀2가 DL CC2와 UL CC2가 연결 설정되어 구성되어 있다고 가정할 때, 서빙 셀2의 활성화는 DL CC2와 UL CC2의 활성화를 의미한다. 이러한 의미에서, 각 요소 반송파는 서빙 셀(cell)에 대응될 수 있다.
하향링크와 상향링크 간에 집성되는 요소 반송파들의 수는 다르게 설정될 수 있다. 하향링크 CC 수와 상향링크 CC 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다. 또한, CC들의 크기(즉 대역폭)는 서로 다를 수 있다. 예를 들어, 70MHz 대역의 구성을 위해 5개의 CC들이 사용된다고 할 때, 5MHz CC(carrier #0) + 20MHz CC(carrier #1) + 20MHz CC(carrier #2) + 20MHz CC(carrier #3) + 5MHz CC(carrier #4)과 같이 구성될 수도 있다.
상술한 바와 같이 반송파 집성 시스템에서는 단일 반송파 시스템과 달리 복수의 요소 반송파(component carrier, CC), 즉, 복수의 서빙 셀을 지원할 수 있다.
이러한 반송파 집성 시스템은 비교차 반송파 스케줄링 및 교차 반송파 스케줄링을 지원할 수 있다.
도 8은 비교차 반송파 스케줄링 및 교차 반송파 스케줄링을 예시한다.
비교차 반송파 스케줄링(non-cross carrier scheduling)은 종래의 단일 셀 내에서의 스케줄링 방법을 복수개의 셀들에 단순 확장하여 적용하는 것이라 할 수 있다. PDCCH에 의하여 스케줄링되는 PDSCH가 있을 때, 상기 PDCCH/PDSCH는 동일 요소 반송파를 통해 전송되며, 상기 PDCCH는 특정 요소 반송파와 기본적으로 링크되어 있는 요소 반송파를 통해 전송되는 PUSCH를 스케줄링할 수 있다. 비교차 반송파 스케줄링은 셀프 스케줄링(Self Scheduling)이라 칭할 수도 있다.
교차 반송파 스케줄링(cross-carrier scheduling: CCS)은 특정 요소 반송파를 통해 전송되는 PDCCH를 통해 다른 요소 반송파를 통해 전송되는 PDSCH의 자원 할당 및/또는 상기 특정 요소 반송파와 기본적으로 링크되어 있는 요소 반송파 이외의 다른 요소 반송파를 통해 전송되는 PUSCH의 자원 할당을 할 수 있는 스케줄링 방법이다. 즉, PDCCH와 PDSCH가 서로 다른 하향링크 CC를 통해 전송될 수 있고, UL 그랜트를 포함하는 PDCCH가 전송된 하향링크 CC와 기본적으로 링크된 상향링크 CC가 아닌 다른 상향링크 CC를 통해 PUSCH가 전송될 수 있다. 이처럼 교차 반송파 스케줄링을 지원하는 시스템에서는 PDCCH가 제어정보를 제공하는 PDSCH/PUSCH가 어떤 DL CC/UL CC를 통하여 전송되는지를 알려주는 반송파 지시자가 필요하다. 이러한 반송파 지시자를 포함하는 필드를 이하에서 반송파 지시 필드(carrier indication field, CIF)라 칭한다.
교차 반송파 스케줄링을 지원하는 반송파 집성 시스템은 종래의 DCI(downlink control information) 포맷에 반송파 지시 필드(CIF)를 포함할 수 있다. 교차 반송파 스케줄링을 지원하는 시스템 예를 들어 LTE-A 시스템에서는 기존의 DCI 포맷(즉, LTE에서 사용하는 DCI 포맷)에 CIF가 추가되므로 3 비트가 확장될 수 있고, PDCCH 구조는 기존의 코딩 방법, 자원 할당 방법(즉, CCE 기반의 자원 맵핑)등을 재사용할 수 있다.
이제, 본 발명에 대해 설명한다.
본 발명에서는 PHICH(physical hybrid ARQ indicator channel) 자원의 충돌 문제를 효율적으로 해결하는 방법을 제안한다. 특히, 기존 5개의 셀들보다 더 많은 셀들이 집성될 수 있는 단말에 대한 PHICH 자원의 충돌 문제를 효율적으로 해결하는 방법을 제안한다. 이하, 단말은 5개보다 많은 셀들의 집성을 지원할 수 있는 단말일 수 있다. PHICH 자원의 충돌 문제는 근본적으로, 동일한 자원 블록 상에서 다중화되는 직교 시퀀스(orthogonal sequence)의 개수가 한정되어 있다는 점, PHICH 그룹의 개수가 한정되어 있다는 점, 상이한 PHICH 자원을 지정하거나 할당할 수 있는 파라미터들(예를 들어, UL DCI 포맷 상의 DM-RS CS(cyclic shift) 필드 값, PUSCH 전송 관련된 가장 낮은 PRB 인덱스(제1 슬롯 상의)의 개수가 한정되어 있다는 점 중 적어도 하나가 이유가 될 수 있다.
예를 들어, PHICH 자원 충돌 문제는 다음 2 가지 경우에 발생할 수 있다. 첫번째 경우(CASE#A)는, 특정 단말 관점에서 다수 개의 상향링크 셀들이 하나의 하향링크 셀로부터 교차 반송파 스케줄링(cross carrier scheduling: CCS)되고, 일부 혹은 모든 상향링크 셀 상에서의 PUSCH 전송들이 동일한 '(제1 슬롯에서의) 가장 낮은 PRB 인덱스'및/또는 PUSCH를 위한 동일한 'DM-RS CS 인덱스'기반으로 수행되거나 스케줄링되는 경우이고, 두번째 경우는(CASE#B), 상이한 단말들의 (동일 혹은 상이한 상향링크 셀들 상에서의) PUSCH 전송들이 동일한 '(제1 슬롯에서의) 가장 낮은 PRB 인덱스'및/또는 PUSCH를 위한 동일한 'DM-RS CS 인덱스'기반으로 수행되거나 스케줄링되는 경우일 수 있다. 두번째 경우는 예컨대, PHICH 타이밍 및 수신 하향링크 셀이 동일한 상황일 수 있다.
이하에서는 설명의 편의를 위해서, 면허 대역 기반의 셀과 비면허 대역(LTE-U) 기반의 셀을 각각 "LCELL", "UCELL"이라 칭한다. 또한, 해당 UCELL에서 비주기적으로 확보/구성되는 자원 구간을 "유보 자원 구간(RESERVED RESOURCE PERIOD: RRP)"로 명명한다. RRP 구간의 하향링크 서브프레임(DOWNLINK SUBFRAME: DL SF) 즉, 하향링크 용도로 지정된 서브프레임 상에서 전송되는 PDSCH 관련 제어 정보 채널 또는 RRP 구간의 상향링크 서브프레임(UPLINK SUBFRAME: UL SF) 즉, 상향링크 용도로 지정된 서브프레임 상에서 전송되는 PUSCH 관련 제어 정보 채널은, 사전에 정의된 LCELL로부터 전송되도록 설정(즉, CCS) 되거나 혹은 동일 UCELL로부터 전송(즉, 셀프 스케줄링, 이를 SFS(SELF-SCHEDULING)이라 칭함)되도록 규칙이 정의될 수 있다.
또 다른 일례로, RRP 구간 상에서의 PDSCH 수신 관련 하향링크 제어 정보 채널은, 하나의 하향링크 제어 정보 채널이 동일(또는 특정) 시점에서 수신되는 하나의 PDSCH을 스케줄링하는 형태(즉, 하향링크 제어 정보 채널과 이 채널에 의하여 스케줄링되는 PDSCH가 동일한 서브프레임 내에서 수신됨. 이를 SSFS(SINGLE SUBFRAME SCHEDULING)이라 명명)로 구현될 수 있다. 또는 하나의 하향링크 제어 정보 채널이 동일(혹은 특정) 시점에서 수신되는 하나의 PDSCH 뿐만 아니라 다른 시점에서 수신되는 사전에 정의된(혹은 시그널링된) 개수의 PDSCH들을 스케줄링하는 형태로 구현될 수도 있다. 이를 MSFS(MULTI-SUBFRAME SCHEDULING)이라 칭한다.
UCELL 상의 RRP 구간이 순환 쉬프트(CS) 결과에 의존하여 비주기적 혹은 불연속적으로 구성되는 자원임을 고려할 때, 단말 동작 및 가정의 관점에서 해당 RRP 구간은 재정의 혹은 재해석 될 수 있다. 예를 들어, UCELL에서의 RRP 구간은, 단말이 UCELL에 대한 시간/주파수 동기 동작을 수행하거나 기지국으로부터 이를 위한 동기 신호(예를 들어, PSS, SSS)가 전송된다고 가정되는 구간 그리고/혹은 단말이 UCELL에 대한 CSI 측정 동작을 수행하거나 기지국으로부터 이를 위한 참조 신호 (예를 들어, CRS, CSI-RS)가 전송된다고 가정되는 구간 그리고/혹은 단말이 UCELL에서의 데이터 송신(/수신) 관련 DCI 검출 동작을 수행하는 구간 그리고/혹은 단말이 UCELL에서 수신되는 신호에 대해 (일시적인 혹은 임시적인) 버퍼링 동작을 수행하는 구간으로 재정의될 수 있다.
이하에서는 설명의 편의를 위해 3GPP LTE/LTE-A 시스템을 기반으로 제안 방식을 설명한다. 하지만, 제안 방식이 적용되는 시스템의 범위는 3GPP LTE/LTE-A 시스템 외에 다른 시스템으로도 확장 가능하다.
먼저, LTE/LTE-A 시스템에서의 PHICH 자원 설정 방법을 설명한다.
단말에게 복수의 TAG(timing advance group)가 설정되지 않거나, 단말에게 복수의 TAG가 설정되고 서브프레임 n에서 서빙 셀 c로부터 스케줄링된 PUSCH 전송이 세컨더리 셀을 위한 랜덤 액세스 프리앰블 전송에 대응하는 랜덤 액세스 응답 그랜트에 의하여 스케줄링되지 않았다면, 서브프레임 n에서 서빙 셀 c로부터 스케줄링된 PUSCH 전송에 대해, 서빙 셀 c의 서브프레임 n + kPHICH에서 대응하는 PHICH 자원은 다음과 같이 결정될 수 있다. 먼저, 다양한 상황에서 kPHICH를 결정하는 방법을 설명하고, 그 후에 해당 서브프레임 내에서 구체적인 자원을 결정하는 방법을 설명한다.
먼저, FDD에 대해 kPHICH는 언제나 4이다. FDD-TDD의 반송파 집성에서 서빙 셀 c가 TDD(즉, 프레임 구조 타입 2)이고 PUSCH 전송이 FDD(즉, 프레임 구조 타입 1)인 다른 서빙 셀을 위한 것인 경우, kPHICH는 6이다. FDD-TDD의 반송파 집성에서 서빙 셀 c가 FDD(즉, 프레임 구조 타입 1)이고 PUSCH 전송이 FDD(즉, 프레임 구조 타입 1)인 서빙 셀을 위한 것인 경우, kPHICH는 4이다. FDD-TDD의 반송파 집성에서 서빙 셀 c가 FDD(즉, 프레임 구조 타입 1)이고 PUSCH 전송이 TDD(즉, 프레임 구조 타입 2)인 다른 서빙 셀을 위한 것인 경우, kPHICH는 다음 표와 같이 주어질 수 있다.
[표 1]
Figure PCTKR2016005175-appb-I000001
TDD에 있어, 단말에게 임의의 서빙 셀에 대한'EIMTA-MainConfigServCell-r12'가 설정되지 않고 상기 단말에게 하나의 서빙 셀이 설정된 경우, 또는 단말에게 둘 이상의 서빙 셀이 설정되고 모든 설정된 서빙 셀들의 TDD UL-DL 설정이 동일한 경우, 서브프레임 n에서 서빙 셀 c로부터 스케줄링된 PUSCH 전송에 대해, 단말은 서빙 셀 c의 서브프레임 n + kPHICH에서 대응하는 PHICH 자원을 결정하며, 이 때 상기 kPHICH는 상기 표 1에 의하여 주어진다.
TDD에 있어, 단말에게 둘 이상의 서빙 셀들이 설정되고 적어도 2개의 설정된 서빙 셀들의 TDD UL-DL 설정이 동일하지 않은 경우, 또는 적어도 하나의 서빙 셀에 대한'EIMTA-MainConfigServCell-r12'가 설정된 경우, 또는 FDD-TDD의 반송파 집성에서 TDD인 서빙 셀 c의 경우, 서브프레임 n에서 서빙 셀 c로부터 스케줄링된 PUSCH 전송에 대해, 단말은 서빙 셀 c의 서브프레임 n + kPHICH에서 대응하는 PHICH 자원을 결정하며, 이 때 상기 kPHICH는 상기 표 1에 의하여 주어진다. 다만, 여기서 TDD UL-DL 설정은 PUSCH 전송에 대응하는 서빙 셀의 UL-기준 UL-DL 설정을 의미한다. UL-기준 UL-DL 설정은 HARQ 타이밍을 결정하는데 사용되는 UL-DL 설정이라 할 수 있으며, 셀 특정적으로 주어지는 UL-DL 설정과 동일할 수도 있고 다를 수도 있다.
단말에게 복수의 TAG(timing advance group)가 설정되고, 세컨더리 셀 c을 위한 서브프레임 n에서의 PUSCH 전송이 상기 세컨더리 셀 c를 위한 랜덤 액세스 프리앰블 전송에 대응하는 랜덤 액세스 응답 그랜트에 의하여 스케줄링된 경우 kPHICH는 다음과 같이 결정될 수 있다.
TDD에 있어서, 단말에게 둘 이상의 서빙 셀들이 설정되고 적어도 2개의 설정된 서빙 셀들의 TDD UL-DL 설정이 동일하지 않은 경우, 또는 적어도 하나의 서빙 셀에 대한'EIMTA-MainConfigServCell-r12'가 설정된 경우, 또는 FDD-TDD의 반송파 집성에서 TDD인 서빙 셀 c의 경우에 대해, TDD UL-DL 설정은 PUSCH 전송에 대응하는 세컨더리 셀 c의 UL-기준 UL-DL 설정을 의미한다.
만약, 단말이 세컨더리 셀 c에 대응하는 반송파 지시자 필드(carrier indicator field: CIF)를 가지는 PDCCH/EPDCCH를 다른 서빙 셀에서 모니터링하도록 설정되지 않았다면(즉, 교차 반송파 스케줄링이 설정되지 않은 경우), 단말은 세컨더리 셀 c의 서브프레임 n + kPHICH에서 대응하는 PHICH 자원을 결정하는데, 이 때, kPHICH는 다음과 같이 정해질 수 있다.
먼저, FDD에 대해 kPHICH는 언제나 4이고, TDD에 대해 kPHICH는 상기 표 1에 의하여 주어진다. FDD-TDD 반송파 집성에서 FDD인 세컨더리 셀 c에 대해 kPHICH는 4이다. FDD-TDD 반송파 집성에서 TDD인 세컨더리 셀 c에 대해 kPHICH는 상기 표 1에 의하여 주어진다.
만약, 단말이 세컨더리 셀 c에 대응하는 반송파 지시자 필드(carrier indicator field: CIF)를 가지는 PDCCH/EPDCCH를 다른 서빙 셀인 c1에서 모니터링하도록 설정되면(즉, 교차 반송파 스케줄링이 설정된 경우), 복수의 TAG들이 설정된 단말은 세컨더리 셀 c1의 서브프레임 n + kPHICH에서 대응하는 PHICH 자원을 결정하는데, 이 때, kPHICH는 다음과 같이 정해질 수 있다.
먼저, FDD에 대해 kPHICH는 언제나 4이고, TDD에 대해 kPHICH는 상기 표 1에 의하여 주어진다. FDD-TDD 반송파 집성에서 FDD인 프라이머리 셀과 TDD인 세컨더리 셀 c 및 c1에 대해 kPHICH는 4이다. FDD-TDD 반송파 집성에서 TDD인 서빙 셀 c에 대해 kPHICH는 상기 표 1에 의하여 주어진다. FDD-TDD 반송파 집성에서 FDD인 서빙 셀 c와 TDD인 서빙 셀 c1에 대해 kPHICH는 6이다.
서브프레임 번들링(subframe bundling) 동작에 있어서, PHICH 자원은 상기 번들링의 마지막 서브프레임에 연관된다.
이제, 서브프레임 n + kPHICH에서 구체적으로 PHICH 자원을 결정하는 방법에 대해 설명한다. 상술한 바와 같이 PHICH는 단말의 상향링크 데이터 전송에 대해 기지국이 ACK/NACK을 전송하는 제어 채널이다. 복수의 PHICH들이 PHICH 그룹을 형성하는 동일한 자원요소 집합에 맵핑될 수 있다. 동일한 PHICH 그룹 내의 PHICH들은 서로 다른 직교 시퀀스(orthogonal sequence)에 의해 구분된다. PHICH가 전송되는 자원을 PHICH 자원이라 하는데, PHICH 자원은 (ngroup PHICH, nseq PHICH)와 같은 인덱스 쌍에 의해 식별될 수 있다. ngroup PHICH는 PHICH 그룹 번호를 나타내고, nseq PHICH는 상기 PHICH 그룹 내에서의 직교 시퀀스의 인덱스이다.
다음 식은 PHICH 자원을 나타내는 인덱스 쌍을 나타내는 식이다.
[식 1]
Figure PCTKR2016005175-appb-I000002
상기 식 1에서 nDMRS는 해당 PUSCH 전송에서의 복조 참조신호(demodulation reference signal: DMRS)의 순환 쉬프트(cyclic shift)를 나타내는 값일 수 있다. nDMRS는 해당 PUSCH 전송에 연관된 전송 블록에 대한 상향링크 DCI 포맷을 가지는 가장 최근의 PDCCH에서의 DMRS 필드를 위한 순환 쉬프트로부터 맵핑된다. 즉, nDMRS는 해당 PUSCH 전송에 연관된 전송 블록을 스케줄링하는 상향링크 그랜트(상향링크 DCI 포맷)에서의 DMRA 필드에 의하여 지시될 수 있다. nDMRS는 상기 전송 블록에 대한 상향링크 DCI 포맷을 포함하는 PDCCH가 없으면 0로 설정될 수 있다.
nDMRS와 DMRS 필드를 위한 순환 쉬프트는 다음 표와 같이 맵핑될 수 있다.
[표 2]
Figure PCTKR2016005175-appb-I000003
NPHICH SF는 PHICH 변조에 사용되는 확산 인자(spreading factor) 크기이다.
Ngroup PHICH는 상위 계층에 의하여 설정되는 PHICH 그룹의 개수를 나타낸다.
IPHICH는 1 또는 0을 가지는 값인데, 서브프레임 n=4, 또는 9(n은 0부터 9 중의 어느 하나인데 이러한 n이 4 또는 9)에서 PUSCH 전송을 하고 TDD(time division duplex) 상향링크-하향링크 설정(uplink-downlink configuration: UL-DL 설정)이 0인 경우에는 1, 그 이외의 경우에는 0이다.
IPRB _ RA는 다음 식과 같이 주어질 수 있다.
[식 2]
Figure PCTKR2016005175-appb-I000004
즉, IPRB _ RA는, 연관된 PDCCH를 가지는 PUSCH의 첫번째 전송 블록의 경우, 또는 연관된 PDCCH가 없는 경우에 있어서 NACK을 수신한 전송 블록의 개수가 해당 PUSCH에 연관된 가장 최근의 PDCCH에서 지시된 전송 블록의 개수와 다를 경우, Ilowest_index PRB_RA로 주어진다. 연관된 PDCCH를 가지는 PUSCH의 두번째 전송 블록에 대해 'Ilowest_index PRB_RA + 1'로 주어진다. 여기서, Ilowest _ index PRB _ RA는 해당 PUSCH 전송의 첫번째 슬롯에서의 가장 낮은 PRB(physical resource block) 인덱스이다.
FDD(frequency division duplex)에서, PHICH 그룹의 개수 Ngroup PHICH는 모든 서브프레임에 대해 상수(constant)이며, 다음과 같이 주어진다.
[식 3]
Figure PCTKR2016005175-appb-I000005
여기서, Ng ∈ {1/6, 1/2, 1, 2}이며 상위 계층 신호를 통해 주어진다. 한편, ngroup PHICH는 0에서 Ngroup PHICH -1 까지의 범위를 가진다.
TDD(time division duplex)에서, PHICH 그룹의 개수는 서브프레임들 간에 다양하게 변경될 수 있다. PHICH 그룹의 개수는 mi Ngroup PHICH로 주어질 수 있으며, mi는 다음 표와 같이 주어질 수 있다. 그리고, Ngroup PHICH는 상기 식 3과 같이 주어지며, PHICH 자원을 가지는 하향링크 서브프레임에 대해 인덱스 ngroup PHICH 는 0에서 mi Ngroup PHICH - 1 범위를 가진다.
[표 3]
Figure PCTKR2016005175-appb-I000006
PHICH에서는 변조 방식으로 BPSK(binary phase shift keying)이 사용된다. 하나의 PHICH를 통해 전송되는 비트 블록 b(0),...,b(Mbit-1)은 변조(modulation)를 통해 복소 값(complex-valued)을 변조 심볼들 z(0), ..., z(Ms-1)이 된다. 여기서, Ms = Mbit 이다.
변조 심볼들 z(0), ..., z(Ms-1)는 심볼 단위로(symbol-wise) 직교 시퀀스가 곱해지고, 스크램블링되어 변조 심볼들 d(0),...,d(Msymb-1)이 다음 식과 같이 생성된다.
[식 4]
Figure PCTKR2016005175-appb-I000007
상기 식에서 c(i)는 셀 특정적 스크램블링 시퀀스(cell-specific scrambling sequence)이다. c(i)의 초기값 cinit는 각 서브프레임에 대해 다음 식과 같이 주어질 수 있다.
[식 5]
Figure PCTKR2016005175-appb-I000008
상기 식에서 Ncell ID는 물리 계층 셀 ID를 의미하고, ns는 무선 프레임 내의 슬롯 번호이다.
PHICH의 확산에 사용되는 직교 시퀀스 [w(0) ... w(NPHICH SF -1)] 는 다음 표와 같이 주어진다. 이 때, nseq PHICH는 PHICH 그룹 내에서 PHICH 번호(number)에 대응된다.
[표 4]
Figure PCTKR2016005175-appb-I000009
BPSK 변조에서, 하나의 비트 b(i)는 복소 값을 가지는 변조 심볼 x = I + jQ에 맵핑되며, 이 때, I, Q의 값은 다음 표와 같이 주어질 수 있다.
[표 5]
Figure PCTKR2016005175-appb-I000010
도 9는 종래의 PHICH 수신 방법을 나타낸다.
도 9를 참조하면, 단말은 하향링크 셀에서 상향링크 그랜트(UL grant)#1, #2를 수신한다. 상향링크 그랜트는 상향링크 DCI 포맷이라 칭하기도 한다. 각 상향링크 그랜트에는 PUSCH 전송을 스케줄링하는 자원 할당 정보 및 PUSCH DM-RS 순환 쉬프트 인덱스를 알려주는 필드가 포함될 수 있다.
예를 들어, 상향링크 그랜트 #1은 상향링크 셀 #1의 PUSCH#1 전송을 스케줄링하고, 상향링크 그랜트 #2는 상향링크 셀 #2의 PUSCH#2 전송을 스케줄링한다고 가정해보자.
PUSCH#1에 대한 ACK/NACK은 하향링크 셀의 PHICH#1을 통해 기지국에 의하여 전송되고(즉, 단말은 PHICH#1에서 ACK/NACK을 수신), PUSCH#2에 대한 ACK/NACK은 하향링크 셀의 PHICH#2를 통해 기지국에 의하여 전송된다(즉, 단말은 PHICH#2에서 ACK/NACK을 수신).
만약, 상향링크 셀#1에서 전송되는 PUSCH#1의 첫번째 슬롯에서의 가장 낮은 PRB 인덱스와 상향링크 셀#2에서 전송되는 PUSCH#2의 첫번째 슬롯에서의 가장 낮은 PRB 인덱스가 동일하고, 상향링크 그랜트 #1, #2 각각에 포함된 PUSCH DM-RS 순환 쉬프트 인덱스의 값들도 서로 동일하다면, PHICH#1, PHICH#2는 서로 동일한 PHICH 자원에서 전송될 수 있다.
전술한 종래의 방법에 의하면, 대규모 CA와 같이 단말에게 설정되는 셀 또는 반송파의 개수가 증가하는 경우 PHICH 자원의 충돌이 발생하는 것을 방지하기 어렵다. 본 발명에서 제안하는 아래의 방식들은 PHICH 자원 충돌 문제를 효율적으로 해결할 수 있다. 또한, 설사 단말에게 설정되는 셀의 개수가 5 이하인 경우라 하더라도 PHICH 자원의 충돌이 발생하는 것을 방지하기 위해 본 발명이 적용될 수 있다. 이러한 제안 방식들은 전술한 CASE#A, CASE#B의 PHICH 자원 충돌 문제를 해결하기 위해서만 한정적으로 적용되도록 규칙이 정의될 수 있다. 또한, 하기 제안 방식들은 대규모 반송파 집성 모드(MASSIVE CA MODE)가 설정된 경우 그리고/혹은 상향링크 셀(혹은 상향링크 LCELL 혹은 상향링크 UCELL 혹은 상향링크 LCELL(S)/UCELL(S))이 사전에 정의되거나 혹은 시그널링된 개수 이상으로 설정된 경우, 혹은 설정된 상향링크 셀(혹은 설정된 상향링크 LCELL 혹은 설정된 상향링크 UCELL 혹은 설정된 상향링크 LCELL(S)/UCELL(S))이 사전에 정의되거나 혹은 시그널링된 개수 이상으로 설정된 경우 그리고/혹은 활성화된 상향링크 셀(혹은 활성화된 상향링크 LCELL(S) 혹은 활성화된 상향링크 UCELL 혹은 활성화된 상향링크 LCELL(S)/UCELL(S))이 사전에 정의되거나 혹은 시그널링된 개수 이상으로 설정된 경우 그리고/혹은 (PUCCH) 셀 그룹(CG)이 사전에 정의되거나 혹은 시그널링된 개수 이상으로 설정된 경우 그리고/혹은 사전에 정의되거나 혹은 시그널링된 세컨더리 셀 상에 PUCCH 전송이 설정된 경우 그리고/혹은 하나의 설정되거나 활성화된 하향링크 셀로부터 교차 반송파 스케줄링(CCS)되는 (설정되거나 혹은 활성화된) 상향링크 셀이 사전에 정의되거나 혹은 시그널링된 개수(예를 들어, 6) 이상인 경우 그리고/혹은 상향링크 교차 반송파 스케줄링 기법이 설정된 경우에서만 한정적으로 적용되도록 규칙이 정의될 수도 있다.
[제안 방법#1] 하나의 하향링크 셀로부터 교차 반송파 스케줄링된 복수 개의 상향링크 셀들 상의 PUSCH 전송들이 있는 경우, 각 PUSCH 전송에 대해 "첫번째 슬롯에서의 가장 낮은 PRB 인덱스"와 "PUSCH DM-RS 순환 쉬프트 인덱스"가 결정될 것이다. 이 때, 각 PUSCH 전송 별로 결정되는"첫번째 슬롯에서의 가장 낮은 PRB 인덱스"와 "PUSCH DM-RS 순환 쉬프트 인덱스" 중에 적어도 하나가 각 PUSCH 전송 별로 다르다면, 기존 PHICH 자원 인덱스 결정 방법을 적용할 수 있다.
하나의 하향링크 셀로부터 교차 반송파 스케줄링된 복수 개의 상향링크 셀들 상의 PUSCH 전송들에 관련된 "첫번째 슬롯에서의 가장 낮은 PRB 인덱스"와 "PUSCH DM-RS 순환 쉬프트 인덱스"가 PUSCH 전송들 상호 간에 모두 동일한 경우, 사전에 정의되거나 혹은 시그널링된 규칙에 따라, 해당 상향링크 그랜트에 관련된 (가장 낮은) CCE 인덱스 또는 ECCE 인덱스, 또는 사전에 정의거나 시그널링된 단말 별 또는 셀/셀 그룹 별 오프셋이 PHICH 자원 인덱스 오프셋으로 이용되도록 설정될 수 있다.
또 다른 일례로, 하나의 하향링크 셀로부터 교차 반송파 스케줄링된 복수 개의 상향링크 셀들 상의 PUSCH 전송들 (또는 스케줄링) 관련한 "첫번째 슬롯에서의 가장 낮은 PRB 인덱스"와 "PUSCH DM-RS 순환 쉬프트 인덱스"가 PUSCH 전송들 상호 간에 모두 동일한 경우, 사전에 정의되거나 또는 시그널링된 규칙에 따라, 해당 상향링크 그랜트 상의 CIF 값 (그리고/혹은 교차 반송파 스케줄링되는 상향링크 셀의 셀 인덱스)을 PHICH 자원 인덱스의 오프셋으로 이용되도록 설정할 수 있다. 특히, 상향링크 그랜트의 타이밍은 다르지만 PHICH 타이밍은 동일한 경우에 PHICH 자원 충돌 문제를 효율적으로 완화시킬 수 있다. 즉, 상향링크 그랜트들을 서로 다른 서브프레임에서 수신하였지만, 상기 상향링크 그랜트들 각각에 의하여 스케줄링된 PUSCH들에 대한 PHICH들이 동일한 서브프레임에서 수신되는 경우에 있어서의 PHICH 자원 충돌 문제를 효율적으로 완화시킬 수 있다.
일례로, [제안 방법#1]에서 PHICH 자원 인덱스의 오프셋으로 이용되는 UL 그랜트의 가장 낮은 CCE 또는 ECCE 인덱스(그리고/혹은 UL 그랜트 상의 CIF 값 그리고/혹은 CCS되는 상향링크 셀의 셀 인덱스 그리고/혹은 사전에 정의되거나 시그널링된 단말 별 혹은 셀/셀 그룹 별 오프셋, 이하 동일)는 하기 식 6 그리고/혹은 식 7에 삽입될 수 있다. 이 때, 상기 CCE/ECCE의 인덱스는 사전에 정의되거나 시그널링된 특정 (일부) 위치(들)에 삽입되도록 설정될 수 있다. 식 6 및 식 7에 CCE/ECCE의 인덱스가 삽입될 수 있는 위치를 (A) ~ (L)로 표시하고 있다.
[식 6]
Figure PCTKR2016005175-appb-I000011
[식 7]
Figure PCTKR2016005175-appb-I000012
해당 UL 그랜트의 가장 낮은 CCE/ECCE 인덱스(및/또는 UL 그랜트 상의 CIF 값 그리고/혹은 CCS되는 상향링크 셀의 셀 인덱스 그리고/혹은 사전에 정의되거나 시그널링된 단말 별 혹은 셀/셀 그룹 별 오프셋)는 직교 시퀀스 인덱스인 nseq PHICH에 대한 오프셋 용도 및/또는 PHICH 그룹 번호인 ngroup PHICH의 오프셋 용도로만 이용되도록 한정될 수도 있다.
[제안 방법#2] 전술한 [제안 방법#1]은 (1) 하나의 하향링크 셀로부터 CCS되는 모든 혹은 특정 일부 상향링크 셀 상의 PUSCH 전송들 관련한 최종 PHICH 자원 인덱스 결정을 위해서 적용되도록 규칙이 정의될 수 있다. 또는 (2) PUSCH 전송에 관련된 파라미터들, 즉"첫번째 슬롯에서의 가장 낮은 PRB 인덱스"와 "PUSCH DM-RS 순환 쉬프트 인덱스"가 동일한 모든 혹은 특정 일부 상향링크 셀 상의 PUSCH 전송 관련 최종 PHICH 자원 인덱스를 결정하기 위해서 적용되도록 규칙이 정의될 수 있다.
상기 특정 일부 상향링크 셀은 사전에 정의되거나 혹은 시그널링된 특정 (하나의) 상향링크 셀 혹은 상대적으로 낮은(혹은 높은) 셀 인덱스를 가지는 사전에 정의된 (혹은 시그널링된) 개수의 상향링크 셀들을 제외한 나머지 상향링크 셀들로 설정될 수 있다.
도 10은 제안 방법#1 또는 #2를 적용하는 일 예를 나타낸다.
도 10을 참조하면, 단말은 PUSCH를 전송한다(S151).
단말은 상기 PUSCH에 대응하는 제1 PHICH 자원이 다른 PUSCH에 대응하는 제2 PHICH 자원과 충돌하는지 여부를 판단한다(S152). 상기 PUSCH 및 상기 다른 PUSCH는 상기 단말이 동시에 전송하되, 상기 PUSCH는 상기 단말이 제1 셀을 통해 전송하고, 상기 다른 PUSCH는 단말이 제2 셀을 통해 전송한 것일 수 있다. 제 1 셀 및 제 2 셀은 서로 다른 주파수를 가지는 셀들 일 수 있다. 상기 PUSCH 및 상기 다른 PUSCH는 하나의 하향링크 셀에서 수신한 DCI들에 의하여 스케줄링되는 것일 수 있다. PUSCH에 대응하는 PHICH 자원이 어떻게 결정되는지에 대해서는 식 1 내지 3을 참고하여 설명한 바 있다.
제1 PHICH자원과 제2 PHICH자원이 충돌하는 것으로 판단되면, 단말은 오프셋 값을 적용하여 결정한 새로운 PHICH 자원에서 상기 PUSCH에 대한 PHICH를 수신한다(S153). 식 1 내지 3에서 설명한 바와 같이 종래 방법에 의하면, PHICH 자원은 PUSCH가 전송되는 (첫번째 슬롯에서의) 가장 낮은 물리적 자원 블록(physical resource block: PRB) 인덱스 및 PUSCH에서 전송되는 참조 신호(보다 구체적으로 복조 참조 신호: DM-RS)의 순환 쉬프트(cyclic shift) 인덱스에 기반하여 결정된다.
단말은 제1 PHICH 자원을 결정하는 가장 낮은 PRB 인덱스 및 참조 신호의 순환 쉬프트 인덱스가 상기 제2 PHICH 자원을 결정하는 가장 낮은 PRB 인덱스 및 참조 신호의 순환 쉬프트 인덱스와 동일한 경우에 상기 제1 PHICH 자원이 상기 제2 PHICH 자원과 충돌하는 것으로 판단할 수 있다.
제1 PHICH 자원과 제2 PHICH 자원의 충돌을 방지하기 위해 사용되는 오프셋 값은 PUSCH를 스케줄링하는 DCI(downlink control information, 이를 상향링크 그랜트라고도 함)를 수신한 자원들의 CCE/ECCE 인덱스 값들 중에서 가장 낮은 CCE/ECCE 인덱스 값일 수 있다. 서로 다른 PUSCH를 스케줄링하는 DCI들은 서로 다른 CCE/ECCE들로 구성된 자원 영역에서 수신되므로 상기 DCI들의 가장 낮은 CCE/ECCE 인덱스 값은 서로 겹치지 않는다. 따라서, 상기 가장 낮은 CCE/ECCE 인덱스 값이 오프셋 값으로 사용되면 PHICH 자원들의 충돌을 방지할 수 있다.
제1 PHICH 자원과 제2 PHICH 자원의 충돌을 방지하기 위해 사용되는 오프셋 값은 상기 PUSCH를 스케줄링하는 DCI(downlink control information)에 포함된 CIF(carrier indicator field) 값일 수도 있다. 상기 PUSCH와 상기 다른 PUSCH가 서로 다른 상향링크 셀들에서 전송될 경우 CIF 값도 다르다. 따라서, 상기 CIF 값이 오프셋 값으로 사용되면 PHICH 자원들의 충돌을 방지할 수 있다.
또는 상기 오프셋 값은 상기 단말에게 미리 설정될 수도 있다. 또한, 상기 오프셋 값은 상기 PUSCH에서 전송되는 참조 신호(reference signal)의 순환 쉬프트(cyclic shift) 인덱스에 더해지는 값일 수 있다.
반면, 제1 PHICH자원과 제2 PHICH자원이 충돌하지 않는 것으로 판단되면, 상기 PUSCH에 대응하는 제1 PHICH 자원에서 상기 PUSCH에 대한 PHICH를 수신한다(S154). 즉, 제1 PHICH자원과 제2 PHICH자원이 충돌하지 않는 때에는 기존의 방법대로 결정된 PHICH 자원에서 PHICH를 수신하는 것이다.
[제안 방법#3]
도 11은 PHICH를 통한 ACK/NACK 전송 방법을 나타낸다.
도 11을 참조하면, ACK/NACK 정보를 반복 코딩하여 복수의 변조 심볼들을 생성한다(S161). 즉, PHICH를 통해 전달되는 1 비트의 HARQ-ACK 정보(즉, NACK은 1, ACK은 0. 물론 그 반대도 가능)는, 사전에 정의된 반복 코딩(REPETITION CODING)에 따라, 3 개의 복소 값 변조 BPSK 심볼(COMPLEX-VALUED MODULATION BPSK SYMBOL) 형태로 반복될 수 있다. 예를 들어, NACK, ACK은 다음 식과 같이 반복될 수 있다.
[식 8]
Figure PCTKR2016005175-appb-I000013
각 복소 값 변조 심볼에 직교 시퀀스를 적용한 후 전송한다(S162). 예를 들어, 복소 값 변조 BPSK 심볼 별로 사전에 정의된 길이(예를 들어, 노멀 CP에서 NPHICH SF=4, 확장 CP에서 NPHICH SF=2)인 직교 시퀀스를 각각 곱한 후 전송할 수 있다. 직교 시퀀스는 [w(0) ... w(NPHICH SF -1)]과 같이 표시할 수 있다. 이 경우, 복소 값 변조 BPSK 심볼에 직교 시퀀스를 곱한 결과는 다음 식과 같이 나타낼 수 있다.
[식 9]
Figure PCTKR2016005175-appb-I000014
한편, 상이한 단말들 간에서 PHICH 자원 충돌 문제를 완화시키기 위해서, 전술한 S161 단계를 통해 도출된 3 개의 복소 값 변조 BPSK 심볼들에, (S162 단계 전에) 사전에 정의된 길이(예컨대, LPHICH SF =3)의 직교 시퀀스를 추가적으로 곱하도록 규칙이 정의될 수도 있다. 상기 직교 시퀀스는 예를 들어, [e(0) ... e(LPHICH SF -1)]일 수 있다. 이를 통해, PHICH 자원 충돌이 발생하여도 직교 시퀀스를 이용한 코딩을 이용하여 한 번 더 오류를 제거할 수 있다. 이러한 과정을 거친 후에, ACK, NACK은 다음 식과 같이 나타낼 수 있다.
[식 10]
Figure PCTKR2016005175-appb-I000015
상기 NACK, ACK에 전술한 S162 단계를 적용할 수 있다.
LPHICH SF =3 인 직교 시퀀스는 다음 표와 같이 정의될 수 있다.
[표 6]
Figure PCTKR2016005175-appb-I000016
[제안 방법#3]이 적용될 경우, 동일한 "첫번째 슬롯에서의 가장 낮은 PRB 인덱스"와 "PUSCH DM-RS 순환 쉬프트 인덱스" 에 기반한 PUSCH 전송을 수행하는 상이한 단말들(즉, PHICH 타이밍 및 PHICH를 수신하는 하향링크 셀이 동일하다고 가정)에게, S161 단계를 통해 도출된 3 개의 복소 값 변조 BPSK 심볼에 상이한 인덱스의 직교 시퀀스([e(0) ... e(LPHICH SF -1)])를 추가적으로 곱하도록 함으로써, 효율적인 PHICH 다중화를 지원해줄 수 있다.
상이한 단말들이 사용하거나 적용하는 직교 시퀀스(즉, [e(0) ... e(LPHICH SF -1)])에 관련된 정보는, 기지국이 단말에게 사전에 정의된(물리 계층 혹은 상위 계층) 시그널링을 통해서 알려주도록 설정될 수 있다.
한편, 많은 개수의 셀들이 반송파 집성(CA) 기법으로 설정된 환경 하에서, 해당 셀 관련 (하향링크/상향링크) 스케줄링 정보 전송들의 오버헤드 그리고/혹은 (E)PDCCH 오검출 (FALSE DETECTION) 확률을 줄이기 위해서, 사전에 설정되거나 혹은 시그널링된 복수 개의 셀들 관련한 (하향링크/상향링크) 스케줄링 정보들이 하나의 DCI (혹은 제어 채널)를 통해서 전송되도록 설정될 수 있다. 이처럼, 복수의 셀들을 스케줄링하는 하나의 DCI를 이하, (DL/UL) "MUCC-DCI"라 칭할 수 있다. MUCC-DCI를 통해서 동시에 스케줄링되는 셀들은 동일한 셀 타입 그리고/혹은 동일한 전송 모드(transmission mode: TM) 그리고/혹은 동일한 시스템 대역폭 그리고/혹은 동일한 통신 타입 그리고/혹은 동일한 셀 그룹(CG)의 셀들로 설정되거나 한정될 수 있다.
셀 타입은 UCELL, LCELL을 의미하며, 통신 타입은 FDD, TDD를 의미한다. 아래의 제안 방식들은 하나의 UL MUCC-DCI를 통해서, 복수 개의 상향링크 셀들 상의 PUSCH 전송들이 스케줄링될 경우, 효율적인 PUSCH DM-RS CS 그리고/혹은 PHICH 자원 할당 방법을 제시한다.
[제안 방법#4]
UL MUCC-DCI에 포함된 (하나 혹은 공통의) DM-RS CS 값이 동시에 스케줄링되는 복수 개의 상향링크 셀들 상의 PUSCH 전송들에 공통적으로 동일하게 적용될 수 있다. 이 경우, PHICH 자원 충돌 문제를 완화시키기 위해서, 스케줄링되는 상향링크 셀(SCHEDULED UL CELL) 관련 CIF 값, 그리고/혹은 스케줄링된 상향링크 셀 관련 셀 인덱스 그리고/혹은 사전에 정의되거나 시그널링된 단말/셀/셀 그룹 별 오프셋 중 적어도 하나가 PHICH 자원 인덱스의 오프셋으로 이용되거나 활용되도록 설정 될 수 있다.
[제안 방법#5]
사전에 정의된 규칙에 따라, UL MUCC-DCI에 포함된 (하나의) DM-RS CS 값을 기준으로, 동시에 스케줄링되는 복수 개의 상향링크 셀들에 서로 상이한 DM-RS CS 값이 적용되도록 설정될 수 있다.
예를 들어, UL MUCC-DCI 상의 (하나의) DM-RS CS (인덱스) 값 (이를"CS#X"라 하자)은 상대적으로 가장 낮은(혹은 작은) CIF 값(그리고/혹은 셀 인덱스)을 가지는 (스케줄링되는) 상향링크 셀(즉, 상향링크 셀#0) 상의 PUSCH 전송에만 적용되고, 나머지 (스케줄링되는) 상향링크 셀(즉, 상향링크 셀#1, 상향링크 셀#2) 상의 PUSCH 전송(들)에는 (상향링크) 셀 인덱스(그리고/혹은 CIF 값(들))의 오름 차순 (혹은 내림 차순) 방향으로, 각각 오프셋 값이 적용될 수 있다. 예를 들어, 상향링크 셀#1에 적용되는 DM-RS CS 값이 CS#(X+CYC_OFFSET)이라면, 상향링크 셀#2에 적용되는 DM-RS CS 값은 CS#(X+CYC_OFFSET*2)일 수 있다.
즉, 상향링크 셀#1, 상향링크 셀#2 상의 PUSCH 전송들에 적용되는 DM-RS CS (인덱스) 값들은 상향링크 셀#0에 적용되는 CS#X에 (상향링크) 셀 인덱스 (그리고/혹은 CIF 값)의 오름 차순(혹은 내림 차순) 방향으로, 사전에 정의되거나 혹은 시그널링된 오프셋(이를 "CYC_OFFSET"으로 표시하였음)을 (순차적으로 혹은 순환 쉬프트하게) 누적 적용한 것으로 해석할 수 있다. 상기 오프셋 값은 양의 값(증가를 의미) 또는 음의 값(감소를 의미)일 수 있다. 이러한 방법에 의하면, 각 상향링크 셀들에 대해 DM-RS CS 값이 다르므로 PHICH 자원 충돌이 발생하지 않는다.
하향링크 또는 상향링크를 스케줄링하는 MUCC-DCI(이하 단순히 MUCC-DCI라고 칭할 수도 있음) 기반의 다중 반송파 스케줄링(MULTI-CARRIER SCHEDULING)이 적용되는 셀 그룹(CG) 내에서, 단말로 하여금, 사전에 정의되거나 혹은 시그널링된 셀 그룹 내 특정 일부 혹은 모든 셀들 관련한(즉, 해당 셀을 스케줄링하기 위한 용도의) USS(UE-SPECIFIC SEARCH SPACE) 그리고/혹은 CSS (COMMON SEARCH SPACE)를 통해 해당 (하향링크/상향링크) MUCC-DCI가 전송되도록 설정될 수 있다. 즉, 단말은 다중 반송파 스케줄링이 적용되는 셀 그룹 내에서 미리 정해지거나 설정된 특정 셀의 USS/CSS를 통해서만 MUCC-DCI를 검출하도록 설정될 수 있다.
예를 들어, 셀#1, 셀#2, 셀#3이 하나의 MUCC-DCI 기반으로 스케줄링되는 다중 반송파 스케줄링이 적용되는 셀 그룹이라 하자. 이 때, MUCC-DCI 전송을 위해 셀#1과 셀#2의 USS(그리고/혹은 CSS)가 사용될 수 있다. 이 때, (1) 셀#1과 셀#2 중 하나의 셀만 MUCC-DCI 전송용 셀로 설정되고 그 하나의 셀에서 셀#1과 셀#2 관련 USS(그리고/혹은 CSS)를 통해 MUCC-DCI가 수신/검출되도록 설정되거나 혹은 (2) 셀#1과 셀#2 모두 MUCC-DCI 전송용 셀로 설정되고 해당 각 셀 상의 USS(그리고/혹은 CSS)를 통해 MUCC-DCI가 수신/검출되도록 설정될 수 있다.
MUCC-DCI는 특정 셀이 상기 MUCC-DCI에 의하여 스케줄링되는지 여부를 알려주는 필드 또는 지시자를 포함할 수 있다. 이 필드 또는 지시자는 비트맵 형태일 수 있다. 상기 필드를"ONFIELD"라 칭하자. 만약 ONFIELD가 비활성화(DEACTIVATED) 셀이 스케줄링된다고 가리킨다면, 단말은 해당 MUCC-DCI 전체가 유효하지 않은 것으로 가정(혹은 간주)할 수 있다.
또는 ONFIELD가 비활성화(DEACTIVATED) 셀이 스케줄링된다고 가리킨다면, 단말은 해당 MUCC-DCI에서 상기 비활성화 셀에 관련된 스케줄링 정보만이 유효하지 않은 것으로 가정(혹은 간주)할 수 있다. 즉, MUCC-DCI에서 해당 비활성화 셀 관련 스케줄링 정보를 제외한 나머지 즉, 활성화 셀 관련 스케줄링 정보는 유효한 것으로 가정(혹은 간주)할 수 있다.
또 다른 일례로, MUCC-DCI 기반의 다중 반송파 스케줄링 모드가 설정된 단말로 하여금, MUCC-DCI 기반의 다중 반송파 스케줄링의 대상으로 설정된 셀들이 모두 비활성화된 경우에만, 해당 MUCC-DCI를 (상기 MUCC-DCI를 수신/검출하도록 설정된 특정 셀의 (E)PDCCH 검색 공간에서) 모니터링(혹은 블라인드 디코딩)하지 않도록 설정될 수 있다.
이러한 규칙이 적용될 경우, MUCC-DCI 기반의 다중 반송파 스케줄링 모드가 설정된 해당 단말은, MUCC-DCI 기반의 다중 반송파 스케줄링의 대상으로 설정된 셀들 중에 적어도 하나라도 활성화된 경우에는 해당 MUCC-DCI를 (상기 MUCC-DCI를 수신/검출하도록 설정된 특정 셀의 (E)PDCCH 검색 공간에서) 모니터링(혹은 블라인드 디코딩)하게 된다.
상기 설명한 제안 방식에 대한 예들은 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수도 있지만, 일부 제안 방식들의 조합 (혹은 병합) 형태로 구현될 수도 있다. 또한, 상기 설명한 제안 방식들은 사전에 정의되거나 시그널링된 특정 셀 타입(예를 들어, UCELL 혹은 LCELL) 그리고/혹은 특정 셀 타입 (예를 들어, UCELL 혹은 LCELL)으로만 구성된 셀 그룹에만 한정적으로 적용되도록 규칙이 정의될 수도 있다. 또한, 상기 설명한 제안 방식들은 셀타입 그리고/혹은 셀 그룹(그리고/혹은 셀) 별로 상이하게 (혹은 독립적으로) 적용되도록 규칙이 정의될 수도 있다.
도 12는 기지국 및 단말을 나타내는 블록도이다.
기지국(100)은 프로세서(processor, 110), 메모리(memory, 120) 및 RF부(RF(radio frequency) unit, 130)를 포함한다. 프로세서(110)는 제안된 기능, 과정 및/또는 방법을 구현한다. 메모리(120)는 프로세서(110)와 연결되어, 프로세서(110)를 구동하기 위한 다양한 정보를 저장한다. RF부(130)는 프로세서(110)와 연결되어, 무선 신호를 전송 및/또는 수신한다. 도 9 내지 도 10의 방법들은 단말 관점에서 PHICH의 수신 방법으로 설명하였지만, 기지국 관점에서 PHICH 전송 방법으로도 볼 수 있다. 프로세서(110)는 도 9 내지 도 11의 방법들을 구현할 수 있다.
단말(200)은 프로세서(210), 메모리(220) 및 RF부(230)를 포함한다. 프로세서(210)는 제안된 기능, 과정 및/또는 방법을 구현한다. 메모리(220)는 프로세서(210)와 연결되어, 프로세서(210)를 구동하기 위한 다양한 정보를 저장한다. RF부(230)는 프로세서(210)와 연결되어, 무선 신호를 전송 및/또는 수신한다. 도 11의 방법은 기지국 관점에서 PHICH에서의 ACK/NACK 전송 방법으로 기술되어 있으나, 단말 관점에서 PHICH를 통한 ACK/NACK 수신 방법으로 볼 수 있다. 프로세서(210)는 도 9 내지 도 11의 방법들을 구현할 수 있다.
프로세서(110,210)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 메모리(120,220)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(130,230)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(120,220)에 저장되고, 프로세서(110,210)에 의해 실행될 수 있다. 메모리(120,220)는 프로세서(110,210) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(110,210)와 연결될 수 있다.

Claims (15)

  1. 무선통신 시스템에서 단말(User Equipment: UE)의 PHICH(physical hybrid-ARQ indicator channel) 수신 방법에 있어서,
    PUSCH(physical uplink shared channel)를 전송하고,
    상기 PUSCH에 대응하는 제1 PHICH 자원이 다른 PUSCH에 대응하는 제2 PHICH 자원과 충돌하는지를 판단하고, 및
    상기 판단 결과에 따라 결정되는 PHICH 자원에서 상기 PUSCH에 대한 PHICH를 수신하되,
    상기 제1 PHICH 자원과 상기 제2 PHICH 자원이 충돌하는 경우, 오프셋 값을 적용하여 결정한 새로운 PHICH 자원에서 상기 PUSCH에 대한 PHICH를 수신하는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서,
    상기 제1 PHICH 자원은 상기 PUSCH가 전송되는 가장 낮은 물리적 자원 블록(physical resource block: PRB) 인덱스 및 상기 PUSCH에서 전송되는 참조 신호(reference signal)의 순환 쉬프트(cyclic shift) 인덱스에 기반하여 결정되는 것을 특징으로 하는 방법.
  3. 제2 항에 있어서, 상기 제1 PHICH 자원을 결정하는 가장 낮은 PRB 인덱스 및 참조 신호의 순환 쉬프트 인덱스가 상기 제2 PHICH 자원을 결정하는 가장 낮은 PRB 인덱스 및 참조 신호의 순환 쉬프트 인덱스와 동일한 경우에 상기 제1 PHICH 자원이 상기 제2 PHICH 자원과 충돌하는 것으로 판단하는 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서, 상기 오프셋 값은
    상기 PUSCH를 스케줄링하는 DCI(downlink control information)를 수신한 자원들의 CCE(control channel element) 인덱스 값들 중에서 가장 낮은 CCE 인덱스 값인 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서, 상기 오프셋 값은
    상기 PUSCH를 스케줄링하는 DCI(downlink control information)를 수신한 자원들의 ECCE(enhanced control channel element) 인덱스 값들 중에서 가장 낮은 ECCE 인덱스 값인 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서, 상기 오프셋 값은
    상기 PUSCH를 스케줄링하는 DCI(downlink control information)에 포함된 CIF(carrier indicator field) 값인 것을 특징으로 하는 방법.
  7. 제 1 항에 있어서, 상기 오프셋 값은
    상기 단말에게 미리 설정되는 것을 특징으로 하는 방법.
  8. 제 1 항에 있어서, 상기 오프셋 값은
    상기 PUSCH에서 전송되는 참조 신호(reference signal)의 순환 쉬프트(cyclic shift) 인덱스에 더해지는 값인 것을 특징으로 하는 방법.
  9. 제 1 항에 있어서, 상기 PUSCH 및 상기 다른 PUSCH는 상기 단말이 동시에 전송하되, 상기 PUSCH는 상기 단말이 제1 셀을 통해 전송하고, 상기 다른 PUSCH는 단말이 제2 셀을 통해 전송하는 것을 특징으로 하는 방법.
  10. 제 9 항에 있어서, 상기 제 1 셀 및 제 2 셀은 서로 다른 주파수를 가지는 것을 특징으로 하는 방법.
  11. 제 9 항에 있어서,
    상기 PUSCH 및 상기 다른 PUSCH는 하나의 하향링크 셀에서 수신한 DCI들에 의하여 스케줄링되는 것을 특징으로 하는 방법.
  12. 제 1 항에 있어서, 상기 새로운 PHICH 자원은 상기 오프셋 값으로 인해 상기 제2 PHICH 자원과 충돌하지 않도록 결정되는 것을 특징으로 하는 방법.
  13. 제 1 항에 있어서, 상기 제1 PHICH 자원과 상기 제2 PHICH 자원이 충돌하지 않으면, 상기 제1 PHICH 자원을 통해 상기 PUSCH에 대한 PHICH를 수신하는 것을 특징으로 하는 방법.
  14. 제 1 항에 있어서, 상기 단말은 5개보다 많은 셀들의 집성을 지원하는 단말인 것을 특징으로 하는 방법.
  15. 단말은,
    무선신호를 송수신하는 RF부; 및
    상기 RF부에 연결되는 프로세서를 포함하되, 상기 프로세서는
    PUSCH(physical uplink shared channel)를 전송하고,
    상기 PUSCH에 대응하는 제1 PHICH 자원이 다른 PUSCH에 대응하는 제2 PHICH 자원과 충돌하는지를 판단하고,
    상기 판단 결과에 따라 결정되는 PHICH 자원에서 상기 PUSCH에 대한 PHICH를 수신하되,
    상기 제1 PHICH 자원과 상기 제2 PHICH 자원이 충돌하는 경우, 오프셋 값을 적용하여 결정한 새로운 PHICH 자원에서 상기 PUSCH에 대한 PHICH를 수신하는 것을 특징으로 하는 단말.
PCT/KR2016/005175 2015-05-14 2016-05-16 무선 통신 시스템에서 단말의 phich 수신 방법 및 상기 방법을 이용하는 단말 WO2016182413A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/573,713 US10499419B2 (en) 2015-05-14 2016-05-16 Method for terminal for receiving PHICH in wireless communication system and terminal utilizing the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562161875P 2015-05-14 2015-05-14
US62/161,875 2015-05-14

Publications (1)

Publication Number Publication Date
WO2016182413A1 true WO2016182413A1 (ko) 2016-11-17

Family

ID=57248253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005175 WO2016182413A1 (ko) 2015-05-14 2016-05-16 무선 통신 시스템에서 단말의 phich 수신 방법 및 상기 방법을 이용하는 단말

Country Status (2)

Country Link
US (1) US10499419B2 (ko)
WO (1) WO2016182413A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6648276B2 (ja) * 2015-11-30 2020-02-14 華為技術有限公司Huawei Technologies Co.,Ltd. スケジューリング装置、被スケジューリング装置、並びにリソーススケジューリング方法及び機器
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
US10827470B2 (en) * 2016-12-23 2020-11-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Control channel transmission method, network device and terminal device
CN109275192B (zh) * 2017-07-18 2022-12-13 华为技术有限公司 用于传输信息的方法和设备
CN109831827B (zh) * 2017-08-10 2020-03-10 华为技术有限公司 数据传输方法、终端和基站
KR20240124427A (ko) * 2019-05-02 2024-08-16 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 공유 채널을 송수신하는 방법 및 이를 위한 장치
CN112312350B (zh) * 2019-08-02 2024-10-22 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013006006A2 (ko) * 2011-07-07 2013-01-10 엘지전자 주식회사 무선통신시스템에서 신호 전송 방법 및 장치
US20130223297A1 (en) * 2010-10-14 2013-08-29 Huawei Technologies Co., Ltd Method, device and system for solving channel collision
US20150036637A1 (en) * 2010-01-08 2015-02-05 Interdigital Patent Holdings, Inc. Method and apparatus for channel resource mapping in carrier aggregation
US20150055597A1 (en) * 2009-11-18 2015-02-26 Lg Electronics Inc. Method and apparatus for performing harq in a wireless communication system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110073334A (ko) * 2009-12-22 2011-06-29 엘지전자 주식회사 무선 통신 시스템에서 상향링크 harq 수행 장치 및 방법
US9215058B2 (en) * 2012-03-06 2015-12-15 Blackberry Limited Enhanced PHICH transmission for LTE-advanced
US9198181B2 (en) * 2012-03-19 2015-11-24 Blackberry Limited Enhanced common downlink control channels
US9544880B2 (en) * 2012-09-28 2017-01-10 Blackberry Limited Methods and apparatus for enabling further L1 enhancements in LTE heterogeneous networks
CN103795510A (zh) * 2012-11-02 2014-05-14 北京三星通信技术研究有限公司 传输harq指示信息的方法和设备
US9084052B2 (en) * 2013-06-26 2015-07-14 Analog Devices Global Moving coil miniature loudspeaker module
US20150089382A1 (en) * 2013-09-26 2015-03-26 Wu-chi Feng Application context migration framework and protocol
US20160330697A1 (en) * 2015-05-08 2016-11-10 Qualcomm Incorporated Physical uplink control channel management for pucch secondary cell in carrier aggregation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150055597A1 (en) * 2009-11-18 2015-02-26 Lg Electronics Inc. Method and apparatus for performing harq in a wireless communication system
US20150036637A1 (en) * 2010-01-08 2015-02-05 Interdigital Patent Holdings, Inc. Method and apparatus for channel resource mapping in carrier aggregation
US20130223297A1 (en) * 2010-10-14 2013-08-29 Huawei Technologies Co., Ltd Method, device and system for solving channel collision
WO2013006006A2 (ko) * 2011-07-07 2013-01-10 엘지전자 주식회사 무선통신시스템에서 신호 전송 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "DL Control Signaling Enhancements for up to 32 CCs", R1-151798, 3GPP TSG RAN WG1 MEETING #80BIS, 10 April 2015 (2015-04-10), Belgrade, Serbia, XP050934659 *

Also Published As

Publication number Publication date
US10499419B2 (en) 2019-12-03
US20180152962A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
WO2019112209A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2011052949A2 (ko) 무선 통신 시스템에서 수신 확인 전송 방법 및 장치
WO2016048100A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 수행하는 장치
WO2012144801A2 (ko) 무선통신시스템에서 신호 전송 방법 및 장치
WO2014062041A1 (ko) 무선 통신 시스템에서 하향링크 제어채널을 모니터링하는 방법 및 장치
WO2011007985A2 (ko) 무선 통신 시스템에서 수신 장치가 제어 정보를 전송하는 방법
WO2016182413A1 (ko) 무선 통신 시스템에서 단말의 phich 수신 방법 및 상기 방법을 이용하는 단말
WO2010050766A2 (ko) 무선통신 시스템에서 harq 수행 방법 및 장치
WO2016068542A2 (ko) Mtc 기기의 pucch 전송 방법
WO2016111599A1 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2011074839A2 (en) Apparatus and method of transmitting reception acknowledgement in wireless communication system
WO2017003264A1 (ko) 무선 통신 시스템에서 신호의 전송 방법 및 장치
WO2011105769A2 (ko) 다중 반송파를 지원하는 무선 통신 시스템에서 상향링크 확인응답 정보를 전송하는 방법 및 장치
WO2014123378A1 (ko) 신호의 송수신 방법 및 이를 위한 장치
WO2010123331A2 (ko) 반송파 병합 전송을 위한 제어신호 송수신 방법 및 장치
WO2016182394A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 장치
WO2011159121A2 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2015065111A1 (en) Method and apparatus for simultaneous transmission of downlink harq-ack and sr
WO2012091490A2 (ko) Tdd 기반 무선 통신 시스템에서 ack/nack 전송 방법 및 장치
WO2013006006A2 (ko) 무선통신시스템에서 신호 전송 방법 및 장치
WO2011162543A2 (ko) 다중 반송파 지원 무선 통신 시스템에서 상향링크 제어 정보 송수신 방법 및 장치
WO2010013961A2 (en) Method and apparatus of monitoring pdcch in wireless communication system
WO2011078568A2 (ko) 무선 통신 시스템에서 상향링크 harq 수행 장치 및 방법
WO2017150942A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2013066072A1 (ko) 신호 송수신 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16793059

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15573713

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16793059

Country of ref document: EP

Kind code of ref document: A1