[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016178401A1 - 多重反応並行測定装置およびその方法 - Google Patents

多重反応並行測定装置およびその方法 Download PDF

Info

Publication number
WO2016178401A1
WO2016178401A1 PCT/JP2016/063265 JP2016063265W WO2016178401A1 WO 2016178401 A1 WO2016178401 A1 WO 2016178401A1 JP 2016063265 W JP2016063265 W JP 2016063265W WO 2016178401 A1 WO2016178401 A1 WO 2016178401A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
light
light guide
measurement
predetermined
Prior art date
Application number
PCT/JP2016/063265
Other languages
English (en)
French (fr)
Inventor
田島 秀二
Original Assignee
ユニバーサル・バイオ・リサーチ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニバーサル・バイオ・リサーチ株式会社 filed Critical ユニバーサル・バイオ・リサーチ株式会社
Priority to EP16789537.4A priority Critical patent/EP3290909B1/en
Priority to JP2017516603A priority patent/JP6851079B2/ja
Priority to US15/570,005 priority patent/US10837907B2/en
Publication of WO2016178401A1 publication Critical patent/WO2016178401A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1065Multiple transfer devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1011Control of the position or alignment of the transfer device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1011Control of the position or alignment of the transfer device
    • G01N2035/1013Confirming presence of tip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1048General features of the devices using the transfer device for another function
    • G01N2035/1062General features of the devices using the transfer device for another function for testing the liquid while it is in the transfer device

Definitions

  • the present invention relates to a multiple reaction parallel measuring apparatus using a light guide such as an optical fiber and a method thereof.
  • the Elisa method consists of the following steps (Steps 101 to 105). That is, for example, the sample solution is solid-phased on the inner wall surface of each well of a microplate having 8 ⁇ 12 wells (step 101). Proteins (such as albumin) that are not involved in antigen-antibody reaction and enzyme reaction are adsorbed to the solid phase (step 102). An antibody specific to the protein of interest is brought into contact with the solid phase to cause an antigen-antibody reaction (step 103). It is assumed that the antibody is labeled with an enzyme. Any excess antibody that has not reacted is washed away (step 104). The enzyme substrate is added and the product of the enzyme reaction is detected (step 105).
  • Proteins such as albumin
  • the chemiluminescence measurement in the step 105 or the measurement using fluorescence or chemiluminescence in the inspection such as the identification of the DNA base sequence is usually performed on the entire planar carrier such as the microplate or the DNA chip.
  • the optical state of each fixed position on each well and carrier is analyzed and analyzed by image analysis, or for each well or each carrier such as a DNA chip. This is performed by providing a corresponding light receiving element and guiding light using an optical fiber (Patent Documents 1 and 2).
  • one or a plurality of types of target biological substances labeled with a chemiluminescent substance are accommodated in one container, and a light provided in the container for measuring the presence or absence of light emission by injecting a trigger solution.
  • a light provided in the container for measuring the presence or absence of light emission by injecting a trigger solution.
  • each planar carrier is sequentially moved to a measurement position and measured with one PMT (Patent Documents 4 and 5).
  • Patent Document 6 In order to measure the presence or absence of fluorescence or chemiluminescence in a plurality of wells of the microplate, there is one in which light emission from a plurality of containers is switched and measurement is performed with one PMT (Patent Document 6).
  • the concentration and amount of solution between fixed positions are uniform, and the solution is stirred for each carrier. Due to the high encounterability based on the ease of work, processing can be performed under uniform conditions for each fixed position, and although the quantitative and uniform characteristics are high, the optical state at each fixed position is measured. In some cases, the fixed position of each probe array is different from the position of the container or well, and there is uncertainty due to a slight shift of the fixed position between the probe arrays, which may make it difficult to perform accurate parallel measurement. was there.
  • a first object is to collectively process and perform a case where reactions at a plurality of or particularly a large number of reaction spots are performed in parallel. It is an object to provide a multiple reaction parallel measuring apparatus and method capable of performing inspection and information processing quickly and efficiently in a short time by performing measurement.
  • the second object is to provide a multi-reaction parallel measuring apparatus and a method thereof capable of performing processing including reaction and measurement in a plurality of or particularly a large number of reaction spots under uniform conditions with high quantitativeness and accuracy. is there.
  • a third object is to provide a multi-reaction parallel measurement apparatus and a method thereof capable of realizing a process including reaction and measurement thereof in a plurality or particularly a large number of reaction spots with a compact and inexpensive apparatus.
  • the first invention is a reaction spot array comprising a plurality of reaction spot arrayers having two or more reaction spots arranged in a predetermined manner that can be discriminated from the outside in which a reaction related to measurement is performed, and the reaction Connected to the light obtained based on the optical state that can be generated by the reaction at the reaction spot with a measuring end provided corresponding to the spot arrayer and close to or in contact with each of the reaction spots
  • a plurality of light guides provided so as to be capable of guiding light to the end, and the measurement ends of the plurality of light guides are sequentially placed at a predetermined measurement position of each reaction spot corresponding to each reaction spot array.
  • the measurement head provided so as to be able to move relative to the array so as to reach all at once, and each measurement end is moved to the predetermined measurement position by the measurement head.
  • the plurality of light guide paths are sequentially selected at a predetermined selection cycle, and are optically connected to the connection end of the selected light guide paths so that incident light can be emitted.
  • a light guide selection unit having a region; a light receiving unit that sequentially receives and photoelectrically converts light emitted from the light guide region; and sequentially converts image region data obtained from the light receiving unit at the predetermined selection period.
  • a multi-reaction parallel measurement apparatus having a digital data conversion unit for obtaining digital data and storage means for sequentially storing the digital data.
  • the “reaction spot” is a place where the reaction is performed.
  • the “reaction spot” is used for a liquid storage unit that can store or store various test solutions used for a test-related reaction, or for a reaction related to a test. It is a fixed position on a test carrier on which various test substances to be fixed are fixed.
  • the “test carrier” refers to a carrier in which a plurality of types of test substances having a predetermined chemical structure are fixed at fixed positions arranged at predetermined intervals, and each chemical structure is associated with each fixed position. It is.
  • the “reaction spot array” is a region where the reaction spot array is divided so as to have at least one reaction spot, and is formed separately or in a case where the reaction spot array is formed integrally. Including.
  • the reaction spot arrayer includes a case where it is one liquid container (container) or a test carrier formed separately.
  • Contact includes adhesion, adhesion or connection.
  • the “liquid container” includes a reaction vessel capable of controlling the temperature.
  • the reaction spot array When the reaction spot is a liquid container, the reaction spot array includes, for example, a microplate in which wells that are a plurality of liquid containers are two-dimensionally arranged, a cartridge container that is one-dimensionally arranged, This includes the case where the microplates are stacked three-dimensionally with a gap in the height direction.
  • the reaction spot arrayer is, for example, two or more liquid storage units, one or more cartridge containers, or one or more microplates.
  • the reaction spot array or reaction spot array is, for example, a rod shape, needle shape, strip shape, string shape, thread shape in which the fixed positions are arranged one-dimensionally.
  • the test carrier is composed of a plurality of particulate carriers (particles), each particle corresponds to a fixed position. In this case, the reaction spots are arranged one-dimensionally.
  • test substances include genetic substances such as nucleic acids that have binding properties to target chemical substances (including biological substances) to be tested, biological substances such as proteins, sugars, sugar chains, peptides, or solutions thereof. Including.
  • other substances or solutions related to the inspection include those related to chemiluminescence, for example.
  • the substance used for the chemiluminescence reaction include 1) luminol or isoluminol derivative / hydrogen peroxide, 2) acridinium ester derivative / hydrogen peroxide, and 3) acridinium acylsulfonamide derivative.
  • an acridinium derivative is alkaline and hydrogen peroxide is used
  • an isoluminol derivative is hydrogen peroxide and microperoxidase (m-POD) are directly used for labeling for the chemiluminescence detection and enzyme
  • m-POD microperoxidase
  • chemiluminescence detection is performed to measure the activity of the labeling enzyme after labeling. Since an enzyme is used for labeling, a method that does not deactivate enzyme activity during B / F separation is required. For example, when horseradish peroxidase (HRP) is used as an enzyme, luminol / hydrogen peroxide is used as a substrate for detection.
  • HRP horseradish peroxidase
  • luminol / hydrogen peroxide is used as a substrate for detection.
  • glucose oxidase when glucose oxidase is used as an enzyme, glucose / TCPO / ANS is used as a substrate.
  • Glucose-6-phosphate dehydrogenase G6PDH
  • NADPH Glucose-6-phosphate dehydrogenase
  • Light receiving portion refers to a sensor having one, a plurality, or a large number of light receiving elements.
  • An example of a highly sensitive light receiving element is an APD (avalanche photodiode) array manufactured by Hamamatsu Photonics.
  • an “imaging sensor” such as a CCD image sensor or a CMOS image sensor is included.
  • BU-50LM ICX415AL
  • ICX415AL bit run “BU-50LM” (ICX415AL) is 6.4 ⁇ 4.8 mm and 772 ⁇ 580 pixels.
  • Image area data is a set of data obtained from the light receiving unit in consideration of the arrangement of the light receiving elements, and when there is only one light receiving element in the light receiving unit, the pixel data If there are a large number of light receiving elements such as a plurality or about the above-mentioned number (772 ⁇ 580 pixels), it corresponds to image data.
  • the “light receiving element” is an electronic element using a photoelectric effect, such as a photodiode or a phototransistor. Further, it includes the case of a photon counting sensor having a multiplication effect such as the APD.
  • the “predetermined measurement position” is a position that is provided so as to correspond to each reaction spot, and the measurement end performs measurement related to the reaction spot, and is set for each reaction spot so as to be close to or in contact with each reaction spot. Is set to 1 or 2 or more.
  • Each reaction spot has a finite size, and the measurement end also has a finite size, and preferably has a size, shape, or predetermined measurement position that enables measurement of only one reaction spot. preferable.
  • the distances between the adjacent predetermined measurement positions are set to be equal as the distance between the adjacent reaction spots.
  • reaction spots are particulate carriers with a diameter of 1 mm and are arranged in a line
  • predetermined measurement position when setting a predetermined measurement position every 0.1 mm, set 10 for one reaction spot. Will be.
  • the number of the predetermined measurement positions is larger, more accurate measurement can be performed, but the time required for measurement is extended.
  • the “predetermined scanning period (ts)” is a time for the measurement end to move between adjacent predetermined measurement positions in the same reaction spot array and to perform measurement.
  • the predetermined selection period is shorter than the predetermined scanning period, the light received by the light receiving unit during the predetermined selection period can be photoelectrically converted to output necessary image area data.
  • tc be set to the longest length within the time during which measurement is possible.
  • the predetermined scanning cycle and the predetermined selection cycle include the contents of the optical state to be measured, the type of light emission (for example, the type of fluorescent material, the type of chemiluminescent material), and the reagent used for light emission (the type of reagent and the amount of reagent also Including) the number of measurement positions per reaction spot, the mode of light emission (for example, instantaneous light emission, plateau light emission, light emission lifetime, stable light reception time, etc.), movement from the measurement position to the next measurement position Mode (when the measurement end scans between the reaction spots of the reaction spot array element, intermittent operation, continuous operation, scanning speed, moving distance, moving time, stop time, moving path, etc.), reaction spot size, reaction The number of reaction spot arrays, such as the arrangement of spots or the number of reaction spots in the reaction spot array, the size of the light guide, the distance between reaction spots, the characteristics of the light receiving part, the exposure time, and the above Determined according to the light measurement mode comprising one or more elements selected from the group, such as reaction time in response spots
  • data transfer or data read time may be considered.
  • the predetermined scanning cycle is short, and the predetermined scanning cycle is lengthened as the amount of light decreases.
  • the stable light reception time (T) during which the plateau is maintained the number of reaction spots (m) (m is a natural number), the number of predetermined measurement positions per reaction spot (light reception) (Number of times) ( ⁇ ) ( ⁇ is a natural number), and the predetermined scanning cycle (ts) is T / (m ⁇ ⁇ ), and within this cycle, from the predetermined measurement position in each reaction spot arrayer to the next predetermined measurement position.
  • the “digital data conversion unit” includes a shift register, an amplifier, and an AD converter that can be controlled by a gate, depending on the intensity or luminance of light received by the light receiving element.
  • a PMT photon counting sensor that generates a predetermined number of photons or a photon counting sensor using a semiconductor, it has a pulse counter capable of gate control as a photon counter, and is formed of an IC circuit in the same manner as a light receiving element array. The These operate at a predetermined scanning cycle obtained based on the light measurement mode in accordance with an instruction from a measurement control unit described later.
  • the generated digital data is stored in a storage means of a semiconductor storage element such as a DRAM, and digital data obtained by converting image area data of one or more light receiving elements corresponding to the light receiving unit at a predetermined selection cycle by arithmetic processing. Based on this, the temporal change in the brightness of the optical state is derived and analyzed.
  • the “predetermined selection cycle” is, for example, an instruction signal such as a pulse signal output based on a measurement control unit provided in an information processing unit including a drive unit or a CPU, a program, and a memory that generates a pulse signal in the cycle. Set based on.
  • the light receiving part has at least one light receiving element. In the case where at least three light receiving elements are provided, color light reception can be performed based on light received through the color filter (RGB) for each light receiving element.
  • the number and type of the light receiving elements are the size or sensitivity of the light receiving elements, the size and shape of the connection end of the light guide, the interval of the connection time, the interval between the second end and the light receiving surface, which will be described later, Depends on the shape of the edge or the aspect of the optical state.
  • the “digital data” is data that can be processed by an information processing device such as a CPU, for example, a numerical value.
  • the data can be stored in the storage means by compression, thinning out image area data, or the like.
  • the storage means is a memory for recording data, and is a semiconductor memory, a hard disk, a CD, a DVD, an SSD, a Blu-ray disc, or the like.
  • the “light guide” includes, for example, a cavity, an optical system element such as a lens, and an optical fiber.
  • the optical fiber is, for example, a plastic optical fiber that can handle visible light having an outer diameter of 500 ⁇ m.
  • the optical fiber also includes an optical fiber bundle in which a plurality of optical fibers are bundled. At least a part of the light guide path is preferably flexible.
  • One end of the light guide is a measurement end, and the other end is a connection end.
  • the “optical state” includes fluorescence, chemiluminescence emission, coloration, light change, and color change.
  • fluorescence it is a light guide for irradiating the reaction spot with excitation light, and is close to or in contact with, or close to or in contact with one of the reaction spots of the reaction spot array
  • reference light for example, a wavelength at which reflected light or scattered light that can detect coloration or discoloration can be obtained at each reaction spot can be obtained.
  • a light source of the reference light source, and an irradiation end provided in proximity to or in contact with one of the reaction spots of one of the reaction spot arrays.
  • a third light guide having a connection end provided so as to be close to or in contact with the surface is provided.
  • the measurement end is bundled with the irradiation end and the tip aligned and handled as the measurement end.
  • the “light receiving surface” is a surface formed by arranging the light receiving portions of the light receiving elements, and is fine in the case of an image sensor and rough in the case of an ADP array.
  • the stored digital data is read and analyzed by the analysis means of the information processing unit such as a CPU, and the target chemical substance is inspected.
  • the second invention further includes a light emitting unit capable of irradiating the light guide region with predetermined light, and the light guide region of the light guide path selecting unit selects the predetermined light incident thereon. It is possible to emit light to the connection end of the light guide path, and the light guide path is a multiple reaction parallel measurement device that can guide the predetermined light incident on the connection end to the measurement end.
  • the “predetermined light” is, for example, excitation light for fluorescence, reference light having various wavelengths for coloration or discoloration.
  • Predetermined light incident on the light guide region passes through the selected light guide path and is irradiated to each reaction spot from its measurement end, and the light generated based thereon is received by the light receiving unit through the same selected light guide path. Will be.
  • the “light emitting unit” has a “light source”, and as the light source, for example, a wavelength variable light source such as an LED, a deuterium lamp (for example, Hamamatsu Photonics, L10671D), a halogen lamp, etc.
  • the sample can be irradiated with continuous wavelengths up to.
  • the light guide selection unit further includes a light absorption region that can absorb light from an unselected light guide other than the selected light guide, and the light guide region is selected.
  • the light absorption region is a multiple reaction parallel measuring device provided so as to be optically connected to each connection end of the light guide that is not selected.
  • the “light-absorbing region” is a region in which reflection and scattering of light can be prevented or reduced by allowing light from the light guide path to be absorbed.
  • the light absorption region is surrounded by a boundary line or a wall surface so that the light guide region exists, does not penetrate or intersect, and has a light shielding property from the outside except for a flat portion or an opening optically connected to the connection end. It is preferable that the region is partitioned.
  • a planar region having a shape and an area including the connection end coated with a black dye, or an opening having a shape and an area including the connection end and extending in a direction opposite to the connection end.
  • a portion other than the connection end of the connection end array plate is formed with a light shielding surface having a light shielding property, and the planar region and the opening are connected to a portion other than the connection end and the light shield surface of the connection end array plate. There is no connection.
  • the wall surface in the recess, recess, groove, tube, or cavity is formed of a light-shielding material such as metal or resin, and a black fibrous material, such as carbonized cotton, coated with black dye or carbonized inside. It is preferable to be accommodated in
  • the light guide selection unit includes a connection end array plate that supports the connection ends of the light guides arranged at a predetermined central angle along a circumference, and the light guide region.
  • the selection rotating body provided to have a rotation axis concentric with the circumference of the connection end array plate, and the selection rotating body can be driven to rotate continuously or intermittently at the predetermined selection cycle.
  • the light guide region has a first end provided so as to be optically connectable to the connection end of each light guide path sequentially or intermittently at the predetermined selection period, and the light receiving portion.
  • At least a switching light guide having a second end that is optically connected to the light receiving surface of the first portion, wherein the first end is determined to be close to the connection end array plate in parallel,
  • the second end is disposed on a circumference that is concentric with the circumference of the connection end arrangement plate.
  • the light guide path selection unit or the selection rotator is solid or has a hollow housing for shielding the inside, and the switching light guide is provided inside the rotator.
  • the first end arrangement surface and the second end arrangement point are determined on the end surface or the end point through which the rotation axis of the selection rotating body passes.
  • the rotating body has a cylindrical shape and the rotation axis coincides with the central axis of the cylinder, it is determined on the bottom surface of the cylinder.
  • connection ends are arranged and supported at a predetermined central angle along the circumference
  • the cross-section of each connection end is circular, and the center of the circle is a predetermined center along the circumference. It is preferred that they are arranged at the corners.
  • the first end is arranged on a circumference having the same concentric diameter as the circumference of the connection end arranging plate” is preferably a circular section of the first end, and the center of the circle is It is preferable to arrange on the circumference.
  • the second end is disposed at a second end arrangement point defined on the rotation axis” is preferably arranged such that the center of the second end is disposed at the second end arrangement point.
  • connection end and the first end is, for example, a circle, and the size of the connection end is the same as or smaller than the size of the first end, so that all light from the connection end is incident on the first end. This is preferable.
  • the angle with respect to the center of the circumference of the adjacent connection end, that is, the “center angle” is preferably equiangular. When there are n light guides, the central angle is 360 / n degrees.
  • the “switching light guide” is a light guide such as an optical fiber, and has a flexibility such as a resin fiber or a thin fiber bundle, and a non-flexibility such as a thick glass fiber. There is. In addition, there may be an optical system element such as a rod lens. In the case of non-flexibility, since the switching light guide is not deformed by the centrifugal force due to the rotation of the selection rotating body, it can be said that the difference due to the influence of the rotation of each light guide is small.
  • An optical axis connecting the centers of the first end and the second end of the switching light guide along the light guide is included in one plane including the rotation axis of the selection rotating body, and the periphery of the selection rotating body It is preferable to follow a smooth curve from to the rotation axis.
  • connection end and the first end are introduced into the light receiving unit when intermittently optically connected as compared with the case where the first end is optically connected continuously.
  • the amount of light to be increased can be increased.
  • the distance between the connection end array plate and the first end arrangement surface is, for example, 0.001 mm to 0.1 mm, and preferably 0.01 mm, for example.
  • the circular diameter is, for example, 10 mm to 100 mm, preferably 50 mm, for example.
  • the diameter of the connection end is, for example, 1 to 3 mm, and the diameter of the switching light guide is, for example, 3 to 10 mm, and preferably, for example, 4 mm.
  • connection end array plate and the selection rotating body may be formed so as to have a light shielding property in portions other than the light guide, the switching light guide, the first end, the second end, or the connection end. preferable.
  • first end and second end do not indicate the light passing direction or passing order in a fixed manner. In the case of light reception, the light enters the first end and the second end. In the case of emission and light emission, the light enters at the second end and exits at the first end. Therefore, in the latter case, the second end is also optically connected to the light emitting surface of the light emitting unit.
  • the measurement head includes a measurement end support that supports a plurality of the measurement ends in an arrangement corresponding to the arrangement of the reaction spot arrayers, and the measurement end support is used as the reaction spot array.
  • a measuring end moving mechanism that is movable relative to each other and that drives the measuring ends so as to reach the predetermined measuring positions of the reaction spots corresponding to the reaction spot arrayers all at once in a predetermined scanning cycle. It is a multiple reaction parallel measuring device.
  • the “measuring end moving mechanism” is capable of moving the measuring end support relative to the spot array, the measuring end support is moved and the reaction spot array is There may be a case where they are moved and a case where they are combined. Further, by moving the measurement end support relative to the reaction spot array, the measurement end support is moved further after reaching a predetermined measurement position set so as to approach or contact each corresponding reaction spot. Each reaction spot array is moved so as to sequentially scan between the predetermined measurement positions of the reaction spot so as to reach the next corresponding predetermined measurement position. In this case, the arrangement of the reaction spots between the reaction spot array elements is not necessarily congruent.
  • the arrangement of reaction spots in other reaction spot array elements is similar (the arrangement pattern is the same, but the magnification of the size is not 1, and the magnification of 1 corresponds to “congruent”).
  • the reaction spot sequencer has a part where no reaction spot is set at the corresponding position of the reaction spot sequencer.
  • the number of particles, the size and shape of the particles are the same, and the arrangement mode (for example, array in a single row without a gap) ) Are the same, for example, when only the size of the particles is not 1, the shape is similar.
  • the “predetermined scanning period” is the moving speed of the measuring end by the measuring end moving mechanism that allows the predetermined measuring positions set so as to be close to or in contact with each reaction spot in each reaction spot array. It is preferable to determine the distance according to the distance between reaction spots, the number of predetermined measurement positions or the distance between the positions. Accordingly, the predetermined selection period in which the light guide path of the light guide path selection unit is selected and the image area data is converted into digital data is based on the predetermined scanning period and the number (n) of the reaction spot array elements. Will be determined.
  • the material of the particulate carrier is, for example, ceramics or resin.
  • the selection rotating body further includes a light absorption region that can absorb light from an unselected light guide other than the selected light guide, and the light absorption region is disposed at the first end. Connecting at least the light guide path along the circumference on the first end arrangement surface having the same concentric diameter as the circumference of the connection end array plate except the first end of the switching light guide path. It is a multiple reaction parallel measuring device provided at a position facing the end.
  • the light-absorbing region includes an opening having a shape and an area including the connection end provided so as to be optically connectable to each connection end of each non-selected light guide other than the selected light guide, and
  • the opening is formed to have a predetermined depth for absorbing light incident from the opening, and the opening, together with the first end, is concentric with the circumference of the connection end array plate on the first end arrangement surface.
  • connection end (N-1) pieces are arranged along the circumference of the diameter so as to correspond to each connection end, and the circumference of the connection end arrangement plate except for the first end of the switching light guide.
  • a passage region due to rotation of the connection end along the circumference on the first end arrangement surface having the same diameter and concentricity May be formed so as to have a band-like opening, or in the middle, 2 to n-2 may be formed by any combination of adjacent connection ends.
  • the reaction spot arrayers have two or more reaction spots arranged congruently, and the reaction spot arrayers are arranged so as to have translational symmetry.
  • each of the measurement ends provided corresponding to each reaction spot array can sequentially approach or contact two or more reaction spots corresponding to each other between the reaction spot arrays.
  • the “translational symmetry” can be taken so as to have a uniaxial direction, a biaxial direction, or a triaxial direction.
  • the reaction spot array or the reaction spot array has a predetermined type of test substance fixed to a plurality of different reaction spots at predetermined positions that can be identified from the outside.
  • it is a multiple reaction parallel measuring device having two or more test carriers.
  • an example of one test carrier is, for example, a case where test substances are arranged in one or more rows on a rod-like carrier, strip-like carrier, or string-like carrier.
  • An example of two or more test carriers is a case where a plurality of particulate carriers each having a test substance fixed thereto are arranged in a line.
  • the reaction spot is preferably set in units of the particulate carrier.
  • reaction spot array element is provided with two or more reaction spots, and the reaction spot is provided with one liquid storage unit capable of storing a predetermined type of solution related to the inspection,
  • Each measurement end includes a case where the measurement end is provided close to or in contact with the light guideable portion of the liquid storage portion.
  • the “light guideable part of the liquid storage part” is a part capable of guiding the optical state in the liquid storage part to the outside, for example, an opening of the liquid storage part, a light transmission It is the whole wall surface of the liquid storage part formed with the material with the property, the bottom part which has translucency, the side surface which has translucency, or these partial areas.
  • the partial area is the size, shape or position of the measurement end (including the distance and height of the measurement end from the liquid storage unit), the capacity of the liquid storage unit, or the amount of liquid stored in the liquid storage unit, etc. Determined based on.
  • the “liquid container” includes a “reaction vessel” capable of temperature control.
  • the predetermined selection period corresponds to, for example, ts / n obtained by dividing the predetermined scanning period (ts) by the number of selections, that is, the number of light guides (n).
  • the ninth invention further includes a processing head provided corresponding to each of the reaction spot array elements and provided with two or more dispensing elements capable of sucking and discharging a liquid.
  • a processing head provided corresponding to each of the reaction spot array elements and provided with two or more dispensing elements capable of sucking and discharging a liquid.
  • a plurality of accommodating portions are provided so as to be relatively movable with respect to the arranged accommodating portion group, and the tip of the dispensing element is all at once in the liquid accommodating portions of the accommodating portion group.
  • the multiple reaction parallel measuring device is provided so as to be insertable, and sucks and discharges the liquid accommodated in each accommodating portion by the dispensing element with respect to the reaction spot array.
  • the “dispensing element” is an instrument capable of sucking and discharging a liquid, for example, a dispensing nozzle attached to a dispensing nozzle communicating with a gas suction / discharge mechanism provided in a processing head. It is a deformable dispensing tip that can be deformed simultaneously by a tip or a movable member provided on the processing head.
  • the length of the dispensing element is, for example, about 3 cm to 25 cm.
  • the processing head is movable relative to, for example, a storage unit group region having at least the storage unit group including a plurality of liquid storage units containing sample solutions, various reagent solutions, and various cleaning liquids. It is preferable to provide in. Further, when the dispensing element is a dispensing tip, it is preferable that a tip accommodating portion that accommodates a dispensing tip that is detachably attached is provided in the accommodating portion group region.
  • the reaction spot array is a test carrier and is enclosed in the dispensing element, and the liquid is sucked and discharged by the dispensing element to the test carrier.
  • the carrier is provided so that each fixed position can be distinguished from the outside of the dispensing element, and the measurement end is provided so as to be movable relative to at least the dispensing element, thereby reacting in proximity to or in contact with the dispensing element. It is a multiple reaction parallel measuring device provided so as to be movable according to the arrangement of spots.
  • the dispensing element needs to have translucency.
  • the inspection carrier comes into contact with the liquid sucked by the dispensing element, and the enclosing portion holds the inspection carrier so that the inspection carrier does not flow out of the dispensing element when the dispensing element discharges the liquid. Need.
  • the enclosing portion there are a step formed integrally with the dispensing element, a protruding portion, a short pipe to be fitted as a separate body, a plate member having a through hole, a filter, or both May be combined.
  • the measurement end moving mechanism is provided not in the processing head provided with the dispensing element but in a storage unit group region, and the measurement end is moved by using the movement of the processing head.
  • the structure of the measuring end moving mechanism can be simplified by bringing the measuring end moving mechanism into close proximity to each reaction spot by making the measuring end moving mechanism move according to the arrangement of the reaction spots after contacting or approaching the element. That is, it is only necessary to move the reaction spot array element in the reaction spot array direction. Then, by scanning according to the arrangement of the reaction spots belonging to one reaction spot array element, all the other reaction spot array elements can be contacted or approached all at once.
  • the measurement end can be brought into contact with or close to the dispensing element at the end point of the movement path of the dispensing element in the accommodation unit group area in which the accommodation unit group is provided, and the dispensing element at that position.
  • the front end of the container is positioned so that it can be inserted into the arrayed end liquid storage section arranged at the end of the storage section group.
  • the arrangement end liquid storage unit is a temperature-controllable reaction vessel and can store a substance related to luminescence. Thereby, a series of processing from extraction to measurement can be executed smoothly, rationally and efficiently.
  • the measurement head is provided in the processing head, and is provided with the processing head so as to be relatively movable along the horizontal direction with respect to the accommodating portion group. It is a parallel measuring device.
  • the measuring head Since it is “at least in the horizontal direction with respect to the storage unit group”, it may be movable independently in the vertical direction with respect to the storage unit group. Thus, it is possible to perform measurement in a state where the tip of the dispensing element is inserted into each housing portion of the housing portion group. Further, the measuring head may be movable relative to the dispensing element in the horizontal direction. Thereby, the measuring end can be separated from the dispensing element when the dispensing element is attached or detached.
  • a reaction related to chemiluminescence is performed in the reaction spot of the reaction spot array composed of a plurality of reaction spot array elements having a plurality of reaction spots arranged in a predetermined manner distinguishable from the outside.
  • the measurement ends of a plurality of light guides provided corresponding to each reaction spot array A measurement step of moving relative to each other and simultaneously reaching a predetermined measurement position of each corresponding reaction spot of each reaction spot arrayer at a predetermined scanning period, and the measurement end is the reaction in each reaction spot arrayer While moving to the predetermined measurement position of the spot or stopping at the position, all of the plurality of light guide paths are sequentially optically connected to the light guide region at a predetermined selection period.
  • a light guide path selection step that allows the light from the measurement end of the selected light guide path to be emitted to the light receiving surface of the light receiving section through the light guide area, and the light guide area emitted from the light guide area
  • a light receiving step in which light is sequentially received by the light receiving unit and photoelectric conversion is performed, and a digital data conversion step in which image area data obtained from the light receiving unit is converted at the predetermined selection period, sequentially converted into digital data, and sequentially stored.
  • the light guide selection step is “the measurement end is moved to the predetermined measurement position of the reaction spot in each reaction spot arrayer”. In addition, while stopping at that position, all of the plurality of light guides are selected by optically connecting to the light guide region sequentially at a predetermined selection period, and the selected measurement points of the light guides are selected.
  • a light guide path selection step that allows the predetermined light of the light emitting unit to be emitted through the light guide region, and allows light from the measurement end to be emitted to the light receiving surface of the light receiving unit through the light guide region.
  • the light receiving step is “light emission / light reception in which the light emitting unit sequentially irradiates the light guide region with predetermined light and the light receiving unit sequentially receives light emitted from the light guide region and photoelectrically converts the light. It will be replaced by “process”.
  • a thirteenth aspect of the invention is a multiple reaction parallel measurement method having a light absorption step of absorbing light from a light guide path other than the selected light guide path in a light absorption region provided close to a connection end of a light guide path that is not selected. is there.
  • the light receiving unit in the light guide selection step, is arranged for a connection end array plate that supports the connection ends of the plurality of light guides arranged at a predetermined central angle along a circumference.
  • a rotating body for selection having a switching light guide path having a rotation axis concentric with the circumference of the connection end array plate and provided with a first end and a second end at a predetermined selection cycle.
  • the circumference of the connection end array plate is rotated on a first end arrangement surface, which is continuously or intermittently rotated, and is set to be close to the connection end of each light guide path in parallel with the connection end array plate.
  • the light from the connection end optically connected to the first end is guided to the light receiving surface of the light receiving portion from It is a heavy reaction parallel measurement method.
  • a plurality of measurement ends are moved relative to the reaction spot array by moving a measurement end support in which the plurality of measurement ends are supported in an arrangement corresponding to the arrangement of the reaction spots.
  • a multiple reaction parallel measurement method including a measurement end moving step of simultaneously bringing the measurement end to the predetermined measurement position of the reaction spot corresponding to each reaction spot arrayer at the predetermined scanning period.
  • the reaction spot array element is for one test in which a predetermined type of test substance related to the test is fixed to a plurality of reaction spots having a predetermined array that can be identified from the outside.
  • the reaction step is a multiple reaction parallel measurement method in which a reaction related to an inspection is performed by dispensing a solution to the inspection carrier.
  • each of the reaction spot arrayers is enclosed in two or more translucent dispensing elements capable of sucking and discharging a liquid, and the dispensing elements are arranged with a liquid storage portion.
  • the distal end of the dispensing element is provided so as to be movable relative to the storage unit group, and is provided so as to be able to be inserted into the liquid storage units of the storage unit group all at once.
  • a multiple reaction parallel measurement method in which a reaction related to measurement is performed on the reaction spot arrayer by inserting elements into the respective storage portions all at once and performing suction and discharge of liquids stored in the respective liquid storage portions.
  • the “reaction spot arrayer” corresponds to, for example, one or more test carriers in a predetermined position that can be identified from the outside.
  • An eighteenth aspect of the invention is an apparatus that sequentially selects a plurality of light guide paths at a predetermined cycle and sequentially emits light incident from the selected light guide paths or sequentially emits light to the light guide paths.
  • a connection end array plate for supporting each connection end, which is one end of the plurality of light guides, at a predetermined central angle along a circumference, and the connection ends of the plurality of light guides in order.
  • a selection rotator that is optically connected and has a light guide region that can emit incident light and that has a rotation axis that is concentric with the circumference of the connection end array plate;
  • a rotation drive mechanism capable of continuously or intermittently driving the selection rotator, and the light guide region is sequentially or intermittently connected to the connection end of each light guide path at the predetermined period.
  • a first end provided so as to be optically connectable and an end opposite to the first end;
  • a switching light guide path having a second end, wherein the first end is concentric with the circumference of the connection end array plate at a first end arrangement surface determined so as to be close to and parallel to the connection end array plate;
  • the light guide selection device is arranged on a circumference having the same diameter, and the second end is arranged at a second end arrangement point defined on the rotation axis. The first end and the second end are on the optical axis through which light passes.
  • the “predetermined period” is determined according to the purpose of use of the light guide.
  • An example of the purpose of use is a case corresponding to the predetermined selection cycle as described above.
  • An example of the “light guide” is as described above.
  • the selection rotating body further includes a light absorption region that can absorb light from an unselected light guide other than the selected light guide, and the light guide region is the selected light guide.
  • the light absorption region is a light guide selection device provided so as to be optically connected to each connection end of the light guide not selected.
  • examples of the light absorption region are as described above.
  • the connection of the light guide path in which the first end of the switching light guide path is close to the circumference of the first end arrangement surface having the same concentric diameter as the circumference of the tip array plate This is a case where the light absorption region is provided so as to be close to the connection end of the other light guide except for the end.
  • a reaction spot array in which a plurality of reaction spot arrays having a plurality of reaction spots are arranged is provided corresponding to each reaction spot array.
  • the light based on the optical state generated by each reaction spot arrayer is guided to the light receiving unit 1 to guide and receive the light, so that multiple reactions can be performed simultaneously at a number of reaction spots. It is possible to analyze it by converting it into digital data using one light receiving section. Therefore, the spatial and temporal changes in the optical state of a plurality of reaction spots are received by one light receiving unit in terms of time and space for every smaller number of reaction arrays than the number of reaction spots. Since measurement can be performed in an integrated manner, not only expansion of the apparatus scale can be suppressed, but also highly reliable processing can be performed quickly and efficiently.
  • each reaction spot array can be processed and measured independently and in parallel, the reaction spot array is physically separated as compared with the case where the reaction spot is handled as a whole reaction spot array, or By shielding light between each reaction spot array, the optical influence between adjacent reaction spot arrays is eliminated, and more reliable and accurate processing and measurement is performed. Processing and measurement can be performed.
  • reaction spots are regarded as the reaction spot array, divided into reaction spot array elements, predetermined measurement positions are set for the corresponding reaction spots belonging to each reaction spot array element, and measurement is performed at a predetermined scanning period. Since the end is moved and the light guide path corresponding to the reaction spot array element is sequentially switched and optically connected to one light receiving unit at a predetermined selection period associated with the predetermined scanning period, Despite the measurement of the reaction spot, scanning to digital data conversion is performed in an orderly manner using one light receiving unit. Therefore, the change in the number of reaction spot arrays and the number of reaction spots can be easily dealt with by changing the predetermined scanning period and the predetermined selection period, and is highly flexible and versatile.
  • predetermined light from the light emitting unit is incident on the light guide region, and the target reaction spot is irradiated with the predetermined light through the light guide path selected for light reception and the measurement end. be able to. Therefore, as a predetermined light, for example, it is possible to perform measurement using a fluorescent substance by irradiating excitation light, so that the measurement range is expanded and versatility is enhanced, and a new light guide for irradiation to the reaction spot is provided. Therefore, it is not necessary to provide the number corresponding to the reaction spot array or to provide a new light guide selection unit, so that the number of parts can be reduced and the scale of the apparatus can be prevented from being increased.
  • the sixth invention, or the thirteenth invention with respect to the selected light guide path, the light emitted from the connection end is surely guided to the light receiving surface of the light receiving section, while the light guide path not selected is selected.
  • the light from the light guide path is absorbed, so that it is possible to reliably prevent the intrusion of the miscellaneous light caused by the reflection or scattering of the light into the light receiving section. Measurement with high performance can be performed.
  • connection ends of the plurality of light guide paths are arranged along the circumference on the connection end arrangement plate, and pass through the light receiving surface of one light receiving section concentrically with the circumference.
  • the changed reaction spot array body and a light guide corresponding to the changed reaction spot array body are provided, and the number of reaction spot array elements corresponding to the changed number of reaction spot array elements is provided.
  • the connection end arrangement plate is changed, it is possible to easily cope with it by simply changing the new predetermined scanning cycle and predetermined selection cycle on the data. Thus, efficient processing and measurement can be performed using the unit.
  • a light guide path is provided for each reaction spot array having two or more reaction spots, and one light receiving section is provided.
  • the number of light guide paths, the light receiving elements By reducing the number of devices, it is possible to prevent the scale of the apparatus from being expanded and to reduce the manufacturing cost of the apparatus.
  • a moving mechanism is provided independently for each reaction spot array element. Since there is no need to provide it, expansion of the apparatus scale is suppressed.
  • by changing the spatial change of each reaction spot arranged in each reaction spot array into digital data for each predetermined selection period it is converted into a temporal change to simplify and visualize the process. Therefore, highly reliable processing can be performed.
  • the reaction spot array has two or more reaction spot arrays arranged congruently with each other, and the reaction spot arrays are arranged so as to have translational symmetry with each other.
  • the measurement end support is provided so that each measurement end provided corresponding to each reaction spot arrayer can approach or come into contact with the corresponding reaction spot all at once. Yes. Therefore, for a large number of reaction spots, a relatively small number of light guides and light receiving areas can be used to process a single reaction spot array without increasing the scale of the device or increasing the number of processing steps. Thus, the inspection can be performed efficiently and quickly with simple control.
  • the entire apparatus is Can be formed into a compact and well-organized compact shape.
  • the structure of the measurement end support and the arrangement of the measurement ends are simplified or uniform to simplify the apparatus structure, and a relatively small number of light guides and simple shapes and arrangements are provided for a large number of reaction spots.
  • Using the light-receiving area it is possible to control the expansion of the scale of the device and the increase in the number of processing steps, simplify the control as if there is one reaction spot arrayer, and perform the measurement efficiently and quickly in space and time. Will be able to do.
  • the reaction spot array or the reaction spot array is a test carrier, and each reaction spot can be integrated and arranged.
  • handling it is possible to save work space and prevent an increase in the scale of the apparatus, and to form a compact and efficient apparatus.
  • the processing head has two or more dispensing elements that are capable of sucking and discharging a liquid and whose tip is provided so as to be simultaneously inserted into each liquid container of the planar liquid container.
  • the liquid spot accommodated in each liquid container is sucked and discharged to the reaction spot array by the dispensing element.
  • the process from reaction to measurement, and further from extraction to measurement can be performed consistently using a single device, so the timing of optical state measurement can be optimized from the reaction stage. The speed and efficiency of processing are high.
  • the reaction spot arrayer is, for example, a test carrier, and is enclosed in the dispensing element. Therefore, the liquid can be sucked and discharged from the dispensing elements at the same time for each reaction spot, and the test carriers are reliably separated from each other, thereby reliably preventing cross contamination. And a highly reliable inspection can be performed. Moreover, from reaction to measurement can be performed consistently with one device, and by using a dispensing element that does not enclose a test carrier, extraction to measurement can be performed consistently with one device. Will be able to.
  • the measurement head since the measurement head is provided in the processing head, it is not necessary to provide at least a horizontal movement mechanism with respect to the accommodating unit group in the measurement head. Can be prevented. Furthermore, the processing head can also be used for the vertical movement mechanism with respect to the housing unit group. In addition, for the scanning of the measurement end with respect to the array, a moving mechanism of the dispensing element with respect to the processing head can be used.
  • one set is selected without sequentially providing optical parts such as a light receiving portion or a light emitting portion for each light guide path by sequentially selecting and guiding the light guide paths in a predetermined cycle. Therefore, it is possible to reduce the number of optical system parts such as the light receiving parts and reduce the cost regardless of the number of light guide paths.
  • the light absorption region by allowing the light absorption region to be optically connected to the connection end of the light guide that has not been selected, the light from the light guide that has not been selected is absorbed and reflected or scattered. It is possible to select a light guide with high reliability by preventing intrusion of miscellaneous light into the light receiving unit and the optical system parts.
  • FIG. 3 is a partially enlarged perspective view of the multiple reaction parallel measuring apparatus shown in FIG. 2. It is the partially expanded perspective view seen from the downward direction of the multiple reaction parallel measuring apparatus shown in FIG. It is a detailed sectional view of the light guide way selection part concerning a 1st embodiment of the present invention. It is explanatory drawing which shows operation
  • FIG. 1 is a block diagram showing a multiple reaction parallel measuring apparatus 10 according to the first embodiment.
  • the multiple reaction parallel measurement apparatus 10 is roughly a plurality of storage units in which, for example, various types of solutions and various types of dispensing tips are stored, and is stored in n rows on the stage along the Y-axis direction.
  • Dispensing tips 4 1 to 4 n which are provided so as to be relatively movable along the surface and have translucency corresponding to a plurality (n in this example) of dispensing elements can be inserted into the receiving portions at their tips.
  • An array processing apparatus having a processing head 52 provided and a processing head moving mechanism 53 capable of relatively moving between the processing head 52 and the accommodating portion group region 3 at least along the Y-axis direction. 5 and the dispensing tips 4 1 to 4 n are sealed in a thin tube and measured.
  • the reaction according to the constant is performed, the reaction of a plurality to form a reaction spot array 2 in which a plurality of reaction spots are arranged provided identifiable predetermined positions different from the external (n pieces) Spot sequence element 2 1 2 n , a light receiving processing unit 7 that performs light receiving processing on the light guided from the reaction spot array 2 by the light guide paths 6 1 to 6 n , and a so-called information processing unit that performs information processing for various controls CPU + program + memory 9 and an operation panel 14 for performing operations such as user instructions for the CPU + program + memory 9.
  • the processing head 52 is provided so as to be in contact with or close to the thin tubes of the n dispensing tips 4 1 to 4 n , and thus to be close to the enclosed reaction spot array elements 2 1 to 2 n.
  • N measurement guides 62 1 to 62 n and the light guides for guiding the light obtained based on the optical state that can be generated by the reaction at the reaction spot to the connection ends 64 1 to 64 n.
  • the optical paths 6 1 to 6 n and the measurement ends 62 1 to 62 n of the plurality of light guide paths 6 1 to 6 n are used for predetermined measurement of the reaction spots corresponding to the reaction spot array elements 2 1 to 2 n.
  • Measuring heads (62 1 to 62 n , 63, 65) provided so as to be movable relative to the array so as to reach the positions all at once in a predetermined scanning cycle (ts). Yes.
  • the light receiving processing unit 7 sequentially passes the plurality of light guide paths while the measurement ends 62 1 to 62 n are moved to the predetermined measurement position or stopped by the measurement head 52.
  • a light guide region having a light guide region that is selected at a predetermined selection period (tc) and is optically connected to the connection ends 64 1 to 64 n of the selected light guide paths 6 1 to 6 n so that incident light can be emitted.
  • the optical path selection unit 73, the light receiving unit 71 that sequentially receives and photoelectrically converts the light emitted from the light guide region of the light guide path selection unit 73, and the image area data obtained from the light receiving unit 71 is the predetermined selection.
  • a digital data conversion unit 75 that sequentially converts the data to obtain digital data.
  • the measurement head includes a measurement end support 63 that supports a plurality of the measurement ends 62 1 to 62 n arranged at intervals according to the arrangement of the reaction spot array elements 2 1 to 2 n , and the measurement
  • the end support 63 can be moved toward or away from the dispensing tips 4 1 to 4 n by moving in the Y-axis direction, and is simultaneously applied to each reaction spot 21 of the enclosed reaction spot array 2 1 to 2 n.
  • a measurement end moving mechanism 65 that allows the measurement ends 62 1 to 62 n to move in the Z-axis direction so as to approach each other sequentially.
  • the measurement ends 62 1 to 62 n are arranged at the end corresponding to the end point of the movement path of the dispensing element in the accommodating unit groups 3 1 to 3 n , and the dispensing tips 4 1 are located at the positions.
  • the tip end of 4 to 4 n is an insertable end liquid storage portion 3c into which the dispensing tips 4 1 to 4 n are located, the measurement end moves to the dispensing tips 4 1 to 4 n. If the container 65 is moved in the Y-axis direction and the dispensing tips 4 1 to 4 n are not moved in the Y-axis direction, they are provided at positions that can be approached and separated by the mechanism 65. It is preferable that the tips 4 1 to 4 n are arranged at positions that can be approached and separated by the measuring end moving mechanism 65.
  • Each of the reaction spot array elements 2 1 to 2 n is a test carrier, and for example, as will be described later, a plurality (the same number of particles in each reaction spot array element) of identically shaped particles are formed in the Z-axis within the capillary tube.
  • the particles are arranged in a line along the direction, and each particle corresponds to a reaction spot on which a predetermined test substance is fixed. Therefore, two or more of the reaction spots are arranged congruently with each other, and each reaction spot of these reaction spot array elements has a translational symmetry with respect to the X-axis direction and the Z-axis direction. It will be arranged to have.
  • the diameter of the particles is, for example, 0.5 mm to 10 mm, and preferably 1 mm, for example.
  • the processing head 52 of the multiple reaction parallel measuring apparatus 10 further includes a suction / discharge mechanism 43 that sucks and discharges liquid from the dispensing tips 4 1 to 4 n serving as the dispensing elements.
  • the dispensing tips 4 1 to 4 n are arranged and supported on the dispensing tip support member at intervals according to the arrangement of the accommodating portion groups 3 1 to 3 n along the X-axis direction.
  • the nozzles communicating with the suction / discharge mechanism 43 are arranged on the dispensing tip support member, and the dispensing tips 4 1 to 4 n are mounted and supported at the lower ends of the nozzles. It will be.
  • the suction / discharge mechanism 43 includes a desorption mechanism that desorbs the dispensing tip from the nozzle.
  • the processing head 52 includes a dispensing element Z-axis moving mechanism 42 that moves the dispensing tips 4 1 to 4 n all at once in the Z-axis direction, and the reaction of the dispensing tips 4 1 to 4 n .
  • a temperature elevating body 8 for controlling the temperature of the narrow tube in which the spot arrayer is enclosed, and the temperature elevating body 8 is moved forward or backward to bring the temperature elevating body 8 close to or in contact with each of the dispensing tips.
  • a temperature controller 83 for controlling the temperature rise and fall of the temperature raising and lowering body 8, and a magnetic force mechanism 44 for applying a magnetic force in the dispensing tip.
  • the temperature controller 83 the lifting / lowering body advancing / retracting drive mechanism 82, the suction / discharge mechanism 43, the dispensing element Z-axis moving mechanism 42, the magnetic force mechanism 44, and the processing head moving mechanism 53 are provided.
  • An extraction / reaction control unit 91 for instructing extraction or reaction, a measuring end moving mechanism 65, a dispensing element Z-axis moving mechanism 42, the light receiving unit 71, a light guide path selecting unit 73, a digital data converting unit 75, and
  • the storage control unit 92 for instructing measurement to the storage unit 93, the analysis unit 94, and the image area data from the light receiving unit 71 at the predetermined selection period set by the pulse signal based on the measurement control unit 92.
  • Storage means 93 for sequentially storing the converted digital data corresponding to the spot array element, and the digital data stored in the storage means 93
  • the calculation Zui having analyzing means 94 for analyzing the measurement.
  • the multiple reaction parallel measurement apparatus 11 that is a more specific example of the multiple reaction parallel measurement apparatus 10 according to the embodiment of the present invention described in FIG. 1 will be described.
  • the multiple reaction parallel measuring apparatus 11 omits the housing 12 and shows only the internal mechanism for the sake of explanation.
  • the multiple reaction parallel measuring apparatus 11 is a dark box capable of blocking the entrance of light from the outside.
  • Various mechanisms are incorporated in the housing 12 having a function.
  • the housing 12 has a bottom 12a and a wall portion 12b having a gap 12c through which a stage 13, which will be described later, can pass, and corresponds to the operation panel 14 outside the housing 12.
  • a touch tablet is detachably attached.
  • the accommodating portion group regions 31 1 to 31 16 are provided on a stage 13 having a height corresponding to the maximum depth of the container with respect to the bottom 12a of the casing. Yes.
  • a mounting opening 41 c provided on the thick tube 41 b of a dispensing tip composed of a thin tube 41 a and a large tube 41 b (see FIGS. 4 and 5) is located on the upper side.
  • Tip accommodating portion group 31a that can be accommodated or accommodated, a liquid accommodating portion group 31b that accommodates a sample solution and various reagent solutions, and an end portion of a container that accommodates a reagent solution necessary for measurement and can be controlled in temperature. And a cartridge-like container having a reaction container 31c as the arrayed end liquid storage section. The contents in each of the accommodating portions are accommodated in the order of processing along the Y-axis direction that is the movement path of the dispensing tips 41 1 to 41 16 .
  • the processing head moving mechanism 53 that moves the processing head 521 of the array processing apparatus 5 in the Y-axis direction relative to the accommodating unit group region 31, for example, the stationary processing head
  • a stage moving mechanism 531 for moving the accommodating portion group area 31 in the Y-axis direction together with the stage 13 with respect to 521 is provided.
  • the stage moving mechanism 531 includes a timing belt 53a that is connected to the stage 13 and spans two pulleys provided along the Y-axis direction, a motor 53c that rotates the pulley, and a bottom of the casing. 12 and a guide rail 53b that is slidably supported by the legs of the stage 13.
  • the entire processing head 521 is supported by the wall 12b of the housing 12 so as to be movable in the Z-axis direction.
  • Each of the dispensing tips 41 1 to 41 16 can be moved in the Z-axis direction by being connected to a nut portion and a timing belt that are screwed into a ball screw provided along the Z-axis direction.
  • the dispensing element Z-axis moving mechanism 421 is provided with a motor 42a attached to the back side of the wall portion 12b, an upper pulley driven to rotate by the motor 42a, and a lower side along the Z-axis direction.
  • a lower pulley a timing belt spanned between two pulleys, a connecting tool that passes through and connects the timing belt and the wall portion, and a connecting tool that is movable in the vertical direction;
  • a Z-axis moving body 43a provided on the front side of the wall portion 12b.
  • the processing head 521 is further provided with a suction / discharge mechanism 431 for performing suction / discharge of liquid with respect to the dispensing tips 41 1 to 41 16 serving as the dispensing elements.
  • the suction / discharge mechanism 431 is connected to a connecting tool driven by a timing belt of the dispensing element Z-axis moving mechanism 421, and is provided so as to be movable in the Z-axis direction.
  • a motor 43b mounted on the upper side of the body 43a, a piston rod drive plate 43g that moves up and down by being connected to a nut screwed into a ball screw 43h that is rotationally driven by the motor 43b, and 16 pieces by the drive plate 43g.
  • 16 piston rods 43c that slide simultaneously in the Z-axis direction in the cylinder 43d, and the cylinder 43d supported by the Z-axis moving body 43a are provided at the lower end of the cylinder 43d.
  • a cylinder support member 43i that supports 16 nozzles and a nozzle that is attached to the cylinder 43d and protrudes below the cylinder 43d can pass therethrough.
  • the piston rod drive plate is supported on the piston rod drive plate 43g
  • a chip attaching / detaching plate 43e provided so as to be movable downward by pressing the attaching / detaching rod 43j by descending more than a predetermined distance.
  • the lower end of the detachable rod 43j is attached to the tip detachable plate 43e and supported on the upper side thereof in a state of being elastically biased upward from the cylinder support member 43i.
  • the upper end of the detachable rod 43j is supported by the piston rod drive plate 43g. And a position separated by the predetermined distance.
  • the 16 dispensing tips 41 1 to 41 16 are attached to the 16 nozzles projecting downward at the lower end of the cylinder 43d by fitting the mounting openings. Therefore, the dispensing tip can move up and down with respect to the processing head 521 along the Z-axis direction together with the Z-axis moving body 43a, and the tip thereof is provided in the accommodating portion group region 31.
  • the liquid can be inserted into the liquid container, and the liquid can be sucked and discharged by the suction / discharge mechanism 431. Then, a plurality of (50 in this example) reaction spots 22 constituting the reaction spot array elements 21 1 to 21 16 enclosed in the dispensing tips 41 1 to 41 16 and the liquid Can be contacted (see FIG. 5).
  • the dispensing tips 41 1-41 16 tubules said fitting opening which is detachably attached to the nozzle communicating with capillary 41a and capillary tubes 41a consists thick tube 41b provided In 41a, a reaction related to the measurement is performed, and particles as a plurality of (in this example, 50) reaction spots 22 provided in different predetermined positions that can be identified from the outside are enclosed in one row.
  • a plurality of (sixteen in this example) reaction spot array elements 21 1 to 21 16 forming reaction spot array elements 21 arranged congruently along the Z-axis direction are translationally symmetric with respect to the X-axis direction. It is arranged with sex.
  • reaction spots 22 are arranged with translational symmetry also in the Z-axis direction. That is, in the multiple reaction parallel measuring apparatus 11 according to the present embodiment, the reaction spots 22 are arranged with translational symmetry in the two axial directions of the X axis direction and the Z axis direction.
  • the reaction spot array elements 21 1 to 21 16 are arrayed with translational symmetry along the X-axis direction.
  • the receiving unit group region 31 further includes the light receiving unit 711 and the light guide path selecting unit 731 on the bottom 12 a of the casing 12 below the stage 13.
  • the connection ends of a plurality (for example, 16 in this example) of the light guide paths 61 1 to 61 16 are arranged and supported equiangularly at a predetermined central angle, 22.5 degrees in this example, along the circumference.
  • connection end array plate 73b a selection rotating body 73a provided in the dark box and provided with the light guide region and having a rotation axis concentric with the circumference of the connection end array plate 73b;
  • a motor 76a is provided as a rotation drive mechanism 76 capable of continuously or intermittently driving the selection rotator at a selection cycle.
  • a CCD image sensor is used as the light receiving unit 711
  • a CCD image sensor for example, a light receiving surface of 6.4 mm ⁇ 4.8 mm is provided and 772 ⁇ 580 light receiving elements are arranged.
  • the digital data converter 75 includes a shift register that sequentially transfers charges by gate control, an amplifier that performs voltage amplification, and an AD converter that converts the amount of charges into digital data.
  • the predetermined selection cycle can be determined based on, for example, a time interval specified by an instruction from the operation panel 14 or an instruction from the CPU + program + memory 9 measurement control unit.
  • the predetermined selection period is the predetermined scanning period, the number of reaction spot array elements, the number of reaction spots of each reaction spot array element, the type of light emission, the reagent, the mode of light emission, the characteristics of the light receiving unit, the reaction It is determined on the basis of the reaction time at the spot, the optical state, the lifetime, the stable light receiving time, or the like. Therefore, it is determined according to the light measurement mode in consideration of the scanning speed between the reaction spots, the predetermined scanning period, the distance between the reaction spots, or the movement mode thereof by the measurement end moving mechanism 65. For example, 50 particles having a diameter of 1 mm are measured so as to scan along the Z-axis direction using an optical fiber having a diameter of 1 mm provided at the measurement end.
  • the measurement end is relatively, for example, a distance from the light receiving position to the next light receiving position is 0.1 mm, and the light receiving time (the stop time required for photon counting is taken into account in consideration of the chemiluminescence plateau state). ) So as to move intermittently while stopping for 10 msec, so that one particle is measured a plurality of times (in this example, 10 times). This takes into account the uncertainty based on the fact that the position of the particles is not necessarily fixed, the size of the optical fiber, and the like. As a result, Gaussian function-type luminance is obtained with respect to one particle, whereby precise measurement such as emission can be performed.
  • the measurement control unit 96 causes the dispensing element Z-axis moving mechanism 42 and the storage means 97 to generate a pulse signal of such timing.
  • the entire 50 particles are subjected to light reception or digital data conversion 500 times for about 30 seconds to about 50 seconds (including the chemiluminescence plateau state) including the movement time.
  • the storage group 31 is further provided with each measurement end provided so as to be in contact with the thin tubes of the respective dispensing tips, and the connection end of the light guide path selection unit 731.
  • a plurality (16 in this example) of light guide paths 61 1 to 61 16 each having a connection end supported by the array plate are provided.
  • the measurement ends are arranged and supported on the measurement end support 631 along the X-axis direction at intervals according to the arrangement of the reaction spot arrayers.
  • the measurement end support 631 is moved to the accommodating unit group region 31, and accordingly, a plurality (16 in this example) of the measurement ends are moved along the Z-axis direction that is the axial direction of the dispensing tip.
  • the measurement head moving mechanism 65 capable of scanning the reaction spot is provided in the processing head 521.
  • the processing head is provided in the housing 12 so as to be stationary in the Y-axis direction
  • the measurement head is also provided so as to be stationary with respect to the accommodating unit group region 31.
  • it is provided so as to be movable by the measuring end moving mechanism 65 only in the Y-axis direction for approaching and separating from the dispensing element.
  • the measurement end is measured when the storage unit group is moved so that the dispensing element is positioned above the storage unit 30c provided on the rear end side along the Y-axis direction of the storage unit group. To be done.
  • the measurement end moving mechanism 65 holds an arm member connected to the measurement end support 631, and the arm member so as to be slidable, and advances it toward the dispensing tip along the Y-axis direction.
  • An arm holding base provided with an elastic member that is always urged elastically, and a nut portion screwed with the ball screw to rotate the arm holding base up and down along the Z-axis direction.
  • a motor to be driven, a base to which the motor is attached and provided with a hole through which the ball screw passes and which is fixed to the bottom 12a, are screwed into a nut portion which is rotationally driven by the motor, and is driven vertically.
  • the ball screw whose tip is pivotally supported on the lower side of the arm holding base, a guide pillar having a lower end provided at the base and penetrating the arm holding base and having an upper end attached to a fixture, And a mounted fixture Kikatami body (not shown).
  • each capillary tube of the dispensing tip moves the measurement end. Pressing and receiving an elastic repulsion makes contact.
  • the measurement end support 631 moves in the Z-axis direction, the measurement ends 62 1 to 62 16 arranged in accordance with the arrangement of the reaction spot array elements 21 1 to 21 16 become the array elements 21. 1 to 21 16 is moved in the Z-axis direction, and the particles corresponding to the reaction spots 22 belonging to the respective reaction spot array elements 21 1 to 21 16 are scanned simultaneously and sequentially close to and away from each other.
  • the measurement end support 631 has a plurality (5 in this example) of predetermined numbers provided at intervals of 0.2 mm corresponding to the reaction spots 22 (particles having a diameter of 1 mm) of the reaction spot array elements. The measurement position is moved so as to be sequentially positioned at a predetermined scanning cycle (ts, 0.8 seconds in this example).
  • the processing head 521 is provided with a magnetic force mechanism 44 for exerting a magnetic force in the thin tube 41a of the dispensing tip attached to the nozzle.
  • the magnetic force mechanism 44 includes, for example, 16 permanent magnets arranged along the X-axis direction at intervals corresponding to the arrangement of the dispensing tips, a magnet array member that supports the 16 permanent magnets, and the magnet An array member is provided along the Y-axis direction for performing an advance / retreat operation with respect to the dispensing tip, and a ball having one end pivotally supported by the magnet array member and the other end pivotally supported by a ball screw shaft support plate.
  • a motor that rotationally drives a screw and a nut portion that engages with the ball screw, is supported by the processing head 521, and moves the ball screw in the front-rear direction along the Y-axis direction;
  • the light guide path selection unit 731 has a predetermined central angle along the circumference of the connection ends of a plurality (16 in this example) of the light guide paths 61 1 to 61 16.
  • connection end array plate 73b arranged and supported at an equal angle, and a switching light guide path 74 as the light guide region are provided, and the circumference of the connection end array plate 73b
  • a selection rotator 73a provided to have a concentric rotation axis 73d, and a rotation drive mechanism 76 capable of continuously or intermittently driving the selection rotator 73a at the predetermined selection period (tc);
  • the light guide region includes a first end 74a and a light receiving unit 711, which are sequentially and intermittently optically connectable to the connection ends of the light guide paths 61 1 to 61 16 at the predetermined selection period.
  • At least a switching light guide path 74 having a second end 74b optically connected to the light receiving surface via the light guide section 71a is provided.
  • FIG. 6A shows the connection end array plate 73b as seen from the direction of the arrow of the AA line in FIG.
  • the first end 74a is arranged such that the connection ends 64 1 to 64 16 of the connection end arrangement plate 73b are arranged on a first end arrangement surface 73e that is determined to be close to and parallel to the connection end arrangement plate 73b.
  • the second end 74b is arranged on a second end arrangement point 73c defined on the rotation axis 73d.
  • the second end 74b is arranged on a circumference concentric with the circumference 73g.
  • the selection rotating body 73a has a rotation shaft 73f provided along the rotation axis 73d, and both ends thereof are pivotally supported by a shaft support portion 76d via bearings 76e.
  • the rotating shaft 73f is rotatably connected to the shaft 76b of the motor 76a through a coupling 76c.
  • FIG. 6B shows the inside of the selection rotating body 73a viewed from the direction of the arrow of the BB line in FIG. 6C.
  • the selection rotating body 73a is a solid cylindrical body, and a groove 74d is provided along a radius of the circumference 73g of the connection end array plate 73b in the portion where the switching light guide path 74 is provided.
  • the groove 77a does not intersect the groove 74d as the light absorption region 77, but has an arc-shaped opening along the circumference 73g, and the depth is Although extending along the direction of the rotation axis 73d, it is recessed so as to have a depth (for example, 90% of the length) shorter than the axial length of the selection rotating body 73a.
  • the back of the groove 77a is filled with, for example, carbonized cotton or black fiber.
  • dispensing tips 41 1 to 41 16 in which the extraction dispensing tips, the PCR dispensing tips, the drilling tips and the reaction spot array elements 21 1 to 21 16 are enclosed are mounted. It is accommodated in advance with the opening facing up.
  • specimens such as oral mucosa collected from the subject, genome extraction reagent, magnetic particle suspension, primer-containing liquid as a PCR reagent, Mineral oil and cleaning liquid, such as a restriction enzyme solution, are accommodated, and some of the accommodating parts are empty.
  • reaction containers such as a PCR container which can control temperature.
  • probes having two types of base sequences of SNP polymorphisms related to the drug are sandwiched between appropriate spacer particles (or light-shielding particles). It shall be fixed to the particles.
  • Each particle has, for example, a spherical shape and a diameter of, for example, 1 mm.
  • step S1 the processing head 521 is moved in the Y-axis direction by the processing head moving mechanism 53 to store the first chip in the chip storage portion group 31a in which unused dispensing tips are stored. It is located above the part.
  • the dispensing element Z-axis moving mechanism 421 lowers the 16 nozzles provided in the processing head 521 to mount the extraction dispensing tip and raise it again so that the lower end of the dispensing tip is moved. When it reaches above the chip housing part, it moves in the Y-axis direction.
  • step S2 the processing head 521 is moved to the position of one liquid storage unit belonging to the liquid storage unit group 31b for storing the genome extraction reagent and lowered to move the tip of the dispensing tip to the position.
  • the extraction reagent is inserted into the liquid container and the relevant extraction reagents are simultaneously aspirated using the suction / discharge mechanism 431.
  • the dispensing chip is transferred to one liquid container of the liquid container group 31b in which the sample solution is stored, and the lower end of the dispensing chip is inserted into the liquid container and discharged. Further, similarly, a magnetic particle suspension that is stored in one liquid storage section of the liquid storage section group 31b and for extracting each subject's DNA as a target substance is sucked into the dispensing tip.
  • the sample solution is transported and discharged to the liquid storage part in which the sample solution is stored, and agitation is performed by repeating suction and discharge, thereby binding the DNA of each subject as the target substance to the magnetic particles. If necessary, suction and discharge are further repeated with the cleaning liquid in order to remove impurities.
  • step S3 by using the actuator of the magnetic force mechanism, the magnet array member (not shown) is brought close to the extraction dispensing tip and the magnet is brought close to the thin tube of the dispensing tip to enter the narrow tube.
  • a magnetic field is applied, and the magnetic particles bound with the DNA of each subject are adsorbed on the inner wall of the capillary tube and separated.
  • the separated magnetic particles are transported to the next one liquid storage section in which the detachment liquid of the liquid storage section group 31b is stored by the processing head 521 while being adsorbed on the inner wall, and by a magnetic mechanism.
  • the processing head 521 In a state where the magnet array member is separated from the extraction dispensing tip, the DNA of each subject of the target substance is suspended in the separation solution by repeating suction and discharge of the separation solution, and the magnetic mechanism With the magnetic particles again adsorbed on the inner wall, the processing head 521 is moved and the dispensing tip for extraction is detached from the nozzle by lowering the tip detaching plate 43e in the tip accommodating group 31a and discarded. To do.
  • step S4 the unused PCR dispensing tip accommodated in one tip accommodating portion of the tip accommodating portion group 31a is lowered by the dispensing element Z-axis moving mechanism 421 of the processing head 521.
  • the nozzle is fitted and mounted in the mounting opening of the dispensing tip, and the processing head 521 is moved up in the Y-axis direction and stored in the liquid storage section of the liquid storage section group 31b.
  • the aforesaid DNA solution is aspirated by the aspirating / discharging mechanism 431, the dispensing chip is lifted by the dispensing element Z-axis moving mechanism 421, and a liquid storage portion for PCR provided in the liquid storage portion group 31b And the DNA solution is discharged.
  • a reagent solution such as a primer having a corresponding base sequence for amplifying the base sequence containing each SNP is discharged into the PCR reaction vessel, and the relevant temperature control cycle based on the PCR method is applied.
  • a DNA fragment having a base sequence containing each SNP is amplified and generated.
  • the generated DNA fragment solution containing various SNPs is a chemiluminescent substance solution connected to an adapter having a base sequence complementary to a base sequence unique to each DNA fragment by the PCR dispensing chip.
  • the liquid SNP is dispensed and stirred in one liquid storage section provided in the liquid storage section group 31b to be stored, and the various SNPs are labeled with a chemiluminescent substance.
  • an enzyme horseradish peroxidase (HRP) is used as the chemiluminescent substance, and luminol / hydrogen peroxide is used as the substrate, and detection is performed by the CLEIA method.
  • step S6 the processing head 521 is returned to the chip accommodating part group 31a again, and the PCR dispensing chip mounted in the empty chip accommodating part is detached by the chip detaching plate 43e and discarded.
  • step S7 after the processing head 521 is raised, it is moved again in the Y-axis direction, and is one chip storage unit in the chip storage unit group 31a, and the reaction spot array elements 21 1 to 21 16. Is placed above the tip accommodating portion in which the dispensing tips 41 1 to 41 16 are accommodated. The nozzle is lowered by the dispensing element Z-axis moving mechanism 421 to be fitted into the mounting opening, and the dispensing tips 41 1 to 41 16 are attached to the nozzle.
  • step S8 the dispensing tips 41 1 to 41 16 are moved in the Y-axis direction, and the liquid storage section group 31b of the storage section groups 31 1 to 31 16 in which the various labeled SNP fragments are stored.
  • the tip of the dispensing tips 41 1 to 41 16 is inserted into the liquid container by using the dispensing element Z-axis moving mechanism 421 and moved by the suction / discharge mechanism 431.
  • the reaction spot array elements 21 1 to 21 16 having the particulate carrier are brought into contact with the solution.
  • the temperature raising / lowering body 81 is advanced to and closely contacts the dispensing tips 41 1 to 41 16 by the motor as the raising / lowering body advance / retreat drive mechanism 82 according to the instruction of the extraction / reaction control section 91.
  • the inside of 1 to 41 16 is maintained at a predetermined temperature.
  • step S9 the dispensing tips 41 1 to 41 16 are moved in the Y-axis direction by using the processing head moving mechanism 55, so that one liquid container in which the cleaning liquid in the liquid container group 31b is stored. Then, the temperature elevating body 81 is cleaned by repeating suction and discharge while being separated from the dispensing tips 41 1 to 41 16 .
  • FIG. 3 shows the positions of the dispensing tips 41 1 to 41 16 and the measurement ends 62 1 to 62 16 and the temperature raising and lowering body 81 in step S9 at this stage.
  • step S10 the dispensing tips 41 1 to 41 16 are moved to the reaction vessel 31c containing the chemiluminescent substrate, and the tip is inserted into the reaction vessel 31c.
  • the measurement end moving mechanism 65 moves the measurement ends 62 1 to 62 16 in the Y-axis direction so as to be in contact with the thin tubes of the dispensing tips 41 1 to 41 16 .
  • to maintain a predetermined temperature within the dispensing tip 41 1-41 16 in close contact with the temperature raising and lowering body 81 is advanced to the dispensing tip 41 1-41 16 by a motor as the elevating member reciprocating drive mechanism 82 .
  • the state at this stage corresponds to FIG.
  • step S11 the solution in the reaction vessel 31c is aspirated by the dispensing tips 41 1 to 41 16 . Then, the sucked substrate reacts with the enzymes of the reaction spot array elements 21 1 to 21 16 enclosed in the dispensing tips 41 1 to 41 16 and emits light.
  • the measurement end support 63 moves along the Z-axis direction by the measurement end moving mechanism 65, the corresponding reaction spots respectively arranged in the reaction spot array elements 21 1 to 21 16 are simultaneously transmitted. Then, light is guided from the sequential measurement ends 62 1 to 62 16 to the connection ends 64 1 to 64 16 through the light guide paths 61 1 to 61 16 to the reaction spot array elements 21 1 to 21 16 .
  • Step S12 sequentially receiving accordance optical state corresponding to 50 each movement in the Z axis direction of the measuring portion 62 1-62 16 by the measuring portion moving mechanism 65. Then, the relative movement of the measurement ends 62 1 to 62 16 , for example, the movement between the predetermined measurement positions of 0.2 mm, the movement of 800 msec, and the stop time (ts: predetermined scanning cycle) is repeated intermittently.
  • ts predetermined scanning cycle
  • the light guide selection unit 731 sequentially selects all the 16 light guides 61 1 to 61 16 with a predetermined selection period (tc), thereby obtaining one light receiving unit.
  • the digital data conversion unit 75 converts the intensity or luminance of the light received by the light receiving unit 711 into the corresponding digital data at the predetermined selection period, and
  • the target biological material to be inspected can be inspected by being sequentially stored in the storage means 93, read out by the analysis means 94, and subjected to arithmetic analysis.
  • the “predetermined scanning period (ts)” is, for example, the movement time required for relative movement between adjacent measurement positions of the measurement end by the measurement end moving mechanism (for example, between adjacent predetermined positions, 800msec), the number of times of light reception for each reaction spot (for example, 5 times), the number of reaction spots (for example, 50), and the stable light reception time during which chemiluminescence can be stably received (plateau state of light emission) Is determined based on a light measurement mode consisting of a time during which the light is maintained (for example, 200 seconds), whereby a stop time for light reception (digital data conversion) for the reaction spot is determined to be, for example, 800 msec. , Instructed by the measurement control unit 92.
  • the “predetermined selection period” is determined based on, for example, the predetermined scanning period (ts) and the number of reaction spot array elements (n).
  • the multiple reaction parallel measuring apparatus 11 is configured to display 7 items (egg, milk, wheat, buckwheat, peanut, shrimp, crab) and 20 recommended items (peach) for 16 types of food. Of pork, poultry, beef, abalone, etc.), and the operation when applied to specific food allergen detection for 24 items together.
  • each particle as 50 reaction spots 22 of the reaction spot array element is composed of 25 reaction beads and 25 light-shielding beads, and the reaction beads are alternately arranged with light-shielding beads.
  • an antibody capable of capturing allergen eg, anti-wheat antibody, anti-egg antibody is immobilized.
  • reaction beads is a reaction bead for negative control or positive control. Negative control reaction beads are blocked to prevent light sources and antibodies from binding to the reaction beads, and negative control reaction beads are reaction beads with immobilized horseradish peroxidase that always emits light. It is. Furthermore, in each liquid storage part of the liquid storage part group 31b, a liquid storage part in which 100 ⁇ L of a food extract extracted from food is stored in advance, a horseradish peroxidase (HRP label) solution as a labeled antibody.
  • HRP label horseradish peroxidase
  • step S21 the processing head 521 is moved in the Y-axis direction by the processing head moving mechanism 53, and the dispensing tips 41 1 to 41 in which the reaction spot array elements 21 1 to 21 16 are sealed are contained.
  • 41 16 is positioned above the first chip accommodation portion of the chip accommodation portion groups 31a being accommodated.
  • the dispensing tips 41 1 to 41 16 are attached and raised again to dispense the nozzle.
  • the lower ends of the tip 41 1 to 41 16 are located above the tip accommodating portion group 31a, they move in the Y-axis direction.
  • step S22 the liquid is moved to the position of the first liquid storage section of the first set that stores the cleaning buffer liquid in the liquid storage section group 31b, and lowered to move the dispensing tips 41 1 to 41 16 to the position.
  • the reaction spot 22 of the reaction spot array housed in the dispensing tips 41 1 to 41 16 is inserted into the liquid container and repeated suction and discharge using the suction and discharge mechanism 431.
  • step S 23 the 16 nozzles provided in the processing head 521 are raised by the dispensing element Z-axis moving mechanism 421, and moved relatively in the Y-axis direction by the processing head moving mechanism 53.
  • the tip of each of the dispensing tips 41 1 to 41 16 is lowered by being positioned above the liquid storage part in which each food extract as the sample is stored in the liquid storage part group 31b.
  • the food extract is sucked and discharged using the suction / discharge mechanism 431 by being inserted into the liquid container.
  • the temperature elevating body 81 is brought close to or in contact with the dispensing tip by the elevating body advancing / retreating drive mechanism 82, and incubation is performed for 30 minutes by the temperature controller 83.
  • suction / discharge is repeated 300 times by the suction / discharge mechanism 431.
  • the allergen (antigen) in each food extract is captured by the antibody fixed to the corresponding beads.
  • step S24 the 16 dispensing tips 41 1 to 41 16 provided on the processing head 521 are raised along the Z-axis by the dispensing element Z-axis moving mechanism 421, and the processing head moving mechanism is moved. 53, the stage 13 is moved in the Y-axis direction to the first set of second and third liquid storage portions in which the cleaning buffer liquid is stored, and the dispensing tips 41 1 to 41- 41 16 lowers the repeated twice washing by repeating suction and discharge by the suction and discharge mechanism 431.
  • step S25 the 16 dispensing tips 41 1 to 41 16 are raised by the dispensing element Z-axis moving mechanism 421, the stage 13 is moved in the Y-axis direction by the processing head moving mechanism 53, and the The beads were fixed to the beads by moving to the liquid container containing the labeled antibody, lowering the dispensing tips 41 1 to 4 16 and repeating the suction and discharge of 300 times by the suction and discharge mechanism 431.
  • the allergen bound to the antibody is labeled with the HRP label.
  • step S26 the 16 dispensing tips 41 1 to 41 16 provided on the processing head 521 are raised along the Z-axis by the dispensing element Z-axis moving mechanism 421, and the processing head moving mechanism is moved. 53, the stage 13 is moved in the Y-axis direction to move to the second set of first, second, and third liquid storage portions in which the cleaning buffer liquid is stored, and the dispensing tip 41 1 to 41 16 are lowered, and the suction and discharge mechanism 431 repeats the suction and discharge, thereby repeating the cleaning three times.
  • step S27 the 16 dispensing tips 41 1 to 41 16 are raised by the dispensing element Z-axis moving mechanism 421, the stage 13 is moved in the Y-axis direction by the processing head moving mechanism 53, and Then, it moves to the tip accommodating portion group 31a, detaches the dispensing tips 41 1 to 41 16 using the detaching plate 43e as the detaching mechanism, and a new dispensing tip in which the beads are not enclosed. Attached, moved to the liquid container containing the substrate I, sucked the substrate I, moved up by the dispensing element Z-axis moving mechanism 421, moved to the reaction vessel 31c and discharged Similarly, the substrate II is sucked with the dispensing tip, moved to the reaction vessel 31c, and discharged.
  • step S28 the pipette tip is moved to the tip accommodating portion group 31a is desorbed with desorbing plate 43e as the desorption mechanism, the chip accommodation of the dispensing tip 41 1-41 16 are accommodated nozzle dispensing tips 41 1-41 16 is attached to by located above the part falling, by the stage moving mechanism 531 as the processing head moving mechanism 53, the dispensing tips 41 1-41 16
  • the reaction vessel 31c is relatively moved and positioned above the reaction vessel 31c.
  • step S29 when the dispensing tip is lowered and the tip is inserted into the reaction container to suck the mixed substrates I and II, the measurement end moving mechanism 65 measures the measurement to measure the luminescence after the suction. sequentially receiving in accordance with the end support 631 to move in the Z-axis direction of the Y-axis direction contact is moved onto a capillary 41a of the pipette tip 41 1-41 16 or close to the measuring portion 62 1-62 16. Then, the relative movement of the measurement ends 62 1 to 62 16 , for example, the movement between the predetermined measurement positions of 0.2 mm, the movement of 800 msec, and the stop time (ts: predetermined scanning cycle) is repeated intermittently.
  • the light guide selection unit 731 sequentially selects all the 16 light guides 61 1 to 61 16 with a predetermined selection period (tc), thereby obtaining one light receiving unit. 711 makes it possible to sequentially receive each reaction spot of all reaction spot arrayers.
  • the digital data conversion unit 75 converts the intensity or luminance of the light received by the light receiving unit 711 into the corresponding digital data at the predetermined selection period, and
  • the target biological material to be inspected can be inspected by being sequentially stored in the storage means 93, read out by the analysis means 94, and subjected to arithmetic analysis.
  • the “predetermined scanning period (ts)” is, for example, the movement time required for relative movement between adjacent measurement positions of the measurement end by the measurement end moving mechanism (for example, between adjacent predetermined positions, For example, 800 msec), the number of times of light reception for each reaction spot (for example, 5 times), the number of reaction spots (for example, 50), and the stable light reception time (for light emission) that can stably receive chemiluminescence Determined based on the light measurement mode consisting of the time during which the plateau state is maintained (for example, 200 seconds), whereby the stop time for light reception (digital data conversion) for the reaction spot is determined to be, for example, 800 msec. And is instructed by the measurement control unit 92.
  • the “predetermined selection period” is determined based on, for example, the predetermined scanning period (ts) and the number of reaction spot array elements (n).
  • FIG. 7A shows particles of reaction spots 22 corresponding to reaction spot array elements 21 1 to 21 16 arranged along the Z-axis direction in the thin tubes of the dispensing tips 41 1 to 41 16 .
  • An example of the arrangement is shown.
  • Spacers 23 (shown in dark color in the figure) are provided so as to sandwich the reaction spot 22 (shown in light color in the figure).
  • the diameter of these particles is 1 mm, for example.
  • the measurement end support 631 sequentially moves in the Z-axis direction from the first particle 25, and the light based on the optical state of each particle passes through the optical fiber as the light guides 61 1 to 6 16 to the light receiving element array.
  • FIG. 4 schematically shows how light is guided.
  • the lowermost particle 24 is formed of a material having a slightly larger radius and flexibility for enclosing the particles in the narrow tube 41a. Further, the uppermost particle 25 is, for example, a marker particle. It should be noted that the total length of the part where the reaction spot 22 is measured is 40 to 50 mm, for example.
  • FIG. 2 schematically shows a state in which image area data corresponding to digital data is drawn in the figure.
  • the connection ends 64 1 to 64 16 of the light guides 61 1 to 61 16 are arrayed at equal central angles.
  • the connection ends are sequentially arranged by arranging the connection ends on the circumference corresponding to each reaction spot array element. Since the selection can be made in the predetermined selection cycle, an increase in the number of light receiving portions can be suppressed.
  • FIG. 7C shows a schematic diagram in which the digital data stored in the storage means 93 is graphed for each of the reaction spot arrayers 21 1 to 21 16 .
  • the analysis means 94 performs operational analysis on this luminance, so that the test result for each specimen can be output.
  • FIG. 8 is a block diagram showing the multiple reaction parallel measuring apparatus 100.
  • the difference between the multiple reaction parallel measurement device 100 according to the second embodiment and the multiple reaction parallel measurement device 10 according to the first embodiment is that a light emission / light reception unit 78 is provided instead of the light reception unit 71. It is in.
  • the light emitting / receiving unit 78 receives light emitted from the light guide region of the light guide selection unit 73 and photoelectrically converts the light, and the light guide selected by the light guide selection unit 73.
  • it has the light emission part 72 which injects predetermined light (excitation light in this example) through the said light guide area
  • FIG. 9 shows a state in which a light emitting / light receiving unit 781 that is a more specific example of the light emitting / receiving unit 78 is incorporated into a multiple reaction parallel measuring device 101 that is a more specific example of the multiple reaction parallel measuring device 100.
  • the light guide area 74 corresponds to the light guide region.
  • FIG. 10 shows optical system elements inside the light emitting / receiving section 781. Except for the light guide 71a, the light emitting / receiving unit 781 is provided in a housing 783 having a light blocking property to prevent the entry of external light.
  • the light emitting / receiving unit 781 includes a light receiving unit 711, a light emitting unit 721, and a lens 782.
  • the light receiving unit 711 includes a photodiode 712 as a photoelectric conversion unit, and a fluorescence included in each reaction spot 22. It has a band pass filter 713 that can transmit only light in a wavelength band corresponding to fluorescence that can be generated from the substance, and a condensing lens 714.
  • the light emitting unit 721 reflects the excitation light from the LED 722, a bandpass filter 723 that can transmit only light in a wavelength band corresponding to excitation light for the fluorescent material, a lens 724, and the light emission LED 722.
  • a dichroic beam splitter 725 that guides light to the lens 782 and transmits light from the lens 782 to the bandpass filter 713 (for example, for light having a wavelength shorter than a cutoff wavelength, such as excitation light).
  • the multiple reaction parallel measurement apparatus 101 uses specific drugs by examining specific SNPs related to the effect of a predetermined drug on the genome of 16 subjects. The operation when checking the validity of is described.
  • dispensing tips 41 1 to 41 16 in which the extraction dispensing tips, the PCR dispensing tips, the drilling tips and the reaction spot array elements 21 1 to 21 16 are enclosed are mounted. It is accommodated in advance with the opening facing up.
  • samples such as oral mucosa collected from the subject in advance, genome extraction reagent, magnetic particle suspension, primer-containing liquid as a PCR reagent Mineral oil and cleaning liquid, such as restriction enzyme solution, are accommodated, and some of the accommodating parts are empty.
  • reaction containers such as a PCR container which can control temperature.
  • probes having two types of base sequences of SNP polymorphisms related to the drug are sandwiched between appropriate spacer particles (or light-shielding particles). It shall be fixed to the particles.
  • Each particle has, for example, a spherical shape and a diameter of, for example, 1 mm.
  • Steps S1 to S4 are the same as in the case of the first embodiment, and a description thereof will be omitted.
  • the generated DNA fragment solution containing various SNPs is a chemiluminescent substance solution connected to an adapter having a base sequence complementary to a base sequence unique to each DNA fragment by the PCR dispensing chip.
  • a fluorescent substance for example, FITC (fluorescence wavelength 522 nm, excitation light wavelength 498 nm).
  • Steps S6 to S9 are the same as those in the first embodiment, and hence description thereof is omitted.
  • step S10 ′ the dispensing tips 41 1 to 41 16 are moved to the empty reaction vessel 31c, and the tip is inserted into the reaction vessel 31c.
  • the measurement end moving mechanism 65 moves the measurement ends 62 1 to 62 16 in the Y-axis direction so as to be in contact with the thin tubes of the dispensing tips 41 1 to 41 16 .
  • the state at this stage corresponds to FIG.
  • step S11 ′ the measurement end moving mechanism 65 then moves the measurement end support 63 along the Z-axis direction, so that the corresponding reaction spot arrays 21 1 to 21 16 are arranged.
  • Reaction spots (in this example, 40 beads having a diameter of 1 mm in each array) are sequentially and sequentially measured from the measurement ends 62 1 to 62 16 to the connection ends 64 1 to 64 16 , and the light guide paths 61 1 to 61 16 (for example, The reaction spot array elements 21 1 to 21 16 are irradiated with excitation light through three bundles of optical fibers having a diameter of 1.5 mm to receive fluorescence.
  • step S12 ′ the optical states corresponding to 40 per reaction spot array element 21 1 to 21 16 (bead diameter is 1 mm) are set to Z of the measurement ends 62 1 to 62 16 by the measurement end moving mechanism 65, respectively.
  • the excitation light is emitted and the fluorescence is sequentially received in accordance with the movement in the axial direction.
  • the movement of the Z-axis direction of the measuring portion 62 1-62 16 for example, by performing a continuous movement the distance between the predetermined measurement positions of 0.05mm at a predetermined speed of 800msec (0.0625mm / sec), It is possible to irradiate 20 times of excitation light and receive fluorescence at the predetermined measurement position with respect to one particle having a diameter of 1 mm.
  • the light guide path selection unit 731 sequentially selects all the 16 light guide paths 61 1 to 61 16 with a predetermined selection period (tc), so that 1
  • the light emitting / receiving unit 781 sequentially illuminates and receives all the reaction spot array elements 21 1 to 21 16 .
  • the scanning speed in the Z-axis direction of the measurement end is a continuous movement of 0.125 mm per second
  • the rotational speed of the selection rotating body 73a is synchronized with the movement of the measurement end, but the light emission and the light reception are performed simultaneously.
  • the rotation is intermittent at 75 rpm.
  • the digital data conversion unit 75 converts the intensity or luminance of the light received by the light receiving unit 711 in the predetermined selection cycle into corresponding digital data,
  • the target biological material to be inspected can be inspected by being sequentially stored in the storage means 93, read out by the analysis means 94 and subjected to arithmetic analysis.
  • the “predetermined scanning period (ts)” is, for example, the movement time required for relative movement between adjacent measurement positions of the measurement end by the measurement end moving mechanism (for example, between adjacent predetermined positions, 800 msec), the number of times of light emission / reception for each reaction spot (for example, 20 times), the number of reaction spots (for example, 40), and a stable light reception time (a lifetime of fluorescence, Although it depends on the intensity of the excitation light, it is generally determined based on a light measurement mode consisting of a longer time than chemiluminescence, and thereby, a stop time for irradiation reception / reception (digital data conversion) to the reaction spot Is determined by the measurement control unit 92.
  • the “predetermined selection period” is determined based on, for example, the predetermined scanning period (ts) and the number of reaction spot array elements (n).
  • I a graph showing the difference in fluorescence intensity depending on the concentration of the fluorescent label attached to and labeled with 40 diameters of 1 mm.
  • a solid line is a graph which shows the moving average for every 5 periods of fluorescence concentration.
  • the black circles shown in the graph represent the size of one particle labeled with a fluorescent substance as a reaction spot arranged in the reaction spot array.
  • the vertical axis represents fluorescence intensity (voltage value V), and the horizontal axis represents the position coordinates (mm) of particles arranged in the Z-axis direction.
  • chemiluminescence measurement not only chemiluminescence measurement, but also fluorescence measurement that requires irradiation of excitation light, and further measurement of coloration, discoloration, etc. that require irradiation of various reference lights. You can also do that.
  • reaction spot array is described only when the reaction spot array or the reaction spot is arranged so as to have translational symmetry in the biaxial direction and the uniaxial direction.
  • the reaction spots may be arranged in three or more axial directions.
  • chemiluminescent reagent is not limited to the acridinium ester derivatives, horseradish peroxidase (HRP) and the like described above. Fluorescence is not limited to the example described above.
  • the measurement end is combined with the processing head.
  • the case where the measurement end is not provided in the processing head is also possible.
  • the devices described in the embodiments of the present invention, the components forming these devices, or the devices and reagents forming these components can be appropriately selected and combined with each other with appropriate changes. .
  • a chemiluminescent substance for example, a reaction spot array, a reaction spot array, a reaction spot, a light receiving element array, a light receiving element, a light guide, a light guide selection unit, a digital data conversion unit, a dispensing element, or a measurement control unit, or the like
  • the serum solution is concentrated using magnetic particles, and the antibody corresponding to each particle is fixed and used to test the presence or absence of the antigen in each subject. Can do.
  • the numerical values, times, shapes, numbers, quantities, etc. used in the above description are not limited to these cases.
  • the number of reaction spot array elements is described only when the number of reaction spot array elements is 16, and the number of reaction spots belonging to each reaction spot array element is described only when the number of reaction spots is 50 or 40. Needless to say.
  • the present invention relates to a multiple reaction parallel measurement apparatus and method therefor, which performs examination of a sample collected from a subject or the like, optical measurement and analysis thereof, and in particular, a gene, immune system, amino acid, protein, Fields that require the handling of biopolymers such as sugar and biomolecules such as biochemistry, industry, food, agriculture, marine products such as marine products, pharmaceuticals, hygiene, insurance, immunity, disease, genetics It can be used in various fields such as the medical field.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Optical Measuring Cells (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

多重反応並行測定装置およびその方法に関し、多数の反応を迅速、簡便かつ高い精度で測定することを目的とする。 複数の反応スポットを有する複数の反応スポット配列子に対応して設けられ1の各反応スポットに近接可能に設けられた測定端を有し反応スポットでの反応により生じ得る光を接続端にまで導光可能な複数本の導光路と、測定端が、各反応スポット配列子の対応する各反応スポットの所定測定位置に所定走査周期で一斉に到達するように相対的に移動可能に設けられた測定用ヘッドと、各測定端が所定測定位置にまで移動しまたはその位置に停止している間に順次所定選択周期で選択した導光路の接続端と光学的に接続して入射した光を出射可能とする導光領域を有する導光路選択部と、受光部と、受光部から得られた画領域データを所定選択周期で変換し順次ディジタルデータを得るディジタルデータ変換部とを少なくとも有するように構成する。

Description

多重反応並行測定装置およびその方法
 本発明は、光ファイバ等の導光路を用いた多重反応並行測定装置およびその方法に関するものである。
 近年、被検者等から採取した検体に含まれる種々雑多なタンパク質の内、特定のタンパク質を検出、定量化する検査が、医療の分野における診断、特に感染微生物の特定等のために広く行われている。
 特定のタンパク質が他のタンパク質と比べて微量にしか存在しない場合は、特異性の高さ(夾雑物からどれだけ正確に区別できるか)と、定量性の良さ(微量であっても検出できる、或は低濃度における再現性の良さ)が求められる。
 従来、試料中に含まれる抗体または抗原の濃度を検出かつ定量する際に、特異性の高い抗原抗体反応を利用し、酵素反応に基づく発色・発光を測定するエライサ法(ELISA, 酵素結合免疫吸着法)が広く用いられていた。
 該エライサ法は、次の工程(ステップ101~105)からなっている。すなわち、検体溶液を、例えば、8×12のウェルを有するマイクロプレートの各ウェルの内壁面に固相する(ステップ101)。抗原抗体反応および酵素反応に関与しないタンパク質(アルブミン等)を該固相に吸着させる(ステップ102)。目的のタンパク質に特異的な抗体を固相に接触させて抗原抗体反応を起こさせる(ステップ103)。該抗体は酵素で標識化されているものとする。反応しなかった余分な抗体を洗い流す(ステップ104)。酵素の基質を加え、酵素反応の生成物を検出する(ステップ105)。
 前記ステップ105における化学発光の測定、またはDNAの塩基配列の特定等の検査における蛍光や化学発光を用いた測定については、通常、前記マイクロプレートやDNAチップ等の平面状担体に対して、その全体を一括して同時に撮像して、画像解析によって、各ウェルや担体上の各固定位置についての光学的状態を特定して解析を行うか、または、前記ウェルごとまたはDNAチップ等の各担体ごとに対応する受光素子を設けて光ファイバを用いて導光することで行っていた(特許文献1,2)。
 また、1の容器に化学発光物質で標識化された1または複数種類の目的生体物質を収容しておき、トリガー溶液を注入することで、その発光の有無を測定するために容器に設けた光ファイバ等により1のPMT(光電子増倍管)に導光して測定する装置があった(特許文献3)。
 さらに、複数の平面状の担体の発光を測定する場合には、各平面状担体を測定位置にまで順次移動して、1のPMTで測定するものがあった(特許文献4,5)。
 また、前記マイクロプレートの複数のウェルにおける蛍光や化学発光の有無を測定するには、複数の容器からの発光を切り換えて1のPMTにより測定を行うものがあった(特許文献6)。
国際公開WO02/063300A1 特開2003-294630号公報 日本特許第3822637号公報 国際公開WO06/062235A1 国際公開WO07/029616A1 国際公開WO12/105712A1
 しかしながら、上記のエライサ法による処理および測定、またはDNA等の抽出処理や増幅処理を含む処理および測定をマイクロプレートを用いてウェルを単位にして行う場合には、分注装置等による位置制御を含む並行処理は、測定処理を含めて比較的確実に行うことができる一方、各ウェルごとに処理が行われるために、ウェル間の固相、溶液の濃度や量の微妙な相違、ウェル内の溶液の撹拌作業の困難さに基づく遭遇性の相違等により、必ずしも各ウェルごとに均一な条件で処理を実行することができず、定量性や均一性が必ずしも高くないおそれがあるという問題点を有していた。
 一方、マイクロプレートの代わりにDNAチップやストリング状担体または複数の粒子状担体が配列されたプローブアレイを用いる場合には、固定位置間の溶液の濃度や量の均一性、担体ごとの溶液の撹拌作業の容易さに基づく遭遇性の高さにより、各固定位置ごとに均一な条件で処理を実行することができ、定量性や均一性が高いものの、各固定位置ごとの光学的状態を測定する場合には、各プローブアレイの固定位置は、容器やウェルの位置とは異なり、各プローブアレイ間で固定位置の微妙なずれによる不確定さがあり、精度の良い並行測定を行うことが難しいおそれがあった。
 そのために、各担体ごとに走査を行って各PMTに導光させる場合には、並行処理を行うプローブアレイの個数が増加すると高価なPMTの個数が増加し、種々の理由から装置規模が増大しまたは高価になるおそれがあるという問題点を有していた。また、PMTの個数を制限すると、担体を搬送してPMTの測定位置にまで移動させるための機構が必要となり、装置規模が増大するおそれがあるという問題点を有していた。
 一方、マイクロプレートやDNAチップ等の担体を全体として撮像することで測定する場合には、ウェル数や担体上の各固定位置の個数が増加すると、各ウェルや固定位置の映像上の大きさが小さくなり、各ウェルまたは固定位置における光学的状態を精度良く測定することができないおそれがあるという問題点を有していた。
 そこで、本発明は、以上の問題点を解決するためになされたものであり、第1の目的は、複数または特に多数の反応スポットにおける反応が並行して行われる場合について、一括して処理および測定を行うことによって迅速かつ短時間で効率的に検査および情報処理を行うことができる多重反応並行測定装置およびその方法を提供することである。第2の目的は、複数または特に多数の反応スポットにおける反応、測定を含む処理を高い定量性および精度をもちかつ均一な条件で行うことができる多重反応並行測定装置およびその方法を提供することである。第3の目的は、複数または特に多数の反応スポットにおいて反応およびその測定を含む処理をコンパクトで安価な装置で実現することができる多重反応並行測定装置およびその方法を提供することである。
 第1の発明は、測定に係る反応が行われ、外部から識別可能な予め定めた態様で配列された2以上の反応スポットを有する複数の反応スポット配列子からなる反応スポット配列体と、前記反応スポット配列子に対応して設けられ、1の前記各反応スポットに近接もしくは接触可能に設けられた測定端を有し前記反応スポットでの反応により生じ得る光学的状態に基づいて得られる光を接続端にまで導光可能に設けられた複数本の導光路と、複数本の前記導光路の前記測定端が、前記各反応スポット配列子の対応する各反応スポットの所定測定位置に順次所定走査周期で一斉に到達するように前記配列体に対して相対的に移動可能に設けられた測定用ヘッドと、前記測定用ヘッドによって前記各測定端が前記所定測定位置にまで移動しまたはその位置に停止している間に、前記複数本の導光路を順次所定選択周期で選択し、選択された該導光路の接続端と光学的に接続して入射した光を出射可能とする導光領域を有する導光路選択部と、前記導光領域から出射された光を順次受光して光電変換する受光部と、該受光部から得られた画領域データを前記所定選択周期で変換して順次ディジタルデータを得るディジタルデータ変換部と、該ディジタルデータを順次格納する格納手段と、を有する多重反応並行測定装置である。
 ここで、「反応スポット」とは、反応が行われる場所であって、例えば、検査に係る反応に用いられる各種検査用溶液を収容し又は収容可能な液収容部、または検査に係る反応に用いられる各種検査用物質が固定された検査用担体上の固定位置である。なお、「検査用担体」とは、所定の化学構造を持つ複数種類の検査用物質を所定間隔で配置した各固定位置に固定し、各化学構造とその各固定位置とが対応づけられた担体である。「反応スポット配列子」とは、前記反応スポット配列体を少なくとも1の反応スポットを各々有するように分けた領域であって、別体に形成される場合の他、一体として形成されている場合を含む。例えば、反応スポット配列子は、1の液収容部(容器)であったり、別体に形成された検査用担体である場合を含む。「接触」には、密着、接着または連結を含む。「液収容部」には、温度制御が可能な反応容器も含む。
 反応スポットが液収容部の場合には、該反応スポット配列体は、例えば、複数の液収容部であるウェルが2次元的に配列されたマイクロプレートや1次元的に配列されたカートリッジ容器若しくは前記マイクロプレートが高さ方向にも間隔を開けて積層されて3次元的に配列されている場合をも含む。反応スポット配列子としては、例えば、2以上の液収容部、1以上のカートリッジ容器または1以上のマイクロプレートである。
 反応スポットが検査用担体上にある場合には、該反応スポット配列体または反応スポット配列子は、例えば、前記固定位置が1次元的に配列された棒状、針状、短冊状、紐状、糸状、テープ状の担体、または2次元的に配列された板状、棒状、短冊状、テープ状、紐状の担体、さらには、前記検査用担体が立体形状を持ちその立体の表面に反応スポットが固定される場合には、3次元的に配列されているといえる場合がある。また、検査用担体が複数の粒子状担体(粒子)からなる場合には、各粒子が固定位置に相当する。この場合には、前記反応スポットは、1次元的に配列されることになる。
 検査用物質としては、例えば、検査対象の目的化学物質(生体物質を含む)に対して、結合性を有する核酸等の遺伝物質、タンパク質、糖、糖鎖、ペプチド等の生体物質又はその溶液を含む。これらの検査用物質を用いる検査において、その他、検査に関連する物質または溶液として、例えば、化学発光に関連するものがある。化学発光反応に用いる物質として、例えば、1) ルミノールまたはイソルミノール誘導体/過酸化水素、2) アクリジニウムエステル誘導体/過酸化水素、3) アクリジニウムアシルスルホンアミド誘導体等がある。その場合、トリガー試薬としては、アクリジニウム誘導体ではアルカリ性で過酸化水素を、イソルミノール誘導体は過酸化水素およびマイクロペルオキシダーゼ(m-POD)を用いて直接標識に用いて化学発光検出するCLIA法と、酵素を標識した後、標識酵素の活性の測定を化学発光検出するCLEIA法とがある。酵素を標識に用いているので、B/F分離の際に酵素活性を失活しない方法が必要である。例えば、酵素として西洋ワサビペルオキシダーゼ(HRP)を用いた場合には、ルミノール/過酸化水素を基質として検出に用いる。その他、グルコースオキシダーゼを酵素として用いた場合には、グルコース/TCPO/ANSを基質として用いる。グルコース-6-リン酸デヒドロゲナーゼ(G6PDH)の測定はグルコース-6-リン酸を基質として、補酵素にNADPを用いれば酵素反応によりNADPHを生成するので、NADPHの化学発光反応で検出できる。
 「受光部」とは、1もしくは複数または多数の受光素子を有するセンサをいう。高感度な受光素子の例としては、浜松ホトニクス製のAPD(アバランシェ・フォトダイオード)アレイがある。受光素子の配列の密度が高い特別な場合として、例えば、CCDイメージセンサ、CMOSイメージセンサ等の「撮像センサ」を含有する。例えば、ビットラン BU-50LM (ICX415AL) 6.4×4.8mmで、772×580ピクセルである。受光部に属する受光素子によって得られた画領域データ(アナログ信号)を処理することによって、対応するディジタルデータが得られる。これらは集積回路(IC)で形成されている。「画領域データ」とは、前記受光部から、その受光素子の配列を考慮して得られたデータの集合であって、該受光部に1個の受光素子のみがある場合には、画素データであり、複数または前述した個数程度(772×580ピクセル)のような多数の受光素子がある場合には画像データに相当する。
 「受光素子」とは、光電効果を利用した電子素子であって、フォトダイオード、フォトトランジスタ等である。さらに、前記APDのような増倍効果を有するフォトンカウンティングセンサ等の場合も含む。
 「所定測定位置」とは、前記各反応スポットに対応するように設けられ、前記測定端が該反応スポットに関する測定を行う位置であって、各反応スポットに近接または接触するように各反応スポットごとに1または2以上設定されている。各反応スポットは有限の大きさを持ち、測定端も有限の大きさを持ち、好ましくは、1の反応スポットのみの全体を測定可能となるような大きさまたは形状または所定測定位置を持つことが好ましい。該所定測定位置が複数設定されている場合には、各隣接する反応スポット間の距離と同様に、隣接する所定測定位置間の距離は等しく設定することが好ましい。例えば、反応スポットが、径が1mmの粒子状担体であって一列状に配列されている場合に、0.1mmごとに所定測定位置を設定する場合には1の反応スポットに対して、10個設定されていることになる。該所定測定位置の数が多い程、精密な測定を行うことができるが、測定に係る時間が延びることになる。
 「所定走査周期(ts)」は、前記測定端が、同一の反応スポット配列子における隣接する所定測定位置間を移動しかつ測定が行われるための時間である。
 一方、「所定選択周期(tc)」は、前記所定走査周期(ts)の間に前記複数の導光路の全てを選択することができるように、前記導光路選択部が各導光路を順次選択するための時間である。したがって、所定選択周期(tc)と所定走査周期(ts)とは相互に関連付けられており、最長したがって最善の所定選択周期(tc)は、前記所定走査周期(ts)および前記反応スポット配列子の個数nに基づいて、tc=ts/nにより定まることになる。すなわち、該所定選択周期は前記所定走査周期よりも短い時間となるので、該所定選択周期の間に受光部が受光した光を光電変換して必要な画領域データを出力することができる程度の十分な長さを確保するためには、測定が可能な時間内でtcが最長の長さとなるように設定されることが好ましいからである。すると、各反応スポット配列子について前記測定端が連続的に移動する場合には、前記測定端が次の前記所定測定位置にまで移動している間に全導光路が選択され、前記測定端が前記所定測定位置にまで間欠的に移動する場合には前記測定端が所定測定位置に停止している間に全導光路を選択されることが好ましい。
 該所定走査周期および所定選択周期は、測定すべき光学的状態の内容、発光の種類(例えば、蛍光物質の種類、化学発光物質の種類)、発光で用いる試薬(試薬の種類、試薬の量も含む)、1の反応スポット当たりの測定位置の個数、発光の態様(例えば、瞬時発光、プラトー状の発光、発光の寿命、安定的受光可能時間等)、測定位置から次の測定位置までの移動態様(前記測定端が前記反応スポット配列子の反応スポット間を走査する場合、間欠動作、連続動作、走査速度、移動距離、移動時間、停止時間、移動経路等)、反応スポットの大きさ、反応スポットの配置若しくは反応スポット配列子内の反応スポットの個数等、反応スポット配列子の個数、導光路の大きさ、反応スポット間の距離、受光部の特性、露光時間、および前記反応スポットにおける反応時間等のグループの中から選択された1または2以上の要素からなる光測定態様に応じて定める。また、データの転送若しくはデータの読み出し時間(CCDを用いる場合)等を考慮することもある。例えば、蛍光の場合のように光の量が大きい場合には所定走査周期は短く、光の量が小さくなるに従って所定走査周期を長くする。
 例えば、プラトー状の化学発光の場合には、該プラトーが維持される安定的受光可能時間(T)および反応スポット数(m)(mは自然数)、反応スポット当たりの所定測定位置の個数(受光回数)(ν)(νは自然数)、所定走査周期(ts)は、T/(m・ν)となり、この周期内に、各反応スポット配列子における所定測定位置から次の所定測定位置までの移動時間と、その所定測定位置での前記ディジタル変換のための時間等が含まれることになる。
 すると、最長の「所定選択周期(tc)」としては、全ての導光路を1回ずつ選択するので、前記所定走査周期(ts)を、導光路の個数(n)で除したts/nとなり、該周期で各導光路を選択することになる。したがって、所定走査周期がts=T/(m・ν)の場合には、前記所定選択周期(tc)は、T/(m・ν・n)となり、該所定選択周期で全導光路が1回ずつ選択されることになる。したがって、各反応スポット当たり、受光回数はν・n回ということになる。十分な受光時間が取れる場合には、各反応スポットに対して複数回の選択が行われることが好ましい。
 より具体的には、例えば、反応スポット配列体として、16本(=n)の反応スポット配列子があり、1本の反応スポット配列子当たり、50個(=m)の反応スポットとしての粒子状担体が相互に接するように1直線状に配列され、1個の各反応スポットが1mmである場合に、各反応スポットに対して0.2mmごとの所定測定位置を5個設定した場合(ν=5)に、連続的に走査を行うとともに、受光安定時間Tが200秒であるとすると、前記所定走査周期(ts)は、ts=200/(50×5)=0.8秒となる。すると、前記所定選択周期(tc)は、tc=ts/16=50m秒ということになる。この時間内に前記受光部が光を受光して光電変換が可能となることが必要になる。これによって、全体として800個の反応スポット、すなわち、8×12個のウェルからなるマイクロプレートが約8枚分の個数を、約3分で一括して精密に光学的に測定することができることになる。
 なお、前記「ディジタルデータ変換部」としては、例えば、CCDイメージセンサの場合には、ゲートコントロール可能なシフトレジスタ、アンプおよびAD変換器を有し、受光素子が受光した光の強度または輝度に応じた個数のフォトンを発生させるPMTフォトンカウンティングセンサや半導体を用いたフォトンカウンティングセンサの場合には、フォトン計数器としてのゲートコントロール可能なパルスカウンタを有し、受光素子アレイと同様にIC回路で形成される。これらは、後述する測定制御部からの指示によって前記光測定態様に基づいて得られた所定走査周期で動作する。
 生成されたディジタルデータは、DRAM等の半導体記憶素子の格納手段に格納し、演算処理によって、前記受光部に対応する1または2以上の受光素子の画領域データを所定選択周期で変換したディジタルデータに基づき前記光学的状態の輝度の時間変化を導き出して解析する。「所定選択周期」は、例えば、該周期でパルス信号を発生させる駆動部またはCPU、プログラムおよびメモリを有する情報処理部に設けられた測定制御部に基づいて出力されるパルス信号等の指示信号に基づいて設定される。
 「受光部」は少なくとも1個の受光素子を有する。なお、少なくとも3個の受光素子を有する場合には、各受光素子ごとに、カラーフィルタ(RGB)を通して受光された光に基づいてカラー受光を可能にすることができる。なお受光素子の個数や種類は、該受光素子の大きさまたは感度、前記導光路の接続端の大きさや形状、接続時間の間隔、後述する第2端と受光面との間の間隔、第2端の形状または光学的状態の態様に依存する。
 前記「ディジタルデータ」は、CPU等の情報処理装置によって処理可能な、例えば、数値を表すデータである。該データは、例えば、受光部に受光素子が多い場合には、圧縮や画領域データの間引き等によって格納手段に格納することも可能である。格納手段とは、データを記録するメモリであって、半導体メモリ、ハードディスク、CD、DVD、SSD、ブルーレイディスク等である。
 「導光路」は、例えば、空洞、レンズ等の光学系要素、光ファイバ等を含有する。光ファイバとしては、例えば、外径500μmの可視光に対応可能なプラスチック製光ファイバである。光ファイバには、複数の光ファイバを束にした光ファイバ束をも含有する。導光路の少なくともその一部は可撓性をもつことが好ましい。該導光路の一端は測定端であり、他端は接続端である。
 「光学的状態」としては、蛍光や化学発光による発光、呈色、変光、変色等がある。光学的状態が「蛍光」である場合には、前記反応スポットに励起光を照射するための導光路であって、前記反応スポット配列体の1の前記反応スポットに近接もしくは接触しまたは近接もしくは接触可能に設けられた照射端、および前記励起光光源の発光面に近接もしくは接触するように設けられた接続端を有する第2の導光路を有する場合がある。また、光学的状態が「呈色、変色」である場合には、前記各反応スポットに参照光(例えば、呈色や変色を検出可能となるような反射光や散乱光を得ることができる波長をもつ光)を照射するための導光路であって、前記反応スポット配列体の1の前記反応スポットに近接もしくは接触しまたは近接もしくは接触可能に設けられた照射端、および前記参照光光源の光源面に近接もしくは接触するように設けられた接続端を有する第3の導光路を有する場合がある。これらの場合には、前記測定端は該照射端と先端を揃えて束ねられて測定端として取り扱われることが好ましい。
 「受光面」とは、前記受光素子の受光部分が配列されて形成される面であり、撮像センサの場合には緻密で、ADPアレイの場合には粗い。なお、格納されたディジタルデータはCPU等からなる情報処理部の解析手段によって読み出されて演算解析されて、目的化学物質の検査が行われることになる。
 第2の発明は、前記導光領域に対して所定の光を照射可能な発光部をさらに有し、前記導光路選択部の前記導光領域は、入射した前記所定の光を、選択した前記導光路の前記接続端に対して出射可能であり、前記導光路は、前記接続端に入射した前記所定の光を前記測定端にまで導光可能とする多重反応並行測定装置である。
 ここで、「所定の光」とは、例えば、蛍光に対する励起光、呈色や変色等に対する種々の波長をもつ参照光である。該導光領域に入射した所定の光は、選択された導光路を通りその測定端から各反応スポットに照射され、それに基づいて発生した光を同一の選択された導光路を通して前記受光部により受光されることになる。「発光部」は、「光源」を有し、該光源としては、例えば、LED、重水素ランプ(例えば、浜松ホトニクス、L10671D)、ハロゲンランプ等の波長可変光源を用いて、紫外線領域から可視領域に至るまでの連続的な波長を試料に照射することができる。
 第3の発明は、前記導光路選択部は、選択した前記導光路以外の選択されていない導光路からの光を吸収可能とする吸光領域をさらに有し、前記導光領域が前記選択された導光路の接続端と光学的に接続した際に、該吸光領域は、選択されていない前記導光路の各接続端と光学的に接続するように設けられた多重反応並行測定装置である。
 ここで、該「吸光領域」とは、前記導光路からの光を吸収可能とすることで光の反射や散乱を防止しまたは軽減することができる領域である。該吸光領域は、前記導光領域が存在、貫通または交差しないように境界線または壁面で囲まれ、前記接続端と光学的に接続する平面部や開口部を除き外部から遮光性をもつように仕切られている領域であることが好ましい。例えば、黒色染料が塗布された前記接続端を包含する形状および面積を有する平面状領域、または前記接続端を包含する形状および面積を有する開口部をもち、前記接続端と逆方向に延びるように形成された窪み、凹部、溝、管若しくは空洞である。なお、前記接続端配列板の接続端以外の部分は遮光性をもつ遮光面が形成され、前記平面状領域および開口部は、前記接続端配列板の前記接続端および前記遮光面以外の部分と接続することはない。該窪み、凹部、溝、管もしくは空洞内の前記壁面は、金属や樹脂等の遮光性物質で形成され、さらに黒色染料が塗布され、または、炭化した綿のような黒色の繊維状物質が内部に収容されることが好ましい。
 第4の発明は、前記導光路選択部は、複数本の前記導光路の前記各接続端を円周に沿って所定の中心角で配列して支持する接続端配列板と、前記導光領域が設けられ前記接続端配列板の前記円周と同心の回転軸線をもつように設けられた選択用回転体と、前記所定選択周期で該選択用回転体を連続的または間欠的に回転駆動可能な回転駆動機構とを有し、前記導光領域は、前記各導光路の接続端に前記所定選択周期で順次連続的または間欠的に光学的に接続可能に設けられた第1端および前記受光部の受光面と光学的に接続する第2端を有する切換用導光路を少なくとも有し、前記第1端は接続端配列板に平行に近接するように定められる第1端配置面において、前記接続端配列板の前記円周と同心同径の円周上に配置され、前記第2端は、前記回転軸線上に定められる第2端配置点に配置された多重反応並行測定装置である。
 ここで、前記導光路選択部または前記選択用回転体は、中実に形成されまたは中空で内部を遮光するための筐体を有し、前記切換用導光路は該回転体内部に設けられることになる。この場合、第1端配置面および第2端配置点は、該選択用回転体の回転軸線が貫く端面または端点上に定められることになる。例えば、該回転体が円柱状であって、回転軸線が該円柱の中心軸に一致するような場合には、円柱の底面上に定められることになる。
 「前記各接続端を円周に沿って所定の中心角で配列して支持する」は、前記各接続端の断面が円形であって、該円形の中心が前記円周に沿って所定の中心角で配列されることが好ましい。「前記第1端は … 前記接続端配置板の前記円周と同心同径の円周上に配置され」は、好ましくは、前記第1端の断面が円形であって、該円形の中心が前記円周上に配置されることが好ましい。また、「前記第2端は、前記回転軸線上に定められる第2端配置点に配置された」は第2端の中心が第2端配置点に配置されることが好ましい。
 前記接続端および前記第1端の断面形状は例えば、円形で、前記接続端の大きさは前記第1端の大きさと同じか小さいことが、該接続端からの光を全て第1端に入射させることができるので好ましい。隣接する接続端の円周の中心に対する角度、すなわち「中心角」は等角であることが好ましい。n本の導光路がある場合には、中心角は360/n度となる。
 前記「切換用導光路」は、光ファイバのような導光路であって、樹脂製ファイバ、細いファイバ束のように可撓性をもつ場合と、太いグラスファイバのように非可撓性の場合がある。その他、例えばロッドレンズのような光学系要素もあり得る。また、非可撓性の場合には、該選択用回転体の回転によって、切換用導光路が遠心力によって変形しないので、導光路ごとの回転の影響による差異が小さいといえる。切換用導光路の第1端および第2端の中心を該導光路に沿って結ぶ光軸線は、前記選択用回転体の回転軸線を含む1平面内に含まれ、該選択用回転体の周辺から回転軸線に至る滑らかな曲線に沿うことが好ましい。
 前記所定選択周期が同一の場合には、前記接続端と前記第1端とが連続的に光学的に接続する場合に比べ、間欠的に光学的に接続する場合には、前記受光部に導入する光量を大きくすることができる。前記接続端配列板と前記第1端配置面との距離は、例えば、0.001mm~0.1mmであって、好ましくは、例えば、0.01mmである。前記円形の径は、例えば、10mm~100mm、好ましくは、例えば、50mmである。接続端の径は、例えば、1~3mm、前記切換用導光路の径は、例えば、3~10mm、好ましくは、例えば、4mmである。なお、前記接続端配列板および前記選択用回転体は、導光路、切換用導光路、第1端、第2端または接続端以外の部分は、遮光性を有するように形成されていることが好ましい。なお、「第1端」、「第2端」という名称はその光の通過方向または通過順序を固定して示すものではなく、受光の場合には、第1端で入射し、第2端で出射し、発光の場合には、第2端で入射し、第1端で出射することになる。したがって、後者の場合には、第2端は、発光部の発光面とも光学的に接続することになる。
 第5の発明は、前記測定用ヘッドは、複数の前記測定端を前記反応スポット配列子の配列に応じた配列で支持する測定端支持体と、該測定端支持体を前記反応スポット配列体に対して相対的に移動可能とし前記測定端を、前記各反応スポット配列子の対応する前記反応スポットの前記所定測定位置に所定走査周期で、一斉に到達するように駆動する測定端移動機構をさらに有する多重反応並行測定装置である。
 ここで、該「測定端移動機構」は、前記測定端支持体を前記スポット配列体に対して相対的に移動可能であるので、該測定端支持体を移動する場合と、反応スポット配列体を移動させた場合と、それらを組み合わせた場合がありうることになる。また、前記測定端支持体を前記反応スポット配列体に対して相対的に移動することによって、対応する各反応スポットに近接または接触するように設定した所定測定位置に到達した後、さらに移動して、各反応スポット配列子内で次の対応する所定測定位置に到達するようにして前記反応スポットの所定測定位置間を順次走査するように移動させることになる。この場合、必ずしも前記反応スポット配列子間の各反応スポットの配列は合同である必要はない。例えば、他の反応スポット配列子における反応スポットの配列が相似形(配列パターンは同じであるが、その大きさの倍率が1ではない場合、倍率が1の場合は「合同」に相当する。)の場合、反応スポット配列子の対応する位置に反応スポットが一部設定されていない部分がある反応スポット配列子の場合等である。例えば、複数の粒子状担体からなる反応スポット配列子である場合に、その粒子の個数、粒子の大きさ、形状が同一、配列の態様(例えば、隙間を開けずに1列状等に配列する)が同一の場合には、合同であり、例えば、粒子の大きさのみが倍率1ではない場合には、相似形となる。前記「所定走査周期」は、前記各反応スポット配列子にある各反応スポットに近接または接触するように設定された各所定測定位置に一斉に到達可能とする測定端移動機構による測定端の移動速度および反応スポット間の距離、所定測定位置の個数またはその位置間の距離等に応じて定めることが好ましい。したがって、前記導光路選択部の導光路の選択や前記画領域データのディジタルデータへの変換が行われる前記所定選択周期は、前記所定走査周期及び前記反応スポット配列子の個数(n)等に基づいて定まることになる。なお、前記粒子状担体の素材は、例えば、セラミックス、樹脂等である。
 第6の発明は、前記選択用回転体は、選択した導光路以外の選択されていない導光路からの光を吸収可能とする吸光領域をさらに有し、該吸光領域は、前記第1端配置面において、前記切換用導光路の前記第1端を除き、前記接続端配列板の前記円周と同心同径の前記第1端配置面上の円周に沿って、少なくとも前記導光路の接続端に対向する位置に設けられた多重反応並行測定装置である。
 ここで、「吸光領域」として、例えば、凹部、溝、窪み、管、または空洞である場合には、導光領域が選択された導光路の接続端と光学的に接続している間に、該吸光領域は、前記選択した導光路以外の選択されていない各導光路の各接続端と光学的に接続可能に設けられた該接続端を包含するような形状および面積をもつ開口部および該開口部から入射した光を吸収する所定深さをもつように形成し、前記開口部は、前記第1端とともに、前記第1端配置面において、前記接続端配列板の前記円周と同心同径の円周に沿って、各接続端に対応するように(n-1)個配置される場合と、前記切換用導光路の前記第1端を除き、前記接続端配列板の前記円周と同心同径の前記第1端配置面上の円周に沿って、前記接続端の回転による通過領域を帯状に覆う開口部をもつように1個形成される場合、または、その中間で、任意の隣接する接続端の組み合わせで、2~n-2個、形成される場合がある。
 第7の発明は、前記各反応スポット配列子は、2以上の反応スポットが相互に合同に配列され、該各反応スポット配列子は相互に並進対称性をもつように配列されることが好ましい。この場合には、各反応スポット配列子に対応して設けられた前記各測定端が、前記反応スポット配列子間で対応する2以上の前記反応スポットに対し一斉に順次近接もしくは接触可能とするように配列された多重反応並行測定装置である。
 前記「並進対称性」は、1軸方向、2軸方向または3軸方向にもつようにとることができる。軸数が増えるように、反応スポットを配列することで、装置の形状をコンパクトに形成することができる。また、1の反応スポット配列子に属する反応スポットの配列にしたがって走査すれば、対応するほかの反応スポット配列子に対して自動的に同時に処理が行われることになる。
 第8の発明は、前記反応スポット配列体または前記反応スポット配列子は、外部から識別可能な予め定めた位置にある複数の異なる反応スポットに予め定めた種類の検査用物質が各々固定された1または2以上の検査用担体を有する多重反応並行測定装置である。
 ここで、1の検査用担体の例としては、例えば、棒状担体や短冊状担体やストリング状担体に検査用物質が1列状または複数列状に配列された場合である。2以上の検査用担体の例としては、検査用物質が各々固定された、複数の粒子状担体が1列状に配列された場合である。この場合には、反応スポットは、該粒子状担体を単位にして設定されるのが好ましい。
 また、前記反応スポット配列子には、2以上の反応スポットが設けられ、該反応スポットには、前記検査に関連する予め定めた種類の溶液を収容可能な1の液収容部が設けられ、前記各測定端は該液収容部の導光可能部に近接もしくは接触して設けられた場合を含む。
 ここで、「液収容部の導光可能部」とは、液収容部内の光学的状態をその外部に導光することが可能な部分であって、例えば、液収容部の開口部、透光性のある素材で形成された液収容部の全壁面、または透光性を有する底部もしくは透光性を有する側面、またはこれらの一部領域である。一部領域は、前記測定端の大きさ、形状もしくは位置(測定端の液収容部からの距離、高さを含む)、液収容部の容量、または液収容部内に収容される液量等に基づいて定められる。なお、「液収容部」には、温度制御が可能な「反応容器」も含む。
 前記所定選択周期は、例えば、前記所定走査周期(ts)を、選択の回数、すなわち、導光路の個数(n)で除したts/nに相当する。該時間は、短くとも前記受光部が受光を可能とする最少時間、例えば、PMTの蓄積時間より長い時間でなければならない。すると、前記隣接する反応スポット間の移動の間に行われる受光回数をνとすると、選択回数rは、r=ν・nである。すると、前記選択用回転体の回転数は、ν回ということになる。
 第9の発明は、前記各反応スポット配列子に対応して設けられ液体の吸引吐出が可能な2以上の分注要素が設けられた処理用ヘッドをさらに有し、前記各反応スポット配列子に対応して設けられた複数の収容部が配列された収容部群に対して相対的に移動可能に設けられ、前記分注要素の先端は、該収容部群の前記各液収容部に一斉に挿入可能に設けられ、前記反応スポット配列子に対して、該分注要素により前記各収容部に収容された液体の吸引吐出が行われる多重反応並行測定装置である。
 ここで、「分注要素」とは、液体の吸引及び吐出が可能な器具であって、例えば、処理用ヘッドに設けられた気体の吸引吐出機構と連通する分注ノズルに装着された分注チップ、または処理用ヘッドに設けられた可動部材により一斉に変形可能な変形式分注チップである。分注要素の長さは、例えば3cm~25cm程度である。
 前記処理用ヘッドは、例えば、サンプル溶液、種々の試薬溶液、および種々の洗浄液を収容した複数の液収容部からなる前記収容部群を少なくとも有する収容部群領域に対して、相対的に移動可能に設けることが好ましい。また、前記分注要素が分注チップの場合には、着脱可能に装着される分注チップを収容するチップ収容部が前記収容部群領域に設けられていることが好ましい。
 第10の発明は、前記反応スポット配列子は検査用担体であって前記分注要素内に封入され、該検査用担体に対して該分注要素によって液体の吸引吐出が行われ、該検査用担体は該分注要素外部から各固定位置が識別可能に設けられ、前記測定端は、少なくとも前記分注要素に相対的に移動可能に設けることによって、前記分注要素に近接または接触して反応スポットの配列に従って移動可能に設けられた多重反応並行測定装置である。
 したがって、該分注要素は、透光性を有する必要がある。「封入」によって、前記検査用担体は、該分注要素が吸引する液体と接触し、分注要素の液体の吐出によっては前記検査用担体が該分注要素から流出しないように保持する封入部を必要とする。封入部としては、該分注要素と一体的に形成される段差や突出部や別体として形成される嵌合する短管、貫通孔が穿設された板部材、フィルタがあり、またはその両方を組み合わせた場合がある。この場合、前記測定端移動機構は、例えば、該分注要素が設けられた前記処理用ヘッドではなく、収容部群領域に設け、前記処理用ヘッドの移動を利用して測定端を前記分注要素に接触または近接させた後、前記測定端移動機構によって反応スポットの配列にしたがって移動させることで各反応スポットに近接させることによって測定端移動機構の構造を簡略化することができる。すなわち、前記反応スポット配列子の反応スポットの配列方向にのみ移動させることで足りる。すると、1の反応スポット配列子に属する反応スポットの配列に応じて走査することによって、他の全反応スポット配列子に対して一斉に接触または近接することができることになる。前記測定端は、前記収容部群が設けられた収容部群領域の内の前記分注要素の移動経路の終点で該分注要素と接触可能または近接可能となり、かつその位置で前記分注要素の先端が前記収容部群の端に配列された配列端液収容部に挿入可能となるように位置させることが好ましい。該配列端液収容部は、温度制御可能な反応容器であって、発光に係る物質を収容可能であることが好ましい。これによって、抽出から測定までの一連の処理を円滑かつ合理的、効率的に実行することができる。
 第11の発明は、前記測定用ヘッドは、前記処理用ヘッドに設けられ、前記処理用ヘッドとともに前記収容部群に対して、少なくとも水平方向に沿って相対的に移動可能に設けられた多重反応並行測定装置である。
 「前記収容部群に対して少なくとも水平方向」であるので、前記収容部群に対して上下方向には独立に移動可能であっても良い。これによって分注要素の先端が前記収容部群の各収容部に挿入した状態で測定を行うことが可能である。また、測定用ヘッドは、前記分注要素に対して水平方向に相対的に移動可能であっても良い。これによって、分注要素の装着時や脱着時にあっては測定端を分注要素から離間させておくことができる。
 第12の発明は、外部から識別可能な予め定められた態様で配列された複数の反応スポットを有する複数の反応スポット配列子からなる反応スポット配列体の前記反応スポットにおいて、化学発光に係る反応が行われる反応工程と、前記各反応スポットでの反応によって生ずる光学的状態に基づく光を、各反応スポット配列子に対応して設けられた複数本の導光路の各測定端を、前記配列体に対して相対的に移動して、各反応スポット配列子の対応する各反応スポットの所定測定位置に所定走査周期で一斉に到達させる測定工程と、前記測定端が前記各反応スポット配列子における前記反応スポットの前記所定測定位置に移動しまたはその位置に停止している間に、前記複数本の導光路の全てを所定選択周期で順次導光領域と光学的に接続させて選択し、選択された該導光路の前記測定端からの光を該導光領域を介して受光部の受光面に出射可能とする導光路選択工程と、該導光領域から出射された光を順次受光部が受光して光電変換する受光工程と、該受光部から得られる画領域データを前記所定選択周期で変換して順次ディジタルデータに変換して順次格納するディジタルデータ変換工程とを有する多重反応並行測定方法である。
 なお、前記所定の光を照射可能な発光部が設けられている場合には、前記導光路選択工程は、「前記測定端が前記各反応スポット配列子における前記反応スポットの前記所定測定位置に移動し又その位置に停止している間に、前記複数本の導光路の全てを所定選択周期で順次導光領域と光学的に接続させて選択し、選択された該導光路の前記測定点に対し、前記導光領域を介して発光部の所定の光を出射可能とし、該測定端からの光を前記導光領域を介して受光部の受光面に出射可能とする導光路選択工程」であり、前記受光工程は、「前記導光領域に対して所定の光を順次発光部が照射し、かつ前記導光領域から出射された光を順次受光部が受光して光電変換する発光・受光工程」で置き換えられることになる。
 第13の発明は、選択した前記導光路以外の導光路からの光を選択されていない導光路の接続端に近接して設けられた吸光領域で吸収する吸光工程を有する多重反応並行測定方法である。
 第14の発明は、前記導光路選択工程は、複数本の前記導光路の前記各接続端を円周に沿って所定の中心角で配列して支持する接続端配列板に対し、前記受光部の受光面を通り前記接続端配列板の前記円周と同心の回転軸線を持ちかつ第1端および第2端が設けられた切換用導光路を有する選択用回転体を、前記所定選択周期で連続的または間欠的に回転させて、前記各導光路の接続端に、前記接続端配列板に平行に近接するように定められる第1端配置面上で前記接続端配列板の前記円周と同心同径の円周上に配置された前記第1端を順次連続的または間欠的に光学的に接続させて、前記回転軸線上に定められる第2端配置点に配置された前記第2端から受光部の受光面に、前記第1端と光学的に接続した前記接続端からの光を導光する多重反応並行測定方法である。なお、発光の場合には、前記回転軸線上に定められる第2端配置点に配置された前記第2端に対して発光部の発光面から、前記第1端と光学的に接続した前記接続端へ光を導光することになる。
 第15の発明は、前記測定工程は、複数の前記測定端が前記反応スポットの配列に応じた配列で支持された測定端支持体を前記反応スポット配列体に対して相対的に移動することによって、前記測定端を、前記各反応スポット配列子の対応する前記反応スポットの前記所定測定位置に前記所定走査周期で一斉に到達する測定端移動工程を有する多重反応並行測定方法である。
 第16の発明は、前記反応スポット配列子は、外部から識別可能な予め定めた配列の複数の反応スポットに前記検査に関連する予め定めた種類の検査用物質が各々固定された1の検査用担体を有し、前記反応工程は、前記検査用担体に対して溶液を分注することで検査に係る反応が行われる多重反応並行測定方法である。
 第17の発明は、前記各反応スポット配列子は、液体の吸引吐出が可能な2以上の透光性を有する分注要素内に封入され、該分注要素は、液収容部が配列された収容部群に対して相対的に移動可能に設けられ、前記分注要素の先端は、該収容部群の前記各液収容部に一斉に挿入可能に設けられ、前記反応工程は、前記分注要素を前記各収容部に一斉に挿入して前記各液収容部に収容された液体の吸引吐出を行うことによって、前記反応スポット配列子について測定に係る反応が行われる多重反応並行測定方法である。ここで、「反応スポット配列子」は、例えば、外部から識別可能な予め定めた位置にある1または2以上の検査用担体に相当する。
 第18の発明は、複数本の導光路を順次所定周期で選択して、選択した前記導光路から入射した光を順次出射可能としまたは該導光路に対して光を順次出射可能とする装置であって、該複数本の導光路の一端である各接続端を円周に沿って所定の中心角で配列して支持する接続端配列板と、前記複数本の導光路の前記接続端と順次光学的に接続し入射した光を出射可能とする導光領域を有し前記接続端配列板の前記円周と同心の回転軸線をもつように設けられた選択用回転体と、前記所定周期で該選択用回転体を連続的または間欠的に回転駆動可能な回転駆動機構と、を有し、前記導光領域は、前記各導光路の接続端に前記所定周期で順次連続的または間欠的に光学的に接続可能に設けられた第1端および該第1端の反対側の端に設けられた第2端を有する切換用導光路を有し、前記第1端は前記接続端配列板に平行に近接するように定められる第1端配置面において、前記接続端配列板の前記円周と同心同径の円周上に配置され、前記第2端は前記回転軸線上に定められる第2端配置点に配置された導光路選択装置である。なお、第1端と第2端とは光が通過する光軸線上にある。
 ここで、「所定周期」は、前記導光路の使用目的によって定められる。その使用目的の一例は、前述したような所定選択周期に相当するような場合である。「導光路」等についての一例は上述した通りである。この装置を、前記第2端が光電変換可能な受光部と光学的に接続させる場合には、前記受光部から得られた画領域データを前記所定周期でディジタルデータに変換して順次ディジタルデータを得るディジタルデータ変換部やディジタルデータを順次格納する格納手段を有することが好ましい。
 第19の発明は、前記選択用回転体は、選択した導光路以外の選択されていない導光路からの光を吸収可能とする吸光領域をさらに有し、前記導光領域が前記選択された導光路の接続端と光学的に接続した際に、前記吸光領域は、選択されていない前記導光路の各接続端と光学的に接続するように設けられた導光路選択装置である。
 ここで、前記吸光領域の例としては、前述したとおりである。例えば、前記先端配列板の前記円周と同心同径の前記第1端配置面上の円周に沿って、前記切換用導光路の前記第1端が近接している前記導光路の前記接続端を除き、他の前記導光路の接続端と近接するように吸光領域を設ける場合である。
 第1の発明または第12の発明によれば、複数の反応スポットを有する複数の反応スポット配列子が配列された反応スポット配列体に対して、各反応スポット配列子ごとに対応して設けられた導光路を順次選択して、各反応スポット配列子で生じた光学的状態に基づく光を1の受光部に導いて導光させ受光することで、多数の反応スポットで一斉に行われる多重反応を1の受光部を用いてディジタルデータに変換して解析可能としている。したがって、反応スポットの個数に比べて一層少ない個数の反応配列子ごとに、複数の反応スポットの光学的状態の空間的及び時間的な変化を1の受光部で受光することで時間的空間的に集積化して測定することができるので、装置規模の拡大を抑制するだけでなく、信頼性の高い処理を迅速かつ効率良く行うことができる。
 各反応スポット配列子内での反応スポット間の移動または走査とともに、反応スポット配列子間での切り替えを行うことで、1の受光部で受光することで、高額な受光部の個数を削減して安価な装置を提供することができる。
 各反応スポット配列子間を独立かつ並行して処理や測定を行うことができるので、反応スポットを反応スポット配列体全体として取り扱う場合に比較して、反応スポット配列子間を物理的に離し、または各反応スポット配列子間を遮光することによって、隣接する反応スポット配列子間の光学的影響を排除してより信頼性および精度の高い処理および測定を行うとともに、同時並行処理によって効率的かつ迅速に処理および測定を行うことができる。
 多数の反応スポット全体を、前記反応スポット配列体ととらえ、各反応スポット配列子に区分し、各反応スポット配列子に属する対応する前記反応スポットに対し所定測定位置を設定し、所定走査周期で測定端を移動させるとともに、該所定走査周期と関連付けた所定選択周期で、該反応スポット配列子に対応する導光路を順次切り替えて1の受光部と光学的に接続するようにしているので、多数の反応スポットの測定であるにも拘わらず、走査からディジタルデータの変換までが1の受光部を用いて整然と行われることになる。したがって、反応スポット配列子数や反応スポット数の変更についても、前記所定走査周期と所定選択周期を変更することで容易に対処することができて、柔軟性及び汎用性が高い。
 第2の発明によれば、発光部からの所定の光を前記導光領域に入射させ、受光のために選択された導光路および測定端を通して対象となる反応スポットに該所定の光を照射することができる。したがって、所定の光として、例えば励起光を照射することで蛍光物質を用いた測定をも可能とすることで測定範囲を広げて汎用性を高めるとともに、反応スポットへの照射用の新たな導光路を、反応スポット配列子に相当する本数設けたり、新たな導光路選択部を設ける必要がないので、部品点数を削減し装置規模の拡大を防止することができる。
 第3の発明、第6の発明または第13の発明によると、選択した導光路については、該接続端から出射する光を確実に前記受光部の受光面に導く一方、選択されなかった導光路については、単に遮光されるだけでなく、導光路からの光を吸収することで、光の反射や散乱に基づいて生ずる雑光の前記受光部への進入を確実に防止することができて信頼性が高い測定を行うことができる。
 第4の発明または第14の発明によると、接続端配列板に複数本の導光路の接続端を円周に沿って配列し、該円周と同心で1の受光部の受光面を通るような回転軸線を持つ選択用回転体を前記所定選択周期で回転させることによって、簡単な構造で導光路の接続端からの光を容易かつ確実に受光面に導入することができる。したがって、多数の配列スポットを測定するにも拘わらず、1の受光部により整然と受光を行うことができるので、反応スポット数の増大に対して装置規模の拡大を防止し、容易な制御で信頼性の高い処理および測定を行うことができる。
 また、反応スポット配列子数や反応スポット数の変更があったとしても、該変更した反応スポット配列体およびそれに見合う導光路を提供し、かつ、変更のあった反応スポット配列子数に対応する前記接続端配列板に変更しさえすれば、新たな所定走査周期および所定選択周期をデータ上変更するだけで容易に対応することができるので、装置構成が柔軟性および汎用性をもち、1の受光部を用いて効率的な処理および測定を行うことができることになる。
 第5の発明または第15の発明によると、各々2以上の反応スポットを有する各反応スポット配列子ごとに導光路を設けるとともに、1の受光部を設ければ良く、導光路の本数、受光素子の個数を削減して、装置規模の拡大を防止し、装置の製造費用を削減することができる。また、各反応スポット配列子に対応して設けた測定端を前記反応スポット配列子内の各反応スポット間で一斉に移動可能とすることによって、各反応スポット配列子ごとに独立して移動機構を設ける必要がないので、装置規模の拡大を抑制する。また、各反応スポット配列子内に配列された各反応スポットの空間的な変化を、所定選択周期ごとのディジタルデータに変更することで、時間的な変化に変換して処理を簡単化かつ可視化して信頼性の高い処理を行うことができることになる。
 第7の発明によると、反応スポット配列体が、相互に合同に配列された2以上の反応スポット配列子を有しており、かつ各反応スポット配列子が相互に並進対称性を持つように配列されており、前記測定端支持体は、該各反応スポット配列子に対応して設けられた各測定端が、順次対応する反応スポットに対して一斉に近接または接触可能となるように設けられている。したがって、多数の反応スポットに対して、比較的少数の導光路および受光領域を用いて、装置規模を拡大したり、処理の手数を増大することなく、あたかも1つの反応スポット配列子に対して処理を行うように、簡単な制御で、効率的、かつ迅速に検査を行うことができることになる。
 さらに、反応スポット配列子を反応スポットの個数の増加に応じて、1軸方向、2軸方向、または3軸方向に対して並進対称性を持つように分散して配列することによって、装置全体としての規模をまとまりの良いコンパクトな形状に形成することができる。また、測定端支持体の形状および測定端の配列を単純化または画一化して装置構造を単純化するとともに、多数の反応スポットに対して、比較的少数の導光路および単純な形状および配置の受光領域を用いて、装置規模の拡大や、処理の手数の増大を抑制し、あたかも1の反応スポット配列子があるごとく制御を簡単化し、空間的および時間的に効率的、かつ迅速に測定を行うことができることになる。
 第8の発明または第16の発明によれば、前記反応スポット配列体または反応スポット配列子は、検査用担体であり、各反応スポットを集積化して配列することができるので、多数の反応スポットを取り扱う場合に、作業空間を節約して装置規模の増大を防止し、コンパクトで効率的な装置を形成することができる。
 第9の発明によれば、液体の吸引吐出が可能であって、先端が平面状液収容体の各液収容部に一斉に挿入可能に設けられた2以上の分注要素を有する処理用ヘッドを設け、平面状液収容体に対して相対的に移動可能に設けることによって、前記反応スポット配列子に対して、該分注要素により前記各液収容部に収容された液体の吸引吐出を行うことで、反応から測定までの処理、さらには抽出から測定までの処理を1つの装置を用いて一貫して行うことができるので、光学的状態の測定のタイミングを、反応の段階から最適なものに設定することができるので、処理の迅速性および効率性が高い。
 第10の発明または第17の発明によれば、前記反応スポット配列子は、例えば、検査用担体であって、前記分注要素内に封入されている。したがって、各反応スポットに対して、前記分注要素について液体の吸引吐出を一斉に行うことができるとともに、各検査用担体間が確実に隔てられているので、クロスコンタミネーションを確実に防止することができ、信頼性の高い検査を行うことができる。また、反応から測定までを1の装置で一貫して行うことができるとともに、さらに検査用担体が封入されていない分注要素を用いることで、抽出から測定までも1の装置で一貫して行うことができることになる。
 第11の発明によれば、前記測定用ヘッドを処理用ヘッドに設けることで、少なくとも前記収容部群に対する水平方向の移動機構を測定用ヘッドに独自に設ける必要がないので、装置規模の拡大を防止することができる。さらに、収容部群に対する上下方向の移動機構についても処理用ヘッドを利用することができる。また、前記配列体に対する測定端の走査についても、分注要素の処理用ヘッドに対する移動機構を利用することができる。
 第18の発明によれば、複数の導光路に対して所定周期で順次選択して導光させることによって、各導光路ごとに受光部または発光部等の光学系部品を設けることなく、1組の受光部等の光学系部品を使用することを可能にするので、導光路の本数にも拘らず、受光部等の光学系部品の個数を削減して、その費用を削減することができる。
 第19の発明によれば、吸光領域を選択されなかった導光路の接続端と光学的に接続可能とすることによって、選択されなかった導光路からの光を吸収して、その反射や散乱による雑光の受光部や光学系部品への進入を防止して信頼性の高い導光路の選択を行うことができる。
本発明の第1の実施の形態に係る多重反応並行測定装置を示すブロック図である。 図1に示す多重反応並行測定装置をより具体化した斜視図である。 図2に示す多重反応並行測定装置を別方向から見た斜視図である。 図2に示す多重反応並行測定装置の一部拡大斜視図である。 図4に示す多重反応並行測定装置の下方向から見た一部拡大斜視図である。 本発明の第1の実施の形態に係る導光路選択部の詳細断面図である。 本発明の実施の形態に係る多重反応並行測定装置の動作を示す説明図である。 本発明の第2の実施の形態に係る多重反応並行測定装置を示すブロック図である。 本発明の第2の実施の形態に係る発光・受光部を組み込んだ説明図である。 本発明の第2の実施の形態に係る発光・受光部の光学系を示す図である。 本発明の第2の実施の形態に係る測定例を示すグラフである。
 続いて、本発明の第1の実施の形態に係る多重反応並行測定装置10,11を図1乃至図7に基づいて説明する。
 図1は、該第1の実施の形態に係る多重反応並行測定装置10を示すブロック図である。
 該多重反応並行測定装置10は、大きくは、例えば、各種の溶液や各種分注チップが収容された複数の収容部であって、Y軸方向に沿ってステージ上にn列分配列された収容部群3~3(「n」は後述する反応スポット配列子の個数に相当)を有する収容部群領域3と、該収容部群領域3に対して水平方向、例えば、Y軸方向に沿って相対的に移動可能に設けられ、複数(この例ではn個)の分注要素に相当する透光性を有する分注チップ4~4が前記各収容部に先端が挿入可能に設けられた処理用ヘッド52および該処理用ヘッド52と前記収容部群領域3との間を少なくともY軸方向に沿って相対的に移動可能とする処理用ヘッド移動機構53を有する配列体処理装置5と、該分注チップ4~4の細管に封入され、測定に係る反応が行われ、外部から識別可能な予め定めた異なる位置に設けられた複数の反応スポットが配列された反応スポット配列体2を形成する複数(n個)の反応スポット配列子2~2と、前記反応スポット配列体2から導光路6~6nにより導光された光について受光処理を行う受光処理部7と、各種制御のための情報処理を行ういわゆる情報処理部としての、CPU+プログラム+メモリ9と、該CPU+プログラム+メモリ9に対するユーザの指示等の操作を行う操作パネル14と、を有する。
 前記処理用ヘッド52には、n本の前記分注チップ4~4の細管に接触可能若しくは近接可能、したがって、封入された前記反応スポット配列子2~2に各々近接可能に設けられたn個の測定端62~62を有し該反応スポットでの反応により生じ得る光学的状態に基づいて得られる光を接続端64~64にまで導光するn本の導光路6~6と、複数本の前記導光路6~6の前記測定端62~62が、前記各反応スポット配列子2~2の対応する各反応スポットの所定測定位置に所定走査周期(ts)で一斉に到達するように前記配列体に対して相対的に移動可能に設けられた測定用ヘッド(62~62,63,65)と、を有している。
 前記受光処理部7は、前記測定用ヘッド52によって前記各測定端62~62が前記所定測定位置にまで移動しまたはその位置に停止している間に、前記複数本の導光路を順次所定選択周期(tc)で選択し、選択された該導光路6~6の接続端64~64と光学的に接続して入射した光を出射可能とする導光領域を有する導光路選択部73と、前記導光路選択部73の前記導光領域から出射された光を順次受光して光電変換する受光部71と、該受光部71から得られた画領域データを前記所定選択周期で変換して順次ディジタルデータを得るディジタルデータ変換部75とを有する。
 前記測定用ヘッドは、複数の前記測定端62~62を前記反応スポット配列子2~2の配列に応じた間隔を開けて配列させて支持する測定端支持体63と、該測定端支持体63を、Y軸方向の移動により前記分注チップ4~4に対し接近または離間可能とし、かつ封入された反応スポット配列子2~2の各反応スポット21に一斉に順次近接するように前記測定端62~62をZ軸方向に移動可能とする測定端移動機構65とを有する。なお、前記測定端62~62は、前記収容部群3~3の内前記分注要素の移動経路の終点に相当する端に配列され、かつその位置で前記分注チップ4~4の先端が挿入可能な配列端液収容部3cであって、該分注チップ4~4がその位置にある場合に、該分注チップ4~4に前記測定端移動機構65によって接近離間可能な位置に設けられるか、または前記収容部群領域3がY軸方向に移動し、前記分注チップ4~4がY軸方向に不動の場合には、前記分注チップ4~4に対して前記測定端移動機構65によって接近離間可能な位置に配列されるのが好ましい。
 前記反応スポット配列子2~2は、各々検査用担体であって、例えば、後述するように複数(各反応スポット配列子において同一の個数)の同一形状の粒子が前記細管内でZ軸方向に沿って一列状に配列されたものであって、各粒子には、所定の検査用物質が固定された反応スポットに対応する。したがって、2以上の前記反応スポットが相互に合同に配列されていることになり、かつこれらの反応スポット配列子の各反応スポットは、相互にX軸方向およびZ軸方向に対して並進対称性をもつように配列されていることになる。前記粒子の径は、例えば、0.5mmから10mmであって、好ましくは、例えば、1mmである。
 該多重反応並行測定装置10の前記処理用ヘッド52は、さらに、前記分注要素である分注チップ4~4に対して、液体の吸引及び吐出を行う吸引吐出機構43を有する。該分注チップ4~4は、X軸方向に沿って、前記収容部群3~3の配列に応じた間隔で分注チップ支持部材に配列かつ支持される。該分注チップ支持部材には、例えば、前記吸引吐出機構43と連通している各ノズルが配列され、前記分注チップ4~4は、そのノズルの下端部に装着されて支持されることになる。なお、吸引吐出機構43は、前記ノズルから分注チップを脱着する脱着機構を含有している。
 また、前記処理用ヘッド52には、前記分注チップ4~4を一斉にZ軸方向に移動させる分注要素Z軸移動機構42と、前記分注チップ4~4の前記反応スポット配列子が封入された細管の温度制御を行うための温度昇降体8、該温度昇降体8を前記各分注チップに近接しまたは接触させるために該温度昇降体8を前進させ又は後退させるための昇降体進退駆動機構82、および温度昇降体8の温度の上昇および下降を制御するための温度制御器83と、前記分注チップ内に磁力を印加するための磁力機構44とを有する。
 前記CPU+プログラム+メモリ9には、前記温度制御器83、昇降体進退駆動機構82、吸引吐出機構43、前記分注要素Z軸移動機構42、磁力機構44および前記処理用ヘッド移動機構53に対して抽出また反応の指示を行う抽出・反応制御部91と、前記測定端移動機構65、分注要素Z軸移動機構42、前記受光部71、導光路選択部73、ディジタルデータ変換部75、および格納手段93、解析手段94に対して測定の指示を行う測定制御部92、および前記受光部71からの画領域データを、前記測定制御部92に基づくパルス信号により設定された前記所定選択周期で変換されたディジタルデータを、順次前記スポット配列子に対応して格納する格納手段93と、該格納手段93に格納されている該ディジタルデータに基づいて演算により前記測定の解析を行う解析手段94とを有する。
 続いて、図2乃至図6に基づいて、図1で説明した本発明の実施の形態に係る多重反応並行測定装置内10をより具体的にした多重反応並行測定装置11を説明する。
 図2および図3に示すように、該多重反応並行測定装置11は説明上、筐体12を省略して内部の機構のみを示しているが、外部からの光の進入を遮断可能な暗箱の機能を持つ筐体12に各種機構が組み込まれている。該筐体12は、底12aと、下側を後述するステージ13が通過可能な隙間12cを有する壁部12bとを有し、その筐体12の外部には、前記操作パネル14に相当する、タッチ式タブレットが着脱可能に取り付けられている。
 図2および図3に示すように、前記収容部群領域31~3116は、前記筐体の底12aに対して容器の最大の深さに応じた高さをもつステージ13に設けられている。該収容部群領域31には、Y軸方向に沿って延びるカートリッジ状容器を有する収容部群31~3116(図1におけるn=16の場合)がX軸方向に複数列(この例では16列)が配列されている。該各収容部群31~3116には、細管41aと太管41b(図4および図5参照)からなる分注チップの、太管41bに設けられた装着用開口部41cが上側にくるように収容されまたは収容可能なチップ収容部群31aと、検体溶液、各種試薬溶液が収容された液収容部群31b、および測定に必要な試薬溶液が収容されかつ温度制御可能で容器の端部に設けられた前記配列端液収容部としての反応容器31cを有するカートリッジ状容器とを有している。これらの各収容部内の収容物は、前記分注チップ41~4116の移動経路であるY軸方向に沿って、処理順に収容されている。
 さらに、配列体処理装置5の前記処理用ヘッド521を、前記収容部群領域31に対して相対的にY軸方向に移動する前記処理用ヘッド移動機構53として、例えば、静止した前記処理用ヘッド521に対して前記収容部群領域31をステージ13ごとY軸方向に移動するステージ移動機構531を設けている。該ステージ移動機構531は、前記ステージ13と連結しY軸方向に沿って設けられた2つのプーリに掛け渡されたタイミングベルト53aと、該プーリを回転駆動するモータ53cと、前記筐体の底12に敷設され前記ステージ13の脚部が摺動可能に支持されるガイドレール53bとを有している。
 前記処理用ヘッド521全体は前記筐体12の壁部12bにZ軸方向に移動可能に支持されている。該処理用ヘッド521には、Z軸方向に沿って設けられたボール螺子に螺合するナット部やタイミングベルトと連結することによって前記各分注チップ41~4116をZ軸方向に移動可能に設けた分注要素Z軸移動機構421を有する。
 該分注要素Z軸移動機構421には前記壁部12bの裏側に取り付けられたモータ42aと、該モータ42aによって回転駆動される上側プーリと、Z軸方向に沿ってその下側に設けられた下側プーリと、2つのプーリに掛け渡されたタイミングベルトと、該タイミングベルトと前記壁部を貫通して連結して上下方向に移動可能な連結具と、該連結具と連結して上下方向に移動可能であって、該壁部12bの表側に設けられたZ軸移動体43aとを有する。
 前記処理用ヘッド521には、さらに、前記分注要素である分注チップ41~4116に対して液体の吸引吐出を行うための吸引吐出機構431が設けられている。該吸引吐出機構431は、前記分注要素Z軸移動機構421のタイミングベルトによって駆動される連結具と連結してZ軸方向に移動可能に設けられたZ軸移動体43aと、該Z軸移動体43aの上側に取り付けられたモータ43bと、該モータ43bによって回転駆動されるボール螺子43hに螺合するナット部と連結して上下動するピストンロッド駆動板43gと、該駆動板43gによって16本のシリンダ43d内をZ軸方向に沿って一斉に摺動する16本のピストンロッド43cと、前記Z軸移動体43aに支持され該シリンダ43dが取り付けられて該シリンダ43dの下端に設けられている16個のノズルを支持するシリンダ支持部材43iと、該シリンダ43dが取り付けられて該シリンダ43dの下側に突出するノズルが貫通可能な大きさをもつが、該ノズルに装着される前記分注チップ41~4116が貫通不能な大きさをもつ貫通孔が形成され、前記ピストンロッド駆動板43gに支持されて該ピストンロッド駆動板の所定距離以上の下降によって、脱着棒43jを押圧することによって下方向に移動可能に設けられたチップ脱着板43eと、を有している。該脱着棒43jはその下端が前記チップ脱着板43eに取り付けられ、その上側で前記シリンダ支持部材43iより上方に弾性的に付勢される状態で支持され、その上端は、前記ピストンロッド駆動板43gと前記所定距離離間した位置にある。
 16本の前記分注チップ41~4116は前記シリンダ43dの下端で下方向に突出する16本の前記ノズルに、その装着用開口部が嵌合して装着されている。したがって、該分注チップは、前記Z軸移動体43aとともにZ軸方向に沿って、前記処理用ヘッド521に対して上下動可能であり、その先端は、前記収容部群領域31に設けられた液収容部内に挿入可能であって、前記吸引吐出機構431によって液体の吸引及び吐出が可能である。すると、該分注チップ41~4116内に封入されている各反応スポット配列子21~2116を構成する複数(この例では50個)の反応スポット22としての粒子状担体と前記液体が接触可能である(図5参照)。
 図5に示すように、細管41a及び該細管41aと連通し前記ノズルに着脱可能に装着される前記装着用開口部が設けられた太管41bからなる該分注チップ41~4116の細管41aには、測定に係る反応が行われ、外部から識別可能な予め定められた異なる位置に設けられた複数(この例では50個)の反応スポット22としての粒子が封入されて1列状にZ軸方向に沿って合同に配列された反応スポット配列体21を形成する複数(この例では16個)の反応スポット配列子21~2116が、相互にX軸方向に対しては並進対称性をもって配列されている。同様に、Z軸方向に対しても並進対称性をもって反応スポット22が配列されていることになる。すなわち、本実施の形態に係る多重反応並行測定装置11にあっては、X軸方向およびZ軸方向の2軸方向について、該反応スポット22が並進対称性をもって配列されていることになる。反応スポット配列子21~2116については、X軸方向に沿って並進対称性をもって配列されていることになる。
 図2または図3に戻り、前記収容部群領域31には、さらに、前記ステージ13の下側である前記筐体12の底12aに、前記受光部711と、前記導光路選択部731として、複数(例えば、この例では16)本の前記導光路61~6116の前記各接続端を円周に沿って所定の中心角、この例では22.5度、で等角に配列して支持する接続端配列板73bと、暗箱内に組み込まれ前記導光領域が設けられ前記接続端配列板73bの前記円周と同心の回転軸線をもつように設けられた選択用回転体73aと、前記所定選択周期で該選択用回転体を連続的または間欠的に回転駆動可能な回転駆動機構76としてのモータ76aを有する。
 前記受光部711として、CCDイメージセンサを用いた場合について説明する。CCDイメージセンサとしては、例えば、6.4mm×4.8mmの受光面を持ち772×580個の受光素子が配列されたものである。この場合前記ディジタルデータ変換部75としては、ゲートコントロールによって電荷を順次転送するシフトレジスタ、電圧増幅を行うアンプおよび電荷量をディジタルデータに変換するAD変換器を有する。前記所定選択周期としては、例えば、前記操作パネル14からの指示またはCPU+プログラム+メモリ9の測定制御部による指示により指定された時間間隔に基づいて定めることができる。前記所定選択周期は、前述したように、前記所定走査周期、および反応スポット配列子の個数、各反応スポット配列子の反応スポット数、発光の種類、試薬、発光の態様、受光部の特性、反応スポットにおける反応時間、光学的状態、またはその寿命や安定的受光可能時間等に基づいて定める。したがって、前記測定端移動機構65による、反応スポット間の走査速度、所定走査周期、反応スポット間の距離またはその移動態様をも考慮した光測定態様に応じて定める。例えば、1mmの径をもつ50個の粒子に対して、測定端に設けられた径1mmの光ファイバを用いて、Z軸方向に沿って走査するように測定する。その場合、前記測定端を、相対的に、例えば、受光位置から次の受光位置までの距離が0.1mmであって、化学発光のプラトー状態を考慮して受光時間(フォトンカウンティングに必要な停止時間)として10msecの時間停止しながら間欠的に移動するようにして、1の粒子に関して、複数回(この例では10回)測定が行われるようにする。これは、粒子の位置が必ずしも固定されていないことに基づく不確定さや光ファイバの大きさ等を考慮したものである。これによって、1の粒子に対してガウス関数型の発光の輝度が得られ、それにより発光等の精密な測定を行うことができることになる。そのために、前記測定制御部96により、前記分注要素Z軸移動機構42および前記格納手段97に対してそのようなタイミングのパルス信号を発生させることで行う。すると、50個の粒子全体としては、移動時間を含めて約30秒から約50秒程度(化学発光のプラトー状態を考慮)間で500回の受光またはディジタルデータ変換が行われることになる。
 図2、図3に示すように、前記収容部群領域31には、さらに前記各分注チップの細管に各々接触可能に設けられた各測定端、および前記導光路選択部731の前記接続端配列板に支持された接続端を各々有する複数(この例では16個)の導光路61~6116を有する。前記測定端は、測定端支持体631に、前記反応スポット配列子の配列に応じた間隔でX軸方向に沿って配列されかつ支持されている。
 また、前記収容部群領域31には、前記測定端支持体631を、したがって、複数(この例では16個)の前記測定端を前記分注チップの軸方向であるZ軸方向に沿って移動可能とすることで、反応スポットを走査可能な測定端移動機構65が前記処理用ヘッド521に設けられている。この例では処理用ヘッドはY軸方向については静止するように該筐体12に設けられているので、前記測定用ヘッドについても、収容部群領域31に対しては静止するように設けられており、ただ、前記分注要素に対する接近及び離間のためのY軸方向についてのみ前記測定端移動機構65によって、移動可能となるように設けられている。
 該測定端は、前記収容部群のY軸方向に沿った後端側に設けられた収容部30cの上方に前記分注要素が来るように前記収容部群を移動した場合に、測定処理が行われるようにする。
 前記測定端移動機構65は、例えば、前記測定端支持体631と連結したアーム部材と、該アーム部材を摺動可能に保持し、Y軸方向に沿って前記分注チップに向けて前進させるように弾性的に常時付勢する弾性部材が設けられたアーム保持台と、該アーム保持台をZ軸方向に沿って該ボール螺子を上下動させるために該ボール螺子と螺合するナット部を回転駆動するモータと、該モータが取り付けられ前記ボール螺子が貫通する孔が設けられかつ前記底12aに固定された基部と、前記モータによって回転駆動されるナット部と螺合し、上下方向に駆動されその先端が前記アーム保持台の下側に軸支されている前記ボール螺子と、該基部に下端が設けられ前記アーム保持台を貫通しその上端が取付け具に取り付けられているガイド柱と、前記筐体に取り付けられた取付け具とを有する(図示せず)。
 すると、前記ステージ13をY軸方向の処理を行いながら移動して、最終的に前記分注チップが前記液収容部としての反応容器31cに到達すると、該分注チップの各細管が測定端を押圧して、弾性的な反発を受けて接触することになる。
 したがって、前記測定端支持体631がZ軸方向に移動することで、前記反応スポット配列子21~2116の配列に応じて配列された測定端62~6216が、前記各配列子21~2116に対してZ軸方向に移動して、前記各反応スポット配列子21~2116に属する反応スポット22に対応する粒子に対して一斉にかつ順次近接かつ離間して走査する。その場合に、前記測定端支持体631は、各反応スポット配列子の各反応スポット22(径1mmの粒子)に対応して、0.2mmごとに設けられた複数(この例では5)個の所定測定位置を、所定走査周期(ts、この例では、0.8秒)で順次位置するように移動する。
 さらに、前記処理用ヘッド521には、前記ノズルに装着された分注チップの細管41a内に磁力を及ぼすための磁力機構44が設けられている。該磁力機構44は、例えば、前記分注チップの配列に応じた間隔でX軸方向に沿い配列された16個の永久磁石と、該16個の永久磁石を支持する磁石配列部材と、該磁石配列部材を、前記分注チップに対して進退動作を行うためのY軸方向に沿って設けられ、一端が前記磁石配列部材に軸支され他端がボール螺子軸支板に軸支されたボール螺子と、該ボール螺子と螺合するナット部を回転駆動するモータが内蔵され、前記処理用ヘッド521によって支持されて、該ボール螺子をY軸方向に沿って前後方向に移動させるアクチュエータと、前記ボール螺子軸支板と前記磁石配列部材とを前記アクチュエータを貫通して連結する2本の連結棒とを有する(図示せず)。
 図6(a)、図6(b)および図6(c)は、前記導光路選択部731を詳細に示すものである。
 図6(c)に示すように、該導光路選択部731は、複数本(この例では16本)の前記導光路61~6116の前記接続端を円周に沿って所定の中心角(この例では、22.5度)で、等角で配列して支持する接続端配列板73bと、前記導光領域としての切換用導光路74が設けられ前記接続端配列板73bの前記円周と同心の回転軸線73dを持つように設けられた選択用回転体73aと、前記所定選択周期(tc)で該選択用回転体73aを連続的または間欠的に回転駆動可能な回転駆動機構76と、を有する。前記導光領域は、前記各導光路61~6116の接続端に前記所定選択周期で順次連続的または間欠的に光学的に接続可能に設けられた第1端74aおよび前記受光部711の導光部71aを介して受光面に光学的に接続する第2端74bを有する切換用導光路74を少なくとも有している。
 図6(a)は、図6(c)のAA線の矢印方向から見た前記接続端配列板73bを示す。前記第1端74aは、該接続端配列板73bに平行に近接するように定められる第1端配置面73eにおいて、前記接続端配列板73bの前記接続端64~6416が配列された前記円周73gと同心同径の円周上に配置され、前記第2端74bは、前記回転軸線73d上に定められる第2端配置点73cに配置されている。
 前記選択用回転体73aは、前記回転軸線73dに沿って設けられた回転軸73fを有し、その両端が軸支部76dにベアリング76eを介して軸支されている。該回転軸73fはカップリング76cを介して前記モータ76aの軸76bと回転可能に連結している。
 図6(b)は、図6(c)のBB線の矢印方向から見た前記選択用回転体73aの内部を示すものである。該選択用回転体73aは中実の円筒体であって、前記切換用導光路74が設けられている部分には、溝74dが前記接続端配列板73bの前記円周73gの半径に沿って回転軸線73dから半径方向に沿って延びるように凹設され、前記吸光領域77として溝77aが前記溝74dと交差することなく、前記円周73gに沿う円弧状の開口部をもち、深さが前記回転軸線73d方向に沿って延びるが、該選択用回転体73aの軸方向の長さよりは短い深さ(例えば、該長さの90%の長さ)となるように凹設されている。該溝77aの奥には、例えば、炭化した綿または黒色の繊維等が詰められている。
 続いて、実施の形態に係る前記多重反応並行測定装置11を、16人の被検者のゲノムについて所定の薬剤の効果に関連する特定のSNPsの検査を行って、その薬剤を使用するかどうかの妥当性を検査する場合の動作を説明する。
 前記チップ収容部群31aには、抽出用分注チップ、PCR用分注チップ、穿孔用チップおよび前記反応スポット配列子21~2116が封入された分注チップ41~4116が装着用開口部を上にして予め収容されている。前記液収容部群31bの各液収容部には、予め順番に、被検者から採取した口腔粘膜等の検体、ゲノム抽出用試薬、磁性粒子懸濁液、PCR用試薬としてのプライマー含有液、制限酵素溶液等、ミネラルオイル及び洗浄液が収容され、一部の収容部は空である。また、温度制御可能なPCR容器等の反応容器を有している。前記分注チップ41~4116には、前記薬剤に関連する複数個所のSNPの多型の2種類ずつの塩基配列を持つプローブが適当なスペーサ用粒子(または遮光性粒子)を挟みながら各粒子に固定されているものとする。各粒子は、例えば球形状で、直径は、例えば1mmである。
 ステップS1で、前記処理用ヘッド521を前記処理用ヘッド移動機構53により、Y軸方向に移動させて未使用の抽出用分注チップが収容されているチップ収容部群31aの第1のチップ収容部の上方に位置させる。前記分注要素Z軸移動機構421により、該処理用ヘッド521に設けられた16個の前記ノズルを下降させることで抽出用分注チップを装着し、再び上昇させて、分注チップの下端が前記チップ収容部の上方にまで来ると、Y軸方向に移動する。
 ステップS2で、前記処理用ヘッド521を、前記ゲノム抽出用試薬を収容する液収容部群31bに属する1の液収容部の位置にまで移動し、下降させることで該分注チップの先端を該液収容部に挿入して、前記吸引吐出機構431を用いて該当する前記抽出用試薬を一斉に吸引する。該分注チップを前記検体溶液が収容されている前記液収容部群31bの1の液収容部にまで移送して前記分注チップの下端を該液収容部内に挿入して吐出する。さらに、同様にして、該液収容部群31bの1の液収容部に収容され、目的物質としての各被検者のDNAを抽出するための磁性粒子懸濁液を前記分注チップ内に吸引して前記検体溶液が収容されている前記液収容部にまで移送して吐出するとともに、吸引吐出を繰り返すことで撹拌を行い、目的物質である各被検者のDNAを磁性粒子に結合させる。なお、必要ならば、夾雑物を除去するためにさらに洗浄液で吸引吐出を繰り返す。
 ステップS3で、前記磁力機構の前記アクチュエータを用いて、前記磁石配列部材(図示せず)を前記抽出用分注チップに接近させて磁石を該分注チップの細管に近接させることで細管内に磁場を及ぼし、各被検者のDNAを結合した前記磁性粒子を細管の内壁に吸着させて分離する。分離された該磁性粒子は、内壁に吸着させたまま、前記処理用ヘッド521によって前記液収容部群31bの乖離液が収容されている次の1の液収容部にまで移送され、磁力機構によって磁石配列部材を該抽出用分注チップから離間させた状態で、乖離用溶液の吸引吐出を繰り返すことで目的物質の各被検者のDNAを乖離用溶液内に懸濁させ、前記磁力機構により再度磁性粒子を内壁に吸着させたまま、該処理用ヘッド521を移動させてチップ収容部群31aにおいて、該抽出用分注チップを前記チップ脱着板43eを下降させることでノズルから脱着させて廃棄する。
 ステップS4で、前記チップ収容部群31aの1のチップ収容部に収容されていた未使用のPCR用分注チップを、前記処理用ヘッド521の前記分注要素Z軸移動機構421によって下降させることで該分注チップの装着用開口部に前記ノズルを嵌合させて装着させ、上昇してY軸方向に該処理用ヘッド521を移動させ、前記液収容部群31bの前記液収容部に収容されていた前記DNA溶液を前記吸引吐出機構431により吸引し、前記分注要素Z軸移動機構421によって分注チップを上昇させて、該液収容部群31bに設けられたPCR用の液収容部にまで移動して該DNA溶液を吐出する。同様に、各SNPを含有する塩基配列を増幅するための対応する塩基配列を有するプライマー等の試薬溶液を前記PCR用の反応容器に吐出して、PCR法に基づく所定の温度制御サイクルによって、該当する各SNPを含む塩基配列を有するDNA断片を増幅かつ生成する。
 ステップS5で、生成された各種SNPを含有するDNA断片溶液は、前記PCR用分注チップによって各DNA断片に特有な塩基配列と相補的な塩基配列を有するアダプタと連結された化学発光物質溶液を収容する前記液収容部群31bに設けられた1の液収容部内に分注され撹拌されて、該各種SNPを化学発光物質で標識化させる。ここで、化学発光物質としては酵素、西洋ワサビペルオキシダーゼ(HRP)を用い、基質としては、ルミノール/過酸化水素を用い、CLEIA法により検出を行う。
 ステップS6で、前記処理用ヘッド521を再度チップ収容部群31aにまで戻し、空のチップ収容部内に、装着されていたPCR用分注チップを前記チップ脱着板43eにより脱着させて廃棄する。
 ステップS7で、該処理用ヘッド521を上昇させた後、再びY軸方向に移動して前記チップ収容部群31aにある1のチップ収容部であって、前記反応スポット配列子21~2116が封入されている分注チップ41~4116が収容されているチップ収容部の上方に位置させる。前記分注要素Z軸移動機構421によって前記ノズルを下降させることでその装着用開口部に嵌合させて該分注チップ41~4116をノズルに装着させる。
 ステップS8で、該分注チップ41~4116をY軸方向に移動させ、前記標識化された各種SNP断片が収容されている収容部群31~3116の前記液収容部群31bの前記液収容部の上方にまで移動させ、前記分注要素Z軸移動機構421を用いて該分注チップ41~4116の先端を該液収容部内に挿入させて、前記吸引吐出機構431によって吸引吐出を繰り返すことで前記粒子状担体を有する反応スポット配列子21~2116と前記溶液と接触反応させる。その際、前記抽出・反応制御部91の指示によって前記昇降体進退駆動機構82としてのモータによって温度昇降体81が分注チップ41~4116にまで前進して密着して前記分注チップ41~4116内を所定温度に維持させる。
 ステップS9で、該分注チップ41~4116を前記処理用ヘッド移動機構55を用いてY軸方向に移動させて、前記液収容部群31bの洗浄液が収容されている1の液収容部にまで移動させ、前記温度昇降体81を前記分注チップ41~4116から離間させた状態で吸引吐出を繰り返すことで洗浄する。図3は、この段階におけるステップS9における前記分注チップ41~4116および測定端62~6216、および温度昇降体81の位置を示す。
 ステップS10で、該分注チップ41~4116を、化学発光の前記基質を収容する反応容器31cにまで移動させ、該反応容器31c内に先端を挿入する。その際、前記測定端移動機構65によって該分注チップ41~4116の細管に前記測定端62~6216を接触した状態になるようにY軸方向に移動する。また、前記昇降体進退駆動機構82としてのモータによって温度昇降体81が分注チップ41~4116にまで前進して密着して前記分注チップ41~4116内を所定温度に維持させる。この段階での状態が図4に相当する。
 ステップS11で、前記分注チップ41~4116によって前記反応容器31c内の溶液を吸引する。すると、吸引された基質は、これらの分注チップ41~4116内に封入されている反応スポット配列子21~2116の酵素と反応し発光することになる。
 その後、前記測定端移動機構65によって、前記測定端支持体63をZ軸方向に沿って移動させることで、前記反応スポット配列子21~2116に各々配列されている対応する反応スポットを一斉に逐次測定端62~6216から接続端64~6416まで、導光路61~6116を通して前記反応スポット配列子21~2116に対して導光されることになる。
 ステップS12で各々50個に対応する光学的状態を前記測定端移動機構65による前記測定端62~6216のZ軸方向の移動に応じて順次受光する。すると、該測定端62~6216の相対的な移動、例えば、0.2mmの前記所定測定位置間の距離を800msecの移動および停止時間(ts:所定走査周期)を間欠的に繰り返すような移動を行うことで、径1mmの1の粒子に対して前記所定測定位置で5回受光することを可能とする。その所定走査周期(ts)の間に、前記導光路選択部731によって、前記16本の全導光路61~6116を、所定選択周期(tc)で順次選択することで、1の受光部711が全反応スポット配列子の各反応スポットを順次受光可能とする。この場合前記導光路選択部731の前記選択用回転体73aは、所定選択周期(tc)、800msec/16=50msecで停止しながら間欠的に回転することになる。すなわち、測定端のZ軸方向の走査速度は毎秒0.25mmの間欠的な移動であり、選択用回転体の回転数は、前記測定端の移動に同期した毎分75回転の間欠的な回転である。
 その際、前記測定制御部92からの指示により、前記ディジタルデータ変換部75によって、該所定選択周期で、前記受光部711が受光した光の強度または輝度を対応するディジタルデータに変換して、前記格納手段93内に順次格納され、前記解析手段94によって読み出されて演算解析されて、検査対象の目的生体物質を検査することができる。ここで、前記「所定走査周期(ts)」は、例えば、前記測定端移動機構による測定端の隣接する所定測定位置間の相対的な移動に要する移動時間(例えば、隣接する所定位置間について、800msec)、各反応スポットに対する受光回数(例えば、5回)、反応スポットの個数(例えば、50個)、および、化学発光を安定的に受光することができる安定的受光可能時間(発光のプラトー状態が維持される時間、例えば、200秒)からなる光測定態様に基づいて定められ、それによって、反応スポットに対する受光(ディジタルデータ変換)のための停止時間が、例えば、800msecと定められることになり、前記測定制御部92によって指示される。一方、前記「所定選択周期」は、例えば、前記所定走査周期(ts)、および、前記反応スポット配列子数(n)に基づいて定められる。
 次に、実施の形態に係る前記多重反応並行測定装置11を、16種類の食品について、表示義務7項目(卵、乳、小麦、そば、落花生、えび、かに)および表示推奨20項目(モモ、豚肉、鶏肉、牛肉、アワビ等)の内の17項目、併せて24項目についての特定食物アレルゲン検出に適用した場合についての動作について説明する。
 前記チップ収容部群31aのチップ収容部には、穿孔用チップ、反応スポット配列子21~2116が封入された分注チップ41~4116が装着用開口部を上にして予め収容されている。該反応スポット配列子の50個の反応スポット22としての各粒子は、25個の反応用ビーズと25個の遮光性ビーズとからなり、反応用ビーズは遮光性ビーズと交互に配列され、24個の反応用ビーズには、アレルゲンを捕獲できる抗体(例、抗小麦抗体、抗卵抗体等)が固定されている。
 前記反応用ビーズの1つは、ネガティブコントロールまたはポジティブコントロール用の反応用ビーズである。ネガティブコントロールの反応ビーズとしては、反応用ビーズに光源や抗体が結合しないようにブロッキングしたものであり、ネガティブコントロール用の反応ビーズとしては、必ず発光するような西洋ワサビペルオキシダーゼを固定化した反応用ビーズである。さらに、前記液収容部群31bの各液収容部には、予め、順番に、食品から抽出された食品抽出液が100μL収容された液収容部、標識抗体としての西洋ワサビペルオキシダーゼ(HRP標識)溶液が200μL収容された液収容部、洗浄バッファ液(1×PBS0.05%Tween)が200μLずつ収容された3個の液収容部が2組、基質IIが200μL収容された液収容部、基質Iが200μL収容された液収容部を有している(基質I、基質II:Super Signal(r) WEST femto Maximum Sensitivity Substrate)。
 ステップS21で、前記処理用ヘッド521を前記処理用ヘッド移動機構53により、Y軸方向に移動させて、内部に反応スポット配列子21~2116が封入されている前記分注チップ41~4116が収容されているチップ収容部群31aの第1のチップ収容部の上方に位置させる。前記分注要素Z軸移動機構421により、該処理用ヘッド521に設けられた16個の前記ノズルを下降させることで、該分注チップ41~4116を装着し、再び上昇させて、分注チップ41~4116の下端が前記チップ収容部群31aの上方にまで来るとY軸方向に移動する。
 ステップS22で、液収容部群31bの内、前記洗浄バッファ液を収容する第1組の第1の液収容部の位置にまで移動し、下降させることで該分注チップ41~4116の先端を該液収容部に挿入して、前記吸引吐出機構431を用いて吸引吐出を繰り返すことによって、該分注チップ41~4116内に収容されている前記反応スポット配列子の反応スポット22としての前記粒子状担体を洗浄する。
 ステップS23で、前記分注要素Z軸移動機構421により、前記処理用ヘッド521に設けられた16個の前記ノズルを上昇させ、前記処理用ヘッド移動機構53により、相対的にY軸方向に移動させて、液収容部群31bの内、前記サンプルとしての各食品抽出液が収容されている液収容部の上方に位置させ、下降することで該分注チップ41~4116の先端を該液収容部に挿入して、前記吸引吐出機構431を用いて該食品抽出液を吸引し吐出させる。その間、前記昇降体進退駆動機構82によって、温度昇降体81を前記分注チップに近接または接触させ、前記温度制御器83により30分間のインキュベーションを行う。そのインキュベーションの間、前記吸引吐出機構431によって吸引吐出を300回繰り返す。これによって、各食品抽出液中のアレルゲン(抗原)を該当するビーズに固定した抗体に捕獲させる。
 ステップS24で、前記処理用ヘッド521に設けられた16個の前記分注チップ41~4116を前記分注要素Z軸移動機構421によりZ軸に沿って上昇させ、前記処理用ヘッド移動機構53により前記ステージ13をY軸方向に移動させて、前記洗浄バッファ液が収容されている第1組の第2及び第3の液収容部にまで移動させて、前記該分注チップ41~4116を下降させて、前記吸引吐出機構431によって吸引吐出を繰り返すことで洗浄することを2回繰り返す。
 ステップS25で、16個の前記分注チップ41~4116を前記分注要素Z軸移動機構421によって上昇させ、前記処理用ヘッド移動機構53によりステージ13をY軸方向に移動させて、前記標識抗体が収容されている液収容部にまで移動させ、前記分注チップ41~4116を下降させて前記吸引吐出機構431により300回の吸引吐出を繰り返すことによって前記ビーズに固定化された抗体に結合したアレルゲンを前記HRP標識により標識化する。
 ステップS26で、前記処理用ヘッド521に設けられた16個の前記分注チップ41~4116を前記分注要素Z軸移動機構421によりZ軸に沿って上昇させ、前記処理用ヘッド移動機構53により前記ステージ13をY軸方向に移動させて、前記洗浄バッファ液が収容されている第2組の第1、第2、第3の液収容部にまで移動させて、前記該分注チップ41~4116を下降させて、前記吸引吐出機構431によって吸引吐出を繰り返すことで3回洗浄を繰り返す。
 ステップS27で、16個の前記分注チップ41~4116を前記分注要素Z軸移動機構421によって上昇させ、前記処理用ヘッド移動機構53によりステージ13をY軸方向に移動させて、一旦、前記チップ収容部群31aにまで移動して、前記脱着機構としての脱着板43eを用いて該分注チップ41~4116を脱着し、前記ビーズが封入されていない新たな分注チップを装着して、前記基質Iが収容されている液収容部にまで移動し、該基質Iを吸引して、前記分注要素Z軸移動機構421によって上昇させて反応容器31cにまで移動して吐出し、同様に該分注チップで基質IIを吸引して、反応容器31cにまで移動して吐出する。
 ステップS28で、前記分注チップを前記チップ収容部群31aにまで移動して前記脱着機構としての脱着板43eを用いて脱着させ、前記分注チップ41~4116が収容されているチップ収容部の上方に位置し下降することでノズルに該分注チップ41~4116を装着させ、前記処理用ヘッド移動機構53としてのステージ移動機構531によって、該分注チップ41~4116を反応容器31cの上方にまで相対的に移動して位置させる。
 ステップS29で、該分注チップを下降させて該反応容器内に先端を挿入して混合基質I,IIを吸引すると、該吸引後に発光を測定するために、前記測定端移動機構65により前記測定端支持体631をY軸方向に移動させて前記分注チップ41~4116の細管41aに接触または近接された測定端62~6216のZ軸方向の移動に応じて順次受光する。すると、該測定端62~6216の相対的な移動、例えば、0.2mmの前記所定測定位置間の距離を800msecの移動および停止時間(ts:所定走査周期)を間欠的に繰り返すような移動を行うことで、径1mmの1の粒子に対して前記所定測定位置で5回受光することを可能とする。その所定走査周期(ts)の間に、前記導光路選択部731によって、前記16本の全導光路61~6116を、所定選択周期(tc)で順次選択することで、1の受光部711が全反応スポット配列子の各反応スポットを順次受光可能とする。この場合、前記導光路選択部731の前記選択用回転体73aは、所定選択周期(tc)800msec/16=50msecで停止しながら間欠的に回転することになる。すなわち、測定端のZ軸方向の走査速度は毎秒0.25mmの間欠的な移動であり、選択用回転体の回転数は、前記測定端の移動に同期した毎分75回転の間欠的な回転である。
 その際、前記測定制御部92からの指示により、前記ディジタルデータ変換部75によって、該所定選択周期で、前記受光部711が受光した光の強度または輝度を対応するディジタルデータに変換して、前記格納手段93内に順次格納され、前記解析手段94によって読み出されて演算解析されて、検査対象の目的生体物質を検査することができる。ここで、前記「所定走査周期(ts)」は、例えば、前記測定端移動機構による測定端の隣接する所定測定位置間の相対的な移動に要する移動時間(例えば、隣接する所定位置間について、例えば、800msec)、各反応スポットに対する受光回数(例えば、5回)、反応スポットの個数(例えば、50個)、および、化学発光を安定的に受光することができる安定的受光可能時間(発光のプラトー状態が維持される時間、例えば、200秒)からなる光測定態様に基づいて定められ、それによって、反応スポットに対する受光(ディジタルデータ変換)のための停止時間が、例えば、800msecと定められることになり、前記測定制御部92によって指示される。一方、前記「所定選択周期」は、例えば、前記所定走査周期(ts)、および、前記反応スポット配列子数(n)に基づいて定められる。
 図7(a)は、前記分注チップ41~4116の細管内にZ軸方向に沿って配列された反応スポット配列子21~2116に対応する複数の反応スポット22としての粒子の配列例を示すものである。反応スポット22(図中、淡い色で示す)を挟むようにスペーサ23(図中、濃い色で示す)が設けられている。これらの粒子の径は例えば、1mmである。前記測定端支持体631が第1番目の粒子25から順次Z軸方向に移動して、各粒子の光学的状態に基づく光を導光路61~6116としての光ファイバを通して前記受光素子アレイにまで導光する様子を模式的に示すものである。また、最下端の粒子24は該細管41a内に粒子を封入するために設けられた半径がやや大きく柔軟性のある素材で形成されている。また、最上端の粒子25は、例えば、マーカー用の粒子である。なお、前記反応スポット22が設けられている測定が行われる部分の全長は、例えば、40~50mmである。
 図7(b)には、各反応スポット配列子21~2116に対応して、格納手段93に各反応スポット配列子21~2116ごとに振り分けて各画領域データに対応するディジタルデータ(図ではディジタルデータに対応する画領域データが描かれている)を格納する状態を模式的に示すものである。前記接続端配列板73bには、前記各導光路61~6116の接続端64~6416が等しい中心角で、配列されている。これによって、反応スポット配列子21~2116が、高次元に広く配列されていたとしても、各反応スポット配列子に対応して接続端を円周上に配列することで、接続端を順次前記所定選択周期で選択することができるので、受光部の個数の増大を抑制することができる。
 図7(c)には、前記格納手段93に格納されたディジタルデータを、各反応スポット配列子21~2116ごとにグラフ化した模式図を示す。この輝度を前記解析手段94が演算解析することで、各検体ごとの検査結果を出力することができる。
 図8乃至図10に基づいて、本発明の第2の実施の形態に係る多重反応並行測定装置100,101を説明する。なお、第1の実施の形態に係る多重反応並行測定装置10,11に関して用いた符号と同一の符号は同一または類似のものを表すので、その説明を省略する。
 図8は、該多重反応並行測定装置100を示すブロック図である。第2の実施の形態に係る多重反応並行測定装置100と第1の実施の形態に係る多重反応並行測定装置10との相違は、受光部71の代わりに、発光・受光部78を設けた点にある。
 該発光・受光部78は、前記導光路選択部73の前記導光領域から出射された光を受光して光電変換する受光部71と、前記導光路選択部73により選択された前記導光路に対し、前記導光領域を介して所定の光(この例では励起光)を入射させる発光部72とを有するものである。発光部72は測定制御部92からの指示に基づいて発光が行われる。
 図9は、該発光・受光部78をより具体化した発光・受光部781を、前記多重反応並行測定装置100をより具体化した多重反応並行測定装置101に組み込んだ状態を示すものである。なお、前記導光領域に相当するものは、切換用導光路74である。
 図10は、前記発光・受光部781の内部の光学系的要素を示すものである。該発光・受光部781は、導光部71aを除き、外光の進入を防止する遮光性を有する筐体783内に設けられている。
 該発光・受光部781は、受光部711と、発光部721と、レンズ782とを有し、該受光部711は、光電変換部としてのフォトダイオード712と、前記各反応スポット22に含まれる蛍光物質から発生し得る蛍光に相当する波長帯の光のみを透過可能とするバンドパスフィルタ713と、集光用レンズ714とを有する。一方、発光部721は、LED722と、前記蛍光物質に対する励起光に相当する波長帯の光のみを透過可能とするバンドパスフィルタ723と、レンズ724と、該発光LED722からの励起光を反射して前記レンズ782に導光する一方、前記レンズ782からの光を透過して前記バンドパスフィルタ713に導光するダイクロイックビームスプリッター725(例えば、カットオフ波長よりも短い波長の光、例えば励起光に対しては高い反射率を示し、カットオフ波長よりも長い波長の光、例えば蛍光に対しては高い透過率を示すロングパスダイクロックビームスプリッターを用いたが、反射率と透過率が逆のショートパスダイクロックビームスプリッターを用いて設計することもできる)とを有するものである。
 続いて、本実施の形態に係る多重反応並行測定装置101を、16人の被検者のゲノムについて所定の薬剤の効果に関連する特定のSNPsの検査を行って、その薬剤を使用するかどうかの妥当性を検査する場合の動作を説明する。
 前記チップ収容部群31aには、抽出用分注チップ、PCR用分注チップ、穿孔用チップおよび前記反応スポット配列子21~2116が封入された分注チップ41~4116が装着用開口部を上にして予め収容されている。前記液収容部群31bの各液収容部には、予め、順番に、被検者から採取した口腔粘膜等の検体、ゲノム抽出用試薬、磁性粒子懸濁液、PCR用試薬としてのプライマー含有液、制限酵素溶液等、ミネラルオイル及び洗浄液が収容され、一部の収容部は空である。また、温度制御可能なPCR容器等の反応容器を有している。前記分注チップ41~4116には、前記薬剤に関連する複数個所のSNPの多型の2種類ずつの塩基配列を持つプローブが適当なスペーサ用粒子(または遮光性粒子)を挟みながら各粒子に固定されているものとする。各粒子は、例えば球形状で、直径は、例えば1mmである。
 前記ステップS1~ステップS4までは第1の実施の形態の場合と同様であるので、記載を省略する。
 ステップS5'において、生成された各種SNPを含有するDNA断片溶液は、前記PCR用分注チップによって各DNA断片に特有な塩基配列と相補的な塩基配列を有するアダプタと連結された化学発光物質溶液を収容する前記液収容部群31bに設けられた1の液収容部内に分注され撹拌されて、該各種SNPを蛍光物質、例えばFITC(蛍光波長522nm、励起光の波長は498nm)で標識化させる。
 ステップS6~ステップS9は第1の実施の形態例と同様であるので記載を省略する。
 ステップS10'において、前記分注チップ41~4116を、空の反応容器31cにまで移動させ、該反応容器31c内に先端を挿入する。その際、前記測定端移動機構65によって該分注チップ41~4116の細管に前記測定端62~6216を接触した状態になるようにY軸方向に移動する。また、必要ならば前記昇降体進退駆動機構82としてのモータによって温度昇降体81が分注チップ41~4116にまで前進して密着して前記分注チップ41~4116内を所定温度に維持させる。この段階での状態が図4に相当する。
 ステップS11'で、その後、前記測定端移動機構65によって、前記測定端支持体63をZ軸方向に沿って移動させることで、前記反応スポット配列子21~2116に各々配列されている対応する反応スポット(この例では各配列子に40個の径1mmのビーズ)を一斉に逐次測定端62~6216から接続端64~6416まで、導光路61~6116(例えば、径1.5mmの光ファイバの3本の束)を通して前記反応スポット配列子21~2116に対して励起光を照射して蛍光を受光させる。
 ステップS12'で、各反応スポット配列子21~2116当たり各々40個(ビーズの径は1mm)に対応する光学的状態を前記測定端移動機構65による前記測定端62~6216のZ軸方向の移動に応じて順次、励起光の発光および蛍光の受光を行う。すると、前記測定端62~6216のZ軸方向の移動、例えば、0.05mmの前記所定測定位置間の距離を800msecの所定速度(0.0625mm/sec)で連続的な移動を行うことで、径1mmの1粒子に対して前記所定測定位置で20回の励起光の照射および蛍光の受光を行うことを可能にする。したがって、その所定走査周期(ts)の間に、前記導光路選択部731によって、前記16本の全導光路61~6116を、所定選択周期(tc)で順次選択することで、1の発光・受光部781が全反応スポット配列子21~2116を順次照光、受光する。この場合、前記導光路選択部731の前記選択用回転体73aは、所定選択周期(tc)、800msec/16=50msecで停止しながら間欠的に回転することになる。すなわち、測定端のZ軸方向の走査速度は毎秒0.125mmの連続的な移動であり、選択用回転体73aの回転数は、前記測定端の移動に同期するが、発光と受光を同時に行うことを考慮して毎分75回転の間欠的な回転となる。 
 その際、前記測定制御部92からの指示により、前記ディジタルデータ変換部75によって、該所定選択周期で、前記受光部711が受光した光の強度または輝度を、対応するディジタルデータに変換して、前記格納手段93内に順次格納し、前記解析手段94によって読み出されて演算解析されて、検査対象の目的生体物質を検査することができる。ここで、前記「所定走査周期(ts)」は、例えば、前記測定端移動機構による測定端の隣接する所定測定位置間の相対的な移動に要する移動時間(例えば、隣接する所定位置間について、800msec)、各反応スポットに対する発光受光回数(例えば、20回)、反応スポットの個数(例えば、40個)、および、蛍光を安定的に受光することができる安定的受光可能時間(蛍光の寿命、励起光の強度にもよるが、一般的には化学発光に比較して長い)からなる光測定態様に基づいて定められ、それによって、反応スポットに対する照射受光(ディジタルデータ変換)のための停止時間が定められることになり、前記測定制御部92によって指示される。一方、前記「所定選択周期」は、例えば、前記所定走査周期(ts)、および、前記反応スポット配列子数(n)に基づいて定められる。
 図11は、このようにして得られた、前記1の反応スポット配列子21i(i=1, 2,… または16のいずれか1つ)に配列された反応スポットとしての各粒子(この例では40個、径1mm)に付着して標識化された蛍光標識濃度による蛍光強度の相違を示すグラフである。実線は、蛍光濃度の5周期ごとの移動平均を示すグラフである。なお、グラフ中に示した黒丸が前記反応スポット配列子に配列された反応スポットとしての蛍光物質で標識化された1つの粒子のサイズを表すものである。なお、縦軸は蛍光強度(電圧値V)で、横軸はZ軸方向に配列された粒子の位置座標(mm)を表す。本実施の形態によれば、化学発光の測定のみならず、励起光の照射を必要とする蛍光の測定についても、さらには、種々の参照光の照射を必要とする呈色、変色等の測定についても行うことができることになる。
 以上説明した各実施の形態は、本発明をより良く理解させる為に具体的に説明したものであって、別形態を制限するものではない。したがって、発明の主旨を変更しない範囲で変更可能である。例えば、以上の例では、反応スポット配列体は、2軸方向および1軸方向に並進対称性を有するように反応スポット配列子または反応スポットが配列された場合のみ説明したが、反応スポット配列子または反応スポットが3軸方向以上に配列される場合であっても良い。
 また、以上の例では、光学的状態として発光が行われる場合のみ説明したが、その他、呈色や変光であってもそれによって生じた光を受光することによって行うことができる。また、化学発光の試薬について前述したアクリジニウムエステル誘導体、西洋ワサビペルオキシダーゼ(HRP)等に限定されるものではない。蛍光についても、上述した例に限られるわけではない。
 以上の例では、処理用ヘッドに測定端が組み合わせた場合についてのみ説明したが、測定端が処理用ヘッドに設けられていない場合にも可能である。また、本発明の各実施の形態で説明した装置、これらの装置を形成する部品、またはこれらの部品を形成する装置や試薬等を適当に選んで適当な変更を加えて相互に組み合わせることができる。例えば、化学発光物質、反応スポット配列体、反応スポット配列子、反応スポット、受光素子アレイ、受光素子、導光路、導光路選択部、ディジタルデータ変換部、分注要素、または測定制御部等、または、例えば、血清溶液中の検査を行う場合に、磁性粒子を用いて血清溶液を濃縮化し、各粒子に該当する抗体を固定して用いることによって、各被検者の抗原の有無を検査することができる。
 以上の例では、化学発光の測定のみ説明したが、蛍光の測定を行うことも可能である。
 なお、本出願内の、「X軸」、「Y軸」、「Z軸」、「上方」、「下方」、「内部」、「外部」、「上下」、「行」、「列」等のような空間的な表示は、図解のためのみであって、前記構造の特定の空間的な方向または配置に制限するものではない。
 以上の説明で用いた数値、回数、形状、個数、量等についてもこれらの場合に限定されるものではない。例えば、反応スポット配列子の個数は、16個の場合のみ説明し、各反応スポット配列子に属する反応スポットの個数は50個または40個の場合のみについて説明したがこの場合に限られないことは言うまでもない。
 本発明は、多重反応並行測定装置及びその方法に関し、被検者等から採取した検体の検査、その光学的測定及びその解析を行うものであって、特に、遺伝子、免疫系、アミノ酸、タンパク質、糖等の生体高分子、生体低分子の扱いが要求される分野、例えば、生化学分野、工業分野、食品、農産、水産加工等の農業分野、製剤分野、衛生、保険、免疫、疾病、遺伝等の医療分野等の様々な分野で利用可能である。
 10,11,100,101  多重反応並行測定装置 
 2              反応スポット配列体
 2,…,2,21,…,2116 反応スポット配列子
 22             反応スポット
 3,31           収容部群領域
 3,…,3,31,…,3116  収容部群
 4,…,4,41,…,4116  分注チップ(分注要素)
 42,421         分注要素Z軸移動機構
 43,431         吸引吐出機構
 44             磁力機構
 5              配列体処理装置
 52,521         処理用ヘッド
 53(531)        処理用ヘッド移動機構(ステージ移動機構)
 65             測定端Z軸移動機構
 6,…,6、61,…,6116 導光路
 62,…,6216       測定端
 63,631         測定端支持体
 64,…,64        接続端
 7              受光処理装置
 71,711         受光部(受光素子アレイ)
 72。721         発光部(LED)
 73,731         導光路選択部
 73a            選択用回転体
 73b            接続端配列板
 74             切換用導光路(導光領域)
 75             ディジタルデータ変換部
 76             回転駆動機構
 77             吸光領域
 78,781         発光・受光部
 8,81           温度昇降体
 82             昇降体進退駆動機構
 83,85          温度制御器
 9              CPU+プログラム+メモリ(情報処理部)
 91             抽出・反応制御部
 92             測定制御部
 93             格納手段
 94             解析手段

Claims (19)

  1.  測定に係る反応が行われ、外部から識別可能な予め定めた態様で配列された2以上の反応スポットを有する複数の反応スポット配列子からなる反応スポット配列体と、
     前記反応スポット配列子に対応して設けられ、1の前記各反応スポットに近接もしくは接触可能に設けられた測定端を有し前記反応スポットでの反応により生じ得る光学的状態に基づいて得られる光を接続端にまで導光可能に設けられた複数本の導光路と、
     複数本の前記導光路の前記測定端が、前記各反応スポット配列子の対応する各反応スポットの所定測定位置に所定走査周期で一斉に到達するように前記配列体に対して相対的に移動可能に設けられた測定用ヘッドと、
     前記測定用ヘッドによって前記各測定端が前記所定測定位置にまで移動しまたはその位置に停止している間に、前記複数本の導光路を順次所定選択周期で選択し、選択された該導光路の接続端と光学的に接続して入射した光を出射可能とする導光領域を有する導光路選択部と、
     前記導光領域から出射された光を順次受光して光電変換する受光部と、
     該受光部から得られた画領域データを前記所定選択周期で変換して順次ディジタルデータを得るディジタルデータ変換部と、
     該ディジタルデータを順次格納する格納手段と、を有する多重反応並行測定装置。
  2.  前記導光領域に対して所定の光を照射可能な発光部をさらに有し、
      前記導光路選択部の前記導光領域は、入射した前記所定の光を、選択した前記導光路の前記接続端に対して出射可能であり、
     前記導光路は、前記接続端に入射した前記所定の光を前記測定端にまで導光可能とする請求項1に記載の多重反応並行測定装置。
  3.  前記導光路選択部は、選択した前記導光路以外の選択されていない導光路からの光を吸収可能とする吸光領域をさらに有し、前記導光領域が前記選択された導光路の接続端と光学的に接続した際に、該吸光領域は、選択されていない前記導光路の各接続端と光学的に接続するように設けられた請求項1または請求項2に記載の多重反応並行測定装置。
  4.  前記導光路選択部は、
     複数本の前記導光路の前記各接続端を円周に沿って所定の中心角で配列して支持する接続端配列板と、
     前記導光領域が設けられ前記接続端配列板の前記円周と同心の回転軸線をもつように設けられた選択用回転体と、
     前記所定選択周期で該選択用回転体を連続的または間欠的に回転駆動可能な回転駆動機構と、を有し、
     前記導光領域は、前記各導光路の接続端に前記所定選択周期で順次連続的または間欠的に光学的に接続可能に設けられた第1端および前記受光部の受光面に光学的に接続する第2端を有する切換用導光路を少なくとも有し、前記第1端は前記接続端配列板に平行に近接するように定められる第1端配置面において、前記接続端配列板の前記円周と同心同径の円周上に配置され、前記第2端は、前記回転軸線上に定められる第2端配置点に配置された請求項1乃至請求項3に記載の多重反応並行測定装置。
  5.  前記測定用ヘッドは、複数の前記測定端を前記反応スポット配列子の配列に応じた配列で支持する測定端支持体と、該測定端支持体を前記反応スポット配列体に対して相対的に移動可能とし前記測定端を、前記各反応スポット配列子の対応する前記反応スポットの前記所定測定位置に所定走査周期で一斉に到達するように駆動する測定端移動機構とをさらに有する請求項1乃至請求項4のいずれかに記載の多重反応並行測定装置。
  6.  前記選択用回転体は、選択した導光路以外の選択されていない導光路からの光を吸収可能とする吸光領域をさらに有し、
     該吸光領域は、前記第1端配置面において、前記切換用導光路の前記第1端を除き、前記接続端配列板の前記円周と同心同径の円周に沿って、少なくとも前記導光路の接続端に対向する位置に設けられた請求項4に記載の多重反応並行測定装置。
  7.  前記各反応スポット配列子は、2以上の反応スポットが相互に合同に配列され、該各反応スポット配列子は相互に並進対称性をもつように配列され、前記各反応スポット配列子に対応して設けられた前記各測定端が、前記反応スポット配列子間で対応する2以上の前記反応スポットに対し一斉に順次近接または接触可能とするように配列された請求項1または請求項2に記載の多重反応並行測定装置。
  8.  前記反応スポット配列体または前記反応スポット配列子は、外部から識別可能な予め定めた位置にある複数の異なる反応スポットに予め定めた種類の検査用物質が各々固定された1または2以上の検査用担体を有する請求項1乃至請求項6のいずれに記載の多重反応並行測定装置。
  9.  前記各反応スポット配列子に対応して設けられ液体の吸引吐出が可能な2以上の分注要素が設けられた処理用ヘッドをさらに有し、前記各反応スポット配列子に対応して設けられた複数の収容部が配列された収容部群に対して相対的に移動可能に設けられ、前記分注要素の先端は、該収容部群の前記各液収容部に一斉に挿入可能に設けられ、前記反応スポット配列子に対して、該分注要素により前記各収容部に収容された液体の吸引吐出が行われる請求項1乃至請求項8のいずれかに記載の多重反応並行測定装置。
  10.  前記反応スポット配列子は検査用担体であって前記分注要素内に封入され、該検査用担体に対して該分注要素によって液体の吸引吐出が行われ、該検査用担体は該分注要素外部から各固定位置が識別可能に設けられ、前記測定端は、少なくとも前記分注要素に相対的に移動可能に設けることによって、前記分注要素に近接または接触して反応スポットの配列に従って移動可能に設けられた請求項9に記載の多重反応並行測定装置。
  11.  前記測定用ヘッドは、前記処理用ヘッドに設けられ、前記処理用ヘッドとともに前記収容部群に対して少なくとも水平方向に沿って相対的に移動可能に設けられた請求項10に記載の多重反応並行測定装置。
  12.  外部から識別可能な予め定められた態様で配列された複数の反応スポットを有する複数の反応スポット配列子からなる反応スポット配列体の前記反応スポットにおいて化学発光に係る反応が行われる反応工程と、
     前記各反応スポットでの反応によって生ずる光学的状態に基づく光を、各反応スポット配列子に対応して設けられた複数本の導光路の各測定端を、前記配列体に対して相対的に移動して、各反応スポット配列子の対応する各反応スポットの所定測定位置に所定走査周期で一斉に到達させる測定工程と、
     前記測定端が前記各反応スポット配列子における前記反応スポットの前記測定位置に移動しまたはその位置に停止している間に、前記複数本の導光路の全てを所定選択周期で順次導光領域と光学的に接続させて選択し、選択された該導光路の前記測定端からの光を該導光領域を介して受光部の受光面に出射可能とする導光路選択工程と、
     前記導光領域から出射された光を順次受光部が受光して光電変換する受光工程と、
     該受光部から得られる画領域データを前記所定選択周期で順次ディジタルデータに変換して順次格納するディジタルデータ変換工程と、を有する多重反応並行測定方法。
  13.  前記導光路選択工程は、選択した前記導光路以外の導光路からの光を選択されていない導光路の接続端に近接して設けられた吸光領域で吸収する吸光工程を有する請求項12に記載の多重反応並行測定方法。
  14.  前記導光路選択工程は、複数本の前記導光路の前記各接続端を円周に沿って所定の中心角で配列して支持する接続端配列板に対し、前記受光部の受光面を通り前記接続端配列板の前記円周と同心の回転軸線を持ちかつ第1端および第2端が設けられた切換用導光路を有する選択用回転体を、前記所定選択周期で連続的または間欠的に回転させて、
     前記各導光路の接続端に、前記接続端配列板に平行に近接するように定められた第1端配置面上で前記接続端配列板の前記円周と同心同径の円周上に配置された前記第1端を順次連続的または間欠的に光学的に接続させて、前記回転軸線上に定められる第2端配置点に配置された前記第2端から受光部の受光面に、前記第1端と光学的に接続した前記接続端からの光を導光する請求項12に記載の多重反応並行測定方法。
  15.  前記測定工程は、複数の前記測定端が前記反応スポットの配列に応じた配列で支持された測定端支持体を前記反応スポット配列体に対して相対的に移動することによって、前記測定端を、前記各反応スポット配列子の対応する前記反応スポットの前記所定測定位置に前記所定走査周期で一斉に到達する測定端移動工程を有する請求項12に記載の多重反応並行測定方法。
  16.  前記反応スポット配列子は、外部から識別可能な予め定めた配列の複数の反応スポットに前記検査に関連する予め定めた種類の検査用物質が各々固定された1の検査用担体を有し、前記反応工程は、前記検査用担体に対して溶液を分注することで検査に係る反応が行われる請求項12に記載の多重反応並行測定方法。
  17.  前記各反応スポット配列子は、液体の吸引吐出が可能な2以上の透光性を有する分注要素内に封入され、該分注要素は、液収容部が配列された収容部群に対して相対的に移動可能に設けられ、前記分注要素の先端は、該収容部群の前記各液収容部に一斉に挿入可能に設けられ、前記反応工程は、前記分注要素を前記各収容部に一斉に挿入して前記各液収容部に収容された液体の吸引吐出を行うことによって、前記反応スポット配列子について測定に係る反応が行われる請求項12に記載の多重反応並行測定方法。
  18.  複数本の導光路を順次所定周期で選択して、選択した前記導光路から入射した光を順次出射可能としまたは該導光路に対して光を順次出射可能とする装置であって、
     該複数本の導光路の一端である各接続端を円周に沿って所定の中心角で配列して支持する接続端配列板と、
     前記複数本の導光路の前記接続端と順次光学的に接続し入射した光を出射可能とする導光領域を有し前記接続端配列板の前記円周と同心の回転軸線をもつように設けられた選択用回転体と、
     前記所定周期で該選択用回転体を連続的または間欠的に回転駆動可能な回転駆動機構と、を有し、
     前記導光領域は、前記各導光路の接続端に前記所定周期で順次連続的または間欠的に光学的に接続可能に設けられた第1端および該第1端の反対側の端に設けられた第2端を有する切換用導光路を有し、前記第1端は前記接続端配列板に平行に近接するように定められる第1端配置面において、前記接続端配列板の前記円周と同心同径の円周上に配置され、前記第2端は前記回転軸線上に定められる第2端配置点に配置された導光路選択装置。
  19.  前記選択用回転体は、選択した導光路以外の選択されていない導光路からの光を吸収可能とする吸光領域をさらに有し、前記導光領域が前記選択された導光路の接続端と光学的に接続した際に、前記吸光領域は、選択されていない前記導光路の各接続端と光学的に接続するように設けられた請求項18に記載の導光路選択装置。
PCT/JP2016/063265 2015-05-01 2016-04-27 多重反応並行測定装置およびその方法 WO2016178401A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16789537.4A EP3290909B1 (en) 2015-05-01 2016-04-27 Parallel measurement device and parallel measurement method for multiple reactions
JP2017516603A JP6851079B2 (ja) 2015-05-01 2016-04-27 多重反応並行測定装置およびその方法
US15/570,005 US10837907B2 (en) 2015-05-01 2016-04-27 Multiple reaction parallel measurement apparatus and method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015094426 2015-05-01
JP2015-094426 2015-05-01

Publications (1)

Publication Number Publication Date
WO2016178401A1 true WO2016178401A1 (ja) 2016-11-10

Family

ID=57217592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063265 WO2016178401A1 (ja) 2015-05-01 2016-04-27 多重反応並行測定装置およびその方法

Country Status (4)

Country Link
US (1) US10837907B2 (ja)
EP (1) EP3290909B1 (ja)
JP (1) JP6851079B2 (ja)
WO (1) WO2016178401A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118600A (ja) * 2019-01-25 2020-08-06 株式会社日立製作所 発光計測装置、発光計測システム及び発光計測方法
JP2020139893A (ja) * 2019-03-01 2020-09-03 株式会社日立ハイテク 自動分析装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761108B (zh) * 2010-11-23 2022-06-07 安德鲁联合有限公司 容积校准、处理流体和操纵移液管的方法
US11498064B2 (en) * 2017-03-28 2022-11-15 Universal Bio Research Co., Ltd. Photometric dispensing nozzle unit, photometric dispensing apparatus, and photometric dispensing method
US11480565B2 (en) * 2020-06-12 2022-10-25 Bio-Rad Laboratories, Inc. Automated immunoassay

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030151743A1 (en) * 2002-02-13 2003-08-14 Fernando C.J. Anthony Sample analysis system with fiber optics and related method
WO2007029616A1 (ja) * 2005-09-05 2007-03-15 Universal Bio Research Co., Ltd. 各種物質保持体、各種物質保持体処理装置、およびその処理方法
JP2008039477A (ja) * 2006-08-02 2008-02-21 Furukawa Electric Co Ltd:The 光検出装置
WO2011016509A1 (ja) * 2009-08-06 2011-02-10 ユニバーサル・バイオ・リサーチ株式会社 光ファイバ測定装置およびその測定方法
WO2012105712A1 (ja) * 2011-02-04 2012-08-09 ユニバーサル・バイオ・リサーチ株式会社 自動反応・光測定装置およびその方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1505312A (en) * 1975-08-08 1978-03-30 Secr Social Service Brit Apparatus for use in investigating specimens
FR2683907B1 (fr) 1991-11-14 1995-02-17 Cemagref Dispositif portable d'analyse pour le controle des procedes agro-alimentaires et biotechnologiques par biochimiluminescence.
US5210590A (en) * 1992-02-18 1993-05-11 L. T. Industries, Inc. Rapid scanning spectrographic analyzer
US5589351A (en) * 1994-12-06 1996-12-31 Nps Pharmaceuticals, Inc. Fluorescence detection apparatus
DE69628014D1 (de) 1995-07-10 2003-06-12 Prec System Science Co Messinstrument
US20010046673A1 (en) 1999-03-16 2001-11-29 Ljl Biosystems, Inc. Methods and apparatus for detecting nucleic acid polymorphisms
US20050026209A1 (en) * 1999-01-08 2005-02-03 Vann Charles S. Optical fiber bundle for detecting binding of chemical species
CA2358566A1 (en) * 1999-01-08 2000-07-13 Charles S. Vann Fiber array for contacting chemical species and methods for using and making same
US6577391B1 (en) * 1999-03-25 2003-06-10 Spectrx, Inc. Apparatus and method for determining tissue characteristics
US6867851B2 (en) * 1999-11-04 2005-03-15 Regents Of The University Of Minnesota Scanning of biological samples
ATE470716T1 (de) 2000-07-18 2010-06-15 Millennium Pharm Inc 18480 humane proteinkinasemoleküle und ihre verwendungen
US7157047B2 (en) 2001-02-09 2007-01-02 Pss Bio Instruments, Inc. Device for containing, reacting and measuring, and method of containing, reacting and measuring
US7348587B2 (en) * 2001-06-28 2008-03-25 Fujifilm Corporation Method for producing biochemical analysis data and apparatus used therefor
JP2003294630A (ja) 2001-06-28 2003-10-15 Fuji Photo Film Co Ltd 生化学解析用データの生成方法および装置
US7480042B1 (en) * 2004-06-30 2009-01-20 Applied Biosystems Inc. Luminescence reference standards
CN101076732B (zh) 2004-12-10 2012-11-28 环球生物研究株式会社 封入生物物质固定用载体的吸头、生物物质固定用载体处理装置及其处理方法
JP2006275998A (ja) 2005-03-02 2006-10-12 Kyoto Univ 光散乱測定装置
US7709249B2 (en) * 2005-04-01 2010-05-04 3M Innovative Properties Company Multiplex fluorescence detection device having fiber bundle coupling multiple optical modules to a common detector
US7551810B2 (en) * 2005-09-22 2009-06-23 Optech Ventures, Llc Segmented fiber optic sensor and method
JP5122091B2 (ja) 2006-06-13 2013-01-16 ユニバーサル・バイオ・リサーチ株式会社 担体封入変形容器、担体封入変形容器処理装置、および担体封入変形容器処理方法
DE102006036171B4 (de) * 2006-07-28 2008-10-09 Analytik Jena Ag Anordnung und Verfahren zur mehrkanaligen Fluoreszenzmessung in PCR-Proben
JP2008116395A (ja) * 2006-11-07 2008-05-22 Fujitsu Ltd 蛍光検出装置
US8405827B2 (en) * 2006-11-21 2013-03-26 Ricardo Claps Time-resolved spectroscopy system and methods for multiple-species analysis in fluorescence and cavity-ringdown applications
US8742367B2 (en) * 2007-10-31 2014-06-03 Wallac Oy Multi-purpose measurement system
JP2012073195A (ja) 2010-09-30 2012-04-12 Furukawa Electric Advanced Engineering Co Ltd 光スイッチ、光測定装置、および光測定方法
US20160320381A1 (en) * 2011-09-25 2016-11-03 Theranos, Inc. Systems and methods for multi-analysis
US10012664B2 (en) * 2011-09-25 2018-07-03 Theranos Ip Company, Llc Systems and methods for fluid and component handling
EP2820429B1 (en) * 2012-03-02 2021-02-24 LAXCO, Inc. Multichannel analytical instruments for use with specimen holders
WO2014014016A1 (ja) * 2012-07-17 2014-01-23 ユニバーサル・バイオ・リサーチ株式会社 反応容器用光測定装置およびその方法
AU2013202788B2 (en) * 2013-03-14 2015-10-01 Gen-Probe Incorporated Indexing signal detection module
US20140287514A1 (en) * 2013-03-19 2014-09-25 Board Of Regents, The University Of Texas System Luminescent microporous material for detection and discrimination of low-levels of common gases and vapors
JP6307500B2 (ja) 2013-05-21 2018-04-04 ユニバーサル・バイオ・リサーチ株式会社 シーケンサ前処理装置およびその方法
JP6586413B2 (ja) * 2014-03-20 2019-10-02 ユニバーサル・バイオ・リサーチ株式会社 導光集積検査装置およびその検査方法
EP3658898B1 (en) * 2017-07-26 2024-05-01 Gen-Probe Incorporated Optical signal detection modules and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030151743A1 (en) * 2002-02-13 2003-08-14 Fernando C.J. Anthony Sample analysis system with fiber optics and related method
WO2007029616A1 (ja) * 2005-09-05 2007-03-15 Universal Bio Research Co., Ltd. 各種物質保持体、各種物質保持体処理装置、およびその処理方法
JP2008039477A (ja) * 2006-08-02 2008-02-21 Furukawa Electric Co Ltd:The 光検出装置
WO2011016509A1 (ja) * 2009-08-06 2011-02-10 ユニバーサル・バイオ・リサーチ株式会社 光ファイバ測定装置およびその測定方法
WO2012105712A1 (ja) * 2011-02-04 2012-08-09 ユニバーサル・バイオ・リサーチ株式会社 自動反応・光測定装置およびその方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3290909A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118600A (ja) * 2019-01-25 2020-08-06 株式会社日立製作所 発光計測装置、発光計測システム及び発光計測方法
JP7107860B2 (ja) 2019-01-25 2022-07-27 株式会社日立製作所 発光計測装置、発光計測システム及び発光計測方法
JP2020139893A (ja) * 2019-03-01 2020-09-03 株式会社日立ハイテク 自動分析装置
JP7219119B2 (ja) 2019-03-01 2023-02-07 株式会社日立ハイテク 自動分析装置

Also Published As

Publication number Publication date
US10837907B2 (en) 2020-11-17
EP3290909A4 (en) 2018-11-21
EP3290909B1 (en) 2021-10-06
JPWO2016178401A1 (ja) 2018-04-19
US20180156732A1 (en) 2018-06-07
JP6851079B2 (ja) 2021-03-31
EP3290909A1 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
US11693019B2 (en) Automated liquid-phase immunoassay apparatus
JP6385944B2 (ja) 化学発光測定装置およびその方法
WO2016178401A1 (ja) 多重反応並行測定装置およびその方法
KR101260400B1 (ko) 생체샘플의 복합자동분석장치, 자동분석방법 및 반응 큐벳
JP5746607B2 (ja) 容量の小さい液体の光度測定のためのキュベット
WO2018126775A1 (zh) 自动分析装置及样本分析方法
TWI628283B (zh) 反應容器用光測定裝置及該方法
WO2007029616A1 (ja) 各種物質保持体、各種物質保持体処理装置、およびその処理方法
CN102539737A (zh) 被检试样的自动判别方法
JP6120763B2 (ja) 反応槽を搬送する装置およびプロセス
JP2007285999A (ja) 光測定装置
JPWO2012157685A1 (ja) 反応容器用光測定装置およびその方法
US10883926B2 (en) General-purpose optical measuring device and method of same
JP2016223919A (ja) クロマトグラフィー処理用チップ、クロマトグラフィー処理装置およびクロマトグラフィー処理方法
JP5123859B2 (ja) 異常特定方法、分析装置および試薬
JP6586413B2 (ja) 導光集積検査装置およびその検査方法
WO2022179350A1 (zh) 样本联检分析系统
US7667184B2 (en) Optical information reader
CN117990897A (zh) 一种生化免疫一体机
JP2001512827A (ja) 検出器
JP2012233888A (ja) 複数種の目的物質を同時に検出又は定量するための分析方法
JP2022133528A (ja) 自動分析装置
JP5054701B2 (ja) 異常特定方法および分析装置
JP2020091207A (ja) 自動分析装置
CN212059831U (zh) 一种多功能细胞-蛋白检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789537

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017516603

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15570005

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE