WO2016159317A1 - 還元型グルタチオンの結晶 - Google Patents
還元型グルタチオンの結晶 Download PDFInfo
- Publication number
- WO2016159317A1 WO2016159317A1 PCT/JP2016/060831 JP2016060831W WO2016159317A1 WO 2016159317 A1 WO2016159317 A1 WO 2016159317A1 JP 2016060831 W JP2016060831 W JP 2016060831W WO 2016159317 A1 WO2016159317 A1 WO 2016159317A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crystal
- reduced glutathione
- metal salt
- salt
- crystals
- Prior art date
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 236
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 title claims abstract description 154
- 108010024636 Glutathione Proteins 0.000 title claims abstract description 141
- 150000003839 salts Chemical class 0.000 claims abstract description 105
- 229910052751 metal Inorganic materials 0.000 claims abstract description 102
- 239000002184 metal Substances 0.000 claims abstract description 102
- 238000004519 manufacturing process Methods 0.000 claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 16
- 239000003960 organic solvent Substances 0.000 claims abstract description 16
- 239000000725 suspension Substances 0.000 claims abstract description 8
- 150000004682 monohydrates Chemical class 0.000 claims description 41
- QWXDICNEPRTOLR-GEMLJDPKSA-M sodium 2-[[(2R)-2-[[(4S)-4-amino-4-carboxybutanoyl]amino]-3-sulfanylpropanoyl]amino]acetate Chemical compound [Na+].N[C@@H](CCC(=O)N[C@@H](CS)C(=O)NCC([O-])=O)C(O)=O QWXDICNEPRTOLR-GEMLJDPKSA-M 0.000 claims description 38
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 37
- 239000007864 aqueous solution Substances 0.000 claims description 30
- 238000000634 powder X-ray diffraction Methods 0.000 claims description 30
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 27
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical group CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 18
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 12
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 12
- 150000004692 metal hydroxides Chemical class 0.000 claims description 12
- 229910052708 sodium Inorganic materials 0.000 claims description 12
- 239000011734 sodium Substances 0.000 claims description 12
- 159000000000 sodium salts Chemical class 0.000 claims description 11
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 9
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 9
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 9
- 229910052791 calcium Inorganic materials 0.000 claims description 9
- 239000011575 calcium Substances 0.000 claims description 9
- 229960003180 glutathione Drugs 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- 239000011777 magnesium Substances 0.000 claims description 9
- 229910052700 potassium Inorganic materials 0.000 claims description 9
- 239000011591 potassium Substances 0.000 claims description 9
- 239000005300 metallic glass Substances 0.000 claims description 5
- 238000012916 structural analysis Methods 0.000 claims description 5
- 230000001376 precipitating effect Effects 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 2
- NASFKTWZWDYFER-UHFFFAOYSA-N sodium;hydrate Chemical compound O.[Na] NASFKTWZWDYFER-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 15
- 230000008569 process Effects 0.000 abstract description 3
- 238000005259 measurement Methods 0.000 description 14
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- 238000001035 drying Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000000543 intermediate Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 230000032683 aging Effects 0.000 description 5
- 239000002537 cosmetic Substances 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 235000013402 health food Nutrition 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 238000009423 ventilation Methods 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- -1 glutathione ion Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000004467 single crystal X-ray diffraction Methods 0.000 description 3
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 2
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 238000002076 thermal analysis method Methods 0.000 description 2
- 238000012982 x-ray structure analysis Methods 0.000 description 2
- KJQNSWHBRKOGHW-GEMLJDPKSA-N (2s)-2-amino-5-[[(2r)-1-(carboxymethylamino)-1-oxo-3-sulfanylpropan-2-yl]amino]-5-oxopentanoic acid;sodium Chemical compound [Na].OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O KJQNSWHBRKOGHW-GEMLJDPKSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 108010053070 Glutathione Disulfide Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000005515 coenzyme Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- YPZRWBKMTBYPTK-BJDJZHNGSA-N glutathione disulfide Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@H](C(=O)NCC(O)=O)CSSC[C@@H](C(=O)NCC(O)=O)NC(=O)CC[C@H](N)C(O)=O YPZRWBKMTBYPTK-BJDJZHNGSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000004687 hexahydrates Chemical class 0.000 description 1
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- YPZRWBKMTBYPTK-UHFFFAOYSA-N oxidized gamma-L-glutamyl-L-cysteinylglycine Natural products OC(=O)C(N)CCC(=O)NC(C(=O)NCC(O)=O)CSSCC(C(=O)NCC(O)=O)NC(=O)CCC(N)C(O)=O YPZRWBKMTBYPTK-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/02—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
- C07K5/0215—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing natural amino acids, forming a peptide bond via their side chain functional group, e.g. epsilon-Lys, gamma-Glu
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D9/00—Crystallisation
- B01D9/0036—Crystallisation on to a bed of product crystals; Seeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D9/00—Crystallisation
- B01D9/005—Selection of auxiliary, e.g. for control of crystallisation nuclei, of crystal growth, of adherence to walls; Arrangements for introduction thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D9/00—Crystallisation
- B01D9/005—Selection of auxiliary, e.g. for control of crystallisation nuclei, of crystal growth, of adherence to walls; Arrangements for introduction thereof
- B01D9/0054—Use of anti-solvent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D9/00—Crystallisation
- B01D2009/0086—Processes or apparatus therefor
- B01D2009/009—Separation of organic compounds by selective or extractive crystallisation with the aid of auxiliary substances forming complex or molecular compounds, e.g. with ureum, thioureum or metal salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D9/00—Crystallisation
- B01D9/0004—Crystallisation cooling by heat exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D9/00—Crystallisation
- B01D9/02—Crystallisation from solutions
- B01D9/04—Crystallisation from solutions concentrating solutions by removing frozen solvent therefrom
Definitions
- the present invention relates to crystals of reduced glutathione that are useful as products, raw materials, intermediates, and the like such as health foods, pharmaceuticals, and cosmetics.
- Reduced glutathione ( ⁇ -L-glutamyl-L-cystinyl-glycine) is a substance widely present in living organisms, and is known to have a detoxifying action in the liver in addition to acting as a coenzyme. Therefore, reduced glutathione is widely used as products, raw materials or intermediates such as pharmaceuticals, health foods and cosmetics.
- the form of reduced glutathione used for the above-mentioned products, raw materials and intermediates is preferably a powder because of its easy handling.
- a reduced glutathione amorphous material (amorphous) obtained by a general dry powder production method such as freeze-drying or spray-drying is not suitable for processing because of its high hygroscopicity and insufficient fluidity.
- Patent Document 1 As a crystal of reduced glutathione, a free crystal is known (Patent Document 1). However, the free crystal is not suitable for a liquid preparation because of its low solubility, and it is acidic so that it can be processed. Care must be taken. Therefore, there has been a demand for reduced glutathione crystals having a storage stability and a form that is easy to process.
- Patent Document 2 A monohydrate (Patent Document 2) and a hexahydrate (Patent Document 3) of a free form of oxidized glutathione (dimer of glutathione) in which reduced glutathione is linked by a disulfide bond are known, Hydrate crystals and salt crystals of reduced glutathione have not been known.
- An object of the present invention is to provide a metal salt crystal of reduced glutathione useful as, for example, a product, a raw material or an intermediate for health foods, pharmaceuticals, cosmetics and the like.
- the present invention relates to the following (1) to (22).
- Crystal of metal salt of reduced glutathione (2) The metal of reduced glutathione according to (1) above, wherein the crystal of the metal salt of reduced glutathione is a crystal of a salt of reduced glutathione and a metal selected from the group consisting of sodium, potassium, calcium and magnesium. Salt crystals.
- a crystal of a metal salt of reduced glutathione is a crystal of a salt of reduced glutathione and sodium (hereinafter referred to as “reduced glutathione / sodium salt”) (hereinafter referred to as “reduced glutathione / sodium salt crystal”).
- the crystal according to (5) above having peaks at ° ⁇ 0.20 ° and 33.20 ⁇ 0.20 °.
- the diffraction angle (2 ⁇ ) is further 17.90 ° ⁇ 0.20 °, 20.86 ° ⁇ 0.20 °, 22.10 ° ⁇ 0.20 °, and 25.30.
- the crystal according to (6) above which has a peak at ° ⁇ 0.20 °.
- the diffraction angle (2 ⁇ ) further has peaks at 6.42 ⁇ 0.20 °, 18.90 ⁇ 0.20 °, and 29.30 ⁇ 0.20 °.
- the diffraction angle (2 ⁇ ) In powder X-ray diffraction, the diffraction angle (2 ⁇ ) has peaks at 25.92 ° ⁇ 0.20 °, 20.28 ° ⁇ 0.20 ° and 27.28 ° ⁇ 0.20 °.
- the diffraction angle (2 ⁇ ) is further 22.48 ° ⁇ 0.20 °, 33.56 ° ⁇ 0.20 °, 19.70 ° ⁇ 0.20 °, and 18.32.
- the diffraction angle (2 ⁇ ) further has peaks at 19.26 ⁇ 0.20 °, 28.74 ⁇ 0.20 °, and 29.64 ⁇ 0.20 °.
- Reduction including a step of suspending an amorphous metal salt of reduced glutathione in a hydrophobic organic solvent and then adding water to the resulting suspension to precipitate crystals of the metal salt of reduced glutathione.
- crystal of metal salt of type glutathione (16) The method for producing a crystal of a metal salt of reduced glutathione according to the above (15), wherein the hydrophobic organic solvent is hexane or toluene.
- a crystal of the metal salt of reduced glutathione is precipitated by adding an aqueous solution of methanol or ethanol to the resulting suspension.
- a method for producing a crystal of a metal salt of reduced glutathione comprising a step.
- a free form of reduced glutathione is dissolved in an aqueous solution of metal hydroxide to adjust the pH to 5.0 to 8.0 to obtain an aqueous solution of a metal salt of reduced glutathione.
- 0.1 to 3 times as much C1-C6 alcohol as the concentrated aqueous solution is gradually added to the concentrated aqueous solution little by little, and then the metal salt crystals of reduced glutathione are used as seed crystals.
- a method for producing a crystal of a metal salt of reduced glutathione comprising a step of adding and precipitating a crystal of metal salt of reduced glutathione.
- the present invention provides reduced glutathione metal salt crystals that are useful, for example, as products, raw materials, or intermediates such as health foods, pharmaceuticals, and cosmetics.
- FIG. 1 is a diagram showing a peak pattern of powder X-ray diffraction of a monohydrate crystal of reduced glutathione sodium salt.
- the vertical axis of the graph represents intensity (unit cps), and the horizontal axis represents diffraction angle (2 ⁇ ) (unit °).
- FIG. 2 is a diagram showing a powder X-ray diffraction peak pattern of anhydrous crystals of reduced glutathione sodium salt.
- the vertical axis of the graph represents intensity (unit cps), and the horizontal axis represents diffraction angle (2 ⁇ ) (unit °).
- Crystal of metal salt of reduced glutathione of the present invention may be an anhydrous crystal or a hydrate crystal. Preferred are hydrate crystals, and more preferred are monohydrate crystals. This is because monohydrate crystals are excellent in storage stability.
- the crystal of the metal salt of reduced glutathione of the present invention may be a crystal including crystal polymorphs such as ⁇ crystal and ⁇ crystal. Of these, ⁇ crystals are preferred.
- the ratio of the ⁇ crystal in the total reduced glutathione metal salt crystal is preferably 95% or more, more preferably 97% or more, still more preferably 98% or more, still more preferably 99% or more, particularly preferably. There can be mentioned crystals of 99.5% or more, most preferably 99.9% or more.
- the metal salt crystal of reduced glutathione of the present invention is not limited as long as it is a crystal of a salt of reduced glutathione and any metal.
- the metal is preferably a metal belonging to an alkali metal or an alkaline earth metal, more preferably a metal selected from the group consisting of sodium, potassium, calcium and magnesium, and even more preferably sodium.
- the crystal of the metal salt of reduced glutathione of the present invention can be a crystal having a molecular number equivalent to a metal ion with respect to glutathione. More specifically, the metal ion valence is usually 0.5 to 2, preferably 0.8 to 1.2, and more preferably 1.0 with respect to the glutathione ion valence.
- the crystal of the reduced glutathione metal salt of the present invention has a pH of usually 5.0 to 8.0, more preferably 5.5 to 7.5, and even more preferably 6.0 to 7.0. Can be given.
- reduced glutathione-sodium salt of the present invention (hereinafter referred to as “reduced glutathione sodium salt”) crystal (hereinafter referred to as “reduced glutathione sodium salt crystal”) is a monohydrate crystal, More specifically, when powder X-ray diffraction using CuK ⁇ as an X-ray source was performed, the diffraction angles (2 ⁇ ) were 19.90 ° ⁇ 0.20 °, 25.58 ° ⁇ 0.20 °. And peaks at 26.88 ° ⁇ 0.20 °.
- 2 ⁇ is further 20.16 ° ⁇ 0.20 °, 24.68 ° ⁇ 0.20 °, 26.30 ° ⁇ 0.20 °, 27.68 ° ⁇ 0.20 ° and 33.20 ⁇ . It has a peak at 0.20 °.
- More preferably (2 ⁇ ) further peaks at 17.90 ° ⁇ 0.20 °, 20.86 ° ⁇ 0.20 °, 22.10 ° ⁇ 0.20 ° and 25.30 ° ⁇ 0.20 °.
- 2 ⁇ further has peaks at 6.42 ⁇ 0.20 °, 18.90 ⁇ 0.20 °, and 29.30 ⁇ 0.20 °.
- the crystal is defined by the values shown in Table 1 and has the diffraction pattern shown in FIG.
- the analyzer used when performing powder X-ray diffraction and the measurement conditions are: the analyzer is a sample horizontal multi-purpose X-ray diffractometer UltimaIV manufactured by Rigaku Corporation, and the measurement conditions are a copper target enclosure for the X-ray source. It is possible to raise conditions for irradiating the sample with X-rays that are not monochromatic and detecting diffracted X-rays derived from CuK ⁇ rays (wavelength 1.541 ⁇ ⁇ ⁇ ⁇ ⁇ ) using an energy-resolving detector.
- B 10.818 ⁇ ;
- c 4.881 ⁇ ;
- ⁇ 90 °;
- ⁇ 90 °;
- ⁇ 90 °;
- V 1472.2 ⁇ 3 ;
- Z 4; and the space group is P2 1 2; 1 2 1 (# 19);
- the crystal is defined by the values shown in Table 2 when measured at -173 ° C. in single crystal X-ray structural analysis.
- SXRD structural analysis
- a single crystal of a metal salt of reduced glutathione is attached to a diffractometer, and a diffraction image is measured using X-rays having a predetermined wavelength in air at room temperature or in an inert gas stream at a predetermined temperature.
- structure determination by a direct method and structure refinement by a least square method [Acta Cryst. A64, 112 (2008)] to obtain a single crystal structure.
- the single crystal X-ray diffractometer for example, a single crystal X-ray structure analyzer SuperNova manufactured by Agilent Technologies can be used.
- the diffraction angle (2 ⁇ ) is further 20.52 ° ⁇ 0.20 °, 25.02 ° ⁇ 0.20 °, 21.26 ° ⁇ 0.20 °, 26.66 ° ⁇ 0.20 °. And peaks at 28.08 ⁇ 0.20 °.
- the diffraction angle (2 ⁇ ) is further 22.48 ° ⁇ 0.20 °, 33.56 ° ⁇ 0.20 °, 19.70 ° ⁇ 0.20 ° and 18.32 ° ⁇ 0.20. Has a peak at °.
- the diffraction angle (2 ⁇ ) further has peaks at 19.26 ⁇ 0.20 °, 28.74 ⁇ 0.20 ° and 29.64 ⁇ 0.20 °.
- it is an anhydrous crystal of reduced glutathione sodium salt defined by the values shown in Table 3 and has a diffraction pattern shown in FIG.
- Method for producing crystal of reduced glutathione metal salt of the present invention [Method for producing monohydrate crystal of metal salt of reduced glutathione] (1) Manufacturing method by crystal transition As a manufacturing method of the present invention, an amorphous salt of reduced glutathione and a metal is suspended in a hydrophobic organic solvent, and then water is added to the obtained suspension. A method for producing a monohydrate crystal of the metal salt of reduced glutathione, which includes a step of precipitating a monohydrate crystal of the metal salt of reduced glutathione.
- a monohydrate of reduced glutathione metal salt is added to the resulting suspension by adding an aqueous solution of methanol or ethanol.
- a method for producing a monohydrate crystal of the reduced glutathione metal salt which includes a step of precipitating a physical crystal.
- Amorphous salt of reduced glutathione and metal should be neutralized by adding equimolar metal hydroxide and water to the free form of reduced glutathione, and then quickly frozen using liquid nitrogen and dried. Can be obtained.
- the free form of reduced glutathione may be either amorphous or crystalline. Crystals can also be purchased from Kyowa Hakko Bio. Amorphous is produced by fermentation (International Publication No. 2008/126784) or enzymatic method [Appl. Microbiol. Biotechnol. , 66, 233 (2004), and Japanese Patent Application Laid-Open No. 60-105499, etc.], and then purified by a known method and then dried by a method such as freeze drying or spray drying. be able to.
- the metal hydroxide is preferably an alkali metal or alkaline earth metal hydroxide, particularly preferably a metal hydroxide selected from the group consisting of sodium, potassium, calcium and magnesium.
- the most preferred metal hydroxide is sodium hydroxide.
- a metal hydroxide and water are added to reduced glutathione and usually stirred for 1 to 12 days, preferably 5 to 10 days, more preferably 7 days for complete dissolution, and then rapidly cooled with liquid nitrogen.
- the amorphous form of a salt of reduced glutathione and a metal can be obtained by drying using a commercially available freeze dryer.
- the metal salt of reduced glutathione is dispersed in a hydrophobic organic solvent, suspended, and water is added to the resulting suspension to transfer the metal salt of reduced glutathione from amorphous to crystals. it can.
- hydrophobic organic solvent examples include hexane and toluene.
- 5 to 100 mg, preferably 10 to 80 mg, more preferably 20 to 50 mg of the metal salt of reduced glutathione metal salt is dispersed per 1 ml of the hydrophobic organic solvent.
- the amount of water added to the metal salt solution of reduced glutathione is usually 1 to 20 ⁇ l, preferably 2 to 15 ⁇ l, more preferably 2 to 12 ⁇ l, and particularly preferably 5 to 10 ⁇ l per 1 ml of the hydrophobic organic solvent.
- the monohydrate crystals of reduced glutathione metal salt can be obtained by stirring.
- Preferred as the monohydrate crystal of the resulting reduced glutathione metal salt is a monohydrate crystal of a salt of reduced glutathione and a metal selected from the group consisting of sodium, potassium, calcium and magnesium, more preferably Is a monohydrate crystal of reduced glutathione sodium salt.
- the crystal can be dried by drying under reduced pressure or the like.
- crystallization of the metal salt of reduced glutathione can be acquired also by adding the aqueous solution of methanol or ethanol instead of water in the above.
- the amount of methanol or ethanol aqueous solution added is, for example, 10 to 60 ⁇ l as 80% methanol or ethanol aqueous solution per 1 ml of the hydrophobic organic solvent.
- the concentration corresponding to 10 to 60 ⁇ l of 80% methanol or ethanol aqueous solution If it is an alcohol solution and its addition amount, a monohydrate crystal of reduced glutathione metal salt can be obtained.
- a free form of reduced glutathione is dissolved in a metal hydroxide aqueous solution to adjust the pH to 5.0 to 8.0 to obtain a metal salt aqueous solution of reduced glutathione. Filter and concentrate.
- the monohydrate crystals of the reduced glutathione metal salt are separated after cooling again. By drying the separated crystal, a monohydrate crystal of a reduced glutathione metal salt can be obtained.
- the monohydrate crystal of the resulting reduced glutathione metal salt is a monohydrate crystal of a salt of reduced glutathione and a metal selected from the group consisting of sodium, potassium, calcium and magnesium, more preferably Is a monohydrate crystal of reduced glutathione sodium salt.
- the metal hydroxide is preferably an alkali metal or alkaline earth metal hydroxide, particularly preferably a metal hydroxide selected from the group consisting of sodium, potassium, calcium and magnesium.
- the most preferred metal hydroxide is sodium hydroxide.
- a free form of reduced glutathione is dissolved in an aqueous metal hydroxide solution, and the pH is usually 5.0 to 8.0, preferably 5.5 to 7.5, more preferably 6.0 to 7.0.
- the aqueous solution of reduced glutathione metal salt is concentrated under reduced pressure until it is usually 400 to 900 g / L, preferably 500 to 850 g / L, more preferably 600 to 800 g / L.
- the amount of reduced glutathione metal salt monohydrate added as a seed crystal is, for example, 0.1 to 5%, preferably 0.1% to 5% of the amount of reduced glutathione contained in the concentrated aqueous solution (as a free form). It can be 0.2 to 3%, more preferably 0.3 to 2%.
- the precipitated crystal can be aged by placing it at an arbitrary temperature between room temperature and 80 ° C. Heating is preferably performed at a rate of 20 ° C./hour, for example.
- the aging time may be arbitrary, preferably 30 minutes to 20 hours, more preferably 1 hour to 15 hours.
- the crystal in the case of warm aging, after cooling, it is preferable to age the crystal at the cooling temperature.
- the cooling can be performed, for example, at a rate of 5 ° C./hour, and the aging temperature can be 15 ° C. to room temperature, more preferably 20 to 25 ° C.
- the aging time may be arbitrary, preferably 30 minutes to 5 hours, more preferably 1 hour to 3 hours.
- the crystals are separated by filtering or centrifuging, and then the crystals are dried, for example, dried under reduced pressure, to obtain monohydrate crystals of reduced glutathione metal salt.
- the white reduced form can be dried by any conventionally known method, for example, reduced pressure drying, vacuum drying, fluidized bed drying, ventilation drying, etc.
- An anhydrous crystal of the metal salt of glutathione is obtained.
- a method of drying a monohydrate crystal of a reduced glutathione metal salt at 80 ° C. or more for 3 hours or more can be mentioned.
- anhydrous glutathione sodium salt crystals can be obtained, for example, by drying the monohydrate crystals of reduced glutathione sodium salt at 105 ° C. for 20 hours by ventilation.
- Example 2 A chart of powder X-ray diffraction analysis is shown in FIG.
- the crystals obtained in Example 2 were also analyzed by the same method as described above.
- the chart of FIG. 1 was compared with the chart of the crystals obtained in Example 2, they were in good agreement. Therefore, it was confirmed that the crystal obtained in Example 2 was the same crystal form as the crystal obtained in Example 1.
- Example 2 Measurement of water content
- the crystals obtained in Example 1 were subjected to thermal analysis under the following conditions.
- Measuring apparatus Thermal analysis apparatus TG / DTA 6200 type manufactured by SSI Nano Technologies Inc. (currently Hitachi High-Technologies Corporation)
- Measuring conditions Water content from the amount of weight change when the temperature is increased from 50 ° C to 170 ° C at a rate of 2 ° C / h Calculation of content A weight loss of about 5% was confirmed from the start of temperature rise to decomposition (around 170 ° C.). From the theoretical moisture value of reduced glutathione sodium salt, the crystals obtained in Example 1 were considered to be monohydrate crystals.
- Example 3 Hygroscopicity Test The hygroscopicity of the reduced glutathione sodium salt obtained in Example 1 (1) and the reduced glutathione sodium salt crystal finally obtained in Example 1 were compared under the following conditions. .
- Storage conditions 40 ° C, relative humidity 75% (adjusted with saturated saline)
- Measurement conditions About 0.3 g of sample was weighed with a precision balance, filled into a plastic container, stored under the above conditions, and the sample was weighed again to calculate the weight change rate. The results were as follows. . The weight of the sample at each elapsed time was measured with the weight at the start of the test as 100%. In Table 5,-indicates that measurement was not performed.
- Example 3 Manufacture of monohydrate crystals of reduced glutathione sodium salt 310 g of free glutathione crystals (purchased from KOJIN. Co. Ltd) were dissolved in water, and the pH was adjusted to 6.0 using an aqueous sodium hydroxide solution. , 1000 mL. Of the obtained aqueous solution, 250 mL was subjected to the next step. While maintaining the concentrated solution made up to 100 mL by concentrating the 250 mL aqueous solution at 25 ° C., 110 mL of 100% -methanol was added dropwise over 1 hour, and then the crystal obtained in Example 1 was used as a seed crystal in an amount of 0.1%. 75 g was added to crystallize the crystals.
- the crystal slurry was aged at 70 ° C. for 1 hour and at 25 ° C. for 12 hours, and then the crystals were collected by filtration and dried by ventilation at 25 ° C. to obtain 35.7 g of reduced glutathione sodium salt crystals.
- Example 4 Powder X-ray diffraction analysis
- the reduced glutathione sodium salt crystals obtained in Example 3 were subjected to powder X-ray diffraction analysis.
- the analysis conditions and the measurement results of the crystals obtained in Example 3 are as follows.
- Analyzer Rigaku Electric Co., Ltd.
- the chart of FIG. 1 is compared with the chart of the crystal obtained in Example 1. However, both agreed well. Therefore, it was confirmed that the crystal obtained in Example 1 was the same crystal form as the crystal obtained in Example 1.
- Test Example 5 Single crystal X-ray structure analysis
- a measurement apparatus single crystal X-ray structure analysis apparatus SuperNova manufactured by Agilent Technologies
- Single crystal X-ray diffraction (SXRD) was performed.
- a single crystal of reduced glutathione metal salt was attached to a diffractometer, and a diffraction image was measured using X-rays having a predetermined wavelength in air at room temperature or in an inert gas stream at a predetermined temperature.
- the structure is determined by the direct method and the structure is refined by the least square method [Acta Cryst. A64, 112 (2008)] to obtain a single crystal structure.
- the results are summarized in Table 6.
- the crystal was indeed a crystal of reduced glutathione sodium salt and a monohydrate having water molecules in the unit cell.
- the Flack parameter [Acta Cryst. A39, 876. (1983)] is -0.12 (11), which is almost zero, so it was confirmed that there is no contradiction in the absolute structure of the analysis result.
- Example 4 Production of anhydrous crystals of reduced glutathione sodium salt 5.0 g of monohydrate crystals of reduced glutathione sodium salt obtained in Example 3 were dried by ventilation at 105 ° C. for 20 hours to obtain 4.6 g White crystals were obtained. (Test Example 6) Measurement of water content The crystals obtained in Example 4 were measured under the following conditions. Measuring device: Hiranuma Sangyo Co., Ltd. automatic moisture measuring device AQV-2200 As a result of measuring the water content in the crystal by the Karl Fischer method, it was 1.3% by weight. From the comparison with the theoretical water content, the reduced glutathione / sodium salt crystal is an anhydrous form of the reduced glutathione / sodium salt.
- the powder X-ray diffraction result of the crystal obtained in Example 4 shows a slight diffraction angle compared to the monohydrate crystal of reduced glutathione sodium salt obtained in Example 1.
- This result shows that water molecules are detached from the monohydrate crystal of reduced glutathione sodium salt without significant changes in the position and conformation of the molecule during the drying process, and there is a slight contraction of the crystal lattice. It was considered that the intensity of each diffraction peak was changed. Similar changes can be confirmed in the reference (Cryst. Growth Des. Vol. 16, p1543, 2016).
- crystals of reduced glutathione useful as products, raw materials, intermediates, and the like such as health foods, pharmaceuticals, and cosmetics are provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
(1)還元型グルタチオンの金属塩の結晶。
(2)還元型グルタチオンの金属塩の結晶が、還元型グルタチオンと、ナトリウム、カリウム、カルシウム及びマグネシウムからなる群より選ばれる金属との塩の結晶である上記(1)記載の還元型グルタチオンの金属塩の結晶。
(3)還元型グルタチオンの金属塩の結晶が、還元型グルタチオンとナトリウムとの塩(以下、「還元型グルタチオン・ナトリウム塩」という)の結晶(以下、「還元型グルタチオン・ナトリウム塩結晶」という)である上記(1)記載の還元型グルタチオンの金属塩の結晶。
(4)還元型グルタチオン・ナトリウム塩結晶が、還元型グルタチオン・ナトリウム塩の一水和物結晶である、上記(3)記載の結晶。
(5)粉末X線回折において、回折角(2θ)が、19.90°±0.20°、25.58°±0.20°および26.88°±0.20°にピークを有することを特徴とする上記(4)記載の結晶。
(6)粉末X線回折において、回折角(2θ)が、さらに20.16°±0.20°、24.68°±0.20°、26.30°±0.20°、27.68°±0.20°および33.20±0.20°にピークを有することを特徴とする上記(5)記載の結晶。
(7)粉末X線回折において、回折角(2θ)が、さらに17.90°±0.20°、20.86°±0.20°、22.10°±0.20°および25.30°±0.20°にピークを有することを特徴とする上記(6)記載の結晶。
(8)粉末X線回折において、回折角(2θ)が、さらに6.42±0.20°、18.90±0.20°および29.30±0.20°にピークを有することを特徴とする上記(7)記載の結晶。
(9)単結晶X線構造解析において、-173℃で測定した場合、次の概略的単位胞パラメーター:a=27.881Å;b=10.818Å;c=4.881Å;α=90°;β=90°;γ=90°;V=1472.2Å3;Z=4;を有し、かつ空間群がP212121(#19);である、上記(4)~(8)のいずれか1に記載の結晶。
(10)還元型グルタチオン・ナトリウム塩結晶が、還元型グルタチオン・ナトリウム塩の無水結晶である、上記(3)記載の結晶。
(11)粉末X線回折において、回折角(2θ)が、25.92°±0.20°、20.28°±0.20°および27.28°±0.20°にピークを有することを特徴とする上記(10)記載の結晶。
(12)粉末X線回折において、回折角(2θ)が、さらに20.52°±0.20°、25.02°±0.20°、21.26°±0.20°、26.66°±0.20°および28.08±0.20°にピークを有することを特徴とする上記(11)記載の結晶。
(13)粉末X線回折において、回折角(2θ)が、さらに22.48°±0.20°、33.56°±0.20°、19.70°±0.20°および18.32°±0.20°にピークを有することを特徴とする上記(12)記載の結晶。
(14)粉末X線回折において、回折角(2θ)が、さらに19.26±0.20°、28.74±0.20°および29.64±0.20°にピークを有することを特徴とする上記(13)記載の結晶。
(15)還元型グルタチオンの金属塩のアモルファスを疎水性有機溶媒に懸濁した後、得られた懸濁液に水を添加することにより還元型グルタチオンの金属塩の結晶を析出させる工程を含む還元型グルタチオンの金属塩の結晶の製造方法。
(16)疎水性有機溶媒が、ヘキサン又はトルエンである上記(15)記載の還元型グルタチオンの金属塩の結晶の製造方法。
(17)還元型グルタチオンの金属塩のアモルファスを疎水性有機溶媒に懸濁した後、得られた懸濁液にメタノール又はエタノールの水溶液を添加することにより還元型グルタチオンの金属塩の結晶を析出させる工程を含む還元型グルタチオンの金属塩の結晶の製造方法。
(18)金属の水酸化物水溶液に還元型グルタチオンのフリー体を溶解させてpHを5.0~8.0に調整し、還元型グルタチオンの金属塩の水溶液を取得した後、得られた水溶液を濃縮し、次に当該濃縮水溶液に対して0.1~3倍量のC1~C6のアルコールを該濃縮水溶液に少量ずつ徐々に添加し、その後還元型グルタチオンの金属塩の結晶を種晶として添加して還元型グルタチオンの金属塩の結晶を析出させる工程を含む還元型グルタチオンの金属塩の結晶の製造方法。
(19)還元型グルタチオンの金属塩の結晶が、還元型グルタチオンと、ナトリウム、カリウム、カルシウム及びマグネシウムからなる群より選ばれる金属との塩の一水和物結晶である上記(15)、(17)又は(18)記載の還元型グルタチオンの金属塩の結晶の製造方法。
(20)還元型グルタチオンの金属塩の結晶が、還元型グルタチオン・ナトリウム塩の一水和物結晶である上記(15)、(17)又は(18)記載の還元型グルタチオンの金属塩の結晶の製造方法。
(21)C1~C6のアルコールが、メタノールまたはエタノールである上記(18)記載の還元型グルタチオンの金属塩の結晶の製造方法。
(22)還元型グルタチオン・ナトリウム塩の一水和物結晶を、80℃以上で、3時間以上乾燥させることを特徴とする、還元型グルタチオン・ナトリウム塩の無水結晶の製造方法。
本発明の還元型グルタチオンの金属塩の結晶は、無水結晶であっても水和物結晶であってもよい。好ましくは水和物結晶をあげることができ、より好ましくは一水和物結晶をあげることができる。一水和物結晶は保存安定性に優れるためである。
[還元型グルタチオンの金属塩の一水和物結晶の製造方法]
(1)結晶転移による製造方法
本発明の製造方法としては、還元型グルタチオンと金属との塩のアモルファスを疎水性有機溶媒に懸濁した後、得られた懸濁液に水を添加することにより還元型グルタチオンの金属塩の一水和物結晶を析出させる工程を含む還元型グルタチオンの該金属塩の一水和物結晶の製造方法をあげることができる。
メタノール又はエタノールの水溶液の添加量としては、例えば、疎水性有機溶媒1mlあたり80%のメタノール又はエタノール水溶液として10~60μlをあげることができる。また、メタノールおよびエタノールのヘキサン等の疎水性有機溶媒との親和性および上記した疎水性有機溶媒に対する水の添加量を考慮すれば、80%のメタノール又はエタノール水溶液の10~60μlに対応する濃度のアルコール溶液とその添加量であれば、還元型グルタチオンの金属塩の一水和物結晶を取得することができる。
上記(1)で取得される還元型グルタチオンの金属塩の一水和物結晶を種晶として用いることにより、工業的な規模でも還元型グルタチオンの金属塩の一水和物結晶を製造できる。
上記で取得された還元型グルタチオンの金属塩の一水和物結晶について、従来公知の任意の方法、例えば、減圧乾燥、真空乾燥、流動層乾燥、通風乾燥等により乾燥させることで白色の還元型グルタチオンの金属塩の無水結晶が得られる。好ましくは、還元型グルタチオンの金属塩の一水和物結晶を80℃以上で、3時間以上乾燥させる方法を挙げることができる。具体的には、例えば還元型グルタチオン・ナトリウム塩の一水和物結晶を105℃下で20時間通風乾燥することにより、還元型グルタチオン・ナトリウム塩の無水結晶が得られる。
[実施例1]
結晶転移による還元型グルタチオンの金属塩の結晶の製造1
還元型グルタチオンのフリー体の結晶(協和発酵バイオ株式会社製)0.5gに、超純水50mLおよび2mol/Lの水酸化ナトリウム水溶液813μLを加え、還元型グルタチオンを完全に溶解させた。液体窒素中に溶解液が入った容器を入れ、該溶液を急速凍結した後、凍結乾燥機中で3日以上減圧乾燥させることで、還元型グルタチオン・ナトリウム塩のアモルファスを取得した。
上記(1)で取得した還元型グルタチオン・ナトリウム塩のアモルファス50mgをヘキサン1.0mLに分散させた後、水を5μL添加し7日間攪拌した。析出した結晶をヌッチェろ過で分離し、その後減圧乾燥することで還元型グルタチオン・ナトリウム塩結晶を取得した。
結晶転移による還元型グルタチオンの金属塩の結晶の製造2
粉末X線回折分析
実施例1および2で取得された還元型グルタチオン・ナトリウム塩結晶を、粉末X線回折分析に供した。
分析条件および実施例1で取得した結晶の測定結果は以下のとおりである。
分析装置:リガク電機社製 試料水平型多目的X線回折装置UltimaIV
測定条件:X線源はCuKα、測定波長1.541Å、モノクロメーターを使用した単色化は未実施のKα線を使用
実施例2で取得した結晶も上記と同様の方法で分析し、図1のチャート図と実施例2で取得した結晶のチャート図とを比較したところ、両者はよく一致した。よって、実施例2で取得された結晶は、実施例1で取得された結晶と同一の結晶形であることが確認された。
水分含量の測定
実施例1で取得された結晶を以下の条件の熱分析に供した。
測定装置:エスエスアイナノテクノロジーズ社(現:日立ハイテクノロジーズ社)製熱分析装置TG/DTA 6200型
測定条件:50℃から170℃まで速度2℃/hで昇温した時の重量変化量から水分含量を算出
昇温開始から分解(170℃付近)までに約5%の重量減少が確認された。還元型グルタチオン・ナトリウム塩の理論水分値から、実施例1で取得された結晶は一水和物結晶であると考えられた。
吸湿性試験
実施例1(1)で取得した還元型グルタチオン・ナトリウム塩のアモルファスと、実施例1で最終的に取得した還元型グルタチオン・ナトリウム塩結晶の吸湿性を、以下の条件下で比較した。
保管条件:40℃、相対湿度75%(飽和食塩水で調整)
測定条件:サンプル約0.3gを精密天秤によって評量後、プラスチック容器に充填し、上記条件にて保管後、再度サンプルを評量して重量変化率を算出した
結果は以下のとおりであった。なお、試験開始時のそれぞれの重量を100%として各経過時間のサンプルの重量を測定した。表5中、-は測定しなかったことを示す。
還元型グルタチオン・ナトリウム塩の一水和物結晶の製造
フリー体のグルタチオン結晶(KOJIN.Co.Ltdより購入)310gを水に溶解し、水酸化ナトリウム水溶液を用いてpHを6.0に調整し、1000mLとした。得られた水溶液のうち250mLを次の工程に供した。
当該250mLの水溶液を濃縮して100mLとした濃縮液を25℃に維持しつつ、100%-メタノールを110mLを1時間かけて滴下した後、実施例1で得られた結晶を種結晶として0.75g添加し、結晶を起晶させた。結晶スラリーを70℃で1時間、25℃で12時間熟成させた後に当該結晶を濾取し、25℃で通風乾燥させることにより、35.7gの還元型グルタチオン・ナトリウム塩結晶を得た。
粉末X線回折分析
実施例3で取得された還元型グルタチオン・ナトリウム塩結晶を、粉末X線回折分析に供した。
分析条件および実施例3で取得した結晶の測定結果は以下のとおりである。
分析装置:リガク電機社製 試料水平型多目的X線回折装置UltimaIV
測定条件:X線源はCuKα、測定波長1.541Å、モノクロメーターを使用した単色化は未実施のKα線を使用
図1のチャート図と実施例1で取得した結晶のチャート図とを比較したところ、両者はよく一致した。よって、実施例1で取得された結晶は、実施例1で取得された結晶と同一の結晶形であることが確認された。
単結晶X線構造解析
結晶の構造を決定するために、実施例3で取得された還元型グルタチオン・ナトリウム塩結晶に対し、測定装置(アジレント・テクノロジー社製単結晶X線構造解析装置SuperNova)を用いて単結晶X線回折(SXRD)を実施した。まず、還元型グルタチオンの金属塩の単結晶を回折計に取り付け、室温の大気中あるいは所定の温度の不活性ガス気流中で、所定の波長のX線を用いて、回折画像を測定した。次に、回折画像から算出された面指数と回折強度の組から、直接法による構造決定と最小二乗法による構造精密化[Acta Cryst.A64,112(2008)]を行い、単結晶構造を得た。その結果を表6にまとめる。
上記測定の結果、当該結晶が確かに還元型グルタチオン・ナトリウム塩の結晶であり、単位格子内に水分子を有する一水和物であることが確認された。また、フラック パラメーター(Flack parameter)[Acta Cryst.A39,876.(1983)]は-0.12(11)とほぼ0となることから、解析結果の絶対構造に矛盾がないことを確認した。
還元型グルタチオン・ナトリウム塩の無水結晶の製造
実施例3で取得された還元型グルタチオン・ナトリウム塩の一水和物結晶5.0gを105℃下で20時間通風乾燥することにより、4.6gの白色結晶が得られた。
(試験例6)
水分含量の測定
実施例4で取得された結晶を以下の条件で測定した。
測定装置:平沼産業社製自動水分測定装置AQV―2200
当該結晶に含まれる水分量をカールフィッシャー法により測定した結果、1.3重量%であり、理論水分量との比較から、当該還元型グルタチオン・ナトリウム塩結晶は、還元型グルタチオン・ナトリウム塩の無水結晶であることがわかった。
(試験例7)
粉末X線回折分析
実施例4で取得された還元型グルタチオン・ナトリウム塩の無水結晶を、上述の試験例4と同様の手順で粉末X線回折分析に供した。その結果を表7に示す。また、粉末X線回折分析のチャート図を、図2に示した。
Claims (22)
- 還元型グルタチオンの金属塩の結晶。
- 還元型グルタチオンの金属塩の結晶が、還元型グルタチオンと、ナトリウム、カリウム、カルシウム及びマグネシウムからなる群より選ばれる金属との塩の結晶である請求項1記載の還元型グルタチオンの金属塩の結晶。
- 還元型グルタチオンの金属塩の結晶が、還元型グルタチオンとナトリウムとの塩(以下、「還元型グルタチオン・ナトリウム塩」という)の結晶(以下、「還元型グルタチオン・ナトリウム塩結晶」という)である請求項1記載の還元型グルタチオンの金属塩の結晶。
- 還元型グルタチオン・ナトリウム塩結晶が、還元型グルタチオン・ナトリウム塩の一水和物結晶である、請求項3記載の結晶。
- 粉末X線回折において、回折角(2θ)が、19.90°±0.20°、25.58°±0.20°および26.88°±0.20°にピークを有することを特徴とする請求項4記載の結晶。
- 粉末X線回折において、回折角(2θ)が、さらに20.16°±0.20°、24.68°±0.20°、26.30°±0.20°、27.68°±0.20°および33.20±0.20°にピークを有することを特徴とする請求項5記載の結晶。
- 粉末X線回折において、回折角(2θ)が、さらに17.90°±0.20°、20.86°±0.20°、22.10°±0.20°および25.30°±0.20°にピークを有することを特徴とする請求項6記載の結晶。
- 粉末X線回折において、回折角(2θ)が、さらに6.42±0.20°、18.90±0.20°および29.30±0.20°にピークを有することを特徴とする請求項7記載の結晶。
- 単結晶X線構造解析において、-173℃で測定した場合、次の概略的単位胞パラメーター:a=27.881Å;b=10.818Å;c=4.881Å;α=90°;β=90°;γ=90°;V=1472.2Å3;Z=4;を有し、かつ空間群がP212121(#19);である、請求項4~8のいずれか1項に記載の結晶。
- 還元型グルタチオン・ナトリウム塩結晶が、還元型グルタチオン・ナトリウム塩の無水結晶である、請求項3記載の結晶。
- 粉末X線回折において、回折角(2θ)が、25.92°±0.20°、20.28°±0.20°および27.28°±0.20°にピークを有することを特徴とする請求項10記載の結晶。
- 粉末X線回折において、回折角(2θ)が、さらに20.52°±0.20°、25.02°±0.20°、21.26°±0.20°、26.66°±0.20°および28.08±0.20°にピークを有することを特徴とする請求項11記載の結晶。
- 粉末X線回折において、回折角(2θ)が、さらに22.48°±0.20°、33.56°±0.20°、19.70°±0.20°および18.32°±0.20°にピークを有することを特徴とする請求項12記載の結晶。
- 粉末X線回折において、回折角(2θ)が、さらに19.26±0.20°、28.74±0.20°および29.64±0.20°にピークを有することを特徴とする請求項13記載の結晶。
- 還元型グルタチオンの金属塩のアモルファスを疎水性有機溶媒に懸濁した後、得られた懸濁液に水を添加することにより還元型グルタチオンの金属塩の結晶を析出させる工程を含む還元型グルタチオンの金属塩の結晶の製造方法。
- 疎水性有機溶媒が、ヘキサン又はトルエンである請求項15記載の還元型グルタチオンの金属塩の結晶の製造方法。
- 還元型グルタチオンの金属塩のアモルファスを疎水性有機溶媒に懸濁した後、得られた懸濁液にメタノール又はエタノールの水溶液を添加することにより還元型グルタチオンの金属塩の結晶を析出させる工程を含む還元型グルタチオンの金属塩の結晶の製造方法。
- 金属の水酸化物水溶液に還元型グルタチオンのフリー体を溶解させてpHを5.0~8.0に調整し、還元型グルタチオンの金属塩の水溶液を取得した後、得られた水溶液を濃縮し、次に当該濃縮水溶液に対して0.1~3倍量のC1~C6のアルコールを該濃縮水溶液に少量ずつ徐々に添加し、その後還元型グルタチオンの金属塩の結晶を種晶として添加して還元型グルタチオンの金属塩の結晶を析出させる工程を含む還元型グルタチオンの金属塩の結晶の製造方法。
- 還元型グルタチオンの金属塩の結晶が、還元型グルタチオンと、ナトリウム、カリウム、カルシウム及びマグネシウムからなる群より選ばれる金属との塩の一水和物結晶である請求項15、17又は18記載の還元型グルタチオンの金属塩の結晶の製造方法。
- 還元型グルタチオンの金属塩の結晶が、還元型グルタチオン・ナトリウム塩の一水和物結晶である請求項15、17または18記載の還元型グルタチオンの金属塩の結晶の製造方法。
- C1~C6のアルコールが、メタノールまたはエタノールである請求項18記載の還元型グルタチオンの金属塩の結晶の製造方法。
- 還元型グルタチオン・ナトリウム塩の一水和物結晶を、80℃以上で、3時間以上乾燥させることを特徴とする、還元型グルタチオン・ナトリウム塩の無水結晶の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16773197.5A EP3279208B1 (en) | 2015-03-31 | 2016-03-31 | Crystal of reduced glutathione |
JP2017510231A JP6830434B2 (ja) | 2015-03-31 | 2016-03-31 | 還元型グルタチオンの結晶 |
CN201680020216.1A CN107531751B (zh) | 2015-03-31 | 2016-03-31 | 还原型谷胱甘肽的晶体 |
US15/563,581 US10640532B2 (en) | 2015-03-31 | 2016-03-31 | Crystal of reduced glutathione |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-074084 | 2015-03-31 | ||
JP2015074084 | 2015-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016159317A1 true WO2016159317A1 (ja) | 2016-10-06 |
Family
ID=57006041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/060831 WO2016159317A1 (ja) | 2015-03-31 | 2016-03-31 | 還元型グルタチオンの結晶 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10640532B2 (ja) |
EP (1) | EP3279208B1 (ja) |
JP (1) | JP6830434B2 (ja) |
CN (1) | CN107531751B (ja) |
WO (1) | WO2016159317A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108129550A (zh) * | 2017-12-21 | 2018-06-08 | 广州白云山天心制药股份有限公司 | 一种还原型谷胱甘肽的晶型及其制备方法 |
WO2018117186A1 (ja) * | 2016-12-20 | 2018-06-28 | 協和発酵バイオ株式会社 | グルタチオントリスルフィド・2水和物の結晶及びその製造方法 |
WO2018225790A1 (ja) * | 2017-06-08 | 2018-12-13 | 協和発酵バイオ株式会社 | 酸化型グルタチオン・二カチオン塩の結晶及びその製造方法 |
JP2022534832A (ja) * | 2020-06-02 | 2022-08-04 | ウィーバイオツリー カンパニー リミテッド | 金属相変換化合物及びその製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2898416A1 (en) * | 2013-01-21 | 2014-07-24 | Kyowa Hakko Bio Co., Ltd. | Agent for elevating nitric oxide concentration |
IT201800006336A1 (it) * | 2018-06-14 | 2019-12-14 | Glutatione ridotto in forma solida amorfa altamente solubile e processo per ottenerlo | |
CN113754717B (zh) * | 2021-10-15 | 2025-02-18 | 南京高新工大生物技术研究院有限公司 | 一种还原型谷胱甘肽α型晶体的制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5735549A (en) * | 1980-08-12 | 1982-02-26 | Ajinomoto Co Inc | Obtaining method of amino acid hydrate crystal |
JPS5735548A (en) * | 1980-08-12 | 1982-02-26 | Ajinomoto Co Inc | Drying method of amino acid crystal |
JPS6127999A (ja) * | 1984-07-16 | 1986-02-07 | Kanegafuchi Chem Ind Co Ltd | グルタチオンの精製方法 |
JPH03220392A (ja) * | 1990-01-24 | 1991-09-27 | Konica Corp | 結晶変換によるチタニルフタロシアニンの製造方法 |
JP2005015682A (ja) * | 2003-06-27 | 2005-01-20 | Konica Minolta Business Technologies Inc | B型チタニルフタロシアニン結晶の製造方法と感光性顔料及び電子写真感光体 |
JP2010505918A (ja) * | 2006-10-13 | 2010-02-25 | ビーエーエスエフ ソシエタス・ヨーロピア | 2−クロロ−5−[3,6−ジヒドロ−3−メチル−2,6−ジオキソ−4−(トリフルオロメチル)−1−(2h)−ピリミジニル]−4−フルオロ−n−[[メチル−(1−メチルエチル)アミノ]スルホニル]ベンズアミドの水和物 |
JP2013516502A (ja) * | 2009-12-30 | 2013-05-13 | ビーエーエスエフ ソシエタス・ヨーロピア | グルタミン酸−n,n−アセト酢酸(glda)又はその誘導体を含む、吸湿性が十分に低い固体を製造する方法 |
WO2014133129A1 (ja) * | 2013-02-28 | 2014-09-04 | 協和発酵バイオ株式会社 | 還元型グルタチオンの製造法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1447409B1 (en) | 2001-10-25 | 2009-03-11 | Kyowa Hakko Kogyo Co., Ltd. | Crystal of oxidized glutathione and process for producing the same |
CN101074202B (zh) | 2006-05-16 | 2012-08-08 | 重庆药友制药有限责任公司 | 一种注射用还原型谷胱甘肽的制备方法 |
EP2088153B1 (en) | 2006-10-16 | 2015-12-09 | Kyowa Hakko Bio Co., Ltd. | Crystal of glutathione and process for production thereof |
CN102803567B (zh) * | 2009-06-03 | 2015-06-03 | 协和发酵生化株式会社 | 制造还原型谷胱甘肽的方法 |
US9000126B2 (en) | 2010-04-21 | 2015-04-07 | Kyowa Hakko Bio Co., Ltd. | Crystalline oxidized glutathione and production method therefor |
EP2695890B1 (en) * | 2011-04-06 | 2016-05-18 | Kyowa Hakko Bio Co., Ltd. | Process for producing reduced glutathione |
CN102329370B (zh) * | 2011-09-22 | 2015-07-22 | 山东金城医药化工股份有限公司 | 还原型谷胱甘肽单钠盐的制备方法 |
-
2016
- 2016-03-31 CN CN201680020216.1A patent/CN107531751B/zh active Active
- 2016-03-31 WO PCT/JP2016/060831 patent/WO2016159317A1/ja active Application Filing
- 2016-03-31 JP JP2017510231A patent/JP6830434B2/ja active Active
- 2016-03-31 US US15/563,581 patent/US10640532B2/en active Active
- 2016-03-31 EP EP16773197.5A patent/EP3279208B1/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5735549A (en) * | 1980-08-12 | 1982-02-26 | Ajinomoto Co Inc | Obtaining method of amino acid hydrate crystal |
JPS5735548A (en) * | 1980-08-12 | 1982-02-26 | Ajinomoto Co Inc | Drying method of amino acid crystal |
JPS6127999A (ja) * | 1984-07-16 | 1986-02-07 | Kanegafuchi Chem Ind Co Ltd | グルタチオンの精製方法 |
JPH03220392A (ja) * | 1990-01-24 | 1991-09-27 | Konica Corp | 結晶変換によるチタニルフタロシアニンの製造方法 |
JP2005015682A (ja) * | 2003-06-27 | 2005-01-20 | Konica Minolta Business Technologies Inc | B型チタニルフタロシアニン結晶の製造方法と感光性顔料及び電子写真感光体 |
JP2010505918A (ja) * | 2006-10-13 | 2010-02-25 | ビーエーエスエフ ソシエタス・ヨーロピア | 2−クロロ−5−[3,6−ジヒドロ−3−メチル−2,6−ジオキソ−4−(トリフルオロメチル)−1−(2h)−ピリミジニル]−4−フルオロ−n−[[メチル−(1−メチルエチル)アミノ]スルホニル]ベンズアミドの水和物 |
JP2013516502A (ja) * | 2009-12-30 | 2013-05-13 | ビーエーエスエフ ソシエタス・ヨーロピア | グルタミン酸−n,n−アセト酢酸(glda)又はその誘導体を含む、吸湿性が十分に低い固体を製造する方法 |
WO2014133129A1 (ja) * | 2013-02-28 | 2014-09-04 | 協和発酵バイオ株式会社 | 還元型グルタチオンの製造法 |
Non-Patent Citations (1)
Title |
---|
REBBEOR, J.F. ET AL.: "ATP-dependent transport of reduced glutathione in yeast secretory vesicles", BIOCHEM. J., vol. 334, 1998, pages 723 - 729, XP002581813, ISSN: 1470-8728 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7028795B2 (ja) | 2016-12-20 | 2022-03-02 | 協和発酵バイオ株式会社 | グルタチオントリスルフィド・2水和物の結晶及びその製造方法 |
CN110088118A (zh) * | 2016-12-20 | 2019-08-02 | 协和发酵生化株式会社 | 三硫化谷胱甘肽二水合物的晶体及其制造方法 |
JPWO2018117186A1 (ja) * | 2016-12-20 | 2019-10-31 | 協和発酵バイオ株式会社 | グルタチオントリスルフィド・2水和物の結晶及びその製造方法 |
WO2018117186A1 (ja) * | 2016-12-20 | 2018-06-28 | 協和発酵バイオ株式会社 | グルタチオントリスルフィド・2水和物の結晶及びその製造方法 |
CN110088118B (zh) * | 2016-12-20 | 2023-04-04 | 协和发酵生化株式会社 | 三硫化谷胱甘肽二水合物的晶体及其制造方法 |
US11186610B2 (en) | 2016-12-20 | 2021-11-30 | Kyowa Hakko Bio Co., Ltd. | Crystal of glutathione trisulfide dihydrate and method for producing same |
US11407787B2 (en) | 2017-06-08 | 2022-08-09 | Kyowa Hakko Bio Co., Ltd. | Crystal of oxidized glutathione dication salt and production method therefor |
WO2018225790A1 (ja) * | 2017-06-08 | 2018-12-13 | 協和発酵バイオ株式会社 | 酸化型グルタチオン・二カチオン塩の結晶及びその製造方法 |
CN110678477A (zh) * | 2017-06-08 | 2020-01-10 | 协和发酵生化株式会社 | 氧化型谷胱甘肽二阳离子盐的晶体及其制造方法 |
JPWO2018225790A1 (ja) * | 2017-06-08 | 2020-04-09 | 協和発酵バイオ株式会社 | 酸化型グルタチオン・二カチオン塩の結晶及びその製造方法 |
JP7132917B2 (ja) | 2017-06-08 | 2022-09-07 | 協和発酵バイオ株式会社 | 酸化型グルタチオン・二カチオン塩の結晶及びその製造方法 |
CN108129550B (zh) * | 2017-12-21 | 2021-07-02 | 广州白云山天心制药股份有限公司 | 一种还原型谷胱甘肽的晶型及其制备方法 |
CN108129550A (zh) * | 2017-12-21 | 2018-06-08 | 广州白云山天心制药股份有限公司 | 一种还原型谷胱甘肽的晶型及其制备方法 |
JP7196327B2 (ja) | 2020-06-02 | 2022-12-26 | ウィーバイオツリー カンパニー リミテッド | 金属相変換化合物及びその製造方法 |
JP2022534832A (ja) * | 2020-06-02 | 2022-08-04 | ウィーバイオツリー カンパニー リミテッド | 金属相変換化合物及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016159317A1 (ja) | 2018-02-01 |
EP3279208B1 (en) | 2020-04-29 |
EP3279208A1 (en) | 2018-02-07 |
JP6830434B2 (ja) | 2021-02-17 |
CN107531751A (zh) | 2018-01-02 |
US10640532B2 (en) | 2020-05-05 |
US20180094025A1 (en) | 2018-04-05 |
CN107531751B (zh) | 2022-02-01 |
EP3279208A4 (en) | 2018-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016159317A1 (ja) | 還元型グルタチオンの結晶 | |
US9321770B2 (en) | Crystals of pyrroloquinolinequinone sodium salts | |
WO2014069625A1 (ja) | オリゴ糖の結晶およびその製造方法 | |
WO2017086443A1 (ja) | 6'-シアリルラクトースナトリウム塩の結晶およびその製造方法 | |
JP2013112677A (ja) | ピロロキノリンキノンジナトリウム結晶 | |
TW202024013A (zh) | 用於製備α-酮戊二酸鈣之方法 | |
JP2011219388A (ja) | 吸湿性の低いピロロキノリンキノン固体 | |
JP7144320B2 (ja) | 3-ヒドロキシイソ吉草酸アミノ酸塩の結晶及びその製造方法 | |
JP6867806B2 (ja) | N−アセチルノイラミン酸アルカリ金属塩・無水和物の結晶及びその製造方法 | |
JP6918790B2 (ja) | 3’−シアリルラクトースナトリウム塩・n水和物の結晶及びその製造方法 | |
WO2017086447A1 (ja) | 3-ヒドロキシイソ吉草酸の一価カチオン塩の結晶および該結晶の製造方法 | |
JP2018506539A (ja) | ミノサイクリン塩基の新規な多形体及びその製造方法 | |
RU2789331C2 (ru) | Новые полиморфные формы миноциклинового основания и способы их получения |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16773197 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017510231 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15563581 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2016773197 Country of ref document: EP |