[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016181669A1 - Rigid connection structure for bottom end of pillar and concrete pile - Google Patents

Rigid connection structure for bottom end of pillar and concrete pile Download PDF

Info

Publication number
WO2016181669A1
WO2016181669A1 PCT/JP2016/052411 JP2016052411W WO2016181669A1 WO 2016181669 A1 WO2016181669 A1 WO 2016181669A1 JP 2016052411 W JP2016052411 W JP 2016052411W WO 2016181669 A1 WO2016181669 A1 WO 2016181669A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
rigid structure
extension
rib group
pile
Prior art date
Application number
PCT/JP2016/052411
Other languages
French (fr)
Japanese (ja)
Inventor
雄士 美島
晋作 清水
拓也 大庭
森田 寛之
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to CN201680026727.4A priority Critical patent/CN107532398B/en
Priority to KR1020177030759A priority patent/KR102079692B1/en
Publication of WO2016181669A1 publication Critical patent/WO2016181669A1/en
Priority to PH12017501821A priority patent/PH12017501821A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/02Piers; Abutments ; Protecting same against drifting ice
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/10Deep foundations
    • E02D27/12Pile foundations

Definitions

  • the present invention mainly relates to a rigidly connected structure of a pillar lower end and a concrete pile such as a three-dimensional crossing bridge, a viaduct, an elevated structure, a general bridge, or a railway bridge.
  • a heavy building such as a road bridge 1 has a configuration in which the load is transmitted to the ground 5 by a bridge pier 3 as a support.
  • the pier lower end 4 which is the lower end of the pier 3
  • the RC pile 6 (concrete reinforced with reinforcing bars) arranged vertically are rigidly connected by the rigid structures 10, 100. Yes.
  • the load acting on the building is mainly in the vertical direction due to its own weight and in the horizontal direction due to earthquakes.
  • horizontal loads frequently act on buildings, so the importance of rigid structures that generate large bending moments due to these loads increases.
  • Patent Document 1 As a conventional rigid structure, there has been proposed a structure in which a large number of displacement preventing holes (perforated steel plate gibber: PBL) are formed in an extended portion extending downward from a lower end portion of a pier (see, for example, Patent Document 1). ).
  • the rigid structure described in Patent Document 1 has a configuration in which the extension portion itself transmits the load in the horizontal direction from the lower end portion of the pier to the RC pile as a strength member.
  • an object of the present invention is to provide a rigid structure of a column lower end portion and a concrete pile that can reduce manufacturing time and cost and can improve reliability.
  • a rigid structure according to the first invention is a rigid structure of a lower end portion of a support and a concrete pile, An extension that extends downward from the lower end of the column and is placed on the concrete pile, An outer vertical rib group provided on the outer surface of the extension part and formed with a number of anti-slip holes; With external concrete cast on the outer periphery of the extension, The external concrete embeds a reinforcing bar group extending upward from the inside of the concrete pile and the outer vertical rib group.
  • the rigid structure according to the second invention is the rigid structure according to the first invention, the inner vertical rib group provided on the inner surface of the extension portion and formed with a number of detent holes, An internal concrete placed inside the extension, The internal concrete embeds the inner vertical rib group.
  • the rigid structure according to the third aspect of the invention is the rigid structure according to the first or second aspect of the invention, comprising a vertical cylindrical portion connected to the outer vertical rib group and surrounding the outside of the extension portion, The said vertical cylinder part becomes a formwork at the time of placing external concrete.
  • the extension in the rigid structure according to the first or second invention has a cylindrical shape
  • An outer vertical rib group consists of many outer vertical ribs arrange
  • the rigid structure according to the fifth aspect of the invention is the outer peripheral reinforcement group in which the reinforcing bars embedded in the external concrete in the rigid structure according to the first or second aspect of the invention are main reinforcing bars that reinforce the concrete pile. And an inner periphery reinforcing bar group which is a reinforcing bar fixed to the outer peripheral reinforcing bar group inside the concrete pile.
  • the outer vertical rib group embedded in the external concrete sufficiently reduces the stress generated when transmitting the load from the lower end of the support column. Therefore, it is not necessary to form an anti-displacement hole, and as a result, manufacturing time and cost can be reduced. Moreover, since the space
  • FIG. 1 is a general side view of a road bridge using a rigid structure according to an embodiment of the present invention. It is a longitudinal cross-sectional view of the rigid structure which concerns on Example 1 of this invention. It is the perspective view which abbreviate
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3.
  • FIG. 4 is a sectional view taken along line BB in FIG. 3. It is a cross-sectional view for demonstrating the cross-sectional secondary moment of an outer vertical rib group. It is a figure and graph for demonstrating the stress which generate
  • the road bridge 1 includes a bridge girder 2 through which people or vehicles pass, and a plurality of bridge piers 3 (an example of support columns) that support the bridge girder 2.
  • the lower ends of these piers 3, that is, the lower ends of the piers 4 (which are an example of the lower ends of the columns) are rigidly attached to columnar RC piles 6 (concrete reinforced with reinforcing bars) arranged vertically on the ground 5. It is tied. Rigidly connecting the pier lower end 4 and the RC pile 6 is the rigid structure 10, 100.
  • the rigid structure 10 includes, as steel portions 12 to 15, an extension portion 12 extending downward from the pier lower end portion 4 and a lower portion of the extension portion 12.
  • a vertical cylindrical portion 13 that surrounds the outside of a lower extension 23 (described later in detail), and an outer vertical rib group 14 and an inner vertical rib group 15 (strength members provided on the outer surface and the inner surface of the lower extension 23, respectively) 2).
  • the rigid structure 10 is formed as a concrete portion 16-18 between the lower extension 23 and the vertical cylinder 13 (that is, the lower extension).
  • the extension portion 12 is placed on the pile head 7 of the RC pile 6 via an installation stand 68 (H-shaped steel or the like) as shown in FIG. 2 and 3, the extension portion 12 includes a diaphragm 20 disposed horizontally at the upper end height of the outer longitudinal rib group 14 and the inner longitudinal rib group 15, and an upper upper portion by the diaphragm 20.
  • the extension portion 22 includes a lower extension portion 23 below the diaphragm 20.
  • the diaphragm 20 has an opening 21 into which ready-mixed concrete for the internal concrete 17 is poured from above.
  • the upper extension portion 22 and the lower extension portion 23 have a cylindrical shape concentric with the RC pile 6 and have a smaller diameter than the RC pile 6. As shown in FIG.
  • the lower extension 23 does not have anything other than the inner concrete 17 and the inner vertical rib group 15 in the interior thereof for the workability when placing the inner concrete 17.
  • the extension part 12 is provided with a stopper hole (perforated steel plate gibber: PBL) need not be formed.
  • the vertical cylinder portion 13 has a cylindrical shape concentric with the RC pile 6 and the extension portion 12, and has a slightly larger diameter than the RC pile 6.
  • the lower end of the vertical cylinder part 13 is slightly lower than the pile head 7 of the RC pile 6, and the upper end of the vertical cylinder part 13 is the same height (or higher) as the outer vertical rib group 14.
  • the said vertical cylinder part 13 is in contact with the soil of the ground 5 in the outer surface, as shown in FIG.
  • the said vertical cylinder part 13 is the secondary member (including corrosion margin) which functions as a formwork for placing the external concrete 16, and a band reinforcement after the placement.
  • the outer vertical rib group 14 is composed of a plurality of outer vertical ribs 40 arranged radially at equal pitches from the outer peripheral surface of the lower extension 23, as shown in FIGS. As shown in FIGS. 3 and 5, each outer vertical rib 40 has a large number of anti-slip holes 8 (perforated holes) penetrating in the horizontal direction in order to transmit the load from the pier lower end 4 to the external concrete 16. Steel plate gibber (PBL) is regularly formed.
  • the large number of outer vertical ribs 40 constituting the outer vertical rib group 14 reach the vertical cylinder part 13 and do not reach the wide outer vertical ribs 40 connected to the vertical cylinder part 13 and the vertical cylinder part 13. There is a narrow outer longitudinal rib 40.
  • the wide outer vertical ribs 40 are arranged at an equal pitch (for example, 90 ° pitch) in order to appropriately hold the vertical cylinder portion 13.
  • the upper end of the inner vertical rib group 15 is connected to the outer edge portion of the lower surface of the diaphragm 20 as shown in FIG. Further, the inner vertical rib group 15 includes a plurality of inner vertical ribs 50 arranged at an equal pitch from the inner peripheral surface of the lower extension 23 toward the axis as shown in FIGS. 4 and 5. Each of the inner vertical ribs 50 has a large number of slip stoppers penetrating in the same horizontal direction as the outer vertical ribs 40 in order to transmit the load from the pier lower end 4 to the inner concrete 17 as shown in FIG. Holes 8 (perforated steel plate gibber: PBL) are regularly formed.
  • PBL perforated steel plate gibber
  • the outer vertical rib 40 contributes to an increase in the sectional moment than the inner vertical rib 50. Therefore, as shown in FIGS. 4 and 5, the outer vertical rib 40 is larger than the inner vertical rib 50. Designed to be Further, since the outer vertical ribs 40 and the inner vertical ribs 50 cooperate as strength members, all the inner vertical ribs 50 are arranged to face the outer vertical ribs 40 via the lower extension 23.
  • the outer concrete 16 embeds the outer longitudinal rib group 14 and the main reinforcing bar 60 from the RC pile 6 as shown in FIGS. 4 and 5.
  • the main reinforcing bars 60 are a number of reinforcing bars arranged at equal pitches on the outer edge of the RC pile 6 in order to increase the tensile strength of the RC pile 6.
  • the main reinforcing bar 60 is not only disposed inside the RC pile 6 but also protrudes from the pile head 7 of the RC pile 6 to near the upper end of the outer vertical rib group 14. That is, the external concrete 16 receives a tensile load from the outer vertical rib group 14 and transmits this load from the main reinforcing bar 60 to the RC pile 6.
  • a band reinforcing bar 61 bound to the main reinforcing bar 60 is also arranged inside the RC pile 6.
  • the inner concrete 17 embeds the inner longitudinal rib group 15 as shown in FIG. That is, the internal concrete 17 is a load to which the internal vertical rib group 15 is transmitted.
  • the lower concrete 18 embeds the main rebar 60 and the installation stand 68.
  • the said lower concrete 18 is designed so that it may damage before the other part of the said rigid structure 10 as a reliability design.
  • the rigid structure 10 according to the first embodiment has a larger cross section than the conventional structure having the lower extension portion as a strength member as described in Patent Document 1 as a prior art document. Since it has the next moment, the stress generated when transmitting the load from the pier lower end 4 is reduced.
  • the rigid structure 10 includes the outer vertical rib group 14, and as shown in FIGS. 4 and 5, the main reinforcing bar 60 and the strength member (outer vertical rib group 14) from the RC pile 6 are used. Therefore, the tensile force is smoothly transmitted from the outer longitudinal rib group 14 to the main reinforcing bar 60. This suppresses cone breakage caused by tensile force.
  • FIGS. 7 and 8 show calculated values and simulations of the stress generated in the rigid structure 10 when a horizontal load F and a vertical load (axial force) are applied to the pier 3.
  • Finite element method Finite element method: FEM) value.
  • FEM Finite element method
  • the calculated value that is, the theoretical value in the case where the steel portion of the rigid structure 10 and the internal concrete 17 cooperate as a unit, Become.
  • FEM finite element method
  • a stand pipe 91 is built in the ground 5, and the reinforcing bars 60 and 61 of the RC pile 6 are arranged in a hole 92 formed by excavating the stand pipe 91 to a predetermined depth. Then, as shown in FIG. 10, after the concrete of the RC pile 6 is placed in the drilling hole 92, the concrete in the stand pipe 91 is formed with a chisel to complete the RC pile 6 as shown in FIG. 11. . Thereafter, an installation stand 68 is arranged on the pile head 7 of the RC pile 6, and as shown in FIG.
  • the steel portion (extension portion 12, vertical cylinder portion 13, outer vertical rib group 14 and The portion comprising the inner vertical rib group 15) is placed on the installation stand 68.
  • the stand pipe 91 is removed and backfilled as shown in FIG.
  • the rigid structure 10 of the pier lower end portion 4 and the RC pile 6 is manufactured.
  • the stress generated when the load from the pier lower end portion 4 is transmitted by the outer vertical rib group 14 embedded in the external concrete 16 is sufficiently small.
  • the distance between the main reinforcing bar 60 from the RC pile 6 and the strength member (outer vertical rib group 14) is small and substantially constant, the tensile force is smoothly transmitted from the outer vertical rib group 14 to the main reinforcing bar 60. . Thereby, cone destruction caused by tensile force is suppressed, and as a result, reliability can be improved.
  • the lower extension 23 is cylindrical and the outer vertical rib group 14 is composed of a large number of outer vertical ribs 40 arranged radially from the outer surface of the lower extension 23, stress concentration does not occur. It is not necessary to arrange a buffer member for stress distribution between the longitudinal ribs 40, and as a result, manufacturing time and cost can be reduced.
  • the outer longitudinal ribs 40 arranged radially at an equal pitch from the outer peripheral surface of the lower extension portion 23 can be further increased (densely). Is possible. Thereby, it is possible to suppress the peeling and stress concentration (support pressure) between the steel plate and the concrete caused by the sudden change in the cross section between the lower extension portion 23 and the vertical cylinder portion 13.
  • the rigid structure 100 according to the second embodiment of the present invention is obtained by increasing the number of reinforcing bars embedded in the external concrete 16 of the rigid structure 10 according to the first embodiment.
  • the distance between the main reinforcing bar 60 and the outer vertical rib group 14 from the RC pile 6 is small. Cone destruction that tends to occur is suppressed.
  • a reinforcing reinforcing bar 62 is provided on the inner peripheral side of the main reinforcing bar 60. 10 shows a rigid structure 100 according to a second embodiment.
  • the external concrete 16 of the rigid structure 100 includes the reinforcing bars 62 (inner reinforcing bars) in addition to the outer longitudinal ribs 40 and the main reinforcing bars 60 (a group of outer peripheral reinforcing bars) from the RC pile 6. It is also a buried peri-bar rebar group.
  • the reinforcing reinforcing bars 62 are composed of the same number of reinforcing bars as the main reinforcing bars 60, and are disposed closer to the axis than the main reinforcing bars 60. Further, as shown in FIG. 16 of the second embodiment corresponding to FIG. 2 of the first embodiment, the lower part of the reinforcing reinforcing bar 62 is fixed to the main reinforcing bar 60 inside the RC pile 6, and the middle part of the reinforcing reinforcing bar 62 Is inclined from the main reinforcing bar 60 in the direction of the axial center, and the upper part of the reinforcing reinforcing bar 62 protrudes vertically from the pile head 7 of the RC pile 6.
  • the lower part of the reinforcing reinforcing bar 62 that is, the part fixed to the main reinforcing bar 60, has a length necessary for transmitting the load from the external concrete 16 to the RC pile 6.
  • the middle part of the reinforcing reinforcing bar 62 is inclined so as not to hinder the transmission of the load.
  • the upper end of the reinforcing reinforcing bar 62 has the same upper end as the upper end of the main reinforcing bar 60.
  • the reinforcing bars of the RC pile 6 arranged in the drilling hole 92 shown in FIG. It is not the thing of the said Example 1 (the main reinforcement 60 and the strip reinforcement 61) but the reinforcement (the main reinforcement 60, the reinforcement reinforcement 62, and the belt reinforcement 61) of the present Example 2.
  • the other construction procedure of the second embodiment is the same as the construction procedure of the first embodiment.
  • the same effect as that of the rigid structure 10 according to the first embodiment can be obtained. As a result, reliability can be improved.
  • bridge pier 3 bridge pier lower end part 4
  • pillar support lower end part
  • the displacement preventing hole 8 (perforated steel plate gibber: PBL) of the outer longitudinal rib 40 and the inner longitudinal rib 50 has not been described in detail. You may provide a penetration reinforcing bar as a slip prevention member made to do.
  • the extension portion 12 has been described as having a cylindrical shape, but may have a rectangular tube shape.
  • a buffer member for stress distribution is required, but the manufacturing time and cost are reduced when the pier lower end portion 4 is a rectangular tube shape. Can do.
  • the reinforcing reinforcing bars 62 are composed of the same number of reinforcing bars as the main reinforcing bars 60, but it is not always necessary to have the same number.
  • the number of reinforcing bars 62 and the diameter of the reinforcing bars are set so as to satisfy the amount of reinforcing bars necessary for suppressing cone fracture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Bridges Or Land Bridges (AREA)
  • Foundations (AREA)

Abstract

A rigid connection structure (10) for a bridge-pier bottom end (4) and an RC pile (6) is provided with the following: an extension portion (12) that extends downward from the bridge-pier bottom end (4) and is mounted on the RC pile (6); an outer vertical rib group (40) that is provided on an outer surface of a lower extension portion (23), which is the lower portion of the extension portion (12), the outer vertical rib group having formed therein a plurality of displacement prevention holes (8); and outer concrete (16) that is cast onto the outer peripheral portion of the lower extension portion (23). The outer concrete (16) has embedded therein the outer vertical rib group (40) and a main rebar (60) that extends upward from the inside of the RC pile (6).

Description

支柱下端部とコンクリート杭との剛結構造体Rigid connection structure of lower end of support and concrete pile
 本発明は、主として、立体交差橋、高架橋、高架構造体、一般橋梁、または鉄道橋などの支柱下端部とコンクリート杭との剛結構造体に関するものである。 The present invention mainly relates to a rigidly connected structure of a pillar lower end and a concrete pile such as a three-dimensional crossing bridge, a viaduct, an elevated structure, a general bridge, or a railway bridge.
 図1に示すように、道路橋1などの重量がある建造物は、その荷重を支柱である橋脚3により地盤5に伝達させる構成である。この地盤5では、橋脚3の下端部である橋脚下端部4と、鉛直に配置されたRC杭6(鉄筋で補強されたコンクリート杭)とが、剛結構造体10,100により剛結されている。 As shown in FIG. 1, a heavy building such as a road bridge 1 has a configuration in which the load is transmitted to the ground 5 by a bridge pier 3 as a support. In this ground 5, the pier lower end 4, which is the lower end of the pier 3, and the RC pile 6 (concrete reinforced with reinforcing bars) arranged vertically are rigidly connected by the rigid structures 10, 100. Yes.
 建造物に作用する荷重は、主として自重による鉛直方向のものと、地震などによる水平方向のものとがある。特に、日本のように地震が多発する国では、建造物に水平方向の荷重が頻繁に作用するので、この荷重により大きな曲げモーメントが発生する剛結構造体の重要性が高くなる。 The load acting on the building is mainly in the vertical direction due to its own weight and in the horizontal direction due to earthquakes. In particular, in countries where earthquakes occur frequently, such as Japan, horizontal loads frequently act on buildings, so the importance of rigid structures that generate large bending moments due to these loads increases.
 従来の剛結構造体としては、橋脚下端部から下方に延長させた延長部に多数のずれ止め孔(孔あき鋼板ジベル:PBL)を形成したものが提案されている(例えば、特許文献1参照)。この特許文献1に記載の剛結構造体は、橋脚下端部からの水平方向の荷重を延長部自身が強度部材としてRC杭に伝達する構成である。 As a conventional rigid structure, there has been proposed a structure in which a large number of displacement preventing holes (perforated steel plate gibber: PBL) are formed in an extended portion extending downward from a lower end portion of a pier (see, for example, Patent Document 1). ). The rigid structure described in Patent Document 1 has a configuration in which the extension portion itself transmits the load in the horizontal direction from the lower end portion of the pier to the RC pile as a strength member.
日本国特許第4691690号公報Japanese Patent No. 4691690
 ところで、上記特許文献1に記載の剛結構造体では、孔あき鋼板ジベルが形成されるものは延長部、つまり橋脚下端部から下方に延長させた大型の鋼構造物となる。このため、延長部に孔あき鋼板ジベルを形成するのが容易ではなく、結果として製造の時間および費用が嵩むことになる。一方で、橋脚下端部の横断面が小さい場合には、コンクリート杭からの主鉄筋と強度部材である延長部との間隔(コンクリートからなる部分)が大きくなる。上記間隔が大きければ、引張力が主鉄筋に円滑に伝達されない可能性があり、また、コーン破壊が発生するおそれがあるので、信頼性を向上させるために何らかの補強が必要となる。 By the way, in the rigid structure described in the above-mentioned patent document 1, what is formed with a perforated steel plate gibber is an extended portion, that is, a large steel structure extended downward from the lower end of the pier. For this reason, it is not easy to form a perforated steel plate gibel in the extension, resulting in increased manufacturing time and cost. On the other hand, when the cross section at the lower end of the pier is small, the distance between the main reinforcing bar from the concrete pile and the extension as the strength member (part made of concrete) becomes large. If the interval is large, the tensile force may not be smoothly transmitted to the main reinforcing bar, and cone breakage may occur. Therefore, some reinforcement is necessary to improve reliability.
 そこで、本発明は、製造の時間および費用を低減することができるとともに、信頼性を向上させることができる支柱下端部とコンクリート杭との剛結構造体を提供することを目的とする。 Therefore, an object of the present invention is to provide a rigid structure of a column lower end portion and a concrete pile that can reduce manufacturing time and cost and can improve reliability.
 上記課題を解決するため、第1の発明に係る剛結構造体は、支柱下端部とコンクリート杭との剛結構造体であって、
 支柱下端部から下方に延長させて上記コンクリート杭に載置される延長部と、
 上記延長部の外面に設けられて多数のずれ止め孔が形成された外縦リブ群と、
 上記延長部の外周部に打設された外部コンクリートとを備え、
 上記外部コンクリートが、上記コンクリート杭の内部から上方に伸びる鉄筋群と、上記外縦リブ群とを埋設するものである。
In order to solve the above-mentioned problem, a rigid structure according to the first invention is a rigid structure of a lower end portion of a support and a concrete pile,
An extension that extends downward from the lower end of the column and is placed on the concrete pile,
An outer vertical rib group provided on the outer surface of the extension part and formed with a number of anti-slip holes;
With external concrete cast on the outer periphery of the extension,
The external concrete embeds a reinforcing bar group extending upward from the inside of the concrete pile and the outer vertical rib group.
 また、第2の発明に係る剛結構造体は、第1の発明に係る剛結構造体において、延長部の内面に設けられて多数のずれ止め孔が形成された内縦リブ群と、
 上記延長部の内部に打設された内部コンクリートとを備え、
 上記内部コンクリートが、上記内縦リブ群を埋設するものである。
Further, the rigid structure according to the second invention is the rigid structure according to the first invention, the inner vertical rib group provided on the inner surface of the extension portion and formed with a number of detent holes,
An internal concrete placed inside the extension,
The internal concrete embeds the inner vertical rib group.
 さらに、第3の発明に係る剛結構造体は、第1または第2の発明に係る剛結構造体において、外縦リブ群に接続されて延長部の外側を囲う縦筒部を備え、
 上記縦筒部が、外部コンクリートを打設する際の型枠となるものである。
Furthermore, the rigid structure according to the third aspect of the invention is the rigid structure according to the first or second aspect of the invention, comprising a vertical cylindrical portion connected to the outer vertical rib group and surrounding the outside of the extension portion,
The said vertical cylinder part becomes a formwork at the time of placing external concrete.
 加えて、第4の発明に係る剛結構造体は、第1または第2の発明に係る剛結構造体における延長部が、円筒形状であり、
 外縦リブ群が、上記延長部の外面から放射状に配置された多数の外縦リブからなるものである。
In addition, in the rigid structure according to the fourth invention, the extension in the rigid structure according to the first or second invention has a cylindrical shape,
An outer vertical rib group consists of many outer vertical ribs arrange | positioned radially from the outer surface of the said extension part.
 また、第5の発明に係る剛結構造体は、第1または第2の発明に係る剛結構造体における外部コンクリートに埋設される鉄筋群が、コンクリート杭を補強する主鉄筋である外周鉄筋群と、コンクリート杭の内部で外周鉄筋群に定着された補強鉄筋である内周鉄筋群とからなるものである。 Further, the rigid structure according to the fifth aspect of the invention is the outer peripheral reinforcement group in which the reinforcing bars embedded in the external concrete in the rigid structure according to the first or second aspect of the invention are main reinforcing bars that reinforce the concrete pile. And an inner periphery reinforcing bar group which is a reinforcing bar fixed to the outer peripheral reinforcing bar group inside the concrete pile.
 上記支柱下端部とコンクリート杭との剛結構造体によると、外部コンクリートに埋設された外縦リブ群により、支柱下端部からの荷重を伝達する際に発生する応力が十分小さくなるので、延長部にずれ止め孔を形成する必要が無く、結果として製造の時間および費用を低減することができる。また、コンクリート杭からの鉄筋群と外縦リブ群との間隔が小さくなるので、外縦リブ群から主鉄筋に引張力が円滑に伝達される。これにより引張力により起因するコーン破壊が抑えられ、結果として信頼性を向上させることができる。 According to the rigid structure of the lower end of the support column and the concrete pile, the outer vertical rib group embedded in the external concrete sufficiently reduces the stress generated when transmitting the load from the lower end of the support column. Therefore, it is not necessary to form an anti-displacement hole, and as a result, manufacturing time and cost can be reduced. Moreover, since the space | interval between the reinforcing bar group from a concrete pile and an outer vertical rib group becomes small, tensile force is smoothly transmitted to the main reinforcing bar from an outer vertical rib group. Thereby, cone destruction caused by tensile force is suppressed, and as a result, reliability can be improved.
本発明の実施の形態に係る剛結構造体を用いる道路橋の一般側面図である。1 is a general side view of a road bridge using a rigid structure according to an embodiment of the present invention. 本発明の実施例1に係る剛結構造体の縦断面図である。It is a longitudinal cross-sectional view of the rigid structure which concerns on Example 1 of this invention. 同剛結構造体の外部コンクリートを省略した斜視図である。It is the perspective view which abbreviate | omitted the external concrete of the rigid connection structure. 図3のA-A断面図である。FIG. 4 is a cross-sectional view taken along line AA in FIG. 3. 図3のB-B断面図である。FIG. 4 is a sectional view taken along line BB in FIG. 3. 外縦リブ群の断面二次モーメントを説明するための横断面図である。It is a cross-sectional view for demonstrating the cross-sectional secondary moment of an outer vertical rib group. 内縦リブ群が無い場合に発生する応力を説明するための図およびグラフである。It is a figure and graph for demonstrating the stress which generate | occur | produces when there is no inner vertical rib group. 内縦リブ群が有る場合に発生する応力を説明するための図およびグラフである。It is a figure and graph for demonstrating the stress which generate | occur | produces when there exists an inner vertical rib group. 同剛結構造体の施工手順においてRC杭の鉄筋を配置する状態の縦断面図である。It is a longitudinal cross-sectional view of the state which arrange | positions the reinforcing bar of RC pile in the construction procedure of the rigid structure. 同剛結構造体の施工手順においてRC杭のコンクリートを打設する状態の縦断面図である。It is a longitudinal cross-sectional view of the state which lays concrete of RC pile in the construction procedure of the rigid structure. 同剛結構造体の施工手順においてRC杭を完成させる状態の縦断面図である。It is a longitudinal cross-sectional view of the state which completes RC pile in the construction procedure of the rigid structure. 同剛結構造体の施工手順においてRC杭に剛結構造体における鋼製の部分を載置する状態の縦断面図である。It is a longitudinal cross-sectional view of the state which mounts the steel part in a rigid structure on RC pile in the construction procedure of the rigid structure. 同剛結構造体の施工手順において同鋼製の部分にコンクリートを打設する状態の縦断面図である。It is a longitudinal cross-sectional view of the state which casts concrete in the part made from the steel in the construction procedure of the rigid structure. 同剛結構造体の施工手順において橋脚下端部を接合する状態の縦断面図である。It is a longitudinal cross-sectional view of the state which joins a pier lower end part in the construction procedure of the rigid structure. 本発明の実施例2に係る剛結構造体の横断面図であり、図5に対応する図である。It is a cross-sectional view of the rigid structure according to the second embodiment of the present invention, and corresponds to FIG. 同剛結構造体の横断面図であり、図2に対応する図である。It is a cross-sectional view of the rigid structure, and corresponds to FIG.
 以下、本発明の実施の形態に係る支柱下端部とコンクリート杭との剛結構造体について図面に基づき説明する。 Hereinafter, a rigid structure of a lower end portion of a support and a concrete pile according to an embodiment of the present invention will be described with reference to the drawings.
 まず、上記剛結構造体を用いる建造物の一例である道路橋について簡単に説明する。 First, a road bridge, which is an example of a building using the rigid structure, will be briefly described.
 図1に示すように、この道路橋1は、人または車両などを通行させる橋桁2と、この橋桁2を支持する複数の橋脚3(支柱の一例である)とを具備する。これら橋脚3の下端部、つまり橋脚下端部4(支柱下端部の一例である)は、それぞれ、地盤5に鉛直に配置された円柱形状のRC杭6(鉄筋で補強されたコンクリート杭)に剛結されている。この橋脚下端部4とRC杭6とを剛結するものが、上記剛結構造体10,100である。 As shown in FIG. 1, the road bridge 1 includes a bridge girder 2 through which people or vehicles pass, and a plurality of bridge piers 3 (an example of support columns) that support the bridge girder 2. The lower ends of these piers 3, that is, the lower ends of the piers 4 (which are an example of the lower ends of the columns) are rigidly attached to columnar RC piles 6 (concrete reinforced with reinforcing bars) arranged vertically on the ground 5. It is tied. Rigidly connecting the pier lower end 4 and the RC pile 6 is the rigid structure 10, 100.
 以下、本発明の実施例1に係る剛結構造体10について図2~図8に基づき説明する。 Hereinafter, the rigid structure 10 according to the first embodiment of the present invention will be described with reference to FIGS.
 図2および図3に示すように、この剛結構造体10は、鋼製の部分12~15として、橋脚下端部4から下方に延長させた延長部12と、この延長部12の下部である下延長部23(詳しくは後述する)の外側を囲う縦筒部13と、上記下延長部23の外面および内面にそれぞれ設けられた強度部材である外縦リブ群14および内縦リブ群15(図2を参照)とを備える。また、図2に示すように(図3では省略する)、上記剛結構造体10は、コンクリート製の部分16~18として、上記下延長部23と縦筒部13との間(つまり下延長部23の外周部)に打設された外部コンクリート16と、上記下延長部23の内部に打設された内部コンクリート17と、上記下延長部23および縦筒部13とRC杭6との間に打設された断面遷移部である下部コンクリート18とを備える。 As shown in FIGS. 2 and 3, the rigid structure 10 includes, as steel portions 12 to 15, an extension portion 12 extending downward from the pier lower end portion 4 and a lower portion of the extension portion 12. A vertical cylindrical portion 13 that surrounds the outside of a lower extension 23 (described later in detail), and an outer vertical rib group 14 and an inner vertical rib group 15 (strength members provided on the outer surface and the inner surface of the lower extension 23, respectively) 2). Further, as shown in FIG. 2 (omitted in FIG. 3), the rigid structure 10 is formed as a concrete portion 16-18 between the lower extension 23 and the vertical cylinder 13 (that is, the lower extension). Between the outer concrete 16 placed on the outer periphery of the portion 23), the inner concrete 17 placed inside the lower extension 23, the lower extension 23, the vertical tube portion 13, and the RC pile 6. And a lower concrete 18 which is a cross-sectional transition portion placed on the surface.
 上記延長部12は、図2に示すように、上記RC杭6の杭頭7に据付架台68(H形鋼など)を介して載置される。また、上記延長部12は、図2および図3に示すように、外縦リブ群14および内縦リブ群15の上端高さで水平に配置されたダイヤフラム20と、このダイヤフラム20により上方の上延長部22と、上記ダイヤフラム20より下方の下延長部23とからなる。上記ダイヤフラム20は、内部コンクリート17のための生コンクリートが上方から流し込まれる開口部21を有する。上記上延長部22および下延長部23は、図3に示すように、上記RC杭6と同心の円筒形状であって、上記RC杭6よりも小径である。上記下延長部23は、図2に示すように、上記内部コンクリート17を打設する際の作業性のために、その内部に上記内部コンクリート17および内縦リブ群15以外のものを有しない。なお、上記橋脚下端部4からの荷重を外部コンクリート16に伝達するのは主として外縦リブ群14であって延長部12自身ではないので、上記延長部12にずれ止め孔(孔あき鋼板ジベル:PBL)を形成する必要が無い。 The extension portion 12 is placed on the pile head 7 of the RC pile 6 via an installation stand 68 (H-shaped steel or the like) as shown in FIG. 2 and 3, the extension portion 12 includes a diaphragm 20 disposed horizontally at the upper end height of the outer longitudinal rib group 14 and the inner longitudinal rib group 15, and an upper upper portion by the diaphragm 20. The extension portion 22 includes a lower extension portion 23 below the diaphragm 20. The diaphragm 20 has an opening 21 into which ready-mixed concrete for the internal concrete 17 is poured from above. As shown in FIG. 3, the upper extension portion 22 and the lower extension portion 23 have a cylindrical shape concentric with the RC pile 6 and have a smaller diameter than the RC pile 6. As shown in FIG. 2, the lower extension 23 does not have anything other than the inner concrete 17 and the inner vertical rib group 15 in the interior thereof for the workability when placing the inner concrete 17. In addition, since it is mainly the outer longitudinal rib group 14 and not the extension part 12 itself that transmits the load from the pier lower end part 4 to the external concrete 16, the extension part 12 is provided with a stopper hole (perforated steel plate gibber: PBL) need not be formed.
 上記縦筒部13は、図3に示すように、上記RC杭6および延長部12と同心の円筒形状であって、上記RC杭6よりも僅かに大径である。上記縦筒部13の下端はRC杭6の杭頭7よりも僅かに低く、上記縦筒部13の上端は外縦リブ群14と同じ高さ(またはそれ以上)である。また、上記縦筒部13は、図2に示すように、その外面で地盤5の土と接する。なお、上記縦筒部13は、外部コンクリート16を打設するための型枠、および当該打設の後に帯鉄筋として機能する二次部材(腐食しろを含む)である。 As shown in FIG. 3, the vertical cylinder portion 13 has a cylindrical shape concentric with the RC pile 6 and the extension portion 12, and has a slightly larger diameter than the RC pile 6. The lower end of the vertical cylinder part 13 is slightly lower than the pile head 7 of the RC pile 6, and the upper end of the vertical cylinder part 13 is the same height (or higher) as the outer vertical rib group 14. Moreover, the said vertical cylinder part 13 is in contact with the soil of the ground 5 in the outer surface, as shown in FIG. In addition, the said vertical cylinder part 13 is the secondary member (including corrosion margin) which functions as a formwork for placing the external concrete 16, and a band reinforcement after the placement.
 上記外縦リブ群14は、図3~図5に示すように、下延長部23の外周面から放射状に等ピッチで配置された多数の外縦リブ40からなる。それぞれの外縦リブ40には、橋脚下端部4からの荷重を外部コンクリート16に伝達するために、図3および図5に示すように、水平方向に貫通する多数のずれ止め孔8(孔あき鋼板ジベル:PBL)が規則的に形成されている。上記外縦リブ群14を構成する多数の外縦リブ40には、縦筒部13まで達して当該縦筒部13に接続されている幅広の外縦リブ40と、縦筒部13まで達しない幅狭の外縦リブ40とがある。上記幅広の外縦リブ40の配置は、縦筒部13を適切に保持するために、等ピッチ(例えば90°ピッチ)にされる。 The outer vertical rib group 14 is composed of a plurality of outer vertical ribs 40 arranged radially at equal pitches from the outer peripheral surface of the lower extension 23, as shown in FIGS. As shown in FIGS. 3 and 5, each outer vertical rib 40 has a large number of anti-slip holes 8 (perforated holes) penetrating in the horizontal direction in order to transmit the load from the pier lower end 4 to the external concrete 16. Steel plate gibber (PBL) is regularly formed. The large number of outer vertical ribs 40 constituting the outer vertical rib group 14 reach the vertical cylinder part 13 and do not reach the wide outer vertical ribs 40 connected to the vertical cylinder part 13 and the vertical cylinder part 13. There is a narrow outer longitudinal rib 40. The wide outer vertical ribs 40 are arranged at an equal pitch (for example, 90 ° pitch) in order to appropriately hold the vertical cylinder portion 13.
 上記内縦リブ群15は、図2に示すように、その上端が上記ダイヤフラム20の下面における外縁部に接続されている。また、上記内縦リブ群15は、図4および図5に示すように、下延長部23の内周面から上記軸心に向けて等ピッチで配置された多数の内縦リブ50からなる。それぞれの内縦リブ50には、橋脚下端部4からの荷重を内部コンクリート17に伝達するために、図5に示すように、上記外縦リブ40と同様の水平方向に貫通する多数のずれ止め孔8(孔あき鋼板ジベル:PBL)が規則的に形成されている。 The upper end of the inner vertical rib group 15 is connected to the outer edge portion of the lower surface of the diaphragm 20 as shown in FIG. Further, the inner vertical rib group 15 includes a plurality of inner vertical ribs 50 arranged at an equal pitch from the inner peripheral surface of the lower extension 23 toward the axis as shown in FIGS. 4 and 5. Each of the inner vertical ribs 50 has a large number of slip stoppers penetrating in the same horizontal direction as the outer vertical ribs 40 in order to transmit the load from the pier lower end 4 to the inner concrete 17 as shown in FIG. Holes 8 (perforated steel plate gibber: PBL) are regularly formed.
 詳しくは後述するが、外縦リブ40が内縦リブ50よりも断面二次モーメントの増大に寄与するので、図4および図5に示すように、外縦リブ40が内縦リブ50よりも多くなるように設計される。また、外縦リブ40および内縦リブ50が強度部材として協同するために、全ての内縦リブ50は下延長部23を介して外縦リブ40に対向するように配置される。 As will be described in detail later, the outer vertical rib 40 contributes to an increase in the sectional moment than the inner vertical rib 50. Therefore, as shown in FIGS. 4 and 5, the outer vertical rib 40 is larger than the inner vertical rib 50. Designed to be Further, since the outer vertical ribs 40 and the inner vertical ribs 50 cooperate as strength members, all the inner vertical ribs 50 are arranged to face the outer vertical ribs 40 via the lower extension 23.
 上記外部コンクリート16は、図4および図5に示すように、上記外縦リブ群14とRC杭6からの主鉄筋60とを埋設する。この主鉄筋60は、上記RC杭6の引張強度を上げるために、当該RC杭6の外縁部に等ピッチで配置された多数の鉄筋である。また、上記主鉄筋60は、図2に示すように、RC杭6の内部のみに配置されるだけでなく、RC杭6の杭頭7から外縦リブ群14の上端近くまで突出する。すなわち、上記外部コンクリート16は、上記外縦リブ群14から引張荷重が伝達され、この荷重を主鉄筋60からRC杭6に伝達するものである。なお、上記RC杭6の内部には、上記主鉄筋60の他に、この主鉄筋60に直交して結束される帯鉄筋61も配置される。 The outer concrete 16 embeds the outer longitudinal rib group 14 and the main reinforcing bar 60 from the RC pile 6 as shown in FIGS. 4 and 5. The main reinforcing bars 60 are a number of reinforcing bars arranged at equal pitches on the outer edge of the RC pile 6 in order to increase the tensile strength of the RC pile 6. Further, as shown in FIG. 2, the main reinforcing bar 60 is not only disposed inside the RC pile 6 but also protrudes from the pile head 7 of the RC pile 6 to near the upper end of the outer vertical rib group 14. That is, the external concrete 16 receives a tensile load from the outer vertical rib group 14 and transmits this load from the main reinforcing bar 60 to the RC pile 6. In addition to the main reinforcing bar 60, a band reinforcing bar 61 bound to the main reinforcing bar 60 is also arranged inside the RC pile 6.
 上記内部コンクリート17は、図5に示すように、上記内縦リブ群15を埋設する。すなわち、上記内部コンクリート17は、上記内縦リブ群15から荷重が伝達されるものである。一方、上記下部コンクリート18は、図2に示すように、上記主鉄筋60と据付架台68とを埋設する。また、上記下部コンクリート18は、信頼性設計として、上記剛結構造体10の他の部分よりも先に損傷するように設計される。 The inner concrete 17 embeds the inner longitudinal rib group 15 as shown in FIG. That is, the internal concrete 17 is a load to which the internal vertical rib group 15 is transmitted. On the other hand, as shown in FIG. 2, the lower concrete 18 embeds the main rebar 60 and the installation stand 68. Moreover, the said lower concrete 18 is designed so that it may damage before the other part of the said rigid structure 10 as a reliability design.
 次に、上記外縦リブ群14の機能について図6に基づき説明する。 Next, the function of the outer vertical rib group 14 will be described with reference to FIG.
 地震などにより上記橋桁2に水平方向の荷重Fが作用すると、片持ち梁となる橋脚3および剛結構造体10には、その片持ち梁の支持部となる剛結構造体10で大きな曲げモーメントMが発生する。図6に示すように、この大きな曲げモーメントMにより、上記剛結構造体10の強度部材である外縦リブ群14には、中立軸Aを境にした引張応力および圧縮応力が発生する。この引張応力および圧縮応力は、材料力学の公式から、上記曲げモーメントMを外縦リブ群14の断面二次モーメントで除した値に比例することが知られている。すなわち、上記曲げモーメントMが一定の場合、上記断面二次モーメントが大きいほど、発生する引張応力および圧縮応力が小さくなる。一般に断面二次モーメントは、中立軸Aから離れた位置に断面を有するほど大きくなることが知られている。ここで、上記外縦リブ40は、上記下延長部23の外面、つまり中立軸Aから離れた位置に設けられる。このため、本実施例1に係る剛結構造体10は、先行技術文献である上記特許文献1に記載されたような下延長部を強度部材とする従来のものに比べて、より大きな断面二次モーメントを有するので、上記橋脚下端部4からの荷重を伝達する際に発生する応力が小さくなる。また、上記剛結構造体10は、上記外縦リブ群14を備えることにより、図4および図5に示すように、上記RC杭6からの主鉄筋60と強度部材(外縦リブ群14)との間隔が小さく且つ略一定になるので、外縦リブ群14から主鉄筋60に引張力が円滑に伝達される。これにより引張力により起因するコーン破壊が抑えられる。 When a horizontal load F acts on the bridge girder 2 due to an earthquake or the like, a large bending moment is exerted on the bridge pier 3 and the rigid structure 10 serving as a cantilever by the rigid structure 10 serving as a support portion of the cantilever. M is generated. As shown in FIG. 6, due to this large bending moment M, tensile stress and compressive stress with the neutral axis A as a boundary are generated in the outer longitudinal rib group 14 which is a strength member of the rigid structure 10. It is known from the formula of material mechanics that the tensile stress and the compressive stress are proportional to the value obtained by dividing the bending moment M by the sectional secondary moment of the outer longitudinal rib group 14. That is, when the bending moment M is constant, the tensile stress and the compressive stress that are generated become smaller as the secondary moment of the section is larger. In general, it is known that the moment of inertia of the cross section increases as the cross section is located at a position away from the neutral axis A. Here, the outer vertical rib 40 is provided at the outer surface of the lower extension 23, that is, at a position away from the neutral axis A. For this reason, the rigid structure 10 according to the first embodiment has a larger cross section than the conventional structure having the lower extension portion as a strength member as described in Patent Document 1 as a prior art document. Since it has the next moment, the stress generated when transmitting the load from the pier lower end 4 is reduced. In addition, the rigid structure 10 includes the outer vertical rib group 14, and as shown in FIGS. 4 and 5, the main reinforcing bar 60 and the strength member (outer vertical rib group 14) from the RC pile 6 are used. Therefore, the tensile force is smoothly transmitted from the outer longitudinal rib group 14 to the main reinforcing bar 60. This suppresses cone breakage caused by tensile force.
 次に、上記内縦リブ群15の機能について図7および図8に基づき説明する。 Next, the function of the inner vertical rib group 15 will be described with reference to FIGS.
 ここで、上記特許文献1だと、延長部にずれ止め孔(孔あき鋼板ジベル:PBL)を形成するので、橋脚とその内部のコンクリートが一体として協同する。しかし、本発明だと、延長部12にずれ止め孔を形成しないので、上記特許文献1のように一体として協同せず、橋脚3と内部コンクリート17とが分離された状態となる。そのため、断面の一体化、下延長部23と縦筒部13間の断面急変により生じる鋼板とコンクリートとの剥離・応力集中(支圧力)の抑制を図るために、下延長部23の内周部に内縦リブ群15を設置する。この内縦リブ群15の機能についての実験結果を、図7および図8に示す。図7は下延長部23の内周部に内縦リブ群15が無い場合を示し、図8は下延長部23の内周部に内縦リブ群15が有る場合を示す。図7および図8には、上記橋脚3に水平方向の荷重Fと鉛直方向の荷重(軸力)とを作用させた場合の、上記剛結構造体10に発生する応力の計算値およびシミュレーション(有限要素法:FEM)値を示す。なお、図8では、計算値とシミュレーション値とが一致するので、計算値がシミュレーション値に隠れた表示となる。図7および図8の右側に示すグラフでは、横軸が引張応力を正(圧縮応力を負)とした応力σの軸であり、縦軸が剛結構造体10の横断面の位置に対応する軸である。また、図7および図8の左側に示す剛結構造体10の横断面(左半分)は、その縦方向の位置が上記グラフの縦軸に対応する。図7および図8に示すように、計算値、つまり剛結構造体10における鋼製の部分と内部コンクリート17とが一体として協同する場合の理論値だと、上記グラフに示すように、直線となる。これに対して、シミュレーション(有限要素法:FEM)値だと、図7に示すように、内縦リブ群15が無い場合は下延長部23と内部コンクリート17との境界で不連続となり、図8に示すように内縦リブ群15が有る場合は上記計算値と一致する。このため、図7および図8から、上記剛結構造体10における鋼製の部分と内部コンクリート17とは、内縦リブ群15が無い場合だと一体として協同せず、内縦リブ群15が有る場合だと一体として協同することが分かる。このため、上記剛結構造体10は、内部コンクリート17に埋設された内縦リブ群15を備えることにより、橋脚下端部4からの荷重を伝達する際に発生する応力が小さくなる。 Here, in the case of the above-mentioned Patent Document 1, since a slip-preventing hole (perforated steel plate gibber: PBL) is formed in the extension portion, the pier and the concrete in the inside cooperate together. However, according to the present invention, since the anti-displacement hole is not formed in the extension portion 12, the pier 3 and the internal concrete 17 are separated from each other as in the case of Patent Document 1 without cooperation as a unit. Therefore, in order to suppress the peeling / stress concentration (support pressure) between the steel plate and the concrete caused by the integration of the cross section and the sudden change in the cross section between the lower extension 23 and the vertical cylinder 13, the inner peripheral portion of the lower extension 23 The inner vertical rib group 15 is installed in Experimental results on the function of the inner vertical rib group 15 are shown in FIGS. FIG. 7 shows a case where the inner vertical rib group 15 is not present on the inner peripheral portion of the lower extension 23, and FIG. 8 shows a case where the inner vertical rib group 15 is present on the inner peripheral portion of the lower extension 23. FIGS. 7 and 8 show calculated values and simulations of the stress generated in the rigid structure 10 when a horizontal load F and a vertical load (axial force) are applied to the pier 3. Finite element method: FEM) value. In FIG. 8, since the calculated value and the simulation value match, the calculation value is hidden behind the simulation value. In the graphs shown on the right side of FIG. 7 and FIG. 8, the horizontal axis is the axis of stress σ with positive tensile stress (compressive stress is negative), and the vertical axis corresponds to the position of the cross section of the rigid structure 10. Is the axis. Further, in the cross section (left half) of the rigid structure 10 shown on the left side of FIGS. 7 and 8, the position in the vertical direction corresponds to the vertical axis of the graph. As shown in FIG. 7 and FIG. 8, the calculated value, that is, the theoretical value in the case where the steel portion of the rigid structure 10 and the internal concrete 17 cooperate as a unit, Become. On the other hand, in the simulation (finite element method: FEM) value, as shown in FIG. 7, when there is no inner longitudinal rib group 15, the boundary between the lower extension 23 and the inner concrete 17 becomes discontinuous. When the inner longitudinal rib group 15 is present as shown in FIG. For this reason, from FIG. 7 and FIG. 8, the steel portion and the internal concrete 17 in the rigid structure 10 do not cooperate as a unit when the inner vertical rib group 15 is not provided. It can be seen that if there is, it will cooperate as one. For this reason, the rigid structure 10 includes the inner vertical rib group 15 embedded in the internal concrete 17, thereby reducing the stress generated when the load from the pier lower end 4 is transmitted.
 以下、本実施例1に係る剛結構造体10の製造方法、すなわち現地施工の手順について説明する。 Hereinafter, a method for manufacturing the rigid structure 10 according to the first embodiment, that is, a procedure for on-site construction will be described.
 まず、図9に示すように、地盤5にスタンドパイプ91を建て込み、そのスタンドパイプ91の中から所定深さまで掘削してなる削穴92に、RC杭6の鉄筋60,61を配置する。そして、図10に示すように、削穴92にRC杭6のコンクリートを打設した後、図11に示すように、スタンドパイプ91の中のコンクリートをハツリにより成形し、RC杭6を完成させる。その後、RC杭6の杭頭7に据付架台68を配置し、図12に示すように、剛結構造体10における鋼製の部分(延長部12、縦筒部13、外縦リブ群14および内縦リブ群15からなる部分)を据付架台68に載置する。次に、図13に示すように、下部コンクリート18、外部コンクリート16および内部コンクリート17を打設した後、図14に示すように、上記スタンドパイプ91を除去してから埋め戻しを行い、上延長部22の上端に橋脚下端部4の下端を接合することで、橋脚下端部4とRC杭6との剛結構造体10が製造される。 First, as shown in FIG. 9, a stand pipe 91 is built in the ground 5, and the reinforcing bars 60 and 61 of the RC pile 6 are arranged in a hole 92 formed by excavating the stand pipe 91 to a predetermined depth. Then, as shown in FIG. 10, after the concrete of the RC pile 6 is placed in the drilling hole 92, the concrete in the stand pipe 91 is formed with a chisel to complete the RC pile 6 as shown in FIG. 11. . Thereafter, an installation stand 68 is arranged on the pile head 7 of the RC pile 6, and as shown in FIG. 12, the steel portion (extension portion 12, vertical cylinder portion 13, outer vertical rib group 14 and The portion comprising the inner vertical rib group 15) is placed on the installation stand 68. Next, as shown in FIG. 13, after placing the lower concrete 18, the outer concrete 16, and the inner concrete 17, the stand pipe 91 is removed and backfilled as shown in FIG. By joining the lower end of the pier lower end portion 4 to the upper end of the portion 22, the rigid structure 10 of the pier lower end portion 4 and the RC pile 6 is manufactured.
 このように、本実施例1に係る剛結構造体10によると、外部コンクリート16に埋設された外縦リブ群14により、橋脚下端部4からの荷重を伝達する際に発生する応力が十分小さくなるので、延長部12にずれ止め孔8を形成する必要が無く、結果として製造の時間および費用を低減することができる。また、RC杭6からの主鉄筋60と強度部材(外縦リブ群14)との間隔が小さく且つ略一定になるので、外縦リブ群14から主鉄筋60に引張力が円滑に伝達される。これにより引張力により起因するコーン破壊が抑えられ、結果として信頼性を向上させることができる。 As described above, according to the rigid structure 10 according to the first embodiment, the stress generated when the load from the pier lower end portion 4 is transmitted by the outer vertical rib group 14 embedded in the external concrete 16 is sufficiently small. As a result, it is not necessary to form the anti-displacement hole 8 in the extension portion 12, and as a result, manufacturing time and cost can be reduced. Further, since the distance between the main reinforcing bar 60 from the RC pile 6 and the strength member (outer vertical rib group 14) is small and substantially constant, the tensile force is smoothly transmitted from the outer vertical rib group 14 to the main reinforcing bar 60. . Thereby, cone destruction caused by tensile force is suppressed, and as a result, reliability can be improved.
 さらに、内部コンクリート17に埋設された内縦リブ群15により、剛結構造体10における鋼製の部分と内部コンクリート17とが一体として協同するので、橋脚下端部4からの荷重を伝達する際に発生する応力がさらに小さくなり、結果として信頼性を向上させることができる。また、断面の一体化、下延長部23と縦筒部13間の断面急変により生じる鋼板とコンクリートの剥離・応力集中(支圧力)の抑制を図ることができる。 Furthermore, since the steel part in the rigid structure 10 and the internal concrete 17 cooperate together by the internal vertical rib group 15 embedded in the internal concrete 17, when transmitting the load from the pier lower end 4. The generated stress is further reduced, and as a result, reliability can be improved. Further, it is possible to suppress the peeling and stress concentration (support pressure) between the steel plate and the concrete caused by the integration of the cross section and the sudden change in cross section between the lower extension portion 23 and the vertical cylinder portion 13.
 加えて、外部コンクリート16を打設する際の型枠となる縦筒部13が現地施工で埋め殺しにされることにより、別途の型枠の設置および除去が省略されるので、製造の時間および費用を低減することができる。 In addition, the installation and removal of a separate formwork is omitted because the vertical cylinder portion 13 that becomes a formwork when placing the external concrete 16 is buried in the field construction, so that the manufacturing time and Cost can be reduced.
 また、下延長部23が円筒形状であるとともに、外縦リブ群14が下延長部23の外面から放射状に配置された多数の外縦リブ40からなることにより、応力集中が発生しないので、外縦リブ40の間に応力分散用の緩衝部材などを配置する必要が無くなり、結果として製造の時間および費用を低減することができる。 Further, since the lower extension 23 is cylindrical and the outer vertical rib group 14 is composed of a large number of outer vertical ribs 40 arranged radially from the outer surface of the lower extension 23, stress concentration does not occur. It is not necessary to arrange a buffer member for stress distribution between the longitudinal ribs 40, and as a result, manufacturing time and cost can be reduced.
 さらに、延長部12にずれ止め孔8を形成する必要が無いので、下延長部23の外周面から放射状に等ピッチで配置された外縦リブ40を、さらに多数に(密に)することが可能である。これにより、下延長部23と縦筒部13間の断面急変により生じる鋼板とコンクリートの剥離・応力集中(支圧力)の抑制を図ることができる。 Furthermore, since it is not necessary to form the slip prevention hole 8 in the extension portion 12, the outer longitudinal ribs 40 arranged radially at an equal pitch from the outer peripheral surface of the lower extension portion 23 can be further increased (densely). Is possible. Thereby, it is possible to suppress the peeling and stress concentration (support pressure) between the steel plate and the concrete caused by the sudden change in the cross section between the lower extension portion 23 and the vertical cylinder portion 13.
 本発明の実施例2に係る剛結構造体100は、上記実施例1に係る剛結構造体10の外部コンクリート16が埋設する鉄筋を増加させたものである。 The rigid structure 100 according to the second embodiment of the present invention is obtained by increasing the number of reinforcing bars embedded in the external concrete 16 of the rigid structure 10 according to the first embodiment.
 以下、上記実施例1と異なる部分である鉄筋に着目して説明するとともに、上記実施例1と同一の構成については、同一の符号を付してその説明を省略する。 Hereinafter, the description will be made by paying attention to the reinforcing bars which are different from the first embodiment, and the same components as those of the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
 上記実施例1に係る剛結構造体10では、図5に示すように、上記RC杭6からの主鉄筋60と外縦リブ群14との間隔が小さいので、上述したように、この間隔に発生しやすいコーン破壊が抑えられる。このコーン破壊を一層抑えるために、上記実施例1の図5に対応する本実施例2の図15に示すように、上記主鉄筋60の内周側に補強鉄筋62を設けたものが、本実施例2に係る剛結構造体100である。すなわち、本実施例2に係る剛結構造体100の外部コンクリート16は、上記外縦リブ40とRC杭6からの主鉄筋60(外周鉄筋群である)との他に、補強鉄筋62(内周鉄筋群である)も埋設するものである。 In the rigid structure 10 according to the first embodiment, as shown in FIG. 5, the distance between the main reinforcing bar 60 and the outer vertical rib group 14 from the RC pile 6 is small. Cone destruction that tends to occur is suppressed. In order to further suppress the cone breakage, as shown in FIG. 15 of the second embodiment corresponding to FIG. 5 of the first embodiment, a reinforcing reinforcing bar 62 is provided on the inner peripheral side of the main reinforcing bar 60. 10 shows a rigid structure 100 according to a second embodiment. That is, the external concrete 16 of the rigid structure 100 according to the second embodiment includes the reinforcing bars 62 (inner reinforcing bars) in addition to the outer longitudinal ribs 40 and the main reinforcing bars 60 (a group of outer peripheral reinforcing bars) from the RC pile 6. It is also a buried peri-bar rebar group.
 上記補強鉄筋62は、図15に示すように、主鉄筋60と同数の鉄筋からなり、主鉄筋60よりも上記軸心に近い位置に配置される。また、上記実施例1の図2に対応する本実施例2の図16に示すように、上記補強鉄筋62の下部がRC杭6の内部で主鉄筋60に定着し、上記補強鉄筋62の中部が主鉄筋60から上記軸心の方向に傾斜し、上記補強鉄筋62の上部がRC杭6の杭頭7から鉛直に突出する。上記補強鉄筋62の下部、つまり主鉄筋60に定着する部分は、外部コンクリート16からの荷重をRC杭6に伝達するのに必要な長さにされる。上記補強鉄筋62の中部は、上記荷重を伝達するのに支障が無い程度の傾斜にされる。上記補強鉄筋62の上部は、その上端が主鉄筋60の上端と同じ高さにされる。 As shown in FIG. 15, the reinforcing reinforcing bars 62 are composed of the same number of reinforcing bars as the main reinforcing bars 60, and are disposed closer to the axis than the main reinforcing bars 60. Further, as shown in FIG. 16 of the second embodiment corresponding to FIG. 2 of the first embodiment, the lower part of the reinforcing reinforcing bar 62 is fixed to the main reinforcing bar 60 inside the RC pile 6, and the middle part of the reinforcing reinforcing bar 62 Is inclined from the main reinforcing bar 60 in the direction of the axial center, and the upper part of the reinforcing reinforcing bar 62 protrudes vertically from the pile head 7 of the RC pile 6. The lower part of the reinforcing reinforcing bar 62, that is, the part fixed to the main reinforcing bar 60, has a length necessary for transmitting the load from the external concrete 16 to the RC pile 6. The middle part of the reinforcing reinforcing bar 62 is inclined so as not to hinder the transmission of the load. The upper end of the reinforcing reinforcing bar 62 has the same upper end as the upper end of the main reinforcing bar 60.
 以下、本実施例2に係る剛結構造体100の製造方法、すなわち現地施工の手順について説明する。 Hereinafter, the manufacturing method of the rigid structure 100 according to the second embodiment, that is, the procedure for on-site construction will be described.
 本実施例2に係る剛結構造体100の製造方法では、上記実施例1に係る剛結構造体10の製造方法において、図9に示した削穴92に配置するRC杭6の鉄筋を、上記実施例1のもの(主鉄筋60および帯鉄筋61)ではなく、本実施例2の鉄筋(主鉄筋60、補強鉄筋62および帯鉄筋61)とする。これ以外の本実施例2の施工手順は、上記実施例1の施工手順と同一である。 In the manufacturing method of the rigid structure 100 according to the second embodiment, in the manufacturing method of the rigid structure 10 according to the first embodiment, the reinforcing bars of the RC pile 6 arranged in the drilling hole 92 shown in FIG. It is not the thing of the said Example 1 (the main reinforcement 60 and the strip reinforcement 61) but the reinforcement (the main reinforcement 60, the reinforcement reinforcement 62, and the belt reinforcement 61) of the present Example 2. The other construction procedure of the second embodiment is the same as the construction procedure of the first embodiment.
 このように、本実施例2に係る剛結構造体100によると、上記実施例1に係る剛結構造体10と同様の効果を奏する上に、補強鉄筋62により、コーン破壊が一層抑えられ、結果として信頼性を向上させることができる。 As described above, according to the rigid structure 100 according to the second embodiment, the same effect as that of the rigid structure 10 according to the first embodiment can be obtained. As a result, reliability can be improved.
 ところで、上記実施の形態ならびに実施例1および2では、支柱(支柱下端部)の一例として橋脚3(橋脚下端部4)について説明したが、これに限定されるものではなく、建造物を支持するものであればよい。 By the way, in the said embodiment and Example 1 and 2, although the bridge pier 3 (bridge pier lower end part 4) was demonstrated as an example of a support | pillar (support lower end part), it is not limited to this, A building is supported. Anything is acceptable.
 また、上記実施の形態ならびに実施例1および2では、外縦リブ40および内縦リブ50のずれ止め孔8(孔あき鋼板ジベル:PBL)について詳しく説明しなかったが、ずれ止め孔8に貫通させるずれ止め部材として、貫通鉄筋を設けてもよい。 Further, in the above-described embodiment and Examples 1 and 2, the displacement preventing hole 8 (perforated steel plate gibber: PBL) of the outer longitudinal rib 40 and the inner longitudinal rib 50 has not been described in detail. You may provide a penetration reinforcing bar as a slip prevention member made to do.
 さらに、上記実施例1および2では、延長部12がRC杭6の杭頭7に据付架台68(H形鋼など)を介して載置されるとして説明したが、直接載置されてもよい。 Furthermore, in the said Example 1 and 2, although demonstrated that the extension part 12 was mounted in the pile head 7 of RC pile 6 via the installation mount 68 (H-shaped steel etc.), you may mount directly. .
 加えて、上記実施例1および2では、延長部12が円筒形状であるとして説明したが、角筒形状であってもよい。なお、角筒形状とすれば、応力集中が発生しやすくなるので、応力分散用の緩衝部材が必要になるものの、橋脚下端部4が角筒形状の場合に製造の時間および費用を低減することができる。 In addition, in Embodiments 1 and 2 described above, the extension portion 12 has been described as having a cylindrical shape, but may have a rectangular tube shape. In addition, since stress concentration is likely to occur if the rectangular tube shape is used, a buffer member for stress distribution is required, but the manufacturing time and cost are reduced when the pier lower end portion 4 is a rectangular tube shape. Can do.
 また、上記実施例2では、図15に示すように、補強鉄筋62が主鉄筋60と同数の鉄筋からなるとして説明したが、必ずしも同数である必要はない。補強鉄筋62の本数および鉄筋径は、コーン破壊を抑制するために必要な鉄筋量を満たすように設定される。 Further, in the second embodiment, as shown in FIG. 15, it is described that the reinforcing reinforcing bars 62 are composed of the same number of reinforcing bars as the main reinforcing bars 60, but it is not always necessary to have the same number. The number of reinforcing bars 62 and the diameter of the reinforcing bars are set so as to satisfy the amount of reinforcing bars necessary for suppressing cone fracture.

Claims (5)

  1.  支柱下端部とコンクリート杭との剛結構造体であって、
     支柱下端部から下方に延長させて上記コンクリート杭に載置される延長部と、
     上記延長部の外面に設けられて多数のずれ止め孔が形成された外縦リブ群と、
     上記延長部の外周部に打設された外部コンクリートとを備え、
     上記外部コンクリートが、上記コンクリート杭の内部から上方に伸びる鉄筋群と、上記外縦リブ群とを埋設するものであることを特徴とする支柱下端部とコンクリート杭との剛結構造体。
    A rigid structure of the lower end of the column and the concrete pile,
    An extension that extends downward from the lower end of the column and is placed on the concrete pile,
    An outer vertical rib group provided on the outer surface of the extension part and formed with a number of anti-slip holes;
    With external concrete cast on the outer periphery of the extension,
    The rigid structure of a pillar lower end and a concrete pile, wherein the external concrete embeds a reinforcing bar group extending upward from the inside of the concrete pile and the outer longitudinal rib group.
  2.  延長部の内面に設けられて多数のずれ止め孔が形成された内縦リブ群と、
     上記延長部の内部に打設された内部コンクリートとを備え、
     上記内部コンクリートが、上記内縦リブ群を埋設するものであることを特徴とする請求項1に記載の支柱下端部とコンクリート杭との剛結構造体。
    An inner longitudinal rib group provided on the inner surface of the extension portion and formed with a number of anti-slip holes;
    An internal concrete placed inside the extension,
    2. The rigid structure of a column lower end and a concrete pile according to claim 1, wherein the inner concrete embeds the inner vertical rib group.
  3.  外縦リブ群に接続されて延長部の外側を囲う縦筒部を備え、
     上記縦筒部が、外部コンクリートを打設する際の型枠となるものであることを特徴とする請求項1または2に記載の支柱下端部とコンクリート杭との剛結構造体。
    A vertical cylinder connected to the outer vertical rib group and surrounding the outside of the extension;
    The rigid structure of the lower end part of a support | pillar and a concrete pile of Claim 1 or 2 whose said vertical cylinder part becomes a formwork at the time of placing external concrete.
  4.  延長部が、円筒形状であり、
     外縦リブ群が、上記延長部の外面から放射状に配置された多数の外縦リブからなることを特徴とする請求項1または2に記載の支柱下端部とコンクリート杭との剛結構造体。
    The extension is cylindrical,
    The rigidly connected structure of the lower end portion of the column and the concrete pile according to claim 1 or 2, wherein the outer vertical rib group includes a plurality of outer vertical ribs arranged radially from the outer surface of the extension portion.
  5.  外部コンクリートに埋設される鉄筋群が、コンクリート杭を補強する主鉄筋である外周鉄筋群と、コンクリート杭の内部で外周鉄筋群に定着された補強鉄筋である内周鉄筋群とからなることを特徴とする請求項1または2に記載の支柱下端部とコンクリート杭との剛結構造体。 Reinforcing steel bars embedded in external concrete are composed of outer reinforcing steel bars, which are main reinforcing bars for reinforcing concrete piles, and inner reinforcing steel bars, which are reinforcing steel bars fixed to the outer reinforcing steel bars inside the concrete pile. The rigid structure of the support | pillar lower end part and concrete pile of Claim 1 or 2.
PCT/JP2016/052411 2015-05-08 2016-01-28 Rigid connection structure for bottom end of pillar and concrete pile WO2016181669A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680026727.4A CN107532398B (en) 2015-05-08 2016-01-28 Rigid connection structure for lower end of support and concrete pile
KR1020177030759A KR102079692B1 (en) 2015-05-08 2016-01-28 Rigid connection structure for bottom end of pillar and concrete pile
PH12017501821A PH12017501821A1 (en) 2015-05-08 2017-10-04 Rigid connection structure for bottom end of pillar and concrete pile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015095292A JP6021993B1 (en) 2015-05-08 2015-05-08 Rigid connection structure of lower end of support and concrete pile
JP2015-095292 2015-05-08

Publications (1)

Publication Number Publication Date
WO2016181669A1 true WO2016181669A1 (en) 2016-11-17

Family

ID=57247418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052411 WO2016181669A1 (en) 2015-05-08 2016-01-28 Rigid connection structure for bottom end of pillar and concrete pile

Country Status (5)

Country Link
JP (1) JP6021993B1 (en)
KR (1) KR102079692B1 (en)
CN (1) CN107532398B (en)
PH (1) PH12017501821A1 (en)
WO (1) WO2016181669A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204172A (en) * 2017-05-30 2018-12-27 株式会社熊谷組 Structure of joint between pile and foundation beam
ES2761655A1 (en) * 2018-11-19 2020-05-20 Nabrawind Tech Sl Foundation for a wind turbine tower (Machine-translation by Google Translate, not legally binding)
CN111691291A (en) * 2020-07-14 2020-09-22 中交第一公路勘察设计研究院有限公司 Steel-concrete combined plate type pier used in central separation belt of overpass bridge and construction method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6905496B2 (en) * 2018-09-03 2021-07-21 東電設計株式会社 Pile foundation
CN114150690A (en) * 2021-11-30 2022-03-08 西安市政设计研究院有限公司 Embedded flange for steel column-concrete foundation, connecting structure and construction method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282268A (en) * 2004-03-30 2005-10-13 Japan Railway Construction Transport & Technology Agency Joining structure of reinforced concrete member, and joining method for the reinforced concrete member
JP2006052550A (en) * 2004-08-10 2006-02-23 Michio Tanaka Member and method for joining pile and foundation slab together
JP2006104747A (en) * 2004-10-05 2006-04-20 Public Works Research Institute Pier stud connection structure and pier stud connecting method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4318694B2 (en) * 2006-02-13 2009-08-26 朝日エンヂニヤリング株式会社 Floor slab bridge structure
JP2008045370A (en) * 2006-08-21 2008-02-28 Ihi Corp Method and device for anchoring steel bridge pier and pile
CN201648950U (en) * 2010-05-11 2010-11-24 天津市市政工程设计研究院 Novel beam structure of steel-concrete combination section
JP6009778B2 (en) * 2012-02-23 2016-10-19 日立造船株式会社 Joint structure of steel pier and concrete pile foundation
CN102733641B (en) * 2012-07-04 2014-05-28 广东明阳风电产业集团有限公司 Tower drum foundation ring of wind driven generator
CN203891218U (en) * 2014-05-27 2014-10-22 中铁十九局集团轨道交通工程有限公司 Beam, plate and column intersection node in main excavation-for-cover station structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282268A (en) * 2004-03-30 2005-10-13 Japan Railway Construction Transport & Technology Agency Joining structure of reinforced concrete member, and joining method for the reinforced concrete member
JP2006052550A (en) * 2004-08-10 2006-02-23 Michio Tanaka Member and method for joining pile and foundation slab together
JP2006104747A (en) * 2004-10-05 2006-04-20 Public Works Research Institute Pier stud connection structure and pier stud connecting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204172A (en) * 2017-05-30 2018-12-27 株式会社熊谷組 Structure of joint between pile and foundation beam
ES2761655A1 (en) * 2018-11-19 2020-05-20 Nabrawind Tech Sl Foundation for a wind turbine tower (Machine-translation by Google Translate, not legally binding)
CN111691291A (en) * 2020-07-14 2020-09-22 中交第一公路勘察设计研究院有限公司 Steel-concrete combined plate type pier used in central separation belt of overpass bridge and construction method thereof

Also Published As

Publication number Publication date
JP2016211215A (en) 2016-12-15
CN107532398A (en) 2018-01-02
JP6021993B1 (en) 2016-11-09
PH12017501821B1 (en) 2018-04-23
KR20170131604A (en) 2017-11-29
PH12017501821A1 (en) 2018-04-23
CN107532398B (en) 2020-08-07
KR102079692B1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
WO2016181669A1 (en) Rigid connection structure for bottom end of pillar and concrete pile
KR101684771B1 (en) Method for connection structure for internally confined hollow rc column-foundation connection reinforced with external tube
WO2010097642A1 (en) Hydraulic tie rod for construction projects
JP6648990B2 (en) Foundation structure
JP4912030B2 (en) Junction structure between pier and pile
JP6719293B2 (en) Seismic reinforcement structure of pile foundation
JP2016199861A (en) Pile foundation structure
JP2019019503A (en) Pile head structure
JP6543077B2 (en) Construction method of structure
JP2018003523A (en) Pile foundation structure, and reinforcement method for existing pile
JP5423134B2 (en) Foundation structure
JP2016132948A (en) Connection structure
JP6461690B2 (en) Foundation structure and foundation construction method
JP6832053B2 (en) Seismic retrofitting structure
KR20090000818U (en) A cast-in place pile using multi-piled up metal nets
JP2016223092A (en) Pile foundation structure
JP2013181322A (en) Reconstruction method of pile foundation and pile foundation structure
JP6774774B2 (en) Pile foundation structure
JP7409834B2 (en) Pile cap joint structure and pile cap joint method
JP5835110B2 (en) Quay-quake-proof structure and quake-quake-proof reinforcement method
KR101672391B1 (en) Slipping Pile for Civil and Building Structure
KR101274944B1 (en) Column structure reinforcing method for bending and ductility by partial reinforcing
KR101158885B1 (en) Precast stabilizing pile with rapid construction and constructing method using thereof
JP3678290B2 (en) High earthquake resistance foundation
JP2015172329A (en) Reconstruction method of pile foundation and pile foundation structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12017501821

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20177030759

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792395

Country of ref document: EP

Kind code of ref document: A1