[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016167289A1 - Rubber composition and tire - Google Patents

Rubber composition and tire Download PDF

Info

Publication number
WO2016167289A1
WO2016167289A1 PCT/JP2016/061919 JP2016061919W WO2016167289A1 WO 2016167289 A1 WO2016167289 A1 WO 2016167289A1 JP 2016061919 W JP2016061919 W JP 2016061919W WO 2016167289 A1 WO2016167289 A1 WO 2016167289A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
silica
group
mass
parts
Prior art date
Application number
PCT/JP2016/061919
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 学
亮太 高橋
隆裕 岡松
美昭 桐野
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to JP2016553028A priority Critical patent/JPWO2016167289A1/en
Publication of WO2016167289A1 publication Critical patent/WO2016167289A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives

Definitions

  • the present invention relates to a rubber composition and a tire.
  • Patent Document 1 discloses that 100 wt. Of diene rubber containing 5 to 50 wt.% Of terminally modified solution-polymerized styrene butadiene rubber (modified S-SBR) having a vinyl unit content of 25 wt% or more and a glass transition temperature of ⁇ 50 ° C. or less.
  • modified S-SBR terminally modified solution-polymerized styrene butadiene rubber
  • silica X 2 to 50 parts by weight of an aromatic modified terpene resin having a softening point of 100 ° C. or higher, and 60 to 130 parts by weight of two types of silica X and silica Y in total, and the modified S-SBR
  • the functional group is reactive with silanol groups on the silica surface, the ratio of silica to the total amount of the reinforcing filler containing silica and carbon black is 85% by weight or more, and the nitrogen adsorption specific surface area of the silica X is 140 m 2.
  • the nitrogen adsorption specific surface area of the silica Y is less than 140 m 2 / g exceed 100 m 2 / g, and distribution of the silica X with respect to the diene rubber 100 parts by weight
  • the amount of x parts by weight, when the amount of the silica Y and y parts by weight, tire rubber composition characterized by satisfying the relation of x / 7 ⁇ y ⁇ x is described.
  • an object of the present invention is to provide a rubber composition excellent in low heat buildup and wear resistance. Another object of the present invention is to provide a tire.
  • the rubber composition contains a modified diene rubber modified with a carboxy group at a modification rate within a specific range, whereby a predetermined effect can be obtained.
  • the headline, the present invention has been reached.
  • the present invention is based on the above knowledge and the like, and specifically, solves the above problems by the following configuration.
  • the content of the modified diene rubber is 10 to 100 parts by mass with respect to 100 parts by mass of the rubber component,
  • the total content of the silica 1 and the silica 2 is 55 to 200 parts by mass with respect to 100 parts by mass of the rubber component,
  • the nitrone compound is N-phenyl- ⁇ - (4-carboxyphenyl) nitrone, N-phenyl- ⁇ - (3-carboxyphenyl) nitrone, N-phenyl- ⁇ - (2-carboxyphenyl) nitrone, N- (4-carboxyphenyl) - ⁇ -phenylnitrone, 4.
  • the rubber composition according to 3 above which is at least one selected from the group consisting of N- (3-carboxyphenyl) - ⁇ -phenylnitrone and N- (2-carboxyphenyl) - ⁇ -phenylnitrone. 5.
  • the content of the modified diene rubber is 10 to 100 parts by mass with respect to 100 parts by mass of the rubber component,
  • the total content of the silica 1 and the silica 2 is 55 to 200 parts by mass with respect to 100 parts by mass of the rubber component,
  • the modified diene rubber contained in the rubber composition described in 6 above corresponds to the modified diene rubber contained in the rubber composition described in 1 above.
  • the modified diene rubber is any one of the modified diene rubber contained in the rubber composition described in 6 above and the modified diene rubber contained in the rubber composition described in 1 above. If it is.
  • the components other than the modified diene rubber in the rubber composition described in 6 above are the same as the components other than the modified diene rubber in the rubber composition described in 1 above.
  • the rubber composition of the present invention is excellent in low heat buildup and wear resistance.
  • the tire of the present invention is excellent in low heat buildup and wear resistance.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • content of the said component refers to the total content of 2 or more types of substances.
  • the rubber composition of the present invention is A rubber component containing at least a modified diene rubber in which 0.02 to 4 mol% of the total amount of double bonds of the raw diene rubber is modified with a carboxy group; Silica 1 having a nitrogen adsorption specific surface area of 155 m 2 / g or more; Silica 2 having a nitrogen adsorption specific surface area of 125 m 2 / g or less; Containing a silane coupling agent,
  • the content of the modified diene rubber is 10 to 100 parts by mass with respect to 100 parts by mass of the rubber component,
  • the total content of the silica 1 and the silica 2 is 55 to 200 parts by mass with respect to 100 parts by mass of the rubber component,
  • the rubber composition of the present invention has such a configuration, it is considered that a desired effect can be obtained.
  • a desired effect can be obtained.
  • silica with a large nitrogen adsorption specific surface area and silica with a small nitrogen adsorption specific surface area are used in combination, silica with a small nitrogen adsorption specific surface area is unlikely to interact with rubber, so silica is difficult to disperse in the rubber component, low heat build-up, etc. The effect of is difficult to obtain.
  • a modified diene rubber modified to a carboxy group at a specific modification rate can interact and / or bond with silica.
  • the modified diene rubber can interact strongly with two types of silica having different nitrogen adsorption specific surface areas and different reinforcing properties, by using a modified diene rubber and a silane coupling agent in combination, Silica can be further dispersed. Therefore, it is considered that further low heat build-up and wear resistance could be improved by using the modified diene rubber.
  • Rubber composition Hereinafter, each component contained in the rubber composition of the present invention will be described in detail.
  • Rubber component >> The rubber component contained in the rubber composition of the present invention contains at least a modified diene rubber.
  • the modified diene rubber contained in at least the rubber component is a modified diene rubber in which 0.02 to 4 mol% of the total amount of double bonds of the raw diene rubber is modified with carboxy groups.
  • the ratio of the carboxy group (mole) to the total group (mole) may be referred to as the modification rate. That is, in the present invention, the modification rate is 0.02 to 4 mol%.
  • the modified diene rubber has a double bond and a carboxy group, and the content of the carboxy group is 0.2 to 4 mol% of the total of the double bond and the carboxy group.
  • the modified diene rubber has a carboxy group as a modifying group.
  • the modified diene rubber can have a carboxy group as a modifying group in at least one of the main chain and the side chain. Further, at least a part of the main chain or at least a part of the side chain of the modified diene rubber can have a carboxy group as a modifying group.
  • Examples of the modifying group in the main chain include a group represented by the following formula (I).
  • Examples of the modifying group in the side chain include a group represented by the following formula (II).
  • each of a21 and a22 is preferably independently 0 to 5, more preferably 0, 1 or 2.
  • a21 + a22 is preferably 1 or more, more preferably 1 to 4, and still more preferably 1 to 2.
  • a21, a22, and a21 + a22 are the same as n, m, and m + n in formula (3) described later, respectively.
  • each of a31 and a32 is preferably independently 0 to 5, more preferably 0, 1 or 2.
  • a31 + a32 is preferably 1 or more, more preferably 1 to 4, and still more preferably 1 to 2.
  • A31, a32, a31 + a32 in the formula (II) are the same as n, m, m + n in the formula (3) to be described later.
  • Examples of the main chain of the modified diene rubber include those similar to the diene rubber used as the raw material diene rubber described later. Among these, aromatic vinyl-conjugated diene copolymer rubber is preferable and styrene butadiene rubber is more preferable from the viewpoint of excellent low heat build-up and excellent strength characteristics.
  • the modified diene rubber has at least one of low exothermic property and wear resistance (hereinafter referred to as “the effect of the present invention is more excellent”), so that the raw material diene rubber and a modifier having a carboxy group are used. What is manufactured by making it react is preferable.
  • the modified diene rubber is preferably modified with a carboxy group in one or both of the main chain and the side chain.
  • the diene rubber used as the raw material diene rubber is not particularly limited.
  • natural rubber NR
  • isoprene rubber IR
  • aromatic vinyl-conjugated diene copolymer rubber acrylonitrile-butadiene copolymer rubber (NBR)
  • butyl rubber IIR
  • halogenated butyl rubber for example, Br-IIR, Cl-IIR
  • chloroprene rubber CR
  • aromatic vinyl-conjugated diene copolymer rubber is preferable and styrene butadiene rubber is more preferable from the viewpoint of excellent low heat build-up and excellent strength characteristics.
  • the styrene butadiene rubber (SBR) that can be used as the raw material diene rubber is not particularly limited as long as it is a copolymer of styrene and butadiene.
  • Styrene butadiene rubber is excellent in reactivity with the modifier because of its small steric hindrance in the unsaturated bond derived from butadiene.
  • the amount of styrene contained in the styrene butadiene rubber is preferably 10% by mass or more, more preferably 26 to 70% by mass, based on all the structural units constituting the styrene butadiene rubber, from the viewpoint of excellent compatibility with the modifier.
  • the styrene content of the styrene butadiene rubber refers to the ratio (mass% or weight%) of the styrene unit in all the structural units constituting the styrene butadiene rubber.
  • the microstructure of the styrene butadiene rubber was measured according to JIS K 6239: 2007 (raw material rubber-solution polymerization SBR microstructure determination method).
  • Examples of the double bond derived from butadiene in the styrene-butadiene rubber include 1,4-bond (cis-1,4-bond, trans-1,4-bond) and 1,2-bond.
  • the proportion of 1,4-bonds in the double bonds of the styrene butadiene rubber is preferably 20 to 80 mol%, more preferably 25 to 65 mol%, based on the total amount of double bonds.
  • the proportion of 1,4-bonds in the double bonds of styrene-butadiene rubber refers to all double bonds of styrene-butadiene rubber (trans-1,4 units of butadiene component, cis-1,4 1 and 4 units (1,4-bond) (unit: mol%).
  • the proportion of 1,2-bonds in the double bonds of styrene-butadiene rubber is preferably 20 to 80 mol%, and 35 to 75 mol% in the total amount of double bonds. Is more preferable.
  • the proportion of 1,2-bonds in the double bonds of styrene butadiene rubber means 1,2 units (1,2-bonds) of all double bonds of styrene butadiene rubber. It refers to the ratio (mol%).
  • the glass transition temperature of the raw diene rubber is not particularly limited. For example, from the viewpoint of better wear resistance, it is preferably ⁇ 20 ° C. or lower. When the raw diene rubber is an aromatic vinyl-conjugated diene copolymer rubber, it is preferably ⁇ 20 ° C. or lower and ⁇ 80 ° C. or higher. When the raw diene rubber is other than aromatic vinyl-conjugated diene copolymer rubber, it is preferably -50 to -80 ° C.
  • the glass transition temperature is measured by using a differential scanning calorimeter (DSC) at a rate of temperature increase of 20 ° C./min and calculated by the midpoint method.
  • DSC differential scanning calorimeter
  • the weight average molecular weight of the raw material diene rubber is preferably 100,000 to 1,500,000, more preferably 100,000 to 1,400,000 from the viewpoint of handleability, and 300,000. More preferably, it is ⁇ 1,300,000.
  • the weight average molecular weight (Mw) of the raw material diene rubber is measured in terms of standard polystyrene by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent.
  • the modifying agent that can be used when producing the modified diene rubber is described below.
  • the denaturing agent is preferably a compound having at least a carboxy group, and more preferably a nitrone compound having a carboxy group and a nitrone group.
  • the number of carboxy groups per molecule in the modifier is preferably 1 or more, can be 10 or less, more preferably 1 to 4, and more preferably 1 to 2. preferable.
  • the nitrone group is a group represented by the following formula (1).
  • * represents a bonding position.
  • the number of nitrone groups per molecule in the denaturant is preferably 1 to 3.
  • the modifying agent is preferably a compound represented by the following formula (2).
  • X and Y each independently represent an aliphatic hydrocarbon group, an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent.
  • the carboxy group can be attached to one or both of X and Y.
  • Examples of the aliphatic hydrocarbon group represented by X or Y include an alkyl group, a cycloalkyl group, and an alkenyl group.
  • Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, Examples thereof include a tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, n-hexyl group, n-heptyl group, n-octyl group and the like. Of these, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable.
  • cycloalkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like. Of these, a cycloalkyl group having 3 to 10 carbon atoms is preferable, and a cycloalkyl group having 3 to 6 carbon atoms is more preferable.
  • alkenyl group examples include a vinyl group, 1-propenyl group, allyl group, isopropenyl group, 1-butenyl group, 2-butenyl group and the like. Of these, an alkenyl group having 2 to 18 carbon atoms is preferable, and an alkenyl group having 2 to 6 carbon atoms is more preferable.
  • Examples of the aromatic hydrocarbon group represented by X or Y include an aryl group and an aralkyl group.
  • the aryl group include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group. Among them, an aryl group having 6 to 14 carbon atoms is preferable, and an aryl group having 6 to 10 carbon atoms is more preferable. A phenyl group and a naphthyl group are more preferable.
  • Examples of the aralkyl group include a benzyl group, a phenethyl group, and a phenylpropyl group. Among them, an aralkyl group having 7 to 13 carbon atoms is preferable, an aralkyl group having 7 to 11 carbon atoms is more preferable, and a benzyl group is preferable. Further preferred.
  • Examples of the aromatic heterocyclic group represented by X or Y include, for example, pyrrolyl group, furyl group, thienyl group, pyrazolyl group, imidazolyl group (imidazole group), oxazolyl group, isoxazolyl group, thiazolyl group, isothiazolyl group, pyridyl group. (Pyridine group), furan group, thiophene group, pyridazinyl group, pyrimidinyl group, pyrazinyl group and the like. Of these, a pyridyl group is preferable.
  • the substituent other than the carboxy group that the group represented by X or Y may have is not particularly limited, and examples thereof include an alkyl group having 1 to 4 carbon atoms, a hydroxy group, an amino group, a nitro group, and a sulfonyl group. Group, alkoxy group, halogen atom and the like.
  • examples of the aromatic hydrocarbon group having such a substituent include aryl groups having an alkyl group such as tolyl group and xylyl group; substituents such as methylbenzyl group, ethylbenzyl group, and methylphenethyl group.
  • the modifier is preferably a compound represented by the following formula (3) from the viewpoint of excellent compatibility and reactivity with the raw material diene rubber.
  • m and n each independently represent an integer of 0 to 5, and the sum of m and n is 1 or more.
  • the integer represented by m is preferably an integer of 0 to 2, and more preferably an integer of 0 to 1, because the solubility in a solvent at the time of synthesizing a modifier is improved and the synthesis is facilitated.
  • the integer represented by n is preferably an integer of 0 to 2, more preferably an integer of 0 to 1, because the solubility in a solvent at the time of synthesizing a modifier is improved and the synthesis is facilitated.
  • the total of m and n (m + n) is preferably 1 to 4, and more preferably 1 to 2.
  • the modifier is N-phenyl- ⁇ - (4-carboxyphenyl) nitrone represented by the following formula (3-1), N-phenyl- ⁇ - (3-carboxyl represented by the following formula (3-2). Phenyl) nitrone, N-phenyl- ⁇ - (2-carboxyphenyl) nitrone represented by the following formula (3-3), N- (4-carboxyphenyl) - ⁇ represented by the following formula (3-4) -Phenylnitrone, N- (3-carboxyphenyl) - ⁇ -phenylnitrone represented by the following formula (3-5), and N- (2-carboxyphenyl) represented by the following formula (3-6) It is preferably at least one selected from the group consisting of - ⁇ -phenylnitrone.
  • the method for synthesizing the modifier is not particularly limited, and a conventionally known method can be used.
  • a compound having a hydroxyamino group (—NHOH) and a compound having an aldehyde group (—CHO) have a molar ratio of hydroxyamino group to aldehyde group (—NHOH / —CHO) of 1.0 to 1.
  • an organic solvent for example, methanol, ethanol, tetrahydrofuran, etc.
  • any one or both of the compound having a hydroxyamino group and the compound having an aldehyde group may have a carboxy group.
  • the modifier further has a substituent other than a carboxy group, either one or both of the compound having a hydroxyamino group and the compound having an aldehyde group can have the above substituent.
  • the production method of the modified diene rubber is not particularly limited, and examples thereof include a method of mixing the raw diene rubber and the modifier at 100 to 200 ° C. for 1 to 30 minutes.
  • the amount of the modifying agent (eg, nitrone compound) used in producing the modified diene rubber is preferably 0.3 to 10 parts by mass with respect to 100 parts by mass of the raw diene rubber. More preferred is 3 parts by mass.
  • the modified diene rubber is a modified diene rubber in which 0.02 to 4 mol% of the total amount of double bonds of the raw diene rubber is modified with carboxy groups, or double bonds and carboxy groups.
  • the modification rate is 0.02 to 4 mol%.
  • the above modification rate is preferably 0.10 to 3 mol%, more preferably 0.15 to 2 mol%, from the viewpoint of being excellent in a predetermined effect.
  • the modification rate can be determined, for example, by performing NMR (nuclear magnetic resonance) measurement of the raw diene rubber and the modified diene rubber.
  • NMR nuclear magnetic resonance
  • the raw diene rubber and the modified diene rubber were subjected to 1 H-NMR measurement (CDCl 3 , 400 MHz, TMS: tetramethylsilane) using CDCl 3 as a solvent, and around 8.08 ppm (with carboxy group) (Specifically, when a carboxy group is bonded to a benzene ring, it belongs to two protons bonded to a carbon atom adjacent to the carbon atom to which the carboxy group is bonded.) was measured to calculate the denaturation rate.
  • the content of the modifying agent (for example, nitrone compound) introduced into the modified diene rubber is 0.3 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the rubber component because the effect of the present invention is more excellent.
  • the amount is 0.3 to 5 parts by mass.
  • Modified diene rubbers can be used alone or in combination of two or more.
  • the content of the modified diene rubber is 10 to 100 parts by mass with respect to 100 parts by mass of the rubber component.
  • the content of the modified diene rubber is preferably 20 to 80 parts by mass, more preferably 25 to 70 parts by mass with respect to 100 parts by mass of the rubber component, from the viewpoint that the effects of the present invention are more excellent. .
  • the rubber component may further contain a rubber other than the modified diene rubber.
  • the rubber other than the modified diene rubber include a diene rubber.
  • the diene rubber is not particularly limited. Examples thereof include the same raw material diene rubbers that can be used when producing a modified diene rubber. Among these, at least one selected from the group consisting of natural rubber, styrene butadiene rubber and butadiene rubber is preferable. Natural rubber, styrene butadiene rubber and butadiene rubber are not particularly limited. For example, it can be the same as the raw material diene rubber.
  • the average glass transition temperature of the rubber component is preferably ⁇ 50 ° C. or less, and can be ⁇ 50 to ⁇ 80 ° C., because the hardness of the tire can be kept low even at low temperatures and the performance on the ice of the tire is good. It is more preferable that The average glass transition temperature is an average value of the glass transition temperature. When only one type of modified diene rubber is used as the rubber component, it means the glass transition temperature of the modified diene rubber. When two or more kinds of modified diene rubbers are used as the rubber component, or when the modified diene rubber and other rubber are used in combination, the average value of the glass transition temperature of the entire rubber component is meant. In this case, the average glass transition temperature can be calculated from the glass transition temperature of each rubber and the blending ratio of each rubber.
  • Silica 1 contained in the rubber composition of the present invention is not particularly limited as long as its nitrogen adsorption specific surface area (N 2 SA) is 155 m 2 / g or more. For example, a conventionally well-known thing is mentioned.
  • the nitrogen adsorption specific surface area of silica is measured in accordance with JIS K6430.
  • silica 1 examples include fumed silica, calcined silica, precipitated silica, pulverized silica, fused silica, colloidal silica, and the like.
  • Silica 1 can be used alone or in combination of two or more.
  • Silica 2 contained in the rubber composition of the present invention is not particularly limited as long as its nitrogen adsorption specific surface area is 125 m 2 / g or less.
  • silica examples include fumed silica, calcined silica, precipitated silica, pulverized silica, fused silica, colloidal silica, and the like.
  • the total content of silica 1 and silica 2 is 55 to 200 parts by mass with respect to 100 parts by mass of the rubber component.
  • the total content of silica 1 and silica 2 is preferably 55 to 180 parts by mass, and preferably 55 to 160 parts by mass with respect to 100 parts by mass of the rubber component, from the viewpoint that the effects of the present invention are more excellent. More preferred.
  • the ratio of the content of silica 1 to the content of silica 2 is preferably 2 to 10 from the viewpoint that the effect of the present invention is more excellent, and 2.2 to 5 More preferably, it is more preferably 2.4 to 2.8.
  • the silane coupling agent contained in the rubber composition of the present invention is not particularly limited.
  • Specific examples of the silane coupling agent include silane coupling agents containing a sulfur atom such as mercaptosilane and sulfide silane.
  • Examples of mercaptosilane include C 13 H 27 O— (CH 2 CH 2 O) 5 ] 2 (CH 2 CH 2 O) Si (CH 2 ) 2 SH: 3-mercaptopropyltrimethoxysilane, 3-mercapto Examples include a silane coupling agent having a mercapto group such as propyltriethoxysilane.
  • sulfide silane examples include bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, and bis (2-trimethoxysilyl).
  • Ethyl) tetrasulfide bis (3-triethoxysilylpropyl) trisulfide, bis (3-trimethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide
  • a silane coupling agent having a (poly) sulfide bond such as A silane coupling agent can be used individually or in combination of 2 types or more, respectively.
  • the content of the silane coupling agent is 2 to 16% by mass of the total content of silica 1 and silica 2.
  • the content of the silane coupling agent is preferably 2 to 14% by mass, and preferably 3 to 12% by mass, based on the total content of silica 1 and silica 2, from the viewpoint that the effects of the present invention are more excellent. More preferred.
  • the rubber composition of the present invention may further contain an additive as long as the effect and purpose are not impaired.
  • the additive for example, rubber other than the diene rubber, the silica other than the filler (e.g., silica 1,2 other than silica (e.g., nitrogen adsorption specific surface area of 125m 2 / g to greater than less than 155m 2 / g A certain silica), carbon black, clay, mica, talc, calcium carbonate, aluminum hydroxide, aluminum oxide, titanium oxide), vulcanization accelerator, resin such as terpene resin, zinc oxide, stearic acid, anti-aging agent,
  • the rubber composition for tires generally used include processing aids, oils (for example, aroma oil, process oil), liquid polymers, thermosetting resins, and vulcanizing agents such as sulfur.
  • the content of the additive can be appropriately selected.
  • Carbon black The rubber composition of the present invention preferably further contains carbon black.
  • the carbon black is not particularly limited, and, for example, SAF (Super Ablation Furnace; the same applies hereinafter) -HS (High Structure, the same applies hereinafter), SAF, ISAF (Intermediate Super Absorption Furnace, the same applies hereinafter) -HS, ISAF, IS-AF LS (Low Structure. Same as below), IISAF (Intermediate ISAF)-HS, HAF (High Ablation Furnace. Same as below)-HS, HAF, HAF-LS, FEF (Fast Extruding Furnace) be able to.
  • the CAB (abbreviation for n-hexadecyltrimethylammonium bromide) adsorption specific surface area of carbon black is not particularly limited.
  • CTAB adsorption specific surface area of carbon black from the viewpoint of the effect of the present invention is more excellent, preferably 60 ⁇ 250m 2 / g, more preferably 90 ⁇ 200m 2 / g.
  • the CTAB adsorption specific surface area of carbon black was measured according to the CTAB adsorption method described in JIS K 6217-3.
  • the content of carbon black is not particularly limited, but is preferably 5 to 70 parts by mass, more preferably 8 to 20 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber composition of this invention can contain a terpene-type resin further.
  • the terpene resin may be a polymer that uses at least a terpene monomer as a monomer, and may be either a homopolymer or a copolymer.
  • the terpene resin may be modified with, for example, an aromatic compound.
  • the terpene monomer include ⁇ -pinene, ⁇ -pinene, dipentene, limonene, and derivatives thereof.
  • aromatic compounds include styrene, ⁇ -methylstyrene, vinyl toluene, indene, and phenols.
  • the terpene resin examples include aromatic modified terpene resins.
  • the terpene resin is preferably an aromatic modified terpene resin.
  • the softening point of the terpene resin (especially aromatic modified terpene resin) is preferably 60 to 150 ° C., more preferably 70 to 130 ° C.
  • the terpene resin is not particularly limited for its production. For example, a conventionally well-known thing is mentioned.
  • the terpene resins can be used alone or in combination of two or more.
  • the amount of the terpene resin is preferably 1 to 30 parts by mass, more preferably 3 to 20 parts by mass with respect to 100 parts by mass of the rubber component.
  • the method for producing the rubber composition of the present invention is not particularly limited, and specific examples thereof include, for example, kneading the above-described components using a known method and apparatus (for example, a Banbury mixer, a kneader, a roll, etc.). The method of doing is mentioned.
  • the rubber composition of the present invention can be vulcanized or crosslinked under conventionally known vulcanization or crosslinking conditions.
  • a tire can be manufactured using the rubber composition of the present invention.
  • the rubber composition of the present invention is used for a tire tread. You may use the rubber composition of this invention for parts other than the tire tread of a tire.
  • the tire of the present invention is a tire using the rubber composition of the present invention for a tire tread.
  • the tire of the present invention is not particularly limited as long as the tire tread is manufactured (formed) using the rubber composition of the present invention.
  • the rubber composition used for the tire tread is not particularly limited as long as it is the rubber composition of the present invention.
  • ⁇ ⁇ ⁇ Parts of the tire other than the tire tread to which the rubber composition is applied are not particularly limited. You may use the rubber composition of this invention for a tire tread, a bead part, a sidewall part, etc.
  • One preferred embodiment of the tire of the present invention is a pneumatic tire.
  • the tire of the present invention will be described below with reference to the accompanying drawings.
  • the tire of the present invention is not limited to the attached drawings.
  • FIG. 1 is a schematic partial sectional view of a tire representing an example of an embodiment of a tire according to the present invention.
  • the tire shown in FIG. 1 is a pneumatic tire.
  • reference numeral 1 represents a bead portion
  • reference numeral 2 represents a sidewall portion
  • reference numeral 3 represents a tire tread.
  • the tire tread 3 is manufactured using the rubber composition of the present invention.
  • a carcass layer 4 in which fiber cords are embedded is mounted between the pair of left and right bead portions 1, and the end of the carcass layer 4 extends from the inside of the tire to the outside around the bead core 5 and the bead filler 6. Wrapped and rolled up.
  • a belt layer 7 is disposed over the circumference of the tire on the outside of the carcass layer 4.
  • the rim cushion 8 is arrange
  • the tire of the present invention can be manufactured, for example, according to a conventionally known method.
  • the gas filled in the pneumatic tire can be normal or air having an adjusted partial pressure of oxygen, or an inert gas such as nitrogen, argon, or helium. .
  • modified diene rubber 1 137.5 parts by mass of raw material SBR [styrene butadiene rubber, trade name E581, oil extended amount with respect to 100 parts by mass of net SBR: 37.5 parts by mass, weight average molecular weight: 1,200,000, styrene content: 37% by mass, vinyl bond Amount: 43%, glass transition temperature -27 ° C., manufactured by Asahi Kasei Chemical Co., Ltd.] and nitrone compound 1 (1 part by mass) with a mixer at 160 ° C. for 5 minutes to mix the above raw material SBR with nitrone compound 1 A modified diene rubber 1 modified with 1 was obtained.
  • SBR styrene butadiene rubber, trade name E581, oil extended amount with respect to 100 parts by mass of net SBR: 37.5 parts by mass, weight average molecular weight: 1,200,000, styrene content: 37% by mass, vinyl bond Amount: 43%, glass transition temperature -27 ° C., manufactured by Asah
  • the modified diene rubber 1 had a double bond and a carboxy group, and the content of the carboxy group was 0.22 mol% of the total of the double bond and the carboxy group.
  • the modification rate of the modified diene rubber 1 was 0.22 mol%.
  • the content (CPN amount) of the nitrone compound 1 contained in the net 29 parts by mass of the modified diene rubber 1 is 0.32 parts by mass.
  • the abrasion resistance of the vulcanized rubber sheet produced as described above was measured in accordance with JIS K6264 using a Lambone abrasion tester (manufactured by Iwamoto Seisakusho Co., Ltd.) at a temperature of 20 ° C., a load of 15 N, a slip ratio of 50%, The amount of wear was measured for 10 minutes.
  • the evaluation results of the wear resistance were displayed as indices with the amount of wear in each example as the reciprocal and the reciprocal of the amount of wear in Comparative Example 1 as “100”. The larger the index, the smaller the amount of wear, and the better the wear resistance when made into a tire.
  • Comparative Examples 2 to 4 containing no modified diene rubber had lower abrasion resistance and room for improvement with respect to low heat build-up compared to Comparative Example 1.
  • Examples 1 to 5 Comparing Examples 1 to 5 with respect to silica 1 / silica 2, Examples 1 to 4 in which silica 1 / silica 2 was 5 or less were superior to Example 5 in terms of low heat generation. In addition, Examples 2 to 5 in which the ratio of silica 1 / silica 2 was 2 or more were superior to Example 1 in abrasion resistance. From the above, it was confirmed that when the ratio of silica 1 / silica 2 is 2 or more and 5 or less, an effect of excellent balance between wear resistance and low heat build-up can be obtained. When Examples 1 to 5 were compared with respect to the content of silica 2, it was confirmed that the higher the content of silica 2, the better the effect due to the low heat generation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide a rubber composition that has excellent low heat generation and excellent wear resistance. The present invention is a rubber composition that is for a tire tread and that contains: a rubber component that includes at least a modified diene rubber wherein 0.02-4 mol% of the total double bonds of a source-material diene rubber have been carboxy-group modified; a silica 1 that has a nitrogen-adsorption specific surface area of 155 m2/g or higher; a silica 2 that has a nitrogen-adsorption specific surface area of 125 m2/g or lower; and a silane coupling agent. The modified diene rubber content is 10-100 parts by mass per 100 parts by mass of the rubber component, the total content of the silica 1 and the silica 2 is 55-200 parts by mass per 100 parts by mass of the rubber component, and the silane coupling agent content is 2-16 mass% of said total content. The present invention is also a tire that has a tire tread that uses the rubber composition.

Description

ゴム組成物及びタイヤRubber composition and tire
 本発明はゴム組成物及びタイヤに関する。 The present invention relates to a rubber composition and a tire.
 従来、タイヤにはウェット性能、低発熱性、耐摩耗性等に優れることが要求されている。しかし、ウェット性能や低発熱性が優れると、耐摩耗性が犠牲となる場合がある。
 このため、低転がり抵抗性、ウェットグリップ性および耐摩耗性を従来レベルよりも向上させることを目的として、例えば、特許文献1が提案されている。
 特許文献1には、ビニル単位含有量が25重量%以上、ガラス転移温度が-50℃以下の末端変性溶液重合スチレンブタジエンゴム(変性S-SBR)を5~50重量%含むジエン系ゴム100重量部に対し、軟化点が100℃以上の芳香族変性テルペン樹脂を2~50重量部、2種類のシリカX及びシリカYを合計で60~130重量部配合してなり、前記変性S-SBRの官能基がシリカ表面のシラノール基と反応性があり、前記シリカ及びカーボンブラックを含む補強性充填剤の総量に対するシリカの比率が85重量%以上であり、前記シリカXの窒素吸着比表面積が140m2/g以上、前記シリカYの窒素吸着比表面積が100m2/gを超え140m2/g未満であり、かつ前記ジエン系ゴム100重量部に対するシリカXの配合量をx重量部、シリカYの配合量をy重量部とするとき、x/7<y≦xの関係を満たすことを特徴とするタイヤ用ゴム組成物が記載されている。
Conventionally, tires are required to have excellent wet performance, low heat generation, wear resistance, and the like. However, if wet performance and low heat build-up are excellent, wear resistance may be sacrificed.
For this reason, for example, Patent Document 1 has been proposed for the purpose of improving the low rolling resistance, wet grip property and wear resistance from the conventional level.
Patent Document 1 discloses that 100 wt. Of diene rubber containing 5 to 50 wt.% Of terminally modified solution-polymerized styrene butadiene rubber (modified S-SBR) having a vinyl unit content of 25 wt% or more and a glass transition temperature of −50 ° C. or less. 2 to 50 parts by weight of an aromatic modified terpene resin having a softening point of 100 ° C. or higher, and 60 to 130 parts by weight of two types of silica X and silica Y in total, and the modified S-SBR The functional group is reactive with silanol groups on the silica surface, the ratio of silica to the total amount of the reinforcing filler containing silica and carbon black is 85% by weight or more, and the nitrogen adsorption specific surface area of the silica X is 140 m 2. / g or more, the nitrogen adsorption specific surface area of the silica Y is less than 140 m 2 / g exceed 100 m 2 / g, and distribution of the silica X with respect to the diene rubber 100 parts by weight The amount of x parts by weight, when the amount of the silica Y and y parts by weight, tire rubber composition characterized by satisfying the relation of x / 7 <y ≦ x is described.
特開2013-227375号公報JP 2013-227375 A
 本発明者らは、特許文献1をもとに、窒素吸着比表面積が異なる2種のシリカを含有するゴム組成物を調製し評価したところ、このようなゴム組成物は、耐摩耗性が低下する場合があり、低発熱性について改善の余地があることが明らかとなった。
 本発明は、上記実情を鑑みて、低発熱性、耐摩耗性に優れるゴム組成物を提供することを目的とする。
 また、本発明は、タイヤを提供することも目的とする。
When the present inventors prepared and evaluated the rubber composition containing 2 types of silica from which a nitrogen adsorption specific surface area differs based on patent document 1, such a rubber composition had abrasion resistance fallen. It has become clear that there is room for improvement in low exothermicity.
In view of the above circumstances, an object of the present invention is to provide a rubber composition excellent in low heat buildup and wear resistance.
Another object of the present invention is to provide a tire.
 本発明者らは、上記課題を解決すべく鋭意研究した結果、ゴム組成物が特定範囲の変性率でカルボキシ基に変性された変性ジエン系ゴムを含有することによって所定の効果が得られることを見出し、本発明に至った。
 本発明は上記知見等に基づくものであり、具体的には以下の構成により上記課題を解決するものである。
As a result of intensive studies to solve the above problems, the present inventors have found that the rubber composition contains a modified diene rubber modified with a carboxy group at a modification rate within a specific range, whereby a predetermined effect can be obtained. The headline, the present invention has been reached.
The present invention is based on the above knowledge and the like, and specifically, solves the above problems by the following configuration.
 1. 原料ジエン系ゴムが有する二重結合全量のうちの0.02~4モル%がカルボキシ基に変性された変性ジエン系ゴムを少なくとも含むゴム成分と、
 窒素吸着比表面積が155m2/g以上のシリカ1と、
 窒素吸着比表面積が125m2/g以下のシリカ2と、
 シランカップリング剤とを含有し、
 上記変性ジエン系ゴムの含有量が、上記ゴム成分100質量部に対して、10~100質量部であり、
 上記シリカ1と上記シリカ2の合計含有量が、上記ゴム成分100質量部に対して、55~200質量部であり、
 上記シランカップリング剤の含有量が、上記合計含有量の2~16質量%である、タイヤトレッド用のゴム組成物。
 2. 上記シリカ2の含有量に対する上記シリカ1の含有量の比率(シリカ1/シリカ2)が、2~10である、上記1に記載のゴム組成物。
 3. 上記変性ジエン系ゴムが、上記原料ジエン系ゴムとカルボキシ基及びニトロン基を有するニトロン化合物とを反応させて製造される、上記1又は2に記載のゴム組成物。
 4. 上記ニトロン化合物が、
N-フェニル-α-(4-カルボキシフェニル)ニトロン、
N-フェニル-α-(3-カルボキシフェニル)ニトロン、
N-フェニル-α-(2-カルボキシフェニル)ニトロン、
N-(4-カルボキシフェニル)-α-フェニルニトロン、
N-(3-カルボキシフェニル)-α-フェニルニトロン及び
N-(2-カルボキシフェニル)-α-フェニルニトロンからなる群から選ばれる少なくとも1種である、上記3に記載のゴム組成物。
 5. 上記変性ジエン系ゴムに導入された上記ニトロン化合物の含有量が、上記ゴム成分100質量部に対して、0.3質量部以上10質量部以下である、上記3又は4に記載のゴム組成物。
 6. 二重結合及びカルボキシ基を有し、上記カルボキシ基の含有量が上記二重結合及び上記カルボキシ基の合計の0.2~4モル%である変性ジエン系ゴムを少なくとも含むゴム成分と、
 窒素吸着比表面積が155m2/g以上のシリカ1と、
 窒素吸着比表面積が125m2/g以下のシリカ2と、
 シランカップリング剤とを含有し、
 上記変性ジエン系ゴムの含有量が、上記ゴム成分100質量部に対して、10~100質量部であり、
 上記シリカ1と上記シリカ2の合計含有量が、上記ゴム成分100質量部に対して、55~200質量部であり、
 上記シランカップリング剤の含有量が、上記合計含有量の2~16質量%である、タイヤトレッド用のゴム組成物。
 7. 上記1~6のいずれかに記載のゴム組成物をタイヤトレッドに使用するタイヤ。
1. A rubber component containing at least a modified diene rubber in which 0.02 to 4 mol% of the total amount of double bonds of the raw diene rubber is modified with a carboxy group;
Silica 1 having a nitrogen adsorption specific surface area of 155 m 2 / g or more;
Silica 2 having a nitrogen adsorption specific surface area of 125 m 2 / g or less;
Containing a silane coupling agent,
The content of the modified diene rubber is 10 to 100 parts by mass with respect to 100 parts by mass of the rubber component,
The total content of the silica 1 and the silica 2 is 55 to 200 parts by mass with respect to 100 parts by mass of the rubber component,
A rubber composition for a tire tread, wherein the content of the silane coupling agent is 2 to 16% by mass of the total content.
2. 2. The rubber composition according to 1 above, wherein the ratio of the content of the silica 1 to the content of the silica 2 (silica 1 / silica 2) is 2 to 10.
3. 3. The rubber composition according to 1 or 2 above, wherein the modified diene rubber is produced by reacting the raw diene rubber with a nitrone compound having a carboxy group and a nitrone group.
4). The nitrone compound is
N-phenyl-α- (4-carboxyphenyl) nitrone,
N-phenyl-α- (3-carboxyphenyl) nitrone,
N-phenyl-α- (2-carboxyphenyl) nitrone,
N- (4-carboxyphenyl) -α-phenylnitrone,
4. The rubber composition according to 3 above, which is at least one selected from the group consisting of N- (3-carboxyphenyl) -α-phenylnitrone and N- (2-carboxyphenyl) -α-phenylnitrone.
5. The rubber composition according to 3 or 4 above, wherein the content of the nitrone compound introduced into the modified diene rubber is 0.3 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the rubber component. .
6). A rubber component having at least a modified diene rubber having a double bond and a carboxy group, wherein the content of the carboxy group is 0.2 to 4 mol% of the total of the double bond and the carboxy group;
Silica 1 having a nitrogen adsorption specific surface area of 155 m 2 / g or more;
Silica 2 having a nitrogen adsorption specific surface area of 125 m 2 / g or less;
Containing a silane coupling agent,
The content of the modified diene rubber is 10 to 100 parts by mass with respect to 100 parts by mass of the rubber component,
The total content of the silica 1 and the silica 2 is 55 to 200 parts by mass with respect to 100 parts by mass of the rubber component,
A rubber composition for a tire tread, wherein the content of the silane coupling agent is 2 to 16% by mass of the total content.
7). A tire using the rubber composition according to any one of the above 1 to 6 for a tire tread.
 なお、本発明において、上記6に記載のゴム組成物に含有される変性ジエン系ゴムは、上記1に記載のゴム組成物に含有される変性ジエン系ゴムに対応する。本発明において、変性ジエン系ゴムは、上記6に記載のゴム組成物に含有される変性ジエン系ゴム、及び、上記1に記載のゴム組成物に含有される変性ジエン系ゴムのうちのいずれかであればよい。
 また、上記6に記載のゴム組成物における、変性ジエン系ゴム以外の成分は、上記1に記載のゴム組成物における、変性ジエン系ゴム以外の成分とそれぞれ同じである。
In the present invention, the modified diene rubber contained in the rubber composition described in 6 above corresponds to the modified diene rubber contained in the rubber composition described in 1 above. In the present invention, the modified diene rubber is any one of the modified diene rubber contained in the rubber composition described in 6 above and the modified diene rubber contained in the rubber composition described in 1 above. If it is.
The components other than the modified diene rubber in the rubber composition described in 6 above are the same as the components other than the modified diene rubber in the rubber composition described in 1 above.
 本発明のゴム組成物は、低発熱性、耐摩耗性に優れる。
 本発明のタイヤは、低発熱性、耐摩耗性に優れる。
The rubber composition of the present invention is excellent in low heat buildup and wear resistance.
The tire of the present invention is excellent in low heat buildup and wear resistance.
本発明のタイヤの実施態様の一例を表すタイヤの部分断面概略図である。It is a partial section schematic diagram of the tire showing an example of an embodiment of a tire of the present invention.
 本発明について以下詳細に説明する。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、成分が2種以上の物質を含む場合、上記成分の含有量とは、2種以上の物質の合計の含有量を指す。
The present invention will be described in detail below.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
Moreover, in this specification, when a component contains 2 or more types of substances, content of the said component refers to the total content of 2 or more types of substances.
 本発明のゴム組成物は、
 原料ジエン系ゴムが有する二重結合全量のうちの0.02~4モル%がカルボキシ基に変性された変性ジエン系ゴムを少なくとも含むゴム成分と、
 窒素吸着比表面積が155m2/g以上のシリカ1と、
 窒素吸着比表面積が125m2/g以下のシリカ2と、
 シランカップリング剤とを含有し、
 上記変性ジエン系ゴムの含有量が、上記ゴム成分100質量部に対して、10~100質量部であり、
 上記シリカ1と上記シリカ2の合計含有量が、上記ゴム成分100質量部に対して、55~200質量部であり、
 上記シランカップリング剤の含有量が、上記合計含有量の2~16質量%である、タイヤトレッド用のゴム組成物である。
The rubber composition of the present invention is
A rubber component containing at least a modified diene rubber in which 0.02 to 4 mol% of the total amount of double bonds of the raw diene rubber is modified with a carboxy group;
Silica 1 having a nitrogen adsorption specific surface area of 155 m 2 / g or more;
Silica 2 having a nitrogen adsorption specific surface area of 125 m 2 / g or less;
Containing a silane coupling agent,
The content of the modified diene rubber is 10 to 100 parts by mass with respect to 100 parts by mass of the rubber component,
The total content of the silica 1 and the silica 2 is 55 to 200 parts by mass with respect to 100 parts by mass of the rubber component,
A rubber composition for a tire tread, wherein the content of the silane coupling agent is 2 to 16% by mass of the total content.
 本発明のゴム組成物はこのような構成をとるため、所望の効果が得られるものと考えられる。その理由は明らかではないが、およそ以下のとおりと推測される。
 窒素吸着比表面積が大きいシリカと窒素吸着比表面積が小さいシリカとを併用する場合、窒素吸着比表面積が小さいシリカはゴムと相互作用しにくいため、シリカがゴム成分に分散しにくく、低発熱性等の効果が得られにくい。
 これに対して、特定の変性率でカルボキシ基に変性された変性ジエン系ゴムは、シリカと相互作用及び/又は結合することができる。上記変性ジエン系ゴムは窒素吸着比表面積が異なり補強性が異なる2種のシリカに対しても強く相互作用等する事ができるため、変性ジエン系ゴムとシランカップリング剤とを併用することによって、シリカを、さらに分散させることができる。
 そのため、変性ジエン系ゴムを用いることで、さらなる低発熱性、耐摩耗性を向上させることができたと考えられる。
Since the rubber composition of the present invention has such a configuration, it is considered that a desired effect can be obtained. The reason is not clear, but it is presumed that it is as follows.
When silica with a large nitrogen adsorption specific surface area and silica with a small nitrogen adsorption specific surface area are used in combination, silica with a small nitrogen adsorption specific surface area is unlikely to interact with rubber, so silica is difficult to disperse in the rubber component, low heat build-up, etc. The effect of is difficult to obtain.
On the other hand, a modified diene rubber modified to a carboxy group at a specific modification rate can interact and / or bond with silica. Since the modified diene rubber can interact strongly with two types of silica having different nitrogen adsorption specific surface areas and different reinforcing properties, by using a modified diene rubber and a silane coupling agent in combination, Silica can be further dispersed.
Therefore, it is considered that further low heat build-up and wear resistance could be improved by using the modified diene rubber.
[ゴム組成物]
 以下、本発明のゴム組成物に含有される各成分について詳述する。
<<ゴム成分>>
 本発明のゴム組成物に含有されるゴム成分は、変性ジエン系ゴムを少なくとも含む。
[Rubber composition]
Hereinafter, each component contained in the rubber composition of the present invention will be described in detail.
<< Rubber component >>
The rubber component contained in the rubber composition of the present invention contains at least a modified diene rubber.
<変性ジエン系ゴム>
 ゴム成分に少なくとも含まれる変性ジエン系ゴムは、原料ジエン系ゴムが有する二重結合全量のうちの0.02~4モル%がカルボキシ基に変性された変性ジエン系ゴムである。なお、本明細書において、原料ジエン系ゴムが有する二重結合全量(モル)に対する、変性ジエン系ゴムが有するカルボキシ基(モル)の割合、又は、変性ジエン系ゴムが有する、二重結合及びカルボキシ基の合計(モル)に対するカルボキシ基(モル)の割合を、変性率ということがある。つまり、本発明において変性率は0.02~4モル%である。
<Modified diene rubber>
The modified diene rubber contained in at least the rubber component is a modified diene rubber in which 0.02 to 4 mol% of the total amount of double bonds of the raw diene rubber is modified with carboxy groups. In the present specification, the ratio of the carboxy group (mol) of the modified diene rubber to the total amount (mol) of double bonds of the raw diene rubber, or the double bond and carboxy of the modified diene rubber. The ratio of the carboxy group (mole) to the total group (mole) may be referred to as the modification rate. That is, in the present invention, the modification rate is 0.02 to 4 mol%.
 また、本発明において、変性ジエン系ゴムは、二重結合及びカルボキシ基を有し、カルボキシ基の含有量が二重結合及びカルボキシ基の合計の0.2~4モル%である。
 本発明において変性ジエン系ゴムは、変性基としてカルボキシ基を有する。
In the present invention, the modified diene rubber has a double bond and a carboxy group, and the content of the carboxy group is 0.2 to 4 mol% of the total of the double bond and the carboxy group.
In the present invention, the modified diene rubber has a carboxy group as a modifying group.
(変性基)
 変性ジエン系ゴムは、主鎖及び側鎖のうちの少なくともいずれかに変性基としてカルボキシ基を有することができる。また、変性ジエン系ゴムの主鎖の少なくとも一部又は側鎖の少なくとも一部に変性基としてカルボキシ基を有することができる。
(Modified group)
The modified diene rubber can have a carboxy group as a modifying group in at least one of the main chain and the side chain. Further, at least a part of the main chain or at least a part of the side chain of the modified diene rubber can have a carboxy group as a modifying group.
 主鎖における変性基としては、例えば、下記式(I)で表される基が挙げられる。
 側鎖における変性基としては、例えば、下記式(II)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Examples of the modifying group in the main chain include a group represented by the following formula (I).
Examples of the modifying group in the side chain include a group represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000001
 上記式(I)中、a21、a22はそれぞれ独立に0~5が好ましく、0、1又は2がより好ましい。
 a21+a22は1以上が好ましく、1~4がより好ましく、1~2が更に好ましい。
In the above formula (I), each of a21 and a22 is preferably independently 0 to 5, more preferably 0, 1 or 2.
a21 + a22 is preferably 1 or more, more preferably 1 to 4, and still more preferably 1 to 2.
 式(I)の、a21、a22、a21+a22は、それぞれ、後述する式(3)の、n、m、m+nと同様である。 In formula (I), a21, a22, and a21 + a22 are the same as n, m, and m + n in formula (3) described later, respectively.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式(II)中、a31、a32はそれぞれ独立に0~5が好ましく、0、1又は2がより好ましい。
 a31+a32は1以上が好ましく、1~4がより好ましく、1~2が更に好ましい。
In the above formula (II), each of a31 and a32 is preferably independently 0 to 5, more preferably 0, 1 or 2.
a31 + a32 is preferably 1 or more, more preferably 1 to 4, and still more preferably 1 to 2.
 式(II)の、a31、a32、a31+a32は、それぞれ、後述する式(3)の、n、m、m+nと同様である。 A31, a32, a31 + a32 in the formula (II) are the same as n, m, m + n in the formula (3) to be described later.
 変性ジエン系ゴムの主鎖は、例えば、後述する、原料ジエン系ゴムとして使用されるジエン系ゴムと同様のものが挙げられる。なかでも、低発熱性により優れ、強度特性に優れるという観点から、芳香族ビニル-共役ジエン共重合体ゴムが好ましく、スチレンブタジエンゴムがより好ましい。 Examples of the main chain of the modified diene rubber include those similar to the diene rubber used as the raw material diene rubber described later. Among these, aromatic vinyl-conjugated diene copolymer rubber is preferable and styrene butadiene rubber is more preferable from the viewpoint of excellent low heat build-up and excellent strength characteristics.
(変性ジエン系ゴムの製造方法)
 変性ジエン系ゴムは、低発熱性、耐摩耗性のうちの少なくとも1つがより優れる(以下これを本発明の効果がより優れるという)点から、原料ジエン系ゴムとカルボキシ基を有する変性剤とを反応させて製造されるものが好ましい。
(Method for producing modified diene rubber)
The modified diene rubber has at least one of low exothermic property and wear resistance (hereinafter referred to as “the effect of the present invention is more excellent”), so that the raw material diene rubber and a modifier having a carboxy group are used. What is manufactured by making it react is preferable.
 変性ジエン系ゴムは、主鎖及び側鎖のうちの一方又は両方において、カルボキシ基に変性されることが好ましい。 The modified diene rubber is preferably modified with a carboxy group in one or both of the main chain and the side chain.
・原料ジエン系ゴム
 原料ジエン系ゴムとして使用されるジエン系ゴムは特に限定されない。例えば、天然ゴム(NR)、イソプレンゴム(IR)、芳香族ビニル-共役ジエン共重合体ゴム、アクリロニトリル-ブタジエン共重合ゴム(NBR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(例えば、Br-IIR、Cl-IIR)、クロロプレンゴム(CR)が挙げられる。なかでも、低発熱性により優れ、強度特性に優れるという観点から、芳香族ビニル-共役ジエン共重合体ゴムが好ましく、スチレンブタジエンゴムがより好ましい。
-Raw material diene rubber The diene rubber used as the raw material diene rubber is not particularly limited. For example, natural rubber (NR), isoprene rubber (IR), aromatic vinyl-conjugated diene copolymer rubber, acrylonitrile-butadiene copolymer rubber (NBR), butyl rubber (IIR), halogenated butyl rubber (for example, Br-IIR, Cl-IIR) and chloroprene rubber (CR). Among these, aromatic vinyl-conjugated diene copolymer rubber is preferable and styrene butadiene rubber is more preferable from the viewpoint of excellent low heat build-up and excellent strength characteristics.
 原料ジエン系ゴムとして使用できるスチレンブタジエンゴム(SBR)はスチレンとブタジエンとの共重合体であれば特に制限されない。スチレンブタジエンゴムはブタジエンに由来する不飽和結合における立体障害が小さいことから、変性剤との反応性に優れる。 The styrene butadiene rubber (SBR) that can be used as the raw material diene rubber is not particularly limited as long as it is a copolymer of styrene and butadiene. Styrene butadiene rubber is excellent in reactivity with the modifier because of its small steric hindrance in the unsaturated bond derived from butadiene.
 スチレンブタジエンゴムが有するスチレン量は、変性剤との相溶性に優れるという観点から、スチレンブタジエンゴムを構成する全構成単位の10質量%以上が好ましく、26~70質量%であることがより好ましい。
 ここで、スチレンブタジエンゴムが有するスチレン量とは、スチレンブタジエンゴムを構成する全構成単位中において、スチレン単位が占める割合(質量%又は重量%)をいう。
 本発明において、スチレンブタジエンゴムのミクロ構造は、JIS K 6239:2007(原料ゴム-溶液重合SBRのミクロ構造の求め方(定量))に準じて測定された。
The amount of styrene contained in the styrene butadiene rubber is preferably 10% by mass or more, more preferably 26 to 70% by mass, based on all the structural units constituting the styrene butadiene rubber, from the viewpoint of excellent compatibility with the modifier.
Here, the styrene content of the styrene butadiene rubber refers to the ratio (mass% or weight%) of the styrene unit in all the structural units constituting the styrene butadiene rubber.
In the present invention, the microstructure of the styrene butadiene rubber was measured according to JIS K 6239: 2007 (raw material rubber-solution polymerization SBR microstructure determination method).
 スチレンブタジエンゴムが有する、ブタジエンに由来する二重結合としては、1,4-結合(シス-1,4-結合、トランス-1,4-結合)および1,2-結合が挙げられる。
 スチレンブタジエンゴムが有する二重結合のうち1,4-結合が占める割合は、二重結合全量中の20~80モル%が好ましく、25~65モル%であることがより好ましい。
 ここで、スチレンブタジエンゴムが有する二重結合のうち1,4-結合が占める割合とは、スチレンブタジエンゴムが有する全ての二重結合(ブタジエン成分のトランス-1,4単位、シス-1,4単位及び1,2単位。以下同様。)のうちの1,4単位(1,4-結合)の割合(モル%)をいう。
Examples of the double bond derived from butadiene in the styrene-butadiene rubber include 1,4-bond (cis-1,4-bond, trans-1,4-bond) and 1,2-bond.
The proportion of 1,4-bonds in the double bonds of the styrene butadiene rubber is preferably 20 to 80 mol%, more preferably 25 to 65 mol%, based on the total amount of double bonds.
Here, the proportion of 1,4-bonds in the double bonds of styrene-butadiene rubber refers to all double bonds of styrene-butadiene rubber (trans-1,4 units of butadiene component, cis-1,4 1 and 4 units (1,4-bond) (unit: mol%).
 スチレンブタジエンゴムが有する二重結合のうち1,2-結合が占める割合(ビニル量又はビニル結合量)は、二重結合全量中の20~80モル%が好ましく、35~75モル%であることがより好ましい。
 ここで、スチレンブタジエンゴムが有する二重結合のうち1,2-結合が占める割合とは、スチレンブタジエンゴムが有する全ての二重結合のうちの1,2単位(1,2-結合)が占める割合(モル%)をいう。
The proportion of 1,2-bonds in the double bonds of styrene-butadiene rubber (vinyl amount or vinyl bond amount) is preferably 20 to 80 mol%, and 35 to 75 mol% in the total amount of double bonds. Is more preferable.
Here, the proportion of 1,2-bonds in the double bonds of styrene butadiene rubber means 1,2 units (1,2-bonds) of all double bonds of styrene butadiene rubber. It refers to the ratio (mol%).
 原料ジエン系ゴムのガラス転移温度は特に制限されない。例えば、耐磨耗性により優れるという観点から、-20℃以下であることが好ましい。
 原料ジエン系ゴムが芳香族ビニル-共役ジエン共重合体ゴムである場合、-20℃以下-80℃以上であることが好ましい。
 原料ジエン系ゴムが芳香族ビニル-共役ジエン共重合体ゴム以外である場合、-50~-80℃であることが好ましい。
 ガラス転移温度は、示差走査熱量計(DSC)を用いて、20℃/分の昇温速度で測定し、中点法にて算出したものである。
The glass transition temperature of the raw diene rubber is not particularly limited. For example, from the viewpoint of better wear resistance, it is preferably −20 ° C. or lower.
When the raw diene rubber is an aromatic vinyl-conjugated diene copolymer rubber, it is preferably −20 ° C. or lower and −80 ° C. or higher.
When the raw diene rubber is other than aromatic vinyl-conjugated diene copolymer rubber, it is preferably -50 to -80 ° C.
The glass transition temperature is measured by using a differential scanning calorimeter (DSC) at a rate of temperature increase of 20 ° C./min and calculated by the midpoint method.
 原料ジエン系ゴムの重量平均分子量は、取扱い性の観点から、100,000~1,500,000であることが好ましく、100,000~1,400,000であることがより好ましく、300,000~1,300,000であることが更に好ましい。原料ジエン系ゴムの重量平均分子量(Mw)は、テトラヒドロフランを溶媒とするゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算により測定するものとする。 The weight average molecular weight of the raw material diene rubber is preferably 100,000 to 1,500,000, more preferably 100,000 to 1,400,000 from the viewpoint of handleability, and 300,000. More preferably, it is ˜1,300,000. The weight average molecular weight (Mw) of the raw material diene rubber is measured in terms of standard polystyrene by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent.
・変性剤
 変性ジエン系ゴムを製造する際に使用できる変性剤について以下に説明する。変性剤は、少なくともカルボキシ基を有する化合物であることが好ましく、カルボキシ基及びニトロン基を有するニトロン化合物であることがより好ましい。
-Modifying agent The modifying agent that can be used when producing the modified diene rubber is described below. The denaturing agent is preferably a compound having at least a carboxy group, and more preferably a nitrone compound having a carboxy group and a nitrone group.
 変性剤が1分子当たり有するカルボキシ基の数は1個以上であることが好ましく、10個以下とすることができ、1~4個であることがより好ましく、1~2個であることがさらに好ましい。 The number of carboxy groups per molecule in the modifier is preferably 1 or more, can be 10 or less, more preferably 1 to 4, and more preferably 1 to 2. preferable.
 ニトロン基は下記式(1)で表される基である。
Figure JPOXMLDOC01-appb-C000003
The nitrone group is a group represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
 上記式(1)中、*は結合位置を表す。
 変性剤が1分子当たり有するニトロン基の数は1~3個であることが好ましい。
In the above formula (1), * represents a bonding position.
The number of nitrone groups per molecule in the denaturant is preferably 1 to 3.
 変性剤は、下記式(2)で表される化合物であることが好ましい。 The modifying agent is preferably a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(2)中、XおよびYは、それぞれ独立に、置換基を有してもよい、脂肪族炭化水素基、芳香族炭化水素基、または、芳香族複素環基を表す。カルボキシ基はX及びYのうちの一方又は両方に結合することができる。 In the above formula (2), X and Y each independently represent an aliphatic hydrocarbon group, an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent. The carboxy group can be attached to one or both of X and Y.
 XまたはYで表される脂肪族炭化水素基としては、例えば、アルキル基、シクロアルキル基、アルケニル基などが挙げられる。
 アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、1,2-ジメチルプロピル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基などが挙げられる。
 なかでも、炭素数1~18のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましい。
Examples of the aliphatic hydrocarbon group represented by X or Y include an alkyl group, a cycloalkyl group, and an alkenyl group.
Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, Examples thereof include a tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, n-hexyl group, n-heptyl group, n-octyl group and the like.
Of these, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable.
 シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。
 なかでも、炭素数3~10のシクロアルキル基が好ましく、炭素数3~6のシクロアルキル基がより好ましい。
Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like.
Of these, a cycloalkyl group having 3 to 10 carbon atoms is preferable, and a cycloalkyl group having 3 to 6 carbon atoms is more preferable.
 アルケニル基としては、例えば、ビニル基、1-プロペニル基、アリル基、イソプロペニル基、1-ブテニル基、2-ブテニル基などが挙げられる。
 なかでも、炭素数2~18のアルケニル基が好ましく、炭素数2~6のアルケニル基がより好ましい。
Examples of the alkenyl group include a vinyl group, 1-propenyl group, allyl group, isopropenyl group, 1-butenyl group, 2-butenyl group and the like.
Of these, an alkenyl group having 2 to 18 carbon atoms is preferable, and an alkenyl group having 2 to 6 carbon atoms is more preferable.
 XまたはYで表される芳香族炭化水素基としては、例えば、アリール基、アラルキル基などが挙げられる。
 アリール基としては、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基、ビフェニル基などが挙げられ、なかでも、炭素数6~14のアリール基が好ましく、炭素数6~10のアリール基がより好ましく、フェニル基、ナフチル基がさらに好ましい。
 アラルキル基としては、例えば、ベンジル基、フェネチル基、フェニルプロピル基などが挙げられ、なかでも、炭素数7~13のアラルキル基が好ましく、炭素数7~11のアラルキル基がより好ましく、ベンジル基がさらに好ましい。
Examples of the aromatic hydrocarbon group represented by X or Y include an aryl group and an aralkyl group.
Examples of the aryl group include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group. Among them, an aryl group having 6 to 14 carbon atoms is preferable, and an aryl group having 6 to 10 carbon atoms is more preferable. A phenyl group and a naphthyl group are more preferable.
Examples of the aralkyl group include a benzyl group, a phenethyl group, and a phenylpropyl group. Among them, an aralkyl group having 7 to 13 carbon atoms is preferable, an aralkyl group having 7 to 11 carbon atoms is more preferable, and a benzyl group is preferable. Further preferred.
 XまたはYで表される芳香族複素環基としては、例えば、ピロリル基、フリル基、チエニル基、ピラゾリル基、イミダゾリル基(イミダゾール基)、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、ピリジル基(ピリジン基)、フラン基、チオフェン基、ピリダジニル基、ピリミジニル基、ピラジニル基等が挙げられる。なかでも、ピリジル基が好ましい。 Examples of the aromatic heterocyclic group represented by X or Y include, for example, pyrrolyl group, furyl group, thienyl group, pyrazolyl group, imidazolyl group (imidazole group), oxazolyl group, isoxazolyl group, thiazolyl group, isothiazolyl group, pyridyl group. (Pyridine group), furan group, thiophene group, pyridazinyl group, pyrimidinyl group, pyrazinyl group and the like. Of these, a pyridyl group is preferable.
 XまたはYで表される基が有してもよい、カルボキシ基以外の置換基としては、特に限定されず、例えば、炭素数1~4のアルキル基、ヒドロキシ基、アミノ基、ニトロ基、スルホニル基、アルコキシ基、ハロゲン原子などが挙げられる。
 なお、このような置換基を有する芳香族炭化水素基としては、例えば、トリル基、キシリル基などの、アルキル基を有するアリール基;メチルベンジル基、エチルベンジル基、メチルフェネチル基などの、置換基を有するアラルキル基;等が挙げられる。
The substituent other than the carboxy group that the group represented by X or Y may have is not particularly limited, and examples thereof include an alkyl group having 1 to 4 carbon atoms, a hydroxy group, an amino group, a nitro group, and a sulfonyl group. Group, alkoxy group, halogen atom and the like.
In addition, examples of the aromatic hydrocarbon group having such a substituent include aryl groups having an alkyl group such as tolyl group and xylyl group; substituents such as methylbenzyl group, ethylbenzyl group, and methylphenethyl group. An aralkyl group having the following: and the like.
 変性剤は、原料ジエン系ゴムとの相溶性、反応性に優れるという観点から、下記式(3)で表される化合物であることが好ましい。 The modifier is preferably a compound represented by the following formula (3) from the viewpoint of excellent compatibility and reactivity with the raw material diene rubber.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(3)中、mおよびnは、それぞれ独立に、0~5の整数を示し、mとnとの合計が1以上である。
 mが示す整数としては、変性剤を合成する際の溶媒への溶解度が良好になり合成が容易になるという理由から、0~2の整数が好ましく、0~1の整数がより好ましい。
 nが示す整数としては、変性剤を合成する際の溶媒への溶解度が良好になり合成が容易になるという理由から、0~2の整数が好ましく、0~1の整数がより好ましい。
 また、mとnとの合計(m+n)は、1~4が好ましく、1~2がより好ましい。
In formula (3), m and n each independently represent an integer of 0 to 5, and the sum of m and n is 1 or more.
The integer represented by m is preferably an integer of 0 to 2, and more preferably an integer of 0 to 1, because the solubility in a solvent at the time of synthesizing a modifier is improved and the synthesis is facilitated.
The integer represented by n is preferably an integer of 0 to 2, more preferably an integer of 0 to 1, because the solubility in a solvent at the time of synthesizing a modifier is improved and the synthesis is facilitated.
The total of m and n (m + n) is preferably 1 to 4, and more preferably 1 to 2.
 変性剤は、下記式(3-1)で表されるN-フェニル-α-(4-カルボキシフェニル)ニトロン、下記式(3-2)で表されるN-フェニル-α-(3-カルボキシフェニル)ニトロン、下記式(3-3)で表されるN-フェニル-α-(2-カルボキシフェニル)ニトロン、下記式(3-4)で表されるN-(4-カルボキシフェニル)-α-フェニルニトロン、下記式(3-5)で表されるN-(3-カルボキシフェニル)-α-フェニルニトロン、および、下記式(3-6)で表されるN-(2-カルボキシフェニル)-α-フェニルニトロンからなる群より選択される少なくとも1種であることが好ましい。 The modifier is N-phenyl-α- (4-carboxyphenyl) nitrone represented by the following formula (3-1), N-phenyl-α- (3-carboxyl represented by the following formula (3-2). Phenyl) nitrone, N-phenyl-α- (2-carboxyphenyl) nitrone represented by the following formula (3-3), N- (4-carboxyphenyl) -α represented by the following formula (3-4) -Phenylnitrone, N- (3-carboxyphenyl) -α-phenylnitrone represented by the following formula (3-5), and N- (2-carboxyphenyl) represented by the following formula (3-6) It is preferably at least one selected from the group consisting of -α-phenylnitrone.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-I000007
 変性剤の合成方法は特に限定されず、従来公知の方法を用いることができる。例えば、ヒドロキシアミノ基(-NHOH)を有する化合物と、アルデヒド基(-CHO)を有する化合物とを、ヒドロキシアミノ基とアルデヒド基とのモル比(-NHOH/-CHO)が1.0~1.5となる量で、有機溶媒(例えば、メタノール、エタノール、テトラヒドロフラン等)下で、室温で1~24時間撹拌することにより、両基が反応し、ニトロン基を有する化合物を製造することができる。上記においてヒドロキシアミノ基を有する化合物と、アルデヒド基を有する化合物とのいずれか一方又は両方がカルボキシ基を有すればよい。変性剤がカルボキシ基以外の置換基を更に有する場合、ヒドロキシアミノ基を有する化合物と、アルデヒド基を有する化合物とのいずれか一方又は両方が上記置換基を有することができる。 The method for synthesizing the modifier is not particularly limited, and a conventionally known method can be used. For example, a compound having a hydroxyamino group (—NHOH) and a compound having an aldehyde group (—CHO) have a molar ratio of hydroxyamino group to aldehyde group (—NHOH / —CHO) of 1.0 to 1. By stirring in an organic solvent (for example, methanol, ethanol, tetrahydrofuran, etc.) at room temperature for 1 to 24 hours in an amount of 5, a compound having a nitrone group can be produced by reacting both groups. In the above, any one or both of the compound having a hydroxyamino group and the compound having an aldehyde group may have a carboxy group. When the modifier further has a substituent other than a carboxy group, either one or both of the compound having a hydroxyamino group and the compound having an aldehyde group can have the above substituent.
 変性ジエン系ゴムの製造方法としては特に制限されないが、原料ジエン系ゴムと変性剤とを、例えば100~200℃で1~30分間混合する方法が挙げられる。 The production method of the modified diene rubber is not particularly limited, and examples thereof include a method of mixing the raw diene rubber and the modifier at 100 to 200 ° C. for 1 to 30 minutes.
 変性ジエン系ゴムを製造する際に使用される変性剤(例えばニトロン化合物)の量は、原料ジエン系ゴム100質量部に対して、0.3~10質量部であることが好ましく、0.5~3質量部であることがより好ましい。 The amount of the modifying agent (eg, nitrone compound) used in producing the modified diene rubber is preferably 0.3 to 10 parts by mass with respect to 100 parts by mass of the raw diene rubber. More preferred is 3 parts by mass.
<変性率>
 本発明において、変性ジエン系ゴムは、原料ジエン系ゴムが有する二重結合全量のうちの0.02~4モル%がカルボキシ基に変性された変性ジエン系ゴム、又は、二重結合及びカルボキシ基を有しカルボキシ基の含有量が二重結合及びカルボキシ基の合計の0.2~4モル%である変性ジエン系ゴムである。
 本発明において変性率は0.02~4モル%である。上記変性率は、所定の効果により優れる点から、0.10~3モル%であることが好ましく、0.15~2モル%であることがより好ましい。
<Modification rate>
In the present invention, the modified diene rubber is a modified diene rubber in which 0.02 to 4 mol% of the total amount of double bonds of the raw diene rubber is modified with carboxy groups, or double bonds and carboxy groups. A modified diene rubber having a carboxy group content of 0.2 to 4 mol% of the total of double bonds and carboxy groups.
In the present invention, the modification rate is 0.02 to 4 mol%. The above modification rate is preferably 0.10 to 3 mol%, more preferably 0.15 to 2 mol%, from the viewpoint of being excellent in a predetermined effect.
 本発明において、変性率は、例えば、原料ジエン系ゴムおよび変性ジエン系ゴムのNMR(核磁気共鳴:nuclear magnetic resonance)測定を行うことで求めることができる。具体的には、原料ジエン系ゴム及び変性ジエン系ゴムについて、CDCl3を溶媒とした1H-NMR測定(CDCl3、400MHz、TMS:テトラメチルシラン)を行い、8.08ppm付近(カルボキシ基に隣接する2つのプロトンに帰属する。具体的には、カルボキシ基がベンゼン環に結合する場合、カルボキシ基が結合する炭素原子に隣接する炭素原子に結合する2つのプロトンに帰属する。)のピーク面積を測定して、変性率を算出した。 In the present invention, the modification rate can be determined, for example, by performing NMR (nuclear magnetic resonance) measurement of the raw diene rubber and the modified diene rubber. Specifically, the raw diene rubber and the modified diene rubber were subjected to 1 H-NMR measurement (CDCl 3 , 400 MHz, TMS: tetramethylsilane) using CDCl 3 as a solvent, and around 8.08 ppm (with carboxy group) (Specifically, when a carboxy group is bonded to a benzene ring, it belongs to two protons bonded to a carbon atom adjacent to the carbon atom to which the carboxy group is bonded.) Was measured to calculate the denaturation rate.
 変性ジエン系ゴムに導入された変性剤(例えば、ニトロン化合物)の含有量は、本発明の効果がより優れる点から、ゴム成分100質量部に対して、0.3質量部以上10質量部以下であることが好ましく、0.3~5質量部であることがより好ましい。 The content of the modifying agent (for example, nitrone compound) introduced into the modified diene rubber is 0.3 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the rubber component because the effect of the present invention is more excellent. Preferably, the amount is 0.3 to 5 parts by mass.
 変性ジエン系ゴムはそれぞれ単独でまたは2種以上を組み合わせて使用することができる。 Modified diene rubbers can be used alone or in combination of two or more.
<変性ジエン系ゴムの含有量>
 本発明において、変性ジエン系ゴムの含有量は、ゴム成分100質量部に対して、10~100質量部である。変性ジエン系ゴムの含有量は、本発明の効果がより優れる点から、ゴム成分100質量部に対して、20~80質量部であることが好ましく、25~70質量部であることがより好ましい。
<Content of modified diene rubber>
In the present invention, the content of the modified diene rubber is 10 to 100 parts by mass with respect to 100 parts by mass of the rubber component. The content of the modified diene rubber is preferably 20 to 80 parts by mass, more preferably 25 to 70 parts by mass with respect to 100 parts by mass of the rubber component, from the viewpoint that the effects of the present invention are more excellent. .
 本発明において、ゴム成分はさらに変性ジエン系ゴム以外のゴムを含むことができる。変性ジエン系ゴム以外のゴムとしては、例えば、ジエン系ゴムが挙げられる。ジエン系ゴムは特に制限されない。例えば、変性ジエン系ゴムを製造する際に使用できる原料ジエン系ゴムと同様のものが挙げられる。
 なかでも、天然ゴム、スチレンブタジエンゴム及びブタジエンゴムからなる群から選ばれる少なくとも1種であることが好ましい。
 天然ゴム、スチレンブタジエンゴム及びブタジエンゴムは特に制限されない。例えば、上記原料ジエン系ゴムと同様とすることができる。
In the present invention, the rubber component may further contain a rubber other than the modified diene rubber. Examples of the rubber other than the modified diene rubber include a diene rubber. The diene rubber is not particularly limited. Examples thereof include the same raw material diene rubbers that can be used when producing a modified diene rubber.
Among these, at least one selected from the group consisting of natural rubber, styrene butadiene rubber and butadiene rubber is preferable.
Natural rubber, styrene butadiene rubber and butadiene rubber are not particularly limited. For example, it can be the same as the raw material diene rubber.
 ゴム成分の平均ガラス転移温度は、低温時においてもタイヤの硬度を低く保つことができ、タイヤの氷上性能が良好となる理由から、-50℃以下であることが好ましく、-50~-80℃であることがより好ましい。平均ガラス転移温度は、ガラス転移温度の平均値である。ゴム成分として変性ジエン系ゴムを1種のみ用いる場合は、その変性ジエン系ゴムのガラス転移温度をいう。ゴム成分として変性ジエン系ゴムを2種以上使用する、又は、変性ジエン系ゴムとそれ以外のゴムとを併用する場合は、ゴム成分全体のガラス転移温度の平均値をいう。この場合、各ゴムのガラス転移温度と各ゴムの配合割合から、平均ガラス転移温度を算出することができる。 The average glass transition temperature of the rubber component is preferably −50 ° C. or less, and can be −50 to −80 ° C., because the hardness of the tire can be kept low even at low temperatures and the performance on the ice of the tire is good. It is more preferable that The average glass transition temperature is an average value of the glass transition temperature. When only one type of modified diene rubber is used as the rubber component, it means the glass transition temperature of the modified diene rubber. When two or more kinds of modified diene rubbers are used as the rubber component, or when the modified diene rubber and other rubber are used in combination, the average value of the glass transition temperature of the entire rubber component is meant. In this case, the average glass transition temperature can be calculated from the glass transition temperature of each rubber and the blending ratio of each rubber.
<シリカ1>
 本発明のゴム組成物に含有されるシリカ1は、その窒素吸着比表面積(N2SA)が155m2/g以上であれば特に限定されない。例えば、従来公知のものが挙げられる。
<Silica 1>
Silica 1 contained in the rubber composition of the present invention is not particularly limited as long as its nitrogen adsorption specific surface area (N 2 SA) is 155 m 2 / g or more. For example, a conventionally well-known thing is mentioned.
 本発明において、シリカの窒素吸着比表面積はJIS K6430に準拠して測定したものである。 In the present invention, the nitrogen adsorption specific surface area of silica is measured in accordance with JIS K6430.
 シリカ1の窒素吸着比表面積は、本発明の効果がより優れる点から、155~250m2/gが好ましく、160~200m2/gがより好ましい。 Nitrogen adsorption specific surface area of the silica 1 from the viewpoint of the effect of the present invention more excellent, preferably 155 ~ 250m 2 / g, more preferably 160 ~ 200m 2 / g.
 シリカ1としては、具体的には、例えば、ヒュームドシリカ、焼成シリカ、沈降シリカ、粉砕シリカ、溶融シリカ、コロイダルシリカ等が挙げられる。
 シリカ1はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
Specific examples of the silica 1 include fumed silica, calcined silica, precipitated silica, pulverized silica, fused silica, colloidal silica, and the like.
Silica 1 can be used alone or in combination of two or more.
<シリカ2>
 本発明のゴム組成物に含有されるシリカ2は、その窒素吸着比表面積が125m2/g以下であれば特に限定されない。
<Silica 2>
Silica 2 contained in the rubber composition of the present invention is not particularly limited as long as its nitrogen adsorption specific surface area is 125 m 2 / g or less.
 シリカ2の窒素吸着比表面積(N2SA)は、本発明の効果がより優れる点から、80~125m2/gが好ましく、100~120m2/gがより好ましい。 Nitrogen adsorption specific surface area of the silica 2 (N 2 SA), from the viewpoint that the effect of the present invention more excellent, preferably 80 ~ 125m 2 / g, more preferably 100 ~ 120m 2 / g.
 シリカとしては、具体的には、例えば、ヒュームドシリカ、焼成シリカ、沈降シリカ、粉砕シリカ、溶融シリカ、コロイダルシリカ等が挙げられる。 Specific examples of silica include fumed silica, calcined silica, precipitated silica, pulverized silica, fused silica, colloidal silica, and the like.
<シリカ1とシリカ2の合計含有量>
 本発明において、シリカ1とシリカ2の合計含有量が、ゴム成分100質量部に対して、55~200質量部である。シリカ1とシリカ2の合計含有量は、本発明の効果がより優れる点から、ゴム成分100質量部に対して、55~180質量部であることが好ましく、55~160質量部であることがより好ましい。
<Total content of silica 1 and silica 2>
In the present invention, the total content of silica 1 and silica 2 is 55 to 200 parts by mass with respect to 100 parts by mass of the rubber component. The total content of silica 1 and silica 2 is preferably 55 to 180 parts by mass, and preferably 55 to 160 parts by mass with respect to 100 parts by mass of the rubber component, from the viewpoint that the effects of the present invention are more excellent. More preferred.
(シリカ1/シリカ2)
 シリカ2の含有量に対するシリカ1の含有量の比率(シリカ1/シリカ2。質量比)は、本発明の効果がより優れる点から、2~10であることが好ましく、2.2~5であることがより好ましく、2.4~2.8であることが更に好ましい。
(Silica 1 / Silica 2)
The ratio of the content of silica 1 to the content of silica 2 (silica 1 / silica 2. mass ratio) is preferably 2 to 10 from the viewpoint that the effect of the present invention is more excellent, and 2.2 to 5 More preferably, it is more preferably 2.4 to 2.8.
<シランカップリング剤>
 本発明のゴム組成物に含有されるシランカップリング剤は特に制限されない。
 シランカップリング剤としては、具体的には例えば、メルカプトシラン、スルフィドシランのような硫黄原子を含有するシランカップリング剤が挙げられる。
 メルカプトシランとしては、例えば、C1327O-(CH2CH2O)52(CH2CH2O)Si(CH22SH、:3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシランのようなメルカプト基を有するシランカップリング剤が挙げられる。
 スルフィドシランとしては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリメトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィドのような(ポリ)スルフィド結合を有するシランカップリング剤が挙げられる。
 シランカップリング剤は、それぞれ単独でまたは2種以上を組み合わせて使用することができる。
<Silane coupling agent>
The silane coupling agent contained in the rubber composition of the present invention is not particularly limited.
Specific examples of the silane coupling agent include silane coupling agents containing a sulfur atom such as mercaptosilane and sulfide silane.
Examples of mercaptosilane include C 13 H 27 O— (CH 2 CH 2 O) 5 ] 2 (CH 2 CH 2 O) Si (CH 2 ) 2 SH: 3-mercaptopropyltrimethoxysilane, 3-mercapto Examples include a silane coupling agent having a mercapto group such as propyltriethoxysilane.
Examples of the sulfide silane include bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, and bis (2-trimethoxysilyl). Ethyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-trimethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide A silane coupling agent having a (poly) sulfide bond such as
A silane coupling agent can be used individually or in combination of 2 types or more, respectively.
<シランカップリング剤の含有量>
 本発明において、シランカップリング剤の含有量は、シリカ1とシリカ2との合計含有量の2~16質量%である。シランカップリング剤の含有量は、本発明の効果がより優れる点から、シリカ1とシリカ2との合計含有量の2~14質量%であることが好ましく、3~12質量%であることがより好ましい。
<Content of silane coupling agent>
In the present invention, the content of the silane coupling agent is 2 to 16% by mass of the total content of silica 1 and silica 2. The content of the silane coupling agent is preferably 2 to 14% by mass, and preferably 3 to 12% by mass, based on the total content of silica 1 and silica 2, from the viewpoint that the effects of the present invention are more excellent. More preferred.
(そのほかの成分)
 本発明のゴム組成物は、必要に応じて、その効果や目的を損なわない範囲でさらに添加剤を含有することができる。添加剤としては、例えば、ジエン系ゴム以外のゴム、上記シリカ以外の充填剤(例えば、シリカ1、2以外のシリカ(例えば、窒素吸着比表面積が125m2/gを超え155m2/g未満であるシリカ)、カーボンブラック、クレー、マイカ、タルク、炭酸カルシウム、水酸化アルミニウム、酸化アルミニウム、酸化チタン)、加硫促進剤、テルペン系樹脂のような樹脂、酸化亜鉛、ステアリン酸、老化防止剤、加工助剤、オイル(例えば、アロマオイル、プロセスオイル)、液状ポリマー、熱硬化性樹脂、硫黄のような加硫剤などのタイヤ用ゴム組成物に一般的に使用されるものが挙げられる。添加剤の含有量は適宜選択することができる。
(Other ingredients)
The rubber composition of the present invention may further contain an additive as long as the effect and purpose are not impaired. As the additive, for example, rubber other than the diene rubber, the silica other than the filler (e.g., silica 1,2 other than silica (e.g., nitrogen adsorption specific surface area of 125m 2 / g to greater than less than 155m 2 / g A certain silica), carbon black, clay, mica, talc, calcium carbonate, aluminum hydroxide, aluminum oxide, titanium oxide), vulcanization accelerator, resin such as terpene resin, zinc oxide, stearic acid, anti-aging agent, Examples of the rubber composition for tires generally used include processing aids, oils (for example, aroma oil, process oil), liquid polymers, thermosetting resins, and vulcanizing agents such as sulfur. The content of the additive can be appropriately selected.
 ・カーボンブラック
 本発明のゴム組成物はカーボンブラックを更に含有することが好ましい。
 上記カーボンブラックは、特に限定されず、例えば、SAF(Super Abrasion Furnace。以下同様)-HS(High Structure。以下同様)、SAF、ISAF(Intermediate Super Abrasion Furnace。以下同様)-HS、ISAF、ISAF-LS(Low Structure。以下同様)、IISAF(Intermediate ISAF)-HS、HAF(High Abrasion Furnace。以下同様)-HS、HAF、HAF-LS、FEF(Fast Extruding Furnace)等の各種グレードのものを使用することができる。
Carbon black The rubber composition of the present invention preferably further contains carbon black.
The carbon black is not particularly limited, and, for example, SAF (Super Ablation Furnace; the same applies hereinafter) -HS (High Structure, the same applies hereinafter), SAF, ISAF (Intermediate Super Absorption Furnace, the same applies hereinafter) -HS, ISAF, IS-AF LS (Low Structure. Same as below), IISAF (Intermediate ISAF)-HS, HAF (High Ablation Furnace. Same as below)-HS, HAF, HAF-LS, FEF (Fast Extruding Furnace) be able to.
 カーボンブラックのCTAB(臭化n-ヘキサデシルトリメチルアンモニウムの略)吸着比表面積は特に制限されない。カーボンブラックのCTAB吸着比表面積は、本発明の効果がより優れる点から、60~250m2/gが好ましく、90~200m2/gがより好ましい。ここで、カーボンブラックのCTAB吸着比表面積は、JIS K 6217-3に記載されたCTAB吸着法に従って測定したものである。 The CAB (abbreviation for n-hexadecyltrimethylammonium bromide) adsorption specific surface area of carbon black is not particularly limited. CTAB adsorption specific surface area of carbon black, from the viewpoint of the effect of the present invention is more excellent, preferably 60 ~ 250m 2 / g, more preferably 90 ~ 200m 2 / g. Here, the CTAB adsorption specific surface area of carbon black was measured according to the CTAB adsorption method described in JIS K 6217-3.
 カーボンブラックの含有量は特に制限されないが、ゴム成分100質量部に対して、5~70質量部であることが好ましく、8~20質量部であることがより好ましい。 The content of carbon black is not particularly limited, but is preferably 5 to 70 parts by mass, more preferably 8 to 20 parts by mass with respect to 100 parts by mass of the rubber component.
・テルペン系樹脂
 本発明のゴム組成物はさらにテルペン系樹脂を含有することができる。テルペン系樹脂は、モノマーとして少なくともテルペン系単量体を使用する重合体であればよく、単独重合体、共重合体のいずれでもよい。またテルペン系樹脂は例えば芳香族化合物によって変性されていてもよい。
 テルペン系単量体としては、例えばα-ピネン、β-ピネン、ジペンテン、リモネン、これらの誘導体が挙げられる。
 芳香族化合物としては、例えばスチレン、α-メチルスチレン、ビニルトルエン、インデン、フェノール類が挙げられる。
-Terpene-type resin The rubber composition of this invention can contain a terpene-type resin further. The terpene resin may be a polymer that uses at least a terpene monomer as a monomer, and may be either a homopolymer or a copolymer. The terpene resin may be modified with, for example, an aromatic compound.
Examples of the terpene monomer include α-pinene, β-pinene, dipentene, limonene, and derivatives thereof.
Examples of aromatic compounds include styrene, α-methylstyrene, vinyl toluene, indene, and phenols.
 テルペン系樹脂としては、芳香族変性テルペン樹脂が挙げられる。テルペン系樹脂は、芳香族変性テルペン樹脂が好ましい。
 テルペン系樹脂(特に芳香族変性テルペン樹脂)の軟化点は、60~150℃であることが好ましく、70~130℃であることがより好ましい。
 テルペン系樹脂はその製造について特に制限されない。例えば、従来公知のものが挙げられる。テルペン系樹脂はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
Examples of the terpene resin include aromatic modified terpene resins. The terpene resin is preferably an aromatic modified terpene resin.
The softening point of the terpene resin (especially aromatic modified terpene resin) is preferably 60 to 150 ° C., more preferably 70 to 130 ° C.
The terpene resin is not particularly limited for its production. For example, a conventionally well-known thing is mentioned. The terpene resins can be used alone or in combination of two or more.
 テルペン系樹脂の量は、ゴム成分100質量部に対して、1~30質量部であることが好ましく、3~20質量部であることがより好ましい。 The amount of the terpene resin is preferably 1 to 30 parts by mass, more preferably 3 to 20 parts by mass with respect to 100 parts by mass of the rubber component.
(ゴム組成物の製造方法)
 本発明のゴム組成物の製造方法は特に限定されず、その具体例としては、例えば、上述した各成分を、公知の方法、装置(例えば、バンバリーミキサー、ニーダー、ロールなど)を用いて、混練する方法などが挙げられる。
 また、本発明のゴム組成物は、従来公知の加硫または架橋条件で加硫または架橋することができる。
 本発明のゴム組成物を用いてタイヤを製造することができる。本発明のゴム組成物をタイヤトレッドに使用する。本発明のゴム組成物をタイヤのタイヤトレッド以外の部分に使用してもよい。
(Method for producing rubber composition)
The method for producing the rubber composition of the present invention is not particularly limited, and specific examples thereof include, for example, kneading the above-described components using a known method and apparatus (for example, a Banbury mixer, a kneader, a roll, etc.). The method of doing is mentioned.
The rubber composition of the present invention can be vulcanized or crosslinked under conventionally known vulcanization or crosslinking conditions.
A tire can be manufactured using the rubber composition of the present invention. The rubber composition of the present invention is used for a tire tread. You may use the rubber composition of this invention for parts other than the tire tread of a tire.
[タイヤ]
 本発明のタイヤは、本発明のゴム組成物をタイヤトレッドに使用するタイヤである。
 本発明のタイヤは、タイヤトレッドが本発明のゴム組成物を使用して製造(形成)されたものであれば特に制限されない。
 タイヤトレッドに使用されるゴム組成物は本発明のゴム組成物であれば特に制限されない。
[tire]
The tire of the present invention is a tire using the rubber composition of the present invention for a tire tread.
The tire of the present invention is not particularly limited as long as the tire tread is manufactured (formed) using the rubber composition of the present invention.
The rubber composition used for the tire tread is not particularly limited as long as it is the rubber composition of the present invention.
 ゴム組成物を適用するタイヤトレッド以外のタイヤの部位は特に制限されない。本発明のゴム組成物を、タイヤトレッド、ビード部、サイドウォール部等に使用してもよい。 タ イ ヤ Parts of the tire other than the tire tread to which the rubber composition is applied are not particularly limited. You may use the rubber composition of this invention for a tire tread, a bead part, a sidewall part, etc.
 本発明のタイヤは空気入りタイヤであることが好ましい態様の1つとして挙げられる。
 以下添付の図面を用いて本発明のタイヤを説明する。なお本発明のタイヤは添付の図面に限定されない。
One preferred embodiment of the tire of the present invention is a pneumatic tire.
The tire of the present invention will be described below with reference to the accompanying drawings. The tire of the present invention is not limited to the attached drawings.
 図1は本発明のタイヤの実施態様の一例を表すタイヤの部分断面概略図である。図1に示されるタイヤは空気入りタイヤである。
 図1において、符号1はビード部を表し、符号2はサイドウォール部を表し、符号3はタイヤトレッドを表す。タイヤトレッド3は本発明のゴム組成物を使用して製造される。
 また、左右一対のビード部1間においては、繊維コードが埋設されたカーカス層4が装架されており、このカーカス層4の端部はビードコア5およびビードフィラー6の廻りにタイヤ内側から外側に折り返されて巻き上げられている。
 また、タイヤトレッド3においては、カーカス層4の外側に、ベルト層7がタイヤ1周に亘って配置されている。
 また、ビード部1においては、リムに接する部分にリムクッション8が配置されている。
FIG. 1 is a schematic partial sectional view of a tire representing an example of an embodiment of a tire according to the present invention. The tire shown in FIG. 1 is a pneumatic tire.
In FIG. 1, reference numeral 1 represents a bead portion, reference numeral 2 represents a sidewall portion, and reference numeral 3 represents a tire tread. The tire tread 3 is manufactured using the rubber composition of the present invention.
Further, a carcass layer 4 in which fiber cords are embedded is mounted between the pair of left and right bead portions 1, and the end of the carcass layer 4 extends from the inside of the tire to the outside around the bead core 5 and the bead filler 6. Wrapped and rolled up.
In the tire tread 3, a belt layer 7 is disposed over the circumference of the tire on the outside of the carcass layer 4.
Moreover, in the bead part 1, the rim cushion 8 is arrange | positioned in the part which touches a rim | limb.
 本発明のタイヤは、例えば、従来公知の方法に従って製造することができる。
 本発明のタイヤが空気入りタイヤである場合、空気入りタイヤに充填する気体としては、通常のまたは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウムなどの不活性ガスを用いることができる。
The tire of the present invention can be manufactured, for example, according to a conventionally known method.
When the tire of the present invention is a pneumatic tire, the gas filled in the pneumatic tire can be normal or air having an adjusted partial pressure of oxygen, or an inert gas such as nitrogen, argon, or helium. .
 以下に実施例を示して本発明を具体的に説明する。ただし本発明はこれらに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
<ニトロン化合物1の合成>
 2Lナスフラスコに、40℃に温めたメタノール(900mL)を入れ、ここに、下記式(b-1)で表されるテレフタルアルデヒド酸(30.0g)を加えて溶かした。この溶液に、下記式(a-1)で表されるフェニルヒドロキシアミン(21.8g)をメタノール(100mL)に溶かしたものを加え、室温で19時間撹拌した。撹拌終了後、メタノールからの再結晶により、下記式(c-1)で表されるニトロン化合物(カルボキシニトロン、CPN)を得た(41.7g)。収率は86%であった。得られたニトロン化合物をニトロン化合物1とする。ニトロン化合物1の分子量は241である。
<Synthesis of Nitrone Compound 1>
Methanol (900 mL) warmed to 40 ° C. was placed in a 2 L eggplant flask, and terephthalaldehyde acid (30.0 g) represented by the following formula (b-1) was added and dissolved therein. A solution of phenylhydroxyamine (21.8 g) represented by the following formula (a-1) in methanol (100 mL) was added to this solution, and the mixture was stirred at room temperature for 19 hours. After completion of the stirring, nitrone compound (carboxynitrone, CPN) represented by the following formula (c-1) was obtained by recrystallization from methanol (41.7 g). The yield was 86%. The obtained nitrone compound is designated as nitrone compound 1. The molecular weight of the nitrone compound 1 is 241.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
<変性ジエン系ゴム1の製造>
 原料SBR137.5質量部[スチレンブタジエンゴム、商品名E581、正味のSBR100質量部に対する油展量:37.5質量部、重量平均分子量:1,200,000、スチレン量:37質量%、ビニル結合量:43%、ガラス転移温度-27℃、旭化成ケミカル社製]とニトロン化合物1(1質量部)とをミキサーで160℃の条件下で5分間混合することで、上記原料SBRをニトロン化合物1で変性した変性ジエン系ゴム1を得た。
<Manufacture of modified diene rubber 1>
137.5 parts by mass of raw material SBR [styrene butadiene rubber, trade name E581, oil extended amount with respect to 100 parts by mass of net SBR: 37.5 parts by mass, weight average molecular weight: 1,200,000, styrene content: 37% by mass, vinyl bond Amount: 43%, glass transition temperature -27 ° C., manufactured by Asahi Kasei Chemical Co., Ltd.] and nitrone compound 1 (1 part by mass) with a mixer at 160 ° C. for 5 minutes to mix the above raw material SBR with nitrone compound 1 A modified diene rubber 1 modified with 1 was obtained.
 上記製造において、原料SBRが有する二重結合全量のうちの0.22モル%がニトロン化合物1によってカルボキシ基に変性された。
 変性ジエン系ゴム1は、二重結合及びカルボキシ基を有し、カルボキシ基の含有量が二重結合及びカルボキシ基の合計の0.22モル%であった。
 変性ジエン系ゴム1の変性率は0.22モル%であった。
In the above production, 0.22 mol% of the total amount of double bonds of the raw material SBR was modified by the nitrone compound 1 to a carboxy group.
The modified diene rubber 1 had a double bond and a carboxy group, and the content of the carboxy group was 0.22 mol% of the total of the double bond and the carboxy group.
The modification rate of the modified diene rubber 1 was 0.22 mol%.
<ゴム組成物の製造>
 下記第1表に示す各成分を同表に示す量(質量部)で用いてこれらを配合しゴム組成物を製造した。具体的には、まず、下記第1表に示す成分のうち硫黄および加硫促進剤(CZ)を除く成分を、80℃のバンバリーミキサーで5分間混合して混合物を得た。次に、上記混合物に上記硫黄および上記加硫促進剤を加え、これらをロールを用いて混合し、ゴム組成物を得た。
<Manufacture of rubber composition>
Using each component shown in Table 1 below in the amount (parts by mass) shown in the same table, these were blended to produce a rubber composition. Specifically, first, among the components shown in Table 1 below, components other than sulfur and a vulcanization accelerator (CZ) were mixed for 5 minutes with a Banbury mixer at 80 ° C. to obtain a mixture. Next, the sulfur and the vulcanization accelerator were added to the mixture, and these were mixed using a roll to obtain a rubber composition.
 なお、第1表において使用された変性ジエン系ゴム1の使用量が40質量部である場合、これに含まれる正味の変性ジエン系ゴムの含有量は、29質量部である。 In addition, when the usage-amount of the modified diene rubber 1 used in Table 1 is 40 parts by mass, the content of the net modified diene rubber contained in this is 29 parts by mass.
 正味29質量部の変性ジエン系ゴム1に含有されるニトロン化合物1の含有量(CPN量)は0.32質量部である。 The content (CPN amount) of the nitrone compound 1 contained in the net 29 parts by mass of the modified diene rubber 1 is 0.32 parts by mass.
 第1表において使用されたSBRの使用量が28.75質量部である場合、これに含まれる正味のスチレンブタジエンゴムの含有量は、約21質量部である。 When the amount of SBR used in Table 1 is 28.75 parts by mass, the content of the net styrene butadiene rubber contained therein is about 21 parts by mass.
<加硫ゴムシートの作製>
 上記のとおり製造したゴム組成物(未加硫)を、金型(15cm×15cm×0.2cm)中、160℃で20分間プレス加硫して、加硫ゴムシートを作製した。
<Preparation of vulcanized rubber sheet>
The rubber composition (unvulcanized) produced as described above was press-vulcanized at 160 ° C. for 20 minutes in a mold (15 cm × 15 cm × 0.2 cm) to produce a vulcanized rubber sheet.
<評価>
 上記のとおり作製された、加硫ゴムシートを用いて以下の評価を行った。結果を第1表に示す。
<Evaluation>
The following evaluation was performed using the vulcanized rubber sheet produced as described above. The results are shown in Table 1.
(低発熱性)
 上記のとおり作製された加硫ゴムシートについて、JIS K6394:2007に準じて、東洋精機製作所社製粘弾性スペクトロメーターを用いて、初期歪み10%、振幅±2%、周波数20Hzの条件下で、温度60℃の条件で、上記加硫ゴムシートのtanδ(60℃)を、測定した。
 得られた結果は、比較例1の値の逆数を100とする指数として表示された。
 指数が大きいほどtanδ(60℃)が小さく低発熱で、タイヤにしたときの転がり抵抗が低く、燃費性能が優れることを意味する。
(Low heat generation)
About the vulcanized rubber sheet produced as described above, in accordance with JIS K6394: 2007, using a viscoelastic spectrometer manufactured by Toyo Seiki Seisakusho, under conditions of initial strain 10%, amplitude ± 2%, frequency 20 Hz, Under the condition of a temperature of 60 ° C., tan δ (60 ° C.) of the vulcanized rubber sheet was measured.
The obtained result was displayed as an index with the reciprocal of the value of Comparative Example 1 as 100.
The larger the index, the smaller the tan δ (60 ° C.), the lower the heat generation, the lower the rolling resistance when made into a tire, and the better the fuel efficiency.
(耐摩耗性)
 上記のとおり作製された加硫ゴムシートの耐摩耗性を、JIS K6264に準拠して、ランボーン摩耗試験機(岩本製作所社製)を使用して、温度20℃、荷重15N、スリップ率50%、時間10分の条件で摩耗量を測定した。
 耐摩耗性の評価結果は、各例の摩耗量を逆数とし、比較例1の摩耗量の逆数を「100」とする指数で表示された。
 指数が大きいほど摩耗量が小さく、タイヤにしたときに耐摩耗性に優れる。
(Abrasion resistance)
The abrasion resistance of the vulcanized rubber sheet produced as described above was measured in accordance with JIS K6264 using a Lambone abrasion tester (manufactured by Iwamoto Seisakusho Co., Ltd.) at a temperature of 20 ° C., a load of 15 N, a slip ratio of 50%, The amount of wear was measured for 10 minutes.
The evaluation results of the wear resistance were displayed as indices with the amount of wear in each example as the reciprocal and the reciprocal of the amount of wear in Comparative Example 1 as “100”.
The larger the index, the smaller the amount of wear, and the better the wear resistance when made into a tire.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 第1表に示した各成分の詳細は以下のとおりである。
Figure JPOXMLDOC01-appb-T000010
Details of each component shown in Table 1 are as follows.
Figure JPOXMLDOC01-appb-T000010
 第1表に示すように、変性ジエン系ゴムを含有しない比較例2~4は、比較例1と比べて、耐摩耗性が低く、低発熱性について改善の余地があった。 As shown in Table 1, Comparative Examples 2 to 4 containing no modified diene rubber had lower abrasion resistance and room for improvement with respect to low heat build-up compared to Comparative Example 1.
 これに対して、本発明のゴム組成物は、所望の効果が得られることが確認された。
 シリカ1/シリカ2について実施例1~5を比較すると、シリカ1/シリカ2が5以下である実施例1~4は実施例5よりも低発熱性により優れた。また、シリカ1/シリカ2が2以上である実施例2~5は実施例1よりも耐摩耗性により優れた。以上から、シリカ1/シリカ2が2以上5以下である場合、耐摩耗性と低発熱性とのバランスに優れる効果が得られることが確認された。
 シリカ2の含有量について実施例1~5を比較すると、シリカ2の含有量が多くなるほど低発熱性により優れる効果が得られることが確認された。
On the other hand, it was confirmed that the rubber composition of the present invention can achieve a desired effect.
Comparing Examples 1 to 5 with respect to silica 1 / silica 2, Examples 1 to 4 in which silica 1 / silica 2 was 5 or less were superior to Example 5 in terms of low heat generation. In addition, Examples 2 to 5 in which the ratio of silica 1 / silica 2 was 2 or more were superior to Example 1 in abrasion resistance. From the above, it was confirmed that when the ratio of silica 1 / silica 2 is 2 or more and 5 or less, an effect of excellent balance between wear resistance and low heat build-up can be obtained.
When Examples 1 to 5 were compared with respect to the content of silica 2, it was confirmed that the higher the content of silica 2, the better the effect due to the low heat generation.
 1 ビード部
 2 サイドウォール部
 3 タイヤトレッド
 4 カーカス層
 5 ビードコア
 6 ビードフィラー
 7 ベルト層
 8 リムクッション
1 Bead part 2 Side wall part 3 Tire tread 4 Carcass layer 5 Bead core 6 Bead filler 7 Belt layer 8 Rim cushion

Claims (7)

  1.  原料ジエン系ゴムが有する二重結合全量のうちの0.02~4モル%がカルボキシ基に変性された変性ジエン系ゴムを少なくとも含むゴム成分と、
     窒素吸着比表面積が155m2/g以上のシリカ1と、
     窒素吸着比表面積が125m2/g以下のシリカ2と、
     シランカップリング剤とを含有し、
     前記変性ジエン系ゴムの含有量が、前記ゴム成分100質量部に対して、10~100質量部であり、
     前記シリカ1と前記シリカ2の合計含有量が、前記ゴム成分100質量部に対して、55~200質量部であり、
     前記シランカップリング剤の含有量が、前記合計含有量の2~16質量%である、タイヤトレッド用のゴム組成物。
    A rubber component containing at least a modified diene rubber in which 0.02 to 4 mol% of the total amount of double bonds of the raw diene rubber is modified with a carboxy group;
    Silica 1 having a nitrogen adsorption specific surface area of 155 m 2 / g or more;
    Silica 2 having a nitrogen adsorption specific surface area of 125 m 2 / g or less;
    Containing a silane coupling agent,
    The content of the modified diene rubber is 10 to 100 parts by mass with respect to 100 parts by mass of the rubber component,
    The total content of the silica 1 and the silica 2 is 55 to 200 parts by mass with respect to 100 parts by mass of the rubber component;
    A rubber composition for a tire tread, wherein the content of the silane coupling agent is 2 to 16% by mass of the total content.
  2.  前記シリカ2の含有量に対する前記シリカ1の含有量の比率(シリカ1/シリカ2)が、2~10である、請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the ratio of the content of the silica 1 to the content of the silica 2 (silica 1 / silica 2) is 2 to 10.
  3.  前記変性ジエン系ゴムが、前記原料ジエン系ゴムとカルボキシ基及びニトロン基を有するニトロン化合物とを反応させて製造される、請求項1又は2に記載のゴム組成物。 The rubber composition according to claim 1 or 2, wherein the modified diene rubber is produced by reacting the raw diene rubber with a nitrone compound having a carboxy group and a nitrone group.
  4.  前記ニトロン化合物が、
    N-フェニル-α-(4-カルボキシフェニル)ニトロン、
    N-フェニル-α-(3-カルボキシフェニル)ニトロン、
    N-フェニル-α-(2-カルボキシフェニル)ニトロン、
    N-(4-カルボキシフェニル)-α-フェニルニトロン、
    N-(3-カルボキシフェニル)-α-フェニルニトロン及び
    N-(2-カルボキシフェニル)-α-フェニルニトロンからなる群から選ばれる少なくとも1種である、請求項3に記載のゴム組成物。
    The nitrone compound is
    N-phenyl-α- (4-carboxyphenyl) nitrone,
    N-phenyl-α- (3-carboxyphenyl) nitrone,
    N-phenyl-α- (2-carboxyphenyl) nitrone,
    N- (4-carboxyphenyl) -α-phenylnitrone,
    The rubber composition according to claim 3, wherein the rubber composition is at least one selected from the group consisting of N- (3-carboxyphenyl) -α-phenylnitrone and N- (2-carboxyphenyl) -α-phenylnitrone.
  5.  前記変性ジエン系ゴムに導入された前記ニトロン化合物の含有量が、前記ゴム成分100質量部に対して、0.3質量部以上10質量部以下である、請求項3又は4に記載のゴム組成物。 The rubber composition according to claim 3 or 4, wherein a content of the nitrone compound introduced into the modified diene rubber is 0.3 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the rubber component. object.
  6.  二重結合及びカルボキシ基を有し、前記カルボキシ基の含有量が前記二重結合及び前記カルボキシ基の合計の0.2~4モル%である変性ジエン系ゴムを少なくとも含むゴム成分と、
     窒素吸着比表面積が155m2/g以上のシリカ1と、
     窒素吸着比表面積が125m2/g以下のシリカ2と、
     シランカップリング剤とを含有し、
     前記変性ジエン系ゴムの含有量が、前記ゴム成分100質量部に対して、10~100質量部であり、
     前記シリカ1と前記シリカ2の合計含有量が、前記ゴム成分100質量部に対して、55~200質量部であり、
     前記シランカップリング剤の含有量が、前記合計含有量の2~16質量%である、タイヤトレッド用のゴム組成物。
    A rubber component having at least a modified diene rubber having a double bond and a carboxy group, wherein the content of the carboxy group is 0.2 to 4 mol% of the total of the double bond and the carboxy group;
    Silica 1 having a nitrogen adsorption specific surface area of 155 m 2 / g or more;
    Silica 2 having a nitrogen adsorption specific surface area of 125 m 2 / g or less;
    Containing a silane coupling agent,
    The content of the modified diene rubber is 10 to 100 parts by mass with respect to 100 parts by mass of the rubber component,
    The total content of the silica 1 and the silica 2 is 55 to 200 parts by mass with respect to 100 parts by mass of the rubber component;
    A rubber composition for a tire tread, wherein the content of the silane coupling agent is 2 to 16% by mass of the total content.
  7.  請求項1~6のいずれか1項に記載のゴム組成物をタイヤトレッドに使用するタイヤ。 A tire using the rubber composition according to any one of claims 1 to 6 for a tire tread.
PCT/JP2016/061919 2015-04-14 2016-04-13 Rubber composition and tire WO2016167289A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016553028A JPWO2016167289A1 (en) 2015-04-14 2016-04-13 Rubber composition and tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015082443 2015-04-14
JP2015-082443 2015-04-14

Publications (1)

Publication Number Publication Date
WO2016167289A1 true WO2016167289A1 (en) 2016-10-20

Family

ID=57126645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061919 WO2016167289A1 (en) 2015-04-14 2016-04-13 Rubber composition and tire

Country Status (2)

Country Link
JP (1) JPWO2016167289A1 (en)
WO (1) WO2016167289A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095701A (en) * 2016-12-09 2018-06-21 住友ゴム工業株式会社 Rubber composition and pneumatic tire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036025A (en) * 2011-07-14 2013-02-21 Yokohama Rubber Co Ltd:The Rubber composition for tires
WO2013157545A1 (en) * 2012-04-16 2013-10-24 横浜ゴム株式会社 Rubber composition for tire, and pneumatic tire
JP2013227375A (en) * 2012-04-24 2013-11-07 Yokohama Rubber Co Ltd:The Tire rubber composition
JP5700161B1 (en) * 2014-05-16 2015-04-15 横浜ゴム株式会社 Rubber composition for tire bead insulation and pneumatic tire
JP5716850B1 (en) * 2014-01-31 2015-05-13 横浜ゴム株式会社 Modified polymer, rubber composition and tire using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036025A (en) * 2011-07-14 2013-02-21 Yokohama Rubber Co Ltd:The Rubber composition for tires
WO2013157545A1 (en) * 2012-04-16 2013-10-24 横浜ゴム株式会社 Rubber composition for tire, and pneumatic tire
JP2013227375A (en) * 2012-04-24 2013-11-07 Yokohama Rubber Co Ltd:The Tire rubber composition
JP5716850B1 (en) * 2014-01-31 2015-05-13 横浜ゴム株式会社 Modified polymer, rubber composition and tire using the same
JP5700161B1 (en) * 2014-05-16 2015-04-15 横浜ゴム株式会社 Rubber composition for tire bead insulation and pneumatic tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095701A (en) * 2016-12-09 2018-06-21 住友ゴム工業株式会社 Rubber composition and pneumatic tire

Also Published As

Publication number Publication date
JPWO2016167289A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
KR101644555B1 (en) Tire tread rubber composition and pneumatic tire
JP2016037556A (en) Rubber composition and pneumatic tire
JP6070754B2 (en) Rubber composition and pneumatic tire
WO2015114998A1 (en) Rubber composition and pneumatic tire
WO2015114996A1 (en) Rubber composition and pneumatic tire
JP6024781B2 (en) Rubber composition for tire tread and pneumatic tire
JP5761442B1 (en) Modified polymer and rubber composition and pneumatic tire
US9803031B2 (en) Modified polymer, rubber composition and pneumatic tire
JP6481693B2 (en) Rubber composition and tire
JP5812154B1 (en) Rubber composition for pneumatic tire and pneumatic tire
JP5716850B1 (en) Modified polymer, rubber composition and tire using the same
JP6686314B2 (en) Rubber composition for tires
WO2016167289A1 (en) Rubber composition and tire
JP5761443B1 (en) Rubber composition and pneumatic tire
JP5949987B1 (en) Rubber composition for tire tread and pneumatic tire
JP6112161B2 (en) Method for producing modified polymer, modified polymer, rubber composition and pneumatic tire
JP5812155B1 (en) Rubber composition for tire rim cushion or gum finishing and pneumatic tire
JP5962809B1 (en) Rubber composition for tire tread and pneumatic tire using the same
WO2016148198A1 (en) Compound, modified polymer, rubber composition, tire, and conveyor belt
WO2015173994A1 (en) Bead filler rubber composition and pneumatic tire
JP5812157B1 (en) Rubber composition for tire rim cushion or gum finishing and pneumatic tire
WO2015173989A1 (en) Rubber composition for tire rim cushion or rubber finishing, and pneumatic tire
WO2016076269A1 (en) Polymer modifier composition, modified polymer, rubber composition, and pneumatic tire

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016553028

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16780080

Country of ref document: EP

Kind code of ref document: A1