[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016181861A1 - Terminal device and base station device - Google Patents

Terminal device and base station device Download PDF

Info

Publication number
WO2016181861A1
WO2016181861A1 PCT/JP2016/063374 JP2016063374W WO2016181861A1 WO 2016181861 A1 WO2016181861 A1 WO 2016181861A1 JP 2016063374 W JP2016063374 W JP 2016063374W WO 2016181861 A1 WO2016181861 A1 WO 2016181861A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission
transmission mode
terminal device
control information
Prior art date
Application number
PCT/JP2016/063374
Other languages
French (fr)
Japanese (ja)
Inventor
淳悟 後藤
中村 理
泰弘 浜口
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016181861A1 publication Critical patent/WO2016181861A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a terminal device and a base station device.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform
  • NOMA Non-Orthogonal Multiple Multiplex
  • SC Superposition Coding
  • SCM Superposition Coded ”Modulation
  • CWIC Codeword level interference cancellation
  • SLIC Symbol level interference interference canceling using a signal before decoding the interference signal
  • MLD Maximum Likelihood Detection
  • the transmission mode includes a transmission mode in which a reference signal used for data demodulation is CRS (Cell-Specific Reference Signal).
  • CRS Cell-Specific Reference Signal
  • transmission mode 1 for single antenna port
  • transmission mode 2 for transmission diversity
  • transmission mode 3 for large delay CDD (Cyclic Delay Diversity)
  • transmission modes 4 and 6 for closed loop MIMO (Multiple Input Multiple Output), and for multi-user MIMO
  • transmission mode 5 or the like.
  • URS UE-Specific Reference Signal
  • DMRS De-Modulation Reference Signal
  • the present invention has been made in view of the above points.
  • data signals destined for these terminal apparatuses are non-orthogonally multiplexed using SC.
  • An object of the present invention is to provide a communication method capable of improving transmission characteristics.
  • the present invention has been made to solve the above problems, and one aspect of the present invention is a base station apparatus that transmits data signals to a plurality of terminal apparatuses, the base station apparatus Is a signal multiplexing unit that multiplexes data signals of at least the first terminal device and the second terminal device into the same resource, and a transmission power allocated to the data signal addressed to the first terminal device.
  • a transmission power control unit that increases the transmission power assigned to the data signal and the first terminal device that transmits a data signal having a different transmission power and the second terminal device are notified of information regarding transmission modes of different downlink transmissions.
  • a control information generating unit that generates control information, and including at least one of the first terminal device or the second terminal device including the transmission mode of another terminal device Generating a broadcast in the control information generating unit.
  • At least a reference signal used for channel estimation of data demodulation is a user-specific reference signal.
  • the base station apparatus generates a transmission signal that multiplexes by generating user-specific reference signals of data signals addressed to the first terminal apparatus and the second terminal apparatus.
  • the transmission signal generator is at least one of a data signal multiplexing method and a user-specific reference signal multiplexing method according to a combination of the transmission modes of the first terminal device and the second terminal device. Is different.
  • the information regarding the transmission mode included in the control information generated by the control information generation unit includes at least one of the first terminal device and the second terminal device. It includes at least one of resource element information to which the number of antenna ports, antenna port number, number of layers, or user-specific reference signal to be used for transmission of user-specific reference signals of other terminal devices is assigned.
  • the second terminal when the second transmission mode is set in the first terminal device using control information generated by the control information generation unit, the second terminal According to the transmission mode of the apparatus, the data signal of the first terminal apparatus is allocated to the resource element of the user-specific reference signal transmitted in the first transmission mode, or no signal addressed to the first terminal apparatus is allocated. Switch between.
  • the second terminal when the second transmission mode is set in the first terminal device using the control information generated by the control information generation unit, the second terminal Depending on whether the device can receive information on the transmission mode of the first terminal device, the data signal of the second terminal device is allocated to the resource element of the user-specific reference signal transmitted in the first transmission mode, or Switch whether to assign any signal addressed to the terminal device 2.
  • the second terminal when the first transmission mode is set in the first terminal device using control information generated by the control information generation unit, the second terminal Whether to allocate the user-specific reference signal of the first terminal device or the data of the first terminal device to the resource element of the user-specific reference signal transmitted in the first transmission mode according to the transmission mode of the device Switch.
  • the second terminal Assigning the user-specific reference signal of the first terminal device to the resource element of the user-specific reference signal to be transmitted in the first transmission mode depending on whether the device can receive information on the transmission mode of the first terminal device; Whether to allocate data of the first terminal device is switched.
  • the second terminal when the first transmission mode is set in the first terminal device using the control information generated by the control information generation unit, the second terminal Depending on the transmission mode of the apparatus, the data signal of the second terminal apparatus is allocated to the resource element of the user-specific reference signal transmitted in the first transmission mode, or no signal addressed to the second terminal apparatus is allocated. Switch between.
  • One aspect of the present invention is a terminal device that receives a signal in which data signals of a plurality of terminal devices transmitted from a base station device are multiplexed.
  • the terminal devices are assigned to the same resource.
  • a signal detection unit for detecting a desired signal from a signal multiplexed with a different transmission power from a data signal addressed to another terminal device, a control information detection unit for detecting control information transmitted from the base station device, and the control information
  • a reference signal separation unit for identifying a signal arranged in a resource element used for transmission of a user-specific reference signal from information on a downlink transmission mode and a transmission mode of another terminal device included in the reference signal separation
  • the user element is a user-specific reference signal, data signal, or nothing is placed in the resource element used to transmit the user-specific reference signal. Or to determine which is the used transmission frame.
  • the transmission mode received by the control information detection unit and the transmission mode of the other terminal device are at least a reference signal used for estimating a propagation path for data demodulation.
  • a reference signal used for channel estimation of data demodulation is a cell-specific reference signal.
  • the reference signal separation unit is configured to A signal arranged in a resource element used for transmitting a user-specific reference signal is determined according to the transmission mode.
  • the reference signal separation unit when the transmission power allocated to a desired signal is set lower than the transmission power allocated to a data signal addressed to another terminal apparatus, the reference signal separation unit The signal arranged in the resource element used for transmitting the user-specific reference signal is determined depending on whether the information on the transmission mode can be received.
  • transmission characteristics in NOMA can be improved.
  • the communication system includes a base station device (transmitting device, cell, transmission point, transmitting antenna group, transmitting antenna port group, component carrier, serving cell, eNodeB, Pico eNodeB, small cell, RRH: Radio Remote Head , LPN: Low Power Node) and a terminal device (terminal, mobile terminal, receiving point, receiving terminal, receiving device, receiving antenna group, receiving antenna port group, UE: User Equipment).
  • a base station device transmitting device, cell, transmission point, transmitting antenna group, transmitting antenna port group, component carrier, serving cell, eNodeB, Pico eNodeB, small cell, RRH: Radio Remote Head , LPN: Low Power Node
  • terminal device terminal, mobile terminal, receiving point, receiving terminal, receiving device, receiving antenna group, receiving antenna port group, UE: User Equipment
  • the downlink communication from the base station apparatus to the terminal apparatus, hereinafter referred to as the downlink
  • the transmission method of the present invention is the uplink (from the terminal apparatus to the base station apparatus
  • uplink (Hereinafter referred to as uplink), and may be applied to a case where a plurality of signals are multiplexed by SC in uplink transmission or multi-user MIMO is performed in uplink transmission.
  • the present invention may be applied not only to transmission of control information between a base station apparatus and a terminal apparatus, but also to communication between a base station apparatus and a relay station apparatus, between a relay station apparatus and a terminal apparatus, or between terminals.
  • FIG. 1 shows an example of the configuration of a system according to the present invention.
  • the system includes a base station apparatus 10 and terminal apparatuses 21 to 25.
  • the number of terminal devices is not limited to this example, and the number of antennas of each device may be one or plural.
  • the base station apparatus 10 may perform communication using a so-called licensed band obtained from the country or region where the wireless provider provides the service, or use permission from the country or region. Communication using a so-called unlicensed band that is not required may be performed.
  • the base station apparatus 10 may be a macro base station apparatus with a wide coverage, or a pico base station apparatus (Pico eNB: evolved Node B, SmallCell, Low Power Node, Remote Radio) having a narrower coverage than the macro base station device. (Also called Head)).
  • the frequency band other than the license band is not limited to the example of the unlicensed band, and may be a white band (white space) or the like.
  • the base station apparatus 10 may apply a CA (Carrier-Aggregation) technique that uses a plurality of component carriers (CC: also referred to as "Component Carrier" or Serving "cell”) in a band used in LTE communication.
  • CA Carrier-Aggregation
  • the base station apparatus 10 transmits a downlink data signal using PDSCH (Physical Downlink Shared CHANnel), and transmits control information including a transmission parameter used for the data signal by PDCCH (Physical Downlink Control CHANnel) or EPDCCH (Enhanced PDCCH). .
  • the terminal devices 21 to 25 detect DCI (also referred to as Downlink Control Information, DL grant) of control information notified by PDCCH or EPDCCH by blind decoding, and down-convert based on transmission parameters included in DCI Link data signals are detected.
  • the terminal devices 21 to 25 blindly transmit DCI (also referred to as UL grant when reporting transmission parameters of uplink transmission) transmitted from the base station device 10 by PDCCH or EPDCCH.
  • Data transmission in uplink transmission is performed based on transmission parameters detected by decoding and included in DCI.
  • Data transmission in uplink transmission is transmitted by PUSCH (Physical Uplink Shared CHannel), and control information of uplink transmission such as ACK / NACK (Acknowledgement / Negative Acknowledgement) and propagation path for SR (Scheduling Request) and downlink data Quality information (CSI: “Channel State Information”) is transmitted by PUCCH (Physical Uplink Control Control CHannel).
  • PUSCH Physical Uplink Shared CHannel
  • control information of uplink transmission such as ACK / NACK (Acknowledgement / Negative Acknowledgement) and propagation path for SR (Scheduling Request) and downlink data Quality information (CSI: “Channel State Information”) is transmitted by PUCCH (Physical Uplink Control Control CHannel).
  • the base station apparatus 10 determines a frequency resource used in downlink data transmission to each terminal apparatus by frequency scheduling.
  • the base station apparatus 10 selects data transmission by OFDM by frequency scheduling or uses a received power difference (path loss difference) between terminal apparatuses, Superposition Coding (also referred to as SC or SCM: Superposition Coded Modulation)
  • SC or SCM Superposition Coded Modulation
  • NOMA Non-Orthogonal Multiple Access
  • NOMA Non-Orthogonal Multiple Access
  • the base station device since the terminal device detects the interference between users caused by multiplexing in the SC by removing or suppressing it, the base station device needs to notify control information necessary for detecting the interference signal. For example, when the base station device multiplexes the terminal devices 21 and 22 by SC, it is conceivable that the power allocated to the terminal device 21 with a small path loss is made smaller than the power allocated to the terminal device 22 with a large path loss. In this case, in the terminal device 21, a signal addressed to the terminal device 22 to which more power is allocated becomes an interference signal, and it is difficult to detect a desired signal unless the interference signal having a large power is suppressed or removed.
  • the base station apparatus performs pairing for determining a combination of terminal apparatuses that perform non-orthogonal multiplexing in frequency scheduling.
  • TM “Transmission” Mode
  • the transmission mode includes a transmission mode (hereinafter referred to as CRS-based transmission mode) in which a reference signal used for data demodulation is CRS (Cell-Specific Reference Signal) and URS (UE-Specific).
  • URS base transmission mode There is a transmission mode (hereinafter referred to as URS base transmission mode) in which Reference Signal, user-specific reference signal) or DMRS (De-Modulation Reference Signal) is used for data demodulation.
  • URS base transmission mode Reference Signal, user-specific reference signal
  • DMRS De-Modulation Reference Signal
  • FIG. 2 shows an example of the configuration of the base station apparatus according to the present invention. However, the minimum blocks necessary for the present invention are shown. In the figure, for simplicity of explanation, each base station apparatus has one transmission / reception antenna. However, actually, a plurality of transmission antennas may be provided, and the same processing may be performed by each transmission antenna.
  • the base station apparatus receives a signal transmitted from the terminal apparatus via PUCCH or PUSCH by the reception antenna 105 and inputs the signal to the radio reception unit 106.
  • the radio reception unit 106 down-converts the received signal to a baseband frequency, performs A / D (Analog / Digital) conversion, and removes a CP (Cyclic Prefix) from the digital signal, thereby controlling the control information detection unit 107.
  • the control information detection unit 107 detects control information transmitted on the PUCCH from the received signal and control information such as PH (Power Headroom) transmitted on the PUSCH, and inputs the detected control information to the radio resource control unit 108.
  • the radio resource control unit 108 determines allocation of frequency resources used for downlink data transmission based on CSI or the like as frequency scheduling.
  • the frequency resource allocation will be described on the assumption that it is performed in units of RB (Resource Block) composed of 12 subcarriers in one subframe or in units of RBG (Resource Block Group) in which a plurality of RBs are grouped.
  • the invention is not limited to this.
  • one subframe is composed of 2 slots, and one slot is composed of 7 OFDM symbols.
  • the radio resource control unit 108 determines a combination and resource allocation (RA: Resource Allocation or Resource Assignment, hereinafter referred to as RA information) of a terminal device that performs OFDM transmission that is not multiplexed by SC and a terminal device that is multiplexed by SC in frequency scheduling.
  • RA Resource Allocation or Resource Assignment
  • the radio resource control unit 108 determines transmission power to be allocated to each terminal device with respect to terminal devices multiplexed by SC. Further, the radio resource control unit 108 performs MCS (Modulation and Coding Scheme) or MIMO (Multiple Input Multiple Output) transmission of data addressed to each terminal device by adaptive modulation and coding (also referred to as link adaptation). In the case of application of MIMO and MIMO transmission, the number of streams (number of transmission layers) is determined. The radio resource control unit 108 inputs RA information, MCS, and information on the number of transmission streams to the control information generation unit 109.
  • MCS Modulation and Coding Scheme
  • MIMO Multiple Input Multiple Output
  • link adaptation also referred to as link adaptation
  • the control information generation unit 109 generates the control information according to the DCI format determined by the downlink transmission mode of each terminal device and the setting of RRC (Radio Resource Control) for each terminal device.
  • DCI format a plurality of formats are defined according to applications, DCI format 1 for downlink single antenna, DCI format 1A for transmission diversity, DCI format 1B, 2, 2B for SU-MIMO, DCI format 2A for 2C, Large Delay CDD (Cyclic Delay Diversity), DCI format 2C for MU-MIMO, DCI format 2D for downlink cooperative communication, etc. are defined, and DCI format for single antenna for uplink transmission 0, DCI format 4 for MIMO is defined.
  • the control information generation unit 109 inputs the generated control information to the transmission signal generation unit 101 in order to generate downlink data and notify the terminal device.
  • the base station apparatus uses the DCI format used in the transmission mode of NOMA transmission for the terminal apparatus multiplexed on the SC, and detects control information necessary for removing or suppressing the interference signal and the signal multiplexed on the SC.
  • the control information (additional information) necessary for is notified.
  • the present invention may be applied to an existing transmission mode, or may be realized by setting to add information on an interference signal necessary for reception processing of NOMA transmission by RRC or the like.
  • the transmission signal generation unit 101 receives a data bit string to be transmitted to each terminal device.
  • FIG. 3 shows an example of the configuration of the transmission signal generation unit 101 according to the present invention.
  • the input data bit string is input to the error correction encoding units 1011-1 to 1011-2.
  • Error correction coding sections 1011-1 to 1011-2 perform error correction code coding on the input data bit string.
  • a turbo code, an LDPC (Low Density Parity Check) code, a convolutional code, or the like is used as the error correction code.
  • the types of error correction codes performed by error correction coding sections 1011-1 to 1011-2 may be determined in advance by the transmission / reception apparatus, may be notified as control information for each transmission / reception opportunity, or may be transmitted.
  • Switching may be performed according to a parameter determined in advance according to the mode and a parameter notified by the control information. Further, the coding rate of error correction coding is input from the control information generation unit 109, and the error correction coding units 1011-1 to 1011-2 are coding rates used for downlink data transmission by puncturing (rate matching). To realize.
  • Modulation sections 1012-1 to 1012-2 receive modulation scheme information from control information generation section 109 and modulate the encoded bit string input from error correction encoding sections 1011-1 to 1011-2. Thus, a modulation symbol string is generated. Examples of the modulation scheme include QPSK (Quaternary Phase Shift Keying), 16 QAM (16-ary Quadrature Amplitude Modulation), 64 QAM, and 256 QAM. Modulation sections 1012-1 to 1012-2 output the generated modulation symbol sequence to transmission power control sections 1013-1 to 1013-2.
  • QPSK Quadrature Amplitude Modulation
  • Modulation sections 1012-1 to 1012-2 output the generated modulation symbol sequence to transmission power control sections 1013-1 to 1013-2.
  • the transmission power control units 1013-1 to 1013-2 receive transmission power information assigned to terminal devices multiplexed by the SC from the control information generation unit 109, and perform transmission power control.
  • the signal multiplexer 1014 receives and multiplexes the signals of the terminal device multiplexed by the SC.
  • a method of multiplexing by SC there are a method of modulating a signal addressed to each terminal device with a Gray code and adding it as it is, and a method of adding so that a signal point arrangement after multiplexing at SC becomes a Gray code.
  • it may be determined in advance by the transmission / reception apparatus, may be notified as control information for each transmission / reception opportunity, or may be switched according to a parameter notified by the transmission mode or control information.
  • the signal multiplexing unit 1014 when the frequency resource to which the data signal addressed to the terminal device multiplexed by SC does not completely match, for example, when the data signal is multiplexed by SC with only some frequency resources, SC Only the signal of the frequency resource to be multiplexed is multiplexed.
  • signal multiplexing section 1014 multiplexes signals by SC according to frequency resource allocation.
  • the transmission signal allocation unit 1019 receives a transmission signal sequence from the signal multiplexing unit 1014, and further receives, from the transmission mode determination unit 1018, information on the transmission mode combination described later and the transmission mode combination of the terminal device on which the data signal is multiplexed in the SC. Is done.
  • the transmission signal allocating unit 1019 converts the transmission signal sequence into RB indicated by RA information input from the control information generating unit 109, transmission mode combination described later, and transmission mode combination information of the terminal device in which the data signal is multiplexed in the SC. Assign accordingly.
  • the transmission mode determination unit 1018 holds information on the downlink transmission mode for each terminal device, and identifies the terminal device that transmits downlink data from the control information input from the control information generation unit 109. Further, the transmission mode determination unit 1018 includes a reference signal generation unit 1016 and a transmission signal allocation unit that transmit information on a transmission mode for each terminal device that transmits data and information on a combination of transmission modes of terminal devices on which data signals are multiplexed in the SC. 1010. The reference signal generation unit 1016 generates a reference signal according to the transmission mode of the allocated terminal apparatus in frequency resources using OFDM transmission (data transmission in which signals of a plurality of terminal apparatuses are not multiplexed by SC).
  • At least URS or DMRS is generated in frequency resources used for data transmission to a terminal device in a transmission mode using URS or DMRS for data demodulation, and URS or DMRS is not generated in other frequency resources.
  • Other reference signals are generated.
  • a method for generating a reference signal of frequency resources used for NOMA transmission by multiplexing signals of a plurality of terminal devices at the SC in the reference signal generation unit 1016 will be described later.
  • the reference signal multiplexing unit 1015 receives the transmission signal sequence from the transmission signal allocation unit 1019, receives the reference signal sequence from the reference signal generation unit 1016, and multiplexes these signal sequences to generate a frame of the transmission signal. .
  • downlink reference signals include CRS (Cell-Specific Reference Signal), URS (UE-Specific Reference Signal) related to PDSCH, DMRS (De-Modulation Reference Signal) related to EPDCCH, NZP CSI-RS ( Non-Zero Power Channel State Information Reference Signal), ZP CSI-RS (Zero Power Channel State Information Reference Signal) and DRS (Discovery Reference Signal, Discovery Signal).
  • CRS Cell-Specific Reference Signal
  • URS UE-Specific Reference Signal
  • DMRS De-Modulation Reference Signal
  • NZP CSI-RS Non-Zero Power Channel State Information Reference Signal
  • ZP CSI-RS Zero Power Channel State Information Reference Signal
  • DRS Discovery Reference Signal, Discovery Signal
  • the transmission power of the reference signal is the same in the case where the data signals addressed to a plurality of terminal devices are multiplexed by NOMA in the SC and the OFDM signal in which the data signals addressed to the plurality of terminal devices are not multiplexed in the SC. May be different or different.
  • the transmission power of the data and the reference signal may be the same or different when the transmission power is distributed to these data signals.
  • the base station apparatus needs to notify the terminal apparatus of the transmission power as control information, or notify it in association with other control information.
  • the control information multiplexing unit 1017 multiplexes the signal sequence input from the reference signal multiplexing unit 1015 and the control information such as DCI input from the control information generation unit 109 and inputs the multiplexed information to the IFFT unit 102.
  • the IFFT unit 102 receives a frame of a transmission signal in the frequency domain, and converts the frequency domain signal sequence into a time domain signal sequence by performing inverse fast Fourier transform for each OFDM symbol.
  • the time domain signal sequence is input to the transmission processing unit 103.
  • the transmission processing unit 103 inserts a CP into the signal sequence, converts it into an analog signal by D / A (Digital / Analog), and up-converts the converted signal to a radio frequency used for transmission.
  • the transmission processing unit 103 amplifies the up-converted signal with PA (Power Amplifier), and transmits the amplified signal via the transmission antenna 104.
  • PA Power Amplifier
  • FIG 11 shows an example of a configuration when the base station apparatus has a plurality of transmission antennas. This figure shows the case where the number of transmission antennas (the number of antenna ports) is P, and the same processing as in FIG. Further, the number of antenna ports used for data transmission by the base station apparatus is notified to the terminal apparatus.
  • the base station apparatus precodes a data signal transmitted using a plurality of antenna ports, the applied precoding is notified by PMI (PrecodingPreMatrix Indicator), or the data signal and the reference signal are similar. Send with precoding.
  • PMI PrecodingPreMatrix Indicator
  • FIG. 4 shows an example of the configuration of the terminal device according to the present invention. However, the minimum blocks necessary for the present invention are shown. In order to simplify the explanation, the figure will be described assuming that each transmitting / receiving antenna of the terminal device is one.
  • the terminal device receives a signal transmitted through the downlink by the receiving antenna 201 and inputs the signal to the reception processing unit 202.
  • the reception processing unit 202 down-converts the received signal to the baseband frequency, performs A / D conversion, and removes the CP from the digital signal.
  • Reception processing section 202 outputs the signal after CP removal to FFT section 203.
  • the FFT unit 203 converts the input received signal sequence from a time domain signal sequence to a frequency domain signal sequence by fast Fourier transform, and outputs the frequency domain signal sequence to the signal separation unit 204.
  • FIG. 5 shows an example of the configuration of the signal separation unit 204 according to the present invention.
  • the frequency domain signal sequence input from the FFT unit 203 is input to the reference signal separation unit 2041.
  • the reference signal separation unit 2041 converts the signal input based on the downlink transmission mode stored in the transmission mode holding unit 2045 into the reference signal CRS, URS, DMRS, CSI-RS, DRS, and other signals. These are separated and output to the propagation path estimation unit 206 and the control information separation unit 2042, respectively. Details of the operation of the reference signal separation unit 2041 will be described later.
  • Control information separation section 2042 separates the input signal into a control signal transmitted on PDCCH, EPDCCH, and PDSCH and a data signal transmitted on PDSCH, and outputs them to control information detection section 2044 and assigned signal extraction section 2043, respectively.
  • the control information detecting unit 2044 performs blind decoding on the DCI format determined by the transmission mode and RRC setting in CSS (Common SS) or USS (UE-specific SS) set in PDCCH or EPDCCH. Is detected.
  • control information detection section 2044 detects it by control information reception processing.
  • the control information detection unit 2044 outputs, to the signal detection unit 205, transmission parameters (additional information) of signals addressed to other terminal devices that interfere with transmission parameters (RA information and MCS) of signals addressed to the own station.
  • the additional information is information on whether or not the data signal is multiplexed on the SC, and information on whether or not interference removal or suppression is necessary to detect the desired signal when the data signal is multiplexed on the SC.
  • This is information related to the transmission mode of another terminal device that is multiplexed, transmission parameters necessary for detecting an interference signal addressed to another terminal device that is multiplexed by the SC, and the like.
  • the control information detection unit 2044 inputs the information to the transmission mode holding unit 2045.
  • allocation signal extraction section 2043 extracts a transmission signal based on RA information included in a transmission parameter of a signal addressed to the own station.
  • the propagation path estimation unit 206 uses different reference signals for data demodulation depending on the downlink transmission mode, and is a frequency estimated by reference that can be used for data demodulation among the reference signals multiplexed and transmitted with the data signal.
  • the response is output to the signal detection unit 205.
  • the base station device distributes power to the data signals addressed to the plurality of terminal devices multiplexed by the SC. For this reason, the transmission power of NOMA transmission differs from that of OFDM transmission that is not multiplexed by SC, and the terminal device needs information (power ratio) of the transmission power of the reference signal and the data signal in the reception process.
  • This power ratio information may be reported as control information and output from the control information detection unit 2044 to the propagation path estimation unit 206, or may be estimated from the received power of the reference signal without being notified as control information. good. Further, the propagation path estimation unit 206 inputs the frequency response estimated using the transmitted reference signal to the control information generation unit 207 for CSI transmission and data demodulation on the PUCCH. Control information generating section 207 transmits using PUCCH. Control information is generated using a format corresponding to the content to be transmitted at the transmission timing, such as SR, ACK / NACK, and CSI.
  • the control information transmission unit 208 inserts a CP into the signal sequence, converts the signal into an analog signal by D / A, and up-converts the converted signal to a radio frequency used for transmission.
  • Control information transmission section 208 amplifies the upconverted signal with PA, and transmits the amplified signal via transmission antenna 209.
  • FIG. 6 shows an example of the configuration of the signal detection unit 205 according to the present invention.
  • the transmission parameter of the signal addressed to another terminal device that interferes with the data signal sequence input from the signal separation unit 204 is input to the interference signal detection unit 2051, and the data signal sequence and the signal addressed to its own station Transmission parameters are input to the interference cancellation unit 2053.
  • the interference signal detection unit 2051 detects an interference signal based on the estimated frequency response value corrected to the power ratio of the interference signal input from the propagation path estimation unit 206 and the transmission parameter input from the signal separation unit 204.
  • the detection of the interference signal may be performed using CWIC (Codeword interference ⁇ ⁇ ⁇ Cancellation) using the result of error correction decoding or SLIC (Symbol level InterferencecellCancellation) using the demodulation result without performing error correction decoding.
  • the output of the interference signal detection unit 2051 may use a hard decision value or a soft value (LLR: Log Likelihood Ratio).
  • the interference signal reproduction unit 2052 generates a replica of the interference signal from the estimated frequency response corrected to the detected bit sequence of the interference signal or the LLR sequence and the power ratio of the interference signal, and outputs it to the interference removal unit 2053.
  • the interference signal detection unit 2051 and the interference signal reproduction unit 2052 do nothing in the case of OFDM transmission in which the desired signal and the interference signal are not multiplexed by the SC.
  • the interference removal unit 2053 performs interference removal by subtracting the replica of the interference signal from the data signal sequence, and inputs the signal sequence after the interference removal and the transmission parameter of the signal addressed to the own station to the desired signal detection unit 2054.
  • FIG. 7 shows an example of the configuration of the desired signal detection unit 2054 according to the present invention.
  • the desired signal detection unit 2054 has been corrected to the power ratio of the desired signal input from the propagation path estimation unit 206 and the transmission parameter of the signal sequence after interference cancellation input from the interference cancellation unit 2053 and the signal addressed to the own station.
  • the estimated value of the frequency response is output to the propagation path compensator 2054-1.
  • the propagation path compensator 2054-1 performs a process of compensating for the distortion of the wireless propagation path on the signal sequence after interference cancellation using the input frequency response estimation value.
  • the propagation path compensation unit 2054-1 outputs the signal sequence after propagation path compensation to the demodulation unit 2054-2.
  • Demodulation section 2054-2 receives information on the modulation method (modulation multi-level number, whether or not the signal after SP is added to become a Gray code, etc.) included in the transmission parameter of the signal addressed to the own station.
  • the signal sequence after propagation path compensation is demodulated to obtain a bit-sequence LLR sequence.
  • Decoding section 2054-3 receives the coding rate information included in the transmission parameter of the signal addressed to the own station, and performs decoding processing on the LLR sequence.
  • Decoding section 2054-3 makes a hard decision on the decoded LLR sequence, determines the presence / absence of an error bit by cyclic redundancy check (CRC: Cyclic Redundancy Check), and outputs the information on the presence / absence of error bit to control information generation unit 207 If there is no error, a data bit string is output.
  • CRC Cyclic Redundancy Check
  • the desired signal detection unit 2054 uses a successive interference canceller (SIC: Successive InterferencecellCanceller) such as CWIC or SLIC
  • SIC Successive InterferencecellCanceller
  • PIC Parallel Interference canceller
  • MLD maximum likelihood detection
  • turbo equalization performs iterative processing
  • FIG. 8 is a diagram showing an example of a flowchart of a transmission process according to the present invention.
  • the base station apparatus generates control information for setting a downlink transmission mode for each terminal apparatus in advance and transmits the control information to the terminal apparatus from the transmission processing unit 103.
  • the radio resource control unit 108 Determine the combination.
  • the transmission mode discriminating unit 1018 confirms that a terminal device that requires detection of a desired signal after interference removal or suppression with a small transmission power allocation (hereinafter referred to as a terminal device that performs interference removal / suppression) is in the CRS-based transmission mode. Identify (S11).
  • the transmission mode discriminating unit 1018 determines that a terminal device capable of detecting a desired signal without performing interference removal or suppression with a large transmission power allocation (hereinafter referred to as a terminal device without interference removal / suppression) is a URS-based transmission mode. Is determined (S12). When the transmission mode determination unit 1018 determines that the terminal device that does not cancel or suppress interference is the URS base transmission mode, the reference signal generation unit 1016 performs the terminal device that performs interference cancellation or suppression for the resource element of the URS of the terminal device that does not cancel or suppress interference.
  • the reference signal multiplexing unit 1015 does not place the data of the terminal device that performs interference removal / suppression in the resource element of the URS of the terminal device that does not perform interference removal / suppression, and the reference signal multiplexing unit 1015 does not cancel the interference.
  • a transmission frame is generated in which the reference signal of the terminal apparatus that removes and suppresses interference is not arranged in the resource element of the URS of the terminal apparatus that is not suppressed (S13).
  • a CRS-based transmission mode terminal device that removes and suppresses interference when receiving data is an antenna that transmits information about whether or not to place data in a resource element of URS and a URS addressed to a terminal device that does not perform interference removal and suppression.
  • Port information or the number of transmission layers is required.
  • the number and position of resource elements used for URS transmission differ between the number of layers up to 2 (antenna ports 7 and 8) and the number of layers of 3 or more (antenna ports 7, 8, 9,).
  • the control information generation unit 109 with respect to a terminal device that performs interference removal / suppression, information on the transmission mode of the terminal device that does not perform interference removal / suppression, the number of layers, the number of antenna ports to be used
  • the information regarding the resource element of URS, such as, is transmitted as additional information of control information.
  • the reference signal generation unit 1016 generates a reference signal in the URS resource element of the terminal apparatus that does not cancel or suppress interference, and the reference signal multiplexing unit 1015 generates a transmission frame by arranging the reference signal in the URS resource element ( S14).
  • the transmission mode determination unit 1018 does not use the URS for any of the terminal devices multiplexed by the SC. Both the terminal device that suppresses and the terminal device that does not cancel or suppress interference do not generate URS, and the reference signal multiplexing unit 1015 generates data by arranging data in the resource element of URS, and proceeds to S15 (S16). ).
  • the signal multiplexing 1014 multiplexes signals addressed to a plurality of terminal devices by SC (S15).
  • a transmission frame is generated when the transmission modes of a plurality of terminal apparatuses that transmit data signals multiplexed by SC are different. Therefore, the terminal apparatus that cancels / suppresses interference transmits the downlink transmission mode of the local station stored in the transmission mode holding unit 2045 and the additional information included in the control information detected by the control information detection unit 2044 by blind decoding.
  • Information on whether or not the data signal is multiplexed on the SC, and information on whether or not interference cancellation or suppression is necessary to detect the desired signal if multiplexed on the SC, other information multiplexed on the SC Information related to the transmission mode of the terminal device is input to the reference signal separation unit 2041.
  • the reference signal separation unit 2041 determines which transmission process of FIG. 8 is used by the base station apparatus based on such information, and arranges data in the resource element of the URS Identify whether or not Therefore, when the reference signal separation unit 2041 identifies that neither data nor reference signals are arranged in the URS resource element, the signal received by the URS resource element is transmitted to both the propagation path estimation unit 206 and the control information separation unit 2042. Discard without outputting.
  • a terminal device that does not cancel or suppress interference may use only the information on the downlink transmission mode of its own station for identifying a reference signal used for data demodulation, and information on whether or not it is multiplexed in SC and transmission of interference signals. It is not necessary to receive parameters.
  • the transmission mode of the terminal device that performs interference removal / suppression is the CRS base transmission mode
  • the terminal device that does not perform interference removal / suppression is the CRS base transmission mode.
  • the example in which the multiplexing method of the data signal and the reference signal of the terminal apparatus for canceling / suppressing the interference is changed depending on the transmission mode or the URS base transmission mode has been described. Note that the multiplexing method of the data signal and the reference signal of the terminal apparatus that performs interference cancellation / suppression may be changed depending on control information transmitted to the terminal apparatus that does not perform interference cancellation / suppression.
  • the terminal device that performs interference removal / suppression does not notify the CRS base transmission mode or cannot receive this information (for NOMA)
  • the transmission mode is not the same as this mode, or the NOMA is not set in RRC, or the NOMA transmission mode or NOMA cannot be set.
  • the terminal device is notified of information indicating that it is in a mode, or if this information is receivable (NOMA transmission mode or NOMA is set in RRC, etc.)
  • transmission of a terminal device that does not eliminate or suppress interference Regardless of the mode, data may be arranged in the resource element of URS. In this case, it means that the transmission mode of the terminal apparatus that does not cancel or suppress interference is temporarily switched to the CRS base transmission mode. Therefore, in such a case, no URS is transmitted to a terminal device that does not cancel or suppress interference.
  • data and reference signals are not multiplexed in SC due to different transmission modes of terminal devices when multiplexed in SC, and deterioration of the channel estimation system can be suppressed. Further, throughput can be improved by NOMA multiplexing in different transmission modes.
  • FIG. 9 is a diagram showing an example of a flowchart of transmission processing according to the present invention.
  • the base station apparatus generates control information for setting a downlink transmission mode for each terminal apparatus in advance and transmits the control information to the terminal apparatus from the transmission processing unit 103.
  • the radio resource control unit 108 Determine the combination.
  • the transmission mode discriminating unit 1018 identifies that the terminal device that performs interference removal / suppression with a small transmission power allocation is in the URS base transmission mode (S21).
  • the transmission mode discriminating unit 1018 determines whether or not a terminal apparatus that does not perform interference removal / suppression with a large transmission power allocation is set to the CRS base transmission mode (S22).
  • the transmission mode determination unit 1018 determines that the terminal device that does not perform interference cancellation / suppression is the CRS base transmission mode
  • the reference signal generation unit 1016 does not generate the reference signal of the URS resource element of the terminal device that performs interference cancellation / suppression
  • the transmission signal allocating unit 1019 generates a transmission frame in which the data of the terminal device that performs interference removal / suppression is arranged in the resource element of the URS of the terminal device that performs interference removal / suppression (S23).
  • a terminal device in the URS base transmission mode that removes and suppresses interference at the time of data reception has information on the arrangement of reference signals or data in resource elements of URS (information related to the transmission mode of the terminal device that does not remove or suppress interference). is necessary. For this reason, the control information generation unit 109 uses the information on whether the transmission mode of the terminal apparatus that does not remove or suppress interference is CRS-based transmission mode or URS-based transmission mode as additional information of control information for the terminal apparatus that performs interference removal or suppression. Send.
  • the reference signal generation unit 1016 does not generate a reference signal for a terminal device that does not cancel or suppress interference for URS resource elements, and the transmission signal allocation unit 1019 arranges data for a terminal device that does not cancel or suppress interference in the URS resource elements Then, a transmission frame is generated (S24).
  • the transmission mode determination unit 1018 uses the URS for all of the terminal devices multiplexed by the SC.
  • a terminal device that suppresses and a terminal device that does not cancel or suppress interference generate a URS that can be used for data demodulation, and the reference signal multiplexing unit 1015 generates a transmission frame by arranging one reference signal in the resource element of the URS Then, the process proceeds to S25 (S26). Therefore, a plurality of URS signals destined for a plurality of terminal devices on which data signals are multiplexed by the SC are not generated and multiplexed by the SC.
  • the present invention is not limited to this example, and a plurality of URS signals destined for a plurality of terminal devices to which data signals are multiplexed in SC by OCC (Orthogonal Cover Code) of length X are generated, and multiplexing by codes is performed. You can do it.
  • the signal multiplexing 1014 multiplexes signals addressed to a plurality of terminal devices by SC (S25).
  • a transmission frame is generated when the transmission modes of a plurality of terminal apparatuses that transmit data signals multiplexed by SC are different. Therefore, the terminal apparatus that cancels / suppresses interference transmits the downlink transmission mode of the local station stored in the transmission mode holding unit 2045 and the additional information included in the control information detected by the control information detection unit 2044 by blind decoding.
  • Information on whether or not the data signal is multiplexed on the SC, and information on whether or not interference cancellation or suppression is necessary to detect the desired signal if multiplexed on the SC, other information multiplexed on the SC Information related to the transmission mode of the terminal device is input to the reference signal separation unit 2041.
  • the reference signal separation unit 2041 determines which transmission processing of the base station apparatus uses in FIG. 9 based on these information, and transmits the reference signal to the resource element of the URS. Identify which data is located. Therefore, when the reference signal separation unit 2041 identifies that the data is not allocated to the resource element of the URS, the signal received by the resource element of the URS is output to the control information separation unit 2042 for data demodulation. CRS is used to estimate the frequency response to be used.
  • the control information detection unit 2044 performs PMI (Precoding ⁇ Matrix Indicator) of the desired signal, PMI of the transmission parameter of the interference signal, or the desired signal and the interference signal. Control information notified as PMI or the like used in common for both may be detected.
  • PMI Precoding ⁇ Matrix Indicator
  • a terminal device that does not cancel or suppress interference may use only the information on the downlink transmission mode of its own station for identifying a reference signal used for data demodulation, and information on whether or not it is multiplexed in SC and transmission of interference signals. It is not necessary to receive parameters.
  • the reference signal is arranged in the resource element of URS. It is conceivable that the number of transmission antenna ports (number of transmission layers) used for data transmission is different between the terminal apparatus that removes and suppresses interference and the terminal apparatus that does not remove and suppress interference.
  • the terminal that performs interference cancellation / suppression receives the number of transmission layers of the terminal device that does not perform interference cancellation / suppression as control information, and only the URS resource elements of the terminal devices that do not perform interference cancellation / suppression are arranged with reference signals. -You may arrange
  • the resource element in which the terminal device that performs interference cancellation / suppression arranges the URS is a resource element that arranges the URS for the number of transmission layers of the terminal device that does not perform interference removal / suppression.
  • the terminal device that performs interference removal / suppression and the terminal device that does not perform interference removal / suppression may be configured to match the settings of the terminal device with a small number of resource elements used for URS transmission. The number of transmission layers of the interference signal is notified as control information to the terminal device to be suppressed and the terminal device to which interference is not removed / suppressed.
  • data and reference signals are not multiplexed in SC due to different transmission modes of terminal devices when multiplexed in SC, and deterioration of the channel estimation system can be suppressed. Further, throughput can be improved by NOMA multiplexing in different transmission modes.
  • the transmission mode of the terminal device that performs interference removal / suppression is the URS base transmission mode, and only by the transmission mode of the terminal device that does not perform interference removal / suppression.
  • the base station device changes the generation of the transmission frame has been described
  • an example in which the base station device changes the transmission frame according to the transmission mode of the terminal device that does not eliminate or suppress interference and control information that can be notified is described. To do.
  • the example of a structure of the base station apparatus in this embodiment is the same as that of previous embodiment, and is FIG.
  • the example of a structure of the terminal device in this embodiment is the same as that of previous embodiment, and is FIG. Therefore, in the present embodiment, only different processing will be described, and description of similar processing will be omitted.
  • FIG. 10 is a diagram showing an example of a flowchart of the transmission process according to the present invention.
  • the base station apparatus generates control information for setting a downlink transmission mode for each terminal apparatus in advance and transmits the control information to the terminal apparatus from the transmission processing unit 103.
  • the radio resource control unit 108 Determine the combination.
  • the transmission mode discriminating unit 1018 identifies that the terminal apparatus that performs interference removal / suppression with a small transmission power allocation is the URS base transmission mode (S31).
  • the transmission mode determination unit 1018 identifies that a terminal device that does not perform interference cancellation / suppression with a large amount of power allocation can receive information related to the transmission mode of the terminal device that performs interference cancellation / suppression (S32).
  • a terminal device that does not perform interference cancellation / suppression cannot receive information related to the transmission mode of the terminal device that performs interference cancellation / suppression
  • the description is omitted because it is the same as in the second embodiment.
  • being able to receive information related to the transmission mode of the terminal device that eliminates and suppresses interference means that it is a transmission mode for NOMA, or that NOMA is set in RRC.
  • the fact that information related to the transmission mode of the terminal device to be removed / suppressed cannot be received is not a transmission mode for NOMA, NOMA is not set in RRC, or a transmission mode for NOMA or NOMA cannot be set And so on.
  • the reference signal generation unit 1016 generates a reference signal of the URS resource element of the terminal apparatus that performs interference cancellation / suppression, and the reference signal multiplexing unit 1015 generates a transmission frame in which the reference signal is arranged in the URS resource element (S33). .
  • the transmission mode determination unit 1018 determines whether a terminal device that does not remove or suppress transmission interference is set to the CRS base transmission mode (S34). When the transmission mode determination unit 1018 determines that the terminal device that does not perform interference cancellation / suppression is the CRS-based transmission mode, the reference signal generation unit 1016 does not perform interference cancellation / suppression for the resource element of the URS of the terminal device that performs interference cancellation / suppression.
  • the reference signal of the device is not generated, the transmission signal allocating unit 1019 does not place the data of the terminal device that does not perform interference cancellation / suppression in the resource element of the URS of the terminal device that performs interference cancellation / suppression, and the reference signal multiplexing unit 1015 Generate a transmission frame in which no reference signal of a terminal device that does not cancel or suppress interference is placed in the resource element of the URS of the terminal device to be suppressed (S35).
  • the terminal device in the CRS base transmission mode that does not cancel or suppress interference when receiving data is information regarding whether to place data in the resource element of URS (information related to the transmission mode of the terminal device that performs interference cancellation or suppression). is required.
  • the control information generation unit 109 for a terminal device that does not cancel or suppress interference, information on the transmission mode of the terminal device that performs interference cancellation or suppression, the number of layers, the number of layers to be used, and the antenna to be used Information on the resource element of URS such as the port number is transmitted as additional information of the control information.
  • the transmission mode determination unit 1018 uses the URS for all of the terminal devices multiplexed by the SC.
  • a terminal device that suppresses and a terminal device that does not cancel or suppress interference generate a URS that can be used for data demodulation
  • the reference signal multiplexing unit 1015 generates a transmission frame by arranging one reference signal in the resource element of the URS
  • the process proceeds to S36 (S37). Therefore, a plurality of URS signals destined for a plurality of terminal devices on which data signals are multiplexed by the SC are not generated and multiplexed by the SC.
  • the present invention is not limited to this example, and a plurality of URS signals destined for a plurality of terminal devices to which data signals are multiplexed by the SC by OCC of length X may be generated, and multiplexing by codes may be performed.
  • the signal multiplexing 1014 multiplexes signals addressed to a plurality of terminal devices by SC (S36).
  • a transmission frame is generated when the transmission modes of a plurality of terminal apparatuses that transmit data signals multiplexed by SC are different. Therefore, the terminal apparatus that does not cancel or suppress the interference transmits the downlink transmission mode of the own station stored in the transmission mode holding unit 2045 and the additional information included in the control information detected by the control information detecting unit 2044 by blind decoding.
  • Information on whether or not the data signal is multiplexed on the SC, and information on whether or not interference cancellation or suppression is necessary to detect the desired signal if multiplexed on the SC, other information multiplexed on the SC Information related to the transmission mode of the terminal device is input to the reference signal separation unit 2041.
  • the reference signal separation unit 2041 determines which transmission process of the base station apparatus uses in FIG. 10 based on such information, and also refers to the data in the URS resource element Identify that no signal is placed. Therefore, when the reference signal separation unit 2041 identifies that neither data nor reference signals are arranged in the URS resource element, the signal received by the URS resource element is transmitted to both the propagation path estimation unit 206 and the control information separation unit 2042. Discard without outputting. Therefore, the terminal apparatus uses CRS for estimating the frequency response used for data demodulation.
  • the control information detection unit 2044 When the base station apparatus precodes the data signal, the control information detection unit 2044 performs PMI (Precoding ⁇ Matrix Indicator) of the desired signal, PMI of the transmission parameter of the interference signal, or the desired signal and the interference signal. Control information notified as PMI or the like used in common for both may be detected.
  • PMI Precoding ⁇ Matrix Indicator
  • a terminal device that eliminates and suppresses interference includes a downlink transmission mode of its own station for identification of a reference signal used for data demodulation, and a terminal device that does not cancel and suppress interference detected by the control information detection unit 2044 The information related to whether or not the information related to can be received.
  • data and reference signals are not multiplexed in SC due to different transmission modes of terminal devices when multiplexed in SC, and deterioration of the channel estimation system can be suppressed. Further, throughput can be improved by NOMA multiplexing in different transmission modes.
  • the program that operates in the base station apparatus and terminal apparatus related to the present invention is a program that controls the CPU or the like (a program that causes a computer to function) so as to realize the functions of the above-described embodiments related to the present invention.
  • Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary.
  • a recording medium for storing the program a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient.
  • the processing is performed in cooperation with the operating system or other application programs.
  • the functions of the invention may be realized.
  • the program when distributing to the market, can be stored in a portable recording medium for distribution, or transferred to a server computer connected via a network such as the Internet.
  • the storage device of the server computer is also included in the present invention.
  • part or all of the base station apparatus and terminal apparatus in the above-described embodiment may be realized as an LSI that is typically an integrated circuit.
  • Each functional block of the base station apparatus and the terminal apparatus may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. When each functional block is integrated, an integrated circuit controller for controlling them is added.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.
  • the terminal device of the present invention is not limited to application to a mobile station device, but is a stationary or non-movable electronic device installed indoors or outdoors, such as AV equipment, kitchen equipment, cleaning / washing equipment Needless to say, it can be applied to air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • Reception processing unit 203 ... FFT unit 204 ... Signal separation unit 205 ... Signal detection unit 206 ... Propagation path estimation unit 207 ... Control information generation unit 208 ... Control information transmission unit 209 ... Transmission Signal antenna 2041... Reference signal separation unit 2042... Control information separation unit 2043... Assignment signal extraction unit 2044... Control information detection unit 2045... Transmission mode holding unit 2051 ... Interference signal detection unit 2052. ... Desired signal detector 2054-1 ... Propagation path compensator 2054-2 ... Demodulator 2054-3 ... Decoder

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

There has been a problem in that when the transmission modes of terminal devices that are multiplexed by a base station device by means of Superposition Coding (SC) are different, a data signal and reference signal are multiplexed, channel estimation accuracy deteriorates, and throughput is reduced. Provided is a base station device that transmits data to a plurality of terminal devices, said base station device having a signal multiplexing unit that multiplexes data signals of a first and second terminal device on the same resource, a transmission power control unit that configures the transmission power allocated to a data signal addressed to the second terminal device to be higher than the transmission power allocated to a data signal addressed to the first terminal device, and a control information generation unit that generates control information for reporting information relating to different downlink transmission modes to the first and second terminal devices which transmit data signals at different transmission powers. Control information including the transmission mode of the other terminal device is generated by the control information generation unit in the first and/or second terminal device.

Description

端末装置および基地局装置Terminal apparatus and base station apparatus
 本発明は、端末装置および基地局装置に関する。 The present invention relates to a terminal device and a base station device.
 移動体通信システムでは、トラフィックの急増によりシステム帯域の広帯域化が進んでいるが、限られた資源である周波数の利用効率の向上が課題の一つとなっている。3GPP(Third Generation Partnership Project)のLTE(Long Term Evolution)、LTE-A(LTE-Advanced)のような通信システムでは、基地局装置(基地局、送信局、送信点、下りリンク送信装置、上りリンク受信装置、送信アンテナ群、送信アンテナポート群、eNodeB)と複数の端末装置による通信において、一般的に端末装置間での直交性を保つことで端末装置間の干渉(ユーザ間干渉とも称される)が生じないようにするアクセス方式の1つの周波数分割多元接続(FDMA: Frequency Division Multiple Access)を前提に近年標準化が行なわれている。 In the mobile communication system, the system bandwidth has been widened due to the rapid increase in traffic. However, improvement of frequency utilization efficiency, which is a limited resource, is one of the issues. In communication systems such as LTE (Long Termination Evolution) and LTE-A (LTE-Advanced) of 3GPP (Third Generation Partnership Project), base station devices (base stations, transmitting stations, transmission points, downlink transmitters, uplinks) In communication between a receiving device, a transmitting antenna group, a transmitting antenna port group, eNodeB) and a plurality of terminal devices, interference between terminal devices is generally maintained by maintaining orthogonality between terminal devices (also referred to as inter-user interference). In recent years, standardization has been carried out on the premise of one frequency division multiple access (FDMA: “Frequency” Division “Multiple” Access) of an access method that prevents the occurrence of).
 例えば、3GPPのLTEのRel.8では下り回線(基地局装置から端末装置への通信)でOFDM(Orthogonal Frequency Division Multiplexing)が用いられ、上り回線(端末装置から基地局装置への通信)ではDFT-S-OFDM(Discrete Fourier Transform Spread OFDM)が仕様化されている。 For example, 3GPP LTE Rel. 8, OFDM (Orthogonal Frequency Division Multiplexing) is used in the downlink (communication from the base station device to the terminal device), and DFT-S-OFDM (Discrete Fourier Transform) in the uplink (communication from the terminal device to the base station device). Spread (OFDM) has been specified.
 近年では、システム容量の増大や通信機会の向上のために、複数の端末装置に同じ時間、周波数、空間リソース(同一空間プリコーディング)を割り当て、非直交多重して送信するNOMA(Non-Orthogonal Multiple Access)技術の検討が進められている(非特許文献1参照)。基地局装置が複数の端末装置へ送信する信号をSuperposition Coding(SC、またはSCM: Superposition Coded Modulationとも呼称される)などにより非直交多重して送信するため、ユーザ間干渉が生じる。従って、端末装置はユーザ間干渉をキャンセルもしくは抑圧する必要がある。ユーザ間干渉をキャンセルする技術としては、例えば、干渉信号の復号結果を用いて干渉除去するCWIC(Codeword level Interference Cancellation)や干渉信号の復号前の信号を用いて干渉除去するSLIC(Symbol level Interference Cancellation)がある。また、NOMAの信号検出方法として、最尤検出(MLD: Maximum Likelihood Detection)も適用可能である。 In recent years, NOMA (Non-Orthogonal Multiple Multiplex) that allocates the same time, frequency, and spatial resources (same spatial precoding) to a plurality of terminal devices and transmits them in a non-orthogonal multiplexed manner in order to increase system capacity and communication opportunities. (Access) technology is being studied (see Non-Patent Document 1). Since signals transmitted from the base station apparatus to a plurality of terminal apparatuses are transmitted by non-orthogonal multiplexing by Superposition Coding (also referred to as SC or SCM: “Superposition” Coded ”Modulation), inter-user interference occurs. Therefore, the terminal device needs to cancel or suppress the interference between users. As a technique for canceling the interference between users, for example, CWIC (Codeword level interference cancellation) using an interference signal decoding result or SLIC (Symbol level interference interference canceling using a signal before decoding the interference signal is used. ) Further, maximum likelihood detection (MLD: Maximum Likelihood Detection) is also applicable as a NOMA signal detection method.
 基地局装置が複数の端末装置宛ての信号をSCで多重する場合、多重される端末装置の送信モード(TM: Transmission Mode)が異なることが考えられる。ここで、送信モードには、データの復調に用いる参照信号をCRS(Cell-Specific Reference Signal、セル固有参照信号)とする送信モードが存在する。例えば、シングルアンテナポートの送信モード1、送信ダイバーシチの送信モード2、Large Delay CDD(Cyclic Delay Diversity)の送信モード3、閉ループMIMO(Multiple Input Multiple Output)の送信モード4や6、マルチユーザMIMO用の送信モード5などがある。また、別の送信モードとしてURS(UE-Specific Reference Signal、ユーザ固有参照信号)もしくはDMRS(De-Modulation Reference Signal)をデータの復調に用いる送信モードが存在する。例えば、シングルユーザMIMOとマルチユーザMIMOを使用できる送信モード8、8レイヤ送信が可能な送信モード9、ダウンリンクの協調通信が可能な送信モード10などがある。 When the base station device multiplexes signals addressed to a plurality of terminal devices by SC, it is conceivable that the transmission mode (TM: “Transmission” Mode) of the multiplexed terminal devices is different. Here, the transmission mode includes a transmission mode in which a reference signal used for data demodulation is CRS (Cell-Specific Reference Signal). For example, transmission mode 1 for single antenna port, transmission mode 2 for transmission diversity, transmission mode 3 for large delay CDD (Cyclic Delay Diversity), transmission modes 4 and 6 for closed loop MIMO (Multiple Input Multiple Output), and for multi-user MIMO There is a transmission mode 5 or the like. As another transmission mode, there is a transmission mode using URS (UE-Specific Reference Signal) or DMRS (De-Modulation Reference Signal) for data demodulation. For example, there are a transmission mode 8 in which single-user MIMO and multi-user MIMO can be used, a transmission mode 9 in which 8-layer transmission is possible, and a transmission mode 10 in which downlink cooperative communication is possible.
 しかしながら、データの復調に用いる参照信号をCRSとする送信モードの端末装置宛てのデータ信号とデータの復調に用いる参照信号をURSとする送信モードの端末装置宛てのデータ信号をSCにより非直交多重すると、データと参照信号がSCで多重され、チャネル推定精度が劣化し、スループットが低下する問題があった。また、データの復調に用いる参照信号をURSとする送信モードの端末装置宛てのデータ信号が複数存在する場合に、これらのデータ信号をSCにより非直交多重する場合でも、使用するアンテナポートが異なると、データと参照信号がSCで多重されることがあり、同様の問題がある。 However, when non-orthogonal multiplexing is performed on the data signal addressed to the terminal device in the transmission mode using CRS as the reference signal used for data demodulation and the data signal addressed to the terminal device in the transmission mode using URS as the reference signal used for data demodulation The data and the reference signal are multiplexed by the SC, so that the channel estimation accuracy is deteriorated and the throughput is lowered. In addition, when there are a plurality of data signals addressed to a terminal device in a transmission mode in which the reference signal used for data demodulation is URS, even when these data signals are non-orthogonal multiplexed by SC, the antenna port to be used is different. The data and the reference signal may be multiplexed by the SC, and there is a similar problem.
 本発明は上記の点に鑑みてなされたものであり、異なる送信モードが設定されている端末装置が存在する場合に、SCを用いてこれらの端末装置宛てのデータ信号を非直交多重した時の伝送特性を改善することができる通信方法を提供することにある。 The present invention has been made in view of the above points. When there are terminal apparatuses set with different transmission modes, data signals destined for these terminal apparatuses are non-orthogonally multiplexed using SC. An object of the present invention is to provide a communication method capable of improving transmission characteristics.
 (1)本発明は上記の課題を解決するためになされたものであり、本発明の一態様は、複数の端末装置に対してデータ信号を送信する基地局装置であって、前記基地局装置は少なくとも第1の端末装置と第2の端末装置のデータ信号を同一リソースに多重する信号多重部と、前記第1の端末装置宛てのデータ信号に割り当てる送信電力より前記第2の端末装置宛てのデータ信号に割り当てる送信電力を高くする送信電力制御部と送信電力が異なるデータ信号を送信する前記第1の端末装置と前記第2の端末装置に互いに異なるダウンリンク伝送の送信モードに関する情報を通知する制御情報を生成する制御情報生成部とを有し、前記第1の端末装置もしくは前記第2の端末装置の少なくとも一方に他の端末装置の前記送信モードを含む制御情報を前記制御情報生成部で生成する。 (1) The present invention has been made to solve the above problems, and one aspect of the present invention is a base station apparatus that transmits data signals to a plurality of terminal apparatuses, the base station apparatus Is a signal multiplexing unit that multiplexes data signals of at least the first terminal device and the second terminal device into the same resource, and a transmission power allocated to the data signal addressed to the first terminal device. A transmission power control unit that increases the transmission power assigned to the data signal and the first terminal device that transmits a data signal having a different transmission power and the second terminal device are notified of information regarding transmission modes of different downlink transmissions. A control information generating unit that generates control information, and including at least one of the first terminal device or the second terminal device including the transmission mode of another terminal device Generating a broadcast in the control information generating unit.
 (2)また、本発明の一態様は、前記制御情報生成部が生成する制御情報に含まれる前記送信モードに関する情報には、少なくともデータの復調の伝搬路推定に用いる参照信号がユーザ固有参照信号の第1の送信モードとデータの復調の伝搬路推定に用いる参照信号がセル固有参照信号の第2の送信モードがある。 (2) Further, according to an aspect of the present invention, in the information regarding the transmission mode included in the control information generated by the control information generation unit, at least a reference signal used for channel estimation of data demodulation is a user-specific reference signal. There are a first transmission mode and a second transmission mode in which a reference signal used for channel estimation of data demodulation is a cell-specific reference signal.
 (3)また、本発明の一態様は、前記基地局装置は、前記第1の端末装置宛てと前記第2の端末装置宛てのデータ信号のユーザ固有参照信号を生成して多重する送信信号生成部を有し、前記送信信号生成部は前記第1の端末装置と前記第2の端末装置の前記送信モードの組み合わせに応じてデータ信号の多重方法、もしくはユーザ固有参照信号の多重方法の少なくとも一方が異なる。 (3) In addition, according to one aspect of the present invention, the base station apparatus generates a transmission signal that multiplexes by generating user-specific reference signals of data signals addressed to the first terminal apparatus and the second terminal apparatus. And the transmission signal generator is at least one of a data signal multiplexing method and a user-specific reference signal multiplexing method according to a combination of the transmission modes of the first terminal device and the second terminal device. Is different.
 (4)また、本発明の一態様は、前記制御情報生成部が生成する制御情報に含まれる前記送信モードに関する情報には、前記第1の端末装置もしくは前記第2の端末装置の少なくとも一方に他の端末装置のユーザ固有参照信号の送信に使用するアンテナポート数、アンテナポート番号、レイヤ数もしくはユーザ固有参照信号を割り当てるリソースエレメントの情報の少なくとも1つが含まれる。 (4) Further, according to one aspect of the present invention, the information regarding the transmission mode included in the control information generated by the control information generation unit includes at least one of the first terminal device and the second terminal device. It includes at least one of resource element information to which the number of antenna ports, antenna port number, number of layers, or user-specific reference signal to be used for transmission of user-specific reference signals of other terminal devices is assigned.
 (5)また、本発明の一態様は、前記制御情報生成部が生成する制御情報を用いて前記第1の端末装置に前記第2の送信モードを設定している場合、前記第2の端末装置の前記送信モードによって前記第1の送信モードで送信するユーザ固有参照信号のリソースエレメントに前記第1の端末装置のデータ信号を割り当てるか、前記第1の端末装置宛ての信号を何も割り当てないかを切り替える。 (5) In addition, according to an aspect of the present invention, when the second transmission mode is set in the first terminal device using control information generated by the control information generation unit, the second terminal According to the transmission mode of the apparatus, the data signal of the first terminal apparatus is allocated to the resource element of the user-specific reference signal transmitted in the first transmission mode, or no signal addressed to the first terminal apparatus is allocated. Switch between.
 (6)また、本発明の一態様は、前記制御情報生成部が生成する制御情報を用いて前記第1の端末装置に前記第2の送信モードを設定している場合、前記第2の端末装置が前記第1の端末装置の送信モードに関する情報を受信可能かによって前記第1の送信モードで送信するユーザ固有参照信号のリソースエレメントに前記第2の端末装置のデータ信号を割り当てるか、前記第2の端末装置宛ての信号を何も割り当てないかを切り替える。 (6) In addition, according to an aspect of the present invention, when the second transmission mode is set in the first terminal device using the control information generated by the control information generation unit, the second terminal Depending on whether the device can receive information on the transmission mode of the first terminal device, the data signal of the second terminal device is allocated to the resource element of the user-specific reference signal transmitted in the first transmission mode, or Switch whether to assign any signal addressed to the terminal device 2.
 (7)また、本発明の一態様は、前記制御情報生成部が生成する制御情報を用いて前記第1の端末装置に前記第1の送信モードを設定している場合、前記第2の端末装置の前記送信モードによって前記第1の送信モードで送信するユーザ固有参照信号のリソースエレメントに前記第1の端末装置のユーザ固有参照信号を割り当てるか、前記第1の端末装置のデータを割り当てるかを切り替える。 (7) In addition, according to one aspect of the present invention, when the first transmission mode is set in the first terminal device using control information generated by the control information generation unit, the second terminal Whether to allocate the user-specific reference signal of the first terminal device or the data of the first terminal device to the resource element of the user-specific reference signal transmitted in the first transmission mode according to the transmission mode of the device Switch.
 (8)また、本発明の一態様は、前記制御情報生成部が生成する制御情報を用いて前記第1の端末装置に前記第1の送信モードを設定している場合、前記第2の端末装置が前記第1の端末装置の送信モードに関する情報を受信可能かによって前記第1の送信モードで送信するユーザ固有参照信号のリソースエレメントに前記第1の端末装置のユーザ固有参照信号を割り当てるか、前記第1の端末装置のデータを割り当てるかを切り替える。 (8) Further, according to one aspect of the present invention, when the first transmission mode is set in the first terminal device using the control information generated by the control information generation unit, the second terminal Assigning the user-specific reference signal of the first terminal device to the resource element of the user-specific reference signal to be transmitted in the first transmission mode depending on whether the device can receive information on the transmission mode of the first terminal device; Whether to allocate data of the first terminal device is switched.
 (9)また、本発明の一態様は、前記制御情報生成部が生成する制御情報を用いて前記第1の端末装置に前記第1の送信モードを設定している場合、前記第2の端末装置の前記送信モードによって前記第1の送信モードで送信するユーザ固有参照信号のリソースエレメントに前記第2の端末装置のデータ信号を割り当てるか、前記第2の端末装置宛ての信号を何も割り当てないかを切り替える。 (9) Moreover, according to one aspect of the present invention, when the first transmission mode is set in the first terminal device using the control information generated by the control information generation unit, the second terminal Depending on the transmission mode of the apparatus, the data signal of the second terminal apparatus is allocated to the resource element of the user-specific reference signal transmitted in the first transmission mode, or no signal addressed to the second terminal apparatus is allocated. Switch between.
 (10)また、本発明の一態様は、基地局装置より送信される複数の端末装置のデータ信号が多重された信号を受信する端末装置であって、前記端末装置は、同一リソースに割り当てられている他の端末装置宛てのデータ信号と異なる送信電力で多重された信号から所望信号を検出する信号検出部と前記基地局装置より送信された制御情報を検出する制御情報検出部と前記制御情報に含まれるダウンリンクの送信モードと他の端末装置の送信モードに関する情報よりユーザ固有参照信号の送信に用いられるリソースエレメントに配置される信号を識別する参照信号分離部とを有し、参照信号分離部は、ユーザ固有参照信号の送信に用いられるリソースエレメントにユーザ固有参照信号、データ信号、もしくは何も配置されていない、のいずれの送信フレームを使用されたかを判別する。 (10) One aspect of the present invention is a terminal device that receives a signal in which data signals of a plurality of terminal devices transmitted from a base station device are multiplexed. The terminal devices are assigned to the same resource. A signal detection unit for detecting a desired signal from a signal multiplexed with a different transmission power from a data signal addressed to another terminal device, a control information detection unit for detecting control information transmitted from the base station device, and the control information A reference signal separation unit for identifying a signal arranged in a resource element used for transmission of a user-specific reference signal from information on a downlink transmission mode and a transmission mode of another terminal device included in the reference signal separation The user element is a user-specific reference signal, data signal, or nothing is placed in the resource element used to transmit the user-specific reference signal. Or to determine which is the used transmission frame.
 (11)また、本発明の一態様は、前記制御情報検出部で受信する前記送信モードと前記他の端末装置の送信モードは、少なくともデータの復調の伝搬路推定に用いる参照信号がユーザ固有参照信号の第1の送信モードとデータの復調の伝搬路推定に用いる参照信号がセル固有参照信号の第2の送信モードがある。 (11) Further, according to one aspect of the present invention, the transmission mode received by the control information detection unit and the transmission mode of the other terminal device are at least a reference signal used for estimating a propagation path for data demodulation. There are a first transmission mode of a signal and a second transmission mode in which a reference signal used for channel estimation of data demodulation is a cell-specific reference signal.
 (12)また、本発明の一態様は、所望信号に割り当て送信電力が他の端末装置宛てのデータ信号に割り当て送信電力より低く設定されている場合、参照信号分離部が前記他の端末装置の前記送信モードによってユーザ固有参照信号の送信に用いられるリソースエレメントに配置される信号を判別する。 (12) Further, according to one aspect of the present invention, when the transmission power allocated to a desired signal is set lower than the transmission power allocated to a data signal addressed to another terminal apparatus, the reference signal separation unit is configured to A signal arranged in a resource element used for transmitting a user-specific reference signal is determined according to the transmission mode.
 (13)また、本発明の一態様は、所望信号に割り当て送信電力が他の端末装置宛てのデータ信号に割り当て送信電力より低く設定されている場合、参照信号分離部は前記他の端末装置が前記送信モードに関する情報を受信可能かによってユーザ固有参照信号の送信に用いられるリソースエレメントに配置される信号を判別する。 (13) In addition, according to one aspect of the present invention, when the transmission power allocated to a desired signal is set lower than the transmission power allocated to a data signal addressed to another terminal apparatus, the reference signal separation unit The signal arranged in the resource element used for transmitting the user-specific reference signal is determined depending on whether the information on the transmission mode can be received.
 本発明によれば、NOMAにおける伝送特性を改善することができる。 According to the present invention, transmission characteristics in NOMA can be improved.
本発明に係るシステムの構成の一例を示す図である。It is a figure which shows an example of a structure of the system which concerns on this invention. 本発明に係る基地局装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the base station apparatus which concerns on this invention. 本発明に係る送信信号生成部101の構成の一例を示す図である。It is a figure which shows an example of a structure of the transmission signal generation part 101 which concerns on this invention. 本発明に係る端末装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the terminal device which concerns on this invention. 本発明に係る信号分離部204の構成の一例を示す図である。It is a figure which shows an example of a structure of the signal separation part 204 which concerns on this invention. 本発明に係る信号検出部205の構成の一例を示す図である。It is a figure which shows an example of a structure of the signal detection part 205 which concerns on this invention. 本発明に係る所望信号検出部2054の構成の一例を示す図である。It is a figure which shows an example of a structure of the desired signal detection part 2054 which concerns on this invention. 本発明に係る送信処理のフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart of the transmission process which concerns on this invention. 本発明に係る送信処理のフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart of the transmission process which concerns on this invention. 本発明に係る送信処理のフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart of the transmission process which concerns on this invention. 本発明に係る基地局装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the base station apparatus which concerns on this invention.
 以下、図面を参照しながら、実施形態について説明する。以下の各実施形態では、通信システムは、基地局装置(送信装置、セル、送信点、送信アンテナ群、送信アンテナポート群、コンポーネントキャリア、サービングセル、eNodeB、Pico eNodeB、スモールセル、RRH: Radio Remote Head、LPN: Low Power Node)および端末装置(端末、移動端末、受信点、受信端末、受信装置、受信アンテナ群、受信アンテナポート群、UE: User Equipment)を備える。また、本明細書中は、下り回線(基地局装置から端末装置への通信、以下、ダウンリンクとする)を前提としているが、本発明の送信方法を上り回線(端末装置から基地局装置への通信、以下、アップリンクとする)のデータ伝送に適用しても良く、アップリンク伝送でSCにより複数の信号を多重する場合やアップリンク伝送におけるマルチユーザMIMOを行なう場合に適用しても良い。また、基地局装置と端末装置間の制御情報の送信だけでなく、基地局装置と中継局装置間や中継局装置と端末装置間や端末間通信に本発明を適用しても良い。 Hereinafter, embodiments will be described with reference to the drawings. In each of the following embodiments, the communication system includes a base station device (transmitting device, cell, transmission point, transmitting antenna group, transmitting antenna port group, component carrier, serving cell, eNodeB, Pico eNodeB, small cell, RRH: Radio Remote Head , LPN: Low Power Node) and a terminal device (terminal, mobile terminal, receiving point, receiving terminal, receiving device, receiving antenna group, receiving antenna port group, UE: User Equipment). In this specification, it is assumed that the downlink (communication from the base station apparatus to the terminal apparatus, hereinafter referred to as the downlink) is used, but the transmission method of the present invention is the uplink (from the terminal apparatus to the base station apparatus). (Hereinafter referred to as uplink), and may be applied to a case where a plurality of signals are multiplexed by SC in uplink transmission or multi-user MIMO is performed in uplink transmission. . Further, the present invention may be applied not only to transmission of control information between a base station apparatus and a terminal apparatus, but also to communication between a base station apparatus and a relay station apparatus, between a relay station apparatus and a terminal apparatus, or between terminals.
 図1は、本発明に係るシステムの構成の一例を示す。該システムは、基地局装置10、端末装置21~25から構成される。なお、端末装置の数はこの例に限定されない他、各装置のアンテナ数は1であっても良いし、複数あっても良い。また、基地局装置10は無線事業者がサービスを提供する国や地域から使用許可が得られた、いわゆるライセンスバンド(licensed band)による通信を行なっても良いし、国や地域からの使用許可を必要としない、いわゆるアンライセンスバンド(unlicensed band)による通信を行なっても良い。また、基地局装置10は、カバレッジの広いマクロ基地局装置であっても良いし、マクロ基地局装置よりカバレッジが狭いピコ基地局装置(Pico eNB: evolved Node B、SmallCell、Low Power Node、Remote Radio Headとも呼称される)でも良い。また、本明細書においてライセンスバンド以外の周波数帯域は、アンライセンスバンドの例に限定されず、ホワイトバンド(ホワイトスペース)等でも良い。また、基地局装置10はLTEの通信で用いられる帯域のコンポーネントキャリア(CC: Component CarrierもしくはServing cellとも呼称される)を複数使用するCA(Carrier Aggregation)技術を適用しても良い。 FIG. 1 shows an example of the configuration of a system according to the present invention. The system includes a base station apparatus 10 and terminal apparatuses 21 to 25. In addition, the number of terminal devices is not limited to this example, and the number of antennas of each device may be one or plural. In addition, the base station apparatus 10 may perform communication using a so-called licensed band obtained from the country or region where the wireless provider provides the service, or use permission from the country or region. Communication using a so-called unlicensed band that is not required may be performed. Further, the base station apparatus 10 may be a macro base station apparatus with a wide coverage, or a pico base station apparatus (Pico eNB: evolved Node B, SmallCell, Low Power Node, Remote Radio) having a narrower coverage than the macro base station device. (Also called Head)). In this specification, the frequency band other than the license band is not limited to the example of the unlicensed band, and may be a white band (white space) or the like. Further, the base station apparatus 10 may apply a CA (Carrier-Aggregation) technique that uses a plurality of component carriers (CC: also referred to as "Component Carrier" or Serving "cell") in a band used in LTE communication.
 基地局装置10は、ダウンリンクのデータ信号をPDSCH(Physical Downlink Shared CHannel)で送信し、データ信号に用いる送信パラメータを含む制御情報はPDCCH(Physical Downlink Control CHannel)やEPDCCH(Enhanced PDCCH)で送信する。また、端末装置21~25は、PDCCHもしくはEPDCCHで通知される制御情報のDCI(Downlink Control Information、DL grantとも呼称される)をブラインドデコーディングで検出し、DCIに含まれる送信パラメータに基づいてダウンリンクのデータ信号の検出を行なう。また、アップリンク伝送においては、端末装置21~25は、基地局装置10よりPDCCHもしくはEPDCCHで送信されるDCI(アップリンク伝送の送信パラメータの通知を行なう場合はUL grantとも呼称される)をブラインドデコーディングで検出し、DCIに含まれる送信パラメータに基づいてアップリンク伝送におけるデータ伝送を行なう。アップリンク伝送におけるデータ伝送は、PUSCH(Physical Uplink Shared CHannel)で送信され、アップリンク伝送の制御情報、例えばSR(Scheduling Request)やダウンリンクのデータに対するACK/NACK(Acknowledgement / Negative Acknowledgement)や伝搬路品質情報(CSI: Channel State Information)はPUCCH(Physical Uplink Control CHannel)で送信される。 The base station apparatus 10 transmits a downlink data signal using PDSCH (Physical Downlink Shared CHANnel), and transmits control information including a transmission parameter used for the data signal by PDCCH (Physical Downlink Control CHANnel) or EPDCCH (Enhanced PDCCH). . The terminal devices 21 to 25 detect DCI (also referred to as Downlink Control Information, DL grant) of control information notified by PDCCH or EPDCCH by blind decoding, and down-convert based on transmission parameters included in DCI Link data signals are detected. In uplink transmission, the terminal devices 21 to 25 blindly transmit DCI (also referred to as UL grant when reporting transmission parameters of uplink transmission) transmitted from the base station device 10 by PDCCH or EPDCCH. Data transmission in uplink transmission is performed based on transmission parameters detected by decoding and included in DCI. Data transmission in uplink transmission is transmitted by PUSCH (Physical Uplink Shared CHannel), and control information of uplink transmission such as ACK / NACK (Acknowledgement / Negative Acknowledgement) and propagation path for SR (Scheduling Request) and downlink data Quality information (CSI: “Channel State Information”) is transmitted by PUCCH (Physical Uplink Control Control CHannel).
 ここで、基地局装置10は、周波数スケジューリングで各端末装置へダウンリンクのデータ伝送で用いる周波数リソースを決定する。基地局装置10は、周波数スケジューリングによりOFDMでのデータ伝送を選択する場合や端末装置間の受信電力差(パスロス差)を利用してSuperposition Coding(SC、またはSCM: Superposition Coded Modulationとも呼称される)によるNOMA(Non-Orthogonal Multiple Access)でのデータ伝送を選択する場合がある。SCで非直交多重する場合は、ダウンリンクのデータ伝送で用いる送信電力をSCで多重されるユーザに分配するため、通常のSCで複数の端末装置の信号を多重しないOFDM伝送と送信電力が異なる。また、端末装置はSCで多重されることで生じるユーザ間干渉を除去もしくは抑圧して検出することから、基地局装置は干渉信号の検出に必要な制御情報を通知する必要がある。例えば、基地局装置が端末装置21と22をSCで多重する場合、パスロスの小さい端末装置21に割り当てる電力をパスロスの大きい端末装置22に割り当てる電力より小さくすることが考えられる。この場合、端末装置21は、より多くの電力が割り当てられる端末装置22宛ての信号が干渉信号となり、電力の大きい干渉信号の抑圧もしくは除去しないと所望信号の検出が困難となる。また、基地局装置は周波数スケジューリングにおいて非直交多重する端末装置の組み合わせを決定するペアリングを行なう。システムスループットが高くなるようにペアリングを行なうためには、非直交多重が可能な端末装置の候補数が多いことが望ましい。そのため、端末装置毎にダウンリンクの送信モード(TM: Transmission Mode)が設定されているが、より多くの送信モードの組み合わせでも非直交多重が可能であることが重要となる。ここで、送信モードには、データの復調に用いる参照信号をCRS(Cell-Specific Reference Signal、セル固有参照信号)とする送信モード(以下、CRSベース送信モードと呼称する)とURS(UE-Specific Reference Signal、ユーザ固有参照信号)もしくはDMRS(De-Modulation Reference Signal)をデータの復調に用いる送信モード(以下、URSベース送信モードと呼称する)が存在する。以下の実施形態では、異なる送信モードの端末装置宛てのデータ信号をSCで多重時にも良好な伝送特性を実現する方法について説明する。 Here, the base station apparatus 10 determines a frequency resource used in downlink data transmission to each terminal apparatus by frequency scheduling. When the base station apparatus 10 selects data transmission by OFDM by frequency scheduling or uses a received power difference (path loss difference) between terminal apparatuses, Superposition Coding (also referred to as SC or SCM: Superposition Coded Modulation) In some cases, data transmission by NOMA (Non-Orthogonal Multiple Access) is selected. When non-orthogonal multiplexing is performed in the SC, the transmission power used for downlink data transmission is distributed to users multiplexed in the SC. Therefore, the transmission power is different from the OFDM transmission in which signals of a plurality of terminal devices are not multiplexed in a normal SC. . In addition, since the terminal device detects the interference between users caused by multiplexing in the SC by removing or suppressing it, the base station device needs to notify control information necessary for detecting the interference signal. For example, when the base station device multiplexes the terminal devices 21 and 22 by SC, it is conceivable that the power allocated to the terminal device 21 with a small path loss is made smaller than the power allocated to the terminal device 22 with a large path loss. In this case, in the terminal device 21, a signal addressed to the terminal device 22 to which more power is allocated becomes an interference signal, and it is difficult to detect a desired signal unless the interference signal having a large power is suppressed or removed. Further, the base station apparatus performs pairing for determining a combination of terminal apparatuses that perform non-orthogonal multiplexing in frequency scheduling. In order to perform pairing so as to increase the system throughput, it is desirable that the number of terminal device candidates capable of non-orthogonal multiplexing is large. Therefore, a downlink transmission mode (TM: “Transmission” Mode) is set for each terminal device, but it is important that non-orthogonal multiplexing is possible even with a larger number of combinations of transmission modes. Here, the transmission mode includes a transmission mode (hereinafter referred to as CRS-based transmission mode) in which a reference signal used for data demodulation is CRS (Cell-Specific Reference Signal) and URS (UE-Specific). There is a transmission mode (hereinafter referred to as URS base transmission mode) in which Reference Signal, user-specific reference signal) or DMRS (De-Modulation Reference Signal) is used for data demodulation. In the following embodiments, a method for realizing good transmission characteristics even when data signals addressed to terminal devices in different transmission modes are multiplexed by the SC will be described.
 (第1の実施形態)
 図2に、本発明に係る基地局装置の構成の一例を示す。ただし、本発明に必要な最低限のブロックを示している。同図は説明を簡単にするために、基地局装置の送受信アンテナをそれぞれ1本としているが、実際には複数の送信アンテナを有し、各送信アンテナで同様の処理をしても良い。基地局装置は、端末装置からPUCCHやPUSCHで送信された信号を受信アンテナ105で受信し、無線受信部106に入力する。無線受信部106は、受信信号をベースバンド周波数にダウンコンバートし、A/D(Analog/Digital;アナログ/ディジタル)変換し、ディジタル信号からCP(Cyclic Prefix)を除去した信号を制御情報検出部107に入力する。制御情報検出部107は、受信信号からPUCCHで送信された制御情報やPUSCHで送信されるPH(Power Headroom)などの制御情報を検出し、無線リソース制御部108に入力する。無線リソース制御部108は、周波数スケジューリングとしてCSIなどに基づいてダウンリンクのデータ伝送に用いる周波数リソースの割当を決定する。周波数リソースの割当は、1サブフレームの12サブキャリアから構成されるRB(Resource Block)単位もしくは、複数のRBをグループ化したRBG(Resource Block Group)単位で行なうことを前提に説明するが、本発明はこれに限定されない。ここで、1サブフレームは2スロットで構成され、1スロットは7OFDMシンボルから構成される例とするが、本発明はサブフレーム構成もこの例に限定されない。無線リソース制御部108は、周波数スケジューリングにおいてSCで多重しないOFDM伝送する端末装置とSCで多重する端末装置の組み合わせやリソース割当(RA: Resource AllocationもしくはResource Assignment、以下RA情報とする)を決定する。無線リソース制御部108は、SCで多重する端末装置に対して各端末装置に割り当てる送信電力を決定する。さらに、無線リソース制御部108は、適応変調符号化(Adaptive Modulation and Coding、リンクアダプテーションとも呼称される)で各端末装置宛てのデータのMCS(Modulation and Coding Scheme)やMIMO(Multiple Input Multiple Output)伝送の適用、MIMO伝送の場合はストリーム数(送信レイヤ数)を決定する。無線リソース制御部108は、制御情報生成部109にRA情報、MCS、送信ストリーム数の情報を入力する。
(First embodiment)
FIG. 2 shows an example of the configuration of the base station apparatus according to the present invention. However, the minimum blocks necessary for the present invention are shown. In the figure, for simplicity of explanation, each base station apparatus has one transmission / reception antenna. However, actually, a plurality of transmission antennas may be provided, and the same processing may be performed by each transmission antenna. The base station apparatus receives a signal transmitted from the terminal apparatus via PUCCH or PUSCH by the reception antenna 105 and inputs the signal to the radio reception unit 106. The radio reception unit 106 down-converts the received signal to a baseband frequency, performs A / D (Analog / Digital) conversion, and removes a CP (Cyclic Prefix) from the digital signal, thereby controlling the control information detection unit 107. To enter. The control information detection unit 107 detects control information transmitted on the PUCCH from the received signal and control information such as PH (Power Headroom) transmitted on the PUSCH, and inputs the detected control information to the radio resource control unit 108. The radio resource control unit 108 determines allocation of frequency resources used for downlink data transmission based on CSI or the like as frequency scheduling. The frequency resource allocation will be described on the assumption that it is performed in units of RB (Resource Block) composed of 12 subcarriers in one subframe or in units of RBG (Resource Block Group) in which a plurality of RBs are grouped. The invention is not limited to this. Here, one subframe is composed of 2 slots, and one slot is composed of 7 OFDM symbols. However, the present invention is not limited to this example. The radio resource control unit 108 determines a combination and resource allocation (RA: Resource Allocation or Resource Assignment, hereinafter referred to as RA information) of a terminal device that performs OFDM transmission that is not multiplexed by SC and a terminal device that is multiplexed by SC in frequency scheduling. The radio resource control unit 108 determines transmission power to be allocated to each terminal device with respect to terminal devices multiplexed by SC. Further, the radio resource control unit 108 performs MCS (Modulation and Coding Scheme) or MIMO (Multiple Input Multiple Output) transmission of data addressed to each terminal device by adaptive modulation and coding (also referred to as link adaptation). In the case of application of MIMO and MIMO transmission, the number of streams (number of transmission layers) is determined. The radio resource control unit 108 inputs RA information, MCS, and information on the number of transmission streams to the control information generation unit 109.
 制御情報生成部109は、入力された制御情報を各端末装置のダウンリンクの送信モードやRRC(Radio Resource Control)の設定によって決まるDCIフォーマットに応じた制御情報を端末装置毎に生成する。ここで、DCIフォーマットは、用途に応じて複数のフォーマットが規定され、ダウンリンクのシングルアンテナ用のDCIフォーマット1、送信ダイバーシチ用のDCIフォーマット1A、SU-MIMO用のDCIフォーマット1B、2、2B、2C、Large Delay CDD(Cyclic Delay Diversity)用のDCIフォーマット2A、MU-MIMO用のDCIフォーマット2Cやダウンリンクの協調通信用のDCIフォーマット2Dなどが定義され、アップリンク伝送のシングルアンテナ用のDCIフォーマット0、MIMO用のDCIフォーマット4が定義されている。制御情報生成部109は、生成した制御情報をダウンリンクのデータの生成と端末装置へ通知するために送信信号生成部101に入力する。ここで、基地局装置は、SCで多重する端末装置に対してNOMA伝送の送信モードで使われるDCIフォーマットを用い、干渉信号の除去もしくは抑圧に必要な制御情報やSCで多重された信号の検出に必要な制御情報(付加情報)を通知する。ただし、本発明は既存の送信モードに適用しても良く、RRC等でNOMA伝送の受信処理で必要な干渉信号の情報を付加する設定することで実現されても良い。 The control information generation unit 109 generates the control information according to the DCI format determined by the downlink transmission mode of each terminal device and the setting of RRC (Radio Resource Control) for each terminal device. Here, as the DCI format, a plurality of formats are defined according to applications, DCI format 1 for downlink single antenna, DCI format 1A for transmission diversity, DCI format 1B, 2, 2B for SU-MIMO, DCI format 2A for 2C, Large Delay CDD (Cyclic Delay Diversity), DCI format 2C for MU-MIMO, DCI format 2D for downlink cooperative communication, etc. are defined, and DCI format for single antenna for uplink transmission 0, DCI format 4 for MIMO is defined. The control information generation unit 109 inputs the generated control information to the transmission signal generation unit 101 in order to generate downlink data and notify the terminal device. Here, the base station apparatus uses the DCI format used in the transmission mode of NOMA transmission for the terminal apparatus multiplexed on the SC, and detects control information necessary for removing or suppressing the interference signal and the signal multiplexed on the SC. The control information (additional information) necessary for is notified. However, the present invention may be applied to an existing transmission mode, or may be realized by setting to add information on an interference signal necessary for reception processing of NOMA transmission by RRC or the like.
 送信信号生成部101は、各端末装置へ送信するデータビット列が入力される。図3に、本発明に係る送信信号生成部101の構成の一例を示す。同図より、入力されたデータビット列は誤り訂正符号化部1011-1~1011-2に入力される。誤り訂正符号化部1011-1~1011-2は、入力されたデータビット列に対し、誤り訂正符号の符号化を施す。誤り訂正符号には、例えば、ターボ符号やLDPC(Low Density Parity Check)符号、畳み込み符号などが用いられる。誤り訂正符号化部1011-1~1011-2で施される誤り訂正符号の種類は、送受信装置で予め決められていても良いし、送受信機会毎に制御情報として通知されても良いし、送信モードに応じて予め決められたパラメータと制御情報で通知されたパラメータによって切り替えても良い。また、誤り訂正符号化の符号化率が制御情報生成部109より入力され、誤り訂正符号化部1011-1~1011-2はパンクチャリング(レートマッチング)によりダウンリンクのデータ伝送に用いる符号化率を実現する。 The transmission signal generation unit 101 receives a data bit string to be transmitted to each terminal device. FIG. 3 shows an example of the configuration of the transmission signal generation unit 101 according to the present invention. As shown in the figure, the input data bit string is input to the error correction encoding units 1011-1 to 1011-2. Error correction coding sections 1011-1 to 1011-2 perform error correction code coding on the input data bit string. For example, a turbo code, an LDPC (Low Density Parity Check) code, a convolutional code, or the like is used as the error correction code. The types of error correction codes performed by error correction coding sections 1011-1 to 1011-2 may be determined in advance by the transmission / reception apparatus, may be notified as control information for each transmission / reception opportunity, or may be transmitted. Switching may be performed according to a parameter determined in advance according to the mode and a parameter notified by the control information. Further, the coding rate of error correction coding is input from the control information generation unit 109, and the error correction coding units 1011-1 to 1011-2 are coding rates used for downlink data transmission by puncturing (rate matching). To realize.
 変調部1012-1~1012-2は、変調方式の情報が制御情報生成部109より入力され、誤り訂正符号化部1011-1~1011-2から入力された符号化ビット列に対して変調を施すことで、変調シンボル列を生成する。変調方式には、例えば、QPSK(Quaternary Phase Shift Keying;四相位相偏移変調)、16QAM(16-ary Quadrature Amplitude Modulation;16直交振幅変調)、64QAMや256QAMなどがある。変調部1012-1~1012-2は、生成した変調シンボル列を送信電力制御部1013-1~1013-2へ出力する。 Modulation sections 1012-1 to 1012-2 receive modulation scheme information from control information generation section 109 and modulate the encoded bit string input from error correction encoding sections 1011-1 to 1011-2. Thus, a modulation symbol string is generated. Examples of the modulation scheme include QPSK (Quaternary Phase Shift Keying), 16 QAM (16-ary Quadrature Amplitude Modulation), 64 QAM, and 256 QAM. Modulation sections 1012-1 to 1012-2 output the generated modulation symbol sequence to transmission power control sections 1013-1 to 1013-2.
 送信電力制御部1013-1~1013-2は、制御情報生成部109よりSCで多重する端末装置に割り当てる送信電力の情報が入力され、送信電力制御を施す。信号多重部1014は、SCで多重する端末装置の信号が入力され、多重する。ここで、SCで多重する方法は、各端末装置宛ての信号をGray符号で変調し、そのまま加算する方法と、SCで多重後の信号点配置がGray符号となるように加算する方法が存在するが、送受信装置で予め決められていても良いし、送受信機会毎に制御情報として通知されても良いし、送信モードや制御情報で通知されたパラメータによって切り替えても良い。また、信号多重部1014は、SCで多重する端末装置宛てのデータ信号を割り当てる周波数リソースが完全に一致しない場合、例えば一部の周波数リソースのみでデータ信号をSCにより多重するような場合は、SCで多重する周波数リソースの信号のみを多重する。また、周波数リソースによって異なる組み合わせの端末装置宛てのデータ信号がSCにより多重するような場合、信号多重部1014は周波数リソース割り当てに応じて信号をSCで多重する。送信信号割当部1019は、信号多重部1014より送信信号列が入力され、さらに送信モード判別部1018より後述の送信モードやSCでデータ信号が多重される端末装置の送信モードの組合せの情報が入力される。送信信号割当部1019は、送信信号列を制御情報生成部109より入力されるRA情報で示されるRBや後述の送信モードやSCでデータ信号が多重される端末装置の送信モードの組合せの情報に応じて割り当てる。 The transmission power control units 1013-1 to 1013-2 receive transmission power information assigned to terminal devices multiplexed by the SC from the control information generation unit 109, and perform transmission power control. The signal multiplexer 1014 receives and multiplexes the signals of the terminal device multiplexed by the SC. Here, as a method of multiplexing by SC, there are a method of modulating a signal addressed to each terminal device with a Gray code and adding it as it is, and a method of adding so that a signal point arrangement after multiplexing at SC becomes a Gray code. However, it may be determined in advance by the transmission / reception apparatus, may be notified as control information for each transmission / reception opportunity, or may be switched according to a parameter notified by the transmission mode or control information. Also, the signal multiplexing unit 1014, when the frequency resource to which the data signal addressed to the terminal device multiplexed by SC does not completely match, for example, when the data signal is multiplexed by SC with only some frequency resources, SC Only the signal of the frequency resource to be multiplexed is multiplexed. When data signals addressed to different combinations of terminal devices depending on frequency resources are multiplexed by SC, signal multiplexing section 1014 multiplexes signals by SC according to frequency resource allocation. The transmission signal allocation unit 1019 receives a transmission signal sequence from the signal multiplexing unit 1014, and further receives, from the transmission mode determination unit 1018, information on the transmission mode combination described later and the transmission mode combination of the terminal device on which the data signal is multiplexed in the SC. Is done. The transmission signal allocating unit 1019 converts the transmission signal sequence into RB indicated by RA information input from the control information generating unit 109, transmission mode combination described later, and transmission mode combination information of the terminal device in which the data signal is multiplexed in the SC. Assign accordingly.
 一方、送信モード判別部1018は、端末装置毎のダウンリンクの送信モードの情報が保持されており、制御情報生成部109より入力された制御情報よりダウンリンクのデータ送信する端末装置を識別する。さらに、送信モード判別部1018は、データ送信する端末装置毎の送信モードの情報と、SCでデータ信号が多重される端末装置の送信モードの組合せの情報を参照信号生成部1016と送信信号割当部1019に入力する。参照信号生成部1016は、OFDM伝送(SCで複数の端末装置の信号を多重しないデータ伝送)を用いる周波数リソースでは割り当てられている端末装置の送信モードに応じて参照信号を生成する。具体的には、URSもしくはDMRSをデータの復調に用いる送信モードの端末装置へのデータ伝送に用いる周波数リソースにおいては少なくともURSもしくはDMRSを生成し、それ以外の周波数リソースではURSもしくはDMRSを生成せず、その他の参照信号を生成する。参照信号生成部1016におけるSCで複数の端末装置の信号を多重してNOMA伝送に用いる周波数リソースの参照信号の生成方法は後述する。参照信号多重部1015は、送信信号割当部1019より送信信号列が入力され、参照信号生成部1016より参照信号列が入力され、これらの信号列を多重することで、送信信号のフレームを生成する。ここで、ダウンリンクの参照信号は、CRS(Cell-Specific Reference Signal)、PDSCHに関連するURS(UE-Specific Reference Signal)、EPDCCHに関連するDMRS(De-Modulation Reference Signal)、NZP CSI-RS(Non-Zero Power Channel State Information Reference Signal)、ZP CSI-RS(Zero Power Channel State Information Reference Signal)やDRS(Discovery Reference Signal、Discovery signal)が含まれる。また、本実施形態では、SCで複数の端末装置宛てのデータ信号をNOMAで多重する場合とSCで複数の端末装置宛てのデータ信号を多重しないOFDM伝送する場合で参照信号の送信電力が同一であっても良いし、異なっても良い。つまり、SCにより複数の端末装置宛てのデータ信号をNOMAで多重する場合は、これらのデータ信号に送信電力を分配時においてデータと参照信号の送信電力が同一としても良いし、異なっても良い。ここで、少なくともデータと参照信号の送信電力が異なる場合、基地局装置は端末装置に制御情報として送信電力を通知する、もしくは他の制御情報と関連付けて通知する必要がある。制御情報多重部1017は、参照信号多重部1015より入力された信号列と制御情報生成部109より入力されたDCIなどの制御情報を多重し、IFFT部102に入力する。 On the other hand, the transmission mode determination unit 1018 holds information on the downlink transmission mode for each terminal device, and identifies the terminal device that transmits downlink data from the control information input from the control information generation unit 109. Further, the transmission mode determination unit 1018 includes a reference signal generation unit 1016 and a transmission signal allocation unit that transmit information on a transmission mode for each terminal device that transmits data and information on a combination of transmission modes of terminal devices on which data signals are multiplexed in the SC. 1010. The reference signal generation unit 1016 generates a reference signal according to the transmission mode of the allocated terminal apparatus in frequency resources using OFDM transmission (data transmission in which signals of a plurality of terminal apparatuses are not multiplexed by SC). Specifically, at least URS or DMRS is generated in frequency resources used for data transmission to a terminal device in a transmission mode using URS or DMRS for data demodulation, and URS or DMRS is not generated in other frequency resources. Other reference signals are generated. A method for generating a reference signal of frequency resources used for NOMA transmission by multiplexing signals of a plurality of terminal devices at the SC in the reference signal generation unit 1016 will be described later. The reference signal multiplexing unit 1015 receives the transmission signal sequence from the transmission signal allocation unit 1019, receives the reference signal sequence from the reference signal generation unit 1016, and multiplexes these signal sequences to generate a frame of the transmission signal. . Here, downlink reference signals include CRS (Cell-Specific Reference Signal), URS (UE-Specific Reference Signal) related to PDSCH, DMRS (De-Modulation Reference Signal) related to EPDCCH, NZP CSI-RS ( Non-Zero Power Channel State Information Reference Signal), ZP CSI-RS (Zero Power Channel State Information Reference Signal) and DRS (Discovery Reference Signal, Discovery Signal). Further, in this embodiment, the transmission power of the reference signal is the same in the case where the data signals addressed to a plurality of terminal devices are multiplexed by NOMA in the SC and the OFDM signal in which the data signals addressed to the plurality of terminal devices are not multiplexed in the SC. May be different or different. That is, when data signals addressed to a plurality of terminal devices are multiplexed by NOMA by SC, the transmission power of the data and the reference signal may be the same or different when the transmission power is distributed to these data signals. Here, at least when the transmission power of the data and the reference signal is different, the base station apparatus needs to notify the terminal apparatus of the transmission power as control information, or notify it in association with other control information. The control information multiplexing unit 1017 multiplexes the signal sequence input from the reference signal multiplexing unit 1015 and the control information such as DCI input from the control information generation unit 109 and inputs the multiplexed information to the IFFT unit 102.
 IFFT部102は、周波数領域の送信信号のフレームが入力され、各OFDMシンボル単位で逆高速フーリエ変換することで、周波数領域信号列から時間領域信号列に変換する。時間領域信号列は、送信処理部103に入力される。送信処理部103は、信号列にCPを挿入し、D/A(Digital/Analog;ディジタル/アナログ)でアナログの信号に変換し、変換後の信号を伝送に使用する無線周波数にアップコンバートする。送信処理部103は、アップコンバートした信号を、PA(Power Amplifier)で増幅し、増幅後の信号を、送信アンテナ104を介して送信する。以上のように、基地局装置は、端末装置宛ての信号をする。ここで、基地局装置が複数の送信アンテナを有する場合の構成の一例を図11に示す。同図は、送信アンテナ数(アンテナポート数)がPの場合であり、各アンテナポートで図2と同様の処理が行なわれるため、詳細の説明は省略する。また、基地局装置がデータ伝送に用いるアンテナポート数は端末装置に通知する。また、基地局装置が複数のアンテナポートを用いて送信するデータ信号に対してプリコーディングを行なう場合、適用したプリコーディングをPMI(Precoding Matrix Indicator)で通知する、もしくはデータ信号と参照信号で同様のプリコーディングを施して送信する。 The IFFT unit 102 receives a frame of a transmission signal in the frequency domain, and converts the frequency domain signal sequence into a time domain signal sequence by performing inverse fast Fourier transform for each OFDM symbol. The time domain signal sequence is input to the transmission processing unit 103. The transmission processing unit 103 inserts a CP into the signal sequence, converts it into an analog signal by D / A (Digital / Analog), and up-converts the converted signal to a radio frequency used for transmission. The transmission processing unit 103 amplifies the up-converted signal with PA (Power Amplifier), and transmits the amplified signal via the transmission antenna 104. As described above, the base station apparatus transmits a signal addressed to the terminal apparatus. Here, FIG. 11 shows an example of a configuration when the base station apparatus has a plurality of transmission antennas. This figure shows the case where the number of transmission antennas (the number of antenna ports) is P, and the same processing as in FIG. Further, the number of antenna ports used for data transmission by the base station apparatus is notified to the terminal apparatus. When the base station apparatus precodes a data signal transmitted using a plurality of antenna ports, the applied precoding is notified by PMI (PrecodingPreMatrix Indicator), or the data signal and the reference signal are similar. Send with precoding.
 図4に、本発明に係る端末装置の構成の一例を示す。ただし、本発明に必要な最低限のブロックを示している。同図は説明を簡単にするために、端末装置の送受信アンテナをそれぞれ1本として説明する。端末装置は、受信アンテナ201でダウンリンク伝送された信号を受信し、受信処理部202に入力する。受信処理部202は、受信信号をベースバンド周波数にダウンコンバートし、A/D変換し、ディジタル信号からCPを除去する。受信処理部202はCP除去後の信号をFFT部203に出力する。FFT部203は、入力された受信信号列を高速フーリエ変換により時間領域信号列から周波数領域信号列に変換し、周波数領域信号列を信号分離部204に出力する。 FIG. 4 shows an example of the configuration of the terminal device according to the present invention. However, the minimum blocks necessary for the present invention are shown. In order to simplify the explanation, the figure will be described assuming that each transmitting / receiving antenna of the terminal device is one. The terminal device receives a signal transmitted through the downlink by the receiving antenna 201 and inputs the signal to the reception processing unit 202. The reception processing unit 202 down-converts the received signal to the baseband frequency, performs A / D conversion, and removes the CP from the digital signal. Reception processing section 202 outputs the signal after CP removal to FFT section 203. The FFT unit 203 converts the input received signal sequence from a time domain signal sequence to a frequency domain signal sequence by fast Fourier transform, and outputs the frequency domain signal sequence to the signal separation unit 204.
 図5に、本発明に係る信号分離部204の構成の一例を示す。同図より、信号分離部204では、FFT部203より入力された周波数領域信号列が参照信号分離部2041に入力される。参照信号分離部2041は、送信モード保持部2045で記憶されているダウンリンクの送信モードに基づいて入力された信号を参照信号のCRS、URS、DMRS、CSI-RS、DRSなどとその他の信号に分離し、それぞれ伝搬路推定部206と制御情報分離部2042に出力する。参照信号分離部2041の動作の詳細については、後述する。制御情報分離部2042は、入力された信号をPDCCH、EPDCCH、PDSCHで送信される制御信号とPDSCHで送信されるデータ信号に分離し、それぞれ制御情報検出部2044と割当信号抽出部2043に出力する。制御情報検出部2044は、PDCCHもしくはEPDCCHの中で設定されるCSS(Common SS)もしくはUSS(UE-specific SS)において、送信モードやRRCの設定によって決まるDCIフォーマットをブラインドデコーディングすることで制御情報を検出する。また、制御情報検出部2044は、PDSCHで上位層の制御情報のRRCシグナリングで制御情報を受信した場合、制御情報の受信処理により検出する。制御情報検出部2044は、自局宛ての信号の送信パラメータ(RA情報やMCS)と干渉となる他の端末装置宛ての信号の送信パラメータ(付加情報)を信号検出部205に出力する。ここで付加情報はデータ信号がSCで多重されているか否かの情報、SCで多重されている場合は所望信号を検出するために干渉除去もしくは抑圧が必要か否かに関連する情報、SCで多重されている他の端末装置の送信モードに関連する情報やSCで多重されている他の端末装置宛ての干渉信号の検出に必要な送信パラメータなどである。また、制御情報検出部2044は、自局のダウンリンクの送信モードの情報を受信した場合は送信モード保持部2045に入力する。一方、割当信号抽出部2043は、自局宛ての信号の送信パラメータに含まれるRA情報に基づいて送信信号を抽出する。 FIG. 5 shows an example of the configuration of the signal separation unit 204 according to the present invention. In the figure, in the signal separation unit 204, the frequency domain signal sequence input from the FFT unit 203 is input to the reference signal separation unit 2041. The reference signal separation unit 2041 converts the signal input based on the downlink transmission mode stored in the transmission mode holding unit 2045 into the reference signal CRS, URS, DMRS, CSI-RS, DRS, and other signals. These are separated and output to the propagation path estimation unit 206 and the control information separation unit 2042, respectively. Details of the operation of the reference signal separation unit 2041 will be described later. Control information separation section 2042 separates the input signal into a control signal transmitted on PDCCH, EPDCCH, and PDSCH and a data signal transmitted on PDSCH, and outputs them to control information detection section 2044 and assigned signal extraction section 2043, respectively. . The control information detecting unit 2044 performs blind decoding on the DCI format determined by the transmission mode and RRC setting in CSS (Common SS) or USS (UE-specific SS) set in PDCCH or EPDCCH. Is detected. In addition, when control information is received by RRC signaling of higher-layer control information on PDSCH, control information detection section 2044 detects it by control information reception processing. The control information detection unit 2044 outputs, to the signal detection unit 205, transmission parameters (additional information) of signals addressed to other terminal devices that interfere with transmission parameters (RA information and MCS) of signals addressed to the own station. Here, the additional information is information on whether or not the data signal is multiplexed on the SC, and information on whether or not interference removal or suppression is necessary to detect the desired signal when the data signal is multiplexed on the SC. This is information related to the transmission mode of another terminal device that is multiplexed, transmission parameters necessary for detecting an interference signal addressed to another terminal device that is multiplexed by the SC, and the like. In addition, when receiving information on the downlink transmission mode of the own station, the control information detection unit 2044 inputs the information to the transmission mode holding unit 2045. On the other hand, allocation signal extraction section 2043 extracts a transmission signal based on RA information included in a transmission parameter of a signal addressed to the own station.
 伝搬路推定部206は、ダウンリンクの送信モードに応じてデータの復調に用いる参照信号が異なり、データ信号と多重されて送信された参照信号のうちデータの復調に使用可能な参照により推定した周波数応答を信号検出部205に出力する。ここで、SCで複数の端末装置宛てのデータ信号がNOMAで多重する場合、基地局装置はSCで多重する複数の端末装置宛てのデータ信号に電力を分配する。そのため、NOMA伝送はSCで多重しないOFDM伝送の場合と比べて送信電力が異なり、端末装置は受信処理で参照信号とデータ信号の送信電力の情報(電力比)が必要となる。この電力比の情報は、制御情報として通知されて制御情報検出部2044より伝搬路推定部206に出力されても良いし、もしくは制御情報として通知されずに参照信号の受信電力から推定されても良い。また、伝搬路推定部206は、PUCCHでCSIの送信やデータの復調のために、送信された参照信号を用いて推定した周波数応答を制御情報生成部207に入力する。制御情報生成部207は、PUCCHで送信する。SR、ACK/NACKやCSIなどの送信タイミングで送信する内容に応じたフォーマットを用いて制御情報を生成する。制御情報送信部208は、信号列にCPを挿入し、D/Aでアナログの信号に変換し、変換後の信号を伝送に使用する無線周波数にアップコンバートする。制御情報送信部208は、アップコンバートした信号をPAで増幅し、増幅後の信号を、送信アンテナ209を介して送信する。 The propagation path estimation unit 206 uses different reference signals for data demodulation depending on the downlink transmission mode, and is a frequency estimated by reference that can be used for data demodulation among the reference signals multiplexed and transmitted with the data signal. The response is output to the signal detection unit 205. Here, when data signals addressed to a plurality of terminal devices are multiplexed by NOMA in the SC, the base station device distributes power to the data signals addressed to the plurality of terminal devices multiplexed by the SC. For this reason, the transmission power of NOMA transmission differs from that of OFDM transmission that is not multiplexed by SC, and the terminal device needs information (power ratio) of the transmission power of the reference signal and the data signal in the reception process. This power ratio information may be reported as control information and output from the control information detection unit 2044 to the propagation path estimation unit 206, or may be estimated from the received power of the reference signal without being notified as control information. good. Further, the propagation path estimation unit 206 inputs the frequency response estimated using the transmitted reference signal to the control information generation unit 207 for CSI transmission and data demodulation on the PUCCH. Control information generating section 207 transmits using PUCCH. Control information is generated using a format corresponding to the content to be transmitted at the transmission timing, such as SR, ACK / NACK, and CSI. The control information transmission unit 208 inserts a CP into the signal sequence, converts the signal into an analog signal by D / A, and up-converts the converted signal to a radio frequency used for transmission. Control information transmission section 208 amplifies the upconverted signal with PA, and transmits the amplified signal via transmission antenna 209.
 図6に、本発明に係る信号検出部205の構成の一例を示す。信号検出部205は、信号分離部204より入力されたデータ信号列と干渉となる他の端末装置宛ての信号の送信パラメータが干渉信号検出部2051に入力され、データ信号列と自局宛ての信号の送信パラメータが干渉除去部2053に入力される。干渉信号検出部2051は、伝搬路推定部206より入力された干渉信号の電力比に補正された周波数応答の推定値と信号分離部204より入力された送信パラメータに基づいて干渉信号を検出する。ここで、干渉信号の検出は、誤り訂正復号の結果を用いるCWIC(Codeword level Interference Cancellation)や誤り訂正復号をせずに復調結果を用いるSLIC(Symbol level Interference Cancellation)を用いても良い。また、干渉信号検出部2051の出力は、硬判定値を用いても良いし、軟値(LLR: Log Likelihood Ratio)を用いても良い。干渉信号再生部2052は、検出した干渉信号のビット列もしくはLLR列と干渉信号の電力比に補正された周波数応答の推定値より干渉信号のレプリカを生成し、干渉除去部2053に出力する。なお、干渉信号検出部2051と干渉信号再生部2052は、所望信号と干渉信号がSCにより多重されていないOFDM伝送の場合には何しない。干渉除去部2053は、データ信号列から干渉信号のレプリカを減算することで干渉除去を行ない、干渉除去後の信号列と自局宛ての信号の送信パラメータを所望信号検出部2054に入力する。 FIG. 6 shows an example of the configuration of the signal detection unit 205 according to the present invention. In the signal detection unit 205, the transmission parameter of the signal addressed to another terminal device that interferes with the data signal sequence input from the signal separation unit 204 is input to the interference signal detection unit 2051, and the data signal sequence and the signal addressed to its own station Transmission parameters are input to the interference cancellation unit 2053. The interference signal detection unit 2051 detects an interference signal based on the estimated frequency response value corrected to the power ratio of the interference signal input from the propagation path estimation unit 206 and the transmission parameter input from the signal separation unit 204. Here, the detection of the interference signal may be performed using CWIC (Codeword interference 用 い る Cancellation) using the result of error correction decoding or SLIC (Symbol level InterferencecellCancellation) using the demodulation result without performing error correction decoding. Further, the output of the interference signal detection unit 2051 may use a hard decision value or a soft value (LLR: Log Likelihood Ratio). The interference signal reproduction unit 2052 generates a replica of the interference signal from the estimated frequency response corrected to the detected bit sequence of the interference signal or the LLR sequence and the power ratio of the interference signal, and outputs it to the interference removal unit 2053. The interference signal detection unit 2051 and the interference signal reproduction unit 2052 do nothing in the case of OFDM transmission in which the desired signal and the interference signal are not multiplexed by the SC. The interference removal unit 2053 performs interference removal by subtracting the replica of the interference signal from the data signal sequence, and inputs the signal sequence after the interference removal and the transmission parameter of the signal addressed to the own station to the desired signal detection unit 2054.
 図7に、本発明に係る所望信号検出部2054の構成の一例を示す。所望信号検出部2054は、干渉除去部2053より入力された干渉除去後の信号列と自局宛ての信号の送信パラメータと、伝搬路推定部206より入力された所望信号の電力比に補正された周波数応答の推定値を伝搬路補償部2054-1に出力する。伝搬路補償部2054-1は、入力された周波数応答の推定値を用いて干渉除去後の信号列に対して無線伝搬路の歪みを補償する処理を行なう。伝搬路補償部2054-1は、伝搬路補償後の信号列を復調部2054-2に出力する。復調部2054-2は、自局宛ての信号の送信パラメータに含まれる変調方式(変調多値数やSP後の信号がGray符号となるように加算しているか否かなど)の情報が入力され、伝搬路補償後の信号列に対して復調処理を施し、ビット系列のLLR列を得る。復号部2054-3は、自局宛ての信号の送信パラメータに含まれる符号化率の情報が入力され、LLR列に対して復号処理を行なう。復号部2054-3は、復号後のLLR列を硬判定し、巡回冗長検査(CRC: Cyclic Redundancy Check)より誤りビットの有無を判別し、誤りビットの有無の情報を制御情報生成部207に出力し、誤りなければデータビット列を出力する。本実施形態では、所望信号検出部2054がCWICもしくはSLICなどの逐次干渉キャンセラ(SIC: Successive Interference Canceller)を用いる場合について説明したが、本発明はこれに限定されるものではなく、並列干渉キャンセラ(PIC: Parallel Interference Canceller)、最尤検出(MLD: Maximum Likelihood Detection)や繰り返し処理を行なうターボ等化などを用いても良い。 FIG. 7 shows an example of the configuration of the desired signal detection unit 2054 according to the present invention. The desired signal detection unit 2054 has been corrected to the power ratio of the desired signal input from the propagation path estimation unit 206 and the transmission parameter of the signal sequence after interference cancellation input from the interference cancellation unit 2053 and the signal addressed to the own station. The estimated value of the frequency response is output to the propagation path compensator 2054-1. The propagation path compensator 2054-1 performs a process of compensating for the distortion of the wireless propagation path on the signal sequence after interference cancellation using the input frequency response estimation value. The propagation path compensation unit 2054-1 outputs the signal sequence after propagation path compensation to the demodulation unit 2054-2. Demodulation section 2054-2 receives information on the modulation method (modulation multi-level number, whether or not the signal after SP is added to become a Gray code, etc.) included in the transmission parameter of the signal addressed to the own station. The signal sequence after propagation path compensation is demodulated to obtain a bit-sequence LLR sequence. Decoding section 2054-3 receives the coding rate information included in the transmission parameter of the signal addressed to the own station, and performs decoding processing on the LLR sequence. Decoding section 2054-3 makes a hard decision on the decoded LLR sequence, determines the presence / absence of an error bit by cyclic redundancy check (CRC: Cyclic Redundancy Check), and outputs the information on the presence / absence of error bit to control information generation unit 207 If there is no error, a data bit string is output. In the present embodiment, the case where the desired signal detection unit 2054 uses a successive interference canceller (SIC: Successive InterferencecellCanceller) such as CWIC or SLIC has been described, but the present invention is not limited to this, and a parallel interference canceller ( PIC: “Parallel” Interference ”Canceller), maximum likelihood detection (MLD:“ Maximum ”Likelihood” Detection), or turbo equalization that performs iterative processing may be used.
 図8に、本発明に係る送信処理のフローチャートの一例を示す図である。まず、基地局装置は予め端末装置毎にダウンリンクの送信モードを設定する制御情報を生成して送信処理部103より端末装置に送信し、無線リソース制御部108は、非直交多重する端末装置の組み合わせを決定する。送信モード判別部1018は、送信電力の割り当てが少ない干渉除去もしくは抑圧後に所望信号の検出が必要な端末装置(以下、干渉除去・抑圧する端末装置と呼称する)がCRSベース送信モードであることを識別する(S11)。送信モード判別部1018は、送信電力の割り当てが多い干渉除去もしくは抑圧を行なわなくても所望信号の検出が可能な端末装置(以下、干渉除去・抑圧しない端末装置と呼称する)がURSベース送信モードに設定されているか判定する(S12)。送信モード判別部1018は干渉除去・抑圧しない端末装置がURSベース送信モードと判別した場合、参照信号生成部1016は干渉除去・抑圧しない端末装置のURSのリソースエレメント用の干渉除去・抑圧する端末装置の参照信号は生成せず、さらに送信信号割当部1019は干渉除去・抑圧しない端末装置のURSのリソースエレメントに干渉除去・抑圧する端末装置のデータを配置せず、参照信号多重部1015は干渉除去・抑圧しない端末装置のURSのリソースエレメントに干渉除去・抑圧する端末装置の参照信号を配置しない送信フレームを生成する(S13)。 FIG. 8 is a diagram showing an example of a flowchart of a transmission process according to the present invention. First, the base station apparatus generates control information for setting a downlink transmission mode for each terminal apparatus in advance and transmits the control information to the terminal apparatus from the transmission processing unit 103. The radio resource control unit 108 Determine the combination. The transmission mode discriminating unit 1018 confirms that a terminal device that requires detection of a desired signal after interference removal or suppression with a small transmission power allocation (hereinafter referred to as a terminal device that performs interference removal / suppression) is in the CRS-based transmission mode. Identify (S11). The transmission mode discriminating unit 1018 determines that a terminal device capable of detecting a desired signal without performing interference removal or suppression with a large transmission power allocation (hereinafter referred to as a terminal device without interference removal / suppression) is a URS-based transmission mode. Is determined (S12). When the transmission mode determination unit 1018 determines that the terminal device that does not cancel or suppress interference is the URS base transmission mode, the reference signal generation unit 1016 performs the terminal device that performs interference cancellation or suppression for the resource element of the URS of the terminal device that does not cancel or suppress interference. The reference signal multiplexing unit 1015 does not place the data of the terminal device that performs interference removal / suppression in the resource element of the URS of the terminal device that does not perform interference removal / suppression, and the reference signal multiplexing unit 1015 does not cancel the interference. A transmission frame is generated in which the reference signal of the terminal apparatus that removes and suppresses interference is not arranged in the resource element of the URS of the terminal apparatus that is not suppressed (S13).
 なお、データを受信時に干渉除去・抑圧するCRSベース送信モードの端末装置は、URSのリソースエレメントにデータを配置するか否かの情報や干渉除去・抑圧しない端末装置宛てのURSが送信されるアンテナポートの情報もしくは送信レイヤ数(ストリーム数、ランク数)が必要である。ここで、URSの送信に用いられるリソースエレメントの数や位置は、レイヤ数が2まで(アンテナポート7、8)とレイヤ数が3以上(アンテナポート7、8、9、…)で異なる。制御情報生成部109は、干渉除去・抑圧する端末装置に対して、干渉除去・抑圧しない端末装置の送信モードがCRSベース送信モードかURSベース送信モードかの情報やレイヤ数、使用するアンテナポート番号などのURSのリソースエレメントに関する情報を制御情報の付加情報として送信する。参照信号生成部1016は、干渉除去・抑圧しない端末装置のURSのリソースエレメントには参照信号を生成し、参照信号多重部1015はURSのリソースエレメントに参照信号を配置して送信フレームを生成する(S14)。一方、送信モード判別部1018は干渉除去・抑圧しない端末装置がCRSベース送信モードを設定されている場合、参照信号生成部1016はSCにより多重する端末装置のいずれもURSを使用しないため、干渉除去・抑圧する端末装置と干渉除去・抑圧しない端末装置の両方ともURSを生成せず、参照信号多重部1015はURSのリソースエレメントにデータを配置して送信フレームを生成し、S15へ移行する(S16)。信号多重1014は、SCにより複数の端末装置宛ての信号を多重する(S15)。 Note that a CRS-based transmission mode terminal device that removes and suppresses interference when receiving data is an antenna that transmits information about whether or not to place data in a resource element of URS and a URS addressed to a terminal device that does not perform interference removal and suppression. Port information or the number of transmission layers (number of streams, number of ranks) is required. Here, the number and position of resource elements used for URS transmission differ between the number of layers up to 2 (antenna ports 7 and 8) and the number of layers of 3 or more (antenna ports 7, 8, 9,...). The control information generation unit 109, with respect to a terminal device that performs interference removal / suppression, information on the transmission mode of the terminal device that does not perform interference removal / suppression, the number of layers, the number of antenna ports to be used The information regarding the resource element of URS, such as, is transmitted as additional information of control information. The reference signal generation unit 1016 generates a reference signal in the URS resource element of the terminal apparatus that does not cancel or suppress interference, and the reference signal multiplexing unit 1015 generates a transmission frame by arranging the reference signal in the URS resource element ( S14). On the other hand, when the terminal device that does not cancel or suppress interference is set to the CRS base transmission mode, the transmission mode determination unit 1018 does not use the URS for any of the terminal devices multiplexed by the SC. Both the terminal device that suppresses and the terminal device that does not cancel or suppress interference do not generate URS, and the reference signal multiplexing unit 1015 generates data by arranging data in the resource element of URS, and proceeds to S15 (S16). ). The signal multiplexing 1014 multiplexes signals addressed to a plurality of terminal devices by SC (S15).
 以上のようにSCで多重してデータ信号を送信する複数の端末装置の送信モードが異なる場合に送信フレームの生成を行なう。そのため、干渉除去・抑圧する端末装置は、送信モード保持部2045で記憶している自局のダウンリンクの送信モードと制御情報検出部2044でブラインドデコーディングにより検出した制御情報に含まれる付加情報のデータ信号がSCで多重されているか否かの情報、SCで多重されている場合は所望信号を検出するために干渉除去もしくは抑圧が必要か否かに関連する情報、SCで多重されている他の端末装置の送信モードに関連する情報などが参照信号分離部2041に入力される。参照信号分離部2041は、CRSベース送信モードが設定されている場合に、これらの情報に基づいて基地局装置が図8のどの送信処理を用いたかを判別し、URSのリソースエレメントにデータを配置しているか否かを識別する。よって、参照信号分離部2041はURSのリソースエレメントにデータも参照信号も配置されていないと識別した場合、URSのリソースエレメントで受信した信号は伝搬路推定部206にも制御情報分離部2042にも出力せずに破棄する。 As described above, a transmission frame is generated when the transmission modes of a plurality of terminal apparatuses that transmit data signals multiplexed by SC are different. Therefore, the terminal apparatus that cancels / suppresses interference transmits the downlink transmission mode of the local station stored in the transmission mode holding unit 2045 and the additional information included in the control information detected by the control information detection unit 2044 by blind decoding. Information on whether or not the data signal is multiplexed on the SC, and information on whether or not interference cancellation or suppression is necessary to detect the desired signal if multiplexed on the SC, other information multiplexed on the SC Information related to the transmission mode of the terminal device is input to the reference signal separation unit 2041. When the CRS base transmission mode is set, the reference signal separation unit 2041 determines which transmission process of FIG. 8 is used by the base station apparatus based on such information, and arranges data in the resource element of the URS Identify whether or not Therefore, when the reference signal separation unit 2041 identifies that neither data nor reference signals are arranged in the URS resource element, the signal received by the URS resource element is transmitted to both the propagation path estimation unit 206 and the control information separation unit 2042. Discard without outputting.
 一方、干渉除去・抑圧しない端末装置は、データ復調に用いる参照信号の識別に自局のダウンリンクの送信モードのみの情報で良く、またSCで多重されているか否かの情報や干渉信号の送信パラメータも受信してなくも良い。 On the other hand, a terminal device that does not cancel or suppress interference may use only the information on the downlink transmission mode of its own station for identifying a reference signal used for data demodulation, and information on whether or not it is multiplexed in SC and transmission of interference signals. It is not necessary to receive parameters.
 本実施形態では、複数の端末装置宛てのデータ信号をSCにより多重する場合、干渉除去・抑圧する端末装置の送信モードがCRSベース送信モードであり、干渉除去・抑圧しない端末装置がCRSベース送信モードかURSベース送信モードかによって、干渉除去・抑圧する端末装置のデータ信号と参照信号の多重方法を変える例を説明した。なお、干渉除去・抑圧する端末装置のデータ信号と参照信号の多重方法は、干渉除去・抑圧しない端末装置に送信する制御情報によって変えても良い。例えば、基地局装置が干渉除去・抑圧しない端末装置に対して、干渉除去・抑圧する端末装置がCRSベース送信モードであることを示す情報を通知しない、もしくはこの情報を受信可能でない場合(NOMA用の送信モードではない、もしくはRRCでNOMAの設定がされていない、もしくはNOMA用の送信モードやNOMAの設定ができないなど)は本実施形態と同様とし、干渉除去・抑圧する端末装置がCRSベース送信モードであることを示す情報を通知する、もしくはこの情報を受信可能な場合(NOMA用の送信モードである、もしくはRRCでNOMAの設定がされているなど)は干渉除去・抑圧しない端末装置の送信モードに関係なく、URSのリソースエレメントにデータを配置するとしても良い。この場合は、干渉除去・抑圧しない端末装置の送信モードがCRSベース送信モードに一時的に切り替わることを意味する。そのため、このような場合には干渉除去・抑圧しない端末装置に対してURSを送信しない。 In this embodiment, when data signals addressed to a plurality of terminal devices are multiplexed by SC, the transmission mode of the terminal device that performs interference removal / suppression is the CRS base transmission mode, and the terminal device that does not perform interference removal / suppression is the CRS base transmission mode. The example in which the multiplexing method of the data signal and the reference signal of the terminal apparatus for canceling / suppressing the interference is changed depending on the transmission mode or the URS base transmission mode has been described. Note that the multiplexing method of the data signal and the reference signal of the terminal apparatus that performs interference cancellation / suppression may be changed depending on control information transmitted to the terminal apparatus that does not perform interference cancellation / suppression. For example, when the base station device does not notify the terminal device that does not cancel / suppress interference, the terminal device that performs interference removal / suppression does not notify the CRS base transmission mode or cannot receive this information (for NOMA) The transmission mode is not the same as this mode, or the NOMA is not set in RRC, or the NOMA transmission mode or NOMA cannot be set. If the terminal device is notified of information indicating that it is in a mode, or if this information is receivable (NOMA transmission mode or NOMA is set in RRC, etc.), transmission of a terminal device that does not eliminate or suppress interference Regardless of the mode, data may be arranged in the resource element of URS. In this case, it means that the transmission mode of the terminal apparatus that does not cancel or suppress interference is temporarily switched to the CRS base transmission mode. Therefore, in such a case, no URS is transmitted to a terminal device that does not cancel or suppress interference.
 以上のように本実施形態では、SCで多重時に端末装置の送信モードが異なることに起因してデータと参照信号がSCで多重されることがなくなり、チャネル推定制度の劣化を抑えることができる。さらに、異なる送信モードのNOMA多重によりスループットを向上することができる。 As described above, in this embodiment, data and reference signals are not multiplexed in SC due to different transmission modes of terminal devices when multiplexed in SC, and deterioration of the channel estimation system can be suppressed. Further, throughput can be improved by NOMA multiplexing in different transmission modes.
 (第2の実施形態)
 前実施形態では、複数の端末装置宛てのデータ信号をSCにより多重する場合、干渉除去・抑圧する端末装置の送信モードがCRSベース送信モードである例について説明したが、本実施形態では干渉除去・抑圧する端末装置の送信モードがURSベース送信モードである例について説明する。まず、本実施形態における基地局装置の構成例は、前実施形態と同様であり、図2、3である。また、本実施形態における端末装置の構成例は、前実施形態と同様であり、図4、5、6、7である。そのため、本実施形態では、異なる処理のみを説明し、同様の処理の説明は省略する。
(Second Embodiment)
In the previous embodiment, when data signals addressed to a plurality of terminal apparatuses are multiplexed by SC, an example in which the transmission mode of the terminal apparatus that performs interference cancellation / suppression is the CRS-based transmission mode has been described. An example in which the transmission mode of the terminal device to be suppressed is the URS base transmission mode will be described. First, the example of a structure of the base station apparatus in this embodiment is the same as that of previous embodiment, and is FIG. Moreover, the example of a structure of the terminal device in this embodiment is the same as that of previous embodiment, and is FIG. Therefore, in the present embodiment, only different processing will be described, and description of similar processing will be omitted.
 図9に、本発明に係る送信処理のフローチャートの一例を示す図である。まず、基地局装置は予め端末装置毎にダウンリンクの送信モードを設定する制御情報を生成して送信処理部103より端末装置に送信し、無線リソース制御部108は、非直交多重する端末装置の組み合わせを決定する。送信モード判別部1018は、送信電力の割り当てが少ない干渉除去・抑圧する端末装置がURSベース送信モードであることを識別する(S21)。送信モード判別部1018は、送信電力の割り当てが多い干渉除去・抑圧しない端末装置がCRSベース送信モードに設定されているか判定する(S22)。送信モード判別部1018は干渉除去・抑圧しない端末装置がCRSベース送信モードと判別した場合、参照信号生成部1016は干渉除去・抑圧する端末装置のURSのリソースエレメントの参照信号は生成せず、さらに送信信号割当部1019は干渉除去・抑圧する端末装置のURSのリソースエレメントに干渉除去・抑圧する端末装置のデータを配置する送信フレームを生成する(S23)。 FIG. 9 is a diagram showing an example of a flowchart of transmission processing according to the present invention. First, the base station apparatus generates control information for setting a downlink transmission mode for each terminal apparatus in advance and transmits the control information to the terminal apparatus from the transmission processing unit 103. The radio resource control unit 108 Determine the combination. The transmission mode discriminating unit 1018 identifies that the terminal device that performs interference removal / suppression with a small transmission power allocation is in the URS base transmission mode (S21). The transmission mode discriminating unit 1018 determines whether or not a terminal apparatus that does not perform interference removal / suppression with a large transmission power allocation is set to the CRS base transmission mode (S22). When the transmission mode determination unit 1018 determines that the terminal device that does not perform interference cancellation / suppression is the CRS base transmission mode, the reference signal generation unit 1016 does not generate the reference signal of the URS resource element of the terminal device that performs interference cancellation / suppression, and The transmission signal allocating unit 1019 generates a transmission frame in which the data of the terminal device that performs interference removal / suppression is arranged in the resource element of the URS of the terminal device that performs interference removal / suppression (S23).
 なお、データを受信時に干渉除去・抑圧するURSベース送信モードの端末装置は、URSのリソースエレメントに参照信号もしくはデータを配置の情報(干渉除去・抑圧しない端末装置の送信モードに関連する情報)が必要である。そのため、制御情報生成部109は、干渉除去・抑圧する端末装置に対して、干渉除去・抑圧しない端末装置の送信モードがCRSベース送信モードかURSベース送信モードかの情報を制御情報の付加情報として送信する。参照信号生成部1016は、URSのリソースエレメント用の干渉除去・抑圧しない端末装置の参照信号を生成せず、送信信号割当部1019はURSのリソースエレメントに干渉除去・抑圧しない端末装置のデータを配置して送信フレームを生成する(S24)。一方、送信モード判別部1018は干渉除去・抑圧しない端末装置がURSベース送信モードを設定されている場合、参照信号生成部1016はSCにより多重する端末装置のいずれもURSを使用するため、干渉除去・抑圧する端末装置と干渉除去・抑圧しない端末装置が共通でデータ復調に使用可能なURSを生成し、参照信号多重部1015はURSのリソースエレメントに1つの参照信号を配置して送信フレームを生成し、S25へ移行する(S26)。よって、SCでデータ信号が多重される複数の端末装置宛てのURSの信号を複数生成し、SCで多重することはしない。ただし、本発明はこの例に限定されず、長さXのOCC(Orthogonal Cover Code)などによりSCでデータ信号が多重される複数の端末装置宛てのURSの信号を複数生成し、符号による多重を行なっても良い。信号多重1014は、SCにより複数の端末装置宛ての信号を多重する(S25)。 Note that a terminal device in the URS base transmission mode that removes and suppresses interference at the time of data reception has information on the arrangement of reference signals or data in resource elements of URS (information related to the transmission mode of the terminal device that does not remove or suppress interference). is necessary. For this reason, the control information generation unit 109 uses the information on whether the transmission mode of the terminal apparatus that does not remove or suppress interference is CRS-based transmission mode or URS-based transmission mode as additional information of control information for the terminal apparatus that performs interference removal or suppression. Send. The reference signal generation unit 1016 does not generate a reference signal for a terminal device that does not cancel or suppress interference for URS resource elements, and the transmission signal allocation unit 1019 arranges data for a terminal device that does not cancel or suppress interference in the URS resource elements Then, a transmission frame is generated (S24). On the other hand, when the terminal device that does not cancel / suppress interference is set to the URS base transmission mode, the transmission mode determination unit 1018 uses the URS for all of the terminal devices multiplexed by the SC. A terminal device that suppresses and a terminal device that does not cancel or suppress interference generate a URS that can be used for data demodulation, and the reference signal multiplexing unit 1015 generates a transmission frame by arranging one reference signal in the resource element of the URS Then, the process proceeds to S25 (S26). Therefore, a plurality of URS signals destined for a plurality of terminal devices on which data signals are multiplexed by the SC are not generated and multiplexed by the SC. However, the present invention is not limited to this example, and a plurality of URS signals destined for a plurality of terminal devices to which data signals are multiplexed in SC by OCC (Orthogonal Cover Code) of length X are generated, and multiplexing by codes is performed. You can do it. The signal multiplexing 1014 multiplexes signals addressed to a plurality of terminal devices by SC (S25).
 以上のようにSCで多重してデータ信号を送信する複数の端末装置の送信モードが異なる場合に送信フレームの生成を行なう。そのため、干渉除去・抑圧する端末装置は、送信モード保持部2045で記憶している自局のダウンリンクの送信モードと制御情報検出部2044でブラインドデコーディングにより検出した制御情報に含まれる付加情報のデータ信号がSCで多重されているか否かの情報、SCで多重されている場合は所望信号を検出するために干渉除去もしくは抑圧が必要か否かに関連する情報、SCで多重されている他の端末装置の送信モードに関連する情報などが参照信号分離部2041に入力される。参照信号分離部2041は、URSベース送信モードが設定されている場合に、これらの情報に基づいて基地局装置が図9のどの送信処理を用いたかを判別し、URSのリソースエレメントに参照信号とデータのいずれを配置しているかを識別する。よって、参照信号分離部2041はURSのリソースエレメントに参照信号ではなく、データが配置されていないと識別した場合、URSのリソースエレメントで受信した信号は制御情報分離部2042に出力し、データ復調に用いる周波数応答の推定にはCRSを用いる。また、基地局装置がデータ信号に対してプリコーディングを行なっている場合、制御情報検出部2044は所望信号のPMI(Precoding Matrix Indicator)、もしくは干渉信号の送信パラメータのPMI、もしくは所望信号と干渉信号の両方に共通で使用されるPMIなどとして通知される制御情報を検出しても良い。 As described above, a transmission frame is generated when the transmission modes of a plurality of terminal apparatuses that transmit data signals multiplexed by SC are different. Therefore, the terminal apparatus that cancels / suppresses interference transmits the downlink transmission mode of the local station stored in the transmission mode holding unit 2045 and the additional information included in the control information detected by the control information detection unit 2044 by blind decoding. Information on whether or not the data signal is multiplexed on the SC, and information on whether or not interference cancellation or suppression is necessary to detect the desired signal if multiplexed on the SC, other information multiplexed on the SC Information related to the transmission mode of the terminal device is input to the reference signal separation unit 2041. When the URS base transmission mode is set, the reference signal separation unit 2041 determines which transmission processing of the base station apparatus uses in FIG. 9 based on these information, and transmits the reference signal to the resource element of the URS. Identify which data is located. Therefore, when the reference signal separation unit 2041 identifies that the data is not allocated to the resource element of the URS, the signal received by the resource element of the URS is output to the control information separation unit 2042 for data demodulation. CRS is used to estimate the frequency response to be used. When the base station apparatus precodes the data signal, the control information detection unit 2044 performs PMI (Precoding の Matrix Indicator) of the desired signal, PMI of the transmission parameter of the interference signal, or the desired signal and the interference signal. Control information notified as PMI or the like used in common for both may be detected.
 一方、干渉除去・抑圧しない端末装置は、データ復調に用いる参照信号の識別に自局のダウンリンクの送信モードのみの情報で良く、またSCで多重されているか否かの情報や干渉信号の送信パラメータも受信してなくも良い。 On the other hand, a terminal device that does not cancel or suppress interference may use only the information on the downlink transmission mode of its own station for identifying a reference signal used for data demodulation, and information on whether or not it is multiplexed in SC and transmission of interference signals. It is not necessary to receive parameters.
 なお、本実施形態では、干渉除去・抑圧する端末装置と干渉除去・抑圧しない端末装置がいずれもURSベース送信モードが設定されている場合には、URSのリソースエレメントに参照信号を配置するとしたが、干渉除去・抑圧する端末装置と干渉除去・抑圧しない端末装置でデータ伝送に使用される送信アンテナポート数(送信レイヤ数)が異なることが考えられる。例えば、干渉除去・抑圧する端末装置宛てのデータ信号の送信レイヤ数が3以上であり、干渉除去・抑圧しない端末装置宛てのデータ信号の送信レイヤ数が2以下の場合、干渉除去・抑圧する端末装置と干渉除去・抑圧しない端末装置でURSのリソースエレメントが異なる。そのため、干渉除去・抑圧する端末装置は、干渉除去・抑圧しない端末装置の送信レイヤ数を制御情報で受信し、干渉除去・抑圧しない端末装置のURSのリソースエレメントだけ参照信号が配置され、干渉除去・抑圧しない端末装置のURSを配置しないリソースエレメントにはデータを配置するとしても良い。つまり、干渉除去・抑圧する端末装置がURSを配置するリソースエレメントは、干渉除去・抑圧しない端末装置の送信レイヤ数のURSを配置するリソースエレメントとする。また、別の例として、干渉除去・抑圧する端末装置と干渉除去・抑圧しない端末装置でURSの送信に用いるリソースエレメントの数が少ない端末装置の設定に合わせても良く、この場合は干渉除去・抑圧する端末装置と干渉除去・抑圧しない端末装置にそれぞれ干渉信号の送信レイヤ数が制御情報として通知される。 In the present embodiment, when the URS base transmission mode is set for both the terminal device that performs interference cancellation / suppression and the terminal device that does not perform interference cancellation / suppression, the reference signal is arranged in the resource element of URS. It is conceivable that the number of transmission antenna ports (number of transmission layers) used for data transmission is different between the terminal apparatus that removes and suppresses interference and the terminal apparatus that does not remove and suppress interference. For example, when the number of transmission layers of a data signal addressed to a terminal device that performs interference cancellation / suppression is 3 or more and the number of transmission layers of a data signal addressed to a terminal device that does not perform interference cancellation / suppression is 2 or less, the terminal that performs interference cancellation / suppression The resource element of URS is different between the terminal device that does not cancel / suppress interference with the device. Therefore, the terminal device that performs interference cancellation / suppression receives the number of transmission layers of the terminal device that does not perform interference cancellation / suppression as control information, and only the URS resource elements of the terminal devices that do not perform interference cancellation / suppression are arranged with reference signals. -You may arrange | position data to the resource element which does not arrange | position URS of the terminal device which is not suppressed. That is, the resource element in which the terminal device that performs interference cancellation / suppression arranges the URS is a resource element that arranges the URS for the number of transmission layers of the terminal device that does not perform interference removal / suppression. Also, as another example, the terminal device that performs interference removal / suppression and the terminal device that does not perform interference removal / suppression may be configured to match the settings of the terminal device with a small number of resource elements used for URS transmission. The number of transmission layers of the interference signal is notified as control information to the terminal device to be suppressed and the terminal device to which interference is not removed / suppressed.
 以上のように本実施形態では、SCで多重時に端末装置の送信モードが異なることに起因してデータと参照信号がSCで多重されることがなくなり、チャネル推定制度の劣化を抑えることができる。さらに、異なる送信モードのNOMA多重によりスループットを向上することができる。 As described above, in this embodiment, data and reference signals are not multiplexed in SC due to different transmission modes of terminal devices when multiplexed in SC, and deterioration of the channel estimation system can be suppressed. Further, throughput can be improved by NOMA multiplexing in different transmission modes.
 (第3の実施形態)
 前実施形態では、複数の端末装置宛てのデータ信号をSCにより多重する場合、干渉除去・抑圧する端末装置の送信モードがURSベース送信モードであり、干渉除去・抑圧しない端末装置の送信モードのみによって基地局装置が送信フレームの生成を変更する例について説明したが、本実施形態では干渉除去・抑圧しない端末装置の送信モードや通知可能な制御情報によって基地局装置が送信フレームを変更する例について説明する。まず、本実施形態における基地局装置の構成例は、前実施形態と同様であり、図2、3である。また、本実施形態における端末装置の構成例は、前実施形態と同様であり、図4、5、6、7である。そのため、本実施形態では、異なる処理のみを説明し、同様の処理の説明は省略する。
(Third embodiment)
In the previous embodiment, when data signals addressed to a plurality of terminal devices are multiplexed by SC, the transmission mode of the terminal device that performs interference removal / suppression is the URS base transmission mode, and only by the transmission mode of the terminal device that does not perform interference removal / suppression. Although the example in which the base station device changes the generation of the transmission frame has been described, in the present embodiment, an example in which the base station device changes the transmission frame according to the transmission mode of the terminal device that does not eliminate or suppress interference and control information that can be notified is described. To do. First, the example of a structure of the base station apparatus in this embodiment is the same as that of previous embodiment, and is FIG. Moreover, the example of a structure of the terminal device in this embodiment is the same as that of previous embodiment, and is FIG. Therefore, in the present embodiment, only different processing will be described, and description of similar processing will be omitted.
 図10に、本発明に係る送信処理のフローチャートの一例を示す図である。まず、基地局装置は予め端末装置毎にダウンリンクの送信モードを設定する制御情報を生成して送信処理部103より端末装置に送信し、無線リソース制御部108は、非直交多重する端末装置の組み合わせを決定する。送信モード判別部1018は、送信電力の割り当てが少ない干渉除去・抑圧する端末装置がURSベース送信モードであることを識別する(S31)。送信モード判別部1018は、電力の割り当てが多い干渉除去・抑圧しない端末装置が干渉除去・抑圧する端末装置の送信モードに関連する情報を受信可能であることを識別する(S32)。また、干渉除去・抑圧しない端末装置が干渉除去・抑圧する端末装置の送信モードに関連する情報を受信できない場合は、第2の実施形態と同様であるため、説明は省略する。ここで、干渉除去・抑圧する端末装置の送信モードに関連する情報を受信可能であるとは、NOMA用の送信モードである、もしくはRRCでNOMAの設定がされているなどのことであり、干渉除去・抑圧する端末装置の送信モードに関連する情報を受信できないとは、NOMA用の送信モードではない、もしくはRRCでNOMAの設定がされていない、もしくはNOMA用の送信モードやNOMAの設定ができないなどのことである。参照信号生成部1016は干渉除去・抑圧する端末装置のURSのリソースエレメントの参照信号は生成し、さらに参照信号多重部1015はURSのリソースエレメントに参照信号を配置する送信フレームを生成する(S33)。 FIG. 10 is a diagram showing an example of a flowchart of the transmission process according to the present invention. First, the base station apparatus generates control information for setting a downlink transmission mode for each terminal apparatus in advance and transmits the control information to the terminal apparatus from the transmission processing unit 103. The radio resource control unit 108 Determine the combination. The transmission mode discriminating unit 1018 identifies that the terminal apparatus that performs interference removal / suppression with a small transmission power allocation is the URS base transmission mode (S31). The transmission mode determination unit 1018 identifies that a terminal device that does not perform interference cancellation / suppression with a large amount of power allocation can receive information related to the transmission mode of the terminal device that performs interference cancellation / suppression (S32). Further, when a terminal device that does not perform interference cancellation / suppression cannot receive information related to the transmission mode of the terminal device that performs interference cancellation / suppression, the description is omitted because it is the same as in the second embodiment. Here, being able to receive information related to the transmission mode of the terminal device that eliminates and suppresses interference means that it is a transmission mode for NOMA, or that NOMA is set in RRC. The fact that information related to the transmission mode of the terminal device to be removed / suppressed cannot be received is not a transmission mode for NOMA, NOMA is not set in RRC, or a transmission mode for NOMA or NOMA cannot be set And so on. The reference signal generation unit 1016 generates a reference signal of the URS resource element of the terminal apparatus that performs interference cancellation / suppression, and the reference signal multiplexing unit 1015 generates a transmission frame in which the reference signal is arranged in the URS resource element (S33). .
 送信モード判別部1018は、送信干渉除去・抑圧しない端末装置がCRSベース送信モードに設定されているか判定する(S34)。送信モード判別部1018は干渉除去・抑圧しない端末装置がCRSベース送信モードと判別した場合、参照信号生成部1016は、干渉除去・抑圧する端末装置のURSのリソースエレメントには干渉除去・抑圧しない端末装置の参照信号を生成せず、送信信号割当部1019は干渉除去・抑圧する端末装置のURSのリソースエレメントに干渉除去・抑圧しない端末装置のデータを配置せず、参照信号多重部1015は干渉除去・抑圧する端末装置のURSのリソースエレメントに干渉除去・抑圧しない端末装置の参照信号も配置しない送信フレームを生成する(S35)。なお、データを受信時に干渉除去・抑圧しないCRSベース送信モードの端末装置は、URSのリソースエレメントにデータを配置するか否かの情報(干渉除去・抑圧する端末装置の送信モードに関連する情報)が必要である。そのため、制御情報生成部109は、干渉除去・抑圧しない端末装置に対して、干渉除去・抑圧する端末装置の送信モードがCRSベース送信モードかURSベース送信モードかの情報やレイヤ数、使用するアンテナポート番号などのURSのリソースエレメントに関する情報を制御情報の付加情報として送信する。一方、送信モード判別部1018は干渉除去・抑圧しない端末装置がURSベース送信モードを設定されている場合、参照信号生成部1016はSCにより多重する端末装置のいずれもURSを使用するため、干渉除去・抑圧する端末装置と干渉除去・抑圧しない端末装置が共通でデータ復調に使用可能なURSを生成し、参照信号多重部1015はURSのリソースエレメントに1つの参照信号を配置して送信フレームを生成し、S36へ移行する(S37)。よって、SCでデータ信号が多重される複数の端末装置宛てのURSの信号を複数生成し、SCで多重することはしない。ただし、本発明はこの例に限定されず、長さXのOCCなどによりSCでデータ信号が多重される複数の端末装置宛てのURSの信号を複数生成し、符号による多重を行なっても良い。信号多重1014は、SCにより複数の端末装置宛ての信号を多重する(S36)。 The transmission mode determination unit 1018 determines whether a terminal device that does not remove or suppress transmission interference is set to the CRS base transmission mode (S34). When the transmission mode determination unit 1018 determines that the terminal device that does not perform interference cancellation / suppression is the CRS-based transmission mode, the reference signal generation unit 1016 does not perform interference cancellation / suppression for the resource element of the URS of the terminal device that performs interference cancellation / suppression. The reference signal of the device is not generated, the transmission signal allocating unit 1019 does not place the data of the terminal device that does not perform interference cancellation / suppression in the resource element of the URS of the terminal device that performs interference cancellation / suppression, and the reference signal multiplexing unit 1015 Generate a transmission frame in which no reference signal of a terminal device that does not cancel or suppress interference is placed in the resource element of the URS of the terminal device to be suppressed (S35). In addition, the terminal device in the CRS base transmission mode that does not cancel or suppress interference when receiving data is information regarding whether to place data in the resource element of URS (information related to the transmission mode of the terminal device that performs interference cancellation or suppression). is required. For this reason, the control information generation unit 109, for a terminal device that does not cancel or suppress interference, information on the transmission mode of the terminal device that performs interference cancellation or suppression, the number of layers, the number of layers to be used, and the antenna to be used Information on the resource element of URS such as the port number is transmitted as additional information of the control information. On the other hand, when the terminal device that does not cancel / suppress interference is set to the URS base transmission mode, the transmission mode determination unit 1018 uses the URS for all of the terminal devices multiplexed by the SC. A terminal device that suppresses and a terminal device that does not cancel or suppress interference generate a URS that can be used for data demodulation, and the reference signal multiplexing unit 1015 generates a transmission frame by arranging one reference signal in the resource element of the URS Then, the process proceeds to S36 (S37). Therefore, a plurality of URS signals destined for a plurality of terminal devices on which data signals are multiplexed by the SC are not generated and multiplexed by the SC. However, the present invention is not limited to this example, and a plurality of URS signals destined for a plurality of terminal devices to which data signals are multiplexed by the SC by OCC of length X may be generated, and multiplexing by codes may be performed. The signal multiplexing 1014 multiplexes signals addressed to a plurality of terminal devices by SC (S36).
 以上のようにSCで多重してデータ信号を送信する複数の端末装置の送信モードが異なる場合に送信フレームの生成を行なう。そのため、干渉除去・抑圧しない端末装置は、送信モード保持部2045で記憶している自局のダウンリンクの送信モードと制御情報検出部2044でブラインドデコーディングにより検出した制御情報に含まれる付加情報のデータ信号がSCで多重されているか否かの情報、SCで多重されている場合は所望信号を検出するために干渉除去もしくは抑圧が必要か否かに関連する情報、SCで多重されている他の端末装置の送信モードに関連する情報などが参照信号分離部2041に入力される。参照信号分離部2041は、URSベース送信モードが設定されている場合に、これらの情報に基づいて基地局装置が図10のどの送信処理を用いたかを判別し、URSのリソースエレメントにデータも参照信号も配置していないことを識別する。よって、参照信号分離部2041はURSのリソースエレメントにデータも参照信号も配置されていないと識別した場合、URSのリソースエレメントで受信した信号は伝搬路推定部206にも制御情報分離部2042にも出力せずに破棄する。よって、端末装置はデータ復調に用いる周波数応答の推定にはCRSを用いる。また、基地局装置がデータ信号に対してプリコーディングを行なっている場合、制御情報検出部2044は所望信号のPMI(Precoding Matrix Indicator)、もしくは干渉信号の送信パラメータのPMI、もしくは所望信号と干渉信号の両方に共通で使用されるPMIなどとして通知される制御情報を検出しても良い。 As described above, a transmission frame is generated when the transmission modes of a plurality of terminal apparatuses that transmit data signals multiplexed by SC are different. Therefore, the terminal apparatus that does not cancel or suppress the interference transmits the downlink transmission mode of the own station stored in the transmission mode holding unit 2045 and the additional information included in the control information detected by the control information detecting unit 2044 by blind decoding. Information on whether or not the data signal is multiplexed on the SC, and information on whether or not interference cancellation or suppression is necessary to detect the desired signal if multiplexed on the SC, other information multiplexed on the SC Information related to the transmission mode of the terminal device is input to the reference signal separation unit 2041. When the URS base transmission mode is set, the reference signal separation unit 2041 determines which transmission process of the base station apparatus uses in FIG. 10 based on such information, and also refers to the data in the URS resource element Identify that no signal is placed. Therefore, when the reference signal separation unit 2041 identifies that neither data nor reference signals are arranged in the URS resource element, the signal received by the URS resource element is transmitted to both the propagation path estimation unit 206 and the control information separation unit 2042. Discard without outputting. Therefore, the terminal apparatus uses CRS for estimating the frequency response used for data demodulation. When the base station apparatus precodes the data signal, the control information detection unit 2044 performs PMI (Precoding の Matrix Indicator) of the desired signal, PMI of the transmission parameter of the interference signal, or the desired signal and the interference signal. Control information notified as PMI or the like used in common for both may be detected.
 一方、干渉除去・抑圧する端末装置は、データ復調に用いる参照信号の識別に自局のダウンリンクの送信モードと制御情報検出部2044で検出する干渉除去・抑圧しない端末装置が自局の送信モードに関連する情報を受信可能であるかの情報によって行なうことができる。 On the other hand, a terminal device that eliminates and suppresses interference includes a downlink transmission mode of its own station for identification of a reference signal used for data demodulation, and a terminal device that does not cancel and suppress interference detected by the control information detection unit 2044 The information related to whether or not the information related to can be received.
 以上のように本実施形態では、SCで多重時に端末装置の送信モードが異なることに起因してデータと参照信号がSCで多重されることがなくなり、チャネル推定制度の劣化を抑えることができる。さらに、異なる送信モードのNOMA多重によりスループットを向上することができる。 As described above, in this embodiment, data and reference signals are not multiplexed in SC due to different transmission modes of terminal devices when multiplexed in SC, and deterioration of the channel estimation system can be suppressed. Further, throughput can be improved by NOMA multiplexing in different transmission modes.
 本発明に関わる基地局装置および端末装置で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであっても良い。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。 The program that operates in the base station apparatus and terminal apparatus related to the present invention is a program that controls the CPU or the like (a program that causes a computer to function) so as to realize the functions of the above-described embodiments related to the present invention. Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary. As a recording medium for storing the program, a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient. In addition, by executing the loaded program, not only the functions of the above-described embodiment are realized, but also based on the instructions of the program, the processing is performed in cooperation with the operating system or other application programs. The functions of the invention may be realized.
 また、市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明に含まれる。また、上述した実施形態における基地局装置および端末装置の一部、または全部を典型的には集積回路であるLSIとして実現しても良い。基地局装置および端末装置の各機能ブロックは個別にチップ化しても良いし、一部、または全部を集積してチップ化しても良い。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。各機能ブロックを集積回路化した場合に、それらを制御する集積回路制御部が付加される。 In addition, when distributing to the market, the program can be stored in a portable recording medium for distribution, or transferred to a server computer connected via a network such as the Internet. In this case, the storage device of the server computer is also included in the present invention. Further, part or all of the base station apparatus and terminal apparatus in the above-described embodiment may be realized as an LSI that is typically an integrated circuit. Each functional block of the base station apparatus and the terminal apparatus may be individually chipped, or a part or all of them may be integrated into a chip. Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. When each functional block is integrated, an integrated circuit controller for controlling them is added.
 また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. In addition, when an integrated circuit technology that replaces LSI appears due to progress in semiconductor technology, an integrated circuit based on the technology can also be used.
 また、本願発明は上述の実施形態に限定されるものではない。本願発明の端末装置は、移動局装置への適用に限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、例えば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などに適用出来ることは言うまでもない。 Further, the present invention is not limited to the above-described embodiment. The terminal device of the present invention is not limited to application to a mobile station device, but is a stationary or non-movable electronic device installed indoors or outdoors, such as AV equipment, kitchen equipment, cleaning / washing equipment Needless to say, it can be applied to air conditioning equipment, office equipment, vending machines, and other daily life equipment.
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like without departing from the gist of the present invention. The present invention can be modified in various ways within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present invention. It is. Moreover, it is the element described in each said embodiment, and the structure which substituted the element which has the same effect is also contained.
 なお、本国際出願は、2015年5月8日に出願した日本国特許出願第2015-095542号に基づく優先権を主張するものであり、日本国特許出願第2015-095542号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2015-095542 filed on May 8, 2015, and the entire contents of Japanese Patent Application No. 2015-095542 are hereby incorporated by reference. Included in international applications.
 10…基地局装置
 21~25…端末装置
 101…送信信号生成部
 102…IFFT部
 103…送信処理部
 104…送信アンテナ
 105…受信アンテナ
 106…無線受信部
 107…制御情報検出部
 108…無線リソース制御部
 109…制御情報生成部
 1011-1~1011-2…誤り訂正符号化部
 1012-1~1012-2…変調部
 1013-1~1013-2…送信電力制御部
 1014…信号多重部
 1015…参照信号多重部
 1016…参照信号生成部
 1017…制御信号多重部
 1018…送信モード判別部
 1019…送信信号割当部
 201…受信アンテナ
 202…受信処理部
 203…FFT部
 204…信号分離部
 205…信号検出部
 206…伝搬路推定部
 207…制御情報生成部
 208…制御情報送信部
 209…送信アンテナ
 2041…参照信号分離部
 2042…制御情報分離部
 2043…割当信号抽出部
 2044…制御情報検出部
 2045…送信モード保持部
 2051…干渉信号検出部
 2052…干渉信号再生部
 2053…干渉除去部
 2054…所望信号検出部
 2054-1…伝搬路補償部
 2054-2…復調部
 2054-3…復号部
DESCRIPTION OF SYMBOLS 10 ... Base station apparatus 21-25 ... Terminal device 101 ... Transmission signal generation part 102 ... IFFT part 103 ... Transmission processing part 104 ... Transmission antenna 105 ... Reception antenna 106 ... Radio reception part 107 ... Control information detection part 108 ... Radio | wireless resource control Reference numeral 109 ... Control information generator 1011-1 to 1011-2 ... Error correction encoder 1012-1 to 1012-2 ... Modulator 1013-1 to 1013-2 ... Transmission power controller 1014 ... Signal multiplexer 1015 Signal multiplexing unit 1016 ... Reference signal generation unit 1017 ... Control signal multiplexing unit 1018 ... Transmission mode determination unit 1019 ... Transmission signal allocation unit 201 ... Reception antenna 202 ... Reception processing unit 203 ... FFT unit 204 ... Signal separation unit 205 ... Signal detection unit 206 ... Propagation path estimation unit 207 ... Control information generation unit 208 ... Control information transmission unit 209 ... Transmission Signal antenna 2041... Reference signal separation unit 2042... Control information separation unit 2043... Assignment signal extraction unit 2044... Control information detection unit 2045... Transmission mode holding unit 2051 ... Interference signal detection unit 2052. ... Desired signal detector 2054-1 ... Propagation path compensator 2054-2 ... Demodulator 2054-3 ... Decoder

Claims (13)

  1.  複数の端末装置に対してデータ信号を送信する基地局装置であって、
     前記基地局装置は少なくとも第1の端末装置と第2の端末装置のデータ信号を同一リソースに多重する信号多重部と、前記第1の端末装置宛てのデータ信号に割り当てる送信電力より前記第2の端末装置宛てのデータ信号に割り当てる送信電力を高くする送信電力制御部と送信電力が異なるデータ信号を送信する前記第1の端末装置と前記第2の端末装置に互いに異なるダウンリンク伝送の送信モードに関する情報を通知する制御情報を生成する制御情報生成部とを有し、
     前記第1の端末装置もしくは前記第2の端末装置の少なくとも一方に他の端末装置の前記送信モードを含む制御情報を前記制御情報生成部で生成することを特徴とする基地局装置。
    A base station device that transmits data signals to a plurality of terminal devices,
    The base station apparatus uses the signal multiplexing unit that multiplexes at least the data signals of the first terminal apparatus and the second terminal apparatus on the same resource, and the transmission power assigned to the data signal addressed to the first terminal apparatus. A transmission power control unit that increases transmission power assigned to a data signal addressed to a terminal device, and a transmission mode of downlink transmission different from each other to the first terminal device and the second terminal device that transmit data signals having different transmission power A control information generation unit for generating control information for notifying information,
    A base station apparatus, wherein the control information generation unit generates control information including the transmission mode of another terminal apparatus in at least one of the first terminal apparatus or the second terminal apparatus.
  2.  前記制御情報生成部が生成する制御情報に含まれる前記送信モードに関する情報には、少なくともデータの復調の伝搬路推定に用いる参照信号がユーザ固有参照信号の第1の送信モードとデータの復調の伝搬路推定に用いる参照信号がセル固有参照信号の第2の送信モードがあることを特徴とする請求項1記載の基地局装置。 The information related to the transmission mode included in the control information generated by the control information generation unit includes at least a reference signal used for channel estimation of data demodulation and a first transmission mode of a user-specific reference signal and propagation of data demodulation. The base station apparatus according to claim 1, wherein the reference signal used for path estimation has a second transmission mode of a cell-specific reference signal.
  3.  前記基地局装置は、前記第1の端末装置宛てと前記第2の端末装置宛てのデータ信号のユーザ固有参照信号を生成して多重する送信信号生成部を有し、
     前記送信信号生成部は前記第1の端末装置と前記第2の端末装置の前記送信モードの組み合わせに応じてデータ信号の多重方法、もしくはユーザ固有参照信号の多重方法の少なくとも一方が異なることを特徴とする請求項2記載の基地局装置。
    The base station apparatus includes a transmission signal generation unit that generates and multiplexes user-specific reference signals of data signals addressed to the first terminal apparatus and the second terminal apparatus,
    The transmission signal generating unit is characterized in that at least one of a data signal multiplexing method and a user-specific reference signal multiplexing method differs according to a combination of the transmission modes of the first terminal device and the second terminal device. The base station apparatus according to claim 2.
  4.  前記制御情報生成部が生成する制御情報に含まれる前記送信モードに関する情報には、前記第1の端末装置もしくは前記第2の端末装置の少なくとも一方に他の端末装置のユーザ固有参照信号の送信に使用するアンテナポート数、アンテナポート番号、レイヤ数もしくはユーザ固有参照信号を割り当てるリソースエレメントの情報の少なくとも1つが含まれることを特徴とする請求項3記載の基地局装置。 Information related to the transmission mode included in the control information generated by the control information generation unit includes transmission of a user-specific reference signal of another terminal device to at least one of the first terminal device or the second terminal device. The base station apparatus according to claim 3, wherein at least one of resource element information to which the number of antenna ports to be used, the antenna port number, the number of layers, or a user-specific reference signal is allocated is included.
  5.  前記制御情報生成部が生成する制御情報を用いて前記第1の端末装置に前記第2の送信モードを設定している場合、
     前記第2の端末装置の前記送信モードによって前記第1の送信モードで送信するユーザ固有参照信号のリソースエレメントに前記第1の端末装置のデータ信号を割り当てるか、前記第1の端末装置宛ての信号を何も割り当てないかを切り替えることを特徴とする請求項3記載の基地局装置。
    When the second transmission mode is set in the first terminal device using the control information generated by the control information generation unit,
    According to the transmission mode of the second terminal apparatus, a data signal of the first terminal apparatus is allocated to a resource element of a user-specific reference signal transmitted in the first transmission mode, or a signal addressed to the first terminal apparatus The base station apparatus according to claim 3, wherein switching is performed to assign nothing.
  6.  前記制御情報生成部が生成する制御情報を用いて前記第1の端末装置に前記第2の送信モードを設定している場合、
     前記第2の端末装置が前記第1の端末装置の送信モードに関する情報を受信可能かによって前記第1の送信モードで送信するユーザ固有参照信号のリソースエレメントに前記第2の端末装置のデータ信号を割り当てるか、前記第2の端末装置宛ての信号を何も割り当てないかを切り替えることを特徴とする請求項3記載の基地局装置。
    When the second transmission mode is set in the first terminal device using the control information generated by the control information generation unit,
    Depending on whether the second terminal apparatus can receive information on the transmission mode of the first terminal apparatus, the data signal of the second terminal apparatus is transmitted to the resource element of the user-specific reference signal transmitted in the first transmission mode. The base station apparatus according to claim 3, wherein the base station apparatus switches between assigning and not assigning any signal addressed to the second terminal apparatus.
  7.  前記制御情報生成部が生成する制御情報を用いて前記第1の端末装置に前記第1の送信モードを設定している場合、
     前記第2の端末装置の前記送信モードによって前記第1の送信モードで送信するユーザ固有参照信号のリソースエレメントに前記第1の端末装置のユーザ固有参照信号を割り当てるか、前記第1の端末装置のデータを割り当てるかを切り替えることを特徴とする請求項3記載の基地局装置。
    When the first transmission mode is set in the first terminal device using the control information generated by the control information generation unit,
    According to the transmission mode of the second terminal apparatus, the user specific reference signal of the first terminal apparatus is assigned to the resource element of the user specific reference signal transmitted in the first transmission mode, or the first terminal apparatus 4. The base station apparatus according to claim 3, wherein whether to allocate data is switched.
  8.  前記制御情報生成部が生成する制御情報を用いて前記第1の端末装置に前記第1の送信モードを設定している場合、
     前記第2の端末装置が前記第1の端末装置の送信モードに関する情報を受信可能かによって前記第1の送信モードで送信するユーザ固有参照信号のリソースエレメントに前記第1の端末装置のユーザ固有参照信号を割り当てるか、前記第1の端末装置のデータを割り当てるかを切り替えることを特徴とする請求項3記載の基地局装置。
    When the first transmission mode is set in the first terminal device using the control information generated by the control information generation unit,
    Depending on whether the second terminal apparatus can receive information on the transmission mode of the first terminal apparatus, the resource element of the user-specific reference signal transmitted in the first transmission mode is used as the user-specific reference of the first terminal apparatus. The base station apparatus according to claim 3, wherein the base station apparatus switches between assigning a signal and assigning data of the first terminal apparatus.
  9.  前記制御情報生成部が生成する制御情報を用いて前記第1の端末装置に前記第1の送信モードを設定している場合、
     前記第2の端末装置の前記送信モードによって前記第1の送信モードで送信するユーザ固有参照信号のリソースエレメントに前記第2の端末装置のデータ信号を割り当てるか、前記第2の端末装置宛ての信号を何も割り当てないかを切り替えることを特徴とする請求項3記載の基地局装置。
    When the first transmission mode is set in the first terminal device using the control information generated by the control information generation unit,
    According to the transmission mode of the second terminal apparatus, a data signal of the second terminal apparatus is allocated to a resource element of a user-specific reference signal transmitted in the first transmission mode, or a signal addressed to the second terminal apparatus The base station apparatus according to claim 3, wherein switching is performed to assign nothing.
  10.  基地局装置より送信される複数の端末装置のデータ信号が多重された信号を受信する端末装置であって、
     前記端末装置は、同一リソースに割り当てられている他の端末装置宛てのデータ信号と異なる送信電力で多重された信号から所望信号を検出する信号検出部と前記基地局装置より送信された制御情報を検出する制御情報検出部と前記制御情報に含まれるダウンリンクの送信モードと他の端末装置の送信モードに関する情報よりユーザ固有参照信号の送信に用いられるリソースエレメントに配置される信号を識別する参照信号分離部とを有し、
     参照信号分離部は、ユーザ固有参照信号の送信に用いられるリソースエレメントにユーザ固有参照信号、データ信号、もしくは何も配置されていない、のいずれの送信フレームを使用されたかを判別することを特徴とする端末装置。
    A terminal device that receives a signal in which data signals of a plurality of terminal devices transmitted from a base station device are multiplexed,
    The terminal device includes a signal detection unit that detects a desired signal from signals multiplexed with different transmission power from data signals addressed to other terminal devices allocated to the same resource, and control information transmitted from the base station device. A reference signal for identifying a signal to be arranged in a resource element used for transmission of a user-specific reference signal from information on a control information detection unit to be detected and a downlink transmission mode and a transmission mode of another terminal device included in the control information A separation part,
    The reference signal separation unit is characterized by determining which transmission frame of a user-specific reference signal, a data signal, or nothing is used for a resource element used for transmission of a user-specific reference signal. Terminal device to do.
  11.  前記制御情報検出部で受信する前記送信モードと前記他の端末装置の送信モードは、少なくともデータの復調の伝搬路推定に用いる参照信号がユーザ固有参照信号の第1の送信モードとデータの復調の伝搬路推定に用いる参照信号がセル固有参照信号の第2の送信モードがあることを特徴とする請求項10記載の端末装置。 The transmission mode received by the control information detector and the transmission mode of the other terminal device are at least a first transmission mode of a user-specific reference signal as a reference signal used for channel estimation of data demodulation and a data demodulation mode. The terminal apparatus according to claim 10, wherein the reference signal used for propagation path estimation has a second transmission mode of a cell-specific reference signal.
  12.  所望信号に割り当て送信電力が他の端末装置宛てのデータ信号に割り当て送信電力より低く設定されている場合、
     参照信号分離部が前記他の端末装置の前記送信モードによってユーザ固有参照信号の送信に用いられるリソースエレメントに配置される信号を判別することを特徴とする請求項11記載の端末装置。
    When the transmission power allocated to a desired signal is set lower than the transmission power allocated to a data signal addressed to another terminal device,
    12. The terminal apparatus according to claim 11, wherein the reference signal separation unit determines a signal arranged in a resource element used for transmitting a user-specific reference signal according to the transmission mode of the other terminal apparatus.
  13.  所望信号に割り当て送信電力が他の端末装置宛てのデータ信号に割り当て送信電力より低く設定されている場合、
     参照信号分離部は前記他の端末装置が前記送信モードに関する情報を受信可能かによってユーザ固有参照信号の送信に用いられるリソースエレメントに配置される信号を判別することを特徴とする請求項11記載の端末装置。
    When the transmission power allocated to a desired signal is set lower than the transmission power allocated to a data signal addressed to another terminal device,
    The reference signal separation unit determines a signal arranged in a resource element used for transmitting a user-specific reference signal according to whether the other terminal device can receive information on the transmission mode. Terminal device.
PCT/JP2016/063374 2015-05-08 2016-04-28 Terminal device and base station device WO2016181861A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015095542A JP2018107483A (en) 2015-05-08 2015-05-08 Terminal and base station device
JP2015-095542 2015-05-08

Publications (1)

Publication Number Publication Date
WO2016181861A1 true WO2016181861A1 (en) 2016-11-17

Family

ID=57248904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063374 WO2016181861A1 (en) 2015-05-08 2016-04-28 Terminal device and base station device

Country Status (2)

Country Link
JP (1) JP2018107483A (en)
WO (1) WO2016181861A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107071038A (en) * 2017-04-21 2017-08-18 深圳市斑点猫信息技术有限公司 A kind of method and device of transmitting multimedia data
CN109275137A (en) * 2018-09-28 2019-01-25 深圳大学 Method and system for predicting attack of wireless energy transmission communication network
WO2020062073A1 (en) * 2018-09-28 2020-04-02 深圳大学 Method and system for preventing jamming attack in wireless powered communication network
CN119277498A (en) * 2024-12-09 2025-01-07 西北工业大学 A multi-user power allocation method for Internet of Things based on external information analysis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102094428B1 (en) * 2018-12-31 2020-03-27 충남대학교산학협력단 Method and System for Non-Orthogonal Multiple Access Communication Using Space-Time Line Code Based Phase Steering

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014154962A (en) * 2013-02-06 2014-08-25 Ntt Docomo Inc Radio base station, user terminal, and radio communication method
JP2014527344A (en) * 2011-08-15 2014-10-09 モトローラ モビリティ エルエルシー Method and apparatus for control channel transmission and reception

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527344A (en) * 2011-08-15 2014-10-09 モトローラ モビリティ エルエルシー Method and apparatus for control channel transmission and reception
JP2014154962A (en) * 2013-02-06 2014-08-25 Ntt Docomo Inc Radio base station, user terminal, and radio communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OSAMU NAKAMURA ET AL.: "Frequency Selection Diversity Effect for Downlink Non-Orthogonal Multiple Access with Maximum Likelihood Detection", IEICE TECHNICAL REPORT, vol. 114, no. 395, 15 January 2015 (2015-01-15), pages 91 - 96 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107071038A (en) * 2017-04-21 2017-08-18 深圳市斑点猫信息技术有限公司 A kind of method and device of transmitting multimedia data
CN107071038B (en) * 2017-04-21 2020-04-24 深圳市斑点猫信息技术有限公司 Method and device for transmitting multimedia data
CN109275137A (en) * 2018-09-28 2019-01-25 深圳大学 Method and system for predicting attack of wireless energy transmission communication network
WO2020062073A1 (en) * 2018-09-28 2020-04-02 深圳大学 Method and system for preventing jamming attack in wireless powered communication network
CN109275137B (en) * 2018-09-28 2020-12-01 深圳大学 Method and system for predicting jamming attack in wireless energy transmission communication network
CN119277498A (en) * 2024-12-09 2025-01-07 西北工业大学 A multi-user power allocation method for Internet of Things based on external information analysis

Also Published As

Publication number Publication date
JP2018107483A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
US10728797B2 (en) Method for cancelling a data transmission of a neighboring cell
WO2016171062A1 (en) Terminal device and base station device
US10003486B2 (en) Non-orthogonal multiple access (NOMA) wireless systems and methods
US10103854B2 (en) Communication system, mobile station device, base station device, communication method, and integrated circuit
WO2016021494A1 (en) Base station device, terminal device and integrated circuit
EP3386243B1 (en) Base station device, terminal device, and communication method
JP2012204909A (en) Base station, terminal, communication system, and communication method
WO2016181861A1 (en) Terminal device and base station device
WO2017051660A1 (en) Base station device, terminal device, and communication method
CN108141768B (en) Base station device, terminal device, and communication method
WO2015166865A1 (en) Terminal device and integrated circuit
WO2016129424A1 (en) Base station device, terminal device, and communication method
WO2017077971A1 (en) Terminal apparatus and base station apparatus
WO2016027646A1 (en) Terminal device, base station device, and communication method
WO2015137112A1 (en) Terminal device, base station device, and integrated circuit
WO2016182038A1 (en) Terminal device and base station device
WO2016171106A1 (en) Terminal device and base station device
WO2016129429A1 (en) Base station device, terminal device, and communication method
WO2016129425A1 (en) Base station device, terminal device, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP