[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016172959A1 - 多孔陶瓷材料的制备方法和多孔陶瓷材料及其应用 - Google Patents

多孔陶瓷材料的制备方法和多孔陶瓷材料及其应用 Download PDF

Info

Publication number
WO2016172959A1
WO2016172959A1 PCT/CN2015/078092 CN2015078092W WO2016172959A1 WO 2016172959 A1 WO2016172959 A1 WO 2016172959A1 CN 2015078092 W CN2015078092 W CN 2015078092W WO 2016172959 A1 WO2016172959 A1 WO 2016172959A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous ceramic
ceramic material
silicate
injection
raw material
Prior art date
Application number
PCT/CN2015/078092
Other languages
English (en)
French (fr)
Inventor
周宏明
李荐
夏庆路
肖凯文
刘平昆
Original Assignee
深圳麦克韦尔股份有限公司
周宏明
李荐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔股份有限公司, 周宏明, 李荐 filed Critical 深圳麦克韦尔股份有限公司
Priority to PCT/CN2015/078092 priority Critical patent/WO2016172959A1/zh
Priority to US14/814,093 priority patent/US9648909B2/en
Publication of WO2016172959A1 publication Critical patent/WO2016172959A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/24Producing shaped prefabricated articles from the material by injection moulding
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks

Definitions

  • the electronic cigarette atomizer is the main component for storing smoke liquid and generating smoke in electronic cigarettes.
  • the current common electronic cigarette aerators are composed of various components, have complicated structures, complicated production processes and low service life.
  • a method for preparing a porous ceramic material comprising the steps of:
  • the silicate raw material includes sodium silicate and other compounds, and the other compounds are at least one of oxide, nitride, and carbide, by mass Percentage, sodium silicate is 20% ⁇ 40%, other compounds are 45% ⁇ 75%, and pore former is 3% ⁇ 20%;
  • the pore former is at least one of wood chips, starch, and graphite.
  • the premix is dried under the conditions of drying at 70 ° C to 110 ° C for 200 min to 400 min.
  • the binder comprises: 60% to 80% paraffin, 5% to 15% polypropylene, 5% to 15% stearic acid, and 5% to 15% by mass. % dibutyl phthalate.
  • the silicate aggregate is kneaded with the binder under the following conditions: mixing at 180 ° C ⁇ 220 ° C for 3 h ⁇ 5 h.
  • the injection molding conditions of the injection raw material are: injection temperature is 100 ° C ⁇ 160 ° C; injection pressure is 50 MPa ⁇ 140 MPa; holding pressure is 10 MPa ⁇ 30 MPa.
  • the conditions of the degumming treatment of the green body are: holding at 200 ° C ⁇ 800 ° C for 3 h ⁇ 10 h.
  • condition of the calcination treatment of the green body is: holding at 800 ° C ⁇ 1600 ° C for 1 h ⁇ 4 h.
  • a porous ceramic material is produced by the above-described method for preparing a porous ceramic material.
  • FIG. 1 is a flow chart showing a method of preparing a porous ceramic material according to an embodiment
  • FIG. 3 is a schematic cross-sectional view of the electronic aerosolizer shown in FIG. 2.
  • Step S200 mixing the silicate raw material and the pore forming agent to obtain a premix.
  • step S200 The specific step of step S200 is that a pore former and a flux are sequentially added to other compounds to obtain a premix.
  • a pore former and a flux are sequentially added to other compounds to obtain a premix.
  • sodium silicate is added in the form of an aqueous solution, and thus the resulting premix is a wet material.
  • the mixing time of the silicate raw material and the pore forming agent is from 0.5 h to 2 h.
  • the pore former is at least one of wood chips, starch, and graphite.
  • wood chips, starch, sucrose, wood fiber and short carbon fiber such as large pore size complex organic or inorganic materials, can control the pore size and porosity of the finally formed porous ceramic material according to demand, and is suitable for storage and conduction. Liquid and smoke-connecting pore structure.
  • a pore-forming agent having a different shape and structure is used to obtain a connected pore shape of the porous ceramic material.
  • a pore-forming agent having a different shape and structure is used to obtain a connected pore shape of the porous ceramic material.
  • the pore structure of the obtained porous ceramic material has a large amount of fibrous structure; when a spherical starch is used as a pore former, the pore structure of the obtained porous ceramic material is mostly Ellipsoid type.
  • the amount of pore-forming agent added is controlled to control the number and distribution density of the pore structure of the porous ceramic material. Therefore, by adjusting the type, particle size, and amount of the pore-forming agent, different porous ceramic materials can be prepared to meet the needs of different products.
  • the premixing conditions are as follows: drying at 70 ° C ⁇ 110 ° C for 200 min ⁇ 400 min.
  • the drying of the premix is carried out in a dry box.
  • the binder comprises, in mass percent, 60% to 80% paraffin wax (PW), 5% to 15% polypropylene (PP), 5% to 15% stearic acid (SA), and 5 % ⁇ 15% dibutyl phthalate (DBP).
  • Step S400 is specifically: after completely melting the PP at 180 ° C ⁇ 220 ° C, cooling to 170 ° C ⁇ 190 ° C, adding silicate aggregate, paraffin, mixing 0.5 h ⁇ 1 h, continue to add stearic acid, DBP, and mix for 1 h ⁇ 2 h.
  • the kneading conditions are kneaded at 180 ° C to 220 ° C for 3 h to 5 h.
  • the kneading is carried out using a kneader.
  • Step S500 injection molding the raw material to obtain a green body.
  • the injected feedstock is cooled, pelletized for use.
  • the cooling of the injected material is carried out by natural cooling. More preferably, the injection material is pelletized to a particle size of less than 5 mm.
  • the injection molding conditions of the injection raw material are: injection temperature is 100 ° C ⁇ 160 ° C; injection pressure is 50 MPa ⁇ 140 MPa; holding pressure is 10 MPa ⁇ 30 MPa. It can be understood that the injection process parameters can be adjusted depending on the ratio of the raw materials.
  • the injection molding of the injection raw material is carried out in an injection molding machine, and the injection raw material is added into a hopper of an injection molding machine, and corresponding injection process parameters are set, and injection molding is performed to obtain a green body.
  • the porous ceramic material is prepared by the injection molding process, and multiple blanks can be formed at one time, which can ensure the product shrinkage rate is small and the production efficiency is improved, and is suitable for large-scale industrial production.
  • the degumming treatment of the green body is carried out in different temperature stages, and different physical and chemical reactions occur at different temperature stages.
  • the physicochemical reactions occurring at different temperature stages include the removal of bound water, the removal of structural water, the removal of the pore former, and the degumming of the binder.
  • the holding time for each temperature stage is 0.5h ⁇ 2h.
  • the condition of the calcination treatment of the green body is: keeping the temperature at 800 ° C to 1600 ° C for 1 h to 4 h. More preferably, the green body is heated to a temperature of from 800 ° C to 1600 ° C at a temperature increase rate of from 0.5 ° C / min to 5 ° C / min.
  • the method further includes the step of: naturally cooling the porous ceramic material.
  • the porous ceramic material of one embodiment is prepared by the above-described method for preparing a porous ceramic.
  • the porous ceramic material has a porosity of 35% to 70% and a pore diameter of 200 nm to 2 ⁇ m.
  • the above porous ceramic material is used in an electronic aerosolizer.
  • the electronic cigarette atomizer needs to store the smoke liquid and atomize part of the smoke liquid each time, resulting in a complicated structure of the electronic cigarette atomizer and a complicated production process.
  • a porous ceramic material is used in an electronic aerosolizer to store the liquid smoke.
  • the above porous ceramic material has simple production process, low sintering temperature, high porosity and good mechanical strength, is used for storing the liquid smoke, and can well control the amount of smoke, thereby simplifying the structure of the electronic cigarette atomizer.
  • the electronic aerosolizer has a simple structure, a simple production process and good performance.
  • the atomizing portion 230 is provided with a first venting hole 231 through which the atomized soot liquid enters the outside of the electronic aerosolizer 200 .
  • the liquid storage portion 210 is provided with a second ventilation hole 211 that communicates with the first ventilation hole 231 of the atomization portion 230.
  • the electronic aerosolizer 200 further includes a mouthpiece 240 that is coupled to the reservoir 210 and that is in communication with the second vent 211 of the reservoir 210.
  • the electronic cigarette atomizer 200 further includes an electrical connector 250.
  • the electrical connector 250 is connected to the atomization unit 230, and is connected to a power source or the like through the electrical connector 250 for driving the atomization unit 230.
  • the electronic cigarette atomizer 200 further includes a housing 260, and the liquid storage portion 210, the liquid absorption portion 220, the atomization portion 230, the mouthpiece 240, and the electrical connector 250 are all disposed in the outer casing 260.
  • the method for testing the performance of the porous ceramic material prepared in the following examples of the present invention is: the Archimedes drainage method for measuring the porosity of the porous ceramic material; and the bending strength of the porous ceramic material by the electronic universal testing machine (GB/T) 4741-1999) Test; the average pore size of the porous ceramic material was measured using a BET specific surface meter.
  • the premix was dried in a dry box at 80 ° C for 400 min to obtain a dried silicate aggregate.
  • the injected raw materials are cooled and pelletized by a crocodile crushing device.
  • the pelletized injection raw material was placed in a hopper of an injection molding machine, and an injection molding was carried out to obtain a green body having an injection temperature of 135 ° C, an injection pressure of 140 MPa, and a holding pressure of 10 MPa.
  • the size of the blank can preferably be replenished.
  • Porous ceramic materials were measured for porosity, flexural strength, and average pore size. Under this condition, the porous ceramic material has a porosity of 49.58% and a flexural strength of 15.60. Mpa, with an average pore diameter of 1.250 ⁇ m.
  • the premix was dried in a dry box at 100 ° C for 300 min to obtain a dried silicate aggregate.
  • the green body is placed in a high-temperature atmospheric pressure resistance furnace, heated to 200 ° C at a heating rate of 2 ° C / min, kept for 2 h, and then heated to 300 ° C at the same rate, heated for 1 h, then heated to 420 ° C, kept for 2 h, and then The temperature was raised to 500 ° C for 1 h at a rate of 2 ° C / min to remove bound water, structural water, pore former and binder. The sample was further heated to a temperature of 2 ° C / min to 1200 ° C for 1 h, and the porous ceramic material was obtained after cooling with the furnace. Porous ceramic materials were measured for porosity, flexural strength, and average pore size. Under these conditions, the porous ceramic material has a porosity of 64.71%, a flexural strength of 10.70 MPa, and an average pore diameter of 1.885. Mm.
  • the green body is placed in a high-temperature atmospheric pressure resistance furnace, and is heated to 200 ° C at a heating rate of 4 ° C / min, kept for 2 h, and then heated to 420 ° C at a heating rate of 2 ° C / min, held for 1 h, and then 2 ° C /
  • the rate of min is raised to 600 ° C for 1.5 h, and the bound water, structural water, graphite and binder are removed; the sample is further heated to 1600 ° C for 4 h at a rate of 2 ° C/min, and the porous ceramic is obtained after cooling with the furnace.
  • Porous ceramic materials were measured for porosity, flexural strength, and average pore size. Under this condition, the porous ceramic material has a porosity of 36.95%, a flexural strength of 19.60 MPa, and an average pore diameter of 270 nm.
  • the diatomaceous earth mineral raw material was ground through a 150 mesh sieve, wherein the diatomaceous earth mineral raw material contained 90% of silica, 6% of alumina, 1% of iron oxide, 2.5% of sodium oxide, and other 0.5% by mass fraction. 400 g of diatomaceous earth mineral raw material was taken, 40 g of 300-mesh starch was added, and the mixture was stirred by a ball mill for 30 min in a ball mill, and then 200 g of industrial water glass having a modulus of 3.5 was added, and the mixture was stirred for 30 min to obtain a premix.
  • the premix was dried in a dry box at 80 ° C for 300 min to obtain a dried silicate aggregate.
  • the feldspar-kaolin mixed mineral raw material is ground through a 250 mesh sieve, wherein the feldspar-kaolin mixed mineral raw material contains 65% of silica, 28% of alumina, 0.5% of iron oxide, 0.5% of sodium oxide, and 5% by mass. 1.5%. 400 g of feldspar-kaolin mixed mineral raw material was taken, 12 g of 300-mesh starch was added, and the mixture was stirred and mixed for 30 min in a ball mill, and then 85 g of industrial water glass having a modulus of 2.5 was added, and the mixture was stirred for 30 min to obtain a premix.
  • the premix was dried in a dry box at 80 ° C for 300 min to obtain a dried silicate aggregate.
  • the mixer was preheated to 180 ° C, 40 g of polypropylene was added to the mixer, and after the polypropylene was completely melted, it was cooled to 170 ° C, and then 400 g of dry raw materials, 160 g of paraffin, and 1 h of the mixture were added, and 40 g of stearic acid was added. 27 g of dibutyl phthalate, mixed for 2 h, to obtain an injection raw material.
  • the injected raw materials are cooled and pelletized.
  • the pelletized injection raw material was placed in a hopper, and injection molding was carried out to obtain a green body, and the injection temperature was 100 ° C, the injection pressure was 50 MPa, and the holding pressure was 10 MPa.
  • the green body is placed in a high-temperature atmospheric pressure resistance furnace, heated to 200 ° C at a heating rate of 2 ° C / min, kept for 2 h, and then heated to 380 ° C at the same rate, heated for 40 min, then heated to 420 ° C, kept for 1 h, and then The temperature was raised to 500 ° C for 40 min at a rate of 2 ° C / min to remove bound water, structural water, starch and binder; the sample was further heated to 800 ° C for 2 h at 2 ° C / min, and cooled with the furnace.
  • Porous ceramic material Porous ceramic materials were measured for porosity, flexural strength, and average pore size. Under this condition, the porous ceramic material has a porosity of 44.82%, a flexural strength of 13.35 MPa, and an average pore diameter of 200 nm.
  • the compact is placed in a high-temperature atmospheric pressure resistance furnace, and heated at a rate of 2 ° C / min to 600 ° C for 2 h to remove the pore former and moisture; the sample is further heated to 800 ° C at 2 ° C / min for 2 h.
  • the desired porous ceramic is obtained after cooling with the furnace.
  • the porous ceramic was subjected to porosity, flexural strength, and average pore diameter measurement. Under this condition, the porous ceramic had a porosity of 72.12%, a flexural strength of 9.60 MPa, and an average pore diameter of 621 nm.
  • the comparative examples were the same as those of the silicate aggregate of Example 4, and the subsequent molding and sintering processes were different. It can be seen that when the comparative example is formed by a dry pressing process, since the raw material contains moisture, demolding after molding is difficult, and it is easy to cause sticking, falling off, etc., and the strength of the compact is insufficient, and deformation or damage is easily caused during transportation.
  • the injection molding is adopted, and the extruded sample is quickly solidified at a low temperature, so that the surface of the sample is smooth, does not bond with the mold, is easy to demould, and the sample has a certain strength, and is not easily deformed during transportation. Damage and other circumstances.
  • the dry pressing process is used to form uneven force, and cracking and destruction are likely to occur during the sintering process of the compact; while injection molding only needs to maintain the injection temperature and injection during one injection molding process.
  • the process parameters of pressure, holding pressure and time are unchanged, and the obtained porous ceramic material has stable performance and uniform structure, and reduces cracking and cracking phenomenon in sintering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

一种多孔陶瓷材料的制备方法、由其制得的多孔陶瓷材料及该材料在电子烟雾化器中的应用。制备方法包括以下步骤:将硅酸盐原料和造孔剂混合,得到预混料,其中硅酸盐原料包括硅酸钠和其他化合物,其他化合物为氧化物、氮化物、碳化物中的至少一种;将预混料干燥,得到硅酸盐骨料;将硅酸盐骨料与粘结剂进行混炼,得到注射原料,其中按质量百分比计,硅酸盐骨料为50%~60%、粘结剂为40%~50%;将注射原料进行注射成型得到素坯;及将素坯依次进行脱胶、煅烧处理,得到多孔陶瓷材料。

Description

多孔陶瓷材料的制备方法和多孔陶瓷材料及其应用
【技术领域】
本发明涉及陶瓷材料制备领域,特别是涉及一种多孔陶瓷材料的制备方法和多孔陶瓷材料及其应用。
【背景技术】
陶瓷材料为用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料,其用途非常广泛。
目前工业上常用的多孔陶瓷材料的制备方法主要有添加造孔剂法、有机泡沫浸渍法、发泡法、注射成型法、颗粒堆积法等。但以上制备方法均有其局限性,比如添加造孔剂法制得的多孔陶瓷材料的孔分布均匀性差,力学性能差,生产效率低;有机泡沫浸渍法得到的制品形状密度不易控制;发泡法对原料要求较高,工艺条件不易控制;颗粒堆积法的获得的制品气孔率较低。因此,如何制备孔隙率高、孔径可控、力学性能良好的多孔陶瓷材料是急需解决的问题。
电子烟作为一种用于戒烟或替代香烟的电子产品,模仿了传统香烟外观,且其中储存的烟液在加热雾化时,不产生香烟中的焦油、悬浮颗粒等其他有害成分,也不会带来二次吸烟的危害或燃烧烟头处理不当容易引起火灾的问题。电子烟雾化器是电子烟中储存烟液及产生烟雾的主要部件。但是目前常见的电子烟雾化器,采用多种组件构成、结构复杂,生产工艺复杂且使用寿命低。
【发明内容】
基于此,有必要提供一种得到孔隙率高、孔径可控、力学性能良好的多孔陶瓷材料的制备方法和多孔陶瓷材料。
还有必要提供一种孔隙率高、孔径可控、力学性能良好的多孔陶瓷材料。
还有必要提供一种生产效率高、使用时间长的电子烟雾化器。
一种多孔陶瓷材料的制备方法,包括以下步骤:
将硅酸盐原料和造孔剂混合,得到预混料,其中所述硅酸盐原料包括硅酸钠和其他化合物,其他化合物为氧化物、氮化物、碳化物中的至少一种,按质量百分比计,硅酸钠为20%~40%、其他化合物为45%~75%,造孔剂为3%~20%;
将所述预混料干燥,得到硅酸盐骨料;
将所述硅酸盐骨料与所述粘结剂进行混炼,得到注射原料,其中,按质量百分比计,硅酸盐骨料为50%~60%、粘结剂为40%~50%;
将所述注射原料进行注射成型得到素坯;及
将所述素坯依次进行脱胶处理、煅烧处理,得到所述多孔陶瓷材料。
上述多孔陶瓷材料的制备方法,将添加造孔剂法与注射成型法相结合,制备的多孔陶瓷材料孔隙率高、孔径可控且具有良好的力学性能,由于采用注射成型工艺,相比于采用干压成型工艺,生产效率得到明显提高,适合规模化生产。
在其中一个实施例中,所述造孔剂为木屑、淀粉、石墨中的至少一种。
在其中一个实施例中,所述预混料干燥的条件为:于70℃~110℃干燥200min~400min。
在其中一个实施例中,按质量百分比计,所述粘结剂包括:60%~80%的石蜡、5%~15%的聚丙烯、5%~15%的硬脂酸和5%~15%的邻苯二甲酸二丁酯。
在其中一个实施例中,所述硅酸盐骨料与所述粘结剂进行混炼的条件为:于180℃~220℃混炼3 h~5 h。
在其中一个实施例中,所述注射原料的注射成型条件为:注射温度为100℃~160℃;注射压力为50 MPa~140 MPa;保压压力为10 MPa~30 MPa。
在其中一个实施例中,所述素坯的脱胶处理的条件为:于200℃~800℃下保温3h~10h。
在其中一个实施例中,所述素坯的煅烧处理的条件为:于800℃~1600℃下保温1h~4h。
一种多孔陶瓷材料,采用上述的多孔陶瓷材料的制备方法制得。
上述的多孔陶瓷材料在电子烟雾化器中的应用。
【附图说明】
图1为一实施方式的多孔陶瓷材料的制备方法的流程图;
图2为一实施方式的电子烟雾化器的分解结构示意图;
图3为图2所示的电子烟雾化器的剖面结构示意图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
参阅图1,一实施方式的多孔陶瓷制备方法,包括以下步骤:
步骤S100:提供原料。
原料包括硅酸盐原料、造孔剂和粘结剂,硅酸盐原料包括硅酸钠和其他化合物,其他化合物为氧化物、氮化物、碳化物中的至少一种。采用资源丰富且无污染的无机硅酸盐材料作为多孔陶瓷材料的骨料,烧结的条件较为温和,可实现在较低温度、空气气氛及常压下烧结。
特别地,氧化物包括氧化铝、氧化锆、二氧化硅、氧化铁、氧化钠、氧化钾、氧化钙和氧化镁等。
特别地,氮化物包括氮化硅等。
特别地,碳化物包括碳化硅、碳化硼等。
特别地,将其他化合物粉碎至粒径为60 μm~250 μm。优选的,将其他化合物研磨过筛。具体的,将其他化合物研磨过筛过60目、200目等规格的标准筛。
其中,硅酸钠作为原料的同时,还具有助熔剂的作用。作为原料的硅酸钠同时用作助熔剂可以有效的降低烧结温度,并在高温产生具有粘结作用的玻璃相,提高多孔陶瓷基体的强度。特别地,硅酸钠可由无水硅酸钠、九水合硅酸钠(Na2SiO3•9H2O)或模数为1.5~3.5的硅酸钠提供。其中,模数是水玻璃(主要成分硅酸钠)中二氧化硅与氧化钠的物质的量之比。优选的,硅酸钠由模数为2.6~2.8的硅酸钠提供。
步骤S200:将硅酸盐原料和造孔剂混合,得到预混料。
步骤S200的具体步骤为:在其他化合物中依次加入造孔剂、助熔剂混合得到预混料。特别地,硅酸钠以水溶液的形式加入,因此得到的预混料为湿料。
特别地,按质量百分比计,将20%~40%的硅酸钠,45%~75%的其他化合物,3%~20%的造孔剂混合,得到预混料。
特别地,硅酸盐原料和造孔剂混合的时间为0.5h~2h。
优选地,将硅酸盐原料、造孔剂混合时采用滚筒球磨机或行星球磨机干混。可以理解,还可采用其他方式混合,只要保证几种材料混合均匀即可,如使用搅拌机或捏合机搅拌干混。
特别地,造孔剂为木屑、淀粉、石墨中的至少一种。采用木屑、淀粉、蔗糖、木纤维及短碳纤维这种大粒径的复杂有机物或无机物作为造孔剂,可以根据需求控制最终形成的多孔陶瓷材料的孔径及孔隙率,得到适于储存、传导液体和产生烟雾的连通孔结构。
特别地,造孔剂的粒径为10μm~800μm。
优选的,采用具有不同形状及结构的造孔剂,得到多孔陶瓷材料的连通孔形状。例如:采用具有长条状的木屑做造孔剂时,得到的多孔陶瓷材料的孔结构具有大量的纤维状结构;采用球形的淀粉做造孔剂时,得到的多孔陶瓷材料的孔结构多为椭球型。
优选的,控制造孔剂的粒度则可以控制多孔陶瓷材料的孔结构大小。
优选的,控制造孔剂的加入量,可控制多孔陶瓷材料的孔结构的数量及分布密度。因此通过调节造孔剂的种类、粒度、掺入量,可制备不同的多孔陶瓷材料,以满足不同产品的需求。
步骤S300:将预混料干燥,得到硅酸盐骨料。
预混料干燥的条件为:于70℃~110℃干燥200min~400min。
优选地,预混料的干燥在干燥箱中进行。
步骤S400:将硅酸盐骨料与粘结剂进行混炼,得到注射原料。
特别地,按质量百分比计,将50%~60%的硅酸盐骨料与40%~50%的粘结剂进行混炼,得到注射原料。
特别地,按质量百分比计,粘结剂包括:60%~80%的石蜡(PW)、5%~15%的聚丙烯(PP)、5%~15%的硬脂酸(SA)和5%~15%的邻苯二甲酸二丁酯(DBP)。步骤S400具体为:在180℃~220℃下,将PP完全融化后,冷却至170℃~190℃,加入硅酸盐骨料、石蜡,混合0.5 h~1 h,继续加入硬脂酸、DBP,混合1 h~2 h。
特别地,混炼的条件为于180℃~220℃混炼3 h~5 h。
特别地,混炼采用混炼机进行。
步骤S500:将注射原料进行注射成型得到素坯。
优选地,在步骤S500之前,将注射原料经冷却、切粒待用。
更优选的,注射原料的冷却采用自然冷却。更优选的,将注射原料切粒至粒径小于5mm。
特别地,采用破碎设备进行切粒。优选地,切粒工艺采用颚式破碎设备、辊式破碎设备或锤式破碎设备等机械进行破碎。当然,还可以采用其他机械破碎,只要保证破碎后原料的粒径要求即可,比如使用冲击式破碎设备、圆锥式破碎设备、旋回式破碎设备等。
优选的,注射原料的注射成型条件为:注射温度为100℃~160℃;注射压力为50 MPa~140 MPa;保压压力为10 MPa~30 MPa。可以理解,注射工艺参数随原料配比的不同可有所调整。
优选的,注射原料的注射成型在注射成型机进行,将注射原料加入注射成型机的料斗中,设定相应的注射工艺参数,进行注射成型得到素坯。
采用注射成型工艺制备多孔陶瓷材料,可一次成型多个素坯,既能保证产品收缩率较小,又提高了生产效率,适合大规模的工业生产。
步骤S600:将素坯依次进行脱胶处理、煅烧处理,得到多孔陶瓷材料。
优选的,素坯的脱胶处理的条件为:于200℃~800℃下保温3h~10h。更优选的,将素坯以1 ℃/min~10 ℃/min的升温速率升温至200℃~800℃。
特别地,素坯的脱胶处理分不同温度阶段进行,在不同温度阶段发生不同的物理化学反应。具体地,不同温度阶段发生的物理化学反应包括结合水的脱去、结构水的脱去、造孔剂的脱去、粘结剂的脱胶。特别地,每个温度阶段的保温时间为0.5h~2h。
优选的,素坯的煅烧处理的条件为:于800℃~1600℃下保温1h~4h。更优选的,将素坯以0.5℃/min~5℃/min的升温速率升温至800℃~1600℃。
特别地,在步骤S600之后,还包括步骤:将多孔陶瓷材料自然冷却。
上述多孔陶瓷材料的制备方法,将添加造孔剂法与注射成型法相结合,制备的多孔陶瓷材料孔隙率高、孔径可控且具有良好的力学性能,由于采用注射成型工艺,相比于采用干压成型工艺,生产效率得到明显提高,适合规模化生产。
一实施方式的多孔陶瓷材料,采用上述多孔陶瓷的制备方法制备得到。
特别地,多孔陶瓷材料的孔隙率为35%~70%,孔径为200 nm~2 μm。
上述多孔陶瓷材料在在电子烟雾化器中的应用。
电子烟雾化器中需要储存烟液且每次使部分烟液雾化,导致电子烟雾化器的结构较为复杂,生产工艺复杂。用于电子烟雾化器的组分合理、、具有较高孔隙率和一定强度的多孔陶瓷材料的制备方法。
特别地,在电子烟雾化器中采用多孔陶瓷材料储存烟液。上述多孔陶瓷材料生产工艺简单、烧结温度低,且具有较高的孔隙率和良好的力学强度,用于储存烟液,能够很好的控制发烟量,故而简化了电子烟雾化器的结构,使电子烟雾化器结构简单,生产工艺简便,性能良好。
参阅图2,一实施方式的电子烟雾化器200,包括储液部210、吸液部220以及雾化部230,储液部210中储存烟液,吸液部220填充上述多孔陶瓷材料,储液部210和吸液部220连通,雾化部230和吸液部220的多孔陶瓷材料接触,从而使储液部210中的烟液进入吸液部220被多孔陶瓷材料吸收,雾化部230将多孔陶瓷材料吸收的烟液雾化。
参阅图2和图3,特别地,雾化部230设有第一通气孔231,雾化后的烟液通过第一通气孔231进入到电子烟雾化器200外部。
特别地,储液部210设有第二通气孔211,第二通气孔211与雾化部230的第一通气孔231连通。特别地,电子烟雾化器200还包括烟嘴240,烟嘴240与储液部210连接,并与储液部210的第二通气孔211连通。
具体地,在本实施例中,雾化部230为发热丝,雾化部230发热时将多孔陶瓷材料吸收的烟液雾化。
进一步的,上述电子烟雾化器200还包括电接头250,电接头250与雾化部230连接,通过电接头250与电源等连接用于驱动雾化部230。
进一步的,上述电子烟雾化器200还包括外壳260,储液部210、吸液部220、雾化部230、烟嘴240以及电接头250均设于外壳260内。
电子烟雾化器200的吸液部220采用上述多孔陶瓷材料从储液部210吸收烟液,由于上述多孔陶瓷材料的良好的力学强度、较高的孔隙率,使吸液部220既能达到储存烟液的目的,又能够很好的控制发烟量,故而简化了电子烟雾化器的结构,上述电子烟雾化器200结构简单,生产工艺简便,性能良好,使用寿命长。
以下为上述多孔陶瓷材料的制备方法的具体实施例。
本发明以下实施例制备的多孔陶瓷材料进行性能测试的方法为:阿基米德排水法测定多孔陶瓷材料的孔隙率;用电子万能试验机对多孔陶瓷材料的抗弯强度(GB/T 4741-1999)进行测试;使用BET比表面仪测定多孔陶瓷材料的平均孔径。
实施例1:
将氧化铝粉末研磨过80目筛后,取400g氧化铝粉,加入80目~100目的木屑60g,于球磨机中球磨搅拌混合30min,再加入模数为2.6的工业水玻璃(主要成分硅酸钠)230g,混合搅拌30min,得到预混料。
将预混料放于干燥箱中80℃干燥400min,得到干燥的硅酸盐骨料。
将混炼机预热至220℃,加入聚丙烯20g于混炼机中,至聚丙烯完全融化后,冷却至170℃,再加入硅酸盐骨料400g、石蜡300g,混料1h;继续加入硬脂酸40g、邻苯二甲酸二丁酯40g,混料2h,得到注射原料。
将注射原料冷却、采用鳄式破碎设备切粒。将切粒后的注射原料加入注射成型机的料斗中,进行注射成型得到素坯,注射温度为135℃、注射压力140MPa、保压压力10MPa。素坯的尺寸最好能补充下。
将素坯放入高温常压电阻炉中,以5℃/min的升温速率升温至200℃,保温2h,再以同样速率升温至300℃,保温1h后升温至420℃,保温2h,再以2℃/min的速率升温至500℃保温1h,脱出结合水、结构水、造孔剂以及粘结剂。将样品再以2℃/min的速率升温至1400℃烧结1h,随炉冷却后得到所述多孔陶瓷材料。
将多孔陶瓷材料进行孔隙率、抗弯强度、平均孔径测量。在此条件下,多孔陶瓷材料的孔隙率为49.58%,抗弯强度为15.60 Mpa,平均孔径为1.250 μm。
实施例2:
将氧化锆研磨过60目筛后,取400g氧化锆,加入60目~80目的木屑80g,于球磨机中球磨搅拌混合40min,再加入模数为2.8的工业水玻璃160g,混合搅拌20min,得到预混料。
将预混料放于干燥箱中100℃干燥300min,得到干燥的硅酸盐骨料。
将混炼机预热至220℃,加入聚丙烯40g于混炼机中,至聚丙烯完全融化后,冷却至170℃,再加入硅酸盐骨料400g、石蜡280g,混料1h;继续加入硬脂酸40g、邻苯二甲酸二丁酯40g,混料2h,得到注射原料。
将注射原料冷却、切粒。将切粒后的注射原料加入料斗中,进行注射成型得到素坯,注射温度为140℃、注射压力120MPa、保压压力20MPa。
将素坯放入高温常压电阻炉中,以2℃/min的升温速率升温至200℃,保温2h,再以同样速率升温至300℃,保温1h后升温至420℃,保温2h,再以2℃/min的速率升温至500℃保温1h,脱出结合水、结构水、造孔剂以及粘结剂。将样品再以2℃/min的速率升温至1200℃烧结1h,随炉冷却后得到所述多孔陶瓷材料。将多孔陶瓷材料进行孔隙率、抗弯强度、平均孔径测量。在此条件下,多孔陶瓷材料的孔隙率为64.71%,抗弯强度为10.70Mpa,平均孔径为1.885 μm。
实施例3:
将氮化硅粉研磨过100目筛后,取400g氮化硅粉,加入200目的石墨133g,于球磨机中球磨搅拌混合30min,再加入模数为1.5的工业水玻璃355g,混合搅拌30min,得到预混料。
将预混料放于干燥箱中110℃干燥300min,得到干燥的硅酸盐骨料。
将混炼机预热至220℃,加入聚丙烯20g于混炼机中,至聚丙烯完全融化后,冷却至170℃,再加入硅酸盐骨料400g、石蜡320g,混料1h;继续加入硬脂酸20g、邻苯二甲酸二丁酯40g,混料2h,得到注射原料。
将注射原料冷却、切粒。将切粒后的注射原料加入料斗中,进行注射成型得到素坯,注射温度为160℃、注射压力140MPa、保压压力30MPa。
将素坯放入高温常压电阻炉中,以4℃/min的升温速率升温至200℃,保温2h,再以2℃/min的升温速率升温至420℃,保温1h,再以2℃/min的速率升温至600℃保温1.5h,脱出结合水、结构水、石墨以及粘结剂;将样品再以2℃/min的速率升温至1600℃烧结4h,随炉冷却后得到所述多孔陶瓷材料。将多孔陶瓷材料进行孔隙率、抗弯强度、平均孔径测量。在此条件下,多孔陶瓷材料的孔隙率为36.95%,抗弯强度为19.60Mpa,平均孔径为270nm。
实施例4:
将硅藻土矿物原料研磨过150目筛,其中硅藻土矿物原料以质量分数计,含二氧化硅90%、氧化铝6%、氧化铁1%、氧化钠2.5%、其它0.5%。取400g硅藻土矿物原料,加入300目的淀粉40g,于球磨机中球磨搅拌混合30min,再加入模数为3.5的工业水玻璃200g,混合搅拌30min,得到预混料。
将预混料放于干燥箱中80℃干燥300min,得到干燥的硅酸盐骨料。
将混炼机预热至200℃,加入聚丙烯32于混炼机中,至聚丙烯完全融化后,冷却至170℃,再加入硅酸盐骨料400g、石蜡240g,混料1h;继续加入硬脂酸26g、邻苯二甲酸二丁酯22g,混料2h,得到注射原料。
将注射原料冷却、切粒。将切粒后的注射原料加入料斗中,进行注射成型得到素坯,注射温度为120℃、注射压力80MPa、保压压力10MPa。
将素坯放入高温常压电阻炉中,以2℃/min的升温速率升温至200℃,保温2h,再以同样速率升温至380℃,保温1h后升温至420℃,保温1h,再以2℃/min的速率升温至500℃保温1h,脱出结合水、结构水、淀粉以及粘结剂;将样品再以2℃/min的速率升温至950℃烧结1h,随炉冷却后得到所述多孔陶瓷材料。将多孔陶瓷材料进行孔隙率、抗弯强度、平均孔径测量。在此条件下,多孔陶瓷材料的孔隙率为50.47%,抗弯强度为17.60Mpa,平均孔径为475nm。
实施例5:
将长石-高岭土混合矿物原料研磨过250目筛,其中长石-高岭土混合矿物原料以质量分数计,含二氧化硅65%、氧化铝28%、氧化铁0.5%、氧化钠5%、其它1.5%。取400g长石-高岭土混合矿物原料,加入300目的淀粉12g,于球磨机中球磨搅拌混合30min,再加入模数为2.5的工业水玻璃85g,混合搅拌30min,得到预混料。
将预混料放于干燥箱中80℃干燥300min,得到干燥的硅酸盐骨料。
将混炼机预热至180℃,加入聚丙烯40g于混炼机中,至聚丙烯完全融化后,冷却至170℃,再加入干燥原料400g、石蜡160g,混料1h,加入硬脂酸40g、邻苯二甲酸二丁酯27g,混料2h,得到注射原料。
将注射原料冷却、切粒。将切粒后的注射原料加入料斗中,进行注射成型得到素坯,注射温度为100℃、注射压力50MPa、保压压力10MPa。
将素坯放入高温常压电阻炉中,以2℃/min的升温速率升温至200℃,保温2h,再以同样速率升温至380℃,保温40min后升温至420℃,保温1h,再以2℃/min的速率升温至500℃保温40min,脱出结合水、结构水、淀粉以及粘结剂;将样品再以2℃/min的速率升温至800℃烧结2h,,随炉冷却后得到所述多孔陶瓷材料。将多孔陶瓷材料进行孔隙率、抗弯强度、平均孔径测量。在此条件下,多孔陶瓷材料的孔隙率为44.82%,抗弯强度为13.35Mpa,平均孔径为200nm。
对比例:
将硅藻土矿物原料研磨过150目筛,其中硅藻土矿物原料以质量分数计,含二氧化硅90%、氧化铝6%、氧化铁1%、氧化钠(钾)2.5%、其它0.5%。取100g硅藻土矿物原料,加入300目的淀粉10g,于球磨机中球磨搅拌混合30min,再加入模数为3.5的工业水玻璃50g,混合搅拌30min,得到湿料,装入圆柱形模具中,在8MPa压力下压制成所需压坯。
将压坯放入高温常压电阻炉中,以2℃/min速率升温至600℃保温2h,脱除造孔剂和水分;将样品再以2℃/min的速率升温至800℃烧结2h,随炉冷却后得到所需多孔陶瓷。将该多孔陶瓷进行孔隙率、抗弯强度、平均孔径测量。在此条件下,该多孔陶瓷的孔隙率为72.12%,抗弯强度为9.60MPa,平均孔径为621nm。
从实施例1~5可以看出本发明的多孔陶瓷材料的制备方法制备的多孔陶瓷材料孔隙率较高且强度较好,制得的多孔陶瓷材料的孔隙率为35%~70%,抗弯强度为10 .7~20 MPa,孔径为200 nm~2 μm。同时,实施例1~5与对比例比较,对比例采用干压成型制得的样品孔隙率虽高,抗压强度却很低,强度达不到使用要求。
比较对比例与实施例4,对比例与实施例4硅酸盐骨料配比相同,后续成型烧结工艺不同。可以看出对比例采用干压成型工艺成型时,由于原料中含有水分,成型后脱模比较困难,容易造成粘料、脱落等现象并且压坯强度不够,运输过程中易造成变形或者损坏。而实施例4采用注射成型,挤出的样品由于粘结剂在低温下快速固化,使得样品表面光滑、不与模具粘结、易脱模,并且样品具有一定的强度,运输过程中不易出现变形破损等情况。
由此可知,在后续烧结过程中,采用干压成型工艺成型受力不均,压坯烧结过程中极易出现开裂、破坏等现象;而注射成型只要保持一次注射成型过程中的注射温度、注射压力、保压压力与时间这些工艺参数不变,制得的多孔陶瓷材料性能稳定、结构均匀,减少了烧结中的开裂破坏现象。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种多孔陶瓷材料的制备方法,其特征在于,包括以下步骤:
    将硅酸盐原料和造孔剂混合,得到预混料,其中所述硅酸盐原料包括硅酸钠和其他化合物,其他化合物为氧化物、氮化物、碳化物中的至少一种,按质量百分比计,硅酸钠为20%~40%、其他化合物为45%~75%,造孔剂为3%~20%;
    将所述预混料干燥,得到硅酸盐骨料;
    将所述硅酸盐骨料与所述粘结剂进行混炼,得到注射原料,其中,按质量百分比计,硅酸盐骨料为50%~60%、粘结剂为40%~50%;
    将所述注射原料进行注射成型得到素坯;及
    将所述素坯依次进行脱胶处理、煅烧处理,得到所述多孔陶瓷材料。
  2. 根据权利要求1所述的多孔陶瓷材料的制备方法,其特征在于,所述造孔剂为木屑、淀粉、石墨中的至少一种。
  3. 根据权利要求1所述的多孔陶瓷材料的制备方法,其特征在于,所述预混料干燥的条件为:于70℃~110℃干燥200min~400min。
  4. 根据权利要求1所述的多孔陶瓷材料的制备方法,其特征在于,按质量百分比计,所述粘结剂包括60%~80%的石蜡、5%~15%的聚丙烯、5%~15%的硬脂酸和5%~15%的邻苯二甲酸二丁酯。
  5. 根据权利要求1所述的多孔陶瓷材料的制备方法,其特征在于,所述硅酸盐骨料与所述粘结剂进行混炼的条件为:于180℃~220℃混炼3 h~5 h。
  6. 根据权利要求1所述的多孔陶瓷材料的制备方法,其特征在于,所述注射原料的注射成型条件为:注射温度为100℃~160℃;注射压力为50 MPa~140 MPa;保压压力为10 MPa~30 MPa。
  7. 根据权利要求1所述的多孔陶瓷材料的制备方法,其特征在于,所述素坯的脱胶处理的条件为:于200℃~800℃下保温3h~10h。
  8. 根据权利要求1所述的多孔陶瓷材料的制备方法,其特征在于,所述素坯的煅烧处理的条件为:于800℃~1600℃下保温1h~4h。
  9. 一种多孔陶瓷材料,其特征在于,采用权利要求1~8任一项所述的多孔陶瓷材料的制备方法制得。
  10. 如权利要求9所述的多孔陶瓷材料在电子烟雾化器中的应用。
PCT/CN2015/078092 2015-04-30 2015-04-30 多孔陶瓷材料的制备方法和多孔陶瓷材料及其应用 WO2016172959A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/078092 WO2016172959A1 (zh) 2015-04-30 2015-04-30 多孔陶瓷材料的制备方法和多孔陶瓷材料及其应用
US14/814,093 US9648909B2 (en) 2015-04-30 2015-07-30 Porous ceramic material, manufacturing method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/078092 WO2016172959A1 (zh) 2015-04-30 2015-04-30 多孔陶瓷材料的制备方法和多孔陶瓷材料及其应用

Publications (1)

Publication Number Publication Date
WO2016172959A1 true WO2016172959A1 (zh) 2016-11-03

Family

ID=57198194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078092 WO2016172959A1 (zh) 2015-04-30 2015-04-30 多孔陶瓷材料的制备方法和多孔陶瓷材料及其应用

Country Status (2)

Country Link
US (1) US9648909B2 (zh)
WO (1) WO2016172959A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112047753A (zh) * 2020-08-21 2020-12-08 深圳市沁园春科技有限公司 多孔陶瓷及其制备方法和应用
WO2021103807A1 (zh) * 2019-11-26 2021-06-03 深圳麦克韦尔科技有限公司 一种雾化器及其陶瓷雾化芯和陶瓷雾化芯制备方法
WO2021207882A1 (zh) * 2020-04-13 2021-10-21 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和雾化组件
WO2022252247A1 (zh) * 2021-05-31 2022-12-08 云南中烟工业有限责任公司 一种具有自然透气功能的加热卷烟滤棒及包含其的加热卷烟

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
US10638792B2 (en) 2013-03-15 2020-05-05 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US20160366947A1 (en) 2013-12-23 2016-12-22 James Monsees Vaporizer apparatus
US10159282B2 (en) 2013-12-23 2018-12-25 Juul Labs, Inc. Cartridge for use with a vaporizer device
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US10058129B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
CN110664012A (zh) 2013-12-23 2020-01-10 尤尔实验室有限公司 蒸发装置系统和方法
CN107427067B (zh) 2014-12-05 2020-10-23 尤尔实验室有限公司 校正剂量控制
US9844233B2 (en) * 2015-12-15 2017-12-19 Smiss Technology Co., Ltd. Airflow preheating device
DE202017007467U1 (de) 2016-02-11 2021-12-08 Juul Labs, Inc. Befüllbare Verdampferkartusche
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
CN105747278A (zh) * 2016-04-21 2016-07-13 深圳市合元科技有限公司 烟油加热装置以及雾化单元、雾化器和电子烟
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD848057S1 (en) 2016-06-23 2019-05-07 Pax Labs, Inc. Lid for a vaporizer
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
CN110325060B (zh) 2016-12-27 2022-11-08 尤尔实验室有限公司 用于电子蒸发器的热芯吸部
US10857316B2 (en) 2017-02-09 2020-12-08 Stoned Free LLC Personal vaporizer
GB201704674D0 (en) 2017-03-24 2017-05-10 Nicoventures Holdings Ltd Aerosol source for a vapour provision system
GB201707050D0 (en) 2017-05-03 2017-06-14 British American Tobacco Investments Ltd Data communication
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
CN108101252B (zh) * 2017-11-21 2020-10-16 浙江师范大学 一种家庭用小型污水处理系统
CN113133555A (zh) * 2017-12-29 2021-07-20 深圳市华诚达精密工业有限公司 一种柔性烟草加热组件及其生产工艺
GB201722278D0 (en) 2017-12-29 2018-02-14 British American Tobacco Investments Ltd Device identification and method
GB201722241D0 (en) 2017-12-29 2018-02-14 British American Tobacco Investments Ltd Data capture across devices
CN110526686B (zh) * 2018-05-23 2022-07-05 苏州神鼎陶瓷科技有限公司 一种渗油多孔陶瓷、制备方法及其在电子烟的应用
WO2019229046A1 (en) 2018-05-31 2019-12-05 Jt International Sa An aerosol generating article, an aerosol generating system and a method for generating a flavoured aerosol
EP3813914B1 (en) 2018-06-26 2023-10-25 Juul Labs, Inc. Vaporizer wicking elements
USD896437S1 (en) 2019-09-06 2020-09-15 Puff Corporation Portable cartridge vaporizer
US11129417B2 (en) 2018-09-07 2021-09-28 Puff Corporation Portable vaporizing device, cartridge and methods
EP3876760B1 (en) 2018-11-08 2024-05-15 Juul Labs, Inc. Cartridges for vaporizer devices
CN110041096A (zh) * 2019-01-16 2019-07-23 深圳陶陶科技有限公司 硅藻土基多孔陶瓷及其制备方法和系统
DE102019116729A1 (de) * 2019-06-20 2020-12-24 Hauni Maschinenbau Gmbh Verfahren zur Herstellung eines Dochtorgans für eine Verdampferkartusche als Bestandteil eines Inhalators
DE102019116725A1 (de) * 2019-06-20 2020-12-24 Hauni Maschinenbau Gmbh Verdampferkartusche sowie Inhalator mit einer solchen Verdampferkartusche
DE102019116728A1 (de) * 2019-06-20 2020-12-24 Hauni Maschinenbau Gmbh Verdampferkartusche sowie Inhalator mit einer solchen Verdampferkartusche
DE102019116727A1 (de) * 2019-06-20 2020-12-24 Hauni Maschinenbau Gmbh Verdampferkartusche sowie Inhalator mit einer solchen Verdampferkartusche
CN112390625B (zh) * 2019-08-12 2021-12-28 深圳麦克韦尔科技有限公司 复合陶瓷件及其制备方法、雾化组件和电子烟
CN110483026A (zh) * 2019-09-24 2019-11-22 深圳睿蚁科技有限公司 一种陶瓷芯及其制备方法、利用该陶瓷芯的发热件
WO2021163922A1 (zh) * 2020-02-19 2021-08-26 昂纳自动化技术(深圳)有限公司 电子烟雾化组件及其制造方法
CN111320467B (zh) * 2020-02-26 2022-03-22 福建师范大学泉港石化研究院 一种碘盐晒制用的多孔陶瓷板及其制备方法
CN111887499A (zh) * 2020-06-29 2020-11-06 阿特麦哲(东莞)科技有限公司 陶瓷复合雾化组件及其制造方法
CN111887500A (zh) * 2020-06-29 2020-11-06 阿特麦哲(东莞)科技有限公司 陶瓷复合雾化器及其制造方法
CN111792922A (zh) * 2020-07-10 2020-10-20 湖南云天雾化科技有限公司 一种高还原多孔陶瓷雾化芯及其制备方法
CN115028366B (zh) * 2021-03-08 2023-12-12 比亚迪股份有限公司 雾化芯及其制备方法和电子雾化装置
DE102021202549A1 (de) * 2021-03-16 2022-09-22 Alveon GmbH Keramik für eine Verdampfereinrichtung
USD1028336S1 (en) 2021-06-22 2024-05-21 Pax Labs, Inc. Vaporizer cartridge
CN113754453A (zh) * 2021-08-23 2021-12-07 深圳市安芯精密组件有限公司 碳纤维增益陶瓷雾化芯及其制备方法
CN114057508B (zh) * 2021-08-26 2023-04-25 朱建良 一种低铝高孔隙率多孔陶瓷材料及其制备方法
CN116265414A (zh) * 2021-12-17 2023-06-20 东莞市陶陶新材料科技有限公司 一种多孔陶瓷材料及其制备方法、及陶瓷雾化芯
WO2023177838A1 (en) 2022-03-18 2023-09-21 Puff Corporation System and method for filling of cartridges for portable vaporizing devices
CN114634372A (zh) * 2022-03-25 2022-06-17 山东国瓷功能材料股份有限公司 雾化芯用多孔陶瓷材料、多孔陶瓷体、陶瓷雾化芯及制备方法和电子烟
CN115368162A (zh) * 2022-08-11 2022-11-22 陕西科技大学 一种三维连通孔状多孔陶瓷雾化芯的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1046684A (zh) * 1989-04-24 1990-11-07 四平硅藻土过滤器材联合厂 以硅藻土为基质的微孔过滤陶瓷
CN1644277A (zh) * 2004-12-14 2005-07-27 重庆工学院 电子封装金属壳体粉末注射成形粘结剂配方
CN101844934A (zh) * 2010-06-10 2010-09-29 陕西理工学院 一种多孔Al2O3陶瓷的制备方法
CN102219547A (zh) * 2011-04-20 2011-10-19 赵坚强 一种环保型常温发泡玻璃材料制品及其制造工艺
CN103030385A (zh) * 2012-12-21 2013-04-10 江门市慧信净水材料有限公司 一种净水多孔陶瓷
CN103771426A (zh) * 2014-01-16 2014-05-07 中国科学院广州地球化学研究所 一种以硅藻土为原料低温烧制多孔方石英的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070107395A1 (en) * 2005-11-16 2007-05-17 Bilal Zuberi Extruded porous substrate and products using the same
EP3162778B1 (en) * 2014-06-16 2019-08-07 Shenzhen Smoore Technology Limited Method for preparing porous ceramics

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1046684A (zh) * 1989-04-24 1990-11-07 四平硅藻土过滤器材联合厂 以硅藻土为基质的微孔过滤陶瓷
CN1644277A (zh) * 2004-12-14 2005-07-27 重庆工学院 电子封装金属壳体粉末注射成形粘结剂配方
CN101844934A (zh) * 2010-06-10 2010-09-29 陕西理工学院 一种多孔Al2O3陶瓷的制备方法
CN102219547A (zh) * 2011-04-20 2011-10-19 赵坚强 一种环保型常温发泡玻璃材料制品及其制造工艺
CN103030385A (zh) * 2012-12-21 2013-04-10 江门市慧信净水材料有限公司 一种净水多孔陶瓷
CN103771426A (zh) * 2014-01-16 2014-05-07 中国科学院广州地球化学研究所 一种以硅藻土为原料低温烧制多孔方石英的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021103807A1 (zh) * 2019-11-26 2021-06-03 深圳麦克韦尔科技有限公司 一种雾化器及其陶瓷雾化芯和陶瓷雾化芯制备方法
WO2021207882A1 (zh) * 2020-04-13 2021-10-21 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和雾化组件
CN112047753A (zh) * 2020-08-21 2020-12-08 深圳市沁园春科技有限公司 多孔陶瓷及其制备方法和应用
CN112047753B (zh) * 2020-08-21 2022-05-27 深圳市沁园春科技有限公司 多孔陶瓷及其制备方法和应用
WO2022252247A1 (zh) * 2021-05-31 2022-12-08 云南中烟工业有限责任公司 一种具有自然透气功能的加热卷烟滤棒及包含其的加热卷烟

Also Published As

Publication number Publication date
US9648909B2 (en) 2017-05-16
US20160316819A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
WO2016172959A1 (zh) 多孔陶瓷材料的制备方法和多孔陶瓷材料及其应用
WO2022135010A1 (zh) 一种多孔陶瓷雾化芯及其制备方法和电子烟
WO2015192300A1 (zh) 多孔陶瓷的制备方法、多孔陶瓷及电子烟
CN106187285B (zh) 多孔陶瓷材料的制备方法和多孔陶瓷材料及其应用
CN102770393B (zh) 飞灰加工和结合有飞灰组合物的制品
CN110467441A (zh) 用于雾化器的多孔陶瓷基板及其制作方法
CN105294140A (zh) 多孔陶瓷的制备方法、多孔陶瓷及其应用
CN105698542A (zh) 一种抗锂电池高温腐蚀层状匣钵及其制备方法
WO2016105159A1 (ko) 팽창흑연 및 팽윤성 점토를 이용한 경량화된 흡음내화 단열재 및 그 제조방법
CN103044065B (zh) 多孔氧化物陶瓷窑炉保温材料及其制备方法
CN107739193B (zh) 采用三种粒度原料三层布料生产发泡陶瓷的工艺方法
CN109336639A (zh) 一种多孔陶瓷材料及其制备方法
CN110575813B (zh) 一种高吸附性空气净化用活性炭的制备方法
CN111138175A (zh) 多孔陶瓷基板及其制备方法、雾化芯
JPS6045122B2 (ja) β’−サイアロンの製法
CN101759178A (zh) 一种空心碳半球的制备方法
CN110655379A (zh) 一种纳米复合隔热板及其制备方法
CN103880439A (zh) 一种轻质硅砖的制备方法
JP2004131378A (ja) 不透明石英ガラス材の製造方法
CN104291759B (zh) 一种陶瓷纤维增强耐热绝缘保温板的制备方法
KR20240069689A (ko) 규소-이산화규소계 소결체, 이의 제조방법, 및 이를 이용하여 제조되는 가스 배리어 필름
CN110372395A (zh) 外墙轻质高强陶瓷保温装饰一体板
CN109160741A (zh) 一种直接烧结粉煤灰制备微晶玻璃的方法
KR101323109B1 (ko) 다공성 경량 세라믹스의 제조방법
CN106653242A (zh) 一种高压输电线路用的绝缘子及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890339

Country of ref document: EP

Kind code of ref document: A1