[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016170795A1 - Transmission belt - Google Patents

Transmission belt Download PDF

Info

Publication number
WO2016170795A1
WO2016170795A1 PCT/JP2016/002147 JP2016002147W WO2016170795A1 WO 2016170795 A1 WO2016170795 A1 WO 2016170795A1 JP 2016002147 W JP2016002147 W JP 2016002147W WO 2016170795 A1 WO2016170795 A1 WO 2016170795A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
mass
belt
parts
fine fibers
Prior art date
Application number
PCT/JP2016/002147
Other languages
French (fr)
Japanese (ja)
Inventor
正吾 小林
鉄平 中山
大樹 土屋
奥野 茂樹
博之 橘
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015089615A external-priority patent/JP6529323B2/en
Priority claimed from JP2015090123A external-priority patent/JP6527009B2/en
Priority claimed from JP2015092256A external-priority patent/JP6529327B2/en
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to CN201680023463.7A priority Critical patent/CN107532681B/en
Publication of WO2016170795A1 publication Critical patent/WO2016170795A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/28Driving-belts with a contact surface of special shape, e.g. toothed

Definitions

  • the present invention relates to a transmission belt.
  • Patent Document 1 discloses that at least a compression layer of a V-ribbed belt is constituted by a rubber composition containing carbon black and short fibers.
  • Transmission belts are required for various characteristics such as wear resistance, coefficient of friction, and suppression of adhesive wear.
  • carbon black and short fibers are blended and reinforced in the rubber composition constituting the belt, other characteristics tend to deteriorate if the blended amount is adjusted so as to satisfy certain characteristics.
  • an object of the present invention is to provide a transmission belt that simultaneously satisfies a plurality of required characteristics.
  • the present invention is a transmission belt that is wound around a pulley and transmits power, and has a layer made of a rubber composition containing cellulosic fine fibers and short fibers having an average diameter of 1 ⁇ m or more.
  • the present invention since it has a layer made of a rubber composition containing cellulosic fine fibers and other short fibers, a plurality of characteristics required for a transmission belt can be satisfied simultaneously.
  • FIG. 1 is a perspective view schematically showing an exemplary V-ribbed belt of the first and second embodiments.
  • FIG. 2 is a cross-sectional view of a main part of the V-ribbed belt of the first and second embodiments.
  • FIG. 3 is a first explanatory view showing a method for manufacturing the V-ribbed belt of the first and second embodiments.
  • FIG. 4 is a second explanatory view showing the manufacturing method of the V-ribbed belt of the first and second embodiments.
  • FIG. 5 is a third explanatory view showing the manufacturing method of the V-ribbed belt of the first and second embodiments.
  • FIG. 6 is a fourth explanatory view showing the method for manufacturing the V-ribbed belts of the first and second embodiments.
  • FIG. 1 is a perspective view schematically showing an exemplary V-ribbed belt of the first and second embodiments.
  • FIG. 2 is a cross-sectional view of a main part of the V-ribbed belt of the first and second embodiments.
  • FIG. 7 is a fifth explanatory view showing the method for manufacturing the V-ribbed belt of the first and second embodiments.
  • FIG. 8 is a sixth explanatory view showing the method for manufacturing the V-ribbed belt of the first and second embodiments.
  • FIG. 9 is a pulley layout diagram of a traveling tester for measuring crack resistance life.
  • FIG. 10 is a pulley layout diagram of the high tension belt running test machine.
  • FIG. 11 is a diagram for explaining a method of measuring a friction coefficient.
  • FIG. 12 is a diagram showing a pulley layout of an auxiliary drive belt transmission device for an automobile using the V-ribbed belt of the embodiment.
  • FIG. 13 is a perspective view schematically showing an exemplary flat belt of the third embodiment.
  • FIG. 14 is a first explanatory view showing the flat belt manufacturing method according to the third embodiment.
  • FIG. 15 is a second explanatory view showing the flat belt manufacturing method according to the third embodiment.
  • FIG. 16 is a third explanatory view showing the flat belt manufacturing method according to the third embodiment.
  • FIG. 17 is a diagram showing the configuration of the friction coefficient measuring apparatus.
  • FIG. 18 is a diagram showing a pulley layout of the belt running test machine for wear resistance evaluation.
  • FIG. 19 is a diagram showing a pulley layout of a belt running test machine for evaluating bending fatigue resistance.
  • FIG. 20 is a diagram showing a pulley layout of a belt running test machine for evaluating friction / wear characteristics.
  • FIG. 21 is a diagram showing a pulley layout of a belt running tester for wear resistance evaluation.
  • FIG. 22 is a perspective view schematically showing an exemplary toothed belt according to the fourth embodiment.
  • FIG. 23 is a partial cross-sectional view of a belt forming die used for manufacturing the toothed belt of the fourth embodiment.
  • FIG. 24 is a first explanatory view of the manufacturing method of the toothed belt according to the fourth embodiment.
  • FIG. 25 is a second explanatory view of the manufacturing method of the toothed belt according to the fourth embodiment.
  • FIG. 26 is a third explanatory view of the manufacturing method of the toothed belt according to the fourth embodiment.
  • FIG. 27 is a first explanatory view of the manufacturing method of the toothed belt according to the fifth embodiment.
  • FIG. 28 is a second explanatory view of the manufacturing method of the toothed belt of the fifth embodiment.
  • FIG. 29 is a third explanatory view of the manufacturing method of the toothed belt of the fifth embodiment.
  • FIG. 30 is a cross-sectional view showing an interface structure between the tooth side reinforcing cloth and the toothed belt body in the seventh embodiment.
  • FIG. 31 is a cross-sectional view showing an interface structure between a tooth portion side reinforcing cloth and a toothed belt body in the eighth embodiment.
  • FIG. 32 is a diagram showing a pulley layout in a belt running tester for evaluating tooth chipping resistance and wear resistance of a toothed belt.
  • V-ribbed belt B 1 and 2 show a V-ribbed belt B according to the first embodiment.
  • the V-ribbed belt B according to the first embodiment is an endless power transmission member used, for example, in an accessory drive belt transmission device provided in an engine room of an automobile.
  • the V-ribbed belt B according to Embodiment 1 has, for example, a belt length of 700 to 3000 mm, a belt width of 10 to 36 mm, and a belt thickness of 4.0 to 5.0 mm.
  • the V-ribbed belt B according to the first embodiment is configured in a three-layer structure including a compression rubber layer 11 that constitutes a pulley contact portion on the inner peripheral side of the belt, an intermediate adhesive rubber layer 12, and a back rubber layer 13 on the outer peripheral side of the belt.
  • a rubber V-ribbed belt body 10 is provided.
  • a core wire 14 is embedded in an intermediate portion in the thickness direction of the adhesive rubber layer 12 in the V-ribbed belt body 10 so as to form a spiral having a pitch in the belt width direction.
  • a back reinforcing cloth may be provided instead of the back rubber layer 13, and the V-ribbed belt main body 10 may be configured as a double layer of the compression rubber layer 11 and the adhesive rubber layer 12.
  • the compression rubber layer 11 is provided such that a plurality of V ribs 16 hang down to the inner peripheral side of the belt.
  • the plurality of V ribs 16 are each formed in a ridge having a substantially inverted triangular cross section extending in the belt length direction, and provided in parallel in the belt width direction.
  • Each V-rib 16 has, for example, a rib height of 2.0 to 3.0 mm and a width between base ends of 1.0 to 3.6 mm.
  • the number of V ribs 16 is, for example, 3 to 6 (six in FIG. 1).
  • the adhesive rubber layer 12 is formed in a band shape having a horizontally long cross section and has a thickness of, for example, 1.0 to 2.5 mm.
  • the back rubber layer 13 is also formed in a band shape having a horizontally long cross section, and has a thickness of, for example, 0.4 to 0.8 mm. It is preferable that a woven fabric pattern is provided on the surface of the back rubber layer 13 from the viewpoint of suppressing the generation of sound during back driving.
  • the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 are rubbers obtained by crosslinking an uncrosslinked rubber composition obtained by mixing and kneading various rubber compounding ingredients with a rubber component and then crosslinking with a crosslinking agent. It is formed with a composition.
  • the rubber composition forming the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 may be the same or different.
  • Examples of the rubber component of the rubber composition forming the compression rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 include ethylene / propylene copolymer (EPR), ethylene / propylene / diene terpolymer (EPDM), Examples include ethylene- ⁇ -olefin elastomers such as octene copolymer and ethylene / butene copolymer; chloroprene rubber (CR); chlorosulfonated polyethylene rubber (CSM); hydrogenated acrylonitrile rubber (H-NBR).
  • the rubber component is preferably one or more of these blend rubbers.
  • the rubber components of the rubber composition forming the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 are preferably the same.
  • At least one of the rubber compositions forming the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 contains cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm. It is preferable that all the rubber compositions forming the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 contain such cellulosic fine fibers, but at least the compressed rubber layer 11 constituting the pulley contact portion is formed. It is more preferable that the rubber composition to be contained contains such cellulosic fine fibers.
  • Cellulosic fine fiber is a fiber material derived from cellulose fine fiber composed of a skeletal component of a plant cell wall obtained by finely loosening plant fiber.
  • the cellulosic fine fiber plant include wood, bamboo, rice (rice straw), potato, sugar cane (bagasse), aquatic plants, and seaweed. Of these, wood is preferred.
  • the porous rubber composition forming the surface rubber layer 11a contains such cellulosic fine fibers, the high reinforcing effect is exhibited.
  • the cellulose-based fine fiber may be either the cellulose fine fiber itself or a hydrophobic cellulose fine fiber that has been subjected to a hydrophobic treatment. Moreover, you may use together cellulose fine fiber itself and hydrophobized cellulose fine fiber as a cellulosic fine fiber. From the viewpoint of dispersibility, the cellulosic fine fibers preferably include hydrophobized cellulose fine fibers. Examples of the hydrophobized cellulose fine fibers include cellulose fine fibers in which some or all of the hydroxyl groups of cellulose are substituted with hydrophobic groups, and cellulose fine fibers that have been subjected to a hydrophobized surface treatment with a surface treatment agent.
  • hydrophobization for obtaining cellulose fine fibers in which part or all of the hydroxyl groups of cellulose are substituted with hydrophobic groups include esterification (acylation) (alkyl esterification, complex esterification, ⁇ -ketoesterification, etc.) ), Alkylation, tosylation, epoxidation, arylation and the like. Of these, esterification is preferred.
  • esterification is preferred.
  • part or all of the hydroxyl groups of cellulose are carboxylic acids such as acetic acid, acetic anhydride, propionic acid, butyric acid, or halides thereof (particularly chlorides). It is the cellulose fine fiber acylated by.
  • the surface treatment agent for obtaining cellulose fine fibers hydrophobized and surface-treated with the surface treatment agent include silane coupling agents.
  • the lower limit of the fiber diameter distribution of the cellulosic fine fibers is preferably 10 nm or less, more preferably 3 nm or less.
  • the upper limit is preferably 500 nm or more, more preferably 700 nm or more, and further preferably 1 ⁇ m or more.
  • the distribution range of the fiber diameter of the cellulosic fine fibers is preferably 20 to 500 nm, more preferably 20 to 700 mm, and still more preferably 20 nm to 1 ⁇ m.
  • the average fiber diameter of the cellulosic fine fibers is preferably 3 nm or more and 200 nm or less, more preferably 3 nm or more and 100 nm or less.
  • the distribution of the fiber diameter of the cellulosic fine fibers is determined by observing the cross section with a transmission electron microscope (TEM) after freezing and pulverizing a sample of the rubber composition constituting the belt main body.
  • the fiber diameter is measured by arbitrarily selecting and obtained based on the measurement result.
  • the average fiber diameter of the cellulosic fine fibers is obtained as the number average of the fiber diameters of 50 arbitrarily selected cellulosic fine fibers.
  • the cellulosic fine fibers may be either high aspect ratio manufactured by mechanical defibrating means, or manufactured by chemical defibrating means. Of these, those produced by chemical defibrating means are preferred. Moreover, you may use together what was manufactured by the mechanical defibration means, and what was manufactured by the chemical defibration means as a cellulose fine fiber.
  • the defibrating apparatus used for the mechanical defibrating means include a kneader such as a twin-screw kneader, a high-pressure homogenizer, a grinder, and a bead mill.
  • the treatment used for the chemical defibrating means include acid hydrolysis treatment.
  • the content of the cellulosic fine fibers in the rubber composition constituting the compressed rubber layer 11, the adhesive rubber layer 12, and / or the back rubber layer 13 is 100 parts by mass of the rubber component from the viewpoint of satisfying various characteristics of the transmission belt. On the other hand, it is preferably 1 part by mass or more, more preferably 5 parts by mass or more, further preferably 10 parts by mass or more, and preferably 30 parts by mass or less, more preferably 25 parts by mass or less, still more preferably 20 parts by mass. Or less.
  • examples of rubber compounding agents include reinforcing materials, oils, processing aids, vulcanization acceleration aids, crosslinking agents, co-crosslinking agents, and vulcanization accelerators.
  • Short fibers used as a reinforcing material in addition to cellulosic fine fibers include, for example, 6-nylon fiber, 6,6-nylon fiber, 4,6-nylon fiber, polyethylene terephthalate (PET) fiber, polyethylene naphthalate (PEN) Examples thereof include fibers, para-aramid fibers, meta-aramid fibers, and polyester fibers. Only a single species may be included, or a plurality of species may be included.
  • the short fiber is manufactured by, for example, cutting a long fiber, which has been subjected to an adhesion treatment to be heated after being immersed in an RFL aqueous solution, into a predetermined length.
  • the diameter of the short fiber is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, still more preferably 10 ⁇ m or more, and preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the blend amount of the short fibers is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and preferably 50 parts by mass or less, more preferably 100 parts by mass of the rubber component of the rubber composition. It is 40 parts by mass or less.
  • carbon black for example, channel black; furnace black such as SAF, ISAF, N-339, HAF, N-351, MAF, FEF, SRF, GPF, ECF, N-234; FT, MT, etc. Thermal black; acetylene black etc. are mentioned.
  • carbon black is not necessarily added, but may be added for the purpose of antistatic or the like.
  • the amount of carbon black is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and preferably 100 parts by mass or less, with respect to 100 parts by mass of the rubber component of the rubber composition. More preferably, it is 50 parts by mass or less.
  • Oils include, for example, petroleum-based softeners, mineral oils such as paraffin wax, castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, fall raw oil, wax, rosin, pine And vegetable oils such as oil.
  • the oil is preferably one or more of these.
  • the oil content is, for example, 5 to 15 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
  • the vulcanization acceleration aid examples include metal oxides such as zinc oxide (zinc white) and magnesium oxide, metal carbonates, fatty acids and derivatives thereof.
  • the vulcanization acceleration aid is preferably one or more.
  • the content of the vulcanization acceleration aid is, for example, 5 to 15 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
  • crosslinking agent examples include sulfur and organic peroxides.
  • sulfur may be blended, an organic peroxide may be blended, or both of them may be used in combination.
  • the compounding amount of the crosslinking agent is, for example, 0.5 to 4.0 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition in the case of sulfur, and the rubber component 100 of the rubber composition in the case of an organic peroxide. For example, 0.5 to 8.0 parts by mass with respect to parts by mass.
  • organic peroxide examples include dialkyl peroxides such as dicumyl peroxide, peroxyesters such as t-butyl peroxyacetate, and ketone peroxides such as dicyclohexanone peroxide.
  • dialkyl peroxides such as dicumyl peroxide, peroxyesters such as t-butyl peroxyacetate, and ketone peroxides such as dicyclohexanone peroxide.
  • the organic peroxide may be a single species or a plurality of species.
  • co-crosslinking agent examples include maleimide, TAIC, 1,2-polybutadiene, oximes, guanidine, and trimethylolpropane trimethacrylate.
  • the co-crosslinking agent is preferably one or more of these.
  • the content of the co-crosslinking agent is, for example, 0.5 to 15 parts by mass with respect to 100 parts by mass of the rubber component.
  • the adhesive rubber layer 12 and the back rubber layer 13 are solid rubber compositions in which an uncrosslinked rubber composition in which various rubber compounding agents are blended with a rubber component and kneaded is heated and pressurized to be crosslinked with the crosslinking agent. Is formed.
  • the rubber component of the rubber composition constituting the adhesive rubber layer 12 and the back rubber layer 13 include the same rubber components as those of the compressed rubber layer 11 and may be the same.
  • the rubber compounding agent as in the case of the compressed rubber layer 11, a reinforcing material, oil, a processing aid, a vulcanization acceleration aid, a crosslinking agent, a co-crosslinking agent, a vulcanization accelerator, and the like can be given.
  • the rubber composition constituting the adhesive rubber layer 12 and the back rubber layer 13 may contain cellulosic fine fibers and short fibers in the same manner as the compressed rubber layer 11.
  • the core wire 14 is composed of a wire such as a twisted yarn or a braid of polyethylene terephthalate (PET) fiber, polyethylene naphthalate (PEN) fiber, para-aramid fiber, vinylon fiber, or the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • para-aramid fiber para-aramid fiber
  • vinylon fiber or the like.
  • the core 14 is subjected to an adhesive treatment that is heated after being immersed in an adhesive solution made of a solution such as an epoxy resin or a polyisocyanate resin, if necessary, before the adhesive treatment with the RFL aqueous solution and / or the rubber paste. It may be.
  • the diameter of the core wire 14 is, for example, 0.5 to 2.5 mm, and the dimension between the centers of the adjacent core wires 14 in the cross section is, for example, 0.05 to 0.20 mm.
  • V-ribbed belt B (Manufacturing method of V-ribbed belt B) A method for manufacturing the V-ribbed belt B according to the first embodiment will be described with reference to FIGS.
  • FIG 3 and 4 show a belt forming die 30 used for manufacturing the V-ribbed belt B according to the first embodiment.
  • the belt mold 30 is provided with a cylindrical inner mold 31 and an outer mold 32 which are provided concentrically.
  • the inner mold 31 is made of a flexible material such as rubber.
  • the outer mold 32 is made of a rigid material such as metal.
  • the inner peripheral surface of the outer mold 32 is formed as a molding surface, and V rib forming grooves 33 having the same shape as the V ribs 16 are provided on the inner peripheral surface of the outer mold 32 at a constant pitch in the axial direction. Yes.
  • the outer mold 32 is provided with a temperature control mechanism that controls the temperature by circulating a heat medium such as water vapor or a coolant such as water. Further, a pressurizing means for pressurizing and expanding the inner mold 31 from the inside is provided.
  • the manufacturing method of the V-ribbed belt B according to Embodiment 1 includes a material preparation process, a molding process, a crosslinking process, and a finishing process.
  • cellulosic fine fibers are put into a kneaded rubber component and dispersed by kneading.
  • a method for dispersing the cellulose-based fine fibers in the rubber component for example, a dispersion (gel) in which the cellulose-based fine fibers are dispersed in water is added to the rubber component kneaded with an open roll, A method of vaporizing moisture while kneading them, a master of cellulose fine fibers / rubber obtained by mixing a dispersion (gel) in which cellulosic fine fibers are dispersed in water and rubber latex to vaporize the moisture Obtained by mixing the batch into a rubber component that has been masticated, mixing a dispersion in which cellulosic fine fibers are dispersed in a solvent and a solution in which the rubber component is dissolved in the solvent, and evaporating the solvent Cellulose fine fiber / rubber masterbatch is put into the kneaded rubber component, dispersion (gel) in which cellulose fine fiber is dispersed in water is freeze-dried and pulverized And what, how to put
  • the uncrosslinked rubber composition is molded into a sheet by calendar molding or the like.
  • the preparation of those not containing cellulosic fine fibers is carried out by blending various rubber compounding agents with the rubber component, kneading with a kneader such as a kneader or a Banbury mixer, and the resulting uncrosslinked rubber composition by calendar molding or the like. This is done by forming into a sheet.
  • a kneader such as a kneader or a Banbury mixer
  • the core wire 14 ' is subjected to an RFL adhesion treatment in which it is immersed in an RFL aqueous solution and heated.
  • RFL adhesion an adhesive treatment
  • the core wire 13 ' is subjected to an RFL adhesion treatment in which it is immersed in an RFL aqueous solution and heated.
  • attachment process which immerses in a foundation
  • a rubber sleeve 35 is placed on a cylindrical drum 34 having a smooth surface, and an uncrosslinked rubber sheet 13 ′ for the back rubber layer and an uncrosslinked rubber sheet 12 for the adhesive rubber layer are formed on the outer periphery thereof.
  • the core wire 14' is wound spirally around the cylindrical inner mold 31 from above, and the uncrosslinked rubber sheet 12 'for the adhesive rubber layer and the compressed rubber layer are further wound thereon.
  • the uncrosslinked rubber sheet 11 ′ for use is wound in order.
  • a laminated molded body B ′ is formed on the rubber sleeve 35.
  • the rubber sleeve 35 provided with the laminated molded body B ′ is removed from the cylindrical drum 34 and, as shown in FIG. 6, it is set in the inner peripheral surface side of the outer mold 32 and then, as shown in FIG. The inner mold 31 is positioned and sealed in the rubber sleeve 35 set on the outer mold 32.
  • the outer mold 32 is heated and pressurized by injecting high-pressure air or the like into the sealed interior of the inner mold 31.
  • the inner mold 31 expands, and the uncrosslinked rubber sheets 11 ′, 12 ′, and 13 ′ in the laminated molded body B ′ enter the molded surface of the outer mold 32 while being compressed, and the crosslinking proceeds.
  • the core wire 14 ' is combined and integrated, and finally a cylindrical belt slab S is formed as shown in FIG.
  • the molding temperature of the belt slab S is, for example, 100 to 180 ° C.
  • the molding pressure is, for example, 0.5 to 2.0 MPa
  • the molding time is, for example, 10 to 60 minutes.
  • CR latex made by Showa Denko Co., Ltd., trade name: Shoprene 842A
  • cellulose fine fiber manufactured by Daio Paper Co., Ltd. manufactured by mechanical defibration means
  • CR Showa Denko Co., Ltd., trade name: Showpren GS
  • the input amount of the master batch was such that the content of the cellulosic fine fibers was 20 parts by mass when the total CR was 100 parts by mass.
  • CR and cellulosic fine fibers are kneaded, and there are 20 parts by mass of reinforcing material carbon black HAF (product name: SEAST 3), 100 parts by mass of CR, and aramid short fibers (Teijin).
  • HAF product name: SEAST 3
  • aramid short fibers Teijin
  • 5 parts by mass of Technora (registered trademark) oil (trade name: Samper 2280 manufactured by Nippon San Oil Co., Ltd.)
  • 5 parts by mass of zinc oxide manufactured by Sakai Chemical Industry Co., Ltd.
  • magnesium oxide 4 parts by mass of Kyowa Chemical Industry Co., Ltd. (trade name: Kyowa Mug 150) was added and kneading was continued to prepare an uncrosslinked rubber composition.
  • This uncrosslinked rubber composition was molded into a sheet to form an uncrosslinked rubber sheet for constituting a belt body (compressed rubber layer, adhesive rubber layer and stretched rubber layer), and a low edge V belt of Example 1-1 was produced. did.
  • the strand made from the polyester fiber which gave the adhesion process was used for the core wire.
  • Example 1-2 10 parts by weight of cellulose fine fibers produced by chemical defibration means (TEMPO oxidation treatment), 20 parts by weight of carbon black HAF as a reinforcing material, and 5 parts by weight of oil are added to CR and 100 parts by weight of CR.
  • An uncrosslinked rubber composition was prepared by kneading 5 parts by mass of zinc oxide as a sulfur accelerator and 4 parts by mass of magnesium oxide and reducing the pressure.
  • a low-edge V belt of Example 1-2 having the same configuration as Example 1-1 was produced except that this uncrosslinked rubber composition was used as an uncrosslinked rubber sheet for constituting the belt body.
  • Example 1-3 About the uncrosslinked rubber sheet for forming the belt main body, the content of the cellulosic fine fibers not blended with carbon black and defibrated by chemical means is 20 parts by mass with respect to 100 parts by mass of the rubber component. Except for this, the belt of Example 1-3 having the same configuration as that of Example 1-2 was produced.
  • Example 1-4 The uncrosslinked rubber sheet for constituting the belt main body was cut into 3 mm length from a tire short made of nylon short fiber (nylon 66 made by Toray Industries, Inc.) with 10 parts by weight of aramid short fibers per 100 parts by weight of the rubber component.
  • a belt of Example 1-4 having the same configuration as Example 1-2 was prepared except that 10 parts by mass of short fiber) was further blended.
  • Example 1-5 The belt of Example 1-5 having the same configuration as Example 1-2, except that 20 parts by mass of nylon short fibers were blended in place of 20 parts by mass of aramid short fibers for the uncrosslinked rubber sheet for constituting the belt body. was made.
  • Comparative Example 1-1 With respect to the uncrosslinked rubber sheet for constituting the belt main body, a belt of Comparative Example 1-1 having the same constitution as that of Example 1-1 was produced, except that no cellulosic fine fibers were blended.
  • Comparative Example 1-2 having the same configuration as Comparative Example 1-1, except that the amount of carbon black HAF was 70 parts by mass with respect to 100 parts by mass of the rubber component for the uncrosslinked rubber sheet for the belt body configuration A belt was prepared.
  • Comparative Example 1-3 The belt of Comparative Example 1-3 having the same configuration as that of Comparative Example 1-1, except that 20 parts by mass of nylon short fibers were blended in place of 20 parts by mass of aramid short fibers for the uncrosslinked rubber sheet for constituting the belt body. was made.
  • Comparative Example 1-4 About the uncrosslinked rubber sheet for the belt body constitution, the blending amount of carbon black HAF is 70 parts by weight with respect to 100 parts by weight of the rubber component, and 20 parts by weight of nylon short fibers are blended instead of 20 parts by weight of aramid short fibers. A belt of Comparative Example 1-4 having the same configuration as that of Comparative Example 1-2 was produced.
  • Comparative Example 1-5 For the uncrosslinked rubber sheet for constituting the belt body, 20 parts by mass of cellulose fibers (made by Daio Paper Co., Ltd., kraft pulp) that are not fine fibers (fiber diameter of about 10 to 100 ⁇ m) are further blended with 100 parts by mass of the rubber component. A belt of Comparative Example 1-5 having the same configuration as that of Comparative Example 1-1 was produced.
  • Comparative Example 1-6 With respect to the uncrosslinked rubber sheet for constituting the belt body, Comparative Example 1 except that carbon black HAF is not blended and 20 parts by mass of cellulose fibers that are not fine fibers are further blended with 100 parts by mass of the rubber component. A belt of Comparative Example 1-6 having the same configuration as that of No. 5 was produced.
  • ⁇ Average fiber diameter / fiber diameter distribution> After freezing and pulverizing the samples of the inner rubber layers of the belts of Examples 1-1 to 1-5, the cross section was observed with a transmission electron microscope (TEM), and 50 cellulose fine fibers were arbitrarily selected. Then, the fiber diameter was measured, and the number average was obtained to obtain the average fiber diameter. Moreover, the maximum value and minimum value of the fiber diameter were calculated
  • TEM transmission electron microscope
  • the crack life of the belt is an index indicating the crack resistance of rubber, and the longer the life is, the better.
  • FIG. 9 shows a running test machine 40 for measuring crack resistance life.
  • the crack running evaluation belt running test machine 40 includes a drive pulley 41 having a pulley diameter of ⁇ 40 mm and a driven pulley 42 having a pulley diameter of 40 mm provided on the right side thereof.
  • the driven pulley 42 is movably provided to the left and right so as to apply an axial load (dead weight DW) and apply tension to the low edge V-belt B.
  • High tension belt running test> High tension durability evaluation under dead weight conditions is effective as an accelerated evaluation of belt performance and life.
  • the change in the distance between the shafts before and after the traveling becomes larger as the change in the belt length due to the permanent elongation of the core wire is considered to be constant, the greater the permanent set and wear of the rubber member. Therefore, the smaller the change in the inter-axis distance before and after traveling, the better.
  • the change in the belt mass before and after running becomes an index indicating the wear resistance of the rubber member, and the smaller the better.
  • FIG. 10 shows a high tension belt running test machine 50.
  • the high tension belt running test machine 50 having a biaxial layout includes a driving V pulley 51 having a pulley diameter of ⁇ 100 mm and a driven V pulley 52 having a pulley diameter of 60 mm provided on the right side thereof.
  • the driven V pulley 52 is movably provided to the left and right so as to apply an axial load (dead weight DW) and apply tension to the belt.
  • Examples 1-1 to 1-3, Comparative Examples 1-1 and 1-2 are examples in which both 1000N, both aramid short fibers and nylon short fibers are blended (implementation)
  • Example 1-4, Comparative Examples 1-5 and 1-6 800 N is used, and in the case of blending nylon short fibers alone (Example 1-5, Comparative Examples 1-3 and 1-4), 500 N is used. In the case of not blending (Comparative Examples 1-7 and 1-8), it is 500N.
  • the ambient temperature was set to 100 ° C., no load was applied, the drive pulley was run at 5000 rpm for 10 minutes, the distance between the axes was measured, and the initial distance between the axes was obtained.
  • Examples in which aramid short fibers are blended alone are examples in which both 40Nm, both aramid short fibers and nylon short fibers are blended (implementation)
  • examples 1-4 and Comparative Examples 1-5 and 1-6 30 Nm and Nylon short fibers were blended alone (Example 1-5, Comparative Examples 1-3 and 1-4), 20 Nm, short fibers In the case of not blending (Comparative Examples 1-7 and 1-8), it is 20 Nm.
  • the distance change (%) between the axes after running was calculated as follows.
  • Axle distance change (%) (Distance between axes after running-Distance between axes before running) / Distance between axes before running x 100 Further, the weight of the belt after running was measured and used as the belt weight after durability. The belt weight change was calculated as follows.
  • Belt weight change (%) (Belt weight before running-belt weight after running) / belt weight before running x 100
  • the belt was cut in a short time (about 30 minutes) after the start of running, and measurement related to the high tension running test was impossible.
  • FIG. 11 shows a friction coefficient measuring apparatus.
  • the friction coefficient measuring device 40 includes a test pulley 82 made of a rib pulley having a pulley diameter of 75 mm and a load cell 83 provided on the side thereof.
  • the test pulley 82 is made of an iron-based material S45C.
  • the low-edge V-belt test piece 81 is provided so that the test piece 81 extends horizontally from the load cell 83 and is then wound around the test pulley 82, that is, the winding angle around the test pulley 82 is 90 °.
  • test piece 81 of a low-edge V-belt piece was cut to produce a test piece 81 of a low-edge V-belt piece, and one end of the load cell 83 was provided at one end.
  • a weight 84 was attached to the other end and suspended.
  • the test pulley 82 is rotated at a rotation speed of 43 rpm in a direction to lower the weight 84, and at 60 seconds after the rotation starts, the test pulley 82 in the test piece 81 is loaded by the load cell 83.
  • the tension Tt applied to the horizontal portion between the load cell 83 and the load cell 83 was measured.
  • the same test was performed on the low edge V belt after the high tension belt running test, and the friction coefficient during drying of the surface of the inner rubber layer was obtained. Then, the ratio of the friction coefficient at the time of drying after traveling to the friction coefficient at the time of drying without traveling (friction coefficient (after traveling) / friction coefficient (not traveling)) was obtained.
  • the ratio of the friction coefficient before and after the running is an indicator of the change in the friction coefficient. The closer the ratio is to 1, the more stable the transmission characteristics are.
  • the presence / absence of adhesive wear after the high-tension running test is an index indicating the adhesive wear resistance of rubber. Occurrence of adhesive wear causes abnormal noise of the belt, vibration, sticking to the pulley, and the like, and it is preferable that the abrasion is not generated.
  • Strong belt retention (%) Power per core after driving / Power per core before driving x 100
  • the strength retention of the belt after the high-tension running test is an index indicating the magnitude of damage to the tensile body (core wire) by the test.
  • core wire tensile body
  • the strain on the core wire increases due to increased local strain on the core wire due to buckling due to permanent deformation of the bottom rubber, and reduced winding diameter around the pulley due to rubber wear. Damage.
  • the friction coefficient of rubber increases and the pull-out property from the pulley when the belt comes out of the pulley is deteriorated, reverse bending stimulation is applied and the fatigue of the core wire is promoted. Since such a thing works in combination, it can be judged that the higher the strength retention rate of the belt, the higher the performance of the rubber covering the core wire.
  • Test evaluation results The test results are shown in Table 1.
  • the belt crack resistance life is 200 hours or more.
  • the change in the distance between the shafts is 1 to 2%
  • the change in the belt weight is 2 to 3%
  • there is no adhesive wear and the strength retention of the belt is 88 to 90%.
  • the ratio of the coefficient of friction before and after the high tension running test is 0.95.
  • the kind of cellulosic fine fiber mechanical defibration and chemical defibration
  • the kind of short fiber aramid short fiber and nylon short fiber
  • Example 1-3 carbon black is not blended, and the blending amount of the cellulosic fine fibers is higher than in other examples (1-2, 1-4, 1-5) using the same type of cellulosic fine fibers. Is increasing. That is, the carbon black is completely replaced by the cellulosic fine fibers. In this case as well, the result is the same as in the other examples, and it is possible to obtain a rubber composition that does not use carbon black.
  • Comparative Examples 1-1 to 1-4 are belts made of rubber that is reinforced with short aramid fibers or short nylon fibers but does not contain cellulosic fine fibers.
  • Comparative Examples 1-5 and 1-6 are examples in which kraft pulp was used as cellulose having a larger size in place of cellulosic fine fibers.
  • the difference between Comparative Example 1-5 and Comparative Example 1-6 is the presence or absence of carbon black.
  • both the crack resistance life and the wear resistance are deteriorated.
  • the belt strength retention is low, and the fatigue of the core wire is promoted. This is considered to be the same reason as in Comparative Examples 1-1 and 1-3.
  • Comparative Examples 1-7 and 1-8 are examples in which cellulosic fine fibers are blended and reinforcement with short fibers is not performed.
  • the difference between Comparative Example 1-7 and Comparative Example 1-8 is the presence or absence of carbon black.
  • the belt crack resistance is good at 200 hours or more, but the belt breaks in a short time in the high tension running test, which is a high tension and high load condition, and the results of each item are measured. It was impossible. This is considered that the elastic modulus of the bottom rubber is insufficient and the rubber is buckled.
  • the reinforcement form is different between the reinforcement by the cellulosic fine fibers and the reinforcement by the carbon black. That is, the carbon black reinforcement is manifested by the rubber layer (bound rubber) adsorbed by the carbon black being suppressed in the rubber mobility. Further, it is considered that no chemical cross-linking occurs in the rubber layer, and it is considered that exothermicity increases or adhesive wear occurs during repeated deformation. On the other hand, the details of the reinforcement by the cellulosic fine fibers are unknown, so this result is difficult to predict.
  • the rubber molecules in the vicinity of the cellulosic fine fibers are not suppressed as much as the rubber molecules in the vicinity of the carbon black, or are crosslinked and become rubber-like elastic bodies. There is a possibility that the nature of can be kept.
  • the reinforcing effect by the cellulosic fine fibers may be due to the three-dimensional network structure of the fine fibers.
  • the mechanism is not particularly concerned with the effect of the combined use of the cellulosic fine fibers and the short fibers.
  • Example 1-1 which mix
  • Each evaluation is substantially the same about the blended Example 1-2. Therefore, the same effect can be realized with a small amount of the cellulose-based fine fibers obtained by the chemical defibrating means.
  • Example 2-1 H-NBR latex (trade name: ZLX-B, manufactured by Nippon Zeon Co., Ltd.) and an aqueous dispersion of cellulose fine fibers produced by mechanical defibration means are mixed, and water is vaporized to produce cellulose fine fibers / H-NBR.
  • a master batch was prepared.
  • H-NBR (trade name: Zettopol 2020, manufactured by Nippon Zeon Co., Ltd.) was masticated, and a master batch was added thereto for kneading.
  • the input amount of the master batch was such that the content of the fine cellulose fiber was 20 parts by mass when the total H-NBR was 100 parts by mass.
  • H-NBR and fine cellulose fibers are kneaded, and there are 20 parts by mass of carbon black HAF as a reinforcing material, 20 parts by mass of aramid short fibers, and 10 parts by mass of oil with respect to 100 parts by mass of H-NBR. Kneading by adding 5 parts by mass of an organic peroxide as a crosslinking agent (trade name: Peroximone F40, manufactured by NOF Corporation) and 1 part by mass of a co-crosslinking agent (trade name: high cloth M, manufactured by Seiko Chemical Co., Ltd.). By continuing, an uncrosslinked rubber composition was produced.
  • an organic peroxide as a crosslinking agent
  • a co-crosslinking agent trade name: high cloth M, manufactured by Seiko Chemical Co., Ltd.
  • This uncrosslinked rubber composition is molded into a sheet to form an uncrosslinked rubber sheet for constituting a belt body (compressed rubber layer, adhesive rubber layer and stretched rubber layer), and a low edge V belt of Example 2-1 is produced. did.
  • the strand made from the polyester fiber which gave the adhesion process was used for the core wire.
  • Example 2-2 10 parts by mass of cellulose fine fiber produced by chemical defibration means (TEMPO oxidation treatment), 20 parts by mass of carbon black HAF as a reinforcing material, 10 parts by mass of oil, and crosslinking with respect to 100 parts by mass of CR and its CR 5 parts by weight of the organic peroxide and 1 part by weight of the co-crosslinking agent were added and kneaded to prepare an uncrosslinked rubber composition.
  • TEMPO oxidation treatment chemical defibration means
  • a low-edge V belt of Example 2-2 having the same configuration as that of Example 2-1 was produced except that this uncrosslinked rubber composition was used as an uncrosslinked rubber sheet for constituting the belt body.
  • Example 2-3 About the uncrosslinked rubber sheet for the belt main body constitution, the content of the cellulosic fine fiber not blended with carbon black and defibrated by chemical means is 20 parts by mass with respect to 100 parts by mass of the rubber component. Except for this, the belt of Example 2-3 having the same configuration as that of Example 2-2 was produced.
  • Example 2-4 With respect to the uncrosslinked rubber sheet for constituting the belt body, Example 2-2 except that 10 parts by mass of aramid short fibers and 10 parts by mass of nylon short fibers were further blended with respect to 100 parts by mass of the rubber component. A belt of Example 2-4 having the same configuration was produced.
  • Example 2-5 The belt of Example 2-5 having the same configuration as Example 2-2, except that 20 parts by mass of nylon short fibers were blended in place of 20 parts by mass of aramid short fibers for the uncrosslinked rubber sheet for constituting the belt body. was made.
  • Example 2-1 With respect to the uncrosslinked rubber sheet for constituting the belt main body, Example 2-1 except that the blending amount of the carbon black HAF is 30 parts by mass with respect to 100 parts by mass of the rubber component, and no cellulosic fine fibers are blended. A belt of Comparative Example 2-1 having the same configuration was produced.
  • Comparative Example 2-2 having the same configuration as Comparative Example 2-1 except that the amount of carbon black HAF was 90 parts by mass with respect to 100 parts by mass of the rubber component for the uncrosslinked rubber sheet for the belt body configuration A belt was prepared.
  • Comparative Example 2-3 The belt of Comparative Example 2-3 having the same configuration as that of Comparative Example 2-1 except that 20 parts by mass of nylon short fibers were blended in place of 20 parts by mass of aramid short fibers for the uncrosslinked rubber sheet for constituting the belt body. was made.
  • Comparative Example 2-4 About the uncrosslinked rubber sheet for the belt body constitution, the blending amount of carbon black HAF is 90 parts by weight with respect to 100 parts by weight of the rubber component, and 20 parts by weight of nylon short fibers are blended instead of 20 parts by weight of aramid short fibers. A belt of Comparative Example 2-4 having the same configuration as that of Comparative Example 2-1 was produced.
  • Comparative Example 2-5 About the uncrosslinked rubber sheet for the belt body constitution, the blending amount of carbon black HAF is 20 parts by mass with respect to 100 parts by mass of the rubber component, and 20 parts by mass of cellulose fibers that are not fine fibers with respect to 100 parts by mass of the rubber component A belt of Comparative Example 2-5 having the same configuration as that of Comparative Example 2-1 was prepared, except that was further blended.
  • Comparative Example 2-6 Comparative Example 2 except that the uncrosslinked rubber sheet for constituting the belt main body was not compounded with carbon black HAF, and further blended 20 parts by mass of cellulose fibers that were not fine fibers with respect to 100 parts by mass of the rubber component.
  • a belt of Comparative Example 2-5 having the same configuration as that of 1 was produced.
  • Comparative Example 2-8 A belt of Comparative Example 2-8 having the same configuration as that of Example 2-2 was produced except that neither carbon black HAF nor short aramid fibers were blended in the uncrosslinked rubber sheet for constituting the belt main body.
  • Test evaluation method For each belt of Examples 2-1 to 2-5, the average value, the minimum value, and the maximum value of the fiber diameter of the fine cellulose fibers were determined in the same manner as in Test Evaluation 1. In addition, for each belt of Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-8, as in Test Evaluation 1, the belt crack life was measured and a high-tension running test was performed to check the shaft. The change in distance, the change in mass, the wear coefficient ratio, the presence or absence of adhesive wear after the test, and the strength retention were evaluated.
  • the atmospheric temperature was set to 120 ° C. for the measurement of the belt crack resistance and the high tension running test. Further, the belt anti-cracking life was measured up to 300 hours, and the test was terminated if no cracks were observed after 300 hours.
  • Test evaluation results The test results are shown in Table 2.
  • Example 3-1 A dispersion in which fine cellulose fibers produced by mechanical defibrating means are dispersed in toluene and a solution in which EPDM (trade name: EP33 manufactured by JSR) is dissolved in toluene are mixed, and toluene is vaporized to mix cellulose.
  • EPDM trade name: EP33 manufactured by JSR
  • EPDM was masticated, and a master batch was added thereto for kneading.
  • the input amount of the masterbatch was such that the content of cellulose fine fibers was 20 parts by mass when the total EPDM was 100 parts by mass.
  • EPDM and cellulose fine fiber are kneaded, with respect to 100 parts by mass of EPDM, 20 parts by mass of carbon black as a reinforcing material, 20 parts by mass of aramid short fibers, 10 parts by mass of oil, and organic of a crosslinking agent
  • An uncrosslinked rubber composition was prepared by adding 5 parts by weight of a peroxide and 1 part by weight of a co-crosslinking agent and continuing kneading.
  • This uncrosslinked rubber composition was molded into a sheet to form an uncrosslinked rubber sheet for constituting a belt body (compressed rubber layer, adhesive rubber layer and stretched rubber layer), and a low edge V belt of Example 3-1 was produced. did.
  • the strand made from the polyester fiber which gave the adhesion process was used for the core wire.
  • Example 3-2 10 parts by mass of cellulose fine fiber produced by chemical defibration means (TEMPO oxidation treatment), 20 parts by mass of carbon black as a reinforcing material, 10 parts by mass of oil, and organic peroxidation of a crosslinking agent with respect to 100 parts by mass of EPDM 5 parts by mass of the product and 1 part by mass of the co-crosslinking agent were kneaded to prepare an uncrosslinked rubber composition.
  • TEMPO oxidation treatment chemical defibration means
  • a low-edge V belt of Example 3-2 having the same configuration as that of Example 3-1 was produced except that this uncrosslinked rubber composition was used as an uncrosslinked rubber sheet for constituting the belt body.
  • Example 3-3 About the uncrosslinked rubber sheet for the belt main body constitution, the content of the cellulosic fine fiber not blended with carbon black and defibrated by chemical means is 20 parts by mass with respect to 100 parts by mass of the rubber component. A belt of Example 3-3 having the same configuration as that of Example 3-2 was produced.
  • Example 3-4 With respect to the uncrosslinked rubber sheet for constituting the belt main body, Example 3-2 except that 10 parts by mass of aramid short fibers and 10 parts by mass of nylon short fibers were further blended with respect to 100 parts by mass of the rubber component. A belt of Example 3-4 having the same configuration was produced.
  • Example 3-5 The belt of Example 3-5 having the same configuration as that of Example 3-2 except that 20 parts by mass of nylon short fibers were blended in place of 20 parts by mass of aramid short fibers for the uncrosslinked rubber sheet for constituting the belt body. was made.
  • Example 3-1 With respect to the uncrosslinked rubber sheet for constituting the belt main body, Example 3-1, except that the blending amount of the carbon black HAF is 30 parts by mass with respect to 100 parts by mass of the rubber component and no cellulosic fine fibers are blended. A belt of Comparative Example 3-1 having the same configuration was produced.
  • Comparative Example 3-2 having the same configuration as Comparative Example 3-1, except that the amount of carbon black HAF was 90 parts by mass with respect to 100 parts by mass of the rubber component for the uncrosslinked rubber sheet for the belt body configuration A belt was prepared.
  • Comparative Example 3-3 The belt of Comparative Example 3-3 having the same configuration as Comparative Example 3-1, except that 20 parts by mass of nylon short fibers were blended in place of 20 parts by mass of aramid short fibers for the uncrosslinked rubber sheet for the belt body configuration was made.
  • Comparative Example 3-4 About the uncrosslinked rubber sheet for the belt body constitution, the blending amount of carbon black HAF is 90 parts by weight with respect to 100 parts by weight of the rubber component, and 20 parts by weight of nylon short fibers are blended instead of 20 parts by weight of aramid short fibers. A belt of Comparative Example 3-4 having the same configuration as that of Comparative Example 3-1 was produced.
  • Comparative Example 3-5 About the uncrosslinked rubber sheet for the belt body constitution, the blending amount of carbon black HAF is 20 parts by mass with respect to 100 parts by mass of the rubber component, and 20 parts by mass of cellulose fibers that are not fine fibers with respect to 100 parts by mass of the rubber component A belt of Comparative Example 3-5 having the same configuration as that of Comparative Example 3-1 was produced, except that was further blended.
  • Comparative Example 3-6 With respect to the uncrosslinked rubber sheet for constituting the belt body, Comparative Example 3 except that carbon black HAF was not blended and 20 parts by mass of cellulose fibers that were not fine fibers were further blended with respect to 100 parts by mass of the rubber component. A belt of Comparative Example 3-5 having the same configuration as 1 was produced.
  • Comparative Example 3-7 A belt of Comparative Example 3-7 having the same configuration as that of Example 3-2 was prepared for the uncrosslinked rubber sheet for constituting the belt body, except that aramid short fibers were not blended.
  • Comparative Example 3-8 A belt of Comparative Example 3-8 having the same configuration as Example 3-2 was produced except that neither carbon black HAF nor aramid short fibers were blended in the uncrosslinked rubber sheet for constituting the belt main body.
  • Test evaluation method For each belt of Examples 3-1 to 3-5, the average value, the minimum value, and the maximum value of the fiber diameter of the cellulose fine fiber were determined in the same manner as in Test Evaluation 1. In addition, for each belt of Examples 3-1 to 3-5 and Comparative Examples 3-1 to 3-8, as in Test Evaluation 1, a belt crack resistance life was measured and a high-tension running test was performed. The change in distance, the change in mass, the wear coefficient ratio, the presence or absence of adhesive wear after the test, and the strength retention were evaluated.
  • the atmospheric temperature was set to 120 ° C. for the measurement of the belt crack resistance and the high tension running test. Further, the belt anti-cracking life was measured up to 300 hours, and the test was terminated if no cracks were observed after 300 hours.
  • Test evaluation results The test results are shown in Table 3.
  • V-ribbed belt B 1 and 2 are also diagrams showing a V-ribbed belt B according to the second embodiment.
  • the V-ribbed belt B according to the second embodiment is an endless power transmission member used, for example, in an accessory drive belt transmission device provided in an engine room of an automobile.
  • the V-ribbed belt B according to Embodiment 2 has, for example, a belt length of 700 to 3000 mm, a belt width of 10 to 36 mm, and a belt thickness of 4.0 to 5.0 mm.
  • the V-ribbed belt B according to the second embodiment has a three-layer structure including a compression rubber layer 11 that forms a pulley contact portion on the belt inner peripheral side, an intermediate adhesive rubber layer 12, and a back rubber layer 13 on the belt outer peripheral side.
  • a rubber V-ribbed belt body 10 is provided.
  • a core wire 14 is embedded in an intermediate portion in the thickness direction of the adhesive rubber layer 12 in the V-ribbed belt body 10 so as to form a spiral having a pitch in the belt width direction.
  • a back reinforcing cloth may be provided instead of the back rubber layer 13, and the V-ribbed belt main body 10 may be configured as a double layer of the compression rubber layer 11 and the adhesive rubber layer 12.
  • the compression rubber layer 11 is provided such that a plurality of V ribs 16 hang down to the inner peripheral side of the belt.
  • the plurality of V ribs 16 are each formed in a ridge having a substantially inverted triangular cross section extending in the belt length direction, and provided in parallel in the belt width direction.
  • Each V-rib 16 has, for example, a rib height of 2.0 to 3.0 mm and a width between base ends of 1.0 to 3.6 mm.
  • the number of V ribs 16 is, for example, 3 to 6 (six in FIG. 1).
  • the adhesive rubber layer 12 is formed in a band shape having a horizontally long cross section and has a thickness of, for example, 1.0 to 2.5 mm.
  • the back rubber layer 13 is also formed in a band shape having a horizontally long cross section, and has a thickness of, for example, 0.4 to 0.8 mm. It is preferable that a woven fabric pattern is provided on the surface of the back rubber layer 13 from the viewpoint of suppressing the generation of sound during back driving.
  • the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 are rubbers obtained by crosslinking an uncrosslinked rubber composition obtained by mixing and kneading various rubber compounding ingredients with a rubber component and then crosslinking with a crosslinking agent. It is formed with a composition.
  • the rubber composition forming the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 may be the same or different.
  • Examples of the rubber component of the rubber composition forming the compression rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 include ethylene / propylene copolymer (EPR), ethylene / propylene / diene terpolymer (EPDM), Examples include ethylene- ⁇ -olefin elastomers such as octene copolymer and ethylene / butene copolymer; chloroprene rubber (CR); chlorosulfonated polyethylene rubber (CSM); hydrogenated acrylonitrile rubber (H-NBR).
  • the rubber component is preferably one or more of these blend rubbers.
  • the rubber components of the rubber composition forming the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 are preferably the same.
  • At least one of the rubber compositions forming the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 contains cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm. It is preferable that all the rubber compositions forming the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 contain such cellulosic fine fibers, but at least the compressed rubber layer 11 constituting the pulley contact portion is formed. It is more preferable that the rubber composition to be contained contains such cellulosic fine fibers.
  • At least one of the rubber compositions forming the compression rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 that constitutes the V-ribbed belt main body 10 as described above is a fiber.
  • a cellulosic fine fiber having a diameter distribution range of 50 to 500 nm excellent bending fatigue resistance can be obtained.
  • the rubber composition which forms the compression rubber layer 11 which comprises a contact part contains such a cellulose fine fiber, a stable friction coefficient can be obtained with high abrasion resistance.
  • Cellulosic fine fiber is a fiber material derived from cellulose fine fiber composed of a skeletal component of a plant cell wall obtained by finely loosening plant fiber.
  • Examples of the cellulosic fine fiber plant include wood, bamboo, rice (rice straw), potato, sugar cane (bagasse), aquatic plants, seaweed and the like. Of these, wood is preferred.
  • the cellulose-based fine fiber may be either the cellulose fine fiber itself or a hydrophobic cellulose fine fiber that has been subjected to a hydrophobic treatment. Moreover, you may use together cellulose fine fiber itself and hydrophobized cellulose fine fiber as a cellulosic fine fiber. From the viewpoint of dispersibility, the cellulosic fine fibers preferably include hydrophobized cellulose fine fibers. Examples of the hydrophobized cellulose fine fibers include cellulose fine fibers in which some or all of the hydroxyl groups of cellulose are substituted with hydrophobic groups, and cellulose fine fibers that have been subjected to a hydrophobized surface treatment with a surface treatment agent.
  • hydrophobization for obtaining cellulose fine fibers in which part or all of the hydroxyl groups of cellulose are substituted with hydrophobic groups include esterification (acylation) (alkyl esterification, complex esterification, ⁇ -ketoesterification, etc.) ), Alkylation, tosylation, epoxidation, arylation and the like. Of these, esterification is preferred.
  • esterification is preferred.
  • part or all of the hydroxyl groups of cellulose are carboxylic acids such as acetic acid, acetic anhydride, propionic acid, butyric acid, or halides thereof (particularly chlorides). It is the cellulose fine fiber acylated by.
  • the surface treatment agent for obtaining cellulose fine fibers hydrophobized and surface-treated with the surface treatment agent include silane coupling agents.
  • the cellulosic fine fibers preferably have a wide fiber diameter distribution from the viewpoint of enhancing bending fatigue resistance, and the fiber diameter distribution range includes 50 to 500 nm.
  • the lower limit of the fiber diameter distribution is preferably 20 nm or less, more preferably 10 nm or less.
  • the upper limit is preferably 700 nm or more, more preferably 1 ⁇ m or more.
  • the fiber diameter distribution range of the cellulosic fine fibers preferably includes 20 nm to 700 mm, and more preferably includes 10 nm to 1 ⁇ m.
  • the average fiber diameter of the cellulosic fine fibers contained in the rubber composition is preferably 10 nm or more, more preferably 20 nm or more, and preferably 700 nm or less, more preferably 100 nm or less.
  • the distribution of the fiber diameter of the cellulosic fine fibers is obtained by freezing and crushing a sample of the rubber composition, then observing the cross section with a transmission electron microscope (TEM) and arbitrarily selecting 50 cellulosic fine fibers. The fiber diameter is measured and obtained based on the measurement result. The average fiber diameter of the cellulosic fine fibers is obtained as the number average of the fiber diameters of 50 arbitrarily selected cellulosic fine fibers.
  • TEM transmission electron microscope
  • the cellulosic fine fibers may be either high aspect ratio manufactured by mechanical defibrating means, or needle-shaped crystals manufactured by chemical defibrating means. Of these, those manufactured by mechanical defibrating means are preferred. Moreover, you may use together what was manufactured by the mechanical defibration means, and what was manufactured by the chemical defibration means as a cellulose fine fiber.
  • the defibrating apparatus used for the mechanical defibrating means include a kneader such as a twin-screw kneader, a high-pressure homogenizer, a grinder, and a bead mill.
  • the treatment used for the chemical defibrating means include acid hydrolysis treatment.
  • the content of the cellulosic fine fibers in the rubber composition is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and still more preferably 5 parts with respect to 100 parts by mass of the rubber component from the viewpoint of enhancing the bending fatigue resistance. It is not less than 30 parts by mass, preferably not more than 30 parts by mass, more preferably not more than 20 parts by mass, and still more preferably not more than 10 parts by mass.
  • rubber compounding agents include reinforcing materials, process oils, processing aids, vulcanization acceleration aids, crosslinking agents, vulcanization accelerators, and anti-aging agents.
  • carbon black for example, channel black; furnace black such as SAF, ISAF, N-339, HAF, N-351, MAF, FEF, SRF, GPF, ECF, N-234; FT, MT, etc. Thermal black; acetylene black and the like.
  • Silica is also mentioned as the reinforcing material. It is preferable that a reinforcing material is 1 type, or 2 or more types among these. The content of the reinforcing material is preferably 50 to 90 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
  • Oils include, for example, petroleum-based softeners, mineral oils such as paraffin wax, castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, fall raw oil, wax, rosin, pine And vegetable oils such as oil.
  • the oil is preferably one or more of these.
  • the oil content is, for example, 10 to 30 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
  • processing aids include stearic acid, polyethylene wax, and fatty acid metal salts.
  • the processing aid is preferably one or more.
  • the content of the processing aid is, for example, 0.5 to 2 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
  • the vulcanization acceleration aid examples include metal oxides such as magnesium oxide and zinc oxide (zinc white), metal carbonates, fatty acids and derivatives thereof.
  • the vulcanization acceleration aid is preferably one or more.
  • the content of the vulcanization acceleration aid is, for example, 3 to 7 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
  • anti-aging agent examples include benzimidazole anti-aging agents, amine-ketone anti-aging agents, diamine anti-aging agents, and phenol anti-aging agents. It is preferable that an anti-aging agent is 1 type, or 2 or more types among these.
  • the content of the anti-aging agent is, for example, 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber component.
  • co-crosslinking agent examples include maleimide, TAIC, 1,2-polybutadiene, oximes, guanidine, trimethylolpropane trimethacrylate, and liquid rubber.
  • the co-crosslinking agent is preferably one or more of these.
  • the content of the co-crosslinking agent is, for example, 0.5 to 30 parts by mass with respect to 100 parts by mass of the rubber component.
  • crosslinking agent examples include sulfur and organic peroxides.
  • sulfur may be blended, an organic peroxide may be blended, or both of them may be used in combination.
  • the amount of the crosslinking agent is, for example, 1 to 5 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition in the case of sulfur, and 100 parts by mass of the rubber component of the rubber composition with respect to the organic peroxide. For example, 1 to 5 parts by mass.
  • vulcanization accelerator examples include thiuram (eg, TETD, TT, TRA, etc.), thiazole (eg, MBT, MBTS, etc.), sulfenamide (eg, CZ), dithiocarbamate (eg, BZ-P). Etc.). It is preferable that a vulcanization accelerator is 1 type, or 2 or more types among these.
  • the content of the vulcanization accelerator is, for example, 1 to 3 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
  • the rubber composition forming the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 may contain short fibers 16 having a fiber diameter of 10 ⁇ m or more.
  • the short fiber 16 is preferably contained in the rubber composition forming the compressed rubber layer 11 constituting the pulley contact portion.
  • the short fibers 16 are preferably contained in the compressed rubber layer 11 so as to be oriented in the belt width direction, and the short fibers 16 exposed on the surface of the V ribs 15 of the compressed rubber layer 11 are partially Preferably protrudes from the surface.
  • blended with the rubber composition may be sufficient.
  • Examples of the short fibers 16 include nylon short fibers, vinylon short fibers, aramid short fibers, polyester short fibers, and cotton short fibers.
  • the short fiber 16 is manufactured by, for example, cutting a long fiber that has been subjected to an adhesion treatment to be heated after being immersed in an RFL aqueous solution or the like into a predetermined length.
  • the length of the short fiber 16 is, for example, 0.2 to 5.0 mm, and the fiber diameter is, for example, 10 to 50 ⁇ m.
  • the content of the short fibers 16 is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and preferably 30 parts by mass or less, more preferably 20 parts by mass or less, with respect to 100 parts by mass of the rubber component. It is.
  • the content of the short fibers 16 is preferably larger than the content of the cellulosic fine fibers.
  • the ratio of the content of the short fibers 16 to the content of the cellulosic fine fibers (the content of the cellulosic fine fibers of the content of the short fibers 16) is preferably 1 or more, more preferably 2 or more, and preferably Is 15 or less, more preferably 5 or less.
  • the total content of cellulosic fine fibers and short fibers 16 is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and preferably 25 parts by mass or less, with respect to 100 parts by mass of the rubber component. Preferably it is 15 mass parts or less.
  • the core wire 14 is composed of a twisted yarn formed of polyamide fiber, polyester fiber, aramid fiber, polyamide fiber or the like.
  • the diameter of the core wire 14 is, for example, 0.5 to 2.5 mm, and the dimension between the centers of the adjacent core wires 14 in the cross section is, for example, 0.05 to 0.20 mm.
  • the core wire 14 is subjected to an adhesive treatment for imparting adhesiveness to the V-ribbed belt main body 10.
  • FIG. 12 shows a pulley layout of the auxiliary drive belt transmission device 20 for an automobile using the V-ribbed belt B according to the second embodiment.
  • the accessory drive belt transmission device 20 is of a serpentine drive type in which a V-ribbed belt B is wound around six pulleys of four rib pulleys and two flat pulleys to transmit power.
  • a rib pulley power steering pulley 21 is provided at the uppermost position, and a rib pulley AC generator pulley 22 is provided below the power steering pulley 21.
  • a flat pulley tensioner pulley 23 is provided at the lower left of the power steering pulley 21, and a flat pulley water pump pulley 24 is provided below the tensioner pulley 23.
  • a rib pulley crankshaft pulley 25 is provided on the lower left side of the tensioner pulley 23, and a rib pulley air conditioner pulley 26 is provided on the lower right side of the crankshaft pulley 25.
  • These pulleys are made of, for example, a metal stamped product, a casting, or a resin molded product such as nylon resin or phenol resin, and have a pulley diameter of ⁇ 50 to 150 mm.
  • the V-ribbed belt B is wound around the power steering pulley 21 so that the V-rib 16 side contacts, and then wound around the tensioner pulley 23 so that the back surface of the belt contacts. After that, it is wound around the crankshaft pulley 25 and the air conditioner pulley 26 in order so that the V rib 16 side comes into contact, and further wound around the water pump pulley 24 so that the back surface of the belt comes into contact. Thus, it is wound around the AC generator pulley 22 and finally returned to the power steering pulley 21.
  • the belt span length which is the length of the V-ribbed belt B spanned between the pulleys, is, for example, 50 to 300 mm. Misalignment that can occur between pulleys is 0-2 °.
  • the manufacturing method of the V-ribbed belt B according to the second embodiment is the same as that of the V-ribbed belt according to the first embodiment.
  • V-ribbed belts of Examples 4-1 to 4-9 and Comparative Example 4 below were produced. Details of each are also shown in Table 4.
  • Example 4-1 Prepare a dispersion in which powdered cellulose (trade name: KC Flock W-50GK, manufactured by Nippon Paper Industries Co., Ltd.) made of wood as a raw material in toluene is dispersed.
  • the fine fibers were defibrated to obtain a dispersion in which cellulose fine fibers were dispersed in toluene. Accordingly, the cellulose fine fibers are produced by mechanical defibrating means and are not subjected to a hydrophobic treatment.
  • EPDM was masticated, and a master batch was added thereto for kneading.
  • the input amount of the master batch was such that the cellulose fine fiber content was 1 part by mass when the total EPDM was 100 parts by mass.
  • HAF carbon black (trade name: Dia Black H) manufactured by Mitsubishi Chemical Co., Ltd. is added to 100 mass parts of EPDM.
  • 2.5 parts by mass of benzimidazole anti-aging agent (trade name: NOCRACK MB), sulfur as a crosslinking agent (product by Hosoi Chemical Co., Ltd.)
  • thiuram vulcanization accelerator (made by Ouchi Shinsei Chemical Co., Ltd., trade name: Noxeller TET-G)
  • Example 4-1 Using this uncrosslinked rubber composition, a V-ribbed belt of Example 4-1 having the same configuration as that of Embodiment 2 in which a compressed rubber layer was formed so that the cutting direction was the belt width direction was produced.
  • the V-ribbed belt of Example 4-1 has a belt length of 1400 mm, a belt width of 2.2 mm, a belt thickness of 4.5 mm, and three V-ribs.
  • the adhesive rubber layer and the back rubber layer were formed from a rubber composition not containing cellulose fine fibers and short fibers, and the core wire was formed from a polyester fiber twisted yarn that had been subjected to an adhesive treatment.
  • Example 4-2 A V-ribbed belt of Example 4-2 was produced in the same manner as in Example 4-1, except that the cellulose fine fiber content was 3 parts by mass with respect to 100 parts by mass of the rubber component.
  • Example 4-3 A V-ribbed belt of Example 4-3 was produced in the same manner as in Example 4-1, except that the content of cellulose fine fibers was 5 parts by mass with respect to 100 parts by mass of the rubber component.
  • Example 4-4 A V-ribbed belt of Example 4-4 was produced in the same manner as in Example 4-1, except that the cellulose fine fiber content was 10 parts by mass with respect to 100 parts by mass of the rubber component.
  • Example 4-5 A V-ribbed belt of Example 4-5 was produced in the same manner as in Example 4-1, except that the content of cellulose fine fibers was 15 parts by mass with respect to 100 parts by mass of the rubber component.
  • Example 4-6 A V-ribbed belt of Example 4-6 was produced in the same manner as in Example 4-1, except that the content of cellulose fine fibers was 25 parts by mass with respect to 100 parts by mass of the rubber component.
  • Example 4-7 Except that the uncrosslinked rubber composition for the compression rubber layer contains 14 parts by mass of nylon short fibers (trade name: CFN3000, fiber diameter: 26 ⁇ m, fiber length: 3 mm, manufactured by Teijin Ltd.) with respect to 100 parts by mass of the rubber component.
  • nylon short fibers trade name: CFN3000, fiber diameter: 26 ⁇ m, fiber length: 3 mm, manufactured by Teijin Ltd.
  • a V-ribbed belt of Example 4-7 was produced.
  • the ratio of the short fiber content to the cellulosic fine fiber content (“B / A” in Table 4) is 14.
  • the total content of cellulosic fine fibers and short fibers (“A + B” in Table 4) is 15 parts by mass with respect to 100 parts by mass of the rubber component.
  • Example 4-8 The V of Example 4-8 is the same as Example 4-2, except that 12 parts by mass of nylon short fibers are added to 100 parts by mass of the rubber component in the uncrosslinked rubber composition for the compressed rubber layer. A ribbed belt was produced. The ratio (B / A) of the short fiber content to the cellulosic fine fiber content is 4. The total content (A + B) of the cellulosic fine fibers and short fibers is 15 parts by mass with respect to 100 parts by mass of the rubber component.
  • Example 4-9 The V of Example 4-9 is the same as Example 4-3 except that the uncrosslinked rubber composition for the compressed rubber layer contains 10 parts by mass of nylon short fibers per 100 parts by mass of the rubber component. A ribbed belt was produced. The ratio of the short fiber content to the cellulosic fine fiber content (the short fiber content to the cellulosic fine fiber content) is 3. The total content of cellulosic fine fibers and short fibers is 15 parts by mass with respect to 100 parts by mass of the rubber component.
  • Example 4 The same as in Example 4-1, except that the uncrosslinked rubber composition for the compressed rubber layer does not contain fine cellulose fibers and 15 parts by mass of nylon short fibers per 100 parts by mass of the rubber component. Thus, a V-ribbed belt of Comparative Example 4 was produced.
  • FIG. 17 shows the friction coefficient measuring device 140.
  • the friction coefficient measuring device 140 includes a test pulley 141 made of a rib pulley having a pulley diameter of 75 mm and a load cell 142 provided on the side thereof.
  • the test pulley 141 is made of an iron-based material S45C.
  • the test piece 143 of the V-ribbed belt extends horizontally from the load cell 142 and is then wound around the test pulley 141. That is, the V-ribbed belt test piece 143 is provided such that the winding angle around the test pulley 141 is 90 °.
  • a belt-like test piece 143 is cut, and one end thereof is fixed to the load cell 142 and wound around the test pulley 141.
  • a weight 144 was attached to the other end and hung.
  • the test pulley 141 is rotated at a rotation speed of 43 rpm in a direction to lower the weight 144, and at 60 seconds after the rotation starts, the test pulley 141 in the test piece 143 is loaded by the load cell 142.
  • the tension Tt applied to the horizontal portion between the load cell 142 and the load cell 142 was measured.
  • FIG. 18 shows a pulley layout of the abrasion resistance evaluation belt running test machine 150.
  • the belt running test machine 150 for wear resistance evaluation includes a driving rib pulley 151 having a pulley diameter of ⁇ 60 mm and a driven rib pulley 152 having a pulley diameter of 60 mm provided on the right side thereof.
  • the driven rib pulley 152 is movably provided to the left and right so that an axial load (dead weight DW) can be applied and tension can be applied to the V-ribbed belt B.
  • the belt is wound between the drive rib pulley 151 and the driven rib pulley 152 of the belt running test machine 150 for wear resistance evaluation.
  • the belt was run at a rotational speed. Then, the belt running was stopped 24 hours after the start of running, the belt mass of the V-ribbed belt was measured, and the weight loss was obtained as a percentage.
  • FIG. 19 shows a pulley layout of a belt running test machine 160 for evaluating bending fatigue resistance.
  • the belt running test machine 160 for evaluating bending fatigue resistance includes a driving rib pulley 161 having a pulley diameter of ⁇ 60 mm, a first driven rib pulley 162a having a pulley diameter of ⁇ 60 mm provided above, a driving rib pulley 161 and a first driven rib pulley 162a.
  • the first driven rib pulley 162a is provided movably up and down so as to apply a shaft load (dead weight DW) and apply tension to the V-ribbed belt B.
  • a shaft load load (dead weight DW)
  • tension to the V-ribbed belt B.
  • the belt running tester 160 for evaluating bending fatigue resistance has a compression rubber layer as a driving rib pulley 161 and first and second driven rib pulleys. 162a and 162b, and the back rubber layer is wound around the idler pulley 163 so as to be in contact with each other, and an axial load of 588 N is applied to the first driven rib pulley 162a to apply tension to the V-ribbed belt B.
  • the driving rib pulley 161 was rotated at a rotational speed of 5100 rpm under the atmospheric temperature of 70 ° C. to run the belt.
  • the belt travel was periodically stopped and whether or not a crack was generated in the compressed rubber layer was visually confirmed, and the belt travel time until the occurrence of the crack was confirmed was defined as the crack generation life.
  • Test evaluation results The test results are shown in Table 2.
  • the content of the cellulose fine fiber means a part by mass with respect to 100 parts by mass of the rubber component even if not particularly described.
  • Examples 4-3 to 4-6 in which the content of cellulose fine fibers is 5 parts by mass or more, and Examples 4-7 to Examples 4-6 including both cellulose fine fibers and short nylon fibers 9 shows that the increase amount is -0.05 to 0.05, which is close to 0, and therefore, the increase in the coefficient of friction during drying after being flooded is suppressed. Even in the case of Example 4-1 with the smallest content of cellulose fine fibers (1 part by mass), it can be seen that the change in the friction coefficient is 0.5, which is nearly half that of Comparative Example 4.
  • Example 4-1 The weight loss of Comparative Example 4 was improved to 2.8% in Example 4-1 in which the content of cellulose fine fibers was 1 part by mass with respect to the wear rate of 3.2%, and the content of cellulose fine fibers was It can be seen that the wear resistance is improved as the value increases (in Examples 4-2 to 4-6, 2.7, 2.1, 1.9, 1.8, and 1.7 in order). However, it can be seen that when the content of the fine cellulose fiber exceeds 10 parts by mass, the improvement is small even if the content is further increased (Examples 4-4 to 4-6).
  • Example 4-7 in which the content of short nylon fibers is 14 parts by mass and the content of fine cellulose fibers is 1 part by mass, it is 2.3%. That is, it can be seen that the wear resistance is further improved by including both nylon short fibers and cellulose fine fibers. In Examples 4-7 to 4-9, the total content of cellulose fine fibers and short nylon fibers is the same, but the wear resistance improves as the proportion of the content of cellulose fine fibers increases. I understand.
  • Example 4 ⁇ Bending fatigue resistance>
  • the crack generation life was 520 hours
  • Example 4-1 in which the content of cellulose fine fibers was 1 part by mass
  • cracks were observed. It can be seen that the generation life is 1205 hours, which is improved more than twice. It can be seen that the crack generation life is further improved by increasing the content of the cellulose fine fiber to 3 parts by mass (Example 4-2), but if it is further increased, the crack generation life is rather shortened (Example 4- 3 to Example 4-6). However, even in Example 4-6 in which the content of fine cellulose fibers is 25 parts by mass, the crack generation life is 900 hours, which is a significant improvement over Comparative Example 4.
  • FIG. 13 schematically shows a flat belt C according to the third embodiment.
  • the flat belt C according to the third embodiment is used in applications that require a long life in use under relatively high load conditions such as a drive transmission application such as a blower, a compressor, and a generator, and an auxiliary machine drive application of an automobile. It is the power transmission member used.
  • the flat belt C has, for example, a belt length of 600 to 3000 mm, a belt width of 10 to 20 mm, and a belt thickness of 2 to 3.5 mm.
  • the flat belt C according to the third embodiment is provided such that an inner rubber layer 121 on the inner peripheral side of the belt, an adhesive rubber layer 122 on the outer peripheral side of the belt, and an outer rubber layer 123 on the outer peripheral side of the belt are laminated.
  • An integrated flat belt body 120 is provided.
  • a core wire 124 is embedded in the adhesive rubber layer 122 so as to form a spiral having a pitch in the belt width direction at an intermediate portion in the belt thickness direction.
  • the inner rubber layer 121, the adhesive rubber layer 122, and the outer rubber layer 123 are each formed in a band shape having a horizontally long cross section, and an uncrosslinked rubber composition in which various compounding agents are blended and kneaded with a rubber component is heated. And it is formed with the rubber composition bridge
  • the thickness of the inner rubber layer 121 is preferably 0.3 mm or more, more preferably 0.5 mm or more, and preferably 3.0 mm or less, more preferably 2.5 mm or less.
  • the thickness of the adhesive rubber layer 122 is, for example, 0.6 to 1.5 mm.
  • the thickness of the outer rubber layer 123 is, for example, 0.6 to 1.5 mm.
  • At least one of the rubber compositions forming the inner rubber layer 121, the adhesive rubber layer 122, and the outer rubber layer 123 contains cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm. It is preferable that all the rubber compositions forming the inner rubber layer 121, the adhesive rubber layer 122, and the outer rubber layer 123 contain such cellulosic fine fibers, but at least the rubber composition forming the inner rubber layer 121 is applied. It is more preferable to contain a cellulosic fine fiber.
  • the rubber composition that forms the inner rubber layer 121, the adhesive rubber layer 122, and the outer rubber layer 123 is the same as the rubber composition that forms the compression rubber layer 111, the adhesive rubber layer 112, and the back rubber layer 113 of the second embodiment. It has the composition of. Cellulose fine fibers also have the same configuration as that of the second embodiment.
  • the rubber composition forming the inner rubber layer 121, the adhesive rubber layer 122, and the outer rubber layer 123 may contain short fibers 126.
  • the short rubber 126 is preferably contained in the rubber composition forming the inner rubber layer 121.
  • the short fibers 126 are preferably contained in the inner rubber layer 121 so as to be oriented in the belt width direction.
  • the short fiber 126 has the same configuration as that of the second embodiment.
  • the core wire 124 has the same configuration as that of the second embodiment.
  • At least one of the rubber compositions forming the inner rubber layer 121, the adhesive rubber layer 122, and the outer rubber layer 123 that constitutes the flat belt main body 120 in this way is a fiber.
  • a cellulosic fine fiber having a diameter distribution range of 50 to 500 nm excellent bending fatigue resistance can be obtained.
  • the rubber composition forming the inner rubber layer 121 constituting the contact portion contains such cellulosic fine fibers, a high friction resistance and a stable friction coefficient can be obtained.
  • the manufacturing method of the flat belt C according to Embodiment 3 includes a material preparation process, a molding process, a crosslinking process, and a finishing process.
  • ⁇ Material preparation process> Among the uncrosslinked rubber sheets 121 ′, 122 ′, and 123 ′ for the inner rubber layer, the adhesive rubber layer, and the outer rubber layer, those containing cellulosic fine fibers are produced in the same manner as in the second embodiment. .
  • the preparation of those not containing cellulosic fine fibers is carried out by blending various rubber compounding agents with the rubber component, kneading with a kneader such as a kneader or a Banbury mixer, and the resulting uncrosslinked rubber composition by calendar molding or the like. This is done by forming into a sheet.
  • the bonding process is performed on the core wire 124 ′ in the same manner as in the second embodiment.
  • a core wire 124 ' is spirally wound on the uncrosslinked rubber sheet 122' for the adhesive rubber layer, and then again uncrosslinked for the adhesive rubber layer.
  • a rubber sheet 122 ' is wound.
  • the uncrosslinked rubber sheet 123 'for the outer rubber layer is wound around the uncrosslinked rubber sheet 122' for the adhesive rubber layer.
  • a laminated molded body C ′ is formed on the cylindrical mold 145.
  • the cylindrical mold 145 is taken out from the vulcanizing can, the cylindrical belt slab S formed on the cylindrical mold 145 is removed, and then the outer peripheral surface and / or the inner peripheral surface is polished. To make the thickness uniform.
  • a flat belt C is produced by cutting the belt slab S into a predetermined width.
  • Example 5-1 A master batch of fine cellulose fiber / EPDM was produced in the same manner as in Example 4-1.
  • EPDM was masticated, and a master batch was added thereto for kneading.
  • the input amount of the master batch was such that the cellulose fine fiber content was 1 part by mass when the total EPDM was 100 parts by mass.
  • Example 5-1 Using this uncrosslinked rubber composition, a flat belt of Example 5-1 having the same configuration as that of Embodiment 3 in which the inner rubber layer was formed so that the line direction was the belt width direction was produced.
  • the V-ribbed belt of Example 5-1 had a belt length of 1118 mm, a belt width of 10 mm, and a belt thickness of 2.8 mm.
  • the adhesive rubber layer and the outer rubber layer were formed of a rubber composition not containing fine cellulose fibers and short fibers, and the core wire was formed of a twisted yarn made of polyester fiber subjected to an adhesion treatment.
  • Example 5-2 A flat belt of Example 5-2 was produced in the same manner as in Example 5-1, except that the content of the fine cellulose fiber was 3 parts by mass with respect to 100 parts by mass of the rubber component.
  • Example 5-3 A flat belt of Example 5-3 was produced in the same manner as in Example 5-1, except that the content of the fine cellulose fiber was 5 parts by mass with respect to 100 parts by mass of the rubber component.
  • Example 5-4 A flat belt of Example 5-4 was produced in the same manner as in Example 5-1, except that the content of the cellulose fine fiber was 10 parts by mass with respect to 100 parts by mass of the rubber component.
  • Example 5-5 A flat belt of Example 5-5 was produced in the same manner as in Example 5-1, except that the content of the fine cellulose fiber was 15 parts by mass with respect to 100 parts by mass of the rubber component.
  • Example 5-6 A flat belt of Example 5-6 was produced in the same manner as Example 5-1, except that the content of cellulose fine fibers was 25 parts by mass with respect to 100 parts by mass of the rubber component.
  • Comparative Example 5-1 A flat belt of Comparative Example 5-1 was produced in the same manner as in Example 5-1, except that cellulose fine fibers were not contained in the rubber composition forming the inner rubber layer.
  • Test evaluation method ⁇ Average fiber diameter / fiber diameter distribution> Samples were collected from the rubber compositions forming the inner rubber layer of the flat belts of Examples 5-1 to 5-6, and the average fiber diameter of the cellulose fine fibers was measured in the same manner as in Test Evaluation 1. The maximum value and the minimum value of the fiber diameter were determined.
  • FIG. 20 shows a pulley layout of the belt running test machine 170 for evaluating friction / wear characteristics.
  • the belt running test machine 170 for evaluating friction / wear characteristics includes a driving flat pulley 171 having a pulley diameter of 120 mm, a first driven flat pulley 172 having a pulley diameter of 120 mm provided above the right driving pulley 171 and a right at an intermediate position between them. And a second driven flat pulley 173 having a pulley diameter of ⁇ 50 mm provided on the side.
  • the second driven flat pulley 173 is movably provided to the left and right so as to apply an axial load (dead weight DW) and apply tension to the flat belt C.
  • the driving flat pulley 171 of the belt running test machine 170 for evaluating friction and wear characteristics the first The second driven flat pulleys 72 and 73 are wound around, and a 98 N axial load is applied to the right side of the second driven flat pulley 173 to apply tension to the flat belt C.
  • the belt was run by applying a rotational load of 8.8 kW and rotating the drive pulley 171 at a rotational speed of 4800 rpm under an ambient temperature of 120 ° C.
  • the belt running was stopped 24 hours after the running started, and the friction coefficient of the surface of the inner rubber layer after the belt running was obtained by the same method as in Test Evaluation 1 using the friction coefficient measuring device 140 shown in FIG. .
  • As the test pulley 141 a flat pulley having a pulley diameter of ⁇ 65 mm was used.
  • the running surface of the driving flat pulley 171 and the first and second driven flat pulleys 72 and 73 after the belt running for 24 hours is visually observed to perform a sensory evaluation of the surface state, and the state from the amount of rubber adhesion and texture
  • the sticking wear occurrence index was numerically determined as follows.
  • FIG. 21 shows a pulley layout of the belt running test machine 180 for evaluating wear resistance.
  • the belt running test machine 180 for wear resistance evaluation includes a driving flat pulley 181 having a pulley diameter of ⁇ 100 mm and a driven flat pulley 182 having a pulley diameter of 100 mm provided on the left side thereof.
  • the driving flat pulley 181 is provided so as to be movable left and right so as to apply an axial load (dead weight DW) and apply tension to the flat belt C.
  • Example 5-1 to Example 5-6 and Comparative Example 5-1 to Comparative Example 5-2 the belt mass was measured, and then the belt running tester 180 for wear resistance evaluation was driven. Wrapped between the flat pulley 181 and the driven flat pulley 182 to apply a shaft load of 300 N to the right side of the driving flat pulley 181 to apply tension to the flat belt C, and rotate the driven flat pulley 182 by 12 N ⁇ m. Torque was applied, and the drive flat pulley 181 was rotated at a rotational speed of 2000 rpm under the atmospheric temperature of 100 ° C. to run the belt. Then, the belt running was stopped 24 hours after the start of running, the belt mass of the flat belt C was measured, the weight loss was determined, and the relative value was calculated with the weight loss of Comparative Example 5-1 being 100.
  • Test evaluation results The test results are shown in Table 5.
  • the content of the cellulose fine fiber means a part by mass with respect to 100 parts by mass of the rubber component even if not particularly described.
  • the friction coefficient after running the belt for 500 hours decreases in order of 0.35 and 0.25 in Comparative Example 5-1 and Comparative Example 5-2.
  • the decrease is 0.15 at the maximum (Examples 5-1 and 2-2).
  • the content of cellulose fine fiber is increased, the decrease is further reduced.
  • the content is 10 parts by mass or more (Example 5-4 to Example 5-6), after running the belt for 24 hours and after running the belt for 500 hours. It can be seen that the coefficient of friction is the same value.
  • a flat belt having a small change in friction coefficient with time can be obtained by forming the inner rubber layer from a rubber composition containing fine cellulose fibers.
  • Example 5-1 the adhesive wear occurrence index is evaluated as 100 and 90, whereas when a rubber composition containing cellulose fine fibers is used, the content is the smallest (1 (Mass part) In Example 5-1, the adhesive wear occurrence index is 45, which shows that it is remarkably improved. By increasing the content, the adhesive wear occurrence index was further improved, and in Example 5-6 containing 25 parts by mass of cellulose fine fibers, the evaluation was 10 (powder with less adhesion on the belt surface and low adhesive powder) It can be seen that there are many body-shaped ones).
  • Comparative Example 5-2 containing nylon short fibers, an improvement is seen as compared with Comparative Example 5-1, but this is not remarkable.
  • the adhesive wear occurrence index of the flat belt is improved by forming the inner rubber layer with the rubber composition containing cellulose fine fibers.
  • ⁇ Abrasion resistance> The evaluation of abrasion resistance of Comparative Example 5-1 and Comparative Example 5-2 is 100, whereas Example 5-1 in which the content of cellulose fine fibers is 1 part by mass is improved to 65, It can be seen that the evaluation is further improved by further increasing the content. However, the evaluation is 50 or 45 when the content of cellulose fine fiber is in the range of 3 to 25 parts by mass (Example 5-2 to Example 5-6), and even if the content of cellulose fine fiber is increased, The improvement in wear tends to saturate.
  • FIG. 22 shows a toothed belt B according to the fourth embodiment.
  • the toothed belt B according to Embodiment 4 includes an endless toothed belt body 310 formed of a rubber composition.
  • the toothed belt main body 310 includes a flat belt-like base portion 311a and a plurality of tooth portions 311b that are integrally provided at a constant pitch at intervals in the belt length direction on one side, that is, the inner peripheral surface.
  • a tooth side reinforcing cloth 312 is attached to the toothed belt main body 310 so as to cover the tooth side surface thereof.
  • a core wire 313 is embedded on the inner peripheral side of the base 311a of the toothed belt main body 310 so as to form a spiral having a pitch in the belt width direction.
  • the toothed belt B according to the fourth embodiment is suitably used as a power transmission member of, for example, a belt transmission device in a machine tool or the like, in particular, a belt transmission device in a machine tool having an operation time of about 3 to 120 hours per year.
  • the toothed belt B according to Embodiment 4 has, for example, a belt length of 500 to 3000 mm, a belt width of 10 to 200 mm, and a belt thickness of 3 to 20 mm.
  • the tooth portion 311b has, for example, a width of 0.63 to 16.46 mm, a height of 0.37 to 9.6 mm, and a pitch of 1.0 to 31.75 mm.
  • the tooth portion 311b of the toothed belt main body 310 may be a trapezoidal tooth having a trapezoidal shape when viewed from the side, may be a semicircular round tooth, and may have other shapes. Good.
  • the tooth portion 311b may be formed so as to extend in the belt width direction, or may be a helical tooth formed so as to extend in a direction inclined with respect to the belt width direction.
  • an uncrosslinked rubber composition obtained by mixing and kneading various rubber compounding agents in addition to cellulose fine fibers containing a fiber diameter distribution range of 50 to 500 nm in a rubber component is heated and added. It is formed of a rubber composition that is pressed and crosslinked with a crosslinking agent.
  • the rubber composition forming the toothed belt body 310 contains the cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm, whereby the durability of the toothed belt B can be improved.
  • fine fiber in the present application means a fiber having a fiber diameter of 1.0 ⁇ m or less.
  • Examples of the rubber component of the rubber composition forming the toothed belt main body 310 include hydrogenated acrylonitrile rubber (H-NBR), hydrogenated acrylonitrile rubber reinforced with unsaturated carboxylic acid metal salt (H-NBR), ethylene, and the like.
  • -Ethylene- ⁇ -olefin elastomers such as propylene copolymer (EPR), ethylene-propylene-diene terpolymer (EPDM), ethylene-octene copolymer, ethylene-butene copolymer, chloroprene rubber (CR), and chlorosulfonated polyethylene rubber (CSM) ) And the like.
  • the rubber component of the rubber composition forming the toothed belt main body 310 is preferably a blend rubber of one or more of these.
  • examples of the unsaturated carboxylic acid include methacrylic acid and acrylic acid, and examples of the metal include zinc, calcium, magnesium, aluminum and the like. Is mentioned.
  • Cellulosic fine fiber is a fiber material derived from cellulose fine fiber composed of a skeletal component of a plant cell wall obtained by finely loosening plant fiber.
  • Examples of the cellulosic fine fiber plant include wood, bamboo, rice (rice straw), potato, sugar cane (bagasse), aquatic plants, seaweed and the like. Of these, wood is preferred.
  • the cellulose-based fine fiber may be either the cellulose fine fiber itself or a hydrophobic cellulose fine fiber that has been subjected to a hydrophobic treatment. Moreover, you may use together cellulose fine fiber itself and hydrophobized cellulose fine fiber as a cellulosic fine fiber. From the viewpoint of dispersibility, the cellulosic fine fibers preferably include hydrophobized cellulose fine fibers. Examples of the hydrophobized cellulose fine fibers include cellulose fine fibers in which some or all of the hydroxyl groups of cellulose are substituted with hydrophobic groups, and cellulose fine fibers that have been subjected to a hydrophobized surface treatment with a surface treatment agent.
  • hydrophobization for obtaining cellulose fine fibers in which part or all of the hydroxyl groups of cellulose are substituted with hydrophobic groups include esterification (acylation) (alkyl esterification, complex esterification, ⁇ -ketoesterification, etc.) ), Alkylation, tosylation, epoxidation, arylation and the like. Of these, esterification is preferred.
  • esterification is preferred.
  • part or all of the hydroxyl groups of cellulose are carboxylic acids such as acetic acid, acetic anhydride, propionic acid, butyric acid, or halides thereof (particularly chlorides). It is the cellulose fine fiber acylated by.
  • the surface treatment agent for obtaining cellulose fine fibers hydrophobized and surface-treated with the surface treatment agent include silane coupling agents.
  • the cellulosic fine fibers preferably have a wide fiber diameter distribution from the viewpoint of improving the durability of the toothed belt B, and the fiber diameter distribution range includes 50 to 500 nm.
  • the lower limit of the fiber diameter distribution is preferably 20 nm or less, more preferably 10 nm or less.
  • the upper limit is preferably 700 nm or more, more preferably 1 ⁇ m or more.
  • the fiber diameter distribution range of the cellulosic fine fibers preferably includes 20 nm to 700 mm, and more preferably includes 10 nm to 1 ⁇ m.
  • the average fiber diameter of the cellulosic fine fibers contained in the rubber composition forming the toothed belt body 310 is preferably 10 nm or more, more preferably 20 nm or more, and preferably 700 nm or less, more preferably 100 nm or less. It is.
  • the distribution of the fiber diameter of the cellulosic fine fibers was determined by freeze-grinding a sample of the rubber composition forming the toothed belt main body 310, and then observing the cross section with a transmission electron microscope (TEM). A fine fiber is arbitrarily selected, the fiber diameter is measured, and obtained based on the measurement result. The average fiber diameter of the cellulosic fine fibers is obtained as the number average of the fiber diameters of 50 arbitrarily selected cellulosic fine fibers.
  • the cellulosic fine fibers may be either high aspect ratio manufactured by mechanical defibrating means, or needle-shaped crystals manufactured by chemical defibrating means. Of these, those manufactured by mechanical defibrating means are preferred. Moreover, you may use together what was manufactured by the mechanical defibration means, and what was manufactured by the chemical defibration means as a cellulose fine fiber.
  • the defibrating apparatus used for the mechanical defibrating means include a kneader such as a twin-screw kneader, a high-pressure homogenizer, a grinder, and a bead mill.
  • the treatment used for the chemical defibrating means include acid hydrolysis treatment.
  • the content of the cellulosic fine fibers in the rubber composition forming the toothed belt body 310 is preferably 1 part by weight or more with respect to 100 parts by weight of the rubber component. More preferably, it is 3 parts by mass or more, more preferably 5 parts by mass or more, preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and still more preferably 10 parts by mass or less.
  • rubber compounding agents include reinforcing materials, processing aids, vulcanization acceleration aids, plasticizers, co-crosslinking agents, crosslinking agents, vulcanization accelerators, anti-aging agents, and the like.
  • carbon black for example, channel black; furnace black such as SAF, ISAF, N-339, HAF, N-351, MAF, FEF, SRF, GPF, ECF, N-234; FT, MT, etc. Thermal black; acetylene black and the like.
  • Silica is also mentioned as the reinforcing material. It is preferable that a reinforcing material is 1 type, or 2 or more types among these. The content of the reinforcing material is, for example, 20 to 60 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
  • processing aids include stearic acid, polyethylene wax, and fatty acid metal salts.
  • the processing aid is preferably one or more.
  • the content of the processing aid is, for example, 0.5 to 2 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
  • the vulcanization acceleration aid examples include metal oxides such as zinc oxide (zinc white) and magnesium oxide, metal carbonates, fatty acids and derivatives thereof.
  • the vulcanization acceleration aid is preferably one or more.
  • the content of the vulcanization acceleration aid is, for example, 3 to 7 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
  • plasticizer examples include dialkyl phthalates such as dibutyl phthalate (DBP) and dioctyl phthalate (DOP), dialkyl adipates such as dioctyl adipate (DOA), and dialkyl sebacates such as dioctyl sebacate (DOS). It is preferable that a plasticizer is 1 type, or 2 or more types among these.
  • the plasticizer content is, for example, 0.1 to 40 parts by mass with respect to 100 parts by mass of the rubber component.
  • co-crosslinking agent examples include liquid rubber such as liquid NBR.
  • the co-crosslinking agent is preferably one type or two or more types.
  • the content of the co-crosslinking agent is, for example, 3 to 7 parts by mass with respect to 100 parts by mass of the rubber component.
  • crosslinking agent examples include sulfur and organic peroxides.
  • sulfur may be blended, an organic peroxide may be blended, or both of them may be used in combination.
  • the amount of the crosslinking agent is, for example, 1 to 5 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition in the case of sulfur, and 100 parts by mass of the rubber component of the rubber composition with respect to the organic peroxide. For example, 1 to 5 parts by mass.
  • vulcanization accelerator examples include thiuram (eg, TETD, TT, TRA, etc.), thiazole (eg, MBT, MBTS, etc.), sulfenamide (eg, CZ), dithiocarbamate (eg, BZ-P). Etc.). It is preferable that a vulcanization accelerator is 1 type, or 2 or more types among these. The content of the vulcanization accelerator is, for example, 2 to 5 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
  • anti-aging agent examples include amine-ketone anti-aging agents, diamine anti-aging agents, phenol anti-aging agents and the like. It is preferable that an anti-aging agent is 1 type, or 2 or more types among these.
  • the content of the anti-aging agent is, for example, 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber composition forming the toothed belt main body 310 may contain short fibers having a fiber diameter of 10 ⁇ m or more.
  • the tooth part side reinforcing cloth 312 is made of a cloth material such as a woven fabric, a knitted fabric, or a non-woven fabric formed of yarns such as cotton, polyamide fiber, polyester fiber, and aramid fiber. It is preferable that the tooth part side reinforcing cloth 312 has extensibility.
  • the thickness of the tooth side reinforcing cloth 312 is, for example, 0.3 to 2.0 mm.
  • the tooth part side reinforcing cloth 312 is subjected to an adhesion process for adhesion to the toothed belt main body 310.
  • the core wire 313 is composed of a twisted yarn formed of glass fiber, aramid fiber, polyamide fiber, polyester fiber or the like.
  • the diameter of the core wire 313 is, for example, 0.5 to 2.5 mm, and the dimension between adjacent core wire centers in the cross section is, for example, 0.05 to 0.20 mm.
  • the core wire 313 is subjected to an adhesive treatment for imparting adhesiveness to the toothed belt main body 310.
  • the rubber composition forming the toothed belt main body 310 including the base portion 311a and the tooth portion 311b includes cellulose having a fiber diameter distribution range of 50 to 500 nm.
  • the system fine fiber By containing the system fine fiber, its excellent reinforcing effect can be obtained, and in particular, chipping of the tooth portion 311b can be suppressed, and excellent oil resistance can be obtained, and as a result, high durability can be obtained. it can.
  • FIG. 23 shows a belt forming die 320 used for manufacturing the toothed belt B according to the fourth embodiment.
  • the belt forming die 320 has a cylindrical shape, and tooth portion forming grooves 321 extending in the axial direction are formed on the outer peripheral surface thereof at a constant pitch with an interval in the circumferential direction.
  • the method for manufacturing a toothed belt according to Embodiment 4 includes a material preparation process, a molding process, a crosslinking process, and a finishing process.
  • ⁇ Material preparation process> Uncrosslinked rubber sheet 311 'for base and teeth- First, cellulosic fine fibers are put into a kneaded rubber component and dispersed by kneading.
  • a method for dispersing the cellulose-based fine fibers in the rubber component for example, a dispersion (gel) in which the cellulose-based fine fibers are dispersed in water is added to the rubber component kneaded with an open roll, A method of vaporizing moisture while kneading them, a master of cellulose fine fibers / rubber obtained by mixing a dispersion (gel) in which cellulosic fine fibers are dispersed in water and rubber latex to vaporize the moisture Obtained by mixing the batch into a rubber component that has been masticated, mixing a dispersion in which cellulosic fine fibers are dispersed in a solvent, and a solution in which the rubber component is dissolved in the solvent, and evaporating the solvent.
  • a dispersion (gel) in which the cellulose-based fine fibers are dispersed in water is added to the rubber component kneaded with an open roll
  • Cellulose fine fiber / rubber masterbatch is put into the kneaded rubber component, dispersion (gel) in which cellulose fine fiber is dispersed in water is freeze-dried and pulverized And what, how to put into a rubber component is masticated, methods and the like to introduce cellulosic microfibers made hydrophobic in rubber component is masticated.
  • the obtained uncrosslinked rubber composition is formed into a sheet shape by calendar molding or the like to produce an uncrosslinked rubber sheet 311 'for the base and teeth.
  • -Tooth side reinforcing cloth 312'- Adhesive treatment is applied to the tooth side reinforcing cloth 312 ′.
  • the tooth side reinforcing cloth 312 ′ is subjected to an RFL adhesion treatment in which it is immersed in an RFL aqueous solution and heated.
  • a base adhesion treatment in which the substrate is immersed in a base adhesion treatment solution and heated is performed before the RFL adhesion treatment.
  • a soaking rubber paste bonding treatment that is immersed in rubber paste after the RFL bonding treatment and / or drying, and / or a coating rubber paste that is coated with rubber paste on the surface on the toothed belt body 310 side and dried. Apply adhesive treatment.
  • both ends of the tooth side reinforcing cloth 312 ′ subjected to the adhesion treatment are joined to form a cylindrical shape.
  • an adhesive treatment is applied to the core wire 313 ′.
  • the core wire 313 ′ is subjected to an RFL adhesion treatment in which it is immersed in a resorcin / formalin / latex aqueous solution (hereinafter referred to as “RFL aqueous solution”) and heated.
  • RFL aqueous solution a resorcin / formalin / latex aqueous solution
  • a base adhesive treatment in which the substrate is immersed in a base adhesive treatment solution and heated before the RFL adhesive treatment and / or a rubber paste adhesive treatment in which the RFL adhesive treatment is immersed in rubber paste and dried are performed.
  • a cylindrical tooth portion side reinforcing cloth 312 ′ is placed on the outer periphery of the belt mold 320, and a core wire 313 ′ is wound spirally thereon, and further, an uncrosslinked rubber sheet 311 ′ is formed thereon. Wrap. At this time, a laminated molded body B ′ is formed on the belt mold 320.
  • the uncrosslinked rubber sheet 311 ′ may be used so that the line direction corresponds to the belt length direction, or the line direction may correspond to the belt width direction. .
  • ⁇ Crosslinking process> As shown in FIG. 25, after the release paper 322 is wound around the outer periphery of the laminated molded body B ′, a rubber sleeve 323 is placed on the outer periphery, and the rubber sleeve 323 is placed and sealed in the vulcanizing can. Is filled with high-temperature and high-pressure steam and held for a predetermined molding time.
  • the uncrosslinked rubber sheet in the laminated molded body B ′ flows while pressing the tooth portion side reinforcing cloth 312 ′ and flows into the tooth portion forming groove 321 of the belt forming die 320, and the crosslinking proceeds, And the tooth part side reinforcing cloth 312 ′ and the core wire 313 ′ are combined and integrated, and finally, a cylindrical belt slab S is formed as shown in FIG.
  • the molding temperature of the belt slab S is, for example, 100 to 180 ° C.
  • the molding pressure is, for example, 0.5 to 2.0 MPa
  • the molding time is, for example, 10 to 60 minutes.
  • the inside of the vulcanizing can is depressurized to release the seal, the belt slab S molded between the belt mold 320 and the rubber sleeve 323 is taken out and demolded, and the back side is polished to adjust the thickness. After that, the toothed belt B is manufactured by cutting into a predetermined width.
  • the rubber composition forming the base 311a in the toothed belt main body 310 contains cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm.
  • the rubber composition forming the tooth portion 311b does not contain such cellulosic fine fibers.
  • the rubber composition forming the tooth portion 311b may contain cellulosic fine fibers whose fiber diameter distribution range does not include 50 to 500 nm.
  • the rubber composition forming the base 311a is superior in that it contains cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm.
  • the reinforcing effect can be obtained, and excellent oil resistance can be obtained. As a result, high durability can be obtained.
  • an uncrosslinked rubber sheet for a base containing cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm is used in the material preparation step.
  • 311a ′ is produced in the material preparation step.
  • uncrosslinked rubber containing no cellulosic fine fiber having a fiber diameter distribution range of 50 to 500 nm obtained by blending various rubber compounding agents with a rubber component and kneading with a kneader such as a kneader or Banbury mixer.
  • the outer periphery of the belt mold 320 is covered with a cylindrical tooth side reinforcing cloth 312 ′ and along the tooth part forming groove 321, then, as shown in FIG. Then, the uncrosslinked rubber 311b ′ for the tooth portion is fitted into each tooth portion forming groove 321, and as shown in FIG. 29, the core wire 313 ′ is spirally wound from above, and the unbridged portion for the base portion is further wound thereon.
  • a laminated molded body B ′ is formed by winding the rubber sheet 311a ′.
  • the rubber composition forming the tooth portion 311b in the toothed belt main body 310 contains cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm.
  • the rubber composition forming the base 311a does not contain such cellulosic fine fibers.
  • the rubber composition forming the base 311a may contain cellulosic fine fibers whose fiber diameter distribution range does not include 50 to 500 nm.
  • the rubber composition forming the tooth portion 311b contains cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm. An excellent reinforcing effect can be obtained, in particular, chipping of the tooth portion 311b can be suppressed, and excellent oil resistance can be obtained. As a result, high durability can be obtained.
  • the uncrosslinked rubber composition not containing such cellulosic fine fibers is formed into a sheet by calendar molding or the like.
  • An uncrosslinked rubber sheet 311a ′ for the base is formed by molding.
  • the tooth portion side reinforcing cloth 312 is subjected to an RFL adhesion treatment in which it is immersed in an RFL aqueous solution and heated.
  • the tooth side reinforcing cloth 312 is adhered to the toothed belt main body 310 via the RFL adhesive layer 314 formed by the RFL adhesion process, as shown in FIG.
  • a foundation adhesion treatment comprising a solution obtained by dissolving a foundation adhesion treatment agent such as an epoxy resin or an isocyanate resin (block isocyanate) in a solvent such as toluene, or a dispersion liquid dispersed in water.
  • a base adhesion treatment in which the substrate is immersed in a liquid and heated is performed, and a base adhesive layer is provided under the RFL adhesive layer 314. Further, after RFL adhesion treatment, one kind of soaking rubber glue adhesion treatment that is immersed in rubber glue and dried, and coating rubber glue adhesion treatment that coats and drys the rubber glue on the surface on the toothed belt body 310 side Alternatively, two types of rubber glue adhesion treatment may be performed, and a rubber glue adhesion layer may be provided on the RFL adhesion layer 314.
  • the RFL adhesive layer 314 is formed of a solid content contained in the RFL aqueous solution, and includes a resorcin / formalin resin (RF resin) and a rubber component derived from rubber latex.
  • the RFL adhesive layer 314 contains cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm.
  • the cellulosic fine fibers contained in the RFL adhesive layer 314 have the same configuration as that contained in the toothed belt main body 310 in the fourth embodiment.
  • the RFL adhesive layer 314 contains a cellulosic fine fiber having a fiber diameter distribution range of 50 to 500 nm, thereby obtaining a high adhesive force of the tooth side reinforcing fabric 312 to the toothed belt body 310. Can do.
  • the cellulosic fine fibers are not oriented in a specific direction and are not oriented.
  • the content of the cellulosic fine fibers in the RFL adhesive layer 314 is preferably 0.5% by mass or more, more preferably 1.% from the viewpoint of obtaining high adhesion of the tooth side reinforcing fabric 312 to the toothed belt body 310. It is 0 mass% or more, More preferably, it is 2.0 mass% or more, Preferably it is 12 mass% or less, More preferably, it is 10 mass% or less, More preferably, it is 8 mass% or less.
  • the content of the cellulosic fine fibers with respect to 100 parts by mass of the rubber component in the RFL adhesive layer 314 is preferably 1 part by mass or more from the viewpoint of obtaining high adhesion to the toothed belt body 310 of the tooth side reinforcing cloth 312.
  • it is 3 mass parts or more, More preferably, it is 5 mass parts or more, Preferably it is 30 mass parts or less, More preferably, it is 20 mass parts or less, More preferably, it is 10 mass parts or less.
  • the RFL adhesive layer 314 preferably does not contain short fibers having a fiber diameter of 10 ⁇ m or more. However, the RFL adhesive layer 314 is short as long as the adhesiveness of the tooth portion side reinforcing cloth 312 to the toothed belt main body 310 is not hindered. Fibers may be included.
  • the rubber composition forming the base 311a of the toothed belt main body 310 may contain cellulosic fine fibers as in the fourth and fifth embodiments, and may not contain cellulosic fine fibers. Or either.
  • the rubber composition forming the tooth portion 311b of the toothed belt main body 310 may contain cellulosic fine fibers as in the fourth and sixth embodiments, and may not contain cellulosic fine fibers. Or either.
  • the RFL adhesive layer 314 provided between the tooth portion side reinforcing cloth 312 and the toothed belt body 310 has a fiber diameter distribution range of 50 to 50.
  • the cellulosic fine fibers containing 500 nm it is possible to obtain a high adhesive force of the tooth side reinforcing cloth 312 to the toothed belt main body 310, so that an excellent reinforcing effect is obtained.
  • the chipping of the portion 311b is suppressed, and as a result, high durability can be obtained.
  • one type of soaking rubber glue adhesion treatment that is dipped in rubber glue and dried, and coating rubber glue adhesion treatment that coats and drys the rubber glue on the surface on the toothed belt body 310 side or Two types of rubber paste adhesion treatment may be performed.
  • the base adhesion treatment liquid is, for example, a solution obtained by dissolving a base adhesion treatment agent such as epoxy resin or isocyanate resin (block isocyanate) in a solvent such as toluene, or a dispersion liquid dispersed in water.
  • the temperature of the base adhesion treatment liquid is, for example, 20 to 30 ° C.
  • the solid content concentration of the base adhesion treatment liquid is preferably 20% by mass or less.
  • the immersion time in the base adhesive treatment solution is, for example, 1 to 3 seconds.
  • the heating temperature (furnace temperature) after immersion in the base adhesion treatment liquid is, for example, 200 to 250 ° C.
  • the heating time (residence time in the furnace) is, for example, 1 to 3 minutes.
  • the number of times of base adhesion treatment may be only once or may be two or more.
  • the base adhesive treating agent adheres to the tooth side reinforcing cloth 312 ′, and the amount of attachment (weight per unit area) is, for example, 0.5 to 8 based on the mass of the fiber material forming the tooth side reinforcing cloth 312 ′. % By mass.
  • the RFL aqueous solution is an aqueous solution in which a dispersion (gel) in which cellulosic fine fibers are dispersed in water together with a rubber latex is mixed with an initial condensate of resorcin and formaldehyde.
  • the liquid temperature of the RFL aqueous solution is, for example, 20 to 30 ° C.
  • the rubber latex include vinylpyridine / styrene / butadiene rubber latex (Vp / St / SBR), chloroprene rubber latex (CR), chlorosulfonated polyethylene rubber latex (CSM), and the like.
  • the solid content concentration of the RFL aqueous solution is preferably 6.0% by mass or more, more preferably 9.0% by mass or more, and preferably 20% by mass or less, more preferably 15% by mass or less.
  • the immersion time in the RFL aqueous solution is, for example, 1 to 3 seconds.
  • the heating temperature (furnace temperature) after immersion in the RFL aqueous solution is, for example, 100 to 180.
  • the heating time (residence time in the furnace) is, for example, 1 to 5 minutes.
  • the number of RFL adhesion treatments may be only once, or may be two or more.
  • the RFL adhesive layer 314 is attached to the tooth side reinforcing cloth 312 ′, and the attached amount (weight per unit area) is, for example, 2 to 5% by mass based on the mass of the fiber material forming the tooth side reinforcing cloth 312 ′. It is.
  • an RFL bonding treatment in which the tooth portion side reinforcing cloth 312 is immersed in an RFL aqueous solution and heated, a soaking rubber paste bonding treatment in which the toothed belt B is dipped in rubber paste and dried, and a toothed belt.
  • One or two types of rubber glue adhesion treatment is applied among the coating rubber glue adhesion treatments in which the surface on the main body 310 side is coated with rubber glue and dried.
  • the tooth part side reinforcing cloth 312 has a toothed belt main body via the RFL adhesive layer 314 formed by the RFL adhesive treatment and the rubber glue adhesive layer 315 formed by the rubber glue adhesive treatment. Bonded to 310.
  • a foundation adhesion treatment comprising a solution obtained by dissolving a foundation adhesion treatment agent such as an epoxy resin or an isocyanate resin (block isocyanate) in a solvent such as toluene, or a dispersion liquid dispersed in water. It is preferable that a base adhesion treatment in which the substrate is immersed in a liquid and heated is performed, and a base adhesive layer is provided under the RFL adhesive layer 314.
  • the RFL adhesive layer 314 may contain cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm as in the fourth embodiment, or may not contain such cellulosic fine fibers. But you can.
  • the rubber paste adhesive layer 315 is formed of a solid rubber composition contained in the rubber paste, and the rubber composition forming the rubber paste adhesive layer 315 has a fiber diameter distribution range of 50 in the rubber component.
  • An uncrosslinked rubber composition in which various rubber compounding agents are blended and kneaded in addition to cellulose fine fibers containing ⁇ 500 nm is heated and pressurized and crosslinked with a crosslinking agent.
  • the rubber paste adhesive layer 315 contains the cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm, the adhesive strength of the tooth side reinforcing cloth 312 to the toothed belt body 310 is high. Can be obtained.
  • Examples of the rubber component of the rubber composition forming the rubber paste adhesive layer 315 include hydrogenated acrylonitrile rubber (H-NBR), hydrogenated acrylonitrile rubber reinforced with unsaturated carboxylic acid metal salt (H-NBR), ethylene, and the like.
  • H-NBR hydrogenated acrylonitrile rubber
  • H-NBR hydrogenated acrylonitrile rubber reinforced with unsaturated carboxylic acid metal salt
  • ethylene and the like.
  • -Ethylene- ⁇ -olefin elastomers such as propylene copolymer (EPR), ethylene-propylene-diene terpolymer (EPDM), ethylene-octene copolymer, ethylene-butene copolymer, chloroprene rubber (CR), and chlorosulfonated polyethylene rubber (CSM) ) And the like.
  • the rubber component of the rubber composition forming the toothed belt main body 310 is preferably a blend rubber of one or more of these.
  • the rubber component of the rubber composition forming the rubber paste adhesive layer 315 may be the same as or different from the rubber component of the rubber composition forming the toothed belt main body 310.
  • the cellulosic fine fibers contained in the rubber composition forming the rubber paste adhesive layer 315 have the same configuration as that contained in the toothed belt body 310 in the fourth embodiment.
  • the cellulosic fine fibers are not oriented in a specific direction and are not oriented.
  • the content of the cellulosic fine fibers in the rubber paste adhesive layer 315 is preferably 1 mass with respect to 100 parts by mass of the rubber component from the viewpoint of obtaining high adhesion of the tooth side reinforcing fabric 312 to the toothed belt body 310.
  • Examples of rubber compounding agents include reinforcing materials, friction coefficient reducing materials, cross-linking agents, and anti-aging agents.
  • carbon black for example, channel black; furnace black such as SAF, ISAF, N-339, HAF, N-351, MAF, FEF, SRF, GPF, ECF, N-234; FT, MT, etc. Thermal black; acetylene black and the like.
  • Silica is also mentioned as the reinforcing material. It is preferable that a reinforcing material is 1 type, or 2 or more types among these.
  • the content of the reinforcing material is preferably smaller than the content of the reinforcing material in the rubber composition forming the toothed belt body 310, and is, for example, 10 to 30 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition. is there.
  • the friction coefficient reducing material examples include ultra high molecular weight polyethylene resin powder, fluororesin powder, and molybdenum.
  • the friction coefficient reducing material is preferably one or more of these.
  • the content of the friction coefficient reducing material is, for example, 5 to 15 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
  • crosslinking agent examples include sulfur and organic peroxides.
  • sulfur may be blended, an organic peroxide may be blended, or both of them may be used in combination.
  • the compounding amount of the crosslinking agent is, for example, 0.3 to 5 parts by mass in the case of sulfur with respect to 100 parts by mass of the rubber component of the rubber composition, and 100 parts by mass of the rubber component of the rubber composition in the case of the organic peroxide. For example, it is 0.3 to 5 parts by mass.
  • vulcanization accelerator examples include thiuram (eg, TETD, TT, TRA, etc.), thiazole (eg, MBT, MBTS, etc.), sulfenamide (eg, CZ), dithiocarbamate (eg, BZ-P). Etc.). It is preferable that a vulcanization accelerator is 1 type, or 2 or more types among these.
  • the content of the vulcanization accelerator is, for example, 1 to 3 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
  • anti-aging agent examples include amine-ketone anti-aging agents, diamine anti-aging agents, phenol anti-aging agents and the like. It is preferable that an anti-aging agent is 1 type, or 2 or more types among these.
  • the content of the anti-aging agent is, for example, 1 to 3 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber composition forming the rubber paste adhesive layer 315 preferably does not contain short fibers having a fiber diameter of 10 ⁇ m or more.
  • the adhesiveness of the tooth side reinforcing cloth 312 to the toothed belt body 310 is not preferred. Such short fibers may be included as long as they do not hinder.
  • the rubber composition forming the base 311a of the toothed belt main body 310 may contain cellulosic fine fibers as in the fourth and fifth embodiments, and may not contain cellulosic fine fibers. Or either.
  • the rubber composition forming the tooth portion 311b of the toothed belt main body 310 may contain cellulosic fine fibers as in the fourth and sixth embodiments, and may not contain cellulosic fine fibers. Or either.
  • the rubber glue adhesive layer 315 provided between the tooth portion side reinforcing cloth 312 and the toothed belt main body 310 has a fiber diameter distribution range of 50.
  • the rubber paste adhesive layer 315 contains cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm, it is possible to obtain high wear resistance on the tooth side surface. As a result, high durability can be obtained.
  • the base adhesion process is the same as that of the seventh embodiment.
  • the RFL aqueous solution is an aqueous solution in which a rubber latex is mixed with an initial condensate of resorcin and formaldehyde.
  • distributed the cellulose fine fiber in water similarly to Embodiment 7 should just be included.
  • the liquid temperature of the RFL aqueous solution is, for example, 20 to 30 ° C.
  • the solid content concentration of the RFL aqueous solution is preferably 30% by mass or less.
  • the rubber latex include vinylpyridine / styrene / butadiene rubber latex (Vp / St / SBR), chloroprene rubber latex (CR), chlorosulfonated polyethylene rubber latex (CSM), and the like.
  • the immersion time in the RFL aqueous solution is, for example, 1 to 3 seconds.
  • the heating temperature (furnace temperature) after immersion in the RFL aqueous solution is, for example, 100 to 180 ° C.
  • the heating time (residence time in the furnace) is, for example, 1 to 5 minutes.
  • the number of RFL adhesion treatments may be only once, or may be two or more.
  • the RFL adhesive layer 314 is attached to the tooth side reinforcing cloth 312 ′, and the attached amount (weight per unit area) is, for example, 2 to 5% by mass based on the mass of the fiber material forming the tooth side reinforcing cloth 312 ′. It is.
  • the rubber paste is a solution in which an uncrosslinked rubber composition before crosslinking of a rubber composition containing cellulosic fine fibers forming the rubber paste adhesive layer 315 is dissolved in a solvent such as toluene.
  • the rubber paste is produced as follows.
  • cellulosic fine fibers are put into a kneaded rubber component and dispersed by kneading.
  • a method for dispersing the cellulose-based fine fibers in the rubber component for example, a dispersion (gel) in which the cellulose-based fine fibers are dispersed in water is added to the rubber component kneaded with an open roll, A method of vaporizing moisture while kneading them, a master of cellulose fine fibers / rubber obtained by mixing a dispersion (gel) in which cellulosic fine fibers are dispersed in water and rubber latex to vaporize the moisture
  • the uncrosslinked rubber composition is put into a solvent and stirred until a uniform solution is obtained, thereby producing a rubber paste.
  • the temperature of the rubber paste is, for example, 20 to 30 ° C.
  • the solid content concentration of the rubber paste is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 30% by mass or less, more preferably 20% by mass or less, for soaking rubber paste adhesion treatment. is there.
  • it is preferably 10% by mass or more, more preferably 20% by mass or more, and preferably 50% by mass or less, more preferably 40% by mass or less.
  • the immersion time in the rubber glue is, for example, 1 to 3 seconds.
  • the drying temperature (furnace temperature) after immersion in rubber paste is, for example, 50 to 100 ° C.
  • the drying time (residence time in the furnace) is, for example, 1 to 3 minutes.
  • the number of times of the soaking rubber paste adhesion treatment may be only once, or may be two or more times.
  • a rubber glue adhesive layer 315 is attached to the tooth side reinforcing cloth 312 ′.
  • the amount of attachment is, for example, 2 to 5 mass based on the mass of the fiber material forming the tooth side reinforcing cloth 312 ′. %.
  • the drying temperature (furnace temperature) after coating is, for example, 50 to 100 ° C.
  • the drying time (residence time in the furnace) is, for example, 1 to 3 minutes.
  • the number of times of coating rubber paste adhesion treatment may be only once or may be two or more times.
  • a rubber glue adhesive layer 315 is attached to the tooth side reinforcing cloth 312 ′.
  • the amount of attachment is, for example, 2 to 5 mass based on the mass of the fiber material forming the tooth side reinforcing cloth 312 ′. %.
  • Example- Uncrosslinked rubber composition
  • the following rubbers 1 to 7 of an uncrosslinked rubber composition for forming a toothed belt body and rubbers 8 to 14 of an uncrosslinked rubber composition for a rubber paste adhesive layer of a tooth side reinforcing fabric were prepared. Each formulation is also shown in Table 6 and Table 7.
  • ⁇ Rubber 1> a dispersion in which powdered cellulose (trade name: KC Flock W-GK manufactured by Nippon Paper Industries Co., Ltd.) is dispersed in toluene is prepared, and the dispersion is collided with a high-pressure homogenizer to convert the powdered cellulose into cellulose fine fibers.
  • the fiber was defibrated to obtain a dispersion in which cellulose fine fibers were dispersed in toluene. Accordingly, the cellulose fine fibers are produced by mechanical defibrating means and are not subjected to a hydrophobic treatment.
  • H-NBR Zetpol 2020 manufactured by Nippon Zeon Co., Ltd.
  • a plasticizer trade name: W-260 manufactured by DIC
  • the resultant solution was mixed, and toluene and a plasticizer were vaporized to prepare a master batch of cellulose fine fiber / H-NBR.
  • the content of each component in the master batch was 25% by mass for the cellulosic fine fibers, 25% by mass for the plasticizer, and 50% by mass for H-NBR.
  • H-NBR was masticated and a master batch was added thereto for kneading.
  • the mixing mass ratio of H-NBR and masterbatch was 98: 4, and the content of fine cellulose fibers was 1 part by mass when the total H-NBR was 100 parts by mass.
  • H-NBR cellulose fine fiber, and plasticizer are kneaded, and 40 parts by mass of reinforcing material FEF carbon black (trade name: Seast SO manufactured by Tokai Carbon Co., Ltd.) is added to 100 parts by mass of H-NBR.
  • FEF carbon black trade name: Seast SO manufactured by Tokai Carbon Co., Ltd.
  • processing aid stearic acid (trade name: Tsubaki stearic acid manufactured by NOF Corporation) and 5 parts by weight of zinc oxide (trade name: Zinc Oxide made by Sakai Chemical Industry Co., Ltd.) , 24 parts by mass of plasticizer, 5 parts by mass of liquid NBR (trade name: Nipol 1312 manufactured by Nippon Zeon Co., Ltd.) as a co-crosslinking agent, and 0% of sulfur (trade name: Oil Sulfur manufactured by Nippon Kibuki Kogyo Co., Ltd.) as a crosslinking agent.
  • Rubber 2 was an uncrosslinked rubber composition prepared in the same manner as rubber 1 except that the content of fine cellulose fibers was 3 parts by mass with respect to 100 parts by mass of H-NBR.
  • Rubber 3 was an uncrosslinked rubber composition produced in the same manner as rubber 1 except that the content of cellulose fine fibers was 5 parts by mass with respect to 100 parts by mass of H-NBR.
  • Rubber 4 was an uncrosslinked rubber composition prepared in the same manner as rubber 1 except that the content of cellulose fine fibers was 10 parts by mass with respect to 100 parts by mass of H-NBR.
  • Rubber 5 was an uncrosslinked rubber composition produced in the same manner as rubber 1 except that the content of fine cellulose fibers was 15 parts by mass with respect to 100 parts by mass of H-NBR.
  • Rubber 6 was an uncrosslinked rubber composition produced in the same manner as rubber 1 except that the content of cellulose fine fibers was 25 parts by mass with respect to 100 parts by mass of H-NBR.
  • ⁇ Rubber 9> Zinc methacrylate reinforced H-NBR and H-NBR were masticated, and a master batch was added thereto and kneaded.
  • the content of cellulose fine fiber is 1 part by mass when the mixing mass ratio of zinc methacrylate reinforced H-NBR, H-NBR, and masterbatch is 50: 48: 4 and the total H-NBR is 100 parts by mass. It was made to become.
  • zinc methacrylate reinforced H-NBR, H-NBR, fine cellulose fiber, and plasticizer are kneaded and reinforced with respect to 100 parts by mass of the zinc methacrylate reinforced H-NBR and H-NBR rubber components.
  • 20 parts by mass of FEF carbon black as a material 10 parts by mass of ultra high molecular weight polyethylene powder, 0.5 parts by mass of sulfur as a crosslinking agent, 2 parts by mass of a thiuram vulcanization accelerator, and an amine-ketone aging inhibitor 2 parts by mass of each was added and kneaded to prepare an uncrosslinked rubber composition.
  • the uncrosslinked rubber composition was designated as rubber 9.
  • the rubber 10 was an uncrosslinked rubber composition prepared in the same manner as the rubber 9 except that the cellulose fine fiber content was 3 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber 311 was an uncrosslinked rubber composition prepared in the same manner as the rubber 9 except that the cellulose fine fiber content was 5 parts by mass with respect to 100 parts by mass of the rubber component.
  • Rubber 12 was an uncrosslinked rubber composition prepared in the same manner as rubber 9 except that the content of fine cellulose fibers was 10 parts by mass with respect to 100 parts by mass of the rubber component.
  • Rubber 13 was an uncrosslinked rubber composition prepared in the same manner as rubber 9 except that the content of cellulose fine fibers was 15 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber 14 was an uncrosslinked rubber composition prepared in the same manner as the rubber 9 except that the content of the cellulose fine fiber was 25 parts by mass with respect to 100 parts by mass of the rubber component.
  • Example 6-1 For the toothed belt of Example 6-1, rubber 1 containing fine cellulose fibers was used as the uncrosslinked rubber composition forming the toothed belt body.
  • a woven fabric As the tooth side reinforcing fabric, a woven fabric was used in which a covering yarn obtained by wrapping an aramid fiber (trade name: Technora, manufactured by Teijin Ltd.) around a urethane yarn to give elasticity was used as a weft and a nylon twisted warp.
  • the woven fabric of the tooth side reinforcing fabric was subjected to a base adhesion treatment that was heated after being immersed in an epoxy resin solution as a base adhesion treatment, and an RFL adhesion treatment that was heated after being immersed in an RFL aqueous solution.
  • the soaking rubber paste bonding treatment in which the woven fabric of the tooth side reinforcing fabric subjected to the RFL bonding treatment was dipped in rubber paste and dried was repeatedly applied.
  • a rubber paste having a solid content concentration of 10% by mass obtained by dissolving rubber 8 containing no cellulose fine fibers in toluene as a solvent was used as the rubber paste.
  • the liquid temperature of the rubber paste was 25 ° C.
  • the immersion time in the rubber paste was 5 seconds.
  • the drying temperature after immersion in rubber paste was 100 ° C. and the drying time was 40 seconds.
  • Glass fiber was used as the core wire.
  • Example 6-2 A toothed belt of Example 6-2 was produced in the same manner as Example 6-1 except that rubber 2 containing cellulose fine fibers was used as the uncrosslinked rubber composition forming the toothed belt body.
  • Example 6-3 A toothed belt of Example 6-3 was prepared in the same manner as Example 6-1 except that rubber 3 containing fine cellulose fibers was used as the uncrosslinked rubber composition forming the toothed belt body.
  • Example 6-4 A toothed belt of Example 6-4 was produced in the same manner as Example 6-1 except that rubber 4 containing fine cellulose fibers was used as the uncrosslinked rubber composition forming the toothed belt body.
  • Example 6-5 A toothed belt of Example 6-5 was prepared in the same manner as Example 6-4 except that rubber paste of rubber 9 containing cellulose fine fibers was used for the soaking rubber paste adhesion treatment of the tooth side reinforcing fabric. .
  • Example 6-6 A toothed belt of Example 6-6 was produced in the same manner as Example 6-4 except that rubber paste of rubber 10 containing cellulose fine fibers was used for the soaking rubber paste bonding treatment of the tooth side reinforcing fabric. .
  • Example 6-7 A toothed belt of Example 6-7 was prepared in the same manner as in Example 6-4 except that rubber paste of rubber 311 containing cellulose fine fiber was used for the soaking rubber paste bonding treatment of the tooth side reinforcing fabric. .
  • Example 6-8 A toothed belt of Example 6-8 was produced in the same manner as in Example 6-4 except that the rubber paste of rubber 12 containing cellulose fine fiber was used for the soaking rubber paste bonding treatment of the tooth side reinforcing fabric. .
  • Example 6-9 A toothed belt of Example 6-9 was produced in the same manner as Example 6-4 except that rubber paste of rubber 13 containing fine cellulose fibers was used for the soaking rubber paste bonding treatment of the tooth side reinforcing fabric. .
  • Example 6-10 A toothed belt of Example 6-10 was produced in the same manner as in Example 6-4, except that rubber paste of rubber 14 containing cellulose fine fibers was used for the soaking rubber paste adhesion treatment of the tooth side reinforcing fabric. .
  • Example 6-11 A toothed belt of Example 6-11 was prepared in the same manner as Example 6-1 except that rubber 5 containing fine cellulose fibers was used as the uncrosslinked rubber composition forming the toothed belt body.
  • Example 6-12 A toothed belt of Example 6-12 was produced in the same manner as Example 6-1 except that rubber 6 containing fine cellulose fibers was used as the uncrosslinked rubber composition forming the toothed belt body.
  • Example 6-13 As the uncrosslinked rubber composition forming the toothed belt body, rubber 7 containing no cellulose fine fibers is used, and the rubber paste of rubber 12 containing cellulose fine fibers is used for the soaking rubber paste bonding treatment of the tooth side reinforcing fabric.
  • a toothed belt of Example 6-13 was produced in the same manner as in Example 6-1, except that this was the case.
  • FIG. 32 shows a pulley layout of the belt running test machine 330.
  • the belt running test machine 330 includes a driving pulley 331, a driven pulley 332, and an idler pulley 333.
  • the drive pulley 331 is provided with 21 tooth-engagement grooves on the pulley periphery.
  • the driven pulley 332 is provided with 42 tooth-engagement grooves on the periphery of the pulley.
  • the idler pulley 333 has a flat pulley periphery for pressing the back surface of the belt.
  • the drive pulley 331, the driven pulley 332, and the idler pulley 333 are all made of carbon steel (S45C).
  • this belt running tester 330 was used to evaluate the chipping resistance and wear resistance as follows.
  • Test evaluation results The test results are shown in Table 9 and Table 10.
  • the content of the cellulose fine fiber means a part by mass with respect to 100 parts by mass of the rubber component even if not particularly described.
  • cellulose fine fibers are contained only in the toothed belt body, and the contents thereof are 0 parts by weight, 1 part by weight, 3 parts by weight, 5 parts by weight, 10 parts by weight, and 15 parts by weight, respectively.
  • the tooth endurance life at room temperature was 528 hours, 696 hours, time 792, 864 hours, in order, 936 hours and 1056 hours. That is, in the range of the present Example, it turns out that tooth
  • Examples 6-4 to 6-10 in which the content of cellulose fine fibers in the toothed belt body is the same 10 parts by mass, as the content of cellulose fine fibers in the rubber glue adhesive layer increases, It can be seen that the endurance life of the tooth is long.
  • the cellulose fine fiber content in the rubber paste adhesive layers in Examples 6-4 to 6-10 is 0 parts by weight, 1 part by weight, 3 parts by weight, 5 parts by weight, and 10 parts by weight, respectively. , 15 parts by weight, and 25 parts by weight, while the tooth endurance life at room temperature was 864 hours, 912 hours, 960 hours, 1032 hours, 1080 hours, 1128 hours, and 1128 hours, respectively.
  • the tooth endurance life since the tooth endurance life is the same, when the content of the fine cellulose fibers is 15 parts by mass or more, the effect of increasing the tooth endurance is saturated. Possible possibility.
  • Example 6-13 in which only 10 parts by mass of cellulose fine fiber was contained only in the rubber glue adhesive layer, the durable life of the tooth portion was 456 hours, which is slightly longer than that of 384 hours in Comparative Example 6.
  • Example 6-8 in which the content of cellulose fine fibers in the toothed belt body is 10 parts by mass, the content of cellulose fine fibers in the rubber paste adhesive layer is the same as in Example 6-13. It can be seen that the tooth endurance life is significantly excellent at 1080 hours.
  • cellulose fine fibers are contained only in the toothed belt body, and the contents thereof are 0 parts by weight, 1 part by weight, 3 parts by weight, 5 parts by weight, 10 parts by weight, and 15 parts by weight, respectively.
  • the tooth endurance life at 80 ° C. was 432 hours, 624 hours, 744 hours, and 792 hours, respectively. 888 hours, and 9126 hours. That is, in the range of the present Example, it turns out that the tooth
  • the tooth endurance life at high temperature (80 ° C.) is shorter than the tooth endurance life at room temperature.
  • the deterioration is reduced by containing the cellulose fine fiber. That is, in Comparative Example 6, the tooth endurance life at room temperature was 384 hours, whereas the tooth endurance life at 80 ° C. was 240 hours, which was deteriorated by about 38%.
  • Example 6-1 in which 1 part by mass of cellulose fine fiber was contained in the toothed belt body, the tooth part durable life at room temperature was 528 hours, whereas the tooth part durable life at 80 ° C. Is 432 hours, and the deterioration is about 18%.
  • Example 6-2 Example 6-3, Example 6-4, Example 6-11 and Example 6-12
  • the deterioration was 10%, 6%, 8%, 5% and 14 in order. It can be seen that, in any case, it is greatly reduced as compared with the case where the fine cellulose fibers are not included.
  • a decrease in the coefficient of linear expansion can be considered as a factor for reducing deterioration of the durable life of the tooth portion at a high temperature due to the inclusion of the fine cellulose fibers. That is, the linear expansion coefficient of a toothed belt falls by containing a cellulose fine fiber.
  • the linear expansion coefficient decreases, the expansion of the tooth portion at a high temperature is suppressed.
  • the meshing accuracy between the tooth part and the pulley is maintained even at a high temperature, and an increase in the burden on the tooth part due to the temperature rise is suppressed. I guess that.
  • the content of cellulose fine fibers in the toothed belt body is the same 10 parts by mass
  • the content of cellulose fine fibers in the rubber paste adhesive layer is 0 respectively.
  • the weight parts are 1 part by weight, 3 parts by weight, 5 parts by weight, 10 parts by weight, 15 parts by weight, and 25 parts by weight
  • the wear mass is 4.2 g, 3.3 g, 2.5 g, 2 0.1 g, 1.8 g, 1.4 g, and 1.3 g. That is, it is understood that the wear mass decreases as the content of the cellulose fine fiber in the rubber paste adhesive layer increases.
  • the wear mass is 3.5 g or less, it is considered that the wear mass is improved significantly over the conventional technique.
  • the rubber paste adhesive layer contains 10 parts by weight of cellulose fine fibers, and the wear mass is 2.0 g. It can be seen that the wear resistance is improved.
  • cellulose fine fibers are contained only in the toothed belt body, and the contents thereof are 0 parts by weight, 1 part by weight, 3 parts by weight, 5 parts by weight, 10 parts by weight, and 15 parts by weight, respectively.
  • the mass change amounts were 3.9%, 3.7%, 3.1%, 2.8%, 1.9%, and 1.5%. That is, in the range of the present Example, it turns out that mass change amount becomes small as content of a cellulose fine fiber increases, and oil resistance improves.
  • the content of cellulose fine fibers in the toothed belt body is the same 10 parts by mass
  • the content of cellulose fine fibers in the rubber paste adhesive layer is 0 parts by mass, respectively. 1 part by mass, 3 parts by mass, 5 parts by mass, 10 parts by mass, 15 parts by mass, and 25 parts by mass, while the mass change amount is 2.8%, 2.8%, 2.7% in order. 2.6%, 2.3%, 2.2%, and 2.1%. That is, it can be seen that as the content of the cellulose fine fiber in the rubber paste adhesive layer increases, the mass change rate decreases, and the oil resistance improves.
  • Example 6-13 in which only 10 parts by mass of cellulose fine fiber was contained only in the adhesive layer of rubber paste, the mass change rate was 4.3%, which was slightly suppressed from 4.4% of Comparative Example 6. Has been.
  • Example 6-8 in which the content of cellulose fine fibers in the toothed belt body is 10 parts by mass, the content of cellulose fine fibers in the rubber paste adhesive layer is the same as in Example 6-13, but the rate of mass change Is 2.3%.
  • the present invention is useful as a transmission belt.
  • V-ribbed belt body 11 Compressed rubber layer 12 Adhesive rubber layer 13 Back rubber layer 16 Short fiber 120 Flat belt body 121 Inner rubber layer 122 Adhesive rubber layer 123 Outer rubber layer 126 Short fiber 310 toothed belt body 311a base 311b tooth 312 core 313 tooth side reinforcing cloth 314 RFL adhesive layer 315 rubber glue adhesive layer

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This transmission belt simultaneously satisfies a plurality of prescribed characteristics. The belt B is a transmission belt that is wound around pulleys and transmits power. Said belt has a layer comprising a rubber composition that contains cellulose-based fine fibers, and short fibers (16) having an average diameter of 1µm or greater.

Description

伝動ベルトTransmission belt
 本発明は、伝動ベルトに関する。 The present invention relates to a transmission belt.
 伝動ベルトのゴム層を構成するゴム組成物に、短繊維を配合することが行われている。例えば特許文献1において、Vリブドベルトの少なくとも圧縮層を、カーボンブラック及び短繊維を含有するゴム組成物によって構成することが開示されている。 A short fiber is blended with a rubber composition constituting a rubber layer of a transmission belt. For example, Patent Document 1 discloses that at least a compression layer of a V-ribbed belt is constituted by a rubber composition containing carbon black and short fibers.
特開平2014-167347号公報Japanese Patent Laid-Open No. 2014-167347
 伝動ベルトには、耐摩耗性、摩擦係数、粘着摩耗の抑制等の種々の特性について要求がある。ベルトを構成するゴム組成物にカーボンブラック及び短繊維を配合して補強する場合、配合量を調整してある特性を満たすようすると、他の特性が劣化する傾向にあった。 Transmission belts are required for various characteristics such as wear resistance, coefficient of friction, and suppression of adhesive wear. When carbon black and short fibers are blended and reinforced in the rubber composition constituting the belt, other characteristics tend to deteriorate if the blended amount is adjusted so as to satisfy certain characteristics.
 従って、本発明の課題は、要求される複数の特性を同時に満たす伝動ベルトを提供することである。 Therefore, an object of the present invention is to provide a transmission belt that simultaneously satisfies a plurality of required characteristics.
 本発明は、プーリに巻き掛けられて動力を伝達する伝動ベルトであって、セルロース系微細繊維と、平均直径1μm以上の短繊維とを含有するゴム組成物からなる層を有する。 The present invention is a transmission belt that is wound around a pulley and transmits power, and has a layer made of a rubber composition containing cellulosic fine fibers and short fibers having an average diameter of 1 μm or more.
 本発明によると、セルロース系微細繊維と他の短繊維とを含有するゴム組成物からなる層を有するので、伝動ベルトに要求される複数の特性を同時に満たすことができる。 According to the present invention, since it has a layer made of a rubber composition containing cellulosic fine fibers and other short fibers, a plurality of characteristics required for a transmission belt can be satisfied simultaneously.
図1は実施形態1及び2の例示的なVリブドベルトを模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an exemplary V-ribbed belt of the first and second embodiments. 図2は実施形態1及び2のVリブドベルトの要部の断面図である。FIG. 2 is a cross-sectional view of a main part of the V-ribbed belt of the first and second embodiments. 図3は実施形態1及び2のVリブドベルトの製造方法を示す第1の説明図である。FIG. 3 is a first explanatory view showing a method for manufacturing the V-ribbed belt of the first and second embodiments. 図4は実施形態1及び2のVリブドベルトの製造方法を示す第2の説明図である。FIG. 4 is a second explanatory view showing the manufacturing method of the V-ribbed belt of the first and second embodiments. 図5は実施形態1及び2のVリブドベルトの製造方法を示す第3の説明図である。FIG. 5 is a third explanatory view showing the manufacturing method of the V-ribbed belt of the first and second embodiments. 図6は実施形態1及び2のVリブドベルトの製造方法を示す第4の説明図である。FIG. 6 is a fourth explanatory view showing the method for manufacturing the V-ribbed belts of the first and second embodiments. 図7は実施形態1及び2のVリブドベルトの製造方法を示す第5の説明図である。FIG. 7 is a fifth explanatory view showing the method for manufacturing the V-ribbed belt of the first and second embodiments. 図8は実施形態1及び2のVリブドベルトの製造方法を示す第6の説明図である。FIG. 8 is a sixth explanatory view showing the method for manufacturing the V-ribbed belt of the first and second embodiments. 図9は耐クラック寿命測定用の走行試験機のプーリレイアウト図である。FIG. 9 is a pulley layout diagram of a traveling tester for measuring crack resistance life. 図10は高張力ベルト走行試験機のプーリレイアウト図である。FIG. 10 is a pulley layout diagram of the high tension belt running test machine. 図11は摩擦係数測定の方法を説明する図である。FIG. 11 is a diagram for explaining a method of measuring a friction coefficient. 図12は実施形態のVリブドベルトを用いた自動車の補機駆動ベルト伝動装置のプーリレイアウトを示す図である。FIG. 12 is a diagram showing a pulley layout of an auxiliary drive belt transmission device for an automobile using the V-ribbed belt of the embodiment. 図13は実施形態3の例示的な平ベルトを模式的に示す斜視図である。FIG. 13 is a perspective view schematically showing an exemplary flat belt of the third embodiment. 図14は実施形態3の平ベルトの製造方法を示す第1の説明図である。FIG. 14 is a first explanatory view showing the flat belt manufacturing method according to the third embodiment. 図15は実施形態3の平ベルトの製造方法を示す第2の説明図である。FIG. 15 is a second explanatory view showing the flat belt manufacturing method according to the third embodiment. 図16は実施形態3の平ベルトの製造方法を示す第3の説明図である。FIG. 16 is a third explanatory view showing the flat belt manufacturing method according to the third embodiment. 図17は摩擦係数測定装置の構成を示す図である。FIG. 17 is a diagram showing the configuration of the friction coefficient measuring apparatus. 図18は耐摩耗性評価用ベルト走行試験機のプーリレイアウトを示す図である。FIG. 18 is a diagram showing a pulley layout of the belt running test machine for wear resistance evaluation. 図19は耐屈曲疲労性評価用ベルト走行試験機のプーリレイアウトを示す図である。FIG. 19 is a diagram showing a pulley layout of a belt running test machine for evaluating bending fatigue resistance. 図20は摩擦・摩耗特性評価用ベルト走行試験機のプーリレイアウトを示す図である。FIG. 20 is a diagram showing a pulley layout of a belt running test machine for evaluating friction / wear characteristics. 図21は耐摩耗性評価用ベルト走行試験機のプーリレイアウトを示す図である。FIG. 21 is a diagram showing a pulley layout of a belt running tester for wear resistance evaluation. 図22は実施形態4の例示的歯付ベルトを模式的に示す斜視図である。FIG. 22 is a perspective view schematically showing an exemplary toothed belt according to the fourth embodiment. 図23は実施形態4の歯付ベルトの製造に用いるベルト成形型の部分的な断面図である。FIG. 23 is a partial cross-sectional view of a belt forming die used for manufacturing the toothed belt of the fourth embodiment. 図24は実施形態4の歯付ベルトの製造方法の第1の説明図である。FIG. 24 is a first explanatory view of the manufacturing method of the toothed belt according to the fourth embodiment. 図25は実施形態4の歯付ベルトの製造方法の第2の説明図である。FIG. 25 is a second explanatory view of the manufacturing method of the toothed belt according to the fourth embodiment. 図26は実施形態4の歯付ベルトの製造方法の第3の説明図である。FIG. 26 is a third explanatory view of the manufacturing method of the toothed belt according to the fourth embodiment. 図27は実施形態5の歯付ベルトの製造方法の第1の説明図である。FIG. 27 is a first explanatory view of the manufacturing method of the toothed belt according to the fifth embodiment. 図28は実施形態5の歯付ベルトの製造方法の第2の説明図である。FIG. 28 is a second explanatory view of the manufacturing method of the toothed belt of the fifth embodiment. 図29は実施形態5の歯付ベルトの製造方法の第3の説明図である。FIG. 29 is a third explanatory view of the manufacturing method of the toothed belt of the fifth embodiment. 図30は実施形態7における歯部側補強布と歯付ベルト本体との界面構造を示す断面図である。FIG. 30 is a cross-sectional view showing an interface structure between the tooth side reinforcing cloth and the toothed belt body in the seventh embodiment. 図31は実施形態8における歯部側補強布と歯付ベルト本体との界面構造を示す断面図である。FIG. 31 is a cross-sectional view showing an interface structure between a tooth portion side reinforcing cloth and a toothed belt body in the eighth embodiment. 図32は歯付ベルトの耐歯欠け性及び耐摩耗性を評価するためのベルト走行試験機におけるプーリレイアウトを示す図である。FIG. 32 is a diagram showing a pulley layout in a belt running tester for evaluating tooth chipping resistance and wear resistance of a toothed belt.
 以下、本開示の実施形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 [実施形態1]
 (VリブドベルトB)
 図1及び2は、実施形態1に係るVリブドベルトBを示す。実施形態1に係るVリブドベルトBは、例えば、自動車のエンジンルーム内に設けられる補機駆動ベルト伝動装置等に用いられるエンドレスの動力伝達部材である。実施形態1に係るVリブドベルトBは、例えば、ベルト長さが700~3000mm、ベルト幅が10~36mm、及びベルト厚さが4.0~5.0mmである。
[Embodiment 1]
(V-ribbed belt B)
1 and 2 show a V-ribbed belt B according to the first embodiment. The V-ribbed belt B according to the first embodiment is an endless power transmission member used, for example, in an accessory drive belt transmission device provided in an engine room of an automobile. The V-ribbed belt B according to Embodiment 1 has, for example, a belt length of 700 to 3000 mm, a belt width of 10 to 36 mm, and a belt thickness of 4.0 to 5.0 mm.
 実施形態1に係るVリブドベルトBは、ベルト内周側のプーリ接触部分を構成する圧縮ゴム層11と中間の接着ゴム層12とベルト外周側の背面ゴム層13との三層構造に構成されたゴム製のVリブドベルト本体10を備えている。Vリブドベルト本体10における接着ゴム層12の厚さ方向の中間部には、ベルト幅方向にピッチを有する螺旋を形成するように心線14が埋設されている。なお、背面ゴム層13の代わりに背面補強布が設けられ、Vリブドベルト本体10が圧縮ゴム層11及び接着ゴム層12の二重層に構成されていてもよい。 The V-ribbed belt B according to the first embodiment is configured in a three-layer structure including a compression rubber layer 11 that constitutes a pulley contact portion on the inner peripheral side of the belt, an intermediate adhesive rubber layer 12, and a back rubber layer 13 on the outer peripheral side of the belt. A rubber V-ribbed belt body 10 is provided. A core wire 14 is embedded in an intermediate portion in the thickness direction of the adhesive rubber layer 12 in the V-ribbed belt body 10 so as to form a spiral having a pitch in the belt width direction. A back reinforcing cloth may be provided instead of the back rubber layer 13, and the V-ribbed belt main body 10 may be configured as a double layer of the compression rubber layer 11 and the adhesive rubber layer 12.
 圧縮ゴム層11は、複数のVリブ16がベルト内周側に垂下するように設けられている。複数のVリブ16は、各々がベルト長さ方向に延びる断面略逆三角形の突条に形成されていると共に、ベルト幅方向に並列するように設けられている。各Vリブ16は、例えば、リブ高さが2.0~3.0mm、基端間の幅が1.0~3.6mmである。Vリブ16の数は例えば3~6個である(図1では6個)。接着ゴム層12は、断面横長矩形の帯状に構成されており、その厚さが例えば1.0~2.5mmである。背面ゴム層13も、断面横長矩形の帯状に構成されており、厚さが例えば0.4~0.8mmである。背面ゴム層13の表面には、背面駆動時の音発生を抑制する観点から、織布パターンが設けられていることが好ましい。 The compression rubber layer 11 is provided such that a plurality of V ribs 16 hang down to the inner peripheral side of the belt. The plurality of V ribs 16 are each formed in a ridge having a substantially inverted triangular cross section extending in the belt length direction, and provided in parallel in the belt width direction. Each V-rib 16 has, for example, a rib height of 2.0 to 3.0 mm and a width between base ends of 1.0 to 3.6 mm. The number of V ribs 16 is, for example, 3 to 6 (six in FIG. 1). The adhesive rubber layer 12 is formed in a band shape having a horizontally long cross section and has a thickness of, for example, 1.0 to 2.5 mm. The back rubber layer 13 is also formed in a band shape having a horizontally long cross section, and has a thickness of, for example, 0.4 to 0.8 mm. It is preferable that a woven fabric pattern is provided on the surface of the back rubber layer 13 from the viewpoint of suppressing the generation of sound during back driving.
 圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13は、ゴム成分に種々のゴム配合剤が配合されて混練された未架橋ゴム組成物が加熱及び加圧されて架橋剤により架橋したゴム組成物で形成されている。圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13を形成するゴム組成物は、同一であっても、また、異なっていても、どちらでもよい。 The compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 are rubbers obtained by crosslinking an uncrosslinked rubber composition obtained by mixing and kneading various rubber compounding ingredients with a rubber component and then crosslinking with a crosslinking agent. It is formed with a composition. The rubber composition forming the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 may be the same or different.
 圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13を形成するゴム組成物のゴム成分としては、例えば、エチレン・プロピレンコポリマー(EPR)、エチレン・プロピレン・ジエンターポリマー(EPDM)、エチレン・オクテンコポリマー、エチレン・ブテンコポリマーなどのエチレン-α-オレフィンエラストマー;クロロプレンゴム(CR);クロロスルホン化ポリエチレンゴム(CSM);水素添加アクリロニトリルゴム(H-NBR)等が挙げられる。ゴム成分は、これらのうち1種又は2種以上のブレンドゴムであることが好ましい。圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13を形成するゴム組成物のゴム成分は同一であることが好ましい。 Examples of the rubber component of the rubber composition forming the compression rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 include ethylene / propylene copolymer (EPR), ethylene / propylene / diene terpolymer (EPDM), Examples include ethylene-α-olefin elastomers such as octene copolymer and ethylene / butene copolymer; chloroprene rubber (CR); chlorosulfonated polyethylene rubber (CSM); hydrogenated acrylonitrile rubber (H-NBR). The rubber component is preferably one or more of these blend rubbers. The rubber components of the rubber composition forming the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 are preferably the same.
 圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13を形成するゴム組成物のうち少なくとも1つは、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有する。圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13を形成する全てのゴム組成物がかかるセルロース系微細繊維を含有することが好ましいが、少なくともプーリ接触部分を構成する圧縮ゴム層11を形成するゴム組成物がかかるセルロース系微細繊維を含有することがより好ましい。 At least one of the rubber compositions forming the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 contains cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm. It is preferable that all the rubber compositions forming the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 contain such cellulosic fine fibers, but at least the compressed rubber layer 11 constituting the pulley contact portion is formed. It is more preferable that the rubber composition to be contained contains such cellulosic fine fibers.
 セルロース系微細繊維は、植物繊維を細かくほぐすことで得られる植物細胞壁の骨格成分で構成されたセルロース微細繊維を由来とする繊維材料である。セルロース系微細繊維の原料植物としては、例えば、木材、竹、稲(稲わら)、じゃがいも、サトウキビ(バガス)、水草、海藻等が挙げられる。これらのうち木材が好ましい。表面ゴム層11aを形成する多孔のゴム組成物がこのようなセルロース系微細繊維を含むことにより、その高補強効果が発現する。 Cellulosic fine fiber is a fiber material derived from cellulose fine fiber composed of a skeletal component of a plant cell wall obtained by finely loosening plant fiber. Examples of the cellulosic fine fiber plant include wood, bamboo, rice (rice straw), potato, sugar cane (bagasse), aquatic plants, and seaweed. Of these, wood is preferred. When the porous rubber composition forming the surface rubber layer 11a contains such cellulosic fine fibers, the high reinforcing effect is exhibited.
 セルロース系微細繊維は、セルロース微細繊維自体であっても、また、疎水化処理された疎水化セルロース微細繊維であっても、どちらでもよい。また、セルロース系微細繊維として、セルロース微細繊維自体と疎水化セルロース微細繊維とを併用してもよい。分散性の観点からは、セルロース系微細繊維は、疎水化セルロース微細繊維を含むことが好ましい。疎水化セルロース微細繊維としては、セルロースの水酸基の一部又は全部が疎水性基に置換されたセルロース微細繊維、及び表面処理剤によって疎水化表面処理されたセルロース微細繊維が挙げられる。 The cellulose-based fine fiber may be either the cellulose fine fiber itself or a hydrophobic cellulose fine fiber that has been subjected to a hydrophobic treatment. Moreover, you may use together cellulose fine fiber itself and hydrophobized cellulose fine fiber as a cellulosic fine fiber. From the viewpoint of dispersibility, the cellulosic fine fibers preferably include hydrophobized cellulose fine fibers. Examples of the hydrophobized cellulose fine fibers include cellulose fine fibers in which some or all of the hydroxyl groups of cellulose are substituted with hydrophobic groups, and cellulose fine fibers that have been subjected to a hydrophobized surface treatment with a surface treatment agent.
 セルロースの水酸基の一部又は全部が疎水性基に置換されたセルロース微細繊維を得るための疎水化としては、例えば、エステル化(アシル化)(アルキルエステル化、複合エステル化、β-ケトエステル化など)、アルキル化、トシル化、エポキシ化、アリール化等が挙げられる。これらのうちエステル化が好ましい。具体的には、エステル化された疎水化セルロース微細繊維は、セルロースの水酸基の一部又は全部が、酢酸、無水酢酸、プロピオン酸、酪酸等のカルボン酸、若しくは、そのハロゲン化物(特に塩化物)によりアシル化されたセルロース微細繊維である。表面処理剤によって疎水化表面処理されたセルロース微細繊維を得るための表面処理剤としては、例えば、シランカップリング剤等が挙げられる。 Examples of hydrophobization for obtaining cellulose fine fibers in which part or all of the hydroxyl groups of cellulose are substituted with hydrophobic groups include esterification (acylation) (alkyl esterification, complex esterification, β-ketoesterification, etc.) ), Alkylation, tosylation, epoxidation, arylation and the like. Of these, esterification is preferred. Specifically, in the esterified hydrophobized cellulose fine fiber, part or all of the hydroxyl groups of cellulose are carboxylic acids such as acetic acid, acetic anhydride, propionic acid, butyric acid, or halides thereof (particularly chlorides). It is the cellulose fine fiber acylated by. Examples of the surface treatment agent for obtaining cellulose fine fibers hydrophobized and surface-treated with the surface treatment agent include silane coupling agents.
 セルロース系微細繊維は、ベルトの特性を実現する観点から、その繊維径の分布の下限は、好ましくは10nm以下、より好ましくは3nm以下である。上限は、好ましくは500nm以上、より好ましくは700nm以上、更に好ましくは1μm以上である。セルロース系微細繊維の繊維径の分布範囲は、20~500nmを含むことが好ましく、20~700mmを含むことがより好ましく、20nm~1μmを含むことが更に好ましい。 From the viewpoint of realizing the belt characteristics, the lower limit of the fiber diameter distribution of the cellulosic fine fibers is preferably 10 nm or less, more preferably 3 nm or less. The upper limit is preferably 500 nm or more, more preferably 700 nm or more, and further preferably 1 μm or more. The distribution range of the fiber diameter of the cellulosic fine fibers is preferably 20 to 500 nm, more preferably 20 to 700 mm, and still more preferably 20 nm to 1 μm.
 セルロース系微細繊維の平均繊維径は、好ましくは3nm以上で且つ200nm以下、より好ましくは3nm以上で且つ100nm以下である。 The average fiber diameter of the cellulosic fine fibers is preferably 3 nm or more and 200 nm or less, more preferably 3 nm or more and 100 nm or less.
 セルロース系微細繊維の繊維径の分布は、ベルト本体を構成するゴム組成物の試料を凍結粉砕した後、その断面を透過型電子顕微鏡(TEM)で観察すると共に、50本のセルロース系微細繊維を任意に選択して繊維径を測定し、その測定結果に基づいて求められる。また、セルロース系微細繊維の平均繊維径は、その任意に選択した50本のセルロース系微細繊維の繊維径の数平均として求められる。 The distribution of the fiber diameter of the cellulosic fine fibers is determined by observing the cross section with a transmission electron microscope (TEM) after freezing and pulverizing a sample of the rubber composition constituting the belt main body. The fiber diameter is measured by arbitrarily selecting and obtained based on the measurement result. The average fiber diameter of the cellulosic fine fibers is obtained as the number average of the fiber diameters of 50 arbitrarily selected cellulosic fine fibers.
 セルロース系微細繊維は、機械的解繊手段によって製造された高アスペクト比のものであっても、また、化学的解繊手段によって製造されたものであっても、どちらでもよい。これらのうち、化学的解繊手段によって製造されたものが好ましい。また、セルロース系微細繊維として、機械的解繊手段によって製造されたものと化学的解繊手段によって製造されたものとを併用してもよい。機械的解繊手段に用いる解繊装置としては、例えば、二軸混練機などの混練機、高圧ホモジナイザー、グラインダー、ビーズミル等が挙げられる。化学的解繊手段に用いる処理としては、例えば、酸加水分解処理等が挙げられる。 The cellulosic fine fibers may be either high aspect ratio manufactured by mechanical defibrating means, or manufactured by chemical defibrating means. Of these, those produced by chemical defibrating means are preferred. Moreover, you may use together what was manufactured by the mechanical defibration means, and what was manufactured by the chemical defibration means as a cellulose fine fiber. Examples of the defibrating apparatus used for the mechanical defibrating means include a kneader such as a twin-screw kneader, a high-pressure homogenizer, a grinder, and a bead mill. Examples of the treatment used for the chemical defibrating means include acid hydrolysis treatment.
 圧縮ゴム層11、接着ゴム層12、及び/又は背面ゴム層13を構成するゴム組成物におけるセルロース系微細繊維の含有量は、伝動ベルトの各種特性をそれぞれ満たす観点から、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上、更に好ましくは10質量部以上であり、また、好ましくは30質量部以下、より好ましくは25質量部以下、更に好ましくは20質量部以下である。 The content of the cellulosic fine fibers in the rubber composition constituting the compressed rubber layer 11, the adhesive rubber layer 12, and / or the back rubber layer 13 is 100 parts by mass of the rubber component from the viewpoint of satisfying various characteristics of the transmission belt. On the other hand, it is preferably 1 part by mass or more, more preferably 5 parts by mass or more, further preferably 10 parts by mass or more, and preferably 30 parts by mass or less, more preferably 25 parts by mass or less, still more preferably 20 parts by mass. Or less.
 また、ゴム配合剤としては、補強材、オイル、加工助剤、加硫促進助剤、架橋剤、共架橋剤、加硫促進剤等が挙げられる。 Also, examples of rubber compounding agents include reinforcing materials, oils, processing aids, vulcanization acceleration aids, crosslinking agents, co-crosslinking agents, and vulcanization accelerators.
 補強材として、セルロース系微細繊維とは別に用いる短繊維では、例えば、6-ナイロン繊維、6,6-ナイロン繊維、4,6-ナイロン繊維、ポリエチレンテレフタレート(PET)繊維、ポリエチレンナフタレート(PEN)繊維、パラ系アラミド繊維、メタ系アラミド繊維、ポリエステル繊維等が挙げられ、単一種のみが含まれていてもよく、また、複数種が含まれていてもよい。短繊維は、例えばRFL水溶液等に浸漬した後に加熱する接着処理が施された長繊維を所定長に切断して製造される。 Short fibers used as a reinforcing material in addition to cellulosic fine fibers include, for example, 6-nylon fiber, 6,6-nylon fiber, 4,6-nylon fiber, polyethylene terephthalate (PET) fiber, polyethylene naphthalate (PEN) Examples thereof include fibers, para-aramid fibers, meta-aramid fibers, and polyester fibers. Only a single species may be included, or a plurality of species may be included. The short fiber is manufactured by, for example, cutting a long fiber, which has been subjected to an adhesion treatment to be heated after being immersed in an RFL aqueous solution, into a predetermined length.
 短繊維の直径は、好ましくは1μm以上、より好ましくは5μm以上、更に好ましくは10μm以上であり、また、好ましくは100μm以下、より好ましくは70μm以下、更に好ましくは50μm以下である。 The diameter of the short fiber is preferably 1 μm or more, more preferably 5 μm or more, still more preferably 10 μm or more, and preferably 100 μm or less, more preferably 70 μm or less, and even more preferably 50 μm or less.
 また、短繊維の配合量は、ゴム組成物のゴム成分100質量部に対して好ましくは5質量部以上、より好ましくは10質量部以上であり、また、好ましくは50質量部以下、より好ましくは40質量部以下である。 The blend amount of the short fibers is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and preferably 50 parts by mass or less, more preferably 100 parts by mass of the rubber component of the rubber composition. It is 40 parts by mass or less.
 補強材として、カーボンブラックでは、例えば、チャネルブラック;SAF、ISAF、N-339、HAF、N-351、MAF、FEF、SRF、GPF、ECF、N-234などのファーネスブラック;FT、MTなどのサーマルブラック;アセチレンブラック等が挙げられる。 As a reinforcing material, carbon black, for example, channel black; furnace black such as SAF, ISAF, N-339, HAF, N-351, MAF, FEF, SRF, GPF, ECF, N-234; FT, MT, etc. Thermal black; acetylene black etc. are mentioned.
 セルロース系微細繊維を用いる場合、カーボンブラックは必ずしも添加する必要はないが、帯電防止等の目的で添加しても良い。添加する場合、カーボンブラックの配合量は、ゴム組成物のゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上であり、また、好ましくは100質量部以下、より好ましくは50質量部以下である。 When cellulosic fine fibers are used, carbon black is not necessarily added, but may be added for the purpose of antistatic or the like. When added, the amount of carbon black is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and preferably 100 parts by mass or less, with respect to 100 parts by mass of the rubber component of the rubber composition. More preferably, it is 50 parts by mass or less.
 オイルとしては、例えば、石油系軟化剤、パラフィンワックスなどの鉱物油系オイル、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落下生油、木ろう、ロジン、パインオイルなどの植物油系オイル等が挙げられる。オイルは、これらのうち1種又は2種以上であることが好ましい。オイルの含有量は、ゴム組成物のゴム成分100質量部に対して例えば5~15質量部である。 Oils include, for example, petroleum-based softeners, mineral oils such as paraffin wax, castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, fall raw oil, wax, rosin, pine And vegetable oils such as oil. The oil is preferably one or more of these. The oil content is, for example, 5 to 15 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
 加硫促進助剤としては、例えば、酸化亜鉛(亜鉛華)や酸化マグネシウムなどの金属酸化物、金属炭酸塩、脂肪酸及びその誘導体等が挙げられる。加硫促進助剤は、これらのうち1種又は2種以上であることが好ましい。加硫促進助剤の含有量は、ゴム組成物のゴム成分100質量部に対して例えば5~15質量部である。 Examples of the vulcanization acceleration aid include metal oxides such as zinc oxide (zinc white) and magnesium oxide, metal carbonates, fatty acids and derivatives thereof. Among these, the vulcanization acceleration aid is preferably one or more. The content of the vulcanization acceleration aid is, for example, 5 to 15 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
 架橋剤としては、硫黄及び有機過酸化物が挙げられる。架橋剤として、硫黄が配合されていてもよく、また、有機過酸化物が配合されていてもよく、更には、それらの両方が併用されていてもよい。架橋剤の配合量は、硫黄の場合、ゴム組成物のゴム成分100質量部に対して例えば0.5~4.0質量部であり、有機過酸化物の場合、ゴム組成物のゴム成分100質量部に対して例えば0.5~8.0質量部である。 Examples of the crosslinking agent include sulfur and organic peroxides. As a crosslinking agent, sulfur may be blended, an organic peroxide may be blended, or both of them may be used in combination. The compounding amount of the crosslinking agent is, for example, 0.5 to 4.0 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition in the case of sulfur, and the rubber component 100 of the rubber composition in the case of an organic peroxide. For example, 0.5 to 8.0 parts by mass with respect to parts by mass.
 有機過酸化物としては、例えば、ジクミルパーオキサイドなどのジアルキルパーオキサイド類、t-ブチルパーオキシアセテートなどのパーオキシエステル類、ジシクロヘキサノンパーオキサイドなどのケトンパーオキサイド類等が挙げられる。有機過酸化物は、単一種が配合されていても、また、複数種が配合されていても、どちらでもよい。 Examples of the organic peroxide include dialkyl peroxides such as dicumyl peroxide, peroxyesters such as t-butyl peroxyacetate, and ketone peroxides such as dicyclohexanone peroxide. The organic peroxide may be a single species or a plurality of species.
 共架橋剤としては、例えば、マレイミド系、TAIC、1,2-ポリブタジエン、オキシム類、グアニジン、及びトリメチロールプロパントリメタクリレートのもの等が挙げられる。共架橋剤は、これらのうちの1種又は2種以上であることが好ましい。共架橋剤の含有量は、ゴム成分100質量部に対して例えば0.5~15質量部である。 Examples of the co-crosslinking agent include maleimide, TAIC, 1,2-polybutadiene, oximes, guanidine, and trimethylolpropane trimethacrylate. The co-crosslinking agent is preferably one or more of these. The content of the co-crosslinking agent is, for example, 0.5 to 15 parts by mass with respect to 100 parts by mass of the rubber component.
 接着ゴム層12及び背面ゴム層13は、ゴム成分に種々のゴム配合剤が配合されて混練された未架橋ゴム組成物が加熱及び加圧されて架橋剤により架橋した中実のゴム組成物で形成されている。接着ゴム層12及び背面ゴム層13を構成するゴム組成物のゴム成分としては、圧縮ゴム層11と同様のものが挙げられ、同一であっても良い。ゴム配合剤としても、圧縮ゴム層11と同様に、補強材、オイル、加工助剤、加硫促進助剤、架橋剤、共架橋剤、加硫促進剤等が挙げられる。また、接着ゴム層12及び背面ゴム層13を構成するゴム組成物は、圧縮ゴム層11と同様に、セルロース系微細繊維及び短繊維を含んでいても良い。 The adhesive rubber layer 12 and the back rubber layer 13 are solid rubber compositions in which an uncrosslinked rubber composition in which various rubber compounding agents are blended with a rubber component and kneaded is heated and pressurized to be crosslinked with the crosslinking agent. Is formed. Examples of the rubber component of the rubber composition constituting the adhesive rubber layer 12 and the back rubber layer 13 include the same rubber components as those of the compressed rubber layer 11 and may be the same. As the rubber compounding agent, as in the case of the compressed rubber layer 11, a reinforcing material, oil, a processing aid, a vulcanization acceleration aid, a crosslinking agent, a co-crosslinking agent, a vulcanization accelerator, and the like can be given. Further, the rubber composition constituting the adhesive rubber layer 12 and the back rubber layer 13 may contain cellulosic fine fibers and short fibers in the same manner as the compressed rubber layer 11.
 心線14は、ポリエチレンテレフタレート(PET)繊維、ポリエチレンナフタレート(PEN)繊維、パラ系アラミド繊維、ビニロン繊維等の撚り糸や組紐等の線材で構成されている。心線14は、Vリブドベルト本体10に対する接着性を付与するために、成形前にRFL水溶液に浸漬した後に加熱する接着処理及び/又はゴム糊に浸漬した後に乾燥させる接着処理が施されている。なお、心線14は、RFL水溶液及び/又はゴム糊による接着処理の前に、必要に応じてエポキシ樹脂やポリイソシアネート樹脂等の溶液からなる接着剤溶液に浸漬した後に加熱する接着処理が施されていてもよい。心線14の直径は例えば0.5~2.5mmであり、断面における相互に隣接する心線14中心間の寸法は例えば0.05~0.20mmである。 The core wire 14 is composed of a wire such as a twisted yarn or a braid of polyethylene terephthalate (PET) fiber, polyethylene naphthalate (PEN) fiber, para-aramid fiber, vinylon fiber, or the like. In order to give the core wire 14 adhesion to the V-ribbed belt main body 10, an adhesive treatment that is heated after being immersed in an RFL aqueous solution before molding and / or an adhesive treatment that is dried after being immersed in rubber paste is performed. In addition, the core 14 is subjected to an adhesive treatment that is heated after being immersed in an adhesive solution made of a solution such as an epoxy resin or a polyisocyanate resin, if necessary, before the adhesive treatment with the RFL aqueous solution and / or the rubber paste. It may be. The diameter of the core wire 14 is, for example, 0.5 to 2.5 mm, and the dimension between the centers of the adjacent core wires 14 in the cross section is, for example, 0.05 to 0.20 mm.
 (VリブドベルトBの製造方法)
 実施形態1に係るVリブドベルトBの製造方法について、図3~図8に基づいて説明する。
(Manufacturing method of V-ribbed belt B)
A method for manufacturing the V-ribbed belt B according to the first embodiment will be described with reference to FIGS.
 図3及び図4は、実施形態1に係るVリブドベルトBの製造に用いるベルト成形型30を示す。 3 and 4 show a belt forming die 30 used for manufacturing the V-ribbed belt B according to the first embodiment.
 このベルト成形型30は、同心状に設けられた、各々、円筒状の内型31及び外型32を備えている。 The belt mold 30 is provided with a cylindrical inner mold 31 and an outer mold 32 which are provided concentrically.
 内型31はゴム等の可撓性材料で形成されている。外型32は金属等の剛性材料で形成されている。外型32の内周面は成型面に構成されており、その外型32の内周面には、Vリブ16の形状と同一のVリブ形成溝33が軸方向に一定ピッチで設けられている。外型32には、水蒸気等の熱媒体や水等の冷媒体を流通させて温調する温調機構が設けられている。また、内型31を内部から加圧膨張させるための加圧手段が設けられている。 The inner mold 31 is made of a flexible material such as rubber. The outer mold 32 is made of a rigid material such as metal. The inner peripheral surface of the outer mold 32 is formed as a molding surface, and V rib forming grooves 33 having the same shape as the V ribs 16 are provided on the inner peripheral surface of the outer mold 32 at a constant pitch in the axial direction. Yes. The outer mold 32 is provided with a temperature control mechanism that controls the temperature by circulating a heat medium such as water vapor or a coolant such as water. Further, a pressurizing means for pressurizing and expanding the inner mold 31 from the inside is provided.
 実施形態1に係るVリブドベルトBの製造方法は、材料準備工程、成形工程、架橋工程、及び仕上げ工程を有する。 The manufacturing method of the V-ribbed belt B according to Embodiment 1 includes a material preparation process, a molding process, a crosslinking process, and a finishing process.
 <材料準備工程>
 -圧縮ゴム層用、接着ゴム層用、及び背面ゴム層用の未架橋ゴムシート11’,12’,13’-
 圧縮ゴム層用、接着ゴム層用、及び背面ゴム層用の未架橋ゴムシート11’,12’,13’のうち、セルロース系微細繊維を含有させるものの作製を以下のようにして行う。
<Material preparation process>
-Uncrosslinked rubber sheets 11 ', 12', 13 'for compressed rubber layer, adhesive rubber layer, and back rubber layer
Of the uncrosslinked rubber sheets 11 ′, 12 ′, and 13 ′ for the compressed rubber layer, the adhesive rubber layer, and the back rubber layer, those containing cellulosic fine fibers are produced as follows.
 まず、素練りしているゴム成分にセルロース系微細繊維を投入して混練することにより分散させる。 First, cellulosic fine fibers are put into a kneaded rubber component and dispersed by kneading.
 ここで、ゴム成分へのセルロース系微細繊維の分散方法としては、例えば、セルロース系微細繊維を水に分散させた分散体(ゲル)を、オープンロールで素練りしているゴム成分に投入し、それらを混練しながら水分を気化させる方法、セルロース系微細繊維を水に分散させた分散体(ゲル)とゴムラテックスとを混合して水分を気化させて得られたセルロース系微細繊維/ゴムのマスターバッチを、素練りしているゴム成分に投入する方法、セルロース系微細繊維を溶剤に分散させた分散体とゴム成分を溶剤に溶解させた溶液とを混合して溶剤を気化させて得られたセルロース系微細繊維/ゴムのマスターバッチを、素練りしているゴム成分に投入する方法、セルロース系微細繊維を水に分散させた分散体(ゲル)を凍結乾燥させて粉砕したものを、素練りしているゴム成分に投入する方法、疎水化したセルロース系微細繊維を素練りしているゴム成分に投入する方法等が挙げられる。 Here, as a method for dispersing the cellulose-based fine fibers in the rubber component, for example, a dispersion (gel) in which the cellulose-based fine fibers are dispersed in water is added to the rubber component kneaded with an open roll, A method of vaporizing moisture while kneading them, a master of cellulose fine fibers / rubber obtained by mixing a dispersion (gel) in which cellulosic fine fibers are dispersed in water and rubber latex to vaporize the moisture Obtained by mixing the batch into a rubber component that has been masticated, mixing a dispersion in which cellulosic fine fibers are dispersed in a solvent and a solution in which the rubber component is dissolved in the solvent, and evaporating the solvent Cellulose fine fiber / rubber masterbatch is put into the kneaded rubber component, dispersion (gel) in which cellulose fine fiber is dispersed in water is freeze-dried and pulverized And what, how to put into a rubber component is masticated, methods and the like to introduce cellulosic microfibers made hydrophobic in rubber component is masticated.
 次いで、ゴム成分とセルロース系微細繊維とを混練しながら、各種のゴム配合剤を投入して混練を継続することにより未架橋ゴム組成物を作製する。 Next, while kneading the rubber component and the cellulosic fine fiber, various rubber compounding agents are added and kneading is continued to prepare an uncrosslinked rubber composition.
 そして、その未架橋ゴム組成物をカレンダー成形等によってシート状に成形する。 Then, the uncrosslinked rubber composition is molded into a sheet by calendar molding or the like.
 なお、セルロース系微細繊維を含有させないものの作製は、ゴム成分に各種のゴム配合剤を配合し、ニーダー、バンバリーミキサー等の混練機で混練し、得られた未架橋ゴム組成物をカレンダー成形等によってシート状に成形することにより行う。 In addition, the preparation of those not containing cellulosic fine fibers is carried out by blending various rubber compounding agents with the rubber component, kneading with a kneader such as a kneader or a Banbury mixer, and the resulting uncrosslinked rubber composition by calendar molding or the like. This is done by forming into a sheet.
 -心線14’-
 心線14’に対して接着処理を施す。具体的には、心線13’に、RFL水溶液に浸漬して加熱するRFL接着処理を施す。また、RFL接着処理前に下地接着処理液に浸漬して加熱する下地接着処理を施すことが好ましい。なお、RFL接着処理前にゴム糊に浸漬して乾燥させるゴム糊接着処理を施してもよい。
-Core 14'-
An adhesive treatment is applied to the core wire 14 '. Specifically, the core wire 13 'is subjected to an RFL adhesion treatment in which it is immersed in an RFL aqueous solution and heated. Moreover, it is preferable to perform the foundation | substrate adhesion | attachment process which immerses in a foundation | substrate adhesion | attachment processing liquid and heats before RFL adhesion | attachment processing. In addition, you may give the rubber paste adhesion | attachment process which is immersed in rubber glue and dried before RFL adhesion | attachment processing.
 <成形工程>
 図5に示すように、表面が平滑な円筒ドラム34上にゴムスリーブ35を被せ、その外周上に、背面ゴム層用の未架橋ゴムシート13’、及び接着ゴム層用の未架橋ゴムシート12’を順に巻き付けて積層し、その上から心線14’を円筒状の内型31に対して螺旋状に巻き付け、更にその上から接着ゴム層用の未架橋ゴムシート12’、及び圧縮ゴム層用の未架橋ゴムシート11’を順に巻き付ける。このとき、ゴムスリーブ35上には積層成形体B’が形成される。
<Molding process>
As shown in FIG. 5, a rubber sleeve 35 is placed on a cylindrical drum 34 having a smooth surface, and an uncrosslinked rubber sheet 13 ′ for the back rubber layer and an uncrosslinked rubber sheet 12 for the adhesive rubber layer are formed on the outer periphery thereof. 'Are wound in order and laminated, and the core wire 14' is wound spirally around the cylindrical inner mold 31 from above, and the uncrosslinked rubber sheet 12 'for the adhesive rubber layer and the compressed rubber layer are further wound thereon. The uncrosslinked rubber sheet 11 ′ for use is wound in order. At this time, a laminated molded body B ′ is formed on the rubber sleeve 35.
 <架橋工程>
 積層成形体B’を設けたゴムスリーブ35を円筒ドラム34から外し、図6に示すように、それを外型32の内周面側に内嵌め状態にセットした後、図7に示すように、内型31を外型32にセットされたゴムスリーブ35内に位置付けて密閉する。
<Crosslinking process>
The rubber sleeve 35 provided with the laminated molded body B ′ is removed from the cylindrical drum 34 and, as shown in FIG. 6, it is set in the inner peripheral surface side of the outer mold 32 and then, as shown in FIG. The inner mold 31 is positioned and sealed in the rubber sleeve 35 set on the outer mold 32.
 次いで、外型32を加熱すると共に、内型31の密封された内部に高圧空気等を注入して加圧する。このとき、内型31が膨張し、外型32の成型面に、積層成形体B’における未架橋ゴムシート11’,12’,13’が圧縮されて進入し、また、それらの架橋が進行し、且つ心線14’が複合一体化し、最終的に、図8に示すように、円筒状のベルトスラブSが成型される。なお、ベルトスラブSの成型温度は例えば100~180℃、成型圧力は例えば0.5~2.0MPa、及び成型時間は例えば10~60分である。 Next, the outer mold 32 is heated and pressurized by injecting high-pressure air or the like into the sealed interior of the inner mold 31. At this time, the inner mold 31 expands, and the uncrosslinked rubber sheets 11 ′, 12 ′, and 13 ′ in the laminated molded body B ′ enter the molded surface of the outer mold 32 while being compressed, and the crosslinking proceeds. In addition, the core wire 14 'is combined and integrated, and finally a cylindrical belt slab S is formed as shown in FIG. The molding temperature of the belt slab S is, for example, 100 to 180 ° C., the molding pressure is, for example, 0.5 to 2.0 MPa, and the molding time is, for example, 10 to 60 minutes.
 <仕上げ工程>
 内型31の内部を減圧して密閉を解き、内型31と外型32との間でゴムスリーブ35を介して成型されたベルトスラブSを取り出し、ベルトスラブSを所定幅に輪切りして表裏を裏返すことによりVリブドベルトBが製造される。
<Finishing process>
The inside of the inner mold 31 is decompressed to release the seal, the belt slab S molded between the inner mold 31 and the outer mold 32 is taken out via the rubber sleeve 35, and the belt slab S is cut into a predetermined width and turned upside down. V-ribbed belt B is manufactured by turning over.
  -実施例-
 [試験評価1]
 クロロプレンゴム(CRゴムとも表記する)をゴム成分とするゴム組成物を用いて、実施例1-1~1-5及び比較例1-1~1-8のローエッジVベルトを作製した。それぞれの詳細については、表1にも示す。
-Example-
[Test Evaluation 1]
Low edge V belts of Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-8 were produced using a rubber composition containing chloroprene rubber (also referred to as CR rubber) as a rubber component. Details of each are also shown in Table 1.
 <実施例1-1>
 CRラテックス(昭和電工社製 商品名:ショウプレン842A)と機械的解繊手段によって製造されたセルロース微細繊維(大王製紙社製)の水分散体とを混合し、水を気化させてセルロース微細繊維/CRのマスターバッチを作製した。
<Example 1-1>
CR latex (made by Showa Denko Co., Ltd., trade name: Shoprene 842A) and cellulose fine fiber (manufactured by Daio Paper Co., Ltd.) manufactured by mechanical defibration means are mixed, and water is evaporated to produce cellulose fine fiber / A master batch of CR was prepared.
 続いて、CR(昭和電工社製 商品名:ショウプレンGS)を素練りすると共に、そこにマスターバッチを投入して混練した。マスターバッチの投入量は、トータルのCRを100質量部としたときのセルロース系微細繊維の含有量が20質量部となる量とした。 Subsequently, CR (Showa Denko Co., Ltd., trade name: Showpren GS) was masticated, and a master batch was added thereto for kneading. The input amount of the master batch was such that the content of the cellulosic fine fibers was 20 parts by mass when the total CR was 100 parts by mass.
 そして、CRとセルロース系微細繊維とを混練すると共に、そこに、CR100質量部に対し、補強材のカーボンブラックHAF(東海カーボン社製 商品名:シースト3)を20質量部、アラミド短繊維(帝人社製、テクノーラ(登録商標))オイル(日本サン石油社製 商品名:サンパー2280)を5質量部、加硫促進助剤の酸化亜鉛(堺化学工業社製)を5質量部、酸化マグネシウム(協和化学工業社製 商品名:キョウワマグ150)を4質量部それぞれ投入して混練を継続することにより未架橋ゴム組成物を作製した。 Then, CR and cellulosic fine fibers are kneaded, and there are 20 parts by mass of reinforcing material carbon black HAF (product name: SEAST 3), 100 parts by mass of CR, and aramid short fibers (Teijin). 5 parts by mass of Technora (registered trademark) oil (trade name: Samper 2280 manufactured by Nippon San Oil Co., Ltd.), 5 parts by mass of zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd.), magnesium oxide ( 4 parts by mass of Kyowa Chemical Industry Co., Ltd. (trade name: Kyowa Mug 150) was added and kneading was continued to prepare an uncrosslinked rubber composition.
 この未架橋ゴム組成物をシート状に成形してベルト本体(圧縮ゴム層、接着ゴム層及び伸張ゴム層)を構成するための未架橋ゴムシートとし、実施例1-1のローエッジVベルトを作製した。 This uncrosslinked rubber composition was molded into a sheet to form an uncrosslinked rubber sheet for constituting a belt body (compressed rubber layer, adhesive rubber layer and stretched rubber layer), and a low edge V belt of Example 1-1 was produced. did.
 尚、心線には接着処理を施したポリエステル繊維製の撚り糸を用いた。 In addition, the strand made from the polyester fiber which gave the adhesion process was used for the core wire.
 <実施例1-2>
 CRと、そのCR100質量部に対し、化学的解繊手段(TEMPO酸化処理)によって製造されたセルロース微細繊維を10質量部、補強材のカーボンブラックHAFを20質量部、オイルを5質量部、加硫促進助剤の酸化亜鉛を5質量部、及び酸化マグネシウムを4質量部とを混練して減圧して未架橋ゴム組成物を作製した。
<Example 1-2>
10 parts by weight of cellulose fine fibers produced by chemical defibration means (TEMPO oxidation treatment), 20 parts by weight of carbon black HAF as a reinforcing material, and 5 parts by weight of oil are added to CR and 100 parts by weight of CR. An uncrosslinked rubber composition was prepared by kneading 5 parts by mass of zinc oxide as a sulfur accelerator and 4 parts by mass of magnesium oxide and reducing the pressure.
 ベルト本体構成用の未架橋ゴムシートとして、この未架橋ゴム組成物を用いたことを除いて実施例1-1と同様の構成の実施例1-2のローエッジVベルトを作製した。 A low-edge V belt of Example 1-2 having the same configuration as Example 1-1 was produced except that this uncrosslinked rubber composition was used as an uncrosslinked rubber sheet for constituting the belt body.
 <実施例1-3>
 ベルト本体形成用の未架橋ゴムシートについて、カーボンブラックを配合せず、且つ、化学的手段により解繊したセルロース系微細繊維の含有量をゴム成分100質量部に対して20質量部としたことを除き、実施例1-2と同様の構成の実施例1-3のベルトを作製した。
<Example 1-3>
About the uncrosslinked rubber sheet for forming the belt main body, the content of the cellulosic fine fibers not blended with carbon black and defibrated by chemical means is 20 parts by mass with respect to 100 parts by mass of the rubber component. Except for this, the belt of Example 1-3 having the same configuration as that of Example 1-2 was produced.
 <実施例1-4>
 ベルト本体構成用の未架橋ゴムシートについて、ゴム成分100質量部に対してアラミド短繊維を10質量部とし、且つ、ナイロン短繊維(東レ社製ナイロン66からなるタイヤ用スダレから3mm長にカットした短繊維)10質量部を更に配合したことを除き、実施例1-2と同様の構成の実施例1-4のベルトを作製した。
<Example 1-4>
The uncrosslinked rubber sheet for constituting the belt main body was cut into 3 mm length from a tire short made of nylon short fiber (nylon 66 made by Toray Industries, Inc.) with 10 parts by weight of aramid short fibers per 100 parts by weight of the rubber component. A belt of Example 1-4 having the same configuration as Example 1-2 was prepared except that 10 parts by mass of short fiber) was further blended.
 <実施例1-5>
 ベルト本体構成用の未架橋ゴムシートについて、アラミド短繊維20質量部に代えてナイロン短繊維20質量部を配合したことを除き、実施例1-2と同様の構成の実施例1-5のベルトを作製した。
<Example 1-5>
The belt of Example 1-5 having the same configuration as Example 1-2, except that 20 parts by mass of nylon short fibers were blended in place of 20 parts by mass of aramid short fibers for the uncrosslinked rubber sheet for constituting the belt body. Was made.
 <比較例1-1>
 ベルト本体構成用の未架橋ゴムシートについて、セルロース系微細繊維を配合しないことを除き、実施例1-1と同様の構成の比較例1-1のベルトを作製した。
<Comparative Example 1-1>
With respect to the uncrosslinked rubber sheet for constituting the belt main body, a belt of Comparative Example 1-1 having the same constitution as that of Example 1-1 was produced, except that no cellulosic fine fibers were blended.
 <比較例1-2>
 ベルト本体構成用の未架橋ゴムシートについて、カーボンブラックHAFの配合量をゴム成分100質量部に対して70質量部としたことを除き、比較例1-1と同様の構成の比較例1-2のベルトを作製した。
<Comparative Example 1-2>
Comparative Example 1-2 having the same configuration as Comparative Example 1-1, except that the amount of carbon black HAF was 70 parts by mass with respect to 100 parts by mass of the rubber component for the uncrosslinked rubber sheet for the belt body configuration A belt was prepared.
 <比較例1-3>
 ベルト本体構成用の未架橋ゴムシートについて、アラミド短繊維20質量部に代えてナイロン短繊維20質量部を配合したことを除き、比較例1-1と同様の構成の比較例1-3のベルトを作製した。
<Comparative Example 1-3>
The belt of Comparative Example 1-3 having the same configuration as that of Comparative Example 1-1, except that 20 parts by mass of nylon short fibers were blended in place of 20 parts by mass of aramid short fibers for the uncrosslinked rubber sheet for constituting the belt body. Was made.
 <比較例1-4>
 ベルト本体構成用の未架橋ゴムシートについて、カーボンブラックHAFの配合量をゴム成分100質量部に対して70質量部とし、且つ、アラミド短繊維20質量部に代えてナイロン短繊維20質量部を配合したことを除き、比較例1-2と同様の構成の比較例1-4のベルトを作製した。
<Comparative Example 1-4>
About the uncrosslinked rubber sheet for the belt body constitution, the blending amount of carbon black HAF is 70 parts by weight with respect to 100 parts by weight of the rubber component, and 20 parts by weight of nylon short fibers are blended instead of 20 parts by weight of aramid short fibers. A belt of Comparative Example 1-4 having the same configuration as that of Comparative Example 1-2 was produced.
 <比較例1-5>
 ベルト本体構成用の未架橋ゴムシートについて、ゴム成分100質量部に対して微細繊維ではない(繊維径10~100μm程度の)セルロース繊維(大王製紙社製、クラフトパルプ)20質量部を更に配合したことを除き、比較例1-1と同様の構成の比較例1-5のベルトを作製した。
<Comparative Example 1-5>
For the uncrosslinked rubber sheet for constituting the belt body, 20 parts by mass of cellulose fibers (made by Daio Paper Co., Ltd., kraft pulp) that are not fine fibers (fiber diameter of about 10 to 100 μm) are further blended with 100 parts by mass of the rubber component. A belt of Comparative Example 1-5 having the same configuration as that of Comparative Example 1-1 was produced.
 <比較例1-6>
 ベルト本体構成用の未架橋ゴムシートについて、カーボンブラックHAFを配合せず、且つ、ゴム成分100質量部に対して微細繊維ではないセルロース繊維20質量部を更に配合したことを除き、比較例1-5と同様の構成の比較例1-6のベルトを作製した。
<Comparative Example 1-6>
With respect to the uncrosslinked rubber sheet for constituting the belt body, Comparative Example 1 except that carbon black HAF is not blended and 20 parts by mass of cellulose fibers that are not fine fibers are further blended with 100 parts by mass of the rubber component. A belt of Comparative Example 1-6 having the same configuration as that of No. 5 was produced.
 <比較例1-7>
 ベルト本体構成用の未架橋ゴムシートについて、アラミド短繊維を配合しないことを除き、実施例1-2と同様の構成の比較例1-7のベルトを作製した。
<Comparative Example 1-7>
With respect to the uncrosslinked rubber sheet for constituting the belt main body, a belt of Comparative Example 1-7 having the same constitution as that of Example 1-2 was produced except that aramid short fibers were not blended.
 <比較例1-8>
 ベルト本体構成用の未架橋ゴムシートについて、カーボンブラックHAF及びアラミド短繊維をいずれも配合しないことを除き、実施例1-2と同様の構成の比較例1-8のベルトを作製した。
<Comparative Example 1-8>
With respect to the uncrosslinked rubber sheet for constituting the belt main body, a belt of Comparative Example 1-8 having the same constitution as Example 1-2 was produced except that neither carbon black HAF nor aramid short fibers were blended.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (試験評価方法)
 それぞれの評価結果を表1に示す。
(Test evaluation method)
Each evaluation result is shown in Table 1.
 <平均繊維径・繊維径分布>
 実施例1-1~1-5のそれぞれのベルトの内側ゴム層の試料を凍結粉砕した後、その断面を透過型電子顕微鏡(TEM)で観察すると共に、50本のセルロース微細繊維を任意に選択して繊維径を測定し、その数平均を求めて平均繊維径とした。また、50本のセルロース微細繊維のうち繊維径の最大値及び最小値を求めた。
<Average fiber diameter / fiber diameter distribution>
After freezing and pulverizing the samples of the inner rubber layers of the belts of Examples 1-1 to 1-5, the cross section was observed with a transmission electron microscope (TEM), and 50 cellulose fine fibers were arbitrarily selected. Then, the fiber diameter was measured, and the number average was obtained to obtain the average fiber diameter. Moreover, the maximum value and minimum value of the fiber diameter were calculated | required among 50 cellulose fine fibers.
 <耐クラック性評価ベルト走行試験>
 ベルトの耐クラック寿命は、ゴムの耐クラック性を示す指標であり、高寿命ほど優れている。
<Crack resistance evaluation belt running test>
The crack life of the belt is an index indicating the crack resistance of rubber, and the longer the life is, the better.
 図9は、耐クラック寿命測定用の走行試験機40を示す。耐クラック性評価用ベルト走行試験機40は、プーリ径φ40mmの駆動プーリ41とその右側方に設けられたプーリ径40mmの従動プーリ42とを備える。従動プーリ42は、軸荷重(デッドウェイトDW)を負荷してローエッジVベルトBに張力を付与できるように左右に可動に設けられている。 FIG. 9 shows a running test machine 40 for measuring crack resistance life. The crack running evaluation belt running test machine 40 includes a drive pulley 41 having a pulley diameter of φ40 mm and a driven pulley 42 having a pulley diameter of 40 mm provided on the right side thereof. The driven pulley 42 is movably provided to the left and right so as to apply an axial load (dead weight DW) and apply tension to the low edge V-belt B.
 実施例1-1~1-5及び比較例1-1~1-8のそれぞれのベルトについて、走行試験機40の駆動プーリ41及び従動プーリ42間に巻き掛け、従動プーリ42に対して右側方に600Nの軸荷重を負荷してベルトに張力を与えると共に、100℃の雰囲気温度下において駆動プーリ41を3000rpmの回転数で回転させることによりベルト走行させた。そして、定期的にベルト走行を停止すると共に、ローエッジVベルトBにクラックが発生しているか否かを目視確認し、クラックの発生が確認されるまでのベルト走行時間を耐クラック寿命とした。なお、200時間を越えてもクラックの発生が認められない場合には、その時点で試験を打ち切った。 About each belt of Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-8, the belt is wound around the driving pulley 41 and the driven pulley 42 of the traveling test machine 40, and the belt is driven to the right side with respect to the driven pulley 42. A belt load was applied by applying an axial load of 600 N to the belt and rotating the driving pulley 41 at a rotational speed of 3000 rpm under an ambient temperature of 100 ° C. The belt travel was periodically stopped and whether or not cracks occurred in the low edge V-belt B was visually confirmed, and the belt travel time until the occurrence of cracks was confirmed as the crack-resistant life. In addition, when generation | occurrence | production of the crack was not recognized over 200 hours, the test was stopped at that time.
 <高張力ベルト走行試験>
 デッドウェイト条件における高張力耐久評価は、ベルトの性能、寿命の加速的評価として有効である。走行前後の軸間距離の変化は、心線の永久伸びによるベルト長さの変化を一定と考えると、ゴム部材の永久歪及び摩耗が大きいほど、大きくなる。従って、走行前後の軸間距離の変化が小さいほど好適である。走行前後のベルト質量の変化は、ゴム部材の耐摩耗性を示す指標となり、小さいほど好適である。
<High tension belt running test>
High tension durability evaluation under dead weight conditions is effective as an accelerated evaluation of belt performance and life. The change in the distance between the shafts before and after the traveling becomes larger as the change in the belt length due to the permanent elongation of the core wire is considered to be constant, the greater the permanent set and wear of the rubber member. Therefore, the smaller the change in the inter-axis distance before and after traveling, the better. The change in the belt mass before and after running becomes an index indicating the wear resistance of the rubber member, and the smaller the better.
 図10は、高張力ベルト走行試験機50を示す。 FIG. 10 shows a high tension belt running test machine 50.
 2軸のレイアウトである高張力ベルト走行試験機50は、プーリ径φ100mmの駆動Vプーリ51とその右側方に設けられたプーリ径60mmの従動Vプーリ52とを備える。従動Vプーリ52は、軸荷重(デッドウェイトDW)を負荷してベルトに張力を付与できるように左右に可動に設けられている。 The high tension belt running test machine 50 having a biaxial layout includes a driving V pulley 51 having a pulley diameter of φ100 mm and a driven V pulley 52 having a pulley diameter of 60 mm provided on the right side thereof. The driven V pulley 52 is movably provided to the left and right so as to apply an axial load (dead weight DW) and apply tension to the belt.
 実施例1-1~1-6及び比較例1-1~1-4のそれぞれのベルトBについて、走行前に質量を測定し、初期質量とした。 For each belt B of Examples 1-1 to 1-6 and Comparative Examples 1-1 to 1-4, the mass was measured before running to obtain an initial mass.
 その後、高張力ベルト走行試験機50にベルトを装着し、以下の軸間荷重を従動プーリに付与した。つまり、アラミド短繊維を単独で配合する例(実施例1-1~1-3、比較例1-1及び1-2)では1000N、アラミド短繊維及びナイロン短繊維の両方を配合する例(実施例1-4、比較例1-5及び1-6)では800N、ナイロン短繊維を単独で配合する例(実施例1-5、比較例1-3及び1-4)では500N、短繊維を配合しない例(比較例1-7及び1-8)では500Nである。 Thereafter, the belt was attached to the high tension belt running test machine 50, and the following inter-axial load was applied to the driven pulley. That is, examples in which aramid short fibers are blended alone (Examples 1-1 to 1-3, Comparative Examples 1-1 and 1-2) are examples in which both 1000N, both aramid short fibers and nylon short fibers are blended (implementation) In Example 1-4, Comparative Examples 1-5 and 1-6), 800 N is used, and in the case of blending nylon short fibers alone (Example 1-5, Comparative Examples 1-3 and 1-4), 500 N is used. In the case of not blending (Comparative Examples 1-7 and 1-8), it is 500N.
 まず、雰囲気温度を100℃に設定し、無負荷として、駆動プーリを5000rpmにて10分間走行した後、軸間距離を測定して、初期の軸間距離とした。 First, the ambient temperature was set to 100 ° C., no load was applied, the drive pulley was run at 5000 rpm for 10 minutes, the distance between the axes was measured, and the initial distance between the axes was obtained.
 その後、従動Vプーリ52に下記の負荷を加えた状態にて、駆動Vプーリ51を5000rpmにて回転させた。つまり、アラミド短繊維を単独で配合する例(実施例1-1~1-3、比較例1-1及び1-2)では40Nm、アラミド短繊維及びナイロン短繊維の両方を配合する例(実施例1-4、比較例1-5及び1-6)では30Nm、ナイロン短繊維を単独で配合する例(実施例1-5、比較例1-3及び1-4)では20Nm、短繊維を配合しない例(比較例1-7及び1-8)では20Nmである。 Thereafter, the drive V pulley 51 was rotated at 5000 rpm with the following load applied to the driven V pulley 52. In other words, examples in which aramid short fibers are blended alone (Examples 1-1 to 1-3, Comparative Examples 1-1 and 1-2) are examples in which both 40Nm, both aramid short fibers and nylon short fibers are blended (implementation) In Examples 1-4 and Comparative Examples 1-5 and 1-6), 30 Nm and Nylon short fibers were blended alone (Example 1-5, Comparative Examples 1-3 and 1-4), 20 Nm, short fibers In the case of not blending (Comparative Examples 1-7 and 1-8), it is 20 Nm.
 いずれも200時間走行した後、無負荷にて10分間更に走行させた時の軸間距離を測定し、走行後の軸間距離とした。 In all cases, after traveling for 200 hours, the distance between the axes when further traveling for 10 minutes with no load was measured, and the distance between the axes after traveling was measured.
 走行後の軸間距離変化(%)は、次のように計算した。 The distance change (%) between the axes after running was calculated as follows.
 軸間距離変化(%)
 =(走行後の軸間距離-走行前の軸間距離)/走行前の軸間距離×100
 また、走行後のベルトの重量を測定し、耐久後のベルト重量とした。ベルト重量変化は以下のように計算した。
Axle distance change (%)
= (Distance between axes after running-Distance between axes before running) / Distance between axes before running x 100
Further, the weight of the belt after running was measured and used as the belt weight after durability. The belt weight change was calculated as follows.
 ベルト重量変化(%)
 =(走行前のベルト重量-走行後のベルト重量)/走行前のベルト重量×100
 但し、比較例1-7及び1-8については、走行開始後短時間(30分程度)にてベルトが切断し、高張力走行試験に関する測定は不可能であった。
Belt weight change (%)
= (Belt weight before running-belt weight after running) / belt weight before running x 100
However, in Comparative Examples 1-7 and 1-8, the belt was cut in a short time (about 30 minutes) after the start of running, and measurement related to the high tension running test was impossible.
 <摩擦係数>
 図11は、摩擦係数測定装置を示す。
<Friction coefficient>
FIG. 11 shows a friction coefficient measuring apparatus.
 この摩擦係数測定装置40は、プーリ径75mmのリブプーリからなる試験プーリ82とその側方に設けられたロードセル83とからなる。試験プーリ82は、鉄系の材料S45Cで構成されている。ローエッジVベルトの試験片81は、ロードセル83から水平に延びた後に試験プーリ82に巻き掛けられる、つまり、試験プーリ82への巻き付け角度が90°となるように設けられる。 The friction coefficient measuring device 40 includes a test pulley 82 made of a rib pulley having a pulley diameter of 75 mm and a load cell 83 provided on the side thereof. The test pulley 82 is made of an iron-based material S45C. The low-edge V-belt test piece 81 is provided so that the test piece 81 extends horizontally from the load cell 83 and is then wound around the test pulley 82, that is, the winding angle around the test pulley 82 is 90 °.
 実施例1-1~1-6及び比較例1-1~1-4のそれぞれの未走行のローエッジVベルトについて、切断してローエッジVベルト片の試験片81を作製し、その一端をロードセル83に固定して試験プーリ82に巻き掛け、他端に分銅84を取り付けて吊した。それに続いて、雰囲気温度25℃において、分銅84を引き下げようとする方向に試験プーリ82を43rpmの回転数で回転させ、回転開始後60秒の時点で、ロードセル83で試験片81における試験プーリ82とロードセル83との間の水平部分に負荷される張力Ttを計測した。なお、試験片81の試験プーリ82と分銅84との垂直部分に負荷される張力Tsは、分銅84の重さ分の17.15Nであった。そして、Eulerの式に基づいて下記式(1)により圧縮ゴム層の表面の乾燥時の摩擦係数μを求めた。なお、θ=π/2である。 Each of the non-running low-edge V belts of Examples 1-1 to 1-6 and Comparative Examples 1-1 to 1-4 was cut to produce a test piece 81 of a low-edge V-belt piece, and one end of the load cell 83 was provided at one end. A weight 84 was attached to the other end and suspended. Subsequently, at an atmospheric temperature of 25 ° C., the test pulley 82 is rotated at a rotation speed of 43 rpm in a direction to lower the weight 84, and at 60 seconds after the rotation starts, the test pulley 82 in the test piece 81 is loaded by the load cell 83. The tension Tt applied to the horizontal portion between the load cell 83 and the load cell 83 was measured. The tension Ts applied to the vertical portion between the test pulley 82 and the weight 84 of the test piece 81 was 17.15 N corresponding to the weight of the weight 84. Then, the friction coefficient μ at the time of drying the surface of the compressed rubber layer was obtained by the following formula (1) based on the Euler formula. Note that θ = π / 2.
 また、高張力ベルト走行試験後のローエッジVベルトについても同様の試験を実施して内側ゴム層の表面の乾燥時の摩擦係数を求めた。そして未走行の乾燥時における摩擦係数に対する走行後の乾燥時における摩擦係数の比(摩擦係数(走行後)/摩擦係数(未走行))を求めた。当該走行前後の摩擦係数の比は摩擦係数の変化の指標であり、この比が1に近いほど伝動特性は安定し、好適である。 In addition, the same test was performed on the low edge V belt after the high tension belt running test, and the friction coefficient during drying of the surface of the inner rubber layer was obtained. Then, the ratio of the friction coefficient at the time of drying after traveling to the friction coefficient at the time of drying without traveling (friction coefficient (after traveling) / friction coefficient (not traveling)) was obtained. The ratio of the friction coefficient before and after the running is an indicator of the change in the friction coefficient. The closer the ratio is to 1, the more stable the transmission characteristics are.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 <粘着摩耗性>
 高張力ベルト走行試験の後、ベルトを高張力ベルト走行試験機50から取り外し、プーリとの接触部分及びプーリ表面にゴムの粘着摩耗が発生しているか目視により確認した。
<Adhesive wear>
After the high-tension belt running test, the belt was removed from the high-tension belt running test machine 50, and it was visually confirmed whether or not adhesive wear of rubber occurred on the pulley contact portion and the pulley surface.
 高張力走行試験後の粘着摩耗の有無は、ゴムの耐粘着摩耗性を示す指標である。粘着摩耗の発生は、ベルトの異音、振動、プーリへの固着等の原因になるので、発生無しが好適である。 The presence / absence of adhesive wear after the high-tension running test is an index indicating the adhesive wear resistance of rubber. Occurrence of adhesive wear causes abnormal noise of the belt, vibration, sticking to the pulley, and the like, and it is preferable that the abrasion is not generated.
 <強力保持率>
 高張力ベルト走行試験の後、ベルトの引張試験を実施し、ベルトの破断強度を破断部の心線打ち込み本数で割ることにより、心線一本当たりの走行後の強力を測定した。
<Strong retention>
After the high-tensile belt running test, a belt tensile test was performed, and the strength after running per cord was measured by dividing the belt breaking strength by the number of cords driven into the fractured portion.
 また、同ロットのベルトの走行前の心線一本当たりの強力も同様に測定し、下記により、ベルトの強力保持率を求めた。結果を表1に示す。 Also, the strength per belt of the same lot before running was measured in the same manner, and the strength retention of the belt was obtained as follows. The results are shown in Table 1.
 ベルトの強力保持率(%)
 =走行後の心線一本当たりの強力/走行前の心線一本あたりの強力×100
 高張力走行試験後のベルトの強力保持率は、当該試験による抗張体(心線)に対するダメージの大きさを示す指標である。Vベルトの場合、底ゴムの永久歪による座屈により心線にかかる局部的な歪が大きくなること、ゴムの摩耗によりプーリへの巻き付き径が小さくなること等により、心線にかかる歪が増大してダメージが発生する。また、ゴムの摩擦係数が大きくなり、プーリからベルトが出て行く際のプーリからの抜け性が悪くなると、逆曲げの刺激がかかって心線の疲労が促進される。このようなことが複合的に働くので、ベルトの強力保持率が高いほど、心線を覆うゴムの性能が高いという判断ができる。
Strong belt retention (%)
= Power per core after driving / Power per core before driving x 100
The strength retention of the belt after the high-tension running test is an index indicating the magnitude of damage to the tensile body (core wire) by the test. In the case of V-belts, the strain on the core wire increases due to increased local strain on the core wire due to buckling due to permanent deformation of the bottom rubber, and reduced winding diameter around the pulley due to rubber wear. Damage. Further, if the friction coefficient of rubber increases and the pull-out property from the pulley when the belt comes out of the pulley is deteriorated, reverse bending stimulation is applied and the fatigue of the core wire is promoted. Since such a thing works in combination, it can be judged that the higher the strength retention rate of the belt, the higher the performance of the rubber covering the core wire.
 (試験評価結果)
 試験結果を表1に示す。
(Test evaluation results)
The test results are shown in Table 1.
 表1によれば、実施例1-1~1-5のセルロース微細繊維は、いずれも繊維径の分布が広いことが分かる。 According to Table 1, it can be seen that the cellulose fine fibers of Examples 1-1 to 1-5 all have a wide fiber diameter distribution.
 セルロース系微細繊維と他の短繊維とを併用する実施例1-1~1-5について、ベルト耐クラック寿命が200時間以上である。また、高張力走行試験後、軸間距離の変化は1~2%、ベルト重量変化は2~3%、粘着摩耗は無く、ベルトの強力保持率は88~90%である。更に、高張力走行試験の前後における摩擦係数の比はいずれも0.95である。各実施例においてセルロース系微細繊維の種類(機械解繊及び化学解繊)、短繊維の種類(アラミド短繊維及びナイロン短繊維)が異なるが、いずれも良好な結果である。実施例1-3の場合、カーボンブラックを配合せず、同じ種類のセルロース系微細繊維を用いる他の実施例(1-2、1-4、1-5)よりもセルロース系微細繊維の配合量を増やしている。つまり、カーボンブラックをセルロース系微細繊維により完全に置き換えている。この場合も、他の実施例と同等の結果であり、カーボンブラックを用いないゴム組成物とすることも可能となっている。 In Examples 1-1 to 1-5 in which the cellulosic fine fibers and other short fibers are used in combination, the belt crack resistance life is 200 hours or more. In addition, after the high tension running test, the change in the distance between the shafts is 1 to 2%, the change in the belt weight is 2 to 3%, there is no adhesive wear, and the strength retention of the belt is 88 to 90%. Furthermore, the ratio of the coefficient of friction before and after the high tension running test is 0.95. In each Example, although the kind of cellulosic fine fiber (mechanical defibration and chemical defibration) and the kind of short fiber (aramid short fiber and nylon short fiber) differ, all are good results. In the case of Example 1-3, carbon black is not blended, and the blending amount of the cellulosic fine fibers is higher than in other examples (1-2, 1-4, 1-5) using the same type of cellulosic fine fibers. Is increasing. That is, the carbon black is completely replaced by the cellulosic fine fibers. In this case as well, the result is the same as in the other examples, and it is possible to obtain a rubber composition that does not use carbon black.
 これらに対し、比較例1-1~1-4は、アラミド短繊維又はナイロン短繊維による補強は行われているが、セルロース系微細繊維を配合しないゴムからなるベルトである。 On the other hand, Comparative Examples 1-1 to 1-4 are belts made of rubber that is reinforced with short aramid fibers or short nylon fibers but does not contain cellulosic fine fibers.
 カーボンブラックの配合量が20質量部である比較例1-1及び1-3について、ベルト耐クラック寿命は200時間以上であって実施例と同等であり、粘着摩耗は無く、摩擦係数比は0.9であって実施例に比較的近い。しかしながら、高張力走行試験前後ベルトの質量変化が20%であって、ゴムの耐摩耗性が極端に悪い。この結果、軸間距離の変化も20%と大きい。更に、走行後の強力保持率が31又は33%と極端に低い。これは、高すぎる摩擦係数によるプーリからの抜け性の悪さ及びゴムの座屈変形により、心線の疲労が促進されたものと考えられる。 For Comparative Examples 1-1 and 1-3 in which the blending amount of carbon black is 20 parts by mass, the crack resistance life of the belt is 200 hours or more, which is equivalent to that of the example, there is no adhesive wear, and the friction coefficient ratio is 0. .9, which is relatively close to the embodiment. However, the mass change of the belt before and after the high tension running test is 20%, and the wear resistance of the rubber is extremely bad. As a result, the change in the inter-axis distance is as large as 20%. Furthermore, the strength retention after running is extremely low at 31 or 33%. This is considered that the fatigue of the core wire was promoted by the poor pullability from the pulley due to the friction coefficient being too high and the buckling deformation of the rubber.
 逆に、カーボンブラックの配合量を70質量部と多くした比較例1-2及び1-4の場合、ゴムの耐摩耗性(ベルト質量変化)は3%と改善されるが、ベルト耐クラック寿命が10又は20にまで悪化する。また、ベルトの軸間距離の変化が10%大きくなっており、走行時の自己発熱の高さに起因するゴムの永久歪が大きいことが原因と思われる。更に、粘着摩耗が発生すると共に、摩擦係数が変化している。走行後のベルト強力保持率も42又は48%と低くなっている。これは、摩擦係数の増大によるプーリからの抜け性の悪化とゴムの自己発熱とによって心線の疲労が促進されたものと考えられる。 On the contrary, in Comparative Examples 1-2 and 1-4 in which the amount of carbon black was increased to 70 parts by mass, the wear resistance of the rubber (belt mass change) was improved to 3%, but the crack resistance life of the belt was improved. Worsens to 10 or 20. Further, the change in the distance between the belt axes is increased by 10%, which seems to be caused by a large permanent set of rubber due to the high self-heating during running. Further, adhesive wear occurs and the coefficient of friction changes. The belt strength retention after running is as low as 42 or 48%. This is considered that the fatigue of the core wire was promoted by the deterioration of the pull-out property from the pulley due to the increase of the friction coefficient and the self-heating of the rubber.
 次に、比較例1-5及び1-6は、セルロース系微細繊維に代えて、より大きなサイズのセルロースとしてクラフトパルプを用いた例である。比較例1-5及び比較例1-6の違いは、カーボンブラックの配合の有無である。いずれの例も、耐クラック寿命及び耐摩耗性の両方が悪化している。また、ベルト強力保持率も低く、心線の疲労が促進されている。これは、比較例1-1及び1-3と同様の理由と考えられる。 Next, Comparative Examples 1-5 and 1-6 are examples in which kraft pulp was used as cellulose having a larger size in place of cellulosic fine fibers. The difference between Comparative Example 1-5 and Comparative Example 1-6 is the presence or absence of carbon black. In both examples, both the crack resistance life and the wear resistance are deteriorated. Further, the belt strength retention is low, and the fatigue of the core wire is promoted. This is considered to be the same reason as in Comparative Examples 1-1 and 1-3.
 比較例1-7及び1-8は、セルロース系微細繊維を配合し、短繊維による補強は行わない例である。比較例1-7及び比較例1-8の違いは、カーボンブラックの配合の有無である。いずれの例も、ベルト耐クラック寿命については200時間以上と良好であるが、高張力で且つ高負荷の条件である高張力走行試験において短時間でベルトが破損し、各項目について結果の測定が不可能であった。これは、底ゴムの弾性率が不足しており、ゴムが座屈変形したものと考えられる。 Comparative Examples 1-7 and 1-8 are examples in which cellulosic fine fibers are blended and reinforcement with short fibers is not performed. The difference between Comparative Example 1-7 and Comparative Example 1-8 is the presence or absence of carbon black. In both examples, the belt crack resistance is good at 200 hours or more, but the belt breaks in a short time in the high tension running test, which is a high tension and high load condition, and the results of each item are measured. It was impossible. This is considered that the elastic modulus of the bottom rubber is insufficient and the rubber is buckled.
 以上のように、比較例1-1~1-8のように、カーボンブラックと短繊維(ナイロン短繊維、アラミド短繊維)との併用による補強、微細繊維でないセルロース繊維による補強(カーボンブラックの配合の有無いずれの場合も含む)、セルロース系微細繊維を用いるが他の短繊維を用いない補強(カーボンブラックの配合の有無いずれの場合も含む)について、検討した全ての性能を満足に満たすことはできなかった。特に、本実施例の試験条件のような高温雰囲気下(100℃)では、性能を満たすことが不可能であり、使用条件を低温側に限定する必要がある。 As described above, as in Comparative Examples 1-1 to 1-8, reinforcement by the combined use of carbon black and short fibers (nylon short fibers, aramid short fibers), and reinforcement by cellulose fibers that are not fine fibers (mixing of carbon black) In addition, the use of cellulosic fine fibers but the use of other short fibers (including the presence or absence of carbon black) does not satisfy all of the performances studied. could not. In particular, under the high temperature atmosphere (100 ° C.) as in the test conditions of the present example, it is impossible to satisfy the performance, and it is necessary to limit the use conditions to the low temperature side.
 これに対し、カーボンブラックの一部又は全部をセルロース系微細繊維に置き換え、短繊維による補強と併用することにより、検討した全ての性能を同時に満たすことができる。しかも、これは本実施例のような高温の条件において実現されている。 On the other hand, by replacing part or all of the carbon black with cellulosic fine fibers and using it together with reinforcement with short fibers, all the performances studied can be satisfied simultaneously. Moreover, this is realized under high temperature conditions as in this embodiment.
 この具体的なメカニズムについては解明が待たれるが、セルロース系微細繊維による補強と、カーボンブラックによる補強とでは、補強形態が異なることは考えられる。つまり、カーボンブラック補強は、カーボンブラックにより吸着されたゴム層(バウンドラバー)がゴムの運動性を抑制されることにより発現する。また、当該ゴム層において、化学的な架橋は生じていないと考えられており、繰り返し変形時には発熱性が大きくなったり、粘着摩耗が生じたりすると考察する。これに対し、セルロース系微細繊維による補強の詳細は不明であるから、今回の結果は予想困難な事実である。しかし、結果からの考察として、セルロース系微細繊維の近傍のゴム分子は、その運動性がカーボンブラックの近傍のゴム分子ほどには抑制されていないか、又は、架橋されていてゴム状弾性体としての性質を保つことができるという可能性がある。セルロース系微細繊維による補強効果は、微細繊維同士の三次元ネットワーク構造によるものである可能性もある。但し、セルロース系微細繊維と短繊維との併用による効果について、メカニズムが特に関わるものではない。 Although the elucidation of this specific mechanism is awaited, it is conceivable that the reinforcement form is different between the reinforcement by the cellulosic fine fibers and the reinforcement by the carbon black. That is, the carbon black reinforcement is manifested by the rubber layer (bound rubber) adsorbed by the carbon black being suppressed in the rubber mobility. Further, it is considered that no chemical cross-linking occurs in the rubber layer, and it is considered that exothermicity increases or adhesive wear occurs during repeated deformation. On the other hand, the details of the reinforcement by the cellulosic fine fibers are unknown, so this result is difficult to predict. However, as a consideration from the results, the rubber molecules in the vicinity of the cellulosic fine fibers are not suppressed as much as the rubber molecules in the vicinity of the carbon black, or are crosslinked and become rubber-like elastic bodies. There is a possibility that the nature of can be kept. The reinforcing effect by the cellulosic fine fibers may be due to the three-dimensional network structure of the fine fibers. However, the mechanism is not particularly concerned with the effect of the combined use of the cellulosic fine fibers and the short fibers.
 尚、ゴム成分100質量部に対して20質量部の機械的解繊手段によるセルロース系微細繊維を配合した実施例1-1と、同じく10質量部の化学的解繊手段によるセルロース系微細繊維を配合した実施例1-2とについて、各評価はほぼ同じである。従って、化学的解繊手段によるセルロース系微細繊維の方が少量の配合で同等の効果を実現できる。 In addition, Example 1-1 which mix | blended the cellulose fine fiber by 20 mass parts mechanical defibration means with respect to 100 mass parts of rubber components, and the cellulose fine fiber by the chemical defibration means of 10 mass parts similarly. Each evaluation is substantially the same about the blended Example 1-2. Therefore, the same effect can be realized with a small amount of the cellulose-based fine fibers obtained by the chemical defibrating means.
 [試験評価2]
 水素化NBR(H-NBR)をゴム成分とするゴム組成物を用いて、実施例2-1~2-5及び比較例2-1~2-8のベルトを作製した。それぞれの詳細については、表2にも示す。
[Test evaluation 2]
Belts of Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-8 were produced using a rubber composition containing hydrogenated NBR (H-NBR) as a rubber component. Details of each are also shown in Table 2.
 <実施例2-1>
 H-NBRラテックス(日本ゼオン社製 商品名:ZLX-B)と機械的解繊手段によって製造されたセルロース微細繊維の水分散体とを混合し、水を気化させてセルロース微細繊維/H-NBRのマスターバッチを作製した。
<Example 2-1>
H-NBR latex (trade name: ZLX-B, manufactured by Nippon Zeon Co., Ltd.) and an aqueous dispersion of cellulose fine fibers produced by mechanical defibration means are mixed, and water is vaporized to produce cellulose fine fibers / H-NBR. A master batch was prepared.
 続いて、H-NBR(日本ゼオン社製 商品名:ゼットポール2020)を素練りすると共に、そこにマスターバッチを投入して混練した。マスターバッチの投入量は、トータルのH-NBRを100質量部としたときのセルロース微細繊維の含有量が20質量部となる量とした。 Subsequently, H-NBR (trade name: Zettopol 2020, manufactured by Nippon Zeon Co., Ltd.) was masticated, and a master batch was added thereto for kneading. The input amount of the master batch was such that the content of the fine cellulose fiber was 20 parts by mass when the total H-NBR was 100 parts by mass.
 そして、H-NBRとセルロース微細繊維とを混練すると共に、そこに、H-NBR100質量部に対し、補強材のカーボンブラックHAFを20質量部、アラミド短繊維を20質量部、オイルを10質量部、架橋剤の有機過酸化物(日油社製 商品名:ペロキシモンF40)を5質量部、及び共架橋剤(精工化学社製 商品名:ハイクロスM)を1質量部それぞれ投入して混練を継続することにより未架橋ゴム組成物を作製した。 Then, H-NBR and fine cellulose fibers are kneaded, and there are 20 parts by mass of carbon black HAF as a reinforcing material, 20 parts by mass of aramid short fibers, and 10 parts by mass of oil with respect to 100 parts by mass of H-NBR. Kneading by adding 5 parts by mass of an organic peroxide as a crosslinking agent (trade name: Peroximone F40, manufactured by NOF Corporation) and 1 part by mass of a co-crosslinking agent (trade name: high cloth M, manufactured by Seiko Chemical Co., Ltd.). By continuing, an uncrosslinked rubber composition was produced.
 この未架橋ゴム組成物をシート状に成形してベルト本体(圧縮ゴム層、接着ゴム層及び伸張ゴム層)を構成するための未架橋ゴムシートとし、実施例2-1のローエッジVベルトを作製した。 This uncrosslinked rubber composition is molded into a sheet to form an uncrosslinked rubber sheet for constituting a belt body (compressed rubber layer, adhesive rubber layer and stretched rubber layer), and a low edge V belt of Example 2-1 is produced. did.
 尚、心線には接着処理を施したポリエステル繊維製の撚り糸を用いた。 In addition, the strand made from the polyester fiber which gave the adhesion process was used for the core wire.
 <実施例2-2>
 CRと、そのCR100質量部に対し、化学的解繊手段(TEMPO酸化処理)によって製造されたセルロース微細繊維を10質量部、補強材のカーボンブラックHAFを20質量部、オイルを10質量部、架橋剤の有機過酸化物を5質量部、及び共架橋剤を1質量部それぞれ投入して混練して未架橋ゴム組成物を作製した。
<Example 2-2>
10 parts by mass of cellulose fine fiber produced by chemical defibration means (TEMPO oxidation treatment), 20 parts by mass of carbon black HAF as a reinforcing material, 10 parts by mass of oil, and crosslinking with respect to 100 parts by mass of CR and its CR 5 parts by weight of the organic peroxide and 1 part by weight of the co-crosslinking agent were added and kneaded to prepare an uncrosslinked rubber composition.
 ベルト本体構成用の未架橋ゴムシートとして、この未架橋ゴム組成物を用いたことを除いて実施例2-1と同様の構成の実施例2-2のローエッジVベルトを作製した。 A low-edge V belt of Example 2-2 having the same configuration as that of Example 2-1 was produced except that this uncrosslinked rubber composition was used as an uncrosslinked rubber sheet for constituting the belt body.
 <実施例2-3>
 ベルト本体構成用の未架橋ゴムシートについて、カーボンブラックを配合せず、且つ、化学的手段により解繊したセルロース系微細繊維の含有量をゴム成分100質量部に対して20質量部としたことを除き、実施例2-2と同様の構成の実施例2-3のベルトを作製した。
<Example 2-3>
About the uncrosslinked rubber sheet for the belt main body constitution, the content of the cellulosic fine fiber not blended with carbon black and defibrated by chemical means is 20 parts by mass with respect to 100 parts by mass of the rubber component. Except for this, the belt of Example 2-3 having the same configuration as that of Example 2-2 was produced.
 <実施例2-4>
 ベルト本体構成用の未架橋ゴムシートについて、ゴム成分100質量部に対してアラミド短繊維を10質量部とし、且つ、ナイロン短繊維10質量部を更に配合したことを除き、実施例2-2と同様の構成の実施例2-4のベルトを作製した。
<Example 2-4>
With respect to the uncrosslinked rubber sheet for constituting the belt body, Example 2-2 except that 10 parts by mass of aramid short fibers and 10 parts by mass of nylon short fibers were further blended with respect to 100 parts by mass of the rubber component. A belt of Example 2-4 having the same configuration was produced.
 <実施例2-5>
 ベルト本体構成用の未架橋ゴムシートについて、アラミド短繊維20質量部に代えてナイロン短繊維20質量部を配合したことを除き、実施例2-2と同様の構成の実施例2-5のベルトを作製した。
<Example 2-5>
The belt of Example 2-5 having the same configuration as Example 2-2, except that 20 parts by mass of nylon short fibers were blended in place of 20 parts by mass of aramid short fibers for the uncrosslinked rubber sheet for constituting the belt body. Was made.
 <比較例2-1>
 ベルト本体構成用の未架橋ゴムシートについて、カーボンブラックHAFの配合量をゴム成分100質量部に対して30質量部とし、且つ、セルロース系微細繊維を配合しないことを除き、実施例2-1と同様の構成の比較例2-1のベルトを作製した。
<Comparative Example 2-1>
With respect to the uncrosslinked rubber sheet for constituting the belt main body, Example 2-1 except that the blending amount of the carbon black HAF is 30 parts by mass with respect to 100 parts by mass of the rubber component, and no cellulosic fine fibers are blended. A belt of Comparative Example 2-1 having the same configuration was produced.
 <比較例2-2>
 ベルト本体構成用の未架橋ゴムシートについて、カーボンブラックHAFの配合量をゴム成分100質量部に対して90質量部としたことを除き、比較例2-1と同様の構成の比較例2-2のベルトを作製した。
<Comparative Example 2-2>
Comparative Example 2-2 having the same configuration as Comparative Example 2-1 except that the amount of carbon black HAF was 90 parts by mass with respect to 100 parts by mass of the rubber component for the uncrosslinked rubber sheet for the belt body configuration A belt was prepared.
 <比較例2-3>
 ベルト本体構成用の未架橋ゴムシートについて、アラミド短繊維20質量部に代えてナイロン短繊維20質量部を配合したことを除き、比較例2-1と同様の構成の比較例2-3のベルトを作製した。
<Comparative Example 2-3>
The belt of Comparative Example 2-3 having the same configuration as that of Comparative Example 2-1 except that 20 parts by mass of nylon short fibers were blended in place of 20 parts by mass of aramid short fibers for the uncrosslinked rubber sheet for constituting the belt body. Was made.
 <比較例2-4>
 ベルト本体構成用の未架橋ゴムシートについて、カーボンブラックHAFの配合量をゴム成分100質量部に対して90質量部とし、且つ、アラミド短繊維20質量部に代えてナイロン短繊維20質量部を配合したことを除き、比較例2-1と同様の構成の比較例2-4のベルトを作製した。
<Comparative Example 2-4>
About the uncrosslinked rubber sheet for the belt body constitution, the blending amount of carbon black HAF is 90 parts by weight with respect to 100 parts by weight of the rubber component, and 20 parts by weight of nylon short fibers are blended instead of 20 parts by weight of aramid short fibers. A belt of Comparative Example 2-4 having the same configuration as that of Comparative Example 2-1 was produced.
 <比較例2-5>
 ベルト本体構成用の未架橋ゴムシートについて、カーボンブラックHAFの配合量をゴム成分100質量部に対して20質量部とし、且つ、ゴム成分100質量部に対して微細繊維ではないセルロース繊維20質量部を更に配合したことを除き、比較例2-1と同様の構成の比較例2-5のベルトを作製した。
<Comparative Example 2-5>
About the uncrosslinked rubber sheet for the belt body constitution, the blending amount of carbon black HAF is 20 parts by mass with respect to 100 parts by mass of the rubber component, and 20 parts by mass of cellulose fibers that are not fine fibers with respect to 100 parts by mass of the rubber component A belt of Comparative Example 2-5 having the same configuration as that of Comparative Example 2-1 was prepared, except that was further blended.
 <比較例2-6>
 ベルト本体構成用の未架橋ゴムシートについて、カーボンブラックHAFを配合せず、且つ、ゴム成分100質量部に対して微細繊維ではないセルロース繊維20質量部を更に配合したことを除き、比較例2-1と同様の構成の比較例2-5のベルトを作製した。
<Comparative Example 2-6>
Comparative Example 2 except that the uncrosslinked rubber sheet for constituting the belt main body was not compounded with carbon black HAF, and further blended 20 parts by mass of cellulose fibers that were not fine fibers with respect to 100 parts by mass of the rubber component. A belt of Comparative Example 2-5 having the same configuration as that of 1 was produced.
 <比較例2-7>
 ベルト本体構成用の未架橋ゴムシートについて、アラミド短繊維を配合しないことを除き、実施例2-2と同様の構成の比較例2-7のベルトを作製した。
<Comparative Example 2-7>
With respect to the uncrosslinked rubber sheet for constituting the belt main body, a belt of Comparative Example 2-7 having the same constitution as that of Example 2-2 was produced except that an aramid short fiber was not blended.
 <比較例2-8>
 ベルト本体構成用の未架橋ゴムシートについて、カーボンブラックHAF及びアラミド短繊維をいずれも配合しないことを除き、実施例2-2と同様の構成の比較例2-8のベルトを作製した。
<Comparative Example 2-8>
A belt of Comparative Example 2-8 having the same configuration as that of Example 2-2 was produced except that neither carbon black HAF nor short aramid fibers were blended in the uncrosslinked rubber sheet for constituting the belt main body.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (試験評価方法)
 実施例2-1~2-5のそれぞれのベルトについて、試験評価1と同様にセルロース微細繊維の繊維径の平均値、最小値及び最大値を求めた。また、実施例2-1~2-5及び比較例2-1~2-8の各ベルトについて、試験評価1と同様に、ベルト耐クラック寿命を測定すると共に、高張力走行試験を行って軸間距離変化、質量変化、摩耗係数比、試験後の粘着摩耗の有無、強力保持率を評価した。
(Test evaluation method)
For each belt of Examples 2-1 to 2-5, the average value, the minimum value, and the maximum value of the fiber diameter of the fine cellulose fibers were determined in the same manner as in Test Evaluation 1. In addition, for each belt of Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-8, as in Test Evaluation 1, the belt crack life was measured and a high-tension running test was performed to check the shaft. The change in distance, the change in mass, the wear coefficient ratio, the presence or absence of adhesive wear after the test, and the strength retention were evaluated.
 但し、ベルト耐クラック寿命の測定及び高張力走行試験について、雰囲気温度は120℃とした。また、ベルト耐クラック寿命について、300時間まで測定し、300時間を越えてもクラックの発生が認められない場合には試験を打ち切った。 However, the atmospheric temperature was set to 120 ° C. for the measurement of the belt crack resistance and the high tension running test. Further, the belt anti-cracking life was measured up to 300 hours, and the test was terminated if no cracks were observed after 300 hours.
 (試験評価結果)
 試験結果を表2に示す。
(Test evaluation results)
The test results are shown in Table 2.
 表2によれば、ゴム成分をH-NBRとしても、試験評価1と同様の結果が得られていることが分かる。特に、試験評価1に比べて耐クラック性評価ベルト走行試験及び高張力ベルト走行試験の雰囲気温度が高い(120℃)にも関わらず、良好な評価結果が得られている。この理由について、1つの可能性として、セルロース系微細繊維の補強効果は、カーボンブラックによる補強効果に比べて、温度依存性が小さいことが考えられる。 According to Table 2, it can be seen that the same results as in Test Evaluation 1 were obtained even when the rubber component was H-NBR. In particular, although the atmospheric temperature in the crack resistance evaluation belt running test and the high tension belt running test is higher (120 ° C.) than in test evaluation 1, a good evaluation result is obtained. For this reason, one possibility is that the reinforcing effect of the cellulosic fine fibers is less temperature-dependent than the reinforcing effect of carbon black.
 [試験評価3]
 EPDMをゴム成分とするゴム組成物を用いて、実施例3-1~3-5及び比較例3-1~3-8の試験評価用のベルトを作製した。それぞれの詳細については、表3にも示す。
[Test Evaluation 3]
Belts for test evaluation of Examples 3-1 to 3-5 and Comparative Examples 3-1 to 3-8 were produced using a rubber composition containing EPDM as a rubber component. Details of each are also shown in Table 3.
 <実施例3-1>
 トルエンに機械的解繊手段によって製造されたセルロース微細繊維を分散させた分散体と、トルエンにEPDM(JSR社製 商品名:EP33)を溶解させた溶液とを混合し、トルエンを気化させてセルロース微細繊維/EPDMのマスターバッチを作製した。
<Example 3-1>
A dispersion in which fine cellulose fibers produced by mechanical defibrating means are dispersed in toluene and a solution in which EPDM (trade name: EP33 manufactured by JSR) is dissolved in toluene are mixed, and toluene is vaporized to mix cellulose. A fine fiber / EPDM masterbatch was prepared.
 次いで、EPDMを素練りすると共に、そこにマスターバッチを投入して混練した。マスターバッチの投入量は、トータルのEPDMを100質量部としたときのセルロース微細繊維の含有量が20質量部となる量とした。 Next, EPDM was masticated, and a master batch was added thereto for kneading. The input amount of the masterbatch was such that the content of cellulose fine fibers was 20 parts by mass when the total EPDM was 100 parts by mass.
 そして、EPDMとセルロース微細繊維とを混練すると共に、そこに、EPDM100質量部に対し、補強材のカーボンブラックを20質量部、アラミド短繊維を20質量部、オイルを10質量部、架橋剤の有機過酸化物を5質量部、及び共架橋剤を1質量部それぞれ投入して混練を継続することにより未架橋ゴム組成物を作製した。 Then, while EPDM and cellulose fine fiber are kneaded, with respect to 100 parts by mass of EPDM, 20 parts by mass of carbon black as a reinforcing material, 20 parts by mass of aramid short fibers, 10 parts by mass of oil, and organic of a crosslinking agent An uncrosslinked rubber composition was prepared by adding 5 parts by weight of a peroxide and 1 part by weight of a co-crosslinking agent and continuing kneading.
 この未架橋ゴム組成物をシート状に成形してベルト本体(圧縮ゴム層、接着ゴム層及び伸張ゴム層)を構成するための未架橋ゴムシートとし、実施例3-1のローエッジVベルトを作製した。 This uncrosslinked rubber composition was molded into a sheet to form an uncrosslinked rubber sheet for constituting a belt body (compressed rubber layer, adhesive rubber layer and stretched rubber layer), and a low edge V belt of Example 3-1 was produced. did.
 尚、心線には接着処理を施したポリエステル繊維製の撚り糸を用いた。 In addition, the strand made from the polyester fiber which gave the adhesion process was used for the core wire.
 <実施例3-2>
 EPDM100質量部に対し、化学的解繊手段(TEMPO酸化処理)によって製造されたセルロース微細繊維を10質量部、補強材のカーボンブラックを20質量部、オイルを10質量部、架橋剤の有機過酸化物を5質量部、及び共架橋剤を1質量部とを混練して未架橋ゴム組成物を作製した。
<Example 3-2>
10 parts by mass of cellulose fine fiber produced by chemical defibration means (TEMPO oxidation treatment), 20 parts by mass of carbon black as a reinforcing material, 10 parts by mass of oil, and organic peroxidation of a crosslinking agent with respect to 100 parts by mass of EPDM 5 parts by mass of the product and 1 part by mass of the co-crosslinking agent were kneaded to prepare an uncrosslinked rubber composition.
 ベルト本体構成用の未架橋ゴムシートとして、この未架橋ゴム組成物を用いたことを除いて実施例3-1と同様の構成の実施例3-2のローエッジVベルトを作製した。 A low-edge V belt of Example 3-2 having the same configuration as that of Example 3-1 was produced except that this uncrosslinked rubber composition was used as an uncrosslinked rubber sheet for constituting the belt body.
 <実施例3-3>
 ベルト本体構成用の未架橋ゴムシートについて、カーボンブラックを配合せず、且つ、化学的手段により解繊したセルロース系微細繊維の含有量をゴム成分100質量部に対して20質量部としたことを除き、実施例3-2と同様の構成の実施例3-3のベルトを作製した。
<Example 3-3>
About the uncrosslinked rubber sheet for the belt main body constitution, the content of the cellulosic fine fiber not blended with carbon black and defibrated by chemical means is 20 parts by mass with respect to 100 parts by mass of the rubber component. A belt of Example 3-3 having the same configuration as that of Example 3-2 was produced.
 <実施例3-4>
 ベルト本体構成用の未架橋ゴムシートについて、ゴム成分100質量部に対してアラミド短繊維を10質量部とし、且つ、ナイロン短繊維10質量部を更に配合したことを除き、実施例3-2と同様の構成の実施例3-4のベルトを作製した。
<Example 3-4>
With respect to the uncrosslinked rubber sheet for constituting the belt main body, Example 3-2 except that 10 parts by mass of aramid short fibers and 10 parts by mass of nylon short fibers were further blended with respect to 100 parts by mass of the rubber component. A belt of Example 3-4 having the same configuration was produced.
 <実施例3-5>
 ベルト本体構成用の未架橋ゴムシートについて、アラミド短繊維20質量部に代えてナイロン短繊維20質量部を配合したことを除き、実施例3-2と同様の構成の実施例3-5のベルトを作製した。
<Example 3-5>
The belt of Example 3-5 having the same configuration as that of Example 3-2 except that 20 parts by mass of nylon short fibers were blended in place of 20 parts by mass of aramid short fibers for the uncrosslinked rubber sheet for constituting the belt body. Was made.
 <比較例3-1>
 ベルト本体構成用の未架橋ゴムシートについて、カーボンブラックHAFの配合量をゴム成分100質量部に対して30質量部とし、且つ、セルロース系微細繊維を配合しないことを除き、実施例3-1と同様の構成の比較例3-1のベルトを作製した。
<Comparative Example 3-1>
With respect to the uncrosslinked rubber sheet for constituting the belt main body, Example 3-1, except that the blending amount of the carbon black HAF is 30 parts by mass with respect to 100 parts by mass of the rubber component and no cellulosic fine fibers are blended. A belt of Comparative Example 3-1 having the same configuration was produced.
 <比較例3-2>
 ベルト本体構成用の未架橋ゴムシートについて、カーボンブラックHAFの配合量をゴム成分100質量部に対して90質量部としたことを除き、比較例3-1と同様の構成の比較例3-2のベルトを作製した。
<Comparative Example 3-2>
Comparative Example 3-2 having the same configuration as Comparative Example 3-1, except that the amount of carbon black HAF was 90 parts by mass with respect to 100 parts by mass of the rubber component for the uncrosslinked rubber sheet for the belt body configuration A belt was prepared.
 <比較例3-3>
 ベルト本体構成用の未架橋ゴムシートについて、アラミド短繊維20質量部に代えてナイロン短繊維20質量部を配合したことを除き、比較例3-1と同様の構成の比較例3-3のベルトを作製した。
<Comparative Example 3-3>
The belt of Comparative Example 3-3 having the same configuration as Comparative Example 3-1, except that 20 parts by mass of nylon short fibers were blended in place of 20 parts by mass of aramid short fibers for the uncrosslinked rubber sheet for the belt body configuration Was made.
 <比較例3-4>
 ベルト本体構成用の未架橋ゴムシートについて、カーボンブラックHAFの配合量をゴム成分100質量部に対して90質量部とし、且つ、アラミド短繊維20質量部に代えてナイロン短繊維20質量部を配合したことを除き、比較例3-1と同様の構成の比較例3-4のベルトを作製した。
<Comparative Example 3-4>
About the uncrosslinked rubber sheet for the belt body constitution, the blending amount of carbon black HAF is 90 parts by weight with respect to 100 parts by weight of the rubber component, and 20 parts by weight of nylon short fibers are blended instead of 20 parts by weight of aramid short fibers. A belt of Comparative Example 3-4 having the same configuration as that of Comparative Example 3-1 was produced.
 <比較例3-5>
 ベルト本体構成用の未架橋ゴムシートについて、カーボンブラックHAFの配合量をゴム成分100質量部に対して20質量部とし、且つ、ゴム成分100質量部に対して微細繊維ではないセルロース繊維20質量部を更に配合したことを除き、比較例3-1と同様の構成の比較例3-5のベルトを作製した。
<Comparative Example 3-5>
About the uncrosslinked rubber sheet for the belt body constitution, the blending amount of carbon black HAF is 20 parts by mass with respect to 100 parts by mass of the rubber component, and 20 parts by mass of cellulose fibers that are not fine fibers with respect to 100 parts by mass of the rubber component A belt of Comparative Example 3-5 having the same configuration as that of Comparative Example 3-1 was produced, except that was further blended.
 <比較例3-6>
 ベルト本体構成用の未架橋ゴムシートについて、カーボンブラックHAFを配合せず、且つ、ゴム成分100質量部に対して微細繊維ではないセルロース繊維20質量部を更に配合したことを除き、比較例3-1と同様の構成の比較例3-5のベルトを作製した。
<Comparative Example 3-6>
With respect to the uncrosslinked rubber sheet for constituting the belt body, Comparative Example 3 except that carbon black HAF was not blended and 20 parts by mass of cellulose fibers that were not fine fibers were further blended with respect to 100 parts by mass of the rubber component. A belt of Comparative Example 3-5 having the same configuration as 1 was produced.
 <比較例3-7>
 ベルト本体構成用の未架橋ゴムシートについて、アラミド短繊維を配合しないことを除き、実施例3-2と同様の構成の比較例3-7のベルトを作製した。
<Comparative Example 3-7>
A belt of Comparative Example 3-7 having the same configuration as that of Example 3-2 was prepared for the uncrosslinked rubber sheet for constituting the belt body, except that aramid short fibers were not blended.
 <比較例3-8>
 ベルト本体構成用の未架橋ゴムシートについて、カーボンブラックHAF及びアラミド短繊維をいずれも配合しないことを除き、実施例3-2と同様の構成の比較例3-8のベルトを作製した。
<Comparative Example 3-8>
A belt of Comparative Example 3-8 having the same configuration as Example 3-2 was produced except that neither carbon black HAF nor aramid short fibers were blended in the uncrosslinked rubber sheet for constituting the belt main body.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (試験評価方法)
 実施例3-1~3-5のそれぞれのベルトについて、試験評価1と同様にセルロース微細繊維の繊維径の平均値、最小値及び最大値を求めた。また、実施例3-1~3-5及び比較例3-1~3-8の各ベルトについて、試験評価1と同様に、ベルト耐クラック寿命を測定すると共に、高張力走行試験を行って軸間距離変化、質量変化、摩耗係数比、試験後の粘着摩耗の有無、強力保持率を評価した。
(Test evaluation method)
For each belt of Examples 3-1 to 3-5, the average value, the minimum value, and the maximum value of the fiber diameter of the cellulose fine fiber were determined in the same manner as in Test Evaluation 1. In addition, for each belt of Examples 3-1 to 3-5 and Comparative Examples 3-1 to 3-8, as in Test Evaluation 1, a belt crack resistance life was measured and a high-tension running test was performed. The change in distance, the change in mass, the wear coefficient ratio, the presence or absence of adhesive wear after the test, and the strength retention were evaluated.
 但し、ベルト耐クラック寿命の測定及び高張力走行試験について、雰囲気温度は120℃とした。また、ベルト耐クラック寿命について、300時間まで測定し、300時間を越えてもクラックの発生が認められない場合には試験を打ち切った。 However, the atmospheric temperature was set to 120 ° C. for the measurement of the belt crack resistance and the high tension running test. Further, the belt anti-cracking life was measured up to 300 hours, and the test was terminated if no cracks were observed after 300 hours.
 (試験評価結果)
 試験結果を表3に示す。
(Test evaluation results)
The test results are shown in Table 3.
 表3によれば、ゴム成分をEPDMとしても、試験評価1及び2と同様の結果が得られていることが分かる。特に、試験評価1に比べて耐クラック性評価ベルト走行試験及び高張力ベルト走行試験の雰囲気温度が高い(120℃)にも関わらず、良好な評価結果が得られている。 According to Table 3, it can be seen that the same results as in Test Evaluations 1 and 2 were obtained even when the rubber component was EPDM. In particular, although the atmospheric temperature in the crack resistance evaluation belt running test and the high tension belt running test is higher (120 ° C.) than in test evaluation 1, a good evaluation result is obtained.
 [実施形態2]
 (VリブドベルトB)
 図1及び図2は、実施形態2に係るVリブドベルトBを示す図でもある。実施形態2に係るVリブドベルトBは、例えば、自動車のエンジンルーム内に設けられる補機駆動ベルト伝動装置等に用いられるエンドレスの動力伝達部材である。実施形態2に係るVリブドベルトBは、例えば、ベルト長さが700~3000mm、ベルト幅が10~36mm、及びベルト厚さが4.0~5.0mmである。
[Embodiment 2]
(V-ribbed belt B)
1 and 2 are also diagrams showing a V-ribbed belt B according to the second embodiment. The V-ribbed belt B according to the second embodiment is an endless power transmission member used, for example, in an accessory drive belt transmission device provided in an engine room of an automobile. The V-ribbed belt B according to Embodiment 2 has, for example, a belt length of 700 to 3000 mm, a belt width of 10 to 36 mm, and a belt thickness of 4.0 to 5.0 mm.
 実施形態2に係るVリブドベルトBは、ベルト内周側のプーリ接触部分を構成する圧縮ゴム層11と中間の接着ゴム層12とベルト外周側の背面ゴム層13との三層構造に構成されたゴム製のVリブドベルト本体10を備えている。Vリブドベルト本体10における接着ゴム層12の厚さ方向の中間部には、ベルト幅方向にピッチを有する螺旋を形成するように心線14が埋設されている。なお、背面ゴム層13の代わりに背面補強布が設けられ、Vリブドベルト本体10が圧縮ゴム層11及び接着ゴム層12の二重層に構成されていてもよい。 The V-ribbed belt B according to the second embodiment has a three-layer structure including a compression rubber layer 11 that forms a pulley contact portion on the belt inner peripheral side, an intermediate adhesive rubber layer 12, and a back rubber layer 13 on the belt outer peripheral side. A rubber V-ribbed belt body 10 is provided. A core wire 14 is embedded in an intermediate portion in the thickness direction of the adhesive rubber layer 12 in the V-ribbed belt body 10 so as to form a spiral having a pitch in the belt width direction. A back reinforcing cloth may be provided instead of the back rubber layer 13, and the V-ribbed belt main body 10 may be configured as a double layer of the compression rubber layer 11 and the adhesive rubber layer 12.
 圧縮ゴム層11は、複数のVリブ16がベルト内周側に垂下するように設けられている。複数のVリブ16は、各々がベルト長さ方向に延びる断面略逆三角形の突条に形成されていると共に、ベルト幅方向に並列するように設けられている。各Vリブ16は、例えば、リブ高さが2.0~3.0mm、基端間の幅が1.0~3.6mmである。Vリブ16の数は例えば3~6個である(図1では6個)。接着ゴム層12は、断面横長矩形の帯状に構成されており、その厚さが例えば1.0~2.5mmである。背面ゴム層13も、断面横長矩形の帯状に構成されており、厚さが例えば0.4~0.8mmである。背面ゴム層13の表面には、背面駆動時の音発生を抑制する観点から、織布パターンが設けられていることが好ましい。 The compression rubber layer 11 is provided such that a plurality of V ribs 16 hang down to the inner peripheral side of the belt. The plurality of V ribs 16 are each formed in a ridge having a substantially inverted triangular cross section extending in the belt length direction, and provided in parallel in the belt width direction. Each V-rib 16 has, for example, a rib height of 2.0 to 3.0 mm and a width between base ends of 1.0 to 3.6 mm. The number of V ribs 16 is, for example, 3 to 6 (six in FIG. 1). The adhesive rubber layer 12 is formed in a band shape having a horizontally long cross section and has a thickness of, for example, 1.0 to 2.5 mm. The back rubber layer 13 is also formed in a band shape having a horizontally long cross section, and has a thickness of, for example, 0.4 to 0.8 mm. It is preferable that a woven fabric pattern is provided on the surface of the back rubber layer 13 from the viewpoint of suppressing the generation of sound during back driving.
 圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13は、ゴム成分に種々のゴム配合剤が配合されて混練された未架橋ゴム組成物が加熱及び加圧されて架橋剤により架橋したゴム組成物で形成されている。圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13を形成するゴム組成物は、同一であっても、また、異なっていても、どちらでもよい。 The compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 are rubbers obtained by crosslinking an uncrosslinked rubber composition obtained by mixing and kneading various rubber compounding ingredients with a rubber component and then crosslinking with a crosslinking agent. It is formed with a composition. The rubber composition forming the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 may be the same or different.
 圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13を形成するゴム組成物のゴム成分としては、例えば、エチレン・プロピレンコポリマー(EPR)、エチレン・プロピレン・ジエンターポリマー(EPDM)、エチレン・オクテンコポリマー、エチレン・ブテンコポリマーなどのエチレン-α-オレフィンエラストマー;クロロプレンゴム(CR);クロロスルホン化ポリエチレンゴム(CSM);水素添加アクリロニトリルゴム(H-NBR)等が挙げられる。ゴム成分は、これらのうち1種又は2種以上のブレンドゴムであることが好ましい。圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13を形成するゴム組成物のゴム成分は同一であることが好ましい。 Examples of the rubber component of the rubber composition forming the compression rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 include ethylene / propylene copolymer (EPR), ethylene / propylene / diene terpolymer (EPDM), Examples include ethylene-α-olefin elastomers such as octene copolymer and ethylene / butene copolymer; chloroprene rubber (CR); chlorosulfonated polyethylene rubber (CSM); hydrogenated acrylonitrile rubber (H-NBR). The rubber component is preferably one or more of these blend rubbers. The rubber components of the rubber composition forming the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 are preferably the same.
 圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13を形成するゴム組成物のうち少なくとも1つは、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有する。圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13を形成する全てのゴム組成物がかかるセルロース系微細繊維を含有することが好ましいが、少なくともプーリ接触部分を構成する圧縮ゴム層11を形成するゴム組成物がかかるセルロース系微細繊維を含有することがより好ましい。 At least one of the rubber compositions forming the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 contains cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm. It is preferable that all the rubber compositions forming the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 contain such cellulosic fine fibers, but at least the compressed rubber layer 11 constituting the pulley contact portion is formed. It is more preferable that the rubber composition to be contained contains such cellulosic fine fibers.
 実施形態2に係るVリブドベルトBによれば、このようにVリブドベルト本体10を構成する圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13を形成するゴム組成物のうち少なくとも1つが、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有することにより、優れた耐屈曲疲労性を得ることができる。また、特に接触部分を構成する圧縮ゴム層11を形成するゴム組成物がかかるセルロース系微細繊維を含有する場合には、高い耐摩耗性と共に、安定な摩擦係数を得ることができる。 According to the V-ribbed belt B according to the second embodiment, at least one of the rubber compositions forming the compression rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 that constitutes the V-ribbed belt main body 10 as described above is a fiber. By containing a cellulosic fine fiber having a diameter distribution range of 50 to 500 nm, excellent bending fatigue resistance can be obtained. Moreover, when the rubber composition which forms the compression rubber layer 11 which comprises a contact part contains such a cellulose fine fiber, a stable friction coefficient can be obtained with high abrasion resistance.
 セルロース系微細繊維は、植物繊維を細かくほぐすことで得られる植物細胞壁の骨格成分で構成されたセルロース微細繊維を由来とする繊維材料である。セルロース系微細繊維の原料植物としては、例えば、木、竹、稲(稲わら)、じゃがいも、サトウキビ(バガス)、水草、海藻等が挙げられる。これらのうち木が好ましい。 Cellulosic fine fiber is a fiber material derived from cellulose fine fiber composed of a skeletal component of a plant cell wall obtained by finely loosening plant fiber. Examples of the cellulosic fine fiber plant include wood, bamboo, rice (rice straw), potato, sugar cane (bagasse), aquatic plants, seaweed and the like. Of these, wood is preferred.
 セルロース系微細繊維は、セルロース微細繊維自体であっても、また、疎水化処理された疎水化セルロース微細繊維であっても、どちらでもよい。また、セルロース系微細繊維として、セルロース微細繊維自体と疎水化セルロース微細繊維とを併用してもよい。分散性の観点からは、セルロース系微細繊維は、疎水化セルロース微細繊維を含むことが好ましい。疎水化セルロース微細繊維としては、セルロースの水酸基の一部又は全部が疎水性基に置換されたセルロース微細繊維、及び表面処理剤によって疎水化表面処理されたセルロース微細繊維が挙げられる。 The cellulose-based fine fiber may be either the cellulose fine fiber itself or a hydrophobic cellulose fine fiber that has been subjected to a hydrophobic treatment. Moreover, you may use together cellulose fine fiber itself and hydrophobized cellulose fine fiber as a cellulosic fine fiber. From the viewpoint of dispersibility, the cellulosic fine fibers preferably include hydrophobized cellulose fine fibers. Examples of the hydrophobized cellulose fine fibers include cellulose fine fibers in which some or all of the hydroxyl groups of cellulose are substituted with hydrophobic groups, and cellulose fine fibers that have been subjected to a hydrophobized surface treatment with a surface treatment agent.
 セルロースの水酸基の一部又は全部が疎水性基に置換されたセルロース微細繊維を得るための疎水化としては、例えば、エステル化(アシル化)(アルキルエステル化、複合エステル化、β-ケトエステル化など)、アルキル化、トシル化、エポキシ化、アリール化等が挙げられる。これらのうちエステル化が好ましい。具体的には、エステル化された疎水化セルロース微細繊維は、セルロースの水酸基の一部又は全部が、酢酸、無水酢酸、プロピオン酸、酪酸等のカルボン酸、若しくは、そのハロゲン化物(特に塩化物)によりアシル化されたセルロース微細繊維である。表面処理剤によって疎水化表面処理されたセルロース微細繊維を得るための表面処理剤としては、例えば、シランカップリング剤等が挙げられる。 Examples of hydrophobization for obtaining cellulose fine fibers in which part or all of the hydroxyl groups of cellulose are substituted with hydrophobic groups include esterification (acylation) (alkyl esterification, complex esterification, β-ketoesterification, etc.) ), Alkylation, tosylation, epoxidation, arylation and the like. Of these, esterification is preferred. Specifically, in the esterified hydrophobized cellulose fine fiber, part or all of the hydroxyl groups of cellulose are carboxylic acids such as acetic acid, acetic anhydride, propionic acid, butyric acid, or halides thereof (particularly chlorides). It is the cellulose fine fiber acylated by. Examples of the surface treatment agent for obtaining cellulose fine fibers hydrophobized and surface-treated with the surface treatment agent include silane coupling agents.
 セルロース系微細繊維は、耐屈曲疲労性を高める観点から、繊維径の分布が広いことが好ましく、繊維径の分布範囲は50~500nmを含む。その繊維径の分布の下限は、その観点から、好ましくは20nm以下、より好ましくは10nm以下である。上限は、同じ観点から、好ましくは700nm以上、より好ましくは1μm以上である。セルロース系微細繊維の繊維径の分布範囲は、20nm~700mmを含むことが好ましく、10nm~1μmを含むことがより好ましい。 The cellulosic fine fibers preferably have a wide fiber diameter distribution from the viewpoint of enhancing bending fatigue resistance, and the fiber diameter distribution range includes 50 to 500 nm. From the viewpoint, the lower limit of the fiber diameter distribution is preferably 20 nm or less, more preferably 10 nm or less. From the same viewpoint, the upper limit is preferably 700 nm or more, more preferably 1 μm or more. The fiber diameter distribution range of the cellulosic fine fibers preferably includes 20 nm to 700 mm, and more preferably includes 10 nm to 1 μm.
 ゴム組成物に含有されるセルロース系微細繊維の平均繊維径は、好ましくは10nm以上、より好ましくは20nm以上であり、また、好ましくは700nm以下、より好ましくは100nm以下である。 The average fiber diameter of the cellulosic fine fibers contained in the rubber composition is preferably 10 nm or more, more preferably 20 nm or more, and preferably 700 nm or less, more preferably 100 nm or less.
 セルロース系微細繊維の繊維径の分布は、ゴム組成物の試料を凍結粉砕した後、その断面を透過型電子顕微鏡(TEM)で観察すると共に、50本のセルロース系微細繊維を任意に選択して繊維径を測定し、その測定結果に基づいて求められる。また、セルロース系微細繊維の平均繊維径は、その任意に選択した50本のセルロース系微細繊維の繊維径の数平均として求められる。 The distribution of the fiber diameter of the cellulosic fine fibers is obtained by freezing and crushing a sample of the rubber composition, then observing the cross section with a transmission electron microscope (TEM) and arbitrarily selecting 50 cellulosic fine fibers. The fiber diameter is measured and obtained based on the measurement result. The average fiber diameter of the cellulosic fine fibers is obtained as the number average of the fiber diameters of 50 arbitrarily selected cellulosic fine fibers.
 セルロース系微細繊維は、機械的解繊手段によって製造された高アスペクト比のものであっても、また、化学的解繊手段によって製造された針状結晶のものであっても、どちらでもよい。これらのうち、機械的解繊手段によって製造されたものが好ましい。また、セルロース系微細繊維として、機械的解繊手段によって製造されたものと化学的解繊手段によって製造されたものとを併用してもよい。機械的解繊手段に用いる解繊装置としては、例えば、二軸混練機などの混練機、高圧ホモジナイザー、グラインダー、ビーズミル等が挙げられる。化学的解繊手段に用いる処理としては、例えば、酸加水分解処理等が挙げられる。 The cellulosic fine fibers may be either high aspect ratio manufactured by mechanical defibrating means, or needle-shaped crystals manufactured by chemical defibrating means. Of these, those manufactured by mechanical defibrating means are preferred. Moreover, you may use together what was manufactured by the mechanical defibration means, and what was manufactured by the chemical defibration means as a cellulose fine fiber. Examples of the defibrating apparatus used for the mechanical defibrating means include a kneader such as a twin-screw kneader, a high-pressure homogenizer, a grinder, and a bead mill. Examples of the treatment used for the chemical defibrating means include acid hydrolysis treatment.
 ゴム組成物におけるセルロース系微細繊維の含有量は、耐屈曲疲労性を高める観点から、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは5質量部以上であり、また、好ましくは30質量部以下、より好ましくは20質量部以下、更に好ましくは10質量部以下である。 The content of the cellulosic fine fibers in the rubber composition is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and still more preferably 5 parts with respect to 100 parts by mass of the rubber component from the viewpoint of enhancing the bending fatigue resistance. It is not less than 30 parts by mass, preferably not more than 30 parts by mass, more preferably not more than 20 parts by mass, and still more preferably not more than 10 parts by mass.
 ゴム配合剤としては、補強材、プロセスオイル、加工助剤、加硫促進助剤、架橋剤、加硫促進剤、老化防止剤等が挙げられる。 Examples of rubber compounding agents include reinforcing materials, process oils, processing aids, vulcanization acceleration aids, crosslinking agents, vulcanization accelerators, and anti-aging agents.
 補強材としては、カーボンブラックでは、例えば、チャネルブラック;SAF、ISAF、N-339、HAF、N-351、MAF、FEF、SRF、GPF、ECF、N-234などのファーネスブラック;FT、MTなどのサーマルブラック;アセチレンブラック等が挙げられる。補強材としてはシリカも挙げられる。補強材は、これらのうち1種又は2種以上であることが好ましい。補強材の含有量は、ゴム組成物のゴム成分100質量部に対して50~90質量部であることが好ましい。 As the reinforcing material, carbon black, for example, channel black; furnace black such as SAF, ISAF, N-339, HAF, N-351, MAF, FEF, SRF, GPF, ECF, N-234; FT, MT, etc. Thermal black; acetylene black and the like. Silica is also mentioned as the reinforcing material. It is preferable that a reinforcing material is 1 type, or 2 or more types among these. The content of the reinforcing material is preferably 50 to 90 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
 オイルとしては、例えば、石油系軟化剤、パラフィンワックスなどの鉱物油系オイル、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落下生油、木ろう、ロジン、パインオイルなどの植物油系オイル等が挙げられる。オイルは、これらのうち1種又は2種以上であることが好ましい。オイルの含有量は、ゴム組成物のゴム成分100質量部に対して例えば10~30質量部である。 Oils include, for example, petroleum-based softeners, mineral oils such as paraffin wax, castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, fall raw oil, wax, rosin, pine And vegetable oils such as oil. The oil is preferably one or more of these. The oil content is, for example, 10 to 30 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
 加工助剤としては、例えば、ステアリン酸、ポリエチレンワックス、脂肪酸の金属塩等が挙げられる。加工助剤は、これらのうち1種又は2種以上であることが好ましい。加工助剤の含有量は、ゴム組成物のゴム成分100質量部に対して例えば0.5~2質量部である。 Examples of processing aids include stearic acid, polyethylene wax, and fatty acid metal salts. Among these, the processing aid is preferably one or more. The content of the processing aid is, for example, 0.5 to 2 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
 加硫促進助剤としては、例えば、酸化マグネシウムや酸化亜鉛(亜鉛華)などの金属酸化物、金属炭酸塩、脂肪酸及びその誘導体等が挙げられる。加硫促進助剤は、これらのうち1種又は2種以上であることが好ましい。加硫促進助剤の含有量は、ゴム組成物のゴム成分100質量部に対して例えば3~7質量部である。 Examples of the vulcanization acceleration aid include metal oxides such as magnesium oxide and zinc oxide (zinc white), metal carbonates, fatty acids and derivatives thereof. Among these, the vulcanization acceleration aid is preferably one or more. The content of the vulcanization acceleration aid is, for example, 3 to 7 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
 老化防止剤としては、例えば、ベンズイミダゾール系老化防止剤、アミン-ケトン系老化防止剤、ジアミン系老化防止剤、フェノール系老化防止剤等が挙げられる。老化防止剤は、これらのうち1種又は2種以上であることが好ましい。老化防止剤の含有量は、ゴム成分100質量部に対して例えば0.1~5質量部である。 Examples of the anti-aging agent include benzimidazole anti-aging agents, amine-ketone anti-aging agents, diamine anti-aging agents, and phenol anti-aging agents. It is preferable that an anti-aging agent is 1 type, or 2 or more types among these. The content of the anti-aging agent is, for example, 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber component.
 共架橋剤としては、例えば、マレイミド系、TAIC、1,2-ポリブタジエン、オキシム類、グアニジン、トリメチロールプロパントリメタクリレートのもの、及び液状ゴム等が挙げられる。共架橋剤は、これらのうちの1種又は2種以上であることが好ましい。共架橋剤の含有量は、ゴム成分100質量部に対して例えば0.5~30質量部である。 Examples of the co-crosslinking agent include maleimide, TAIC, 1,2-polybutadiene, oximes, guanidine, trimethylolpropane trimethacrylate, and liquid rubber. The co-crosslinking agent is preferably one or more of these. The content of the co-crosslinking agent is, for example, 0.5 to 30 parts by mass with respect to 100 parts by mass of the rubber component.
 架橋剤としては、硫黄及び有機過酸化物が挙げられる。架橋剤として、硫黄が配合されていてもよく、また、有機過酸化物が配合されていてもよく、更には、それらの両方が併用されていてもよい。架橋剤の配合量は、硫黄の場合、ゴム組成物のゴム成分100質量部に対して例えば1~5質量部であり、有機過酸化物の場合、ゴム組成物のゴム成分100質量部に対して例えば1~5質量部である。 Examples of the crosslinking agent include sulfur and organic peroxides. As a crosslinking agent, sulfur may be blended, an organic peroxide may be blended, or both of them may be used in combination. The amount of the crosslinking agent is, for example, 1 to 5 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition in the case of sulfur, and 100 parts by mass of the rubber component of the rubber composition with respect to the organic peroxide. For example, 1 to 5 parts by mass.
 加硫促進剤としては、例えば、チウラム系(例えばTETD、TT、TRAなど)、チアゾール系(例えばMBT、MBTSなど)、スルフェンアミド系(例えばCZなど)、ジチオカルバミン酸塩系(例えばBZ-Pなど)のもの等が挙げられる。加硫促進剤は、これらのうち1種又は2種以上であることが好ましい。加硫促進剤の含有量は、ゴム組成物のゴム成分100質量部に対して例えば1~3質量部である。 Examples of the vulcanization accelerator include thiuram (eg, TETD, TT, TRA, etc.), thiazole (eg, MBT, MBTS, etc.), sulfenamide (eg, CZ), dithiocarbamate (eg, BZ-P). Etc.). It is preferable that a vulcanization accelerator is 1 type, or 2 or more types among these. The content of the vulcanization accelerator is, for example, 1 to 3 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
 圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13を形成するゴム組成物には、繊維径が10μm以上の短繊維16が含有されていてもよい。特にプーリ接触部分を構成する圧縮ゴム層11を形成するゴム組成物には短繊維16が含有されていることが好ましい。その場合、短繊維16は、圧縮ゴム層11にベルト幅方向に配向するように含有されていることが好ましく、また、圧縮ゴム層11のVリブ15表面に露出する短繊維16は、一部が表面から突出していることが好ましい。なお、短繊維16がゴム組成物に配合された構成ではなく、圧縮ゴム層11のVリブ15表面に短繊維が植毛された構成であってもよい。 The rubber composition forming the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 may contain short fibers 16 having a fiber diameter of 10 μm or more. In particular, the short fiber 16 is preferably contained in the rubber composition forming the compressed rubber layer 11 constituting the pulley contact portion. In that case, the short fibers 16 are preferably contained in the compressed rubber layer 11 so as to be oriented in the belt width direction, and the short fibers 16 exposed on the surface of the V ribs 15 of the compressed rubber layer 11 are partially Preferably protrudes from the surface. In addition, the structure by which the short fiber 16 was planted on the V-rib 15 surface of the compression rubber layer 11 instead of the structure in which the short fiber 16 was mix | blended with the rubber composition may be sufficient.
 短繊維16としては、例えば、ナイロン短繊維、ビニロン短繊維、アラミド短繊維、ポリエステル短繊維、綿短繊維が挙げられる。短繊維16は、例えばRFL水溶液等に浸漬した後に加熱する接着処理が施された長繊維を所定長に切断して製造される。短繊維16の長さは例えば0.2~5.0mmであり、繊維径は例えば10~50μmである。 Examples of the short fibers 16 include nylon short fibers, vinylon short fibers, aramid short fibers, polyester short fibers, and cotton short fibers. The short fiber 16 is manufactured by, for example, cutting a long fiber that has been subjected to an adhesion treatment to be heated after being immersed in an RFL aqueous solution or the like into a predetermined length. The length of the short fiber 16 is, for example, 0.2 to 5.0 mm, and the fiber diameter is, for example, 10 to 50 μm.
 短繊維16の含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上であり、また、好ましくは30質量部以下、より好ましくは20質量部以下である。短繊維16の含有量は、セルロース系微細繊維の含有量よりも多いことが好ましい。短繊維16の含有量のセルロース系微細繊維の含有量に対する比(短繊維16の含有量のセルロース系微細繊維の含有量)は、好ましくは1以上、より好ましくは2以上であり、また、好ましくは15以下、より好ましくは5以下である。セルロース系微細繊維及び短繊維16の総含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上であり、また、好ましくは25質量部以下、より好ましくは15質量部以下である。 The content of the short fibers 16 is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and preferably 30 parts by mass or less, more preferably 20 parts by mass or less, with respect to 100 parts by mass of the rubber component. It is. The content of the short fibers 16 is preferably larger than the content of the cellulosic fine fibers. The ratio of the content of the short fibers 16 to the content of the cellulosic fine fibers (the content of the cellulosic fine fibers of the content of the short fibers 16) is preferably 1 or more, more preferably 2 or more, and preferably Is 15 or less, more preferably 5 or less. The total content of cellulosic fine fibers and short fibers 16 is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and preferably 25 parts by mass or less, with respect to 100 parts by mass of the rubber component. Preferably it is 15 mass parts or less.
 心線14は、ポリアミド繊維、ポリエステル繊維、アラミド繊維、ポリアミド繊維等で形成された撚り糸で構成されている。心線14の直径は例えば0.5~2.5mmであり、断面における相互に隣接する心線14中心間の寸法は例えば0.05~0.20mmである。心線14には、Vリブドベルト本体10に対する接着性を付与するための接着処理が施されている。 The core wire 14 is composed of a twisted yarn formed of polyamide fiber, polyester fiber, aramid fiber, polyamide fiber or the like. The diameter of the core wire 14 is, for example, 0.5 to 2.5 mm, and the dimension between the centers of the adjacent core wires 14 in the cross section is, for example, 0.05 to 0.20 mm. The core wire 14 is subjected to an adhesive treatment for imparting adhesiveness to the V-ribbed belt main body 10.
 次に、図12は、実施形態2に係るVリブドベルトBを用いた自動車の補機駆動ベルト伝動装置20のプーリレイアウトを示す。この補機駆動ベルト伝動装置20は、VリブドベルトBが4つのリブプーリ及び2つの平プーリの6つのプーリに巻き掛けられて動力を伝達するサーペンタインドライブ方式のものである。 Next, FIG. 12 shows a pulley layout of the auxiliary drive belt transmission device 20 for an automobile using the V-ribbed belt B according to the second embodiment. The accessory drive belt transmission device 20 is of a serpentine drive type in which a V-ribbed belt B is wound around six pulleys of four rib pulleys and two flat pulleys to transmit power.
 この補機駆動ベルト伝動装置20では、最上位置にリブプーリのパワーステアリングプーリ21が設けられ、そのパワーステアリングプーリ21の下方にリブプーリのACジェネレータプーリ22が設けられている。また、パワーステアリングプーリ21の左下方には平プーリのテンショナプーリ23が設けられており、そのテンショナプーリ23の下方には平プーリのウォーターポンププーリ24が設けられている。更に、テンショナプーリ23の左下方にはリブプーリのクランクシャフトプーリ25が設けられており、そのクランクシャフトプーリ25の右下方にリブプーリのエアコンプーリ26が設けられている。これらのプーリは、例えば、金属のプレス加工品や鋳物、或いは、ナイロン樹脂、フェノール樹脂等の樹脂成形品で構成されており、また、プーリ径がφ50~150mmである。 In this accessory drive belt transmission device 20, a rib pulley power steering pulley 21 is provided at the uppermost position, and a rib pulley AC generator pulley 22 is provided below the power steering pulley 21. A flat pulley tensioner pulley 23 is provided at the lower left of the power steering pulley 21, and a flat pulley water pump pulley 24 is provided below the tensioner pulley 23. Further, a rib pulley crankshaft pulley 25 is provided on the lower left side of the tensioner pulley 23, and a rib pulley air conditioner pulley 26 is provided on the lower right side of the crankshaft pulley 25. These pulleys are made of, for example, a metal stamped product, a casting, or a resin molded product such as nylon resin or phenol resin, and have a pulley diameter of φ50 to 150 mm.
 そして、この補機駆動ベルト伝動装置20では、VリブドベルトBは、Vリブ16側が接触するようにパワーステアリングプーリ21に巻き掛けられ、次いで、ベルト背面が接触するようにテンショナプーリ23に巻き掛けられた後、Vリブ16側が接触するようにクランクシャフトプーリ25及びエアコンプーリ26に順に巻き掛けられ、更に、ベルト背面が接触するようにウォーターポンププーリ24に巻き掛けられ、そして、Vリブ16側が接触するようにACジェネレータプーリ22に巻き掛けられ、最後にパワーステアリングプーリ21に戻るように設けられている。プーリ間で掛け渡されるVリブドベルトBの長さであるベルトスパン長は例えば50~300mmである。プーリ間で生じ得るミスアライメントは0~2°である。 In this accessory drive belt transmission device 20, the V-ribbed belt B is wound around the power steering pulley 21 so that the V-rib 16 side contacts, and then wound around the tensioner pulley 23 so that the back surface of the belt contacts. After that, it is wound around the crankshaft pulley 25 and the air conditioner pulley 26 in order so that the V rib 16 side comes into contact, and further wound around the water pump pulley 24 so that the back surface of the belt comes into contact. Thus, it is wound around the AC generator pulley 22 and finally returned to the power steering pulley 21. The belt span length, which is the length of the V-ribbed belt B spanned between the pulleys, is, for example, 50 to 300 mm. Misalignment that can occur between pulleys is 0-2 °.
 (VリブドベルトBの製造方法)
 実施形態2に係るVリブドベルトBの製造方法は、実施形態1にかかるVリブドベルトと同様である。
(Manufacturing method of V-ribbed belt B)
The manufacturing method of the V-ribbed belt B according to the second embodiment is the same as that of the V-ribbed belt according to the first embodiment.
  -実施例-
 [Vリブドベルト]
 以下の実施例4-1~実施例4-9及び比較例4のVリブドベルトを作製した。それぞれの詳細については表4にも示す。
-Example-
[V-ribbed belt]
V-ribbed belts of Examples 4-1 to 4-9 and Comparative Example 4 below were produced. Details of each are also shown in Table 4.
 <実施例4-1>
 トルエンに木材を原料とする粉末セルロース(日本製紙社製 商品名:KCフロック W-50GK)を分散させた分散体を調製し、高圧ホモジナイザーを用い、その分散体同士を衝突させて粉末セルロースをセルロース微細繊維に解繊して、トルエンにセルロース微細繊維が分散した分散体を得た。従って、セルロース微細繊維は、機械的解繊手段によって製造され、また、疎水化処理されていないものである。
<Example 4-1>
Prepare a dispersion in which powdered cellulose (trade name: KC Flock W-50GK, manufactured by Nippon Paper Industries Co., Ltd.) made of wood as a raw material in toluene is dispersed. The fine fibers were defibrated to obtain a dispersion in which cellulose fine fibers were dispersed in toluene. Accordingly, the cellulose fine fibers are produced by mechanical defibrating means and are not subjected to a hydrophobic treatment.
 次いで、そのトルエンにセルロース微細繊維が分散した分散体と、トルエンにエチレンプロピレンジエンモノマー(JSR社製 商品名:EP33、以下「EPDM」という。)を溶解させた溶液とを混合し、トルエンを気化させてセルロース微細繊維/EPDMのマスターバッチを作製した。 Next, the dispersion in which cellulose fine fibers are dispersed in toluene is mixed with a solution in which ethylene propylene diene monomer (trade name: EP33, manufactured by JSR Corporation, hereinafter referred to as “EPDM”) is dissolved in toluene, and the toluene is vaporized. Thus, a master batch of cellulose fine fiber / EPDM was prepared.
 続いて、EPDMを素練りすると共に、そこにマスターバッチを投入して混練した。マスターバッチの投入量は、トータルのEPDMを100質量部としたときのセルロース微細繊維の含有量が1質量部となる量とした。 Subsequently, EPDM was masticated, and a master batch was added thereto for kneading. The input amount of the master batch was such that the cellulose fine fiber content was 1 part by mass when the total EPDM was 100 parts by mass.
 そして、EPDMとセルロース微細繊維とを混練すると共に、そこに、EPDM100質量部に対し、HAFカーボンブラック(三菱化学社製 商品名:ダイヤブラックH)を60質量部、プロセスオイル(サン石油社製 商品名:サンパー2280)を15質量部、加工助剤としてのステアリン酸(新日本理化社製 商品名:ステアリン酸50S)を1質量部、加硫促進助剤としての酸化亜鉛(堺化学社製 商品名:酸化亜鉛3種)を5質量部、ベンズイミダゾール系老化防止剤(大内新興化学工業社製 商品名:ノクラックMB)を2.5質量部、架橋剤としての硫黄(細井化学社製 商品名:オイル硫黄)を2.3質量部、及びチウラム系加硫促進剤(大内新興化学工業社製 商品名:ノクセラーTET-G)を2質量部それぞれ投入して混練を継続することにより未架橋ゴム組成物を作製した。 Then, EPDM and fine cellulose fibers are kneaded, and 60 mass parts of HAF carbon black (trade name: Dia Black H) manufactured by Mitsubishi Chemical Co., Ltd. is added to 100 mass parts of EPDM. Name: 15 parts by weight of sampler 2280), 1 part by weight of stearic acid (manufactured by Shin Nippon Rika Co., Ltd., trade name: stearic acid 50S) as processing aid, zinc oxide (product of Sakai Chemical Co., Ltd.) as vulcanization accelerator Name: 5 parts by mass of zinc oxide (3 types), 2.5 parts by mass of benzimidazole anti-aging agent (trade name: NOCRACK MB), sulfur as a crosslinking agent (product by Hosoi Chemical Co., Ltd.) Name: oil sulfur) 2.3 parts by mass, and thiuram vulcanization accelerator (made by Ouchi Shinsei Chemical Co., Ltd., trade name: Noxeller TET-G) To prepare uncrosslinked rubber composition by continuing kneading the.
 この未架橋ゴム組成物を用い、列理方向がベルト幅方向となるように圧縮ゴム層を形成した実施形態2と同様の構成の実施例4-1のVリブドベルトを作製した。 Using this uncrosslinked rubber composition, a V-ribbed belt of Example 4-1 having the same configuration as that of Embodiment 2 in which a compressed rubber layer was formed so that the cutting direction was the belt width direction was produced.
 実施例4-1のVリブドベルトは、ベルト長さが1400mm、ベルト幅が2.2mm、ベルト厚さが4.5mm、及びVリブ数が3個とした。なお、接着ゴム層及び背面ゴム層は、セルロース微細繊維及び短繊維を含有しないゴム組成物で形成し、心線は、接着処理を施したポリエステル繊維製の撚り糸で形成した。 The V-ribbed belt of Example 4-1 has a belt length of 1400 mm, a belt width of 2.2 mm, a belt thickness of 4.5 mm, and three V-ribs. The adhesive rubber layer and the back rubber layer were formed from a rubber composition not containing cellulose fine fibers and short fibers, and the core wire was formed from a polyester fiber twisted yarn that had been subjected to an adhesive treatment.
 <実施例4-2>
 セルロース微細繊維の含有量がゴム成分100質量部に対して3質量部となるようにしたことを除いて実施例4-1と同様にして実施例4-2のVリブドベルトを作製した。
<Example 4-2>
A V-ribbed belt of Example 4-2 was produced in the same manner as in Example 4-1, except that the cellulose fine fiber content was 3 parts by mass with respect to 100 parts by mass of the rubber component.
 <実施例4-3>
 セルロース微細繊維の含有量がゴム成分100質量部に対して5質量部となるようにしたことを除いて実施例4-1と同様にして実施例4-3のVリブドベルトを作製した。
<Example 4-3>
A V-ribbed belt of Example 4-3 was produced in the same manner as in Example 4-1, except that the content of cellulose fine fibers was 5 parts by mass with respect to 100 parts by mass of the rubber component.
 <実施例4-4>
 セルロース微細繊維の含有量がゴム成分100質量部に対して10質量部となるようにしたことを除いて実施例4-1と同様にして実施例4-4のVリブドベルトを作製した。
<Example 4-4>
A V-ribbed belt of Example 4-4 was produced in the same manner as in Example 4-1, except that the cellulose fine fiber content was 10 parts by mass with respect to 100 parts by mass of the rubber component.
 <実施例4-5>
 セルロース微細繊維の含有量がゴム成分100質量部に対して15質量部となるようにしたことを除いて実施例4-1と同様にして実施例4-5のVリブドベルトを作製した。
<Example 4-5>
A V-ribbed belt of Example 4-5 was produced in the same manner as in Example 4-1, except that the content of cellulose fine fibers was 15 parts by mass with respect to 100 parts by mass of the rubber component.
 <実施例4-6>
 セルロース微細繊維の含有量がゴム成分100質量部に対して25質量部となるようにしたことを除いて実施例4-1と同様にして実施例4-6のVリブドベルトを作製した。
<Example 4-6>
A V-ribbed belt of Example 4-6 was produced in the same manner as in Example 4-1, except that the content of cellulose fine fibers was 25 parts by mass with respect to 100 parts by mass of the rubber component.
 <実施例4-7>
 圧縮ゴム層用の未架橋ゴム組成物に、ゴム成分100質量部に対してナイロン短繊維(帝人社製 商品名:CFN3000 繊維径:26μm 繊維長:3mm)14質量部を含有させたことを除いて実施例4-1と同様にして実施例4-7のVリブドベルトを作製した。短繊維の含有量のセルロース系微細繊維の含有量に対する比(表4の“B/A”)は14である。セルロース系微細繊維及び短繊維の総含有量(表4の“A+B”)は、ゴム成分100質量部に対して15質量部である。
<Example 4-7>
Except that the uncrosslinked rubber composition for the compression rubber layer contains 14 parts by mass of nylon short fibers (trade name: CFN3000, fiber diameter: 26 μm, fiber length: 3 mm, manufactured by Teijin Ltd.) with respect to 100 parts by mass of the rubber component. In the same manner as in Example 4-1, a V-ribbed belt of Example 4-7 was produced. The ratio of the short fiber content to the cellulosic fine fiber content (“B / A” in Table 4) is 14. The total content of cellulosic fine fibers and short fibers (“A + B” in Table 4) is 15 parts by mass with respect to 100 parts by mass of the rubber component.
 <実施例4-8>
 圧縮ゴム層用の未架橋ゴム組成物に、ゴム成分100質量部に対してナイロン短繊維12質量部を含有させたことを除いて実施例4-2と同様にして実施例4-8のVリブドベルトを作製した。短繊維の含有量のセルロース系微細繊維の含有量に対する比(B/A)は4である。セルロース系微細繊維及び短繊維の総含有量(A+B)は、ゴム成分100質量部に対して15質量部である。
<Example 4-8>
The V of Example 4-8 is the same as Example 4-2, except that 12 parts by mass of nylon short fibers are added to 100 parts by mass of the rubber component in the uncrosslinked rubber composition for the compressed rubber layer. A ribbed belt was produced. The ratio (B / A) of the short fiber content to the cellulosic fine fiber content is 4. The total content (A + B) of the cellulosic fine fibers and short fibers is 15 parts by mass with respect to 100 parts by mass of the rubber component.
 <実施例4-9>
 圧縮ゴム層用の未架橋ゴム組成物に、ゴム成分100質量部に対してナイロン短繊維10質量部を含有させたことを除いて実施例4-3と同様にして実施例4-9のVリブドベルトを作製した。短繊維の含有量のセルロース系微細繊維の含有量に対する比(短繊維の含有量のセルロース系微細繊維の含有量)は3である。セルロース系微細繊維及び短繊維の総含有量は、ゴム成分100質量部に対して15質量部である。
<Example 4-9>
The V of Example 4-9 is the same as Example 4-3 except that the uncrosslinked rubber composition for the compressed rubber layer contains 10 parts by mass of nylon short fibers per 100 parts by mass of the rubber component. A ribbed belt was produced. The ratio of the short fiber content to the cellulosic fine fiber content (the short fiber content to the cellulosic fine fiber content) is 3. The total content of cellulosic fine fibers and short fibers is 15 parts by mass with respect to 100 parts by mass of the rubber component.
 <比較例4>
 圧縮ゴム層用の未架橋ゴム組成物に、セルロース微細繊維を含有させず、且つゴム成分100質量部に対してナイロン短繊維15質量部を含有させたことを除いて実施例4-1と同様にして比較例4のVリブドベルトを作製した。
<Comparative example 4>
The same as in Example 4-1, except that the uncrosslinked rubber composition for the compressed rubber layer does not contain fine cellulose fibers and 15 parts by mass of nylon short fibers per 100 parts by mass of the rubber component. Thus, a V-ribbed belt of Comparative Example 4 was produced.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (試験評価方法)
 <平均繊維径・繊維径分布>
 実施例4-1~実施例4-9のそれぞれのVリブドベルトの圧縮ゴム層を形成するゴム組成物について採取した試料を凍結粉砕した後、その断面を走査型電子顕微鏡(SEM)で観察すると共に、50本の繊維を任意に選択して繊維径を測定し、その数平均を求めて平均繊維径とした。また、50本のセルロース微細繊維のうち繊維径の最大値及び最小値を求めた。
(Test evaluation method)
<Average fiber diameter / fiber diameter distribution>
Samples collected for the rubber composition forming the compressed rubber layer of each V-ribbed belt of Example 4-1 to Example 4-9 were freeze-ground and then the cross section was observed with a scanning electron microscope (SEM). , 50 fibers were arbitrarily selected, the fiber diameter was measured, and the number average was obtained to obtain the average fiber diameter. Moreover, the maximum value and minimum value of the fiber diameter were calculated | required among 50 cellulose fine fibers.
 <摩擦係数測定試験>
 図17は摩擦係数測定装置140を示す。
<Friction coefficient measurement test>
FIG. 17 shows the friction coefficient measuring device 140.
 この摩擦係数測定装置140は、プーリ径75mmのリブプーリからなる試験プーリ141とその側方に設けられたロードセル142とからなる。試験プーリ141は、鉄系の材料S45Cで構成されている。Vリブドベルトの試験片143は、ロードセル142から水平に延びた後に試験プーリ141に巻き掛けられる、つまり、試験プーリ141への巻き付け角度が90°となるように設けられる。 The friction coefficient measuring device 140 includes a test pulley 141 made of a rib pulley having a pulley diameter of 75 mm and a load cell 142 provided on the side thereof. The test pulley 141 is made of an iron-based material S45C. The test piece 143 of the V-ribbed belt extends horizontally from the load cell 142 and is then wound around the test pulley 141. That is, the V-ribbed belt test piece 143 is provided such that the winding angle around the test pulley 141 is 90 °.
 実施例4-1~実施例4-9及び比較例4のそれぞれのVリブドベルトについて、切断して帯状の試験片143を作製し、その一端をロードセル142に固定して試験プーリ141に巻き掛け、他端に分銅144を取り付けて吊した。それに続いて、雰囲気温度25℃において、分銅144を引き下げようとする方向に試験プーリ141を43rpmの回転数で回転させ、回転開始後60秒の時点で、ロードセル142で試験片143における試験プーリ141とロードセル142との間の水平部分に負荷される張力Ttを計測した。なお、試験片143の試験プーリ141と分銅144との垂直部分に負荷される張力Tsは、分銅144の重さ分の17.15Nであった。そして、Eulerの式に基づいて下記式(1)により圧縮ゴム層の表面の乾燥時の摩擦係数μを求めた。なお、θ=π/2である。 About each of the V-ribbed belts of Example 4-1 to Example 4-9 and Comparative Example 4, a belt-like test piece 143 is cut, and one end thereof is fixed to the load cell 142 and wound around the test pulley 141. A weight 144 was attached to the other end and hung. Subsequently, at an ambient temperature of 25 ° C., the test pulley 141 is rotated at a rotation speed of 43 rpm in a direction to lower the weight 144, and at 60 seconds after the rotation starts, the test pulley 141 in the test piece 143 is loaded by the load cell 142. The tension Tt applied to the horizontal portion between the load cell 142 and the load cell 142 was measured. The tension Ts applied to the vertical part of the test pulley 141 and the weight 144 of the test piece 143 was 17.15 N corresponding to the weight of the weight 144. Then, the friction coefficient μ at the time of drying the surface of the compressed rubber layer was obtained by the following formula (1) based on the Euler formula. Note that θ = π / 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、試験プーリ141上に水を介在させ、その乾き際に同様の試験を実施し、そして、乾き際における摩擦係数から乾燥時における摩擦係数を引いた差を求めた。 Also, water was interposed on the test pulley 141, the same test was carried out when it was dried, and the difference obtained by subtracting the friction coefficient at the time of drying from the friction coefficient at the time of drying was obtained.
 <耐摩耗性評価ベルト走行試験>
 図18は、耐摩耗性評価用ベルト走行試験機150のプーリレイアウトを示す。
<Abrasion resistance evaluation belt running test>
FIG. 18 shows a pulley layout of the abrasion resistance evaluation belt running test machine 150.
 耐摩耗性評価用ベルト走行試験機150は、プーリ径φ60mmの駆動リブプーリ151とその右側方に設けられたプーリ径60mmの従動リブプーリ152とを備えている。従動リブプーリ152は、軸荷重(デッドウェイトDW)を負荷してVリブドベルトBに張力を付与できるように左右に可動に設けられている。 The belt running test machine 150 for wear resistance evaluation includes a driving rib pulley 151 having a pulley diameter of φ60 mm and a driven rib pulley 152 having a pulley diameter of 60 mm provided on the right side thereof. The driven rib pulley 152 is movably provided to the left and right so that an axial load (dead weight DW) can be applied and tension can be applied to the V-ribbed belt B.
 実施例4-1~実施例4-9及び比較例4のそれぞれのVリブドベルトについて、ベルト質量を測定した後、耐摩耗性評価用ベルト走行試験機150の駆動リブプーリ151及び従動リブプーリ152間に巻き掛け、従動リブプーリ152に対して右側方に490Nの軸荷重を負荷してVリブドベルトBに張力を与えると共に、5.9kW(8PS)の回転負荷をかけ、常温雰囲気下において駆動リブプーリ151を3500rpmの回転数で回転させてベルト走行させた。そして、走行開始から24時間後にベルト走行を停止し、Vリブドベルトのベルト質量を測定すると共に、質量減量を百分率で求めた。 For each of the V-ribbed belts of Examples 4-1 to 4-9 and Comparative Example 4, after measuring the belt mass, the belt is wound between the drive rib pulley 151 and the driven rib pulley 152 of the belt running test machine 150 for wear resistance evaluation. Hang and apply a shaft load of 490 N to the right side of the driven rib pulley 152 to apply tension to the V-ribbed belt B, and apply a rotational load of 5.9 kW (8 PS) to drive the driving rib pulley 151 at 3500 rpm in a normal temperature atmosphere. The belt was run at a rotational speed. Then, the belt running was stopped 24 hours after the start of running, the belt mass of the V-ribbed belt was measured, and the weight loss was obtained as a percentage.
 <耐屈曲疲労性評価ベルト走行試験>
 図19は、耐屈曲疲労性評価用ベルト走行試験機160のプーリレイアウトを示す。
<Bend fatigue test belt running test>
FIG. 19 shows a pulley layout of a belt running test machine 160 for evaluating bending fatigue resistance.
 耐屈曲疲労性評価用ベルト走行試験機160は、プーリ径がφ60mmの駆動リブプーリ161と、その上方に設けられたプーリ径がφ60mmの第1従動リブプーリ162aと、駆動リブプーリ161及び第1従動リブプーリ162aの中間部の右方に設けられたプーリ径がφ60mmの第2従動リブプーリ162bと、駆動リブプーリ161及び第1従動リブプーリ162aの中間部の右側に上下に間隔をおいて設けられた、各々、プーリ径がφ50mmの一対のアイドラプーリ163とを備えている。第1従動リブプーリ162aは、軸荷重(デッドウェイトDW)を負荷してVリブドベルトBに張力を付与できるように上下に可動に設けられている。なお、この耐屈曲疲労性評価用ベルト走行試験機160では、VリブドベルトBを背面側に曲げることにより、Vリブ先端に発生する歪みを大きくして屈曲疲労を加速させる。 The belt running test machine 160 for evaluating bending fatigue resistance includes a driving rib pulley 161 having a pulley diameter of φ60 mm, a first driven rib pulley 162a having a pulley diameter of φ60 mm provided above, a driving rib pulley 161 and a first driven rib pulley 162a. Pulleys provided on the right side of the intermediate portion of the second driven rib pulley 162b having a pulley diameter of φ60 mm and on the right side of the intermediate portions of the drive rib pulley 161 and the first driven rib pulley 162a, respectively, And a pair of idler pulleys 163 having a diameter of 50 mm. The first driven rib pulley 162a is provided movably up and down so as to apply a shaft load (dead weight DW) and apply tension to the V-ribbed belt B. In this belt running test machine 160 for evaluating bending fatigue resistance, bending fatigue is accelerated by bending the V-ribbed belt B to the back side to increase the strain generated at the tip of the V-rib.
 実施例4-1~実施例4-9及び比較例4のそれぞれのVリブドベルトについて、耐屈曲疲労性評価用ベルト走行試験機160に、圧縮ゴム層が駆動リブプーリ161並びに第1及び第2従動リブプーリ162a,162bに、また、背面ゴム層がアイドラプーリ163に、それぞれ接触するように巻き掛け、また、第1従動リブプーリ162aに対して上方に588Nの軸荷重を負荷してVリブドベルトBに張力を与え、70℃の雰囲気温度下において、駆動リブプーリ161を5100rpmの回転数で回転させてベルト走行させた。そして、定期的にベルト走行を停止すると共に、圧縮ゴム層にクラックが発生しているか否かを目視確認し、クラックの発生が確認されるまでのベルト走行時間をクラック発生寿命とした。 For each of the V-ribbed belts of Examples 4-1 to 4-9 and Comparative Example 4, the belt running tester 160 for evaluating bending fatigue resistance has a compression rubber layer as a driving rib pulley 161 and first and second driven rib pulleys. 162a and 162b, and the back rubber layer is wound around the idler pulley 163 so as to be in contact with each other, and an axial load of 588 N is applied to the first driven rib pulley 162a to apply tension to the V-ribbed belt B. The driving rib pulley 161 was rotated at a rotational speed of 5100 rpm under the atmospheric temperature of 70 ° C. to run the belt. The belt travel was periodically stopped and whether or not a crack was generated in the compressed rubber layer was visually confirmed, and the belt travel time until the occurrence of the crack was confirmed was defined as the crack generation life.
 (試験評価結果)
 試験結果を表2に示す。なお、以下、セルロース微細繊維の含有量は、特に記載しなくても、ゴム成分100質量部に対する質量部を意味する。
(Test evaluation results)
The test results are shown in Table 2. Hereinafter, the content of the cellulose fine fiber means a part by mass with respect to 100 parts by mass of the rubber component even if not particularly described.
 <平均繊維径・繊維径分布>
 実施例4-1~実施例4-9のそれぞれのVリブドベルトの圧縮ゴム層を形成するゴム組成物に含有されたセルロース微細繊維は、いずれも繊維径の分布が広いことが分かる。
<Average fiber diameter / fiber diameter distribution>
It can be seen that the cellulose fine fibers contained in the rubber compositions forming the compressed rubber layers of the V-ribbed belts of Examples 4-1 to 4-9 all have a wide fiber diameter distribution.
 <摩擦係数>
 比較例4の摩擦係数が0.6であったのに対し、実施例4-1~実施例4-9の摩擦係数は0.6~1.1の範囲であり、比較例4と同等又は比較例4よりも幾分大きいことが分かる。しかしながら、全ての実施例4-1~実施例4-9について、乾燥時の摩擦係数と乾き際の摩擦係数との変化量(増加量)は、比較例4の場合の0.9よりも小さいことが分かる。特に、セルロース微細繊維の含有量が5質量部以上である実施例4-3~実施例4-6、及びセルロース微細繊維とナイロン短繊維との両方を含む実施例4-7~実施例4-9では、増加量が-0.05~0.05と0に近く、従って、被水後の乾き際の摩擦係数の増加が抑制されていることが分かる。セルロース微細繊維の含有量が最も少ない(1質量部)実施例4-1の場合でも、摩擦係数の変化は0.5であり、比較例4に比べれば半分近い値であることが分かる。
<Friction coefficient>
The friction coefficient of Comparative Example 4 was 0.6, whereas the friction coefficients of Examples 4-1 to 4-9 were in the range of 0.6 to 1.1, which was equivalent to Comparative Example 4 or It can be seen that it is somewhat larger than Comparative Example 4. However, for all of Examples 4-1 to 4-9, the amount of change (increase) between the friction coefficient at the time of drying and the friction coefficient at the time of drying is smaller than 0.9 in the case of Comparative Example 4. I understand that. In particular, Examples 4-3 to 4-6 in which the content of cellulose fine fibers is 5 parts by mass or more, and Examples 4-7 to Examples 4-6 including both cellulose fine fibers and short nylon fibers 9 shows that the increase amount is -0.05 to 0.05, which is close to 0, and therefore, the increase in the coefficient of friction during drying after being flooded is suppressed. Even in the case of Example 4-1 with the smallest content of cellulose fine fibers (1 part by mass), it can be seen that the change in the friction coefficient is 0.5, which is nearly half that of Comparative Example 4.
 以上より、圧縮ゴム層を形成するゴム組成物にセルロース微細繊維を含有させることにより、被水後の摩擦係数の変化を抑制することができることが分かる。この効果は、ナイロン短繊維を含有させず、且つセルロース微細繊維のみを含有させた場合でも、また、ナイロン短繊維及びセルロース系微細繊維の両方を含有させた場合でも、どちらでも発揮されるものである。 From the above, it can be seen that the change in the coefficient of friction after water exposure can be suppressed by incorporating fine cellulose fibers into the rubber composition forming the compressed rubber layer. This effect is exhibited both in the case of not containing nylon short fibers and containing only cellulose fine fibers, or in the case of containing both nylon short fibers and cellulosic fine fibers. is there.
 <耐摩耗性>
 比較例4の質量減量が摩耗率3.2%に対し、セルロース微細繊維の含有量が1質量部である実施例4-1でも2.8%と改善しており、セルロース微細繊維の含有量が増加するほど耐摩耗性が向上することが分かる(実施例4-2~実施例4-6において、順に2.7、2.1、1.9、1.8、及び1.7)。但し、セルロース微細繊維の含有量が10質量部を越えると、それ以上に含有量を増やしても改善は小さいことが分かる(実施例4-4~実施例4-6)。
<Abrasion resistance>
The weight loss of Comparative Example 4 was improved to 2.8% in Example 4-1 in which the content of cellulose fine fibers was 1 part by mass with respect to the wear rate of 3.2%, and the content of cellulose fine fibers was It can be seen that the wear resistance is improved as the value increases (in Examples 4-2 to 4-6, 2.7, 2.1, 1.9, 1.8, and 1.7 in order). However, it can be seen that when the content of the fine cellulose fiber exceeds 10 parts by mass, the improvement is small even if the content is further increased (Examples 4-4 to 4-6).
 また、ナイロン短繊維が15質量部含有された比較例4の質量減量は3.2%であり、また、セルロース微細繊維の含有量が1質量部である実施例4-1では2.8%であるのに比べ、ナイロン短繊維の含有量が14質量部及びセルロース微細繊維の含有量が1質量部である実施例4-7では2.3%である。つまり、ナイロン短繊維及びセルロース微細繊維の両方を含有させることにより、耐摩耗性はより一層向上することが分かる。実施例4-7~実施例4-9では、セルロース微細繊維及びナイロン短繊維の含有量の合計は同じであるが、セルロース微細繊維の含有量の割合が増えるほど耐摩耗性が向上することが分かる。 Moreover, the mass loss of the comparative example 4 in which 15 mass parts of nylon short fibers were contained was 3.2%, and in Example 4-1 in which the content of cellulose fine fibers was 1 mass part, 2.8%. In Example 4-7 in which the content of short nylon fibers is 14 parts by mass and the content of fine cellulose fibers is 1 part by mass, it is 2.3%. That is, it can be seen that the wear resistance is further improved by including both nylon short fibers and cellulose fine fibers. In Examples 4-7 to 4-9, the total content of cellulose fine fibers and short nylon fibers is the same, but the wear resistance improves as the proportion of the content of cellulose fine fibers increases. I understand.
 <耐屈曲疲労性>
 ナイロン短繊維の含有量が15質量部である比較例4では、クラック発生寿命が520時間であったのに対し、セルロース微細繊維の含有量が1質量部である実施例4-1では、クラック発生寿命が1205時間であり、2倍以上に改善されているのが分かる。セルロース微細繊維の含有量を3質量部に増やすことで更にクラック発生寿命は改善されるが(実施例4-2)、それ以上増やすとむしろクラック発生寿命は短くなることが分かる(実施例4-3~実施例4-6)。但し、セルロース微細繊維の含有量が25質量部である実施例4-6でもクラック発生寿命は900時間であり、比較例4に比べれば大幅に改善している。
<Bending fatigue resistance>
In Comparative Example 4 in which the content of short nylon fibers was 15 parts by mass, the crack generation life was 520 hours, whereas in Example 4-1, in which the content of cellulose fine fibers was 1 part by mass, cracks were observed. It can be seen that the generation life is 1205 hours, which is improved more than twice. It can be seen that the crack generation life is further improved by increasing the content of the cellulose fine fiber to 3 parts by mass (Example 4-2), but if it is further increased, the crack generation life is rather shortened (Example 4- 3 to Example 4-6). However, even in Example 4-6 in which the content of fine cellulose fibers is 25 parts by mass, the crack generation life is 900 hours, which is a significant improvement over Comparative Example 4.
 セルロース微細繊維及びナイロン短繊維を併用する場合でも、比較例4よりも耐屈曲疲労性は向上することが分かる。また、セルロース微細繊維の含有量の割合が増える程耐屈曲疲労性が向上することが分かる(実施例4-7~実施例4-9)。 It can be seen that even when cellulose fine fibers and nylon short fibers are used in combination, the bending fatigue resistance is improved as compared with Comparative Example 4. It can also be seen that the bending fatigue resistance improves as the proportion of the content of cellulose fine fibers increases (Examples 4-7 to 4-9).
 以上のように、圧縮ゴム層を形成するゴム組成物にセルロース微細繊維を含有させることにより、摩擦係数の安定性(被水による変化の抑制)、耐摩耗性、耐屈曲疲労性等が改善したVリブドベルトを作製することができる。 As described above, by incorporating cellulose fine fibers into the rubber composition forming the compressed rubber layer, the friction coefficient stability (suppression of changes due to moisture), wear resistance, flex fatigue resistance, etc. have been improved. A V-ribbed belt can be produced.
 [実施形態3]
 (平ベルトC)
 図13は、実施形態3の平ベルトCを模式的に示す。実施形態3に係る平ベルトCは、例えば、送風機やコンプレッサーや発電機などの駆動伝達用途、自動車の補機駆動用途等の比較的高負荷条件下での使用において長寿命が要求される用途で用いられる動力伝達部材である。平ベルトCは、例えば、ベルト長さが600~3000mm、ベルト幅が10~20mm、及びベルト厚さが2~3.5mmである。
[Embodiment 3]
(Flat Belt C)
FIG. 13 schematically shows a flat belt C according to the third embodiment. The flat belt C according to the third embodiment is used in applications that require a long life in use under relatively high load conditions such as a drive transmission application such as a blower, a compressor, and a generator, and an auxiliary machine drive application of an automobile. It is the power transmission member used. The flat belt C has, for example, a belt length of 600 to 3000 mm, a belt width of 10 to 20 mm, and a belt thickness of 2 to 3.5 mm.
 実施形態3に係る平ベルトCは、ベルト内周側の内側ゴム層121とそのベルト外周側の接着ゴム層122と更にそのベルト外周側の外側ゴム層123とが積層されるように設けられて一体化した平ベルト本体120を備えている。接着ゴム層122には、そのベルト厚さ方向の中間部に、ベルト幅方向にピッチを有する螺旋を形成するように心線124が埋設されている。 The flat belt C according to the third embodiment is provided such that an inner rubber layer 121 on the inner peripheral side of the belt, an adhesive rubber layer 122 on the outer peripheral side of the belt, and an outer rubber layer 123 on the outer peripheral side of the belt are laminated. An integrated flat belt body 120 is provided. A core wire 124 is embedded in the adhesive rubber layer 122 so as to form a spiral having a pitch in the belt width direction at an intermediate portion in the belt thickness direction.
 内側ゴム層121、接着ゴム層122、及び外側ゴム層123は、それぞれ断面横長矩形の帯状に形成されており、ゴム成分に種々の配合剤が配合されて混練された未架橋ゴム組成物が加熱及び加圧されることにより架橋剤により架橋されたゴム組成物で形成されている。内側ゴム層121の厚さは、好ましくは0.3mm以上、より好ましくは0.5mm以上であり、また、好ましくは3.0mm以下、より好ましくは2.5mm以下である。接着ゴム層122の厚さは例えば0.6~1.5mmである。外側ゴム層123の厚さは例えば0.6~1.5mmである。 The inner rubber layer 121, the adhesive rubber layer 122, and the outer rubber layer 123 are each formed in a band shape having a horizontally long cross section, and an uncrosslinked rubber composition in which various compounding agents are blended and kneaded with a rubber component is heated. And it is formed with the rubber composition bridge | crosslinked by the crosslinking agent by being pressurized. The thickness of the inner rubber layer 121 is preferably 0.3 mm or more, more preferably 0.5 mm or more, and preferably 3.0 mm or less, more preferably 2.5 mm or less. The thickness of the adhesive rubber layer 122 is, for example, 0.6 to 1.5 mm. The thickness of the outer rubber layer 123 is, for example, 0.6 to 1.5 mm.
 内側ゴム層121、接着ゴム層122、及び外側ゴム層123を形成するゴム組成物のうち少なくとも1つは、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有する。内側ゴム層121、接着ゴム層122、及び外側ゴム層123を形成する全てのゴム組成物がかかるセルロース系微細繊維を含有することが好ましいが、少なくとも内側ゴム層121を形成するゴム組成物がかかるセルロース系微細繊維を含有することがより好ましい。 At least one of the rubber compositions forming the inner rubber layer 121, the adhesive rubber layer 122, and the outer rubber layer 123 contains cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm. It is preferable that all the rubber compositions forming the inner rubber layer 121, the adhesive rubber layer 122, and the outer rubber layer 123 contain such cellulosic fine fibers, but at least the rubber composition forming the inner rubber layer 121 is applied. It is more preferable to contain a cellulosic fine fiber.
 内側ゴム層121、接着ゴム層122、及び外側ゴム層123を形成するゴム組成物は、実施形態2の圧縮ゴム層111、接着ゴム層112、及び背面ゴム層113を形成するゴム組成物と同一の構成を有する。セルロース系微細繊維も実施形態2のものと同一の構成を有する。 The rubber composition that forms the inner rubber layer 121, the adhesive rubber layer 122, and the outer rubber layer 123 is the same as the rubber composition that forms the compression rubber layer 111, the adhesive rubber layer 112, and the back rubber layer 113 of the second embodiment. It has the composition of. Cellulose fine fibers also have the same configuration as that of the second embodiment.
 内側ゴム層121、接着ゴム層122、及び外側ゴム層123を形成するゴム組成物には、短繊維126が含有されていてもよい。特に内側ゴム層121を形成するゴム組成物には短繊維126が含有されていることが好ましい。その場合、短繊維126は、内側ゴム層121にベルト幅方向に配向するように含有されていることが好ましい。短繊維126は、実施形態2のものと同一の構成を有する。 The rubber composition forming the inner rubber layer 121, the adhesive rubber layer 122, and the outer rubber layer 123 may contain short fibers 126. In particular, the short rubber 126 is preferably contained in the rubber composition forming the inner rubber layer 121. In that case, the short fibers 126 are preferably contained in the inner rubber layer 121 so as to be oriented in the belt width direction. The short fiber 126 has the same configuration as that of the second embodiment.
 また、心線124は、実施形態2のものと同一の構成を有する。 Further, the core wire 124 has the same configuration as that of the second embodiment.
 実施形態3に係る平ベルトCによれば、このように平ベルト本体120を構成する内側ゴム層121、接着ゴム層122、及び外側ゴム層123を形成するゴム組成物のうち少なくとも1つが、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有することにより、優れた耐屈曲疲労性を得ることができる。また、特に接触部分を構成する内側ゴム層121を形成するゴム組成物がかかるセルロース系微細繊維を含有する場合には、高い耐摩耗性と共に、安定な摩擦係数を得ることができる。 According to the flat belt C according to the third embodiment, at least one of the rubber compositions forming the inner rubber layer 121, the adhesive rubber layer 122, and the outer rubber layer 123 that constitutes the flat belt main body 120 in this way is a fiber. By containing a cellulosic fine fiber having a diameter distribution range of 50 to 500 nm, excellent bending fatigue resistance can be obtained. In particular, when the rubber composition forming the inner rubber layer 121 constituting the contact portion contains such cellulosic fine fibers, a high friction resistance and a stable friction coefficient can be obtained.
 (平ベルトCの製造方法)
 実施形態3に係る平ベルトCの製造方法について、図14、図15及び図16に基づいて説明する。
(Manufacturing method of flat belt C)
A method for manufacturing the flat belt C according to the third embodiment will be described with reference to FIGS. 14, 15, and 16.
 実施形態3に係る平ベルトCの製造方法は、材料準備工程、成形工程、架橋工程、及び仕上げ工程を有する。 The manufacturing method of the flat belt C according to Embodiment 3 includes a material preparation process, a molding process, a crosslinking process, and a finishing process.
 <材料準備工程>
 内側ゴム層用、接着ゴム層用、及び外側ゴム層用の未架橋ゴムシート121’,122’,123’のうち、セルロース系微細繊維を含有させるものを、実施形態2と同様にして作製する。なお、セルロース系微細繊維を含有させないものの作製は、ゴム成分に各種のゴム配合剤を配合し、ニーダー、バンバリーミキサー等の混練機で混練し、得られた未架橋ゴム組成物をカレンダー成形等によってシート状に成形することにより行う。
<Material preparation process>
Among the uncrosslinked rubber sheets 121 ′, 122 ′, and 123 ′ for the inner rubber layer, the adhesive rubber layer, and the outer rubber layer, those containing cellulosic fine fibers are produced in the same manner as in the second embodiment. . In addition, the preparation of those not containing cellulosic fine fibers is carried out by blending various rubber compounding agents with the rubber component, kneading with a kneader such as a kneader or a Banbury mixer, and the resulting uncrosslinked rubber composition by calendar molding or the like. This is done by forming into a sheet.
 また、心線124’に対して実施形態2と同様にして接着処理を施す。 Further, the bonding process is performed on the core wire 124 ′ in the same manner as in the second embodiment.
 <成形工程>
 図14(a)に示すように、円筒金型145の外周に内側ゴム層用の未架橋ゴムシート121’を巻き付けた後、その上に接着ゴム層用の未架橋ゴムシート122’を巻き付ける。
<Molding process>
As shown in FIG. 14A, after the uncrosslinked rubber sheet 121 ′ for the inner rubber layer is wound around the outer periphery of the cylindrical mold 145, the uncrosslinked rubber sheet 122 ′ for the adhesive rubber layer is wound thereon.
 次いで、図14(b)に示すように、接着ゴム層用の未架橋ゴムシート122’の上に心線124’を螺旋状に巻きつけた後、その上に再び接着ゴム層用の未架橋ゴムシート122’を巻き付ける。 Next, as shown in FIG. 14 (b), a core wire 124 'is spirally wound on the uncrosslinked rubber sheet 122' for the adhesive rubber layer, and then again uncrosslinked for the adhesive rubber layer. A rubber sheet 122 'is wound.
 次いで、図14(c)に示すように、接着ゴム層用の未架橋ゴムシート122’の上に外側ゴム層用の未架橋ゴムシート123’を巻き付ける。これにより円筒金型145上に積層成形体C’が形成される。 Next, as shown in FIG. 14C, the uncrosslinked rubber sheet 123 'for the outer rubber layer is wound around the uncrosslinked rubber sheet 122' for the adhesive rubber layer. As a result, a laminated molded body C ′ is formed on the cylindrical mold 145.
 <架橋工程>
 続いて、図15に示すように、円筒金型145上の積層成形体C’にゴムスリーブ146を被せた後、それを加硫缶にセットして密閉し、高熱の水蒸気などにより円筒金型145を加熱すると共に、高圧をかけてゴムスリーブ146を円筒金型145側の半径方向に押圧する。このとき、積層成形体C’の未架橋ゴム組成物が流動すると共にゴム成分の架橋反応が進行し、加えて、心線124’の接着反応も進行し、これにより図16に示すように円筒金型145上に筒状のベルトスラブSが形成される。
<Crosslinking process>
Next, as shown in FIG. 15, after the laminated molded body C ′ on the cylindrical mold 145 is covered with a rubber sleeve 146, it is set in a vulcanizing can and sealed, and the cylindrical mold is heated with high-temperature steam or the like. While heating 145, high pressure is applied and the rubber sleeve 146 is pressed in the radial direction on the cylindrical mold 145 side. At this time, the uncrosslinked rubber composition of the laminated molded body C ′ flows, and the crosslinking reaction of the rubber component proceeds. In addition, the adhesion reaction of the core wire 124 ′ also proceeds. As a result, as shown in FIG. A cylindrical belt slab S is formed on the mold 145.
 <研磨・仕上げ工程>
 研磨・仕上げ工程では、加硫缶から円筒金型145を取り出し、円筒金型145上に形成された円筒状のベルトスラブSを脱型した後、その外周面及び/又は内周面を研磨して厚さを均一化させる。
<Polishing and finishing process>
In the polishing and finishing process, the cylindrical mold 145 is taken out from the vulcanizing can, the cylindrical belt slab S formed on the cylindrical mold 145 is removed, and then the outer peripheral surface and / or the inner peripheral surface is polished. To make the thickness uniform.
 最後に、ベルトスラブSを所定幅に幅切りすることにより平ベルトCが作製される。 Finally, a flat belt C is produced by cutting the belt slab S into a predetermined width.
  -実施例-
 [平ベルト]
 以下の実施例5-1~実施例5-6及び比較例5-1~比較例5-2の平ベルトを作製した。それぞれの詳細については表5にも示す。
-Example-
[Flat belt]
Flat belts of the following Example 5-1 to Example 5-6 and Comparative Example 5-1 to Comparative Example 5-2 were produced. Details of each are also shown in Table 5.
 <実施例5-1>
 実施例4-1と同様にしてセルロース微細繊維/EPDMのマスターバッチを作製した。
<Example 5-1>
A master batch of fine cellulose fiber / EPDM was produced in the same manner as in Example 4-1.
 続いて、EPDMを素練りすると共に、そこにマスターバッチを投入して混練した。マスターバッチの投入量は、トータルのEPDMを100質量部としたときのセルロース微細繊維の含有量が1質量部となる量とした。 Subsequently, EPDM was masticated, and a master batch was added thereto for kneading. The input amount of the master batch was such that the cellulose fine fiber content was 1 part by mass when the total EPDM was 100 parts by mass.
 そして、EPDMとセルロース微細繊維とを混練すると共に、そこに、EPDM100質量部に対し、HAFカーボンブラック(三菱化学社製 商品名:ダイヤブラックH)を40質量部、プロセスオイル(サン石油社製 商品名:サンパー2280)を5質量部、加工助剤としてのステアリン酸(新日本理化社製 商品名:ステアリン酸50S)を0.5質量部、加硫促進助剤としての酸化亜鉛(堺化学社製 商品名:酸化亜鉛3種)を5質量部、ベンズイミダゾール系老化防止剤(大内新興化学工業社製 商品名:ノクラックMB)を2質量部、及び架橋剤としての有機過酸化物(日油社製 商品名:ペロキシモンF-40 純度40質量%)を6質量部それぞれ投入して混練を継続することにより未架橋ゴム組成物を作製した。 And while kneading EPDM and cellulose fine fiber, with respect to 100 parts by mass of EPDM, 40 parts by mass of HAF carbon black (trade name: Diamond Black H) manufactured by Mitsubishi Chemical Co., Ltd., process oil (product manufactured by Sun Oil Co., Ltd.) Name: Thumper 2280) 5 parts by mass, stearic acid as a processing aid (manufactured by Shin Nippon Chemical Co., Ltd., trade name: stearic acid 50S) 0.5 parts by mass, zinc oxide as a vulcanization accelerator (Sakai Chemical Co., Ltd.) Product name: Zinc oxide (3 types) 5 parts by mass, benzimidazole anti-aging agent (Ouchi Shinsei Chemical Co., Ltd., product name: NOCRACK MB) 2 parts by mass, and organic peroxide (JP An uncrosslinked rubber composition was prepared by adding 6 parts by mass of each product (trade name: Peroximon F-40, purity 40% by mass) manufactured by Oil Co. and continuing kneading.
 この未架橋ゴム組成物を用い、列理方向がベルト幅方向となるように内側ゴム層を形成した実施形態3と同様の構成の実施例5-1の平ベルトを作製した。 Using this uncrosslinked rubber composition, a flat belt of Example 5-1 having the same configuration as that of Embodiment 3 in which the inner rubber layer was formed so that the line direction was the belt width direction was produced.
 実施例5-1のVリブドベルトは、ベルト長さが1118mm、ベルト幅が10mm、及びベルト厚さが2.8mmとした。なお、接着ゴム層及び外側ゴム層は、セルロース微細繊維及び短繊維を含有しないゴム組成物で形成し、心線は、接着処理を施したポリエステル繊維製の撚り糸で形成した。 The V-ribbed belt of Example 5-1 had a belt length of 1118 mm, a belt width of 10 mm, and a belt thickness of 2.8 mm. The adhesive rubber layer and the outer rubber layer were formed of a rubber composition not containing fine cellulose fibers and short fibers, and the core wire was formed of a twisted yarn made of polyester fiber subjected to an adhesion treatment.
 <実施例5-2>
 セルロース微細繊維の含有量がゴム成分100質量部に対して3質量部となるようにしたことを除いて実施例5-1と同様にして実施例5-2の平ベルトを作製した。
<Example 5-2>
A flat belt of Example 5-2 was produced in the same manner as in Example 5-1, except that the content of the fine cellulose fiber was 3 parts by mass with respect to 100 parts by mass of the rubber component.
 <実施例5-3>
 セルロース微細繊維の含有量がゴム成分100質量部に対して5質量部となるようにしたことを除いて実施例5-1と同様にして実施例5-3の平ベルトを作製した。
<Example 5-3>
A flat belt of Example 5-3 was produced in the same manner as in Example 5-1, except that the content of the fine cellulose fiber was 5 parts by mass with respect to 100 parts by mass of the rubber component.
 <実施例5-4>
 セルロース微細繊維の含有量がゴム成分100質量部に対して10質量部となるようにしたことを除いて実施例5-1と同様にして実施例5-4の平ベルトを作製した。
<Example 5-4>
A flat belt of Example 5-4 was produced in the same manner as in Example 5-1, except that the content of the cellulose fine fiber was 10 parts by mass with respect to 100 parts by mass of the rubber component.
 <実施例5-5>
 セルロース微細繊維の含有量がゴム成分100質量部に対して15質量部となるようにしたことを除いて実施例5-1と同様にして実施例5-5の平ベルトを作製した。
<Example 5-5>
A flat belt of Example 5-5 was produced in the same manner as in Example 5-1, except that the content of the fine cellulose fiber was 15 parts by mass with respect to 100 parts by mass of the rubber component.
 <実施例5-6>
 セルロース微細繊維の含有量がゴム成分100質量部に対して25質量部となるようにしたことを除いて実施例5-1と同様にして実施例5-6の平ベルトを作製した。
<Example 5-6>
A flat belt of Example 5-6 was produced in the same manner as Example 5-1, except that the content of cellulose fine fibers was 25 parts by mass with respect to 100 parts by mass of the rubber component.
 <比較例5-1>
 内側ゴム層を形成するゴム組成物にセルロース微細繊維を含有させていないことを除いて実施例5-1と同様にして比較例5-1の平ベルトを作製した。
<Comparative Example 5-1>
A flat belt of Comparative Example 5-1 was produced in the same manner as in Example 5-1, except that cellulose fine fibers were not contained in the rubber composition forming the inner rubber layer.
 <比較例5-2>
 内側ゴム層を形成するゴム組成物にセルロース微細繊維を含有させず、且つナイロン短繊維をゴム成分100質量部に対して5質量部含有させたことを除いて実施例5-1と同様にして比較例5-2の平ベルトを作製した。
<Comparative Example 5-2>
Except that the rubber composition forming the inner rubber layer does not contain fine cellulose fibers and 5 parts by mass of nylon short fibers with respect to 100 parts by mass of the rubber component, the same as Example 5-1. A flat belt of Comparative Example 5-2 was produced.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (試験評価方法)
 <平均繊維径・繊維径分布>
 実施例5-1~実施例5-6のそれぞれの平ベルトの内側ゴム層を形成するゴム組成物について試料を採取し、試験評価1と同様の方法により、セルロース微細繊維の平均繊維径、並びに繊維径の最大値及び最小値を求めた。
(Test evaluation method)
<Average fiber diameter / fiber diameter distribution>
Samples were collected from the rubber compositions forming the inner rubber layer of the flat belts of Examples 5-1 to 5-6, and the average fiber diameter of the cellulose fine fibers was measured in the same manner as in Test Evaluation 1. The maximum value and the minimum value of the fiber diameter were determined.
 <摩擦・摩耗特性評価ベルト走行試験>
 図20は、摩擦・摩耗特性評価用ベルト走行試験機170のプーリレイアウトを示す。
<Friction and wear characteristics evaluation belt running test>
FIG. 20 shows a pulley layout of the belt running test machine 170 for evaluating friction / wear characteristics.
 摩擦・摩耗特性評価用ベルト走行試験機170は、プーリ径φ120mmの駆動平プーリ171と、その上方に設けられたプーリ径120mmの第1従動平プーリ172と、それらの上下方向の中間位置における右方に設けられたプーリ径φ50mmの第2従動平プーリ173とを備えている。第2従動平プーリ173は、軸荷重(デッドウェイトDW)を負荷して平ベルトCに張力を付与できるように左右に可動に設けられている。 The belt running test machine 170 for evaluating friction / wear characteristics includes a driving flat pulley 171 having a pulley diameter of 120 mm, a first driven flat pulley 172 having a pulley diameter of 120 mm provided above the right driving pulley 171 and a right at an intermediate position between them. And a second driven flat pulley 173 having a pulley diameter of φ50 mm provided on the side. The second driven flat pulley 173 is movably provided to the left and right so as to apply an axial load (dead weight DW) and apply tension to the flat belt C.
 実施例5-1~実施例5-6及び比較例5-1~比較例5-2のそれぞれの平ベルトCについて、摩擦・摩耗特性評価用ベルト走行試験機170の駆動平プーリ171、第1及び第2従動平プーリ72,73間に巻き掛け、第2従動平プーリ173に対して右側方に98Nの軸荷重を負荷して平ベルトCに張力を与えると共に、第1従動平プーリ172に8.8kWの回転負荷をかけ、120℃の雰囲気温度下において駆動平プーリ171を4800rpmの回転数で回転させてベルト走行させた。そして、走行開始から24時間後にベルト走行を停止し、ベルト走行後の内側ゴム層の表面の摩擦係数を、図17に示す摩擦係数測定装置140を用いて試験評価1と同様の方法で求めた。なお、試験プーリ141として、プーリ径φ65mmの平プーリを用いた。 For each flat belt C of Example 5-1 to Example 5-6 and Comparative Example 5-1 to Comparative Example 5-2, the driving flat pulley 171 of the belt running test machine 170 for evaluating friction and wear characteristics, the first The second driven flat pulleys 72 and 73 are wound around, and a 98 N axial load is applied to the right side of the second driven flat pulley 173 to apply tension to the flat belt C. The belt was run by applying a rotational load of 8.8 kW and rotating the drive pulley 171 at a rotational speed of 4800 rpm under an ambient temperature of 120 ° C. Then, the belt running was stopped 24 hours after the running started, and the friction coefficient of the surface of the inner rubber layer after the belt running was obtained by the same method as in Test Evaluation 1 using the friction coefficient measuring device 140 shown in FIG. . As the test pulley 141, a flat pulley having a pulley diameter of φ65 mm was used.
 また、ベルト走行時間を500時間として同様の試験を実施すると共に、ベルト走行時間を24時間とした場合との摩擦係数の変化量を算出した。 In addition, the same test was performed with the belt running time set to 500 hours, and the amount of change in the friction coefficient was calculated when the belt running time was set to 24 hours.
 更に、24時間のベルト走行後における駆動平プーリ171、第1及び第2従動平プーリ72,73の走行面を目視観察して表面状態を官能評価し、ゴムの付着量及び質感から程度の状態の粘着摩耗発生指数を以下のように数値判定した。 Further, the running surface of the driving flat pulley 171 and the first and second driven flat pulleys 72 and 73 after the belt running for 24 hours is visually observed to perform a sensory evaluation of the surface state, and the state from the amount of rubber adhesion and texture The sticking wear occurrence index was numerically determined as follows.
 粘着質の消しゴムのカス状のものが付着している場合:100
 粉状の付着物がある場合:50、
 付着物が無い場合:0
 ここで、まとまり難いゴムは粉状になり、ベルト表面から脱落する傾向にある。耐摩耗性が良好であっても、摩耗粉の状態が悪いと摩耗粉が異物となり、製品価値は低く評価される。
When sticky eraser residue is attached: 100
When there is a powdery deposit: 50,
When there is no deposit: 0
Here, the rubber that is difficult to collect becomes powdery and tends to fall off the belt surface. Even if the wear resistance is good, if the state of the wear powder is poor, the wear powder becomes a foreign substance, and the product value is evaluated low.
 <耐摩耗性評価ベルト走行試験>
 図21は、耐摩耗性評価用ベルト走行試験機180のプーリレイアウトを示す。
<Abrasion resistance evaluation belt running test>
FIG. 21 shows a pulley layout of the belt running test machine 180 for evaluating wear resistance.
 耐摩耗性評価用ベルト走行試験機180は、プーリ径φ100mmの駆動平プーリ181とその左側方に設けられたプーリ径100mmの従動平プーリ182とを備えている。駆動平プーリ181は、軸荷重(デッドウェイトDW)を負荷して平ベルトCに張力を付与できるように左右に可動に設けられている。 The belt running test machine 180 for wear resistance evaluation includes a driving flat pulley 181 having a pulley diameter of φ100 mm and a driven flat pulley 182 having a pulley diameter of 100 mm provided on the left side thereof. The driving flat pulley 181 is provided so as to be movable left and right so as to apply an axial load (dead weight DW) and apply tension to the flat belt C.
 実施例5-1~実施例5-6及び比較例5-1~比較例5-2のそれぞれの平ベルトCについて、ベルト質量を測定した後、耐摩耗性評価用ベルト走行試験機180の駆動平プーリ181及び従動平プーリ182間に巻き掛け、駆動平プーリ181に対して右側方に300Nの軸荷重を負荷して平ベルトCに張力を与えると共に、従動平プーリ182に12N・mの回転トルクを負荷し、100℃の雰囲気温度下において駆動平プーリ181を2000rpmの回転数で回転させてベルト走行させた。そして、走行開始から24時間後にベルト走行を停止し、平ベルトCのベルト質量を測定すると共に、質量減量を求め、比較例5-1の質量減量を100として相対値を算出した。 For each flat belt C of Example 5-1 to Example 5-6 and Comparative Example 5-1 to Comparative Example 5-2, the belt mass was measured, and then the belt running tester 180 for wear resistance evaluation was driven. Wrapped between the flat pulley 181 and the driven flat pulley 182 to apply a shaft load of 300 N to the right side of the driving flat pulley 181 to apply tension to the flat belt C, and rotate the driven flat pulley 182 by 12 N · m. Torque was applied, and the drive flat pulley 181 was rotated at a rotational speed of 2000 rpm under the atmospheric temperature of 100 ° C. to run the belt. Then, the belt running was stopped 24 hours after the start of running, the belt mass of the flat belt C was measured, the weight loss was determined, and the relative value was calculated with the weight loss of Comparative Example 5-1 being 100.
 (試験評価結果)
 試験結果を表5に示す。なお、以下、セルロース微細繊維の含有量は、特に記載しなくても、ゴム成分100質量部に対する質量部を意味する。
(Test evaluation results)
The test results are shown in Table 5. Hereinafter, the content of the cellulose fine fiber means a part by mass with respect to 100 parts by mass of the rubber component even if not particularly described.
 <平均繊維径・繊維径分布>
 実施例5-1~実施例5-6のそれぞれの平ベルトの内側ゴム層を形成するゴム組成物に含有されたセルロース微細繊維は、いずれも繊維径の分布が広いことが分かる。
<Average fiber diameter / fiber diameter distribution>
It can be seen that the cellulose fine fibers contained in the rubber composition forming the inner rubber layer of each flat belt of Example 5-1 to Example 5-6 all have a wide fiber diameter distribution.
 <摩擦・摩耗特性>
 ―摩擦係数―
 比較例5-1の24時間ベルト走行後の摩擦係数は0.85であったのに対し、実施例5-1及び実施例5-2でも同じ0.85であり、ゴム成分100質量部に対するセルロース微細繊維の含有量が1乃至3質量部程度では、摩擦係数に変化が認められない。セルロース微細繊維の含有量を更に増やす(実施例5-3~実施例5-6)と幾分低下し、25質量部(実施例5-6)では0.6となっているのが分かる。
<Friction and wear characteristics>
-Coefficient of friction-
The coefficient of friction after running the belt for 24 hours in Comparative Example 5-1 was 0.85, whereas in Example 5-1 and Example 5-2, the same coefficient was 0.85, which was 100 parts by weight of the rubber component. When the cellulose fine fiber content is about 1 to 3 parts by mass, no change is observed in the friction coefficient. It can be seen that when the content of the fine cellulose fiber is further increased (Examples 5-3 to 5-6), the content decreases somewhat, and at 25 parts by mass (Example 5-6), it is 0.6.
 尚、ナイロン短繊維を5質量部配合している比較例5-2の場合、摩擦係数が0.75となっており、セルロース微細繊維の含有量が10質量部である実施例5-4の場合と同じである。 In addition, in the case of Comparative Example 5-2 in which 5 parts by mass of nylon short fibers are blended, the friction coefficient is 0.75, and the content of cellulose fine fibers is 10 parts by mass. Same as the case.
 500時間ベルト走行後の摩擦係数は、24時間ベルト走行後の摩擦係数と比較すると、比較例5-1及び比較例5-2において順に0.35及び0.25と低下しているのに対し、実施例5-1~実施例5-6では最大でも0.15の低下(実施例5-1及び2-2)である。セルロース微細繊維の含有量が多くなると低下は更に小さくなり、10質量部以上含有されていると(実施例5-4~実施例5-6)、24時間ベルト走行後及び500時間ベルト走行後の摩擦係数は同じ値になっているのが分かる。 The friction coefficient after running the belt for 500 hours, compared with the friction coefficient after running the belt for 24 hours, decreases in order of 0.35 and 0.25 in Comparative Example 5-1 and Comparative Example 5-2. In Examples 5-1 to 5-6, the decrease is 0.15 at the maximum (Examples 5-1 and 2-2). When the content of cellulose fine fiber is increased, the decrease is further reduced. When the content is 10 parts by mass or more (Example 5-4 to Example 5-6), after running the belt for 24 hours and after running the belt for 500 hours. It can be seen that the coefficient of friction is the same value.
 以上のことから、セルロース微細繊維を含有するゴム組成物により内側ゴム層を形成することにより、摩擦係数の経時変化が小さい平ベルトを得ることができることが分かる。 From the above, it can be seen that a flat belt having a small change in friction coefficient with time can be obtained by forming the inner rubber layer from a rubber composition containing fine cellulose fibers.
 ―粘着摩耗発生指数―
 比較例5-1及び比較例5-2の粘着摩耗発生指数は100及び90という評価であるのに対し、セルロース微細繊維を含有するゴム組成物を用いた場合、その含有量が最も少ない(1質量部)実施例5-1でも粘着摩耗発生指数が45であり、顕著に改善していることが分かる。含有量を増やすことで更に粘着摩耗発生指数は改善し、セルロース微細繊維を25質量部含有した実施例5-6では、評価は10(ベルト表面の付着物は少なく、且つ、粘着性の低い粉体状のものが多い)となっているのが分かる。
-Adhesive wear index-
In Comparative Examples 5-1 and 5-2, the adhesive wear occurrence index is evaluated as 100 and 90, whereas when a rubber composition containing cellulose fine fibers is used, the content is the smallest (1 (Mass part) In Example 5-1, the adhesive wear occurrence index is 45, which shows that it is remarkably improved. By increasing the content, the adhesive wear occurrence index was further improved, and in Example 5-6 containing 25 parts by mass of cellulose fine fibers, the evaluation was 10 (powder with less adhesion on the belt surface and low adhesive powder) It can be seen that there are many body-shaped ones).
 ナイロン短繊維を含有する比較例5-2の場合、比較例5-1に比べれば改善が見られるが、顕著なものではない。 In the case of Comparative Example 5-2 containing nylon short fibers, an improvement is seen as compared with Comparative Example 5-1, but this is not remarkable.
 以上のことから、セルロース微細繊維を含有するゴム組成物により内側ゴム層を形成することにより、平ベルトの粘着摩耗発生指数が改善されることが分かる。 From the above, it can be seen that the adhesive wear occurrence index of the flat belt is improved by forming the inner rubber layer with the rubber composition containing cellulose fine fibers.
 <耐摩耗性>
 比較例5-1及び比較例5-2の耐摩耗性の評価は100であるのに対し、セルロース微細繊維の含有量が1質量部である実施例5-1でも65と改善しており、含有量を更に増やすことで評価は更に改善していることが分かる。但し、セルロース微細繊維の含有量が3~25質量部の範囲(実施例5-2~実施例5-6)において評価は50又は45であり、セルロース微細繊維の含有量を増加させても耐摩耗性の改善は飽和する傾向が見られる。
<Abrasion resistance>
The evaluation of abrasion resistance of Comparative Example 5-1 and Comparative Example 5-2 is 100, whereas Example 5-1 in which the content of cellulose fine fibers is 1 part by mass is improved to 65, It can be seen that the evaluation is further improved by further increasing the content. However, the evaluation is 50 or 45 when the content of cellulose fine fiber is in the range of 3 to 25 parts by mass (Example 5-2 to Example 5-6), and even if the content of cellulose fine fiber is increased, The improvement in wear tends to saturate.
 [実施形態4]
 (歯付ベルトB)
 図22は、実施形態4に係る歯付ベルトBを示す。
[Embodiment 4]
(Toothed belt B)
FIG. 22 shows a toothed belt B according to the fourth embodiment.
 実施形態4に係る歯付ベルトBは、ゴム組成物で形成されたエンドレスの歯付ベルト本体310を備えている。歯付ベルト本体310は、平帯状の基部311aと、その一方側、つまり、内周側の面にベルト長さ方向に間隔をおいて一定ピッチで一体に設けられた複数の歯部311bとを有する。歯付ベルト本体310には、その歯部側表面を被覆するように歯部側補強布312が貼設されている。また、歯付ベルト本体310における基部311aの内周側には、ベルト幅方向にピッチを有する螺旋を形成するように心線313が埋設されている。実施形態4に係る歯付ベルトBは、例えば、工作機械等におけるベルト伝動装置、特に、稼動時間が年間3~120時間程度の工作機械におけるベルト伝動装置の動力伝達部材として好適に用いられる。実施形態4に係る歯付ベルトBは、例えば、ベルト長さが500~3000mm、ベルト幅が10~200mm、及びベルト厚さが3~20mmである。また、歯部311bは、例えば、幅0.63~16.46mm、高さ0.37~9.6mm、及びピッチ1.0~31.75mmである。 The toothed belt B according to Embodiment 4 includes an endless toothed belt body 310 formed of a rubber composition. The toothed belt main body 310 includes a flat belt-like base portion 311a and a plurality of tooth portions 311b that are integrally provided at a constant pitch at intervals in the belt length direction on one side, that is, the inner peripheral surface. Have. A tooth side reinforcing cloth 312 is attached to the toothed belt main body 310 so as to cover the tooth side surface thereof. A core wire 313 is embedded on the inner peripheral side of the base 311a of the toothed belt main body 310 so as to form a spiral having a pitch in the belt width direction. The toothed belt B according to the fourth embodiment is suitably used as a power transmission member of, for example, a belt transmission device in a machine tool or the like, in particular, a belt transmission device in a machine tool having an operation time of about 3 to 120 hours per year. The toothed belt B according to Embodiment 4 has, for example, a belt length of 500 to 3000 mm, a belt width of 10 to 200 mm, and a belt thickness of 3 to 20 mm. Further, the tooth portion 311b has, for example, a width of 0.63 to 16.46 mm, a height of 0.37 to 9.6 mm, and a pitch of 1.0 to 31.75 mm.
 歯付ベルト本体310の歯部311bは、側面視形状が台形である台形歯であってもよく、また、半円形である丸歯であってもよく、更には、その他の形状であってもよい。歯部311bは、ベルト幅方向に延びるように形成されていても、また、ベルト幅方向に対して傾斜する方向に延びるように形成されたハス歯であっても、どちらでもよい。 The tooth portion 311b of the toothed belt main body 310 may be a trapezoidal tooth having a trapezoidal shape when viewed from the side, may be a semicircular round tooth, and may have other shapes. Good. The tooth portion 311b may be formed so as to extend in the belt width direction, or may be a helical tooth formed so as to extend in a direction inclined with respect to the belt width direction.
 歯付ベルト本体310は、ゴム成分に、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維に加えて各種のゴム配合剤が配合されて混練された未架橋ゴム組成物が加熱及び加圧されて架橋剤により架橋したゴム組成物で形成されている。このように歯付ベルト本体310を形成するゴム組成物が、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有することにより、歯付ベルトBの耐久性を向上させることができる。ここで、本願における「微細繊維」とは、繊維径が1.0μm以下の繊維を意味する。 In the toothed belt main body 310, an uncrosslinked rubber composition obtained by mixing and kneading various rubber compounding agents in addition to cellulose fine fibers containing a fiber diameter distribution range of 50 to 500 nm in a rubber component is heated and added. It is formed of a rubber composition that is pressed and crosslinked with a crosslinking agent. As described above, the rubber composition forming the toothed belt body 310 contains the cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm, whereby the durability of the toothed belt B can be improved. . Here, “fine fiber” in the present application means a fiber having a fiber diameter of 1.0 μm or less.
 歯付ベルト本体310を形成するゴム組成物のゴム成分としては、例えば、水素添加アクリロニトリルゴム(H-NBR)、不飽和カルボン酸金属塩で強化された水素添加アクリロニトリルゴム(H-NBR)、エチレン・プロピレンコポリマー(EPR)、エチレン・プロピレン・ジエンターポリマー(EPDM)、エチレン・オクテンコポリマー、エチレン・ブテンコポリマーなどのエチレン-α-オレフィンエラストマー、クロロプレンゴム(CR)、及びクロロスルホン化ポリエチレンゴム(CSM)等が挙げられる。歯付ベルト本体310を形成するゴム組成物のゴム成分は、これらのうちの1種又は2種以上のブレンドゴムであることが好ましい。 Examples of the rubber component of the rubber composition forming the toothed belt main body 310 include hydrogenated acrylonitrile rubber (H-NBR), hydrogenated acrylonitrile rubber reinforced with unsaturated carboxylic acid metal salt (H-NBR), ethylene, and the like. -Ethylene-α-olefin elastomers such as propylene copolymer (EPR), ethylene-propylene-diene terpolymer (EPDM), ethylene-octene copolymer, ethylene-butene copolymer, chloroprene rubber (CR), and chlorosulfonated polyethylene rubber (CSM) ) And the like. The rubber component of the rubber composition forming the toothed belt main body 310 is preferably a blend rubber of one or more of these.
 不飽和カルボン酸金属塩で強化されたH-NBRでは、不飽和カルボン酸としては、例えば、メタクリル酸、アクリル酸等が挙げられ、また、金属としては、例えば、亜鉛、カルシウム、マグネシウム、アルミニウム等が挙げられる。 In H-NBR reinforced with an unsaturated carboxylic acid metal salt, examples of the unsaturated carboxylic acid include methacrylic acid and acrylic acid, and examples of the metal include zinc, calcium, magnesium, aluminum and the like. Is mentioned.
 セルロース系微細繊維は、植物繊維を細かくほぐすことで得られる植物細胞壁の骨格成分で構成されたセルロース微細繊維を由来とする繊維材料である。セルロース系微細繊維の原料植物としては、例えば、木、竹、稲(稲わら)、じゃがいも、サトウキビ(バガス)、水草、海藻等が挙げられる。これらのうち木が好ましい。 Cellulosic fine fiber is a fiber material derived from cellulose fine fiber composed of a skeletal component of a plant cell wall obtained by finely loosening plant fiber. Examples of the cellulosic fine fiber plant include wood, bamboo, rice (rice straw), potato, sugar cane (bagasse), aquatic plants, seaweed and the like. Of these, wood is preferred.
 セルロース系微細繊維は、セルロース微細繊維自体であっても、また、疎水化処理された疎水化セルロース微細繊維であっても、どちらでもよい。また、セルロース系微細繊維として、セルロース微細繊維自体と疎水化セルロース微細繊維とを併用してもよい。分散性の観点からは、セルロース系微細繊維は、疎水化セルロース微細繊維を含むことが好ましい。疎水化セルロース微細繊維としては、セルロースの水酸基の一部又は全部が疎水性基に置換されたセルロース微細繊維、及び表面処理剤によって疎水化表面処理されたセルロース微細繊維が挙げられる。 The cellulose-based fine fiber may be either the cellulose fine fiber itself or a hydrophobic cellulose fine fiber that has been subjected to a hydrophobic treatment. Moreover, you may use together cellulose fine fiber itself and hydrophobized cellulose fine fiber as a cellulosic fine fiber. From the viewpoint of dispersibility, the cellulosic fine fibers preferably include hydrophobized cellulose fine fibers. Examples of the hydrophobized cellulose fine fibers include cellulose fine fibers in which some or all of the hydroxyl groups of cellulose are substituted with hydrophobic groups, and cellulose fine fibers that have been subjected to a hydrophobized surface treatment with a surface treatment agent.
 セルロースの水酸基の一部又は全部が疎水性基に置換されたセルロース微細繊維を得るための疎水化としては、例えば、エステル化(アシル化)(アルキルエステル化、複合エステル化、β-ケトエステル化など)、アルキル化、トシル化、エポキシ化、アリール化等が挙げられる。これらのうちエステル化が好ましい。具体的には、エステル化された疎水化セルロース微細繊維は、セルロースの水酸基の一部又は全部が、酢酸、無水酢酸、プロピオン酸、酪酸等のカルボン酸、若しくは、そのハロゲン化物(特に塩化物)によりアシル化されたセルロース微細繊維である。表面処理剤によって疎水化表面処理されたセルロース微細繊維を得るための表面処理剤としては、例えば、シランカップリング剤等が挙げられる。 Examples of hydrophobization for obtaining cellulose fine fibers in which part or all of the hydroxyl groups of cellulose are substituted with hydrophobic groups include esterification (acylation) (alkyl esterification, complex esterification, β-ketoesterification, etc.) ), Alkylation, tosylation, epoxidation, arylation and the like. Of these, esterification is preferred. Specifically, in the esterified hydrophobized cellulose fine fiber, part or all of the hydroxyl groups of cellulose are carboxylic acids such as acetic acid, acetic anhydride, propionic acid, butyric acid, or halides thereof (particularly chlorides). It is the cellulose fine fiber acylated by. Examples of the surface treatment agent for obtaining cellulose fine fibers hydrophobized and surface-treated with the surface treatment agent include silane coupling agents.
 セルロース系微細繊維は、歯付ベルトBの耐久性を向上させる観点から、繊維径の分布が広いことが好ましく、繊維径の分布範囲は50~500nmを含む。その繊維径の分布の下限は、その観点から、好ましくは20nm以下、より好ましくは10nm以下である。上限は、同じ観点から、好ましくは700nm以上、より好ましくは1μm以上である。セルロース系微細繊維の繊維径の分布範囲は、20nm~700mmを含むことが好ましく、10nm~1μmを含むことがより好ましい。 The cellulosic fine fibers preferably have a wide fiber diameter distribution from the viewpoint of improving the durability of the toothed belt B, and the fiber diameter distribution range includes 50 to 500 nm. From the viewpoint, the lower limit of the fiber diameter distribution is preferably 20 nm or less, more preferably 10 nm or less. From the same viewpoint, the upper limit is preferably 700 nm or more, more preferably 1 μm or more. The fiber diameter distribution range of the cellulosic fine fibers preferably includes 20 nm to 700 mm, and more preferably includes 10 nm to 1 μm.
 歯付ベルト本体310を形成するゴム組成物に含有されるセルロース系微細繊維の平均繊維径は、好ましくは10nm以上、より好ましくは20nm以上であり、また、好ましくは700nm以下、より好ましくは100nm以下である。 The average fiber diameter of the cellulosic fine fibers contained in the rubber composition forming the toothed belt body 310 is preferably 10 nm or more, more preferably 20 nm or more, and preferably 700 nm or less, more preferably 100 nm or less. It is.
 セルロース系微細繊維の繊維径の分布は、歯付ベルト本体310を形成するゴム組成物の試料を凍結粉砕した後、その断面を透過型電子顕微鏡(TEM)で観察すると共に、50本のセルロース系微細繊維を任意に選択して繊維径を測定し、その測定結果に基づいて求められる。また、セルロース系微細繊維の平均繊維径は、その任意に選択した50本のセルロース系微細繊維の繊維径の数平均として求められる。 The distribution of the fiber diameter of the cellulosic fine fibers was determined by freeze-grinding a sample of the rubber composition forming the toothed belt main body 310, and then observing the cross section with a transmission electron microscope (TEM). A fine fiber is arbitrarily selected, the fiber diameter is measured, and obtained based on the measurement result. The average fiber diameter of the cellulosic fine fibers is obtained as the number average of the fiber diameters of 50 arbitrarily selected cellulosic fine fibers.
 セルロース系微細繊維は、機械的解繊手段によって製造された高アスペクト比のものであっても、また、化学的解繊手段によって製造された針状結晶のものであっても、どちらでもよい。これらのうち、機械的解繊手段によって製造されたものが好ましい。また、セルロース系微細繊維として、機械的解繊手段によって製造されたものと化学的解繊手段によって製造されたものとを併用してもよい。機械的解繊手段に用いる解繊装置としては、例えば、二軸混練機などの混練機、高圧ホモジナイザー、グラインダー、ビーズミル等が挙げられる。化学的解繊手段に用いる処理としては、例えば、酸加水分解処理等が挙げられる。 The cellulosic fine fibers may be either high aspect ratio manufactured by mechanical defibrating means, or needle-shaped crystals manufactured by chemical defibrating means. Of these, those manufactured by mechanical defibrating means are preferred. Moreover, you may use together what was manufactured by the mechanical defibration means, and what was manufactured by the chemical defibration means as a cellulose fine fiber. Examples of the defibrating apparatus used for the mechanical defibrating means include a kneader such as a twin-screw kneader, a high-pressure homogenizer, a grinder, and a bead mill. Examples of the treatment used for the chemical defibrating means include acid hydrolysis treatment.
 歯付ベルト本体310を形成するゴム組成物におけるセルロース系微細繊維の含有量は、歯付ベルトBの耐久性を向上させる観点から、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは5質量部以上であり、また、好ましくは30質量部以下、より好ましくは20質量部以下、更に好ましくは10質量部以下である。 From the viewpoint of improving the durability of the toothed belt B, the content of the cellulosic fine fibers in the rubber composition forming the toothed belt body 310 is preferably 1 part by weight or more with respect to 100 parts by weight of the rubber component. More preferably, it is 3 parts by mass or more, more preferably 5 parts by mass or more, preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and still more preferably 10 parts by mass or less.
 ゴム配合剤としては、補強材、加工助剤、加硫促進助剤、可塑剤、共架橋剤、架橋剤、加硫促進剤、老化防止剤等が挙げられる。 Examples of rubber compounding agents include reinforcing materials, processing aids, vulcanization acceleration aids, plasticizers, co-crosslinking agents, crosslinking agents, vulcanization accelerators, anti-aging agents, and the like.
 補強材としては、カーボンブラックでは、例えば、チャネルブラック;SAF、ISAF、N-339、HAF、N-351、MAF、FEF、SRF、GPF、ECF、N-234などのファーネスブラック;FT、MTなどのサーマルブラック;アセチレンブラック等が挙げられる。補強材としてはシリカも挙げられる。補強材は、これらのうち1種又は2種以上であることが好ましい。補強材の含有量は、ゴム組成物のゴム成分100質量部に対して例えば20~60質量部である。 As the reinforcing material, carbon black, for example, channel black; furnace black such as SAF, ISAF, N-339, HAF, N-351, MAF, FEF, SRF, GPF, ECF, N-234; FT, MT, etc. Thermal black; acetylene black and the like. Silica is also mentioned as the reinforcing material. It is preferable that a reinforcing material is 1 type, or 2 or more types among these. The content of the reinforcing material is, for example, 20 to 60 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
 加工助剤としては、例えば、ステアリン酸、ポリエチレンワックス、脂肪酸の金属塩等が挙げられる。加工助剤は、これらのうち1種又は2種以上であることが好ましい。加工助剤の含有量は、ゴム組成物のゴム成分100質量部に対して例えば0.5~2質量部である。 Examples of processing aids include stearic acid, polyethylene wax, and fatty acid metal salts. Among these, the processing aid is preferably one or more. The content of the processing aid is, for example, 0.5 to 2 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
 加硫促進助剤としては、例えば、酸化亜鉛(亜鉛華)や酸化マグネシウムなどの金属酸化物、金属炭酸塩、脂肪酸及びその誘導体等が挙げられる。加硫促進助剤は、これらのうち1種又は2種以上であることが好ましい。加硫促進助剤の含有量は、ゴム組成物のゴム成分100質量部に対して例えば3~7質量部である。 Examples of the vulcanization acceleration aid include metal oxides such as zinc oxide (zinc white) and magnesium oxide, metal carbonates, fatty acids and derivatives thereof. Among these, the vulcanization acceleration aid is preferably one or more. The content of the vulcanization acceleration aid is, for example, 3 to 7 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
 可塑剤としては、例えば、ジブチルフタレート(DBP)、ジオクチルフタレート(DOP)などのジアルキルフタレート、ジオクチルアジペート(DOA)などのジアルキルアジペート、ジオクチルセバケート(DOS)などのジアルキルセバケート等が挙げられる。可塑剤は、これらのうち1種又は2種以上であることが好ましい。可塑剤の含有量は、ゴム成分100質量部に対して例えば0.1~40質量部である。 Examples of the plasticizer include dialkyl phthalates such as dibutyl phthalate (DBP) and dioctyl phthalate (DOP), dialkyl adipates such as dioctyl adipate (DOA), and dialkyl sebacates such as dioctyl sebacate (DOS). It is preferable that a plasticizer is 1 type, or 2 or more types among these. The plasticizer content is, for example, 0.1 to 40 parts by mass with respect to 100 parts by mass of the rubber component.
 共架橋剤としては、例えば、液状NBRなどの液状ゴム等が挙げられる。共架橋剤は、1種又は2種以上であることが好ましい。共架橋剤の含有量は、ゴム成分100質量部に対して例えば3~7質量部である。 Examples of the co-crosslinking agent include liquid rubber such as liquid NBR. The co-crosslinking agent is preferably one type or two or more types. The content of the co-crosslinking agent is, for example, 3 to 7 parts by mass with respect to 100 parts by mass of the rubber component.
 架橋剤としては、硫黄及び有機過酸化物が挙げられる。架橋剤として、硫黄が配合されていてもよく、また、有機過酸化物が配合されていてもよく、更には、それらの両方が併用されていてもよい。架橋剤の配合量は、硫黄の場合、ゴム組成物のゴム成分100質量部に対して例えば1~5質量部であり、有機過酸化物の場合、ゴム組成物のゴム成分100質量部に対して例えば1~5質量部である。 Examples of the crosslinking agent include sulfur and organic peroxides. As a crosslinking agent, sulfur may be blended, an organic peroxide may be blended, or both of them may be used in combination. The amount of the crosslinking agent is, for example, 1 to 5 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition in the case of sulfur, and 100 parts by mass of the rubber component of the rubber composition with respect to the organic peroxide. For example, 1 to 5 parts by mass.
 加硫促進剤としては、例えば、チウラム系(例えばTETD、TT、TRAなど)、チアゾール系(例えばMBT、MBTSなど)、スルフェンアミド系(例えばCZなど)、ジチオカルバミン酸塩系(例えばBZ-Pなど)のもの等が挙げられる。加硫促進剤は、これらのうち1種又は2種以上であることが好ましい。加硫促進剤の含有量は、ゴム組成物のゴム成分100質量部に対して例えば2~5質量部である。 Examples of the vulcanization accelerator include thiuram (eg, TETD, TT, TRA, etc.), thiazole (eg, MBT, MBTS, etc.), sulfenamide (eg, CZ), dithiocarbamate (eg, BZ-P). Etc.). It is preferable that a vulcanization accelerator is 1 type, or 2 or more types among these. The content of the vulcanization accelerator is, for example, 2 to 5 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
 老化防止剤としては、例えば、アミン-ケトン系老化防止剤、ジアミン系老化防止剤、フェノール系老化防止剤等が挙げられる。老化防止剤は、これらのうち1種又は2種以上であることが好ましい。老化防止剤の含有量は、ゴム成分100質量部に対して例えば0.1~5質量部である。 Examples of the anti-aging agent include amine-ketone anti-aging agents, diamine anti-aging agents, phenol anti-aging agents and the like. It is preferable that an anti-aging agent is 1 type, or 2 or more types among these. The content of the anti-aging agent is, for example, 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber component.
 なお、歯付ベルト本体310を形成するゴム組成物には、繊維径が10μm以上の短繊維が含まれていてもよい。 Note that the rubber composition forming the toothed belt main body 310 may contain short fibers having a fiber diameter of 10 μm or more.
 歯部側補強布312は、例えば、綿、ポリアミド繊維、ポリエステル繊維、アラミド繊維等の糸で形成された織布、編物、不織布等の布材で構成されている。歯部側補強布312は伸性を有することが好ましい。歯部側補強布312の厚さは例えば0.3~2.0mmである。歯部側補強布312には、歯付ベルト本体310との接着のための接着処理が施されている。 The tooth part side reinforcing cloth 312 is made of a cloth material such as a woven fabric, a knitted fabric, or a non-woven fabric formed of yarns such as cotton, polyamide fiber, polyester fiber, and aramid fiber. It is preferable that the tooth part side reinforcing cloth 312 has extensibility. The thickness of the tooth side reinforcing cloth 312 is, for example, 0.3 to 2.0 mm. The tooth part side reinforcing cloth 312 is subjected to an adhesion process for adhesion to the toothed belt main body 310.
 心線313は、ガラス繊維、アラミド繊維、ポリアミド繊維、ポリエステル繊維等で形成された撚り糸で構成されている。心線313の直径は例えば0.5~2.5mmであり、断面における相互に隣接する心線中心間の寸法は例えば0.05~0.20mmである。心線313には、歯付ベルト本体310に対する接着性を付与するための接着処理が施されている。 The core wire 313 is composed of a twisted yarn formed of glass fiber, aramid fiber, polyamide fiber, polyester fiber or the like. The diameter of the core wire 313 is, for example, 0.5 to 2.5 mm, and the dimension between adjacent core wire centers in the cross section is, for example, 0.05 to 0.20 mm. The core wire 313 is subjected to an adhesive treatment for imparting adhesiveness to the toothed belt main body 310.
 以上の構成の実施形態4に係る歯付ベルトBによれば、基部311a及び歯部311bを含む歯付ベルト本体310を形成するゴム組成物が、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有することにより、その優れた補強効果が得られ、特に歯部311bの欠けが抑止され、また、優れた耐油性を得ることもでき、その結果、高い耐久性を得ることができる。 According to the toothed belt B according to the fourth embodiment having the above-described configuration, the rubber composition forming the toothed belt main body 310 including the base portion 311a and the tooth portion 311b includes cellulose having a fiber diameter distribution range of 50 to 500 nm. By containing the system fine fiber, its excellent reinforcing effect can be obtained, and in particular, chipping of the tooth portion 311b can be suppressed, and excellent oil resistance can be obtained, and as a result, high durability can be obtained. it can.
 (歯付ベルトBの製造方法)
 実施形態4に係る歯付ベルトBの製造方法について、図23~図26に基づいて説明する。
(Manufacturing method of toothed belt B)
A method for manufacturing the toothed belt B according to the fourth embodiment will be described with reference to FIGS.
 図23は、実施形態4に係る歯付ベルトBの製造に用いるベルト成形型320を示す。 FIG. 23 shows a belt forming die 320 used for manufacturing the toothed belt B according to the fourth embodiment.
 このベルト成形型320は、円筒状であって、その外周面に、軸方向に延びる歯部形成溝321が周方向に間隔をおいて一定ピッチで形成されている。 The belt forming die 320 has a cylindrical shape, and tooth portion forming grooves 321 extending in the axial direction are formed on the outer peripheral surface thereof at a constant pitch with an interval in the circumferential direction.
 実施形態4に係る歯付ベルトの製造方法は、材料準備工程、成形工程、架橋工程、及び仕上げ工程を有する。 The method for manufacturing a toothed belt according to Embodiment 4 includes a material preparation process, a molding process, a crosslinking process, and a finishing process.
 <材料準備工程>
 ―基部及び歯部用の未架橋ゴムシート311’―
 まず、素練りしているゴム成分にセルロース系微細繊維を投入して混練することにより分散させる。
<Material preparation process>
-Uncrosslinked rubber sheet 311 'for base and teeth-
First, cellulosic fine fibers are put into a kneaded rubber component and dispersed by kneading.
 ここで、ゴム成分へのセルロース系微細繊維の分散方法としては、例えば、セルロース系微細繊維を水に分散させた分散体(ゲル)を、オープンロールで素練りしているゴム成分に投入し、それらを混練しながら水分を気化させる方法、セルロース系微細繊維を水に分散させた分散体(ゲル)とゴムラテックスとを混合して水分を気化させて得られたセルロース系微細繊維/ゴムのマスターバッチを、素練りしているゴム成分に投入する方法、セルロース系微細繊維を溶剤に分散させた分散液とゴム成分を溶剤に溶解させた溶液とを混合して溶剤を気化させて得られたセルロース系微細繊維/ゴムのマスターバッチを、素練りしているゴム成分に投入する方法、セルロース系微細繊維を水に分散させた分散体(ゲル)を凍結乾燥させて粉砕したものを、素練りしているゴム成分に投入する方法、疎水化したセルロース系微細繊維を素練りしているゴム成分に投入する方法等が挙げられる。 Here, as a method for dispersing the cellulose-based fine fibers in the rubber component, for example, a dispersion (gel) in which the cellulose-based fine fibers are dispersed in water is added to the rubber component kneaded with an open roll, A method of vaporizing moisture while kneading them, a master of cellulose fine fibers / rubber obtained by mixing a dispersion (gel) in which cellulosic fine fibers are dispersed in water and rubber latex to vaporize the moisture Obtained by mixing the batch into a rubber component that has been masticated, mixing a dispersion in which cellulosic fine fibers are dispersed in a solvent, and a solution in which the rubber component is dissolved in the solvent, and evaporating the solvent. Cellulose fine fiber / rubber masterbatch is put into the kneaded rubber component, dispersion (gel) in which cellulose fine fiber is dispersed in water is freeze-dried and pulverized And what, how to put into a rubber component is masticated, methods and the like to introduce cellulosic microfibers made hydrophobic in rubber component is masticated.
 次いで、ゴム成分とセルロース系微細繊維とを混練しながら、各種のゴム配合剤を投入して混練を継続する。 Next, while kneading the rubber component and the cellulosic fine fiber, various rubber compounding agents are added and kneading is continued.
 そして、得られた未架橋ゴム組成物をカレンダー成形等によってシート状に成形して基部及び歯部用の未架橋ゴムシート311’を作製する。 Then, the obtained uncrosslinked rubber composition is formed into a sheet shape by calendar molding or the like to produce an uncrosslinked rubber sheet 311 'for the base and teeth.
 ―歯部側補強布312’―
 歯部側補強布312’に対して接着処理を施す。具体的には、歯部側補強布312’に、RFL水溶液に浸漬して加熱するRFL接着処理を施す。また、必要に応じて、RFL接着処理前に下地接着処理液に浸漬して加熱する下地接着処理を施す。また、必要に応じて、RFL接着処理後にゴム糊に浸漬して乾燥させるソーキングゴム糊接着処理、及び/又は、歯付ベルト本体310側となる面にゴム糊をコーティングして乾燥させるコーティングゴム糊接着処理を施す。
-Tooth side reinforcing cloth 312'-
Adhesive treatment is applied to the tooth side reinforcing cloth 312 ′. Specifically, the tooth side reinforcing cloth 312 ′ is subjected to an RFL adhesion treatment in which it is immersed in an RFL aqueous solution and heated. Further, if necessary, a base adhesion treatment in which the substrate is immersed in a base adhesion treatment solution and heated is performed before the RFL adhesion treatment. In addition, if necessary, a soaking rubber paste bonding treatment that is immersed in rubber paste after the RFL bonding treatment and / or drying, and / or a coating rubber paste that is coated with rubber paste on the surface on the toothed belt body 310 side and dried. Apply adhesive treatment.
 次いで、接着処理を施した歯部側補強布312’の両端を接合して筒状に形成する。 Next, both ends of the tooth side reinforcing cloth 312 ′ subjected to the adhesion treatment are joined to form a cylindrical shape.
 -心線313’-
 心線313’に対して接着処理を施す。具体的には、心線313’に、レゾルシン・ホルマリン・ラテックス水溶液(以下「RFL水溶液」という。)に浸漬して加熱するRFL接着処理を施す。また、必要に応じて、RFL接着処理前に下地接着処理液に浸漬して加熱する下地接着処理、及び/又は、RFL接着処理後にゴム糊に浸漬して乾燥させるゴム糊接着処理を施す。
-Core 313'-
An adhesive treatment is applied to the core wire 313 ′. Specifically, the core wire 313 ′ is subjected to an RFL adhesion treatment in which it is immersed in a resorcin / formalin / latex aqueous solution (hereinafter referred to as “RFL aqueous solution”) and heated. In addition, if necessary, a base adhesive treatment in which the substrate is immersed in a base adhesive treatment solution and heated before the RFL adhesive treatment and / or a rubber paste adhesive treatment in which the RFL adhesive treatment is immersed in rubber paste and dried are performed.
 <成形工程>
 図24に示すように、ベルト成形型320の外周に筒状の歯部側補強布312’を被せ、その上から心線313’を螺旋状に巻き付け、更にその上から未架橋ゴムシート311’を巻き付ける。このとき、ベルト成形型320上には積層成形体B’が形成される。なお、未架橋ゴムシート311’は、列理方向がベルト長さ方向に対応するように使用しても、また、列理方向がベルト幅方向に対応するように使用しても、どちらでもよい。
<Molding process>
As shown in FIG. 24, a cylindrical tooth portion side reinforcing cloth 312 ′ is placed on the outer periphery of the belt mold 320, and a core wire 313 ′ is wound spirally thereon, and further, an uncrosslinked rubber sheet 311 ′ is formed thereon. Wrap. At this time, a laminated molded body B ′ is formed on the belt mold 320. The uncrosslinked rubber sheet 311 ′ may be used so that the line direction corresponds to the belt length direction, or the line direction may correspond to the belt width direction. .
 <架橋工程>
 図25に示すように、積層成形体B’の外周に離型紙322を巻き付けた後、その上からゴムスリーブ323を被せ、それを加硫缶内に配置して密閉すると共に、加硫缶内に高温及び高圧の蒸気を充填して所定の成型時間だけ保持する。このとき、積層成形体B’における未架橋ゴムシートが歯部側補強布312’を押圧しながら流動してベルト成形型320の歯部形成溝321に流入し、また、その架橋が進行し、且つそれと歯部側補強布312’及び心線313’とが複合一体化し、最終的に、図26に示すように、円筒状のベルトスラブSが成型される。なお、ベルトスラブSの成型温度は例えば100~180℃、成型圧力は例えば0.5~2.0MPa、及び成型時間は例えば10~60分である。
<Crosslinking process>
As shown in FIG. 25, after the release paper 322 is wound around the outer periphery of the laminated molded body B ′, a rubber sleeve 323 is placed on the outer periphery, and the rubber sleeve 323 is placed and sealed in the vulcanizing can. Is filled with high-temperature and high-pressure steam and held for a predetermined molding time. At this time, the uncrosslinked rubber sheet in the laminated molded body B ′ flows while pressing the tooth portion side reinforcing cloth 312 ′ and flows into the tooth portion forming groove 321 of the belt forming die 320, and the crosslinking proceeds, And the tooth part side reinforcing cloth 312 ′ and the core wire 313 ′ are combined and integrated, and finally, a cylindrical belt slab S is formed as shown in FIG. The molding temperature of the belt slab S is, for example, 100 to 180 ° C., the molding pressure is, for example, 0.5 to 2.0 MPa, and the molding time is, for example, 10 to 60 minutes.
 <仕上げ工程>
 加硫缶の内部を減圧して密閉を解き、ベルト成形型320とゴムスリーブ323との間に成型されたベルトスラブSを取り出して脱型し、その背面側を研磨して厚さ調整を行った後、所定幅に輪切りすることにより歯付ベルトBが製造される。
<Finishing process>
The inside of the vulcanizing can is depressurized to release the seal, the belt slab S molded between the belt mold 320 and the rubber sleeve 323 is taken out and demolded, and the back side is polished to adjust the thickness. After that, the toothed belt B is manufactured by cutting into a predetermined width.
 [実施形態5]
 (歯付ベルトB)
 実施形態5に係る歯付ベルトBは、外観構成が実施形態4と同一であるので、以下では図22に基づいて説明する。
[Embodiment 5]
(Toothed belt B)
Since the external configuration of the toothed belt B according to the fifth embodiment is the same as that of the fourth embodiment, a description will be given below based on FIG.
 実施形態5に係る歯付ベルトBでは、歯付ベルト本体310における基部311aを形成するゴム組成物は、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有している。一方、歯部311bを形成するゴム組成物は、かかるセルロース系微細繊維を含有していない。なお、歯部311bを形成するゴム組成物は、繊維径の分布範囲が50~500nmを含まないセルロース系微細繊維を含有していてもよい。 In the toothed belt B according to the fifth embodiment, the rubber composition forming the base 311a in the toothed belt main body 310 contains cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm. On the other hand, the rubber composition forming the tooth portion 311b does not contain such cellulosic fine fibers. The rubber composition forming the tooth portion 311b may contain cellulosic fine fibers whose fiber diameter distribution range does not include 50 to 500 nm.
 その他の構成は実施形態4と同一である。 Other configurations are the same as those in the fourth embodiment.
 以上の構成の実施形態5に係る歯付ベルトBによれば、基部311aを形成するゴム組成物が、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有することにより、その優れた補強効果が得られ、また、優れた耐油性を得ることもでき、その結果、高い耐久性を得ることができる。 According to the toothed belt B according to the fifth embodiment having the above-described configuration, the rubber composition forming the base 311a is superior in that it contains cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm. The reinforcing effect can be obtained, and excellent oil resistance can be obtained. As a result, high durability can be obtained.
 (歯付ベルトBの製造方法)
 実施形態5に係る歯付ベルトBの製造方法では、材料準備工程において、実施形態4と同様、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有する基部用の未架橋ゴムシート311a’を作製する。また、ゴム成分に各種のゴム配合剤を配合し、ニーダー、バンバリーミキサー等の混練機で混練して得られた繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有しない未架橋ゴム組成物を、ベルト成形型320の歯部形成溝321の形状に形成した歯部用の未架橋ゴム311b’を作製する。
(Manufacturing method of toothed belt B)
In the manufacturing method of the toothed belt B according to the fifth embodiment, in the material preparation step, as in the fourth embodiment, an uncrosslinked rubber sheet for a base containing cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm is used. 311a ′ is produced. In addition, uncrosslinked rubber containing no cellulosic fine fiber having a fiber diameter distribution range of 50 to 500 nm obtained by blending various rubber compounding agents with a rubber component and kneading with a kneader such as a kneader or Banbury mixer. An uncrosslinked rubber 311 b ′ for a tooth part, in which the composition is formed in the shape of the tooth part forming groove 321 of the belt mold 320, is prepared.
 そして、成形工程において、図27に示すように、ベルト成形型320の外周に筒状の歯部側補強布312’を被せると共に歯部形成溝321に沿わせた後、図28に示すように、各歯部形成溝321に歯部用の未架橋ゴム311b’を嵌め入れ、図29に示すように、その上から心線313’を螺旋状に巻き付け、更にその上から基部用の未架橋ゴムシート311a’を巻き付けことにより積層成形体B’を形成する。架橋工程では、積層成形体B’における歯部用の未架橋ゴム311b’及び基部用の未架橋ゴムシート311a’の架橋が進行し、且つそれと歯部側補強布312’及び心線313’とが複合一体化し、最終的に、実施形態4における図26に示すのと同様の円筒状のベルトスラブSが成型される。 Then, in the molding step, as shown in FIG. 27, the outer periphery of the belt mold 320 is covered with a cylindrical tooth side reinforcing cloth 312 ′ and along the tooth part forming groove 321, then, as shown in FIG. Then, the uncrosslinked rubber 311b ′ for the tooth portion is fitted into each tooth portion forming groove 321, and as shown in FIG. 29, the core wire 313 ′ is spirally wound from above, and the unbridged portion for the base portion is further wound thereon. A laminated molded body B ′ is formed by winding the rubber sheet 311a ′. In the cross-linking step, cross-linking of the uncrosslinked rubber 311b ′ for teeth and the uncrosslinked rubber sheet 311a ′ for base in the laminated molded body B ′ proceeds, and the tooth side reinforcing cloth 312 ′ and the core wire 313 ′. Finally, a cylindrical belt slab S similar to that shown in FIG. 26 in the fourth embodiment is molded.
 その他の方法は実施形態4と同一である。 Other methods are the same as those in the fourth embodiment.
 [実施形態6]
 (歯付ベルトB)
 実施形態6に係る歯付ベルトBは、外観構成が実施形態4と同一であるので、以下では図22に基づいて説明する。
[Embodiment 6]
(Toothed belt B)
Since the external configuration of the toothed belt B according to the sixth embodiment is the same as that of the fourth embodiment, the following description is based on FIG.
 実施形態6に係る歯付ベルトBでは、歯付ベルト本体310における歯部311bを形成するゴム組成物は、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有している。一方、基部311aを形成するゴム組成物は、かかるセルロース系微細繊維を含有していない。なお、基部311aを形成するゴム組成物は、繊維径の分布範囲が50~500nmを含まないセルロース系微細繊維を含有していてもよい。 In the toothed belt B according to the sixth embodiment, the rubber composition forming the tooth portion 311b in the toothed belt main body 310 contains cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm. On the other hand, the rubber composition forming the base 311a does not contain such cellulosic fine fibers. Note that the rubber composition forming the base 311a may contain cellulosic fine fibers whose fiber diameter distribution range does not include 50 to 500 nm.
 その他の構成は実施形態4と同一である。 Other configurations are the same as those in the fourth embodiment.
 以上の構成の実施形態6に係る歯付ベルトBによれば、歯部311bを形成するゴム組成物が、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有することにより、その優れた補強効果が得られ、特に歯部311bの欠けが抑止され、また、優れた耐油性を得ることもでき、その結果、高い耐久性を得ることができる。 According to the toothed belt B according to the sixth embodiment having the above configuration, the rubber composition forming the tooth portion 311b contains cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm. An excellent reinforcing effect can be obtained, in particular, chipping of the tooth portion 311b can be suppressed, and excellent oil resistance can be obtained. As a result, high durability can be obtained.
 (歯付ベルトBの製造方法)
 実施形態6に係る歯付ベルトBの製造方法では、材料準備工程において、実施形態4と同様、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有する歯部用の未架橋ゴム組成物を混練し、それをベルト成形型320の歯部形成溝321の形状に形成した歯部用の未架橋ゴム311b’を作製する。また、ゴム成分に各種のゴム配合剤を配合し、ニーダー、バンバリーミキサー等の混練機で混練して得られたかかるセルロース系微細繊維を含有しない未架橋ゴム組成物をカレンダー成形等によってシート状に成形して基部用の未架橋ゴムシート311a’を作製する。
(Manufacturing method of toothed belt B)
In the manufacturing method of the toothed belt B according to the sixth embodiment, in the material preparation step, as in the fourth embodiment, the uncrosslinked rubber for the tooth portion containing the cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm as in the fourth embodiment The composition is kneaded, and an uncrosslinked rubber 311 b ′ for the tooth portion, which is formed into the shape of the tooth portion forming groove 321 of the belt mold 320, is produced. Further, by blending various rubber compounding agents with the rubber component and kneading with a kneader such as a kneader or a Banbury mixer, the uncrosslinked rubber composition not containing such cellulosic fine fibers is formed into a sheet by calendar molding or the like. An uncrosslinked rubber sheet 311a ′ for the base is formed by molding.
 そして、成形工程において、実施形態5における図27に示すのと同様に、ベルト成形型320の外周に筒状の歯部側補強布312’を被せると共に歯部形成溝321に沿わせた後、図28に示すのと同様に、各歯部形成溝321に歯部用の未架橋ゴム311b’を嵌め入れ、図29に示すのと同様に、その上から心線313’を螺旋状に巻き付け、更にその上から基部用の未架橋ゴムシート311a’を巻き付けことにより積層成形体B’を形成する。架橋工程では、積層成形体B’における歯部用の未架橋ゴム311b’及び基部用の未架橋ゴムシート311a’の架橋が進行し、且つそれと歯部側補強布312’及び心線313’とが複合一体化し、最終的に、実施形態4における図26に示すのと同様の円筒状のベルトスラブSが成型される。 Then, in the molding step, as shown in FIG. 27 in the fifth embodiment, after covering the outer periphery of the belt mold 320 with the cylindrical tooth side reinforcing cloth 312 ′ and along the tooth part forming groove 321, As shown in FIG. 28, uncrosslinked rubber 311b ′ for teeth is inserted into each tooth forming groove 321 and the core wire 313 ′ is spirally wound from above, as shown in FIG. Further, a laminated molded body B ′ is formed by winding an uncrosslinked rubber sheet 311a ′ for the base portion thereon. In the cross-linking step, cross-linking of the uncrosslinked rubber 311b ′ for teeth and the uncrosslinked rubber sheet 311a ′ for base in the laminated molded body B ′ proceeds, and the tooth side reinforcing cloth 312 ′ and the core wire 313 ′. Finally, a cylindrical belt slab S similar to that shown in FIG. 26 in the fourth embodiment is molded.
 その他の方法は実施形態4と同一である。 Other methods are the same as those in the fourth embodiment.
 [実施形態7]
 (歯付ベルトB)
 実施形態7に係る歯付ベルトBは、外観構成が実施形態4と同一であるので、以下では図22に基づいて説明する。
[Embodiment 7]
(Toothed belt B)
Since the external configuration of the toothed belt B according to the seventh embodiment is the same as that of the fourth embodiment, a description will be given below based on FIG.
 実施形態7に係る歯付ベルトBでは、歯部側補強布312に、RFL水溶液に浸漬して加熱するRFL接着処理が施されている。これにより、歯部側補強布312は、図30に示すように、RFL接着処理により形成されたRFL接着層314を介して歯付ベルト本体310に接着されている。なお、RFL接着処理の前には、エポキシ樹脂やイソシアネート樹脂(ブロックイソシアネート)等の下地接着処理剤をトルエン等の溶剤に溶解させた溶液、或いは、水に分散させた分散液からなる下地接着処理液に浸漬して加熱する下地接着処理が施され、RFL接着層314の下に下地接着層が設けられていることが好ましい。また、RFL接着処理の後に、ゴム糊に浸漬して乾燥させるソーキングゴム糊接着処理、及び歯付ベルト本体310側となる面にゴム糊をコーティングして乾燥させるコーティングゴム糊接着処理のうち1種又は2種のゴム糊接着処理が施され、RFL接着層314の上にゴム糊接着層が設けられていてもよい。 In the toothed belt B according to the seventh embodiment, the tooth portion side reinforcing cloth 312 is subjected to an RFL adhesion treatment in which it is immersed in an RFL aqueous solution and heated. As a result, the tooth side reinforcing cloth 312 is adhered to the toothed belt main body 310 via the RFL adhesive layer 314 formed by the RFL adhesion process, as shown in FIG. In addition, before the RFL adhesion treatment, a foundation adhesion treatment comprising a solution obtained by dissolving a foundation adhesion treatment agent such as an epoxy resin or an isocyanate resin (block isocyanate) in a solvent such as toluene, or a dispersion liquid dispersed in water. It is preferable that a base adhesion treatment in which the substrate is immersed in a liquid and heated is performed, and a base adhesive layer is provided under the RFL adhesive layer 314. Further, after RFL adhesion treatment, one kind of soaking rubber glue adhesion treatment that is immersed in rubber glue and dried, and coating rubber glue adhesion treatment that coats and drys the rubber glue on the surface on the toothed belt body 310 side Alternatively, two types of rubber glue adhesion treatment may be performed, and a rubber glue adhesion layer may be provided on the RFL adhesion layer 314.
 RFL接着層314は、RFL水溶液に含まれる固形分により形成されており、レゾルシン・ホルマリン樹脂(RF樹脂)とゴムラテックス由来のゴム成分とを含む。また、RFL接着層314は、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有する。RFL接着層314に含まれるセルロース系微細繊維は、実施形態4における歯付ベルト本体310に含まれるのと同一の構成である。このようにRFL接着層314が、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有することにより、歯部側補強布312の歯付ベルト本体310への高い接着力を得ることができる。 The RFL adhesive layer 314 is formed of a solid content contained in the RFL aqueous solution, and includes a resorcin / formalin resin (RF resin) and a rubber component derived from rubber latex. The RFL adhesive layer 314 contains cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm. The cellulosic fine fibers contained in the RFL adhesive layer 314 have the same configuration as that contained in the toothed belt main body 310 in the fourth embodiment. As described above, the RFL adhesive layer 314 contains a cellulosic fine fiber having a fiber diameter distribution range of 50 to 500 nm, thereby obtaining a high adhesive force of the tooth side reinforcing fabric 312 to the toothed belt body 310. Can do.
 RFL接着層314では、セルロース系微細繊維は特定の方向に配向しておらず、無配向である。 In the RFL adhesive layer 314, the cellulosic fine fibers are not oriented in a specific direction and are not oriented.
 RFL接着層314におけるセルロース系微細繊維の含有量は、歯部側補強布312の歯付ベルト本体310への高い接着性を得る観点から、好ましくは0.5質量%以上、より好ましくは1.0質量%以上、更に好ましくは2.0質量%以上であり、また、好ましくは12質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下である。 The content of the cellulosic fine fibers in the RFL adhesive layer 314 is preferably 0.5% by mass or more, more preferably 1.% from the viewpoint of obtaining high adhesion of the tooth side reinforcing fabric 312 to the toothed belt body 310. It is 0 mass% or more, More preferably, it is 2.0 mass% or more, Preferably it is 12 mass% or less, More preferably, it is 10 mass% or less, More preferably, it is 8 mass% or less.
 RFL接着層314におけるゴム成分100質量部に対するセルロース系微細繊維の含有量は、歯部側補強布312の歯付ベルト本体310への高い接着性を得る観点から、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは5質量部以上であり、また、好ましくは30質量部以下、より好ましくは20質量部以下、更に好ましくは10質量部以下である。 The content of the cellulosic fine fibers with respect to 100 parts by mass of the rubber component in the RFL adhesive layer 314 is preferably 1 part by mass or more from the viewpoint of obtaining high adhesion to the toothed belt body 310 of the tooth side reinforcing cloth 312. Preferably it is 3 mass parts or more, More preferably, it is 5 mass parts or more, Preferably it is 30 mass parts or less, More preferably, it is 20 mass parts or less, More preferably, it is 10 mass parts or less.
 なお、RFL接着層314には、繊維径が10μm以上の短繊維が含まれていないことが好ましいが、歯部側補強布312の歯付ベルト本体310への接着性を阻害しない範囲でかかる短繊維が含まれていてもよい。 The RFL adhesive layer 314 preferably does not contain short fibers having a fiber diameter of 10 μm or more. However, the RFL adhesive layer 314 is short as long as the adhesiveness of the tooth portion side reinforcing cloth 312 to the toothed belt main body 310 is not hindered. Fibers may be included.
 なお、歯付ベルト本体310の基部311aを形成するゴム組成物には、実施形態4及び実施形態5と同様にセルロース系微細繊維を含んでいても、また、セルロース系微細繊維を含んでいなくても、どちらでもよい。歯付ベルト本体310の歯部311bを形成するゴム組成物には、実施形態4及び実施形態6と同様にセルロース系微細繊維を含んでいても、また、セルロース系微細繊維を含んでいなくても、どちらでもよい。 Note that the rubber composition forming the base 311a of the toothed belt main body 310 may contain cellulosic fine fibers as in the fourth and fifth embodiments, and may not contain cellulosic fine fibers. Or either. The rubber composition forming the tooth portion 311b of the toothed belt main body 310 may contain cellulosic fine fibers as in the fourth and sixth embodiments, and may not contain cellulosic fine fibers. Or either.
 その他の構成は実施形態4と同一である。 Other configurations are the same as those in the fourth embodiment.
 以上の構成の実施形態7に係る歯付ベルトBによれば、歯部側補強布312と歯付ベルト本体310との間に設けられたRFL接着層314が、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有していることにより、歯部側補強布312の歯付ベルト本体310への高い接着力を得ることができることから、その優れた補強効果が得られ、特に歯部311bの欠けが抑止され、その結果、高い耐久性を得ることができる。 According to the toothed belt B according to the seventh embodiment configured as described above, the RFL adhesive layer 314 provided between the tooth portion side reinforcing cloth 312 and the toothed belt body 310 has a fiber diameter distribution range of 50 to 50. By containing the cellulosic fine fibers containing 500 nm, it is possible to obtain a high adhesive force of the tooth side reinforcing cloth 312 to the toothed belt main body 310, so that an excellent reinforcing effect is obtained. The chipping of the portion 311b is suppressed, and as a result, high durability can be obtained.
 (歯付ベルトBの製造方法)
 実施形態7に係る歯付ベルトBの製造方法では、材料準備工程において、歯部側補強布312’の作製の際に、歯部側補強布312’に対して接着処理を施す。具体的には、歯部側補強布312’に対して、RFL水溶液に浸漬して加熱するRFL接着処理を施す。また、RFL接着処理前に下地接着処理液に浸漬して加熱する下地接着処理を施すことが好ましい。なお、RFL接着処理後に、ゴム糊に浸漬して乾燥させるソーキングゴム糊接着処理、及び歯付ベルト本体310側となる面にゴム糊をコーティングして乾燥させるコーティングゴム糊接着処理のうち1種又は2種のゴム糊接着処理を施してもよい。
(Manufacturing method of toothed belt B)
In the manufacturing method of the toothed belt B according to the seventh embodiment, in the material preparation process, when the tooth portion side reinforcing cloth 312 ′ is manufactured, the tooth portion side reinforcing cloth 312 ′ is bonded. Specifically, an RFL adhesion treatment is performed on the tooth portion side reinforcing cloth 312 ′ by immersing it in an RFL aqueous solution and heating it. Moreover, it is preferable to perform the foundation | substrate adhesion | attachment process which immerses in a foundation | substrate adhesion | attachment processing liquid and heats before RFL adhesion | attachment processing. In addition, after RFL adhesion treatment, one type of soaking rubber glue adhesion treatment that is dipped in rubber glue and dried, and coating rubber glue adhesion treatment that coats and drys the rubber glue on the surface on the toothed belt body 310 side or Two types of rubber paste adhesion treatment may be performed.
 《下地接着処理》
 下地接着処理液は、例えば、エポキシ樹脂やイソシアネート樹脂(ブロックイソシアネート)等の下地接着処理剤をトルエン等の溶剤に溶解させた溶液、或いは、水に分散させた分散液である。下地接着処理液の液温は例えば20~30℃である。下地接着処理液の固形分濃度は、好ましくは20質量%以下である。
《Base adhesion processing》
The base adhesion treatment liquid is, for example, a solution obtained by dissolving a base adhesion treatment agent such as epoxy resin or isocyanate resin (block isocyanate) in a solvent such as toluene, or a dispersion liquid dispersed in water. The temperature of the base adhesion treatment liquid is, for example, 20 to 30 ° C. The solid content concentration of the base adhesion treatment liquid is preferably 20% by mass or less.
 下地接着処理液への浸漬時間は例えば1~3秒である。下地接着処理液への浸漬後の加熱温度(炉温度)は例えば200~250℃である。加熱時間(炉内滞在時間)は例えば1~3分である。下地接着処理の回数は、1回のみであっても、また、2回以上であっても、どちらでもよい。歯部側補強布312’には下地接着処理剤が付着するが、その付着量(目付量)は、歯部側補強布312’を形成する繊維材料の質量を基準として例えば0.5~8質量%である。 The immersion time in the base adhesive treatment solution is, for example, 1 to 3 seconds. The heating temperature (furnace temperature) after immersion in the base adhesion treatment liquid is, for example, 200 to 250 ° C. The heating time (residence time in the furnace) is, for example, 1 to 3 minutes. The number of times of base adhesion treatment may be only once or may be two or more. The base adhesive treating agent adheres to the tooth side reinforcing cloth 312 ′, and the amount of attachment (weight per unit area) is, for example, 0.5 to 8 based on the mass of the fiber material forming the tooth side reinforcing cloth 312 ′. % By mass.
 《RFL接着処理》
 RFL水溶液は、レゾルシンとホルムアルデヒドとの初期縮合物にゴムラテックスと共にセルロース系微細繊維を水に分散させた分散体(ゲル)を混合した水溶液である。RFL水溶液の液温は例えば20~30℃である。
<< RFL adhesion treatment >>
The RFL aqueous solution is an aqueous solution in which a dispersion (gel) in which cellulosic fine fibers are dispersed in water together with a rubber latex is mixed with an initial condensate of resorcin and formaldehyde. The liquid temperature of the RFL aqueous solution is, for example, 20 to 30 ° C.
 レゾルシン(R)とホルマリン(F)とのモル比は例えばR/F=1/1~1/2である。ゴムラテックスとしては、例えば、ビニルピリジン・スチレン・ブタジエンゴムラテックス(Vp・St・SBR)、クロロプレンゴムラテックス(CR)、クロロスルホン化ポリエチレンゴムラテックス(CSM)等が挙げられる。レゾルシンとホルムアルデヒドとの初期縮合物(RF)とゴムラテックス(L)の固形分質量比は例えばRF/L=1/5~1/20である。 The molar ratio of resorcin (R) to formalin (F) is, for example, R / F = 1/1 to 1/2. Examples of the rubber latex include vinylpyridine / styrene / butadiene rubber latex (Vp / St / SBR), chloroprene rubber latex (CR), chlorosulfonated polyethylene rubber latex (CSM), and the like. The solid content mass ratio of the initial condensate (RF) of resorcinol and formaldehyde and the rubber latex (L) is, for example, RF / L = 1/5 to 1/20.
 RFL水溶液の固形分濃度は、好ましくは6.0質量%以上、より好ましくは9.0質量%以上であり、また、好ましくは20質量%以下、より好ましくは15質量%以下である。 The solid content concentration of the RFL aqueous solution is preferably 6.0% by mass or more, more preferably 9.0% by mass or more, and preferably 20% by mass or less, more preferably 15% by mass or less.
 RFL水溶液への浸漬時間は例えば1~3秒である。RFL水溶液への浸漬後の加熱温度(炉温度)は例えば100~180である。加熱時間(炉内滞在時間)は例えば1~5分である。RFL接着処理の回数は、1回のみであっても、また、2回以上であっても、どちらでもよい。歯部側補強布312’にはRFL接着層314が付着するが、その付着量(目付量)は、歯部側補強布312’を形成する繊維材料の質量を基準として例えば2~5質量%である。 The immersion time in the RFL aqueous solution is, for example, 1 to 3 seconds. The heating temperature (furnace temperature) after immersion in the RFL aqueous solution is, for example, 100 to 180. The heating time (residence time in the furnace) is, for example, 1 to 5 minutes. The number of RFL adhesion treatments may be only once, or may be two or more. The RFL adhesive layer 314 is attached to the tooth side reinforcing cloth 312 ′, and the attached amount (weight per unit area) is, for example, 2 to 5% by mass based on the mass of the fiber material forming the tooth side reinforcing cloth 312 ′. It is.
 その他の方法は実施形態4と同一である。 Other methods are the same as those in the fourth embodiment.
 [実施形態8]
 実施形態8に係る歯付ベルトBは、外観構成が実施形態4と同一であるので、以下では図22に基づいて説明する。
[Embodiment 8]
Since the external configuration of the toothed belt B according to the eighth embodiment is the same as that of the fourth embodiment, the following description is based on FIG.
 実施形態8に係る歯付ベルトBでは、歯部側補強布312に、RFL水溶液に浸漬して加熱するRFL接着処理、並びにゴム糊に浸漬して乾燥させるソーキングゴム糊接着処理、及び歯付ベルト本体310側となる面にゴム糊をコーティングして乾燥させるコーティングゴム糊接着処理のうち1種又は2種のゴム糊接着処理が施されている。これにより、歯部側補強布312は、図31に示すように、RFL接着処理により形成されたRFL接着層314及びゴム糊接着処理により形成されたゴム糊接着層315を介して歯付ベルト本体310に接着されている。なお、RFL接着処理の前には、エポキシ樹脂やイソシアネート樹脂(ブロックイソシアネート)等の下地接着処理剤をトルエン等の溶剤に溶解させた溶液、或いは、水に分散させた分散液からなる下地接着処理液に浸漬して加熱する下地接着処理が施され、RFL接着層314の下に下地接着層が設けられていることが好ましい。 In the toothed belt B according to the eighth embodiment, an RFL bonding treatment in which the tooth portion side reinforcing cloth 312 is immersed in an RFL aqueous solution and heated, a soaking rubber paste bonding treatment in which the toothed belt B is dipped in rubber paste and dried, and a toothed belt. One or two types of rubber glue adhesion treatment is applied among the coating rubber glue adhesion treatments in which the surface on the main body 310 side is coated with rubber glue and dried. Thereby, as shown in FIG. 31, the tooth part side reinforcing cloth 312 has a toothed belt main body via the RFL adhesive layer 314 formed by the RFL adhesive treatment and the rubber glue adhesive layer 315 formed by the rubber glue adhesive treatment. Bonded to 310. In addition, before the RFL adhesion treatment, a foundation adhesion treatment comprising a solution obtained by dissolving a foundation adhesion treatment agent such as an epoxy resin or an isocyanate resin (block isocyanate) in a solvent such as toluene, or a dispersion liquid dispersed in water. It is preferable that a base adhesion treatment in which the substrate is immersed in a liquid and heated is performed, and a base adhesive layer is provided under the RFL adhesive layer 314.
 RFL接着層314は、実施形態4と同様に繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有していても、また、かかるセルロース系微細繊維を含有していなくても、どちらでもよい。 The RFL adhesive layer 314 may contain cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm as in the fourth embodiment, or may not contain such cellulosic fine fibers. But you can.
 ゴム糊接着層315は、ゴム糊に含まれる固形分のゴム組成物により形成されており、そして、ゴム糊接着層315を形成するゴム組成物は、ゴム成分に、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維に加えて各種のゴム配合剤が配合されて混練された未架橋ゴム組成物が加熱及び加圧されて架橋剤により架橋したものである。このようにゴム糊接着層315が、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有していることにより、歯部側補強布312の歯付ベルト本体310への高い接着力を得ることができる。 The rubber paste adhesive layer 315 is formed of a solid rubber composition contained in the rubber paste, and the rubber composition forming the rubber paste adhesive layer 315 has a fiber diameter distribution range of 50 in the rubber component. An uncrosslinked rubber composition in which various rubber compounding agents are blended and kneaded in addition to cellulose fine fibers containing ˜500 nm is heated and pressurized and crosslinked with a crosslinking agent. As described above, since the rubber paste adhesive layer 315 contains the cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm, the adhesive strength of the tooth side reinforcing cloth 312 to the toothed belt body 310 is high. Can be obtained.
 ゴム糊接着層315を形成するゴム組成物のゴム成分としては、例えば、水素添加アクリロニトリルゴム(H-NBR)、不飽和カルボン酸金属塩で強化された水素添加アクリロニトリルゴム(H-NBR)、エチレン・プロピレンコポリマー(EPR)、エチレン・プロピレン・ジエンターポリマー(EPDM)、エチレン・オクテンコポリマー、エチレン・ブテンコポリマーなどのエチレン-α-オレフィンエラストマー、クロロプレンゴム(CR)、及びクロロスルホン化ポリエチレンゴム(CSM)等が挙げられる。歯付ベルト本体310を形成するゴム組成物のゴム成分は、これらのうちの1種又は2種以上のブレンドゴムであることが好ましい。ゴム糊接着層315を形成するゴム組成物のゴム成分は、歯付ベルト本体310を形成するゴム組成物のゴム成分と同一であっても、また、異なっていても、どちらでもよい。 Examples of the rubber component of the rubber composition forming the rubber paste adhesive layer 315 include hydrogenated acrylonitrile rubber (H-NBR), hydrogenated acrylonitrile rubber reinforced with unsaturated carboxylic acid metal salt (H-NBR), ethylene, and the like. -Ethylene-α-olefin elastomers such as propylene copolymer (EPR), ethylene-propylene-diene terpolymer (EPDM), ethylene-octene copolymer, ethylene-butene copolymer, chloroprene rubber (CR), and chlorosulfonated polyethylene rubber (CSM) ) And the like. The rubber component of the rubber composition forming the toothed belt main body 310 is preferably a blend rubber of one or more of these. The rubber component of the rubber composition forming the rubber paste adhesive layer 315 may be the same as or different from the rubber component of the rubber composition forming the toothed belt main body 310.
 ゴム糊接着層315を形成するゴム組成物に含まれるセルロース系微細繊維は、実施形態4における歯付ベルト本体310に含まれるのと同一の構成である。ゴム糊接着層315では、セルロース系微細繊維は特定の方向に配向しておらず、無配向である。 The cellulosic fine fibers contained in the rubber composition forming the rubber paste adhesive layer 315 have the same configuration as that contained in the toothed belt body 310 in the fourth embodiment. In the rubber paste adhesive layer 315, the cellulosic fine fibers are not oriented in a specific direction and are not oriented.
 ゴム糊接着層315におけるセルロース系微細繊維の含有量は、歯部側補強布312の歯付ベルト本体310への高い接着性を得る観点から、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは5質量部以上であり、また、好ましくは30質量部以下、より好ましくは20質量部以下、更に好ましくは10質量部以下である。 The content of the cellulosic fine fibers in the rubber paste adhesive layer 315 is preferably 1 mass with respect to 100 parts by mass of the rubber component from the viewpoint of obtaining high adhesion of the tooth side reinforcing fabric 312 to the toothed belt body 310. Part or more, more preferably 3 parts by weight or more, still more preferably 5 parts by weight or more, and preferably 30 parts by weight or less, more preferably 20 parts by weight or less, still more preferably 10 parts by weight or less.
 ゴム配合剤としては、補強材、摩擦係数低減材、架橋剤、老化防止剤等が挙げられる。 Examples of rubber compounding agents include reinforcing materials, friction coefficient reducing materials, cross-linking agents, and anti-aging agents.
 補強材としては、カーボンブラックでは、例えば、チャネルブラック;SAF、ISAF、N-339、HAF、N-351、MAF、FEF、SRF、GPF、ECF、N-234などのファーネスブラック;FT、MTなどのサーマルブラック;アセチレンブラック等が挙げられる。補強材としてはシリカも挙げられる。補強材は、これらのうち1種又は2種以上であることが好ましい。補強材の含有量は、歯付ベルト本体310を形成するゴム組成物における補強材の含有量よりも少ないことが好ましく、ゴム組成物のゴム成分100質量部に対して例えば10~30質量部である。 As the reinforcing material, carbon black, for example, channel black; furnace black such as SAF, ISAF, N-339, HAF, N-351, MAF, FEF, SRF, GPF, ECF, N-234; FT, MT, etc. Thermal black; acetylene black and the like. Silica is also mentioned as the reinforcing material. It is preferable that a reinforcing material is 1 type, or 2 or more types among these. The content of the reinforcing material is preferably smaller than the content of the reinforcing material in the rubber composition forming the toothed belt body 310, and is, for example, 10 to 30 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition. is there.
 摩擦係数低減材としては、例えば、超高分子量ポリエチレン樹脂粉、フッ素樹脂粉、モリブデン等が挙げられる。摩擦係数低減材は、これらのうち1種又は2種以上であることが好ましい。摩擦係数低減材の含有量は、ゴム組成物のゴム成分100質量部に対して例えば5~15質量部である。 Examples of the friction coefficient reducing material include ultra high molecular weight polyethylene resin powder, fluororesin powder, and molybdenum. The friction coefficient reducing material is preferably one or more of these. The content of the friction coefficient reducing material is, for example, 5 to 15 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
 架橋剤としては、硫黄及び有機過酸化物が挙げられる。架橋剤として、硫黄が配合されていてもよく、また、有機過酸化物が配合されていてもよく、更には、それらの両方が併用されていてもよい。架橋剤の配合量は、硫黄の場合、ゴム組成物のゴム成分100質量部に対して例えば0.3~5質量部であり、有機過酸化物の場合、ゴム組成物のゴム成分100質量部に対して例えば0.3~5質量部である。 Examples of the crosslinking agent include sulfur and organic peroxides. As a crosslinking agent, sulfur may be blended, an organic peroxide may be blended, or both of them may be used in combination. The compounding amount of the crosslinking agent is, for example, 0.3 to 5 parts by mass in the case of sulfur with respect to 100 parts by mass of the rubber component of the rubber composition, and 100 parts by mass of the rubber component of the rubber composition in the case of the organic peroxide. For example, it is 0.3 to 5 parts by mass.
 加硫促進剤としては、例えば、チウラム系(例えばTETD、TT、TRAなど)、チアゾール系(例えばMBT、MBTSなど)、スルフェンアミド系(例えばCZなど)、ジチオカルバミン酸塩系(例えばBZ-Pなど)のもの等が挙げられる。加硫促進剤は、これらのうち1種又は2種以上であることが好ましい。加硫促進剤の含有量は、ゴム組成物のゴム成分100質量部に対して例えば1~3質量部である。 Examples of the vulcanization accelerator include thiuram (eg, TETD, TT, TRA, etc.), thiazole (eg, MBT, MBTS, etc.), sulfenamide (eg, CZ), dithiocarbamate (eg, BZ-P). Etc.). It is preferable that a vulcanization accelerator is 1 type, or 2 or more types among these. The content of the vulcanization accelerator is, for example, 1 to 3 parts by mass with respect to 100 parts by mass of the rubber component of the rubber composition.
 老化防止剤としては、例えば、アミン-ケトン系老化防止剤、ジアミン系老化防止剤、フェノール系老化防止剤等が挙げられる。老化防止剤は、これらのうち1種又は2種以上であることが好ましい。老化防止剤の含有量は、ゴム成分100質量部に対して例えば1~3質量部である。 Examples of the anti-aging agent include amine-ketone anti-aging agents, diamine anti-aging agents, phenol anti-aging agents and the like. It is preferable that an anti-aging agent is 1 type, or 2 or more types among these. The content of the anti-aging agent is, for example, 1 to 3 parts by mass with respect to 100 parts by mass of the rubber component.
 なお、ゴム糊接着層315を形成するゴム組成物には、繊維径が10μm以上の短繊維が含まれていないことが好ましいが、歯部側補強布312の歯付ベルト本体310への接着性を阻害しない範囲でかかる短繊維が含まれていてもよい。 The rubber composition forming the rubber paste adhesive layer 315 preferably does not contain short fibers having a fiber diameter of 10 μm or more. However, the adhesiveness of the tooth side reinforcing cloth 312 to the toothed belt body 310 is not preferred. Such short fibers may be included as long as they do not hinder.
 なお、歯付ベルト本体310の基部311aを形成するゴム組成物には、実施形態4及び実施形態5と同様にセルロース系微細繊維を含んでいても、また、セルロース系微細繊維を含んでいなくても、どちらでもよい。歯付ベルト本体310の歯部311bを形成するゴム組成物には、実施形態4及び実施形態6と同様にセルロース系微細繊維を含んでいても、また、セルロース系微細繊維を含んでいなくても、どちらでもよい。 Note that the rubber composition forming the base 311a of the toothed belt main body 310 may contain cellulosic fine fibers as in the fourth and fifth embodiments, and may not contain cellulosic fine fibers. Or either. The rubber composition forming the tooth portion 311b of the toothed belt main body 310 may contain cellulosic fine fibers as in the fourth and sixth embodiments, and may not contain cellulosic fine fibers. Or either.
 以上の構成の実施形態8に係る歯付ベルトBによれば、歯部側補強布312と歯付ベルト本体310との間に設けられたゴム糊接着層315が、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有していることにより、歯部側補強布312の歯付ベルト本体310への高い接着力を得ることができることから、その優れた補強効果が得られ、特に歯部311bの欠けが抑止され、また、優れた耐油性を得ることもできる。更に、ゴム糊接着層315が、繊維径の分布範囲が50~500nmを含むセルロース系微細繊維を含有していることにより、歯部側表面の高い耐摩耗性を得ることができる。その結果、高い耐久性を得ることができる。 According to the toothed belt B according to the eighth embodiment configured as described above, the rubber glue adhesive layer 315 provided between the tooth portion side reinforcing cloth 312 and the toothed belt main body 310 has a fiber diameter distribution range of 50. By containing cellulosic fine fibers containing ˜500 nm, it is possible to obtain a high adhesive force to the toothed belt body 310 of the tooth portion side reinforcing cloth 312, so that an excellent reinforcing effect is obtained. The chipping of the tooth portion 311b is suppressed, and excellent oil resistance can be obtained. Furthermore, since the rubber paste adhesive layer 315 contains cellulosic fine fibers having a fiber diameter distribution range of 50 to 500 nm, it is possible to obtain high wear resistance on the tooth side surface. As a result, high durability can be obtained.
 (歯付ベルトBの製造方法)
 実施形態8に係る歯付ベルトBの製造方法では、材料準備工程において、歯部側補強布312’の作製の際に、歯部側補強布312’に対して接着処理を施す。具体的には、歯部側補強布312’に対して、RFL水溶液に浸漬して加熱するRFL接着処理に加えて、ゴム糊に浸漬して乾燥させるソーキングゴム糊接着処理、及び歯付ベルト本体310側となる面にゴム糊をコーティングして乾燥させるコーティングゴム糊接着処理のうち1種又は2種のゴム糊接着処理を施す。なお、RFL接着処理前に下地接着処理液に浸漬して加熱する下地接着処理を施すことが好ましい。
(Manufacturing method of toothed belt B)
In the manufacturing method of the toothed belt B according to the eighth embodiment, in the material preparation process, when the tooth part side reinforcing cloth 312 ′ is manufactured, the tooth part side reinforcing cloth 312 ′ is bonded. Specifically, in addition to the RFL adhesion treatment in which the tooth portion side reinforcing cloth 312 ′ is immersed and heated in the RFL aqueous solution, the soaking rubber glue adhesion treatment in which the tooth side reinforcement cloth 312 ′ is immersed in the rubber glue and dried, and the toothed belt body One or two types of rubber glue adhesion treatment is performed among the coating rubber glue adhesion treatments in which the surface on the 310 side is coated with rubber glue and dried. In addition, it is preferable to perform the foundation | substrate adhesion | attachment process which is immersed in a foundation | substrate adhesion | attachment processing liquid and heated before RFL adhesion | attachment processing.
 下地接着処理は、実施形態7と同一である。 The base adhesion process is the same as that of the seventh embodiment.
 《RFL接着処理》
 RFL水溶液は、レゾルシンとホルムアルデヒドとの初期縮合物にゴムラテックスを混合した水溶液である。なお、RFL接着層314にセルロース系微細繊維を含める場合には、実施形態7と同様、RFL水溶液にセルロース系微細繊維を水に分散させた分散体(ゲル)を含めればよい。RFL水溶液の液温は例えば20~30℃である。RFL水溶液の固形分濃度は、好ましくは30質量%以下である。
<< RFL adhesion treatment >>
The RFL aqueous solution is an aqueous solution in which a rubber latex is mixed with an initial condensate of resorcin and formaldehyde. In addition, when including a cellulose fine fiber in RFL contact bonding layer 314, the dispersion (gel) which disperse | distributed the cellulose fine fiber in water similarly to Embodiment 7 should just be included. The liquid temperature of the RFL aqueous solution is, for example, 20 to 30 ° C. The solid content concentration of the RFL aqueous solution is preferably 30% by mass or less.
 レゾルシン(R)とホルマリン(F)とのモル比は例えばR/F=1/1~1/2である。ゴムラテックスとしては、例えば、ビニルピリジン・スチレン・ブタジエンゴムラテックス(Vp・St・SBR)、クロロプレンゴムラテックス(CR)、クロロスルホン化ポリエチレンゴムラテックス(CSM)等が挙げられる。レゾルシンとホルムアルデヒドとの初期縮合物(RF)とゴムラテックス(L)の固形分質量比は例えばRF/L=1/5~1/20である。 The molar ratio of resorcin (R) to formalin (F) is, for example, R / F = 1/1 to 1/2. Examples of the rubber latex include vinylpyridine / styrene / butadiene rubber latex (Vp / St / SBR), chloroprene rubber latex (CR), chlorosulfonated polyethylene rubber latex (CSM), and the like. The solid content mass ratio of the initial condensate (RF) of resorcinol and formaldehyde and the rubber latex (L) is, for example, RF / L = 1/5 to 1/20.
 RFL水溶液への浸漬時間は例えば1~3秒である。RFL水溶液への浸漬後の加熱温度(炉温度)は例えば100~180℃である。加熱時間(炉内滞在時間)は例えば1~5分である。RFL接着処理の回数は、1回のみであっても、また、2回以上であっても、どちらでもよい。歯部側補強布312’にはRFL接着層314が付着するが、その付着量(目付量)は、歯部側補強布312’を形成する繊維材料の質量を基準として例えば2~5質量%である。 The immersion time in the RFL aqueous solution is, for example, 1 to 3 seconds. The heating temperature (furnace temperature) after immersion in the RFL aqueous solution is, for example, 100 to 180 ° C. The heating time (residence time in the furnace) is, for example, 1 to 5 minutes. The number of RFL adhesion treatments may be only once, or may be two or more. The RFL adhesive layer 314 is attached to the tooth side reinforcing cloth 312 ′, and the attached amount (weight per unit area) is, for example, 2 to 5% by mass based on the mass of the fiber material forming the tooth side reinforcing cloth 312 ′. It is.
 《ゴム糊接着処理》
 ゴム糊は、ゴム糊接着層315を形成するセルロース系微細繊維を含有するゴム組成物の架橋前の未架橋ゴム組成物をトルエン等の溶剤に溶解させた溶液である。ゴム糊の作製は以下のようにして行う。
<Rubber glue adhesion treatment>
The rubber paste is a solution in which an uncrosslinked rubber composition before crosslinking of a rubber composition containing cellulosic fine fibers forming the rubber paste adhesive layer 315 is dissolved in a solvent such as toluene. The rubber paste is produced as follows.
 まず、素練りしているゴム成分にセルロース系微細繊維を投入して混練することにより分散させる。 First, cellulosic fine fibers are put into a kneaded rubber component and dispersed by kneading.
 ここで、ゴム成分へのセルロース系微細繊維の分散方法としては、例えば、セルロース系微細繊維を水に分散させた分散体(ゲル)を、オープンロールで素練りしているゴム成分に投入し、それらを混練しながら水分を気化させる方法、セルロース系微細繊維を水に分散させた分散体(ゲル)とゴムラテックスとを混合して水分を気化させて得られたセルロース系微細繊維/ゴムのマスターバッチを、素練りしているゴム成分に投入する方法、疎水化したセルロース系微細繊維を溶剤に分散させた分散体とゴム成分を溶剤に溶解させた溶液を混合して溶剤を気化させて得られたセルロース系微細繊維/ゴムのマスターバッチを、素練りしているゴム成分に投入する方法、セルロース系微細繊維を水に分散させた分散体(ゲル)を凍結乾燥させて粉砕したものを、素練りしているゴム成分に投入する方法、疎水化したセルロース系微細繊維を素練りしているゴム成分に投入する方法等が挙げられる。 Here, as a method for dispersing the cellulose-based fine fibers in the rubber component, for example, a dispersion (gel) in which the cellulose-based fine fibers are dispersed in water is added to the rubber component kneaded with an open roll, A method of vaporizing moisture while kneading them, a master of cellulose fine fibers / rubber obtained by mixing a dispersion (gel) in which cellulosic fine fibers are dispersed in water and rubber latex to vaporize the moisture A method in which a batch is put into a kneaded rubber component, a dispersion in which hydrophobic cellulose fine fibers are dispersed in a solvent, and a solution in which the rubber component is dissolved in a solvent are mixed and the solvent is evaporated. Of the obtained cellulose-based fine fiber / rubber masterbatch into the kneaded rubber component, and a dispersion (gel) in which the cellulose-based fine fiber is dispersed in water is freeze-dried A material obtained by pulverizing Te, how to put into a rubber component is masticated, methods and the like to introduce cellulosic microfibers made hydrophobic in rubber component is masticated.
 次いで、ゴム成分とセルロース系微細繊維とを混練しながら、各種のゴム配合剤を投入して混練を継続することにより未架橋ゴム組成物を作製する。 Next, while kneading the rubber component and the cellulosic fine fiber, various rubber compounding agents are added and kneading is continued to prepare an uncrosslinked rubber composition.
 そして、その未架橋ゴム組成物を溶剤に投入し、均一な溶液となるまで攪拌することによりゴム糊を作製する。ゴム糊の液温は例えば20~30℃である。 Then, the uncrosslinked rubber composition is put into a solvent and stirred until a uniform solution is obtained, thereby producing a rubber paste. The temperature of the rubber paste is, for example, 20 to 30 ° C.
 ゴム糊の固形分濃度は、ソーキングゴム糊接着処理用では、好ましくは5質量%以上、より好ましくは10質量%以上であり、また、好ましくは30質量%以下、より好ましくは20質量%以下である。コーティングゴム糊接着処理用では、好ましくは10質量%以上、より好ましくは20質量%以上であり、また、好ましくは50質量%以下、より好ましくは40質量%以下である。 The solid content concentration of the rubber paste is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 30% by mass or less, more preferably 20% by mass or less, for soaking rubber paste adhesion treatment. is there. For coating rubber paste adhesion treatment, it is preferably 10% by mass or more, more preferably 20% by mass or more, and preferably 50% by mass or less, more preferably 40% by mass or less.
 ソーキングゴム糊接着処理の場合、ゴム糊への浸漬時間は例えば1~3秒である。ゴム糊への浸漬後の乾燥温度(炉温度)は例えば50~100℃である。乾燥時間(炉内滞在時間)は例えば1~3分である。ソーキングゴム糊接着処理の回数は、1回のみであっても、また、2回以上であっても、どちらでもよい。歯部側補強布312’にはゴム糊接着層315が付着するが、その付着量(目付量)は、歯部側補強布312’を形成する繊維材料の質量を基準として例えば2~5質量%である。 In the case of soaking rubber glue bonding treatment, the immersion time in the rubber glue is, for example, 1 to 3 seconds. The drying temperature (furnace temperature) after immersion in rubber paste is, for example, 50 to 100 ° C. The drying time (residence time in the furnace) is, for example, 1 to 3 minutes. The number of times of the soaking rubber paste adhesion treatment may be only once, or may be two or more times. A rubber glue adhesive layer 315 is attached to the tooth side reinforcing cloth 312 ′. The amount of attachment (weight per unit area) is, for example, 2 to 5 mass based on the mass of the fiber material forming the tooth side reinforcing cloth 312 ′. %.
 コーティングゴム糊接着処理の場合、コーティング後の乾燥温度(炉温度)は例えば50~100℃である。乾燥時間(炉内滞在時間)は例えば1~3分である。コーティングゴム糊接着処理の回数は、1回のみであっても、また、2回以上であっても、どちらでもよい。歯部側補強布312’にはゴム糊接着層315が付着するが、その付着量(目付量)は、歯部側補強布312’を形成する繊維材料の質量を基準として例えば2~5質量%である。 In the case of coating rubber paste adhesion treatment, the drying temperature (furnace temperature) after coating is, for example, 50 to 100 ° C. The drying time (residence time in the furnace) is, for example, 1 to 3 minutes. The number of times of coating rubber paste adhesion treatment may be only once or may be two or more times. A rubber glue adhesive layer 315 is attached to the tooth side reinforcing cloth 312 ′. The amount of attachment (weight per unit area) is, for example, 2 to 5 mass based on the mass of the fiber material forming the tooth side reinforcing cloth 312 ′. %.
 その他の方法は実施形態4と同一である。 Other methods are the same as those in the fourth embodiment.
  -実施例-
 (未架橋ゴム組成物)
 以下の歯付ベルト本体形成用の未架橋ゴム組成物のゴム1~7及び歯部側補強布のゴム糊接着層用の未架橋ゴム組成物のゴム8~14を作製した。各配合については、表6及び表7にも示す。
-Example-
(Uncrosslinked rubber composition)
The following rubbers 1 to 7 of an uncrosslinked rubber composition for forming a toothed belt body and rubbers 8 to 14 of an uncrosslinked rubber composition for a rubber paste adhesive layer of a tooth side reinforcing fabric were prepared. Each formulation is also shown in Table 6 and Table 7.
 <ゴム1>
 まず、トルエンに粉末セルロース(日本製紙社製 商品名:KCフロック W-GK)を分散させた分散液を調製し、高圧ホモジナイザーを用い、その分散液同士を衝突させて粉末セルロースをセルロース微細繊維に解繊して、トルエンにセルロース微細繊維が分散した分散液を得た。従って、セルロース微細繊維は、機械的解繊手段によって製造され、また、疎水化処理されていないものである。
<Rubber 1>
First, a dispersion in which powdered cellulose (trade name: KC Flock W-GK manufactured by Nippon Paper Industries Co., Ltd.) is dispersed in toluene is prepared, and the dispersion is collided with a high-pressure homogenizer to convert the powdered cellulose into cellulose fine fibers. The fiber was defibrated to obtain a dispersion in which cellulose fine fibers were dispersed in toluene. Accordingly, the cellulose fine fibers are produced by mechanical defibrating means and are not subjected to a hydrophobic treatment.
 次いで、そのトルエンにセルロース微細繊維が分散した分散体と、トルエンにH-NBR(日本ゼオン社製 商品名:Zetpol 2020)を溶解させると共に可塑剤(DIC社製 商品名:W-260)を添加した溶液とを混合し、トルエン及び可塑剤を気化させてセルロース微細繊維/H-NBRのマスターバッチを作製した。なお、マスターバッチにおける各成分の含有量は、セルロース系微細繊維が25質量%、可塑剤が25質量%、及びH-NBRが50質量%であった。 Next, the dispersion in which fine cellulose fibers are dispersed in toluene, and H-NBR (trade name: Zetpol 2020 manufactured by Nippon Zeon Co., Ltd.) are dissolved in toluene and a plasticizer (trade name: W-260 manufactured by DIC) is added. The resultant solution was mixed, and toluene and a plasticizer were vaporized to prepare a master batch of cellulose fine fiber / H-NBR. The content of each component in the master batch was 25% by mass for the cellulosic fine fibers, 25% by mass for the plasticizer, and 50% by mass for H-NBR.
 続いて、H-NBRを素練りすると共に、そこにマスターバッチを投入して混練した。H-NBR及びマスターバッチの混合質量比を98:4とし、トータルのH-NBRを100質量部としたときのセルロース微細繊維の含有量が1質量部となるようにした。 Subsequently, H-NBR was masticated and a master batch was added thereto for kneading. The mixing mass ratio of H-NBR and masterbatch was 98: 4, and the content of fine cellulose fibers was 1 part by mass when the total H-NBR was 100 parts by mass.
 そして、H-NBR、セルロース微細繊維、及び可塑剤を混練すると共に、そこに、H-NBR100質量部に対し、補強材のFEFカーボンブラック(東海カーボン社製 商品名:シーストSO)を40質量部、加工助剤のステアリン酸(日油社製 商品名:ステアリン酸つばき)を1質量部、加硫促進助剤の酸化亜鉛(堺化学工業社製 商品名:酸化亜鉛2種)を5質量部、可塑剤を24質量部、共架橋剤の液状NBR(日本ゼオン社製、商品名:Nipol 1312)を5質量部、架橋剤の硫黄(日本乾溜工業社製 商品名:オイルサルファー)を0.5質量部、チウラム系加硫促進剤(大内新興化学社製、商品名:ノクセラーTET-G)を2質量部、及びアミン-ケトン系老化防止剤(大内新興株式会社製、商品名:ノクラック224)を2質量部それぞれ投入して混練を継続することにより未架橋ゴム組成物を作製した。その未架橋ゴム組成物をゴム1とした。なお、ゴム1における可塑剤の含有量は、マスターバッチに含まれていたものと、後に添加したものとを合わせてH-NBR100質量部に対して25質量部である。 Then, H-NBR, cellulose fine fiber, and plasticizer are kneaded, and 40 parts by mass of reinforcing material FEF carbon black (trade name: Seast SO manufactured by Tokai Carbon Co., Ltd.) is added to 100 parts by mass of H-NBR. 1 part by weight of processing aid stearic acid (trade name: Tsubaki stearic acid manufactured by NOF Corporation) and 5 parts by weight of zinc oxide (trade name: Zinc Oxide made by Sakai Chemical Industry Co., Ltd.) , 24 parts by mass of plasticizer, 5 parts by mass of liquid NBR (trade name: Nipol 1312 manufactured by Nippon Zeon Co., Ltd.) as a co-crosslinking agent, and 0% of sulfur (trade name: Oil Sulfur manufactured by Nippon Kibuki Kogyo Co., Ltd.) as a crosslinking agent. 5 parts by mass, 2 parts by mass of a thiuram vulcanization accelerator (Ouchi Shinsei Chemical Co., Ltd., trade name: Noxeller TET-G), and an amine-ketone antioxidant (manufactured by Ouchi Shinsei Co., Ltd., trade name: Nocrack 224) To prepare uncrosslinked rubber composition by parts by weight respectively turned to continue the kneading. The uncrosslinked rubber composition was designated as rubber 1. The content of the plasticizer in the rubber 1 is 25 parts by mass with respect to 100 parts by mass of H-NBR, including those contained in the master batch and those added later.
 <ゴム2>
 セルロース微細繊維の含有量がH-NBR100質量部に対して3質量部となるようにしたことを除いてゴム1と同様に作製した未架橋ゴム組成物をゴム2とした。
<Rubber 2>
Rubber 2 was an uncrosslinked rubber composition prepared in the same manner as rubber 1 except that the content of fine cellulose fibers was 3 parts by mass with respect to 100 parts by mass of H-NBR.
 <ゴム3>
 セルロース微細繊維の含有量がH-NBR100質量部に対して5質量部となるようにしたことを除いてゴム1と同様に作製した未架橋ゴム組成物をゴム3とした。
<Rubber 3>
Rubber 3 was an uncrosslinked rubber composition produced in the same manner as rubber 1 except that the content of cellulose fine fibers was 5 parts by mass with respect to 100 parts by mass of H-NBR.
 <ゴム4>
 セルロース微細繊維の含有量がH-NBR100質量部に対して10質量部となるようにしたことを除いてゴム1と同様に作製した未架橋ゴム組成物をゴム4とした。
<Rubber 4>
Rubber 4 was an uncrosslinked rubber composition prepared in the same manner as rubber 1 except that the content of cellulose fine fibers was 10 parts by mass with respect to 100 parts by mass of H-NBR.
 <ゴム5>
 セルロース微細繊維の含有量がH-NBR100質量部に対して15質量部となるようにしたことを除いてゴム1と同様に作製した未架橋ゴム組成物をゴム5とした。
<Rubber 5>
Rubber 5 was an uncrosslinked rubber composition produced in the same manner as rubber 1 except that the content of fine cellulose fibers was 15 parts by mass with respect to 100 parts by mass of H-NBR.
 <ゴム6>
 セルロース微細繊維の含有量がH-NBR100質量部に対して25質量部となるようにしたことを除いてゴム1と同様に作製した未架橋ゴム組成物をゴム6とした。
<Rubber 6>
Rubber 6 was an uncrosslinked rubber composition produced in the same manner as rubber 1 except that the content of cellulose fine fibers was 25 parts by mass with respect to 100 parts by mass of H-NBR.
 <ゴム7>
 H-NBRを素練りすると共に、そこに、H-NBR100質量部に対し、補強材のFEFカーボンブラックを40質量部、加工助剤のステアリン酸を1質量部、加硫促進助剤の酸化亜鉛を5質量部、可塑剤を10質量部、共架橋剤の液状NBRを5質量部、架橋剤の硫黄を0.5質量部、チウラム系加硫促進剤を2質量部、及びアミン-ケトン系老化防止剤を2質量部それぞれ投入して混練することにより未架橋ゴム組成物を作製した。その未架橋ゴム組成物をゴム7とした。従って、ゴム7は、セルロース微細繊維を含まない。
<Rubber 7>
While masticating H-NBR, 40 parts by mass of FEF carbon black as a reinforcing material, 1 part by mass of stearic acid as a processing aid, and zinc oxide as a vulcanization accelerating agent are added to 100 parts by mass of H-NBR. 5 parts by weight, plasticizer 10 parts by weight, co-crosslinking agent liquid NBR 5 parts by weight, crosslinking agent sulfur 0.5 parts by weight, thiuram vulcanization accelerator 2 parts by weight, and amine-ketone system An uncrosslinked rubber composition was prepared by charging and kneading 2 parts by weight of each anti-aging agent. The uncrosslinked rubber composition was designated as rubber 7. Therefore, the rubber 7 does not contain cellulose fine fibers.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 <ゴム8>
 メタクリル酸亜鉛強化H-NBR(日本ゼオン社製 商品名:Zeoforte ZSC 2295)及びH-NBR(日本ゼオン社製 商品名:Zetpole 2020)を、前者及び後者の混合質量比を50:50として素練りすると共に、そこに、これらのゴム成分100質量部に対し、補強材のFEFカーボンブラック(東海カーボン社製 商品名:シーストSO)を20質量部、摩擦係数低減材の超高分子量ポリエチレン粉末(三井化学社製 商品名:ミペロンXM-220)を10質量部、架橋剤の硫黄(日本乾溜工業社製 商品名:オイルサルファー)を0.5質量部、チウラム系加硫促進剤(大内新興化学社製、商品名:ノクセラーTET-G)を2質量部、及びアミン-ケトン系老化防止剤(大内新興株式会社製、商品名:ノクラック224)を2質量部それぞれ投入して混練することにより未架橋ゴム組成物を作製した。その未架橋ゴム組成物をゴム8とした。従って、ゴム8は、セルロース微細繊維を含まない。
<Rubber 8>
Zinc methacrylate reinforced H-NBR (trade name: Zeoforte ZSC 2295, manufactured by Nippon Zeon Co., Ltd.) and H-NBR (trade name: Zetpole 2020, manufactured by Nippon Zeon Co., Ltd.) were kneaded with a mixing mass ratio of the former and the latter of 50:50. At the same time, 20 parts by mass of reinforcing material FEF carbon black (trade name: Seast SO manufactured by Tokai Carbon Co., Ltd.) and 100% by mass of these rubber components, ultrahigh molecular weight polyethylene powder (Mitsui) 10 parts by mass of trade name: Mipperon XM-220 manufactured by Kagaku Co., Ltd., 0.5 parts by mass of sulfur as a crosslinking agent (trade name: Oil Sulfur manufactured by Nippon Kibushi Kogyo Co., Ltd.), thiuram vulcanization accelerator (Ouchi Shinsei Chemical) 2 parts by mass of the product, product name: Noxeller TET-G), and 2 parts by mass of the amine-ketone anti-aging agent (trade name: Nocrack 224, manufactured by Ouchi Shinsei Co., Ltd.) And kneading to prepare an uncrosslinked rubber composition. The uncrosslinked rubber composition was designated as rubber 8. Accordingly, the rubber 8 does not contain cellulose fine fibers.
 <ゴム9>
 メタクリル酸亜鉛強化H-NBR及びH-NBRを素練りすると共に、そこにマスターバッチを投入して混練した。メタクリル酸亜鉛強化H-NBR、H-NBR、及びマスターバッチの混合質量比を50:48:4とし、トータルのH-NBRを100質量部としたときのセルロース微細繊維の含有量が1質量部となるようにした。
<Rubber 9>
Zinc methacrylate reinforced H-NBR and H-NBR were masticated, and a master batch was added thereto and kneaded. The content of cellulose fine fiber is 1 part by mass when the mixing mass ratio of zinc methacrylate reinforced H-NBR, H-NBR, and masterbatch is 50: 48: 4 and the total H-NBR is 100 parts by mass. It was made to become.
 そして、メタクリル酸亜鉛強化H-NBR、H-NBR、セルロース微細繊維、及び可塑剤を混練すると共に、そこに、メタクリル酸亜鉛強化H-NBR及びH-NBRのゴム成分100質量部に対し、補強材のFEFカーボンブラックを20質量部、超高分子量ポリエチレン粉末を10質量部、架橋剤の硫黄を0.5質量部、チウラム系加硫促進剤を2質量部、及びアミン-ケトン系老化防止剤を2質量部それぞれ投入して混練することにより未架橋ゴム組成物を作製した。その未架橋ゴム組成物をゴム9とした。 Then, zinc methacrylate reinforced H-NBR, H-NBR, fine cellulose fiber, and plasticizer are kneaded and reinforced with respect to 100 parts by mass of the zinc methacrylate reinforced H-NBR and H-NBR rubber components. 20 parts by mass of FEF carbon black as a material, 10 parts by mass of ultra high molecular weight polyethylene powder, 0.5 parts by mass of sulfur as a crosslinking agent, 2 parts by mass of a thiuram vulcanization accelerator, and an amine-ketone aging inhibitor 2 parts by mass of each was added and kneaded to prepare an uncrosslinked rubber composition. The uncrosslinked rubber composition was designated as rubber 9.
 <ゴム10>
 セルロース微細繊維の含有量がゴム成分100質量部に対して3質量部となるようにしたことを除いてゴム9と同様に作製した未架橋ゴム組成物をゴム10とした。
<Rubber 10>
The rubber 10 was an uncrosslinked rubber composition prepared in the same manner as the rubber 9 except that the cellulose fine fiber content was 3 parts by mass with respect to 100 parts by mass of the rubber component.
 <ゴム311>
 セルロース微細繊維の含有量がゴム成分100質量部に対して5質量部となるようにしたことを除いてゴム9と同様に作製した未架橋ゴム組成物をゴム311とした。
<Rubber 311>
The rubber 311 was an uncrosslinked rubber composition prepared in the same manner as the rubber 9 except that the cellulose fine fiber content was 5 parts by mass with respect to 100 parts by mass of the rubber component.
 <ゴム12>
 セルロース微細繊維の含有量がゴム成分100質量部に対して10質量部となるようにしたことを除いてゴム9と同様に作製した未架橋ゴム組成物をゴム12とした。
<Rubber 12>
Rubber 12 was an uncrosslinked rubber composition prepared in the same manner as rubber 9 except that the content of fine cellulose fibers was 10 parts by mass with respect to 100 parts by mass of the rubber component.
 <ゴム13>
 セルロース微細繊維の含有量がゴム成分100質量部に対して15質量部となるようにしたことを除いてゴム9と同様に作製した未架橋ゴム組成物をゴム13とした。
<Rubber 13>
Rubber 13 was an uncrosslinked rubber composition prepared in the same manner as rubber 9 except that the content of cellulose fine fibers was 15 parts by mass with respect to 100 parts by mass of the rubber component.
 <ゴム14>
 セルロース微細繊維の含有量がゴム成分100質量部に対して25質量部となるようにしたことを除いてゴム9と同様に作製した未架橋ゴム組成物をゴム14とした。
<Rubber 14>
The rubber 14 was an uncrosslinked rubber composition prepared in the same manner as the rubber 9 except that the content of the cellulose fine fiber was 25 parts by mass with respect to 100 parts by mass of the rubber component.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 (試作評価用歯付ベルト)
 以下の実施例6-1~実施例6-13及び比較例6の試験評価用歯付ベルト(歯部ピッチ8mm及びベルト幅10mm)を作製した。それぞれの構成は表8にも示す。
(Toothed belt for prototype evaluation)
The following test evaluation toothed belts (tooth pitch 8 mm and belt width 10 mm) of Examples 6-1 to 6-13 and Comparative Example 6 were produced. Each configuration is also shown in Table 8.
 <実施例6-1>
 実施例6-1の歯付ベルトには、歯付ベルト本体を形成する未架橋ゴム組成物として、セルロース微細繊維を含有するゴム1を用いた。
<Example 6-1>
For the toothed belt of Example 6-1, rubber 1 containing fine cellulose fibers was used as the uncrosslinked rubber composition forming the toothed belt body.
 歯部側補強布として、ウレタン糸にアラミド繊維(帝人社製、商品名:テクノーラ)を巻き付けて伸縮性を付与したカバーリング糸を緯糸、及びナイロン撚糸を経糸とした織布を用いた。この歯部側補強布の織布に対し、下地接着処理としてエポキシ樹脂溶液に浸漬した後に加熱する下地接着処理、及びRFL水溶液に浸漬した後に加熱するRFL接着処理を施した。また、RFL接着処理を施した歯部側補強布の織布に対し、ゴム糊に浸漬して乾燥させるソーキングゴム糊接着処理を2度繰り返して施した。ゴム糊として、セルロース微細繊維を含有しないゴム8を溶剤のトルエンに溶解させた固形分濃度が10質量%のものを用いた。ゴム糊の液温は25℃であった。ゴム糊への浸漬時間は5秒とした。ゴム糊への浸漬後の乾燥温度は100℃及び乾燥時間は40秒とした。 As the tooth side reinforcing fabric, a woven fabric was used in which a covering yarn obtained by wrapping an aramid fiber (trade name: Technora, manufactured by Teijin Ltd.) around a urethane yarn to give elasticity was used as a weft and a nylon twisted warp. The woven fabric of the tooth side reinforcing fabric was subjected to a base adhesion treatment that was heated after being immersed in an epoxy resin solution as a base adhesion treatment, and an RFL adhesion treatment that was heated after being immersed in an RFL aqueous solution. In addition, the soaking rubber paste bonding treatment in which the woven fabric of the tooth side reinforcing fabric subjected to the RFL bonding treatment was dipped in rubber paste and dried was repeatedly applied. As the rubber paste, a rubber paste having a solid content concentration of 10% by mass obtained by dissolving rubber 8 containing no cellulose fine fibers in toluene as a solvent was used. The liquid temperature of the rubber paste was 25 ° C. The immersion time in the rubber paste was 5 seconds. The drying temperature after immersion in rubber paste was 100 ° C. and the drying time was 40 seconds.
 心線として、ガラス繊維製のものを用いた。 Glass fiber was used as the core wire.
 <実施例6-2>
 歯付ベルト本体を形成する未架橋ゴム組成物として、セルロース微細繊維を含有するゴム2を用いたことを除いて実施例6-1と同様に実施例6-2の歯付ベルトを作製した。
<Example 6-2>
A toothed belt of Example 6-2 was produced in the same manner as Example 6-1 except that rubber 2 containing cellulose fine fibers was used as the uncrosslinked rubber composition forming the toothed belt body.
 <実施例6-3>
 歯付ベルト本体を形成する未架橋ゴム組成物として、セルロース微細繊維を含有するゴム3を用いたことを除いて実施例6-1と同様に実施例6-3の歯付ベルトを作製した。
<Example 6-3>
A toothed belt of Example 6-3 was prepared in the same manner as Example 6-1 except that rubber 3 containing fine cellulose fibers was used as the uncrosslinked rubber composition forming the toothed belt body.
 <実施例6-4>
 歯付ベルト本体を形成する未架橋ゴム組成物として、セルロース微細繊維を含有するゴム4を用いたことを除いて実施例6-1と同様に実施例6-4の歯付ベルトを作製した。
<Example 6-4>
A toothed belt of Example 6-4 was produced in the same manner as Example 6-1 except that rubber 4 containing fine cellulose fibers was used as the uncrosslinked rubber composition forming the toothed belt body.
 <実施例6-5>
 歯部側補強布のソーキングゴム糊接着処理にセルロース微細繊維を含有するゴム9のゴム糊を用いたことを除いて実施例6-4と同様に実施例6-5の歯付ベルトを作製した。
<Example 6-5>
A toothed belt of Example 6-5 was prepared in the same manner as Example 6-4 except that rubber paste of rubber 9 containing cellulose fine fibers was used for the soaking rubber paste adhesion treatment of the tooth side reinforcing fabric. .
 <実施例6-6>
 歯部側補強布のソーキングゴム糊接着処理にセルロース微細繊維を含有するゴム10のゴム糊を用いたことを除いて実施例6-4と同様に実施例6-6の歯付ベルトを作製した。
<Example 6-6>
A toothed belt of Example 6-6 was produced in the same manner as Example 6-4 except that rubber paste of rubber 10 containing cellulose fine fibers was used for the soaking rubber paste bonding treatment of the tooth side reinforcing fabric. .
 <実施例6-7>
 歯部側補強布のソーキングゴム糊接着処理にセルロース微細繊維を含有するゴム311のゴム糊を用いたことを除いて実施例6-4と同様に実施例6-7の歯付ベルトを作製した。
<Example 6-7>
A toothed belt of Example 6-7 was prepared in the same manner as in Example 6-4 except that rubber paste of rubber 311 containing cellulose fine fiber was used for the soaking rubber paste bonding treatment of the tooth side reinforcing fabric. .
 <実施例6-8>
 歯部側補強布のソーキングゴム糊接着処理にセルロース微細繊維を含有するゴム12のゴム糊を用いたことを除いて実施例6-4と同様に実施例6-8の歯付ベルトを作製した。
<Example 6-8>
A toothed belt of Example 6-8 was produced in the same manner as in Example 6-4 except that the rubber paste of rubber 12 containing cellulose fine fiber was used for the soaking rubber paste bonding treatment of the tooth side reinforcing fabric. .
 <実施例6-9>
 歯部側補強布のソーキングゴム糊接着処理にセルロース微細繊維を含有するゴム13のゴム糊を用いたことを除いて実施例6-4と同様に実施例6-9の歯付ベルトを作製した。
<Example 6-9>
A toothed belt of Example 6-9 was produced in the same manner as Example 6-4 except that rubber paste of rubber 13 containing fine cellulose fibers was used for the soaking rubber paste bonding treatment of the tooth side reinforcing fabric. .
 <実施例6-10>
 歯部側補強布のソーキングゴム糊接着処理にセルロース微細繊維を含有するゴム14のゴム糊を用いたことを除いて実施例6-4と同様に実施例6-10の歯付ベルトを作製した。
<Example 6-10>
A toothed belt of Example 6-10 was produced in the same manner as in Example 6-4, except that rubber paste of rubber 14 containing cellulose fine fibers was used for the soaking rubber paste adhesion treatment of the tooth side reinforcing fabric. .
 <実施例6-11>
 歯付ベルト本体を形成する未架橋ゴム組成物として、セルロース微細繊維を含有するゴム5を用いたことを除いて実施例6-1と同様に実施例6-11の歯付ベルトを作製した。
<Example 6-11>
A toothed belt of Example 6-11 was prepared in the same manner as Example 6-1 except that rubber 5 containing fine cellulose fibers was used as the uncrosslinked rubber composition forming the toothed belt body.
 <実施例6-12>
 歯付ベルト本体を形成する未架橋ゴム組成物として、セルロース微細繊維を含有するゴム6を用いたことを除いて実施例6-1と同様に実施例6-12の歯付ベルトを作製した。
<Example 6-12>
A toothed belt of Example 6-12 was produced in the same manner as Example 6-1 except that rubber 6 containing fine cellulose fibers was used as the uncrosslinked rubber composition forming the toothed belt body.
 <実施例6-13>
 歯付ベルト本体を形成する未架橋ゴム組成物として、セルロース微細繊維を含有しないゴム7を用い、歯部側補強布のソーキングゴム糊接着処理にセルロース微細繊維を含有するゴム12のゴム糊を用いたことを除いて実施例6-1と同様に実施例6-13の歯付ベルトを作製した。
<Example 6-13>
As the uncrosslinked rubber composition forming the toothed belt body, rubber 7 containing no cellulose fine fibers is used, and the rubber paste of rubber 12 containing cellulose fine fibers is used for the soaking rubber paste bonding treatment of the tooth side reinforcing fabric. A toothed belt of Example 6-13 was produced in the same manner as in Example 6-1, except that this was the case.
 <比較例6>
 歯付ベルト本体を形成する未架橋ゴム組成物として、セルロース微細繊維を含有しないゴム7を用い、歯部側補強布のソーキングゴム糊接着処理にセルロース微細繊維を含有しないゴム8のゴム糊を用いたことを除いて実施例6-1と同様に比較例6の歯付ベルトを作製した。
<Comparative Example 6>
As a non-crosslinked rubber composition for forming a toothed belt body, rubber 7 containing no cellulose fine fibers is used, and rubber glue of rubber 8 containing no cellulose fine fibers is used for the soaking rubber paste bonding treatment of the tooth side reinforcing fabric. A toothed belt of Comparative Example 6 was produced in the same manner as in Example 6-1 except that this was the case.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 (試験評価方法)
 <セルロース微細繊維の平均繊維径・繊維径分布>
 ゴム1~6及びゴム9~14を架橋させたゴム組成物の試料を、実施例6-1~実施例6-13の歯付ベルトの歯付ベルト本体及びゴム糊接着層から採取し、そのゴム組成物の試料を凍結粉砕した後、その断面を走査型電子顕微鏡(SEM)で観察すると共に、50本の繊維を任意に選択して繊維径を測定し、その数平均を求めて平均繊維径とした。また、50本のセルロース微細繊維のうち繊維径の最大値及び最小値を求めた。
(Test evaluation method)
<Average fiber diameter and fiber diameter distribution of cellulose fine fiber>
Samples of a rubber composition in which rubbers 1 to 6 and rubbers 9 to 14 are cross-linked are collected from the toothed belt body and the rubber paste adhesive layer of the toothed belts of Examples 6-1 to 6-13. After freezing and pulverizing a sample of the rubber composition, the cross section thereof is observed with a scanning electron microscope (SEM), 50 fibers are arbitrarily selected, the fiber diameter is measured, the number average is obtained, and the average fiber is obtained. The diameter. Moreover, the maximum value and minimum value of the fiber diameter were calculated | required among 50 cellulose fine fibers.
 <ベルト走行試験>
 図32は、ベルト走行試験機330のプーリレイアウトを示す。
<Belt running test>
FIG. 32 shows a pulley layout of the belt running test machine 330.
 このベルト走行試験機330は、駆動プーリ331と、従動プーリ332と、アイドラプーリ333とを有する。駆動プーリ331は、プーリ周縁に21箇所の歯部噛合溝が設けられている。従動プーリ332は、プーリ周縁に42箇所の歯部噛合溝が設けられている。アイドラプーリ333は、ベルト背面を押圧するためにプーリ周縁がフラットに形成されている。駆動プーリ331、従動プーリ332、及びアイドラプーリ333は、いずれも炭素鋼(S45C)製である。 The belt running test machine 330 includes a driving pulley 331, a driven pulley 332, and an idler pulley 333. The drive pulley 331 is provided with 21 tooth-engagement grooves on the pulley periphery. The driven pulley 332 is provided with 42 tooth-engagement grooves on the periphery of the pulley. The idler pulley 333 has a flat pulley periphery for pressing the back surface of the belt. The drive pulley 331, the driven pulley 332, and the idler pulley 333 are all made of carbon steel (S45C).
 実施例6-1~実施例6-13及び比較例6のそれぞれの歯付ベルトBについて、このベルト走行試験機330を用い、以下のようにして耐歯欠け性及び耐摩耗性を評価した。 For each toothed belt B of Example 6-1 to Example 6-13 and Comparative Example 6, this belt running tester 330 was used to evaluate the chipping resistance and wear resistance as follows.
 -耐歯欠け性評価-
 予め、歯付ベルトBの質量を測定した。その後、ベルト走行試験機330に歯付ベルトBを巻き掛け、従動プーリ332に後方向きに荷重をかけて歯付ベルトBに216Nの張力を負荷した。そして、歯付ベルトBに負荷される張力が550Nとなるようにし、駆動プーリ331を3000rpmの回転数で回転させてベルト走行させ、歯部の欠損が発生するまでの走行時間を歯部耐久寿命とした。ベルト走行試験は、実施例6-1~実施例6-13及び比較例6の全てについて室温雰囲気で行うと共に、実施例6-1~実施例6-4、実施例6-11、実施例6-12、及び比較例6については80℃雰囲気でも行った。
-Tooth chipping resistance evaluation-
The mass of the toothed belt B was measured in advance. Thereafter, the toothed belt B was wound around the belt running tester 330, a load was applied to the driven pulley 332 in the rearward direction, and a tension of 216N was applied to the toothed belt B. Then, the tension applied to the toothed belt B is set to 550 N, the driving pulley 331 is rotated at a rotational speed of 3000 rpm, the belt travels, and the travel time until the tooth part is lost is the tooth endurance life. It was. The belt running test was performed for all of Examples 6-1 to 6-13 and Comparative Example 6 in a room temperature atmosphere, and Examples 6-1 to 6-4, Example 6-11, and Example 6 were performed. For -12 and Comparative Example 6, it was also performed in an 80 ° C. atmosphere.
 -耐摩耗性評価-
 前記の耐摩耗性の測定と同条件にて歯付ベルトBを300時間ベルト走行させた。ベルト走行後、再び歯付ベルトBの質量を測定し、走行前後の質量差を摩耗質量として算出した。
-Wear resistance evaluation-
The toothed belt B was run for 300 hours under the same conditions as in the measurement of wear resistance. After running the belt, the mass of the toothed belt B was measured again, and the mass difference before and after running was calculated as the wear mass.
 <耐油性試験>
 実施例6-1~実施例6-13及び比較例6のそれぞれの歯付ベルトについて、質量を測定した後に新品のエンジンオイル中に140℃にて168時間浸漬した。その後、付着油をエアーガンにて十分に除去し、再度質量を測定した。浸漬前後の質量の変化率(%にて表記)を算出した。
<Oil resistance test>
The toothed belts of Examples 6-1 to 6-13 and Comparative Example 6 were each measured for mass and then immersed in new engine oil at 140 ° C. for 168 hours. Thereafter, the adhered oil was sufficiently removed with an air gun, and the mass was measured again. The rate of change in mass before and after immersion (expressed in%) was calculated.
 (試験評価結果)
 試験結果を表9及び表10に示す。なお、以下、セルロース微細繊維の含有量は、特に記載しなくても、ゴム成分100質量部に対する質量部を意味する。
(Test evaluation results)
The test results are shown in Table 9 and Table 10. Hereinafter, the content of the cellulose fine fiber means a part by mass with respect to 100 parts by mass of the rubber component even if not particularly described.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 <セルロース微細繊維の平均繊維径・繊維径分布>
 表10によれば、ゴム1~6及びゴム9~14を架橋させたゴム組成物に含有されたセルロース微細繊維は、いずれも繊維径の分布が広いことが分かる。
<Average fiber diameter and fiber diameter distribution of cellulose fine fiber>
According to Table 10, it can be seen that the cellulose fine fibers contained in the rubber composition obtained by crosslinking the rubbers 1 to 6 and the rubbers 9 to 14 all have a wide fiber diameter distribution.
 <ベルト走行試験>
 -耐歯欠け性(室温)-
 歯付ベルト本体及びゴム糊接着層のいずれにもセルロース微細繊維が含有されていない比較例6では、室温における歯部耐久寿命は384時間であった。
<Belt running test>
-Tooth chip resistance (room temperature)-
In Comparative Example 6 in which neither the toothed belt body nor the rubber paste adhesive layer contained cellulose fine fibers, the tooth part durable life at room temperature was 384 hours.
 これに対し、歯付ベルト本体のみにセルロース微細繊維が含有されており、その含有量が、それぞれ0質量部、1質量部、3質量部、5質量部、10質量部、15質量部、及び25質量部である実施例6-1~実施例6-4及び実施例6-11~実施例6-12では、室温における歯部耐久寿命が順に528時間、696時間、時間792、864時間、936時間、及び1056時間であった。つまり、本実施例の範囲では、セルロース微細繊維の含有量が増えるにつれて歯部耐久寿命が長くなることが分かる。 On the other hand, cellulose fine fibers are contained only in the toothed belt body, and the contents thereof are 0 parts by weight, 1 part by weight, 3 parts by weight, 5 parts by weight, 10 parts by weight, and 15 parts by weight, respectively. In Examples 6-1 to 6-4 and Examples 6-11 to 6-12 having 25 parts by mass, the tooth endurance life at room temperature was 528 hours, 696 hours, time 792, 864 hours, in order, 936 hours and 1056 hours. That is, in the range of the present Example, it turns out that tooth | gear part durable life becomes long as content of a cellulose fine fiber increases.
 また、歯付ベルト本体におけるセルロース微細繊維の含有量が同じ10質量部である実施例6-4~実施例6-10において、ゴム糊接着層におけるセルロース微細繊維の含有量が増えるにつれて、基本的に歯部耐久寿命が長くなっているのが分かる。具体的には、実施例6-4~実施例6-10におけるゴム糊接着層におけるセルロース微細繊維の含有量が、それぞれ0質量部、1質量部、3質量部、5質量部、10質量部、15質量部、及び25質量部であるのに対し、室温における歯部耐久寿命が順に864時間、912時間、960時間、1032時間、1080時間、1128時間、及び1128時間であった。なお、実施例6-9及び実施例6-10では、歯部耐久寿命が同じであることから、セルロース微細繊維の含有量が15質量部以上では、歯部耐久性を高める効果が飽和している可能性が考えられる。 In Examples 6-4 to 6-10, in which the content of cellulose fine fibers in the toothed belt body is the same 10 parts by mass, as the content of cellulose fine fibers in the rubber glue adhesive layer increases, It can be seen that the endurance life of the tooth is long. Specifically, the cellulose fine fiber content in the rubber paste adhesive layers in Examples 6-4 to 6-10 is 0 parts by weight, 1 part by weight, 3 parts by weight, 5 parts by weight, and 10 parts by weight, respectively. , 15 parts by weight, and 25 parts by weight, while the tooth endurance life at room temperature was 864 hours, 912 hours, 960 hours, 1032 hours, 1080 hours, 1128 hours, and 1128 hours, respectively. In Examples 6-9 and 6-10, since the tooth endurance life is the same, when the content of the fine cellulose fibers is 15 parts by mass or more, the effect of increasing the tooth endurance is saturated. Possible possibility.
 また、ゴム糊接着層のみにセルロース微細繊維を10質量部含有させた実施例6-13では、歯部耐久寿命が456時間であり、比較例6の384時間に対しては幾分長い。しかしながら、歯付ベルト本体におけるセルロース微細繊維の含有量が10質量部である実施例6-8の場合、ゴム糊接着層におけるセルロース微細繊維の含有量が実施例6-13と同じであるが、歯部耐久寿命が1080時間と大幅に優れることが分かる。 Further, in Example 6-13 in which only 10 parts by mass of cellulose fine fiber was contained only in the rubber glue adhesive layer, the durable life of the tooth portion was 456 hours, which is slightly longer than that of 384 hours in Comparative Example 6. However, in Example 6-8 in which the content of cellulose fine fibers in the toothed belt body is 10 parts by mass, the content of cellulose fine fibers in the rubber paste adhesive layer is the same as in Example 6-13. It can be seen that the tooth endurance life is significantly excellent at 1080 hours.
 以上から、歯付ベルト本体及びゴム糊接着層のいずれにセルロース微細繊維を含有させた場合でも歯部耐久寿命は向上するものの、歯付ベルト本体に含有させる場合の方がその効果は顕著であることが分かる。 From the above, although the durable life of the tooth portion is improved when cellulose fine fibers are contained in any of the toothed belt body and the rubber paste adhesive layer, the effect is more remarkable when it is contained in the toothed belt body. I understand that.
 -耐歯欠け性(80℃)-
 歯付ベルト本体及びゴム糊接着層のいずれにもセルロース微細繊維が含有されていない比較例6では、80℃における歯部耐久寿命は240時間であった。
-Tooth chip resistance (80 ° C)-
In Comparative Example 6 in which neither the toothed belt body nor the rubber paste adhesive layer contained cellulose fine fibers, the tooth part durable life at 80 ° C. was 240 hours.
 これに対し、歯付ベルト本体のみにセルロース微細繊維が含有されており、その含有量が、それぞれ0質量部、1質量部、3質量部、5質量部、10質量部、15質量部、及び25質量部である実施例6-1~実施例6-4及び実施例6-11~実施例6-12では、80℃における歯部耐久寿命が順に432時間、624時間、744時間、792時間、888時間、及び9126時間であった。つまり、本実施例の範囲では、セルロース微細繊維の含有量が増えるにつれて高温での歯部耐久寿命が長くなることが分かる。 On the other hand, cellulose fine fibers are contained only in the toothed belt body, and the contents thereof are 0 parts by weight, 1 part by weight, 3 parts by weight, 5 parts by weight, 10 parts by weight, and 15 parts by weight, respectively. In Examples 6-1 to 6-4 and Examples 6-11 to 6-12 having 25 parts by mass, the tooth endurance life at 80 ° C. was 432 hours, 624 hours, 744 hours, and 792 hours, respectively. 888 hours, and 9126 hours. That is, in the range of the present Example, it turns out that the tooth | gear durable life at high temperature becomes long as content of a cellulose fine fiber increases.
 また、高温(80℃)における歯部耐久寿命は、いずれも、室温における歯部耐久寿命よりも短くなっている。しかしながら、セルロース微細繊維が含有されていることにより、その劣化が軽減されていることが分かる。つまり、比較例6では、室温における歯部耐久寿命が384時間であったのに対し、80℃における歯部耐久寿命が240時間であり、38%程度劣化している。これに対し、歯付ベルト本体に1質量部のセルロース微細繊維を含有させた実施例6-1では、室温における歯部耐久寿命が528時間であったのに対し、80℃における歯部耐久寿命が432時間であり、劣化は18%程度である。実施例6-2、実施例6-3、実施例6-4、実施例6-11及び実施例6-12においても、その劣化は順に10%、6%、8%、5%、及び14%程度であり、いずれの場合も、セルロース微細繊維を含まない場合に比べると大きく軽減されていることが分かる。 Further, the tooth endurance life at high temperature (80 ° C.) is shorter than the tooth endurance life at room temperature. However, it turns out that the deterioration is reduced by containing the cellulose fine fiber. That is, in Comparative Example 6, the tooth endurance life at room temperature was 384 hours, whereas the tooth endurance life at 80 ° C. was 240 hours, which was deteriorated by about 38%. On the other hand, in Example 6-1 in which 1 part by mass of cellulose fine fiber was contained in the toothed belt body, the tooth part durable life at room temperature was 528 hours, whereas the tooth part durable life at 80 ° C. Is 432 hours, and the deterioration is about 18%. Also in Example 6-2, Example 6-3, Example 6-4, Example 6-11 and Example 6-12, the deterioration was 10%, 6%, 8%, 5% and 14 in order. It can be seen that, in any case, it is greatly reduced as compared with the case where the fine cellulose fibers are not included.
 このように、セルロース微細繊維が含有されていることによる高温における歯部耐久寿命の劣化が軽減される要因としては、線膨張係数の低下が考えられる。つまり、セルロース微細繊維が含有されていることにより、歯付ベルトの線膨張係数が低下する。線膨張係数が低下すると、高温における歯部の膨張が抑制される。その結果、歯部とプーリとの噛み合い精度が高温においても維持され、温度上昇に伴う歯部に対する負担の増加が抑制され、その結果、高温における歯部耐久寿命の劣化が抑制されるのではないかと推測される。 As described above, a decrease in the coefficient of linear expansion can be considered as a factor for reducing deterioration of the durable life of the tooth portion at a high temperature due to the inclusion of the fine cellulose fibers. That is, the linear expansion coefficient of a toothed belt falls by containing a cellulose fine fiber. When the linear expansion coefficient decreases, the expansion of the tooth portion at a high temperature is suppressed. As a result, the meshing accuracy between the tooth part and the pulley is maintained even at a high temperature, and an increase in the burden on the tooth part due to the temperature rise is suppressed. I guess that.
 -耐摩耗性-
 歯付ベルト本体及びゴム糊接着層のいずれにもセルロース微細繊維が含有されていない比較例6では摩耗質量が4.1gであった。また、歯付ベルト本体のみにセルロース微細繊維が含有されている実施例6-1~実施例6-4及び実施例6-11~実施例6-12では、摩耗質量が3.9g~4.3gであった。従って、歯付ベルト本体のみにセルロース微細繊維が含有されていても、耐摩耗性の特別の向上が見られないことが分かる。
-Abrasion resistance-
In Comparative Example 6 in which neither the toothed belt body nor the rubber paste adhesive layer contained cellulose fine fibers, the wear mass was 4.1 g. In Examples 6-1 to 6-4 and Examples 6-11 to 6-12 in which cellulose fine fibers are contained only in the toothed belt body, the wear mass is 3.9 g to 4. It was 3 g. Therefore, it can be seen that even if cellulose fine fibers are contained only in the toothed belt body, no particular improvement in wear resistance is observed.
 これに対し、歯付ベルト本体におけるセルロース微細繊維の含有量が同じ10質量部である実施例6-4~実施例6-10において、ゴム糊接着層におけるセルロース微細繊維の含有量は、それぞれ0質量部、1質量部、3質量部、5質量部、10質量部、15質量部、及び25質量部であるのに対し、摩耗質量が順に4.2g、3.3g、2.5g、2.1g、1.8g、1.4g、及び1.3gであった。つまり、ゴム糊接着層におけるセルロース微細繊維の含有量が増えるにつれて摩耗質量が減少していることが分かる。ここで、摩耗質量が3.5g以下となっていれば、従来に対して優位に改善されていると考えられる。 On the other hand, in Examples 6-4 to 6-10 in which the content of cellulose fine fibers in the toothed belt body is the same 10 parts by mass, the content of cellulose fine fibers in the rubber paste adhesive layer is 0 respectively. While the weight parts are 1 part by weight, 3 parts by weight, 5 parts by weight, 10 parts by weight, 15 parts by weight, and 25 parts by weight, the wear mass is 4.2 g, 3.3 g, 2.5 g, 2 0.1 g, 1.8 g, 1.4 g, and 1.3 g. That is, it is understood that the wear mass decreases as the content of the cellulose fine fiber in the rubber paste adhesive layer increases. Here, if the wear mass is 3.5 g or less, it is considered that the wear mass is improved significantly over the conventional technique.
 また、歯付ベルト本体にセルロース微細繊維が含有されていない実施例6-13では、ゴム糊接着層にセルロース微細繊維が10質量部含有されており、摩耗質量が2.0gであって、顕著に耐摩耗性が改善されていることが分かる。 Further, in Examples 6-13 in which the toothed belt body does not contain cellulose fine fibers, the rubber paste adhesive layer contains 10 parts by weight of cellulose fine fibers, and the wear mass is 2.0 g. It can be seen that the wear resistance is improved.
 以上から、耐摩耗性については、歯部側補強布のゴム糊接着層にセルロース微細繊維が含有されていることによって向上させる効果が発揮されると考えられる。 From the above, it is considered that the effect of improving the wear resistance is exhibited by the inclusion of cellulose fine fibers in the rubber paste adhesive layer of the tooth side reinforcing fabric.
 <耐油性試験>
 歯付ベルト本体及びゴム糊接着層のいずれにもセルロース微細繊維が含有されていない比較例6では、耐油性の評価指標としての油膨潤前後の質量変化量が4.4%であった。
<Oil resistance test>
In Comparative Example 6 in which neither the toothed belt body nor the rubber paste adhesive layer contained cellulose fine fibers, the mass change amount before and after oil swelling as an evaluation index of oil resistance was 4.4%.
 これに対し、歯付ベルト本体のみにセルロース微細繊維が含有されており、その含有量が、それぞれ0質量部、1質量部、3質量部、5質量部、10質量部、15質量部、及び25質量部である実施例6-1~実施例6-4及び実施例6-11~実施例6-12では、質量変化量が順に3.9%、3.7%、3.1%、2.8%、1.9%、及び1.5%であった。つまり、本実施例の範囲では、セルロース微細繊維の含有量が増えるにつれて質量変化量が小さくなっており、耐油性が向上することが分かる。 On the other hand, cellulose fine fibers are contained only in the toothed belt body, and the contents thereof are 0 parts by weight, 1 part by weight, 3 parts by weight, 5 parts by weight, 10 parts by weight, and 15 parts by weight, respectively. In Examples 6-1 to 6-4 and Examples 6-11 to 6-12 having 25 parts by mass, the mass change amounts were 3.9%, 3.7%, 3.1%, 2.8%, 1.9%, and 1.5%. That is, in the range of the present Example, it turns out that mass change amount becomes small as content of a cellulose fine fiber increases, and oil resistance improves.
 また、歯付ベルト本体におけるセルロース微細繊維の含有量が同じ10質量部である実施例6-4~実施例6-10において、ゴム糊接着層におけるセルロース微細繊維の含有量が、それぞれ0質量部、1質量部、3質量部、5質量部、10質量部、15質量部、及び25質量部であるのに対し、質量変化量が順に2.8%、2.8%、2.7%、2.6%、2.3%、2.2%、及び2.1%であった。つまり、ゴム糊接着層におけるセルロース微細繊維の含有量が増えるにつれて、質量変化率が小さくなっており、耐油性は向上することが分かる。 In Examples 6-4 to 6-10 in which the content of cellulose fine fibers in the toothed belt body is the same 10 parts by mass, the content of cellulose fine fibers in the rubber paste adhesive layer is 0 parts by mass, respectively. 1 part by mass, 3 parts by mass, 5 parts by mass, 10 parts by mass, 15 parts by mass, and 25 parts by mass, while the mass change amount is 2.8%, 2.8%, 2.7% in order. 2.6%, 2.3%, 2.2%, and 2.1%. That is, it can be seen that as the content of the cellulose fine fiber in the rubber paste adhesive layer increases, the mass change rate decreases, and the oil resistance improves.
 また、ゴム糊接着層のみにセルロース微細繊維を10質量部含有させた実施例6-13では、質量変化率が4.3%であり、比較例6の4.4%に対して僅かに抑制されている。歯付ベルト本体におけるセルロース微細繊維の含有量が10質量部である実施例6-8の場合、ゴム糊接着層におけるセルロース微細繊維の含有量は実施例6-13同じであるが、質量変化率が2.3%である。 Further, in Example 6-13 in which only 10 parts by mass of cellulose fine fiber was contained only in the adhesive layer of rubber paste, the mass change rate was 4.3%, which was slightly suppressed from 4.4% of Comparative Example 6. Has been. In the case of Example 6-8 in which the content of cellulose fine fibers in the toothed belt body is 10 parts by mass, the content of cellulose fine fibers in the rubber paste adhesive layer is the same as in Example 6-13, but the rate of mass change Is 2.3%.
 以上から、歯付ベルト本体にセルロース系微細繊維を含有させることにより耐油性を向上させることができ、歯部側補強布のゴム糊接着層のみにセルロース微細繊維を含有させた場合でも、効果は小さいとしても、耐油性が向上することが分かる。また、歯付ベルト本体に加えてゴム糊接着層にもセルロース微細繊維を含有させた場合には、耐油性がより顕著に向上することが分かる。 From the above, it is possible to improve the oil resistance by containing cellulose fine fibers in the toothed belt body, and even when cellulose fine fibers are contained only in the rubber paste adhesive layer of the tooth side reinforcing fabric, the effect is Even if it is small, it can be seen that the oil resistance is improved. It can also be seen that when the fine cellulose fibers are contained in the rubber paste adhesive layer in addition to the toothed belt body, the oil resistance is significantly improved.
 本発明は、伝動用ベルトとして有用である。 The present invention is useful as a transmission belt.
10 Vリブドベルト本体
11 圧縮ゴム層
12 接着ゴム層
13 背面ゴム層
16 短繊維
 
120 平ベルト本体
121 内側ゴム層
122 接着ゴム層
123 外側ゴム層
126 短繊維
 
310  歯付ベルト本体
311a 基部
311b 歯部
312  心線
313  歯部側補強布
314  RFL接着層
315  ゴム糊接着層
10 V-ribbed belt body 11 Compressed rubber layer 12 Adhesive rubber layer 13 Back rubber layer 16 Short fiber
120 Flat belt body 121 Inner rubber layer 122 Adhesive rubber layer 123 Outer rubber layer 126 Short fiber
310 toothed belt body 311a base 311b tooth 312 core 313 tooth side reinforcing cloth 314 RFL adhesive layer 315 rubber glue adhesive layer

Claims (13)

  1.  プーリに巻き掛けられて動力を伝達する伝動ベルトにおいて、
     セルロース系微細繊維と、平均直径1μm以上の短繊維とを含有するゴム組成物からなる層を有することを特徴とする伝動ベルト。
    In a transmission belt that is wound around a pulley and transmits power,
    A power transmission belt comprising a layer made of a rubber composition containing cellulosic fine fibers and short fibers having an average diameter of 1 μm or more.
  2.  請求項1に記載の伝動ベルトにおいて、
     前記セルロース系微細繊維の繊維径の分布範囲が20~500nmを含むことを特徴とする伝動ベルト。
    The power transmission belt according to claim 1,
    A power transmission belt characterized in that a fiber diameter distribution range of the cellulosic fine fibers includes 20 to 500 nm.
  3.  請求項1又は2に記載の伝動ベルトにおいて、
     前記ゴム組成物にはカーボンブラックが配合されていないことを特徴とする伝動ベルト。
    The power transmission belt according to claim 1 or 2,
    A power transmission belt characterized in that carbon black is not blended in the rubber composition.
  4.  請求項1~3のいずれか1つに記載の伝動ベルトにおいて、
     前記セルロース系微細繊維は、機械的解繊手段によって製造されたものであることを特徴とする伝動ベルト。
    The transmission belt according to any one of claims 1 to 3,
    The power transmission belt, wherein the cellulosic fine fibers are produced by mechanical defibrating means.
  5.  請求項1~3のいずれか1つに記載の伝動ベルトにおいて、
     前記セルロース系微細繊維は、化学的解繊手段によって製造されたものであることを特徴とする伝動ベルト。
    The transmission belt according to any one of claims 1 to 3,
    The power transmission belt, wherein the cellulosic fine fibers are produced by chemical defibrating means.
  6.  請求項1~5のいずれか1つに記載の伝動ベルトにおいて、
     前記セルロース系微細繊維の繊維径の分布範囲が50~500nmを含むことを特徴とする伝動ベルト。
    In the transmission belt according to any one of claims 1 to 5,
    A power transmission belt characterized in that a fiber diameter distribution range of the cellulosic fine fibers includes 50 to 500 nm.
  7.  請求項1~6のいずれか1つに記載の伝動ベルトにおいて、
     前記セルロース系微細繊維の前記ゴム組成物のゴム成分100質量部に対する含有量が1~25質量部である伝動ベルト。
    The transmission belt according to any one of claims 1 to 6,
    A power transmission belt having a content of 1 to 25 parts by mass of the cellulose-based fine fibers with respect to 100 parts by mass of a rubber component of the rubber composition.
  8.  請求項1~7のいずれか1つに記載の伝動ベルトにおいて、
     前記ゴム組成物は、繊維径が10μm以上の短繊維を含有する伝動ベルト。
    The transmission belt according to any one of claims 1 to 7,
    The rubber composition is a power transmission belt containing short fibers having a fiber diameter of 10 μm or more.
  9.  請求項8に記載の伝動ベルトにおいて、
     前記短繊維の前記ゴム組成物のゴム成分100質量部に対する含有量が、前記セルロース系微細繊維の前記ゴム組成物のゴム成分100質量部に対する含有量よりも多い伝動ベルト。
    The transmission belt according to claim 8,
    A power transmission belt in which the content of the short fiber relative to 100 parts by mass of the rubber component of the rubber composition is larger than the content of the cellulosic fine fibers relative to 100 parts by mass of the rubber component of the rubber composition.
  10.  請求項1~9のいずれか1つに記載の伝動ベルトにおいて、
     前記伝動ベルトは、
     平帯状の基部と、前記基部の一方側の面にベルト長さ方向に間隔をおいて一体に設けられた複数の歯部と、を有する歯付ベルト本体と、
     前記歯付ベルト本体に、ゴム成分を含む接着層を介してその歯部側表面を被覆するように貼設された歯部側補強布と、
    を備えた歯付ベルトであり、
     前記基部、前記歯部及び前記接着層の少なくとも一つは、セルロース系微細繊維と、平均直径1μm以上の短繊維とを含有する前記ゴム組成物で形成されていることを特徴とする伝動ベルト。
    The transmission belt according to any one of claims 1 to 9,
    The transmission belt is
    A toothed belt main body having a flat belt-like base portion and a plurality of tooth portions integrally provided at a distance in the belt length direction on one surface of the base portion;
    A tooth-side reinforcing cloth pasted to cover the tooth-side surface of the toothed belt body through an adhesive layer containing a rubber component;
    A toothed belt with
    At least one of the base part, the tooth part, and the adhesive layer is formed of the rubber composition containing cellulosic fine fibers and short fibers having an average diameter of 1 μm or more.
  11.  請求項10に記載の伝動ベルトにおいて、
     前記ゴム組成物における前記セルロース系微細繊維の含有量が、ゴム成分100質量部に対して1~30質量部であることを特徴とする伝動ベルト。
    The power transmission belt according to claim 10,
    The power transmission belt, wherein the content of the cellulose fine fibers in the rubber composition is 1 to 30 parts by mass with respect to 100 parts by mass of the rubber component.
  12.  請求項10又は11に記載の伝動ベルトにおいて、
     前記歯付ベルト本体を形成するゴム組成物のゴム成分が水素添加アクリロニトリルゴムを含むことを特徴とする伝動ベルト。
    The power transmission belt according to claim 10 or 11,
    A power transmission belt, wherein the rubber component of the rubber composition forming the toothed belt body includes hydrogenated acrylonitrile rubber.
  13.  請求項10~12のいずれか1つに記載の伝動ベルトにおいて、
     前記接着層に含まれるゴム成分が水素添加アクリロニトリルゴム及び不飽和カルボン酸金属塩で強化された水素添加アクリロニトリルゴムを含むことを特徴とする伝動ベルト。
    The transmission belt according to any one of claims 10 to 12,
    A power transmission belt, wherein the rubber component contained in the adhesive layer includes hydrogenated acrylonitrile rubber and hydrogenated acrylonitrile rubber reinforced with an unsaturated carboxylic acid metal salt.
PCT/JP2016/002147 2015-04-24 2016-04-21 Transmission belt WO2016170795A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680023463.7A CN107532681B (en) 2015-04-24 2016-04-21 Transmission belt

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-089615 2015-04-24
JP2015089615A JP6529323B2 (en) 2015-04-24 2015-04-24 Toothed belt
JP2015090123A JP6527009B2 (en) 2015-04-27 2015-04-27 Transmission belt
JP2015-090123 2015-04-27
JP2015092256A JP6529327B2 (en) 2015-04-28 2015-04-28 Transmission belt
JP2015-092256 2015-04-28

Publications (1)

Publication Number Publication Date
WO2016170795A1 true WO2016170795A1 (en) 2016-10-27

Family

ID=57143512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002147 WO2016170795A1 (en) 2015-04-24 2016-04-21 Transmission belt

Country Status (2)

Country Link
CN (1) CN107532681B (en)
WO (1) WO2016170795A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770470A (en) * 2017-06-19 2020-02-07 阪东化学株式会社 Transmission belt
TWI791024B (en) * 2017-06-19 2023-02-01 日商阪東化學股份有限公司 Transmission belt

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6812605B1 (en) * 2019-06-07 2021-01-13 バンドー化学株式会社 Transmission belt
CN113939670B (en) * 2019-06-07 2023-06-20 阪东化学株式会社 Transmission belt

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125012A (en) * 2002-09-30 2004-04-22 Mitsuboshi Belting Ltd Power transmission belt
JP2014167347A (en) * 2013-01-30 2014-09-11 Mitsuboshi Belting Ltd Friction transmission belt
JP2015042903A (en) * 2013-03-21 2015-03-05 バンドー化学株式会社 Friction transmission belt

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW539814B (en) * 2001-09-06 2003-07-01 Goodyear Tire & Rubber Power transmission belt
DE102010016393A1 (en) * 2010-04-12 2011-10-13 Contitech Antriebssysteme Gmbh PAK-free drive belt, in particular toothed belt
CN103075464B (en) * 2012-12-05 2015-01-28 宁波丰茂远东橡胶有限公司 Automobile timing driving belt for oil immersion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125012A (en) * 2002-09-30 2004-04-22 Mitsuboshi Belting Ltd Power transmission belt
JP2014167347A (en) * 2013-01-30 2014-09-11 Mitsuboshi Belting Ltd Friction transmission belt
JP2015042903A (en) * 2013-03-21 2015-03-05 バンドー化学株式会社 Friction transmission belt

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770470A (en) * 2017-06-19 2020-02-07 阪东化学株式会社 Transmission belt
US10794450B2 (en) 2017-06-19 2020-10-06 Bando Chemical Industries, Ltd. Transmission belt
CN110770470B (en) * 2017-06-19 2021-04-06 阪东化学株式会社 Transmission belt
TWI791024B (en) * 2017-06-19 2023-02-01 日商阪東化學股份有限公司 Transmission belt

Also Published As

Publication number Publication date
CN107532681A (en) 2018-01-02
CN107532681B (en) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2016170788A1 (en) Rubber composition, transmission belt and manufacturing method thereof
JP6529327B2 (en) Transmission belt
JP6192641B2 (en) Transmission belt
TWI628375B (en) V belt and method for manufacturing v belt of the same
JP5586282B2 (en) Friction power transmission belt, manufacturing method thereof, and belt power transmission device using the same
JP6209524B2 (en) Transmission belt
US10746257B2 (en) Transmission belt
JP6487124B1 (en) Transmission belt
KR20160064176A (en) Flat belt and production method therefor
JP6427302B1 (en) Transmission belt
WO2016170795A1 (en) Transmission belt
KR20220125679A (en) V-ribbed belt
JP6529323B2 (en) Toothed belt
JP2008304053A (en) Friction transmission belt
WO2016194371A1 (en) Transmission belt
JP6527009B2 (en) Transmission belt
JP6918047B2 (en) Transmission belt
JP2019143813A (en) Toothed belt
JP6539099B2 (en) Transmission belt
JPWO2017033392A1 (en) Friction transmission belt
JP2023171441A (en) Rubber composition and method for producing the same and transmission belt
JP2006077785A (en) Power transmission belt
JP2017082914A (en) belt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16782817

Country of ref document: EP

Kind code of ref document: A1