[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016159240A1 - エレクトロスピニングを用いた、薬剤を含有する生分解性繊維素材の製造方法 - Google Patents

エレクトロスピニングを用いた、薬剤を含有する生分解性繊維素材の製造方法 Download PDF

Info

Publication number
WO2016159240A1
WO2016159240A1 PCT/JP2016/060670 JP2016060670W WO2016159240A1 WO 2016159240 A1 WO2016159240 A1 WO 2016159240A1 JP 2016060670 W JP2016060670 W JP 2016060670W WO 2016159240 A1 WO2016159240 A1 WO 2016159240A1
Authority
WO
WIPO (PCT)
Prior art keywords
cotton
bioabsorbable
drug
material according
electrospinning
Prior art date
Application number
PCT/JP2016/060670
Other languages
English (en)
French (fr)
Inventor
靖俊 西川
昌士 牧田
直生 長田
Original Assignee
Orthorebirth株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orthorebirth株式会社 filed Critical Orthorebirth株式会社
Priority to SG11201707988YA priority Critical patent/SG11201707988YA/en
Priority to BR112017020836-9A priority patent/BR112017020836A2/ja
Priority to CN201680023901.XA priority patent/CN107530276A/zh
Priority to MX2017012400A priority patent/MX2017012400A/es
Priority to EP16773120.7A priority patent/EP3278791A4/en
Priority to JP2017510191A priority patent/JPWO2016159240A1/ja
Publication of WO2016159240A1 publication Critical patent/WO2016159240A1/ja
Priority to US15/722,924 priority patent/US20180021485A1/en
Priority to ZA2017/06943A priority patent/ZA201706943B/en
Priority to HK18108038.7A priority patent/HK1249411A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/282Platinum compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/0023Electro-spinning characterised by the initial state of the material the material being a polymer melt
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0046Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by coagulation, i.e. wet electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D7/00Collecting the newly-spun products
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • D01F6/625Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters derived from hydroxy-carboxylic acids, e.g. lactones
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • D10B2331/041Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET] derived from hydroxy-carboxylic acids, e.g. lactones
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene

Definitions

  • the present invention prepares a thermoplastic biodegradable resin (polylactic acid, PLGA, etc.) containing a powdered drug (inorganic particles for bone formation, anticancer agents, antibiotics, etc.) as a spinning solution for electrospinning. Related to the method.
  • the present invention further relates to a method for producing biodegradable fibers by electrospinning using the spinning solution for electrospinning prepared as described above.
  • the present invention further relates to a method for efficiently recovering the biodegradable fiber prepared above as a nonwoven fabric or cotton.
  • the present invention relates to a locally embedded sustained-release agent containing a bioabsorbable cotton-like material produced by the production method; and a method of use (treatment method) thereof.
  • the bioabsorbable cotton-like material containing a drug according to the present invention is excellent in local sustained-release and is quickly absorbed and decomposed into the body after releasing a medicinal component. It is extremely effective as an injectable (depot) or an implantable dosage form.
  • oral administration accounts for about 60% and is the most widely used administration route.
  • peptide and protein drugs which are high molecular weight drugs that cannot be expected to be sufficiently absorbed or stabilized by oral administration, are increasing. Application to is expected.
  • oral administration it is not suitable for drugs that require locality or sustained release because they are taken from the absorption in the small intestine to the whole body bloodstream.
  • administration routes other than oral administration there are various administration routes such as nasal, pulmonary, ophthalmic, rectal, transdermal, and injection. Injections are used next to orally administered drugs. However, even in the case of injections, in the case of intravenous infusion, the effect of local persistence cannot be expected as in the case of oral administration. In addition, injections often have a problem in the persistence of drug efficacy after injection instead of rapid absorption. On the other hand, a sustained-release injection (depot) has also been developed. The injection is designed to last for several days to several months with a single injection. Many hormonal drugs are applied in the form of oily or suspension injections. It is also applied to antipsychotics that are prone to problems with continuous oral administration. Although these are percutaneously or intramuscularly injected and a sustained effect can be expected after injection, it is difficult to apply the drug locally only to the target site (tissue).
  • microspheres polynuclear microcapsules
  • biodegradable polymers as a dosage form that maintains the effects of physiologically active substances for a long period of time
  • a spherical preparation having a particle size of about several ⁇ m is usually called a microsphere, and those having a particle size of 1 ⁇ m or less are sometimes called nanospheres.
  • sustained release and locality of local drugs are satisfied, it is premised on administration by injection (subcutaneous injection, etc.), so it is a liquid and there is a problem in stability (diffusion) as a drug R & D is still ongoing.
  • electrospinning is used as a method for producing a fiber from a biodegradable resin.
  • the spinning solution is ejected as a fiber from the nozzle by electrostatic attraction generated by an electric field, and thus it is necessary to prepare a solution that can be spun as such.
  • electrospinning spinning solutions have been prepared by dissolving a biodegradable resin using a solvent.
  • MYCN neuroblastomain transgenic mice.
  • a dosage form material that can locally release a drug to any place in the body and is bioabsorbable, and is absorbed and decomposed in vivo after drug release. It is in.
  • the present invention has the following configurations [1] to [20].
  • [1] A fibrous form containing a drug and a biodegradable resin and having an average outer diameter of 1 ⁇ m to 150 ⁇ m, preferably 10 ⁇ m to 150 ⁇ m, more preferably 30 ⁇ m to 110 ⁇ m, and even more preferably 60 ⁇ m to 110 ⁇ m.
  • a bioabsorbable cotton-like material having a cotton-like or nonwoven-like structure composed of a substance;
  • Cotton-like material [3] The bulk density, dry or 0.01 at the time of hydration g / cm 3 ⁇ 0.1g / cm 3, more preferably 0.01 g / cm 3 ⁇ 0.05g / cm 3, [ The bioabsorbable cotton-like material according to 1]. [4] The bioabsorbable cotton-like material according to [1] to [3], wherein the biodegradable resin is PLGA or a copolymer thereof. [5] The bioabsorbable cotton-like material according to any one of [1] to [4], wherein the drug is an anticancer drug. [6] The bioabsorbable cotton-like material according to any one of [1] to [5], which has been sterilized.
  • step 2) it is applied between the nozzle part on the solution discharge side and the plate installed in the ethanol tank on the collector side, and is spun by electrospinning to form a bioabsorbable cotton-like material in the ethanol tank.
  • the bioabsorbable cotton-like material according to [6] is embedded in the body of a patient, 2) Release the drug from the bioabsorbable cotton-like material, 3) A method of treating or preventing a patient's disease by the efficacy of a sustained-released drug; [13] The method according to [10], wherein the bioabsorbable cotton-like material according to [6] is embedded by laparotomy; [14] The method according to [12], wherein the bioabsorbable cotton-like material according to [6] is embedded by a minimally invasive medical procedure using an injector; [15] The method according to [12], wherein the drug is an anticancer drug and the disease is cancer; [16] The method according to [15], wherein the patient is after excision of cancer tissue or cancer cells; [17] The method according to [15] or [16], wherein the cancer is a malignant bone tumor.
  • a kit comprising the bioabsorbable cotton-like material according to [6] for use in the method according to [12] or [13]; [19] A kit comprising an injector for use in the method according to [14] and the bioabsorbable cotton-like material according to [6]; [20] The kit according to [19], wherein the bioabsorbable cotton-like material according to [6] is included in an injector.
  • Biodegradable resin (biodegradable polymer) is generally “can be used in the same way as ordinary plastics under normal use conditions, and is decomposed after use, and finally carbon dioxide (carbon dioxide). It is defined as a resin that is converted into water and returned to nature. In the present invention, it means a resin (polymer) that is decomposed in the body of human and non-human mammals (including domestic animals such as cattle and pigs, companion animals such as dogs and cats). Although not specifically limited, it may be a natural polymer such as cellulose or starch, or some kind of biodegradable synthetic polymer having excellent biocompatibility and having adjusted biodegradation rate and mechanical strength.
  • polyglycolic acid PGA
  • PLA polylactic acid
  • copolymers thereof polylactic acid-polyglycolic acid copolymer (poly (Lactide-co-glycolide) copolymer) (PLGA)]; or polydioxanone (PDS).
  • PGA polyglycolic acid
  • PLA polylactic acid
  • PDA polylactic acid copolymer
  • PDS polydioxanone
  • the “solvent” may be anything as long as it is volatile, has low solubility in water, and is a good solvent for the polymer.
  • chloroform, methylene chloride, carbon tetrachloride and the like can be mentioned.
  • a mixed solvent to which a solvent compatible with these solvents (for example, ethyl ether, ethyl acetate, etc.) is added can also be used. Solvents that do not impair the activity of the “drug” are preferred.
  • Drug means an inorganic or organic material that is contained in biodegradable fibers and that can be administered to the human body, and that is implanted in the body and exhibits activity.
  • anticancer agents antibiotics, physiologically active polypeptides (such as influenza vaccines and insulin), antipyretics, analgesics, immunostimulants, immunosuppressants, anti-inflammatory agents, antitussives, antiepileptics, antihistamines, antihypertensive agents Diuretics, antidiabetics, muscle relaxants, antiulcers, antidepressants, antiallergic agents, angina, arrhythmia, vasodilators, anticoagulants, hemostatics, antituberculosis, narcotic antagonists , But not limited to hormone agents. Not only so-called pharmaceutical drugs, but also cosmetic drugs (vitamins, placenta, hyaluronic acid, etc.) may fall under this category. The “solvent” resistance is desirable.
  • the “electrospinning (ES)” method applies a high voltage between the polymer solution contained in the syringe and the collector electrode, and the solution extruded from the syringe is charged and becomes fine fibers that adhere to the collector. It refers to a method for producing fine fibers.
  • the “minimally invasive medical procedure” refers to a procedure that reduces the physical and mental burden of the patient as well as the size of the wound on the body, compared to conventional procedures (such as laparotomy). This includes endoscopic surgery.
  • An “injector” inserter refers to a device that is inserted into the body percutaneously under X-ray fluoroscopy and the like, and a medicine or medical device contained therein is left in the body. An endoscope or the like may be connected.
  • Methods of“ sterilization ” include radiation sterilization (gamma rays, electron beams), ethylene oxide gas sterilization, high-pressure steam sterilization, and the like.
  • radiation sterilization with ⁇ rays is preferably used.
  • the average molecular weight decreases (60,000 to 100,000).
  • the present invention is effective as a method for producing biodegradable fibers carrying a drug by electrospinning the drug with the biodegradable resin.
  • the biodegradable fiber is capable of locally releasing the drug to any place in the body and is bioabsorbable, and is absorbed and decomposed in the living body after the drug is released. It is possible to provide a dosage form material. Furthermore, by embedding a dosage form in a patient, it is possible to provide a therapeutic / preventive effect that enhances QOL (Quality of Life).
  • FIG. 1A shows an SEM photograph of a fiber (40TCP-30SiV-30PLLA) spun by the method of Reference Example 1.
  • FIG. 1B shows fibers obtained by spinning at the same blending ratio as in Reference Example 1 without undergoing kneader kneading.
  • FIG. 2 is an SEM photograph showing a fiber (70TCP-30PLLA) spun by the method of Reference Example 2.
  • FIG. 3 shows fibers spun by an electrospinning apparatus used in an embodiment of PLLA 100% in Reference Example 3.
  • FIG. 4 shows the configuration of the electrospinning apparatus used in the present invention. 2 shows an SEM photograph of the fiber (30 times amount carboplatin-PLGA) spun in Example 1.
  • Example 5 Dissection of a mouse that developed cancer and died at 8 weeks of age. There is a very large tumor that fills the space between the left and right kidneys. Results of Example 5: Dissection of a mouse implanted with a cotton-like carrier and euthanized at 12 weeks of age (F166). No tumor can be observed. The cotton-like carrier remains. Results of Example 5: Change in body weight of mice after implantation surgery.
  • mice implanted with a cotton-like carrier showed an increase in body weight equivalent to mice with pseudo-surgery (implantation surgery of a polymer-only cotton without an anticancer agent). It turns out that there are no side effects.
  • Results of Example 5 Abdominal ganglia were removed and fixed in formalin, and histological evaluation was performed. Results of Example 5: H & E stained section. There is a scar of fibroblasts (the shape of the nucleus is elongated) that is not normally seen on the left of the aorta (yellow arrow) Results of Example 5: H & E stained section. A calcification site (a portion that appears to be rounded out: a blue arrow) can be confirmed.
  • Results of Example 5 Mice directly administered intraperitoneally with the same amount of carboplatin contained in the cotton-like carrier. The movement is slow, there is trembling, and the lower abdomen is clearly thin. The intestine is necrotic and dysfunctional. The food ingested in the stomach has accumulated, but there is no content from the small intestine to the large intestine. Results of Example 5: Mice directly administered PBS intraperitoneally. Normal behavior and appearance. No abnormalities in internal organs.
  • a solution obtained by dissolving a biodegradable resin in a solvent is mixed with a small amount of a drug to prepare a spinning solution, and the spinning solution is used for electric cross pinning.
  • spin Since polylactic acid and PLGA can be dissolved in a solvent to form an electrospinning spinning solution, it is possible to create a spinning solution in which a very small amount of drug is mixed in a polylactic acid or PLGA solution and spin it by electrospinning. It is.
  • the solution obtained above is filled as a spinning solution into a syringe of an electrospinning apparatus and emitted from a nozzle as a yarn.
  • the yarn emitted from the nozzle is deposited on the collector by drawing a parabola with the grounded electrode as a target.
  • the collector is formed in a net shape and is accommodated in a container filled with an ethanol solution.
  • the yarn emitted from the nozzle enters the liquid surface of the ethanol liquid, and settles in the liquid at the incident position.
  • the precipitated yarn is deposited on the collector and formed into a nonwoven or cotton shape.
  • Cotton can be deformed by hand (shape workability); cut into pieces, cut into pieces and then reassembled (size workability); restored after compression (elastic force); squeezed by hand to adjust hydration amount Can show shape.
  • fibers are emitted from the nozzle using the bottom surface (about 15 cm ⁇ 25 cm) of the collector of the electrospinning apparatus as an electrode plate. Do not use ethanol in the collector. By this method, the fibers can be deposited on the collector in a non-woven form.
  • Reference Example 1 PLLA, ⁇ -tricalcium phosphate, and Si-containing vaterite phase calcium carbonate (40TCP-30SiV-30PLLA) Step 1 .
  • the drug and polylactic acid are mixed and kneaded with a kneader.
  • a preset temperature 170 to 190 ° C
  • 15 g of pellets of poly-L lactic acid PURAC PL24 molecular weight 200 to 300,000, melting point 175 to 185 ° C
  • the preset temperature is 180 to 190 ° C.
  • knead for about 4 minutes.
  • a powder obtained by mixing 20 g of ⁇ -tricalcium phosphate powder and 15 g of SiV powder is put into a kneader and further kneaded for about 10 minutes at the same set temperature.
  • the kneader is heated at a preset temperature of 180 ° C. to 190 ° C.
  • the kneader can be kneaded by applying torque in that state.
  • the state of poly-L-lactic acid heated with a kneader is not necessarily clear, but according to the inventors' estimation, there are a part that has reached its melting point and a part that is in a softened state just before melting. Conceivable.
  • the fine powder particles are uniformly dispersed in the matrix resin in the present invention. It is possible. By kneading, the ⁇ -tricalcium phosphate and SiV powder charged later are mixed with poly-L lactic acid, and the fine particles are uniformly dispersed in the poly-L lactic acid resin.
  • the carboxyl group of poly-L-lactic acid and the calcium ion of ⁇ -tricalcium phosphate are coordinated and the amino group of silicon It is considered that the carboxyl group is fixed in the matrix resin of polylactic acid through an amino bond.
  • Step 2 Make a composite of drug and polylactic acid. Thereafter, the resulting kneaded product of ⁇ -tricalcium phosphate, SiV, and poly-L lactic acid is taken out of the kneader and allowed to cool at room temperature, whereby a composite mass of poly-L lactic acid and drug is obtained.
  • Step 3 The composite mass obtained above is dissolved in a solvent (eg, chloroform) to prepare a spinning solution having a poly L lactic acid concentration of about 10%.
  • a solvent eg, chloroform
  • the composite mass is placed in a container filled with chloroform, and slowly stirred using a magnetic stirrer and stirred for about 5 hours.
  • Step 4 The spinning solution prepared above is filled into a syringe (diameter: 15.8 mm; extrusion speed: 15 ml / h) of an electrospinning apparatus (eg, Mecc nanon), and a fiber of about 30 kV is applied from the nozzle (syringe needle 18G).
  • the fiber is deposited on the collector while moving the nozzle at a movement width of 200 mm, a movement speed of 40 mm / sec, and a needle tip cleaning interval of 2 minutes (*) (condition temperature in the chamber is 30 degrees or less; humidity is 50% or less; needle 37cm from the tip to the equipment floor). (*) The interval at which the puddle of solution at the needle tip is automatically cleaned.
  • the installed electrode is installed on the collector side, and the yarn emitted from the nozzle is guided to the electrode in the electrode direction.
  • the collector is housed in a container filled with an ethanol solution, and the yarn guided from the nozzle in the direction of the electrode draws a parabola and enters the ethanol liquid surface, and sinks into the ethanol liquid at the incident position.
  • the sagging yarn was deposited on a mesh of collectors formed in a net shape to form a cotton.
  • the nozzle is spun while reciprocating at a constant distance and speed on the rail, it is effective to increase the recovery rate if it is deposited widely on the surface of the collector.
  • FIG. 1B shows the result of attempting spinning using an electrospinning apparatus using a solution prepared at the same composition ratio as that of Reference Example 1 without undergoing kneader kneading. Although it was once fibrous, it was considerably thicker than the fiber produced by electrospin.
  • Reference Example 2 ⁇ -tricalcium phosphate and PLLA (70TCP-30PLLA) Step 1 .
  • ⁇ -tricalcium phosphate and poly-L lactic acid (PURAC PL24 molecular weight 200 to 300,000) are kneaded with a kneader.
  • the temperature of the kneader is set to 170 to 190 ° C. and preheated for 3 minutes, and then 15 g of poly-L lactic acid pellets are added to the kneader and heated and kneaded at the set temperature of 180 to 190 ° C. for about 4 minutes.
  • ⁇ -tricalcium phosphate powder is put into a kneader, and both are mixed and kneaded for about 10 minutes at the same set temperature.
  • the kneader is heated at a preset temperature of 180 ° C. to 190 ° C.
  • the kneader can be kneaded by applying torque in that state.
  • the state of poly-L-lactic acid heated with a kneader is not always clear. According to the estimations of the present inventors, it is considered that there are a part that has reached its melting point and has melted, and a part that is in a softened state just before melting.
  • the ⁇ -tricalcium phosphate powder charged later is well mixed with poly-L lactic acid and uniformly dispersed in the poly-L lactic acid resin.
  • the inventors of the present invention speculate that the carboxyl group of poly (L-lactic acid) and the calcium ion of ⁇ -tricalcium phosphate are coordinated and fixed in the matrix resin of poly (lactic acid). It is done.
  • Step 2 A composite of ⁇ -tricalcium phosphate and polylactic acid is prepared. Thereafter, the obtained kneaded product of ⁇ -tricalcium phosphate and poly-L lactic acid is taken out of the kneader and allowed to cool at room temperature. A composite mass of poly-L lactic acid and TCP is obtained.
  • Step 3 The above-obtained PLLA and ⁇ -tricalcium phosphate composite mass are dissolved in a solvent (eg chloroform) to prepare a spinning solution having a PLLA concentration of about 10% by weight.
  • a solvent eg chloroform
  • a container containing the composite mass in a solvent is slowly rotated using a magnetic stirrer and stirred for about 5 hours.
  • Step 4 The spinning solution is filled into a syringe of an electrospinning apparatus, the fiber is ejected from the nozzle, and the fiber is deposited on the collector.
  • the installed electrode is installed on the collector side, and the yarn emitted from the nozzle is guided to the electrode in the electrode direction.
  • the collector is housed in a container filled with an ethanol solution, and the yarn guided from the nozzle in the direction of the electrode draws a parabola and enters the ethanol liquid surface, and sinks into the ethanol liquid at the incident position.
  • the sagging yarn was deposited on a mesh of collectors formed in a net shape to form a cotton.
  • PLLA 100% A fiber obtained by spinning a biodegradable resin composed of 100% PLLA used in Reference Examples 1 and 2 by electrospinning under the same conditions is shown in FIG. If the amount of the drug to be mixed is small, it is considered that the same fiber can be obtained by spinning by electrospinning.
  • Reference Example 4 PLGA and SiV (50SiV-50PLGA) Step 1 .
  • the drug and PLGA are kneaded with a kneader.
  • PLGA (molar ratio 82:18, melting point 130-140 ° C) 25 g of pellets is put into a kneader heated for 3 minutes with the set temperature of the device set at 160 to 165 ° C, and 4 at a set temperature of 160 ° C to 165 ° C. Heat knead for about minutes. Thereafter, the powder obtained by mixing 25 g of the SiV powder is put into a kneader and further kneaded for about 10 minutes at the same set temperature.
  • kneading can be performed in that state by applying torque with the kneader.
  • the state of PLGA heated with a kneader is not always clear. According to the estimations of the present inventors, it is considered that there are a part that has reached its melting point and has melted, and a part that is in a softened state just before melting. Even if the polylactic acid does not reach the molten state by heating the polylactic acid, it can disperse the fine powder particles uniformly in the matrix resin as long as it can be kneaded by applying torque with a kneader in the softened state. It is.
  • the SiV powder charged later is well mixed with PLGA and uniformly dispersed in the matrix resin.
  • the inventors of the present invention speculate that the carboxyl group of PLGA and calcium of calcium carbonate are coordinated and the amino group of silicon is amino-bonded to fix in the polylactic acid matrix resin. It is thought that.
  • Step 2 A composite of SiV and PLGA is prepared. Thereafter, the obtained kneaded product of SiV and PLGA is taken out from the kneader and allowed to cool at room temperature. A composite mass of PLGA and drug is obtained.
  • Step 3 The PLGA and SiV composite mass obtained above is dissolved in a solvent (eg, chloroform) to prepare a spinning solution having a PLGA concentration of about 13 to 15% by weight.
  • a solvent eg, chloroform
  • a container containing the composite mass in a solvent eg, chloroform
  • a magnetic stirrer is slowly rotated using a magnetic stirrer and stirred for about 5 hours.
  • Step 4 The spinning solution is filled into a syringe of an electrospinning apparatus, the fiber is ejected from the nozzle, and the fiber is deposited on the collector.
  • the installed electrode is installed on the collector side, and the yarn emitted from the nozzle is guided to the electrode in the direction of the electrode.
  • the collector is housed in a container filled with an ethanol solution, and the yarn guided from the nozzle in the direction of the electrode draws a parabola and enters the ethanol liquid surface, and sinks into the ethanol liquid at the incident position.
  • the sagging yarn was deposited on a mesh of collectors formed in a net shape to form a cotton.
  • the powder ratio was 20 wt%, the powder ratio was large and kneading was impossible. Moreover, when it melt
  • the powder ratio was 20 wt%, the powder ratio was large and kneading was impossible. Further, when the kneading temperature was low, the polymer did not melt and kneading could not be performed, and those not subjected to the kneader process could not be spun as fibers.
  • Example 1 An anticancer agent (carboplatin powder, etoposide powder, doxorubicin) in a solution of PLLA or PLGA and an anticancer agent (carboplatin powder, etoposide powder, doxorubicin hydrochloride powder), antibiotic PLLA or PLGA in a solvent. Hydrophobic salt powder) and a mixture of a small amount of antibiotics are used as a spinning solution, which is spun by electrospinning.
  • Method Step 1 3 g of PLGA and the amount of carboplatin shown in Table 5 below were dissolved in chloroform to prepare a spinning solution having a PLGA concentration of about 6% by weight.
  • the prepared spinning solution is filled into a syringe of an electrospinning apparatus (eg Mecc nanon), and the spinning solution prepared above is filled with a syringe (diameter 15.8 mm; extrusion speed 15 ml / h) of an electrospinning apparatus (eg Mecc nanon).
  • FIG. 1 Resulting carboplatin containing polylactic - glycolic acid copolymer SEM photograph (30 times) is shown in FIG.
  • the fibers are intertwined in the three-dimensional direction to form a cotton shape.
  • the fibers are not bonded to each other in the longitudinal direction, and form a fluffy three-dimensional three-dimensional cotton structure.
  • the average outer diameter was 50 ⁇ m to 110 ⁇ m, and some parts with an outer diameter of 1 to 10 ⁇ m were occasionally found.
  • Example 2 Elasticity Measurement 30-fold carboplatin-containing polylactic acid-glycolic acid copolymer (hereinafter referred to as DDS sample) prepared in Example 1 and ReBOSSIS (registered trademark) (40TCP-30SiV- of Reference Example 1) The elasticity of 30PLLA was measured by comparing with refit (HOYA Technosurgical Co., Ltd.) and Osferion (Olympel Terumo Biomaterials Co., Ltd.), which are already approved artificial bone products. Materials An outline of each sample used is shown in Table 6.
  • the compression rate and recovery rate were both 0, while the ReBOSSIS and DDS samples showed a certain compression rate and recovery rate.
  • the bioabsorbable cotton-like material according to the present invention can be compressed and inserted into an injector, etc., and introduced into the body through the injector with a minimally invasive medical procedure, and then quickly returned to the volume in the body. It was suggested that it was possible.
  • Example 3 Shape size processability 30-fold carboplatin-containing polylactic acid-glycolic acid copolymer (hereinafter referred to as DDS sample) prepared in Example 1, and ReBOSSIS (registered trademark) (40TCP-30SiV of Reference Example 1) -30PLLA) was compared with refit (HOYA Technosurgical Co., Ltd.) and Osferion (Olympel Terumo Biomaterials Co., Ltd.), which are already approved artificial bone products. The outline of each sample used is shown in Table 9, and the shape is shown in FIG.
  • FIG. 9 shows a state where the processed sample and the plastic container are packed.
  • ReBOSSIS can be hand-molded in both dry and hydrated states, and since it can be easily processed into shapes when packed in plastic containers, it can be packed in a short time. Refit required processing with a cutter in the dry state and took a long time to form, but in the hydrated state, it could be formed relatively quickly because the shape could be changed by hand. Since male ferrion hardly changed its properties when hydrated, both took time to mold. The sample for DDS could be processed in a short time like ReBOSSIS.
  • ReBOSSIS could be shredded by hand in both dry and hydrated states, and then reassembled. Refit could be shredded by hand after hydration, but could not be shredded into any shape, and there was no degree of freedom of size processing as ReBOSISS. As with ReBOSSIS, DDS samples could be shredded by hand and then reassembled. Therefore, it was suggested that the bioabsorbable cotton-like material according to the present invention can be molded very easily in accordance with the place to be embedded.
  • Example 4 Sustained release ability of bioabsorbable cotton-like material carrying an anticancer agent
  • 30 mg of carboplatin-supported cotton-like material 25 mg was weighed into a 1.5 cm 3 Eppendorf tube. Add 0.5 cm 3 of pure water here and let it soak. The cotton-like material was removed with tweezers at a designated time and transferred to an empty 1.5 cm 3 Eppendorf tube. The solution was exchanged by adding 0.5 cm 3 of pure water to an empty Eppendorf tube. (Those over a day were changed once in the morning). The amount of carboplatin at each sampling time was measured with an ultraviolet spectrophotometer.
  • Measurement condition sampling time 5 min, 1, 2, 4, 6h, 1, 2, 3, 4, 7 day
  • Detection condition UV (220 nm)
  • Tg Transgenic mice that express the MYCN gene from the promoter of Tyrosine Hydroxylase (TH), a sympathetic nerve-specific enzyme
  • TH Tyrosine Hydroxylase
  • TH Tyrosine Hydroxylase
  • TH a sympathetic nerve-specific enzyme
  • Non-patent Document 5 Weiss et al
  • 129tTer / SvJcl wild-type mice CLA Japan
  • Homozygous mice mice that were backcrossed and systematized
  • mice which acquires the fate of neural crest cells to differentiate into sympathetic nerves and simultaneously expresses MYCN at the timing of expressing TH, which is one of the markers, the superior mesenteric ganglion, one of the sympathetic ganglia Therefore, neuroblastoma spontaneously developed and died at approximately 7-8 to 9 weeks of age, and heterozygous mice developed tumors and died after 2 months of sexual maturity (from 9 to 20 weeks) .
  • the 30-fold body carboplatin-containing polylactic acid-glycolic acid copolymer (bioabsorbable cotton-like material (cotton-like carrier)) prepared in Example 1 was homozygous (Tg / Tg) mouse abdominal cavity (main nerves) In the vicinity of the abdominal superior mesenteric ganglion (between the kidneys on both sides), which is the site of blastoma occurrence), the same amount as the amount of carboplatin contained in the flocculant carrier when placed according to the following experimental protocol (Table 12) When administered directly into the abdominal cavity, an experiment was also conducted in which phosphate buffered saline (PBS) was administered intraperitoneally as a comparison object.
  • PBS phosphate buffered saline
  • FIG. 11 shows the dissection of a mouse that developed cancer and died at 8 weeks of age.
  • Figure 11 shows the dissection of a mouse (F166) that had been implanted with a cotton-like carrier and euthanized at 12 weeks of age. 12 shows.
  • FIG. 13 shows the change in the weight of the mouse after the implantation operation.
  • FIG. 11 a very large tumor that can fill between the right and left kidneys was confirmed, and death due to cancer was evident.
  • the abdominal ganglion (F166) was removed and fixed with formalin (FIG. 14).
  • the cotton-like carrier remains in FIG. 12, this is because only 8 weeks (12 weeks of age) have passed since the implantation, and it seems that the whole amount is absorbed by the living body in the second half year of implantation.
  • the mouse implanted with the cotton-like carrier shows an increase in body weight equivalent to that of the sham-operated mouse, and it can be seen that no side effects caused by the anticancer drug have occurred. Even after sham-operated mice died of cancer at 8 weeks of age, their weight continued to increase steadily, suggesting that the cancer was cured.
  • FIGS. 15 and 16 show the state of the H & E-stained section of a mouse (FIG. 14) implanted with a cotton-like carrier.
  • the following findings were obtained from FIGS. 15 and 16. ⁇ Neuroblastoma cells with small cell bodies and poor cytoplasm were not found. ⁇ Scarring with calcification and fibroblasts was confirmed. From the above, it is presumed that the cancer cells were killed by the anticancer effect of the cotton-like carrier, and the scars of the cancer cells remained in the form of scars.
  • FIG. 17 and FIG. 18 show the appearance and dissection of a mouse directly administered intraperitoneally with the same amount as carboplatin contained in a cotton carrier and a mouse directly administered with PBS as a comparison target.
  • a healthy mouse was used for this intraperitoneal direct administration, all mice that intraperitoneally administered carboplatin died within a few days.
  • PBS survived for more than 3 weeks after administration, so it was euthanized 4 weeks after administration. 17 and 18, when the same amount of carboplatin contained in the flocculant carrier was directly administered, serious side effects occurred and the mice died.
  • the LD50 (half lethal dose) of mouse intraperitoneal carboplatin administration is 150 mg / kg, and 4.5 mg for a body weight of 30 g.
  • the amount of carboplatin in 0.05 g of the 30-fold carrier was 7.5 mg, and it was placed in a larger amount than LD50.
  • M169, F166 and F179 mice survived and were successfully treated for cancer.
  • this carrier even if the amount exceeds LD50, it is considered that side effects are reduced by sustained release.
  • mice that received carboplatin directly died in a few days without waiting for life due to serious side effects.
  • mice implanted with a cotton-like carrier had no side effects and were euthanized due to necropsy at 12 weeks of age, exceeding the life expectancy of 8 weeks of age. Not observed. It can be said that the cotton-like carrier allowed local administration of the anticancer agent without causing systemic side effects and killed cancer cells.
  • bioabsorbable cotton-like material carrying an anticancer agent is very effective as a new drug delivery (DDS) material.
  • the biodegradable fiber according to the present invention is capable of locally releasing a drug for a long period of time at an arbitrary location in the body and is bioabsorbable, and is absorbed into the living body after the drug is released. It is possible to provide a dosage form material that is degraded. Furthermore, by embedding a dosage form in a patient, it is possible to bring about a therapeutic / preventive effect that enhances QOL (Quality of Life) without causing systemic side effects.
  • QOL Quality of Life

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dispersion Chemistry (AREA)
  • Neurosurgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dermatology (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

 薬剤を体内の任意の場所に局所的に除放性させることが可能であり、かつ生体吸収性があり、薬剤除放後、生体内に吸収分解される、剤形素材を提供することにある。 生体分解性樹脂と薬剤とを溶剤で溶解して、紡糸溶液を作成、紡糸溶液からエレクトロスピニングで紡糸することにより、上記課題を解決する、極めて徐放効果の高い剤形素材の開発に成功した。

Description

エレクトロスピニングを用いた、薬剤を含有する生分解性繊維素材の製造方法
 本出願は2015年3月31日に出願された米国仮出願62/140722号明細書に対する優先権を主張し、前記米国仮出願は、全体を参照により本明細書に組み込む。
 本発明は、粉末状の薬剤(骨形成用無機粒子、抗がん剤、抗生物質等)を含んだ熱可塑性の生分解性樹脂(ポリ乳酸、PLGA等)をエレクトロスピニング用紡糸溶液として調製するための方法に関する。
 本発明は、さらに、上記で調整されたエレクトロスピニング用紡糸溶液を用いてエレクトロスピニングで生分解性繊維を製造するための方法に関する。
 本発明は、さらに、上記で調整された生分解性繊維を不織布又は綿として効率的に回収するための方法に関する。
 本発明は、該製造方法により製造された生体吸収性綿状素材を含む、体内局所埋設型徐放出剤;ならびにその使用法(治療方法)に関する。
 本発明に係る、薬剤を含有する生体吸収性綿状素材は局所性徐放性にすぐれ、かつ、薬効成分放出後、すみやかに体内に吸収分解されるので、経口投与剤以外の、持効性注射剤(デポ剤)や体内埋設型の剤形として極めて有効である。
 薬物の投与経路のうち、経口投与は約60%を占めており、最も汎用されている投与経路である。しかしながら、最近では経口投与で十分な吸収性や安定性が期待できない高分子性医薬品であるペプチド・タンパク性医薬品が増加してきており、また将来的にはさらに分子量の大きな遺伝子・核酸性医薬品の臨床への応用が期待されている。さらに、経口投与の場合、小腸での吸収から全身の血流に乗るので、局所性や除放性を必要とする薬剤には不向きである。
 経口投与以外の投与経路としては、経鼻、経肺、点眼、直腸、経皮、注射などの様々な投与経路が存在する。注射剤は経口投与剤に次いで用いられている。しかしながら、注射剤でも、点滴静脈注射などの場合、経口投与と同様局所性持続性の効果が期待できない場合が多い。さらに注射剤は吸収が早い代わりに注射後の薬効の持続性に問題がある場合も多い。
 一方、持効性注射剤(デポ剤)の開発も行われている。1回の注射で薬効が数日ないし数か月持続するようにつくられた注射剤で、ホルモン剤が多く、油性注射剤か懸濁性注射剤の形で適用されている。また継続的な経口投与に問題が生じやすい抗精神病薬などにも応用されている。これらは経皮注射又は筋肉注射され、注射後も持続的な効果が期待できるものの、標的とする部位(組織)のみに局所的に薬剤を効かせることは困難であった。
 生理活性物質の効果を長期間持続させる剤型として、生体内分解性ポリマーを用いたマイクロスフェア(多核マイクロカプセル)の研究もなされている(特開平6-211648号)。マイクロスフィアは通常、粒子径が数μm程度の球状の製剤をマイクロスフェアといい、1μm以下のものはナノスフェアと呼ばれることがある。局所での薬物の持続的放出性や局所性は満たされるものの、注射剤での投与(皮下注射など)を前提としているため、液体であり、薬剤としての安定性(拡散してしまう)に問題があり研究開発は現在も進行中である。
 薬剤としての拡散を抑え、安定性を保つため、担体に疎水性高分子(生体内非分解性高分子であるシリコーン)を用いた剤形の研究もなされている(特開2001-199879号)。しかしながら薬剤の拡散は抑えられるものの、体内に担体が残置されてしまうという問題が生じ、皮下など比較的取り出しやすい場所に適用するのには問題ないが、体内の任意の場所に埋め込むことはリスクが生じる。
 一方、骨再生材料の分野では、ポリ乳酸等の生分解性樹脂からなる繊維に骨形成因子を含有させて作成した材料を骨欠損部に埋め込む方法が実施されている(米国公開2011-000952号)。生分解性繊維は体内に埋め込まれた後、体液に接して加水分解して、含まれた薬剤を徐放すると共に、時間の経過とともに体内に吸収されて消失するため、効果的な骨形成が得られると共に、患者の負担が少なくて済む。
 上記で生分解性樹脂から繊維を作製する方法として、エレクトロスピニングが用いられている。エレクトロスピニング法では、紡糸溶液を電場で生じる静電引力により紡糸溶液をノズルから繊維として出射するので、そのように紡糸可能な溶液を調製することが必要である。
 骨再生材料の分野ではこれまで、エレクトロスピニングの紡糸溶液は、生分解性樹脂を溶剤を用いて溶かして紡糸溶液を製造していた。 
特開平6-211648号 特開2001-199879号 米国特許6689374号 米国公開2011-0009522号 国際公開2015/005205号
Walsh et al.β-TCP bone graft substitutes in a bilateral rabbit tibial defect model. Biomaterials 29 (2008) 266-271) Obata et al. Electrospun microfiber meshes of silicon-doped vaterite/poly(lactic acid) hybrid for guided bone regeneration. Acta Biometatialla 6 (2010) 1248-1257 Fujiwara et al. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26 (2005) 4139-4147) Hench LL. Polak JM: Third-generation biomedical materials. Science 2002, 295: 1014-1017) Weiss et al. Targeted expression of MYCN causes neuroblastomain transgenic mice.The EMBO Journal Vol.16 No.11 pp.2985-2995, 1997 Kishida et al. Midkine Promotes Neuroblastoma through Notch2 Signaling. Cancer Res; 73(4) 1318-1327, 2013
 従って、薬剤を体内の任意の場所に局所的に除放性させることが可能であり、かつ生体吸収性があり、薬剤除放後、生体内に吸収分解される、剤形素材を提供することにある。
 患部に局所的に薬剤を投与するための一つの方法として、薬剤を生分解性繊維に含有させた材料を患部に埋め込んで徐放させる方法が提案されている(米国特許6689374号)。しかしながらエレクトロスピニングに使用可能な紡糸溶液を調製するために、微粒子をまず水又は溶剤中に分散させたうえで、それを、生分解性樹脂を溶かして作製した溶液に均一に分散させて混合している。しかし、これらの方法では粉末微粒子を多量に含む場合には、微粒子を紡糸溶液中に均一に分散させるのが容易でなく、その外径は小さくなり、その徐放期間は短かった。
 本願発明者らは鋭意研究の結果、
1)生分解性樹脂と薬剤とを溶剤で溶解して、紡糸溶液を作成、
2)該紡糸溶液からエレクトロスピニングで紡糸することにより、上記課題を解決する、外径が大きな繊維状物質を含む、極めて徐放効果の高い剤形素材の開発に成功した。
 即ち、本発明は本発明の構成は以下の[1]から[20]の通りである。
[1]薬剤及び生分解性樹脂を含有する、平均外径が1μm以上150μm以下、好ましくは10μm以上150μm以下、より好ましくは30μm以上110μm以下、さらにより好ましくは60μm以上110μm以下である、繊維状物質から構成される綿状又不織布状構造を有する生体吸収性綿状素材;
[2]前記繊維状物質の平均分子量が5万以上100万未満である、好ましくは5万以上50万未満、より好ましくは6万以上40万未満である、[1]に記載の生体吸収性綿状素材;
[3]かさ密度が、乾燥時又は水和時において0.01 g/cm3~0.1g/cm3、より好ましくは0.01 g/cm3~0.05g/cm3である、[1]に記載の生体吸収性綿状素材。
[4]前記生分解性樹脂がPLGAまたはその共重合体であることを特徴とする[1]~[3]に記載の生体吸収性綿状素材。
[5]薬剤が抗がん剤である、[1]~[4]のいずれかに記載の生体吸収性綿状素材。
[6]滅菌処理されている[1]~[5]のいずれかに記載の生体吸収性綿状素材。
[7]  1)生分解性樹脂と薬剤を溶剤に溶解して、紡糸溶液を作成し、
    2)前記紡糸溶液からエレクトロスピニングで紡糸することにより生成することを特徴とする生体吸収性綿状素材の製造方法;
[8] ステップ2)において、溶液吐出側のノズル部分と、コレクター側のエタノール槽内に設置したプレート間に印加して、エレクトロスピニングで紡糸して、エタノール槽内に生体吸収性綿状素材を堆積させることにより、綿状の三次元立体構造を有する生体吸収性綿状素材を生成する、[7]に記載の生体吸収性綿状素材の製造方法;
[9]ステップ3)として滅菌処理工程を含む、[7]又は[8]に記載の生体吸収性綿状素材の製造方法;
[10]  前記生分解性樹脂はPLGAまたはその共重合体であり、前記溶剤はクロロホルムもしくはジクロロメタンである、[7]~[9]のいずれかに記載の生体吸収性綿状素材の製造方法;
[11]薬剤が抗がん剤である、[7]~[10]のいずれかに記載の製造方法。
[12]1)患者の体内に[6]に記載の生体吸収性綿状素材を埋設し、
   2)生体吸収性綿状素材から薬剤を徐放させ、その結果、
   3)徐放させた薬剤の効能によって、患者の疾患を治療又は予防する方法;
[13]開腹手術で[6]に記載の生体吸収性綿状素材を埋設することを特徴とする、[10]に記載の方法;
[14]インジェクターを用いた低侵襲医療手技で[6]に記載の生体吸収性綿状素材を埋設することを特徴とする、[12]に記載の方法;
[15]薬剤が抗がん剤であり、疾患ががんである、[12]に記載の方法;
[16]患者が、がん組織又はがん細胞を切除後である、[15]に記載の方法;
[17]がんが、悪性骨腫瘍である、[15]又は[16]に記載の方法。
[18][12]又は[13]に記載の方法に用いるための、[6]に記載の生体吸収性綿状素材を含む、キット;
[19][14]に記載の方法に用いるための、インジェクター及び[6]に記載の生体吸収性綿状素材を含む、キット;
[20][6]に記載の生体吸収性綿状素材がインジェクターに内包されている、[19]に記載のキット。
 「生分解性樹脂(生分解性ポリマー)」とは、一般的に「通常の使用状況下では一般のプラスチックと同様に使えて、使用後は分解され、最終的には二酸化炭素(炭酸ガス)と水に変換され、自然に還る樹脂」と定義される。本願発明においては、ヒト及び非ヒト哺乳動物(牛、ブタなどの家畜、イヌ、ネコなどの伴侶動物を含む)の体内において分解される樹脂(ポリマー)を意味する。特に限定しないが、セルロースやデンプンなどの天然ポリマーや優れた生体適合性を持ち、生分解速度と機械的強度が調整されたいくつかの種類の生分解性合成ポリマーであってもよい。例えば、合成ポリマーとして、ポリグリコール酸(PGA)やポリ乳酸(PLA)(ポリL乳酸:PLLA、ポリD乳酸:PDLA);並びにその共重合体;[ポリ乳酸-ポリグリコール酸共重合体(ポリ(ラクチド-co-グリコリド)共重合体)(PLGA)];或いはポリジオキサノン(PDS)などが挙げられる。PLGAの場合、目的とする分解速度に応じて、PLAとPGAのモノマーに比率を変えることができる。その比率はPLA:PGA=90:10、85:15、80:20、75:25、70:30、65:35、60:40、55:45、50:50、45:55、40:60、35:65、30:70、25:75、20:80、15:85、10:90であってもよい。
 「溶剤」は揮発性で水への溶解性が低く、かつ、ポリマーの良溶媒であればなんでもよい。たとえば、クロロホルム、塩化メチレン、四塩化炭素などがあげられる。また、これら溶媒と相溶する溶媒(例えば、エチルエーテル、酢酸エチル等)を添加した混合溶媒も使用することができる。「薬剤」の活性が損なわれない溶剤が好ましい。
 「薬剤」とは、生分解性繊維に含有されて人体に投与可能な無機又は有機材料であって、体内にインプラントされて、活性を発揮する物質を意味する。
 たとえば、抗がん剤、抗生物質、生理活性を有するポリペプチド(インフルエンザワクチンやインシュリンなど)、解熱剤、鎮痛剤、免疫賦活剤、免疫抑制剤、抗炎症剤、鎮咳剤、抗てんかん剤、抗ヒスタミン剤、降圧利尿剤、糖尿病治療剤、筋弛緩剤、抗潰瘍剤、抗うつ剤、抗アレルギー剤、狭心剤、不整脈治療剤、血管拡張剤、抗凝血剤、止血剤、抗結核剤、麻薬拮抗剤、ホルモン剤などがあげられるがこれに限定しない。いわゆる医薬分野の薬剤だけでなく、化粧分野の薬剤(ビタミン、プラセンタ、ヒアルロン酸など)もこれに該当してもよい。上記「溶剤」耐性であることが望ましい。
 「かさ密度」は綿のJIS規格L1097を参考に、計測される。
 「エレクトロスピニング(ES)」法とはシリンジに入った高分子溶液とコレクタ電極間に高電圧を印可することで,シリンジから押出された溶液が電荷を帯び,細かな繊維となってコレクターに付着する微小繊維製造方法を指す。
 「低侵襲医療手技」とは手術において、従来の手技(開腹手術など)に対して、体につける傷の大きさはもとより、患者の体力的精神的負担がより小さくなる手技を指す。内視鏡外科手術などがこれにあたる。
 「インジェクター」(挿入器)とは、X線透視下等で経皮的に体内に挿入され、内部に包含された医薬又は医療器具を体内に残置させる器具を指す。内視鏡などが接続されていてもよい。
 「滅菌処理」の方法としては、放射線滅菌(ガンマ線、電子線)、酸化エチレンガス滅菌、高圧蒸気滅菌等がある。本発明ではγ線による放射線滅菌を好適に用いる。25kGy~35kGyのγ線による放射線滅菌を施すと、平均分子量は減少する(6万~10万)。
 本発明は、生分解性樹脂に薬剤を含有させてエレクトロスピニングすることによって、薬剤を担持した生分解性繊維を製造する方法として有効である。
 また、該生分解性繊維は、薬剤を体内の任意の場所に局所的に除放性させることが可能であり、かつ生体吸収性があり、薬剤除放後、生体内に吸収分解される、剤形素材を提供することが可能である。
 さらに剤形を患者に埋設することにより、QOL(Quality of Life)を高める治療/予防効果をもたらすことが可能である。
図1(A)は、参考例1の方法で紡糸した繊維(40TCP-30SiV-30PLLA)のSEM写真を示す。 図1(B)は、参考例1と同じ配合比率でニーダー混練を経ないで紡糸して得られた繊維を示す。 図2は、参考例2の方法で紡糸した繊維(70TCP-30PLLA)を示すSEM写真である。 図3は、参考例3のPLLA100%の実施態様で用いるエレクトロスピニング装置で紡糸した繊維を示す。 図4は、本発明で用いるエレクトロスピニング装置の構成を示す。 実施例1で紡糸した繊維(30倍量カルボプラチン-PLGA)のSEM写真を示す。 圧縮率及び回復率の計算方法 実施例2の結果 形状 実施例3の結果 実施例4の結果:綿状担体からのカルボプラチンの徐放挙動。168時間にわたって徐放している。 実施例5の結果:がんを発症し、8週齢で死亡したマウスの解剖時の様子。左右の腎臓の間を埋めてしまうほどの非常に大きな腫瘍がある。 実施例5の結果:綿状担体を埋植し、12週齢で安楽死させたマウスの解剖時の様子(F166)。まったく腫瘍が観察できない。綿状担体は残存している。 実施例5の結果:埋植手術後のマウスの体重変化。綿状担体を埋植したマウスは、疑似手術(抗がん剤を担持させていないポリマーのみの綿状物の埋植手術)のマウスと同等の体重増加を示しており、抗がん剤による副作用は起きていないことがわかる。 実施例5の結果:腹部神経節を摘出ホルマリン固定し、組織学的評価を行う。 実施例5の結果:H&E染色切片。大動脈(黄矢印)の左に通常は見られない繊維芽細胞(核の形が細長い)の瘢痕が見られる 実施例5の結果:H&E染色切片。石灰化部位(丸く抜けているように見える部分:青矢印)が確認できる。 実施例5の結果:綿状担体が含有するカルボプラチンと同量を腹腔内に直接投与したマウス。動きが遅く、震えもあり、下腹部が明らかにやせ細っている。腸が壊死し、機能不全に陥っている。胃に摂取した食餌は溜まっているが、小腸から大腸にかけて内容物無し。 実施例5の結果:PBSを腹腔内に直接投与したマウス。行動、外見ともに正常。内臓にも異常なし。
 本発明の一つの実施態様は、生分解性樹脂を溶剤に用いて溶かした溶液に、少量の薬剤を投入して混合して紡糸溶液を作製し、その紡糸溶液を用いて、エレクロスピニングで紡糸する。ポリ乳酸、PLGAは溶剤で溶かしてエレクトロスピニングの紡糸溶液とすることが可能なので、ポリ乳酸又はPLGAの溶液にごく少量の薬剤を混合した紡糸溶液を作製して、エレクトロスピニングで紡糸することは可能である。
 本発明の一つの実施態様は、上記で得られた溶液を紡糸溶液として、エレクトロスピニング装置のシリンジに充填して、ノズルから糸として出射させる。ノズルから出射された糸は、接地された電極をターゲットとして放物線を描いてコレクター上に堆積する。コレクターは、網状に形成されており、エタノール溶液を満たした容器内に収容されている。ノズルから出射された糸はエタノール液の液面に入射して、その入射した位置で液中に沈殿する。沈殿した糸はコレクター上に堆積され、不織布状又は綿状に形成される。綿状とは、手で変形でき(形状加工性);千切れ、千切った後、再びまとめられ(サイズ加工性);圧縮後復元し(弾性力);手で絞って水和量を調整できる;形状を示す。
 本発明の一つの実施態様は、エレクトロスピニング装置のコレクターの底面(15cmx25cm程度)を電極板として用いてノズルから繊維を出射させる。コレクターにはエタノール液は用いない。この方法によってコレクターに繊維を不織布状に堆積させることができる。
 以下の実施例、比較例及び参考例により本発明を更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
<参考例1> PLLAとβーリン酸三カルシウムとSi含有バテライト相炭酸カルシウム(40TCP-30SiV-30PLLA)
ステップ1
 薬剤とポリ乳酸とを混合してニーダーで混練する。ニーダーの設定温度を170~190℃に設定して予熱した上で、ポリL乳酸(PURAC PL24 分子量20~30万 融点175-185℃)のペレット15gを投入して、設定温度180℃~190℃で4分間程度加熱混練する。その後、βーリン酸三カルシウム粉末20gとSiV粉末15gを混合した粉末を、ニーダーに投入して、さらに同じ設定温度で10分程度混練する。
 ニーダーの設定温度180℃~190℃で加熱すると、その状態でニーダーでトルクをかけて混練することができる。ニーダーで加熱したポリL乳酸の状態は必ずしも明らかでないが、本発明者等の推測によれば、自身の融点に達して溶融している部分と、溶融寸前の軟化状態である部分とがあると考えられる。
 ポリL乳酸を加熱することによって溶融状態には達せず軟化状態にとどまっていても、軟化した状態でニーダーでトルクをかけて混練できる限り、本発明で粉末微粒子をマトリクス樹脂中に均一に分散させることが可能である。
 混練によって、後から投入したβーリン酸三カルシウムとSiVの粉末はポリL乳酸と混合し、微粒子がポリL乳酸酸樹脂中に均一に分散する。分子レベルで見た分散状態は必ずしも明らかでないが、本発明の発明者等の知見では、ポリL乳酸のカルボキシル基とβーリン酸三カルシウムのカルシウムイオンとが配位結合し、ケイ素のアミノ基とカルボキシル基とがアミノ結合をすることで、ポリ乳酸のマトリクス樹脂中に固定されていると考えられる。
ステップ2
 薬剤とポリ乳酸のコンポジットを作製する。その後、得られたβーリン酸三カルシウムとSiVとポリL乳酸の混練物をニーダーから取り出して、常温で放置することで冷却することで、ポリL乳酸と薬剤のコンポジット塊が得られる。
ステップ3
 上記で得られたコンポジット塊を溶剤(例クロロホルム)で溶かして、ポリL乳酸の濃度が約10%の紡糸溶液を作製する。コンポジット塊を溶剤で溶かす方法としては、コンポジット塊をクロロホルムを満たした容器中に入れてmagnetic stirrer を用いてゆっくり回転させて5時間程度撹拌する。
ステップ4
 上記で作製された紡糸溶液をエレクトロスピニング装置(例Mecc 社 nanon)のシリンジ(直径15.8mm;押し出し速度15ml/h)に充填し、約30kVの電圧をかけてノズル(シリンジ針18G)から繊維を出射し、ノズルを移動幅200mm移動速度40mm/sec、針先クリーニング間隔2分(*)で移動させながら、繊維をコレクターに堆積させる(庫内条件温度30度以下;湿度50%以下;針先から装置床まで37cm)。
(*)針先にできる溶液だまりを自動クリーニングする間隔。
 図4に示すように、エレクトロスピニングにあたっては、設置した電極をコレクター側に設置し、その電極にノズルから出射される糸を電極方向に誘導する。コレクターはエタノール溶液を満たした容器に収容しており、ノズルから電極方向に誘導された糸は放物線を描いてエタノール液面に入射し、入射した位置でエタノール液中に沈む。沈んだ糸は網状に形成したコレクターのメッシュ上に堆積させることで、綿状に形成した。出射にあたっては、ノズルをレール上で一定距離と速度で往復移動させながらスピンすることで、コレクターの面上に広く堆積させると、回収率を高める上で効果的である。
結果
 上記エレクトロスピンでノズルから出射された繊維の径は約50μm平均であった。得られた繊維のSEM写真を図1(A)に示す。比較参考用に、図1(B)に参考例1と同じ組成比でニーダー混練を経ないで作製した溶液を用いてエレクトロスピン装置にかけて紡糸を試みた結果を示す。一応繊維状のものはできたが、エレクトロスピンで製造される繊維よりもかなり太い径のものであった。
<参考例2> βーリン酸三カルシウムとPLLA(70TCP-30PLLA)
ステップ1
 βーリン酸三カルシウムとポリL乳酸(PURAC PL24 分子量20~30万)とをニーダーで混練する。
 ニーダーの設定温度を170~190℃に設定して3分間予熱した上で、ニーダーにポリL乳酸のペレット15gを投入して、設定温度180℃~190℃で4分間程度加熱混練する。その後、βーリン酸三カルシウム粉末35gを、ニーダーに投入して両者を混合し、同じ設定温度でさらに10分程度混練する。
 ニーダーの設定温度180℃~190℃で加熱すると、その状態でニーダーでトルクをかけて混練することができる。ニーダーで加熱したポリL乳酸の状態は必ずしも明らかでない。本発明者等の推測によれば、自身の融点に達して溶融している部分と、溶融寸前の軟化状態である部分とがあると考えられる。
 混練によって、後から投入したβーリン酸三カルシウムの粉末はポリL乳酸とよく混合し、ポリL乳酸樹脂中に均一に分散する。分散状態について本発明の発明者等の推測では、ポリL乳酸のカルボキシル基とβーリン酸三カルシウムのカルシウムイオンとが配位結合することで、ポリ乳酸のマトリクス樹脂中に固定されていると考えられる。
ステップ2
 βーリン酸三カルシウムとポリ乳酸のコンポジットを作製する。
その後、得られたβーリン酸三カルシウムとポリL乳酸の混練物をニーダーから取り出して、常温で放置することで冷却する。ポリL乳酸とTCPのコンポジット塊が得られる。
ステップ3
 上記で得られたPLLAとβーリン酸三カルシウムコンポジット塊を溶剤(例クロロホルム)で溶かして、PLLAの濃度が約10重量%の紡糸溶液を作成する。コンポジット塊を溶剤で溶かす方法としては、コンポジット塊を溶剤(例:クロロホルム)中に入れた容器をmagnetic stirrer を用いてゆっくり回転させて5時間程度撹拌する。
ステップ4
 紡糸溶液をエレクトロスピニング装置のシリンジに充填し、ノズルから繊維を出射し、繊維をコレクターに堆積させる。
  図4に示すように、エレクトロスピニングにあたっては、設置した電極をコレクター側に設置し、その電極にノズルから出射される糸を電極方向に誘導する。コレクターはエタノール溶液を満たした容器に収容しており、ノズルから電極方向に誘導された糸は放物線を描いてエタノール液面に入射し、入射した位置でエタノール液中に沈む。沈んだ糸は網状に形成したコレクターのメッシュ上に堆積させることで、綿状に形成した。
結果
 エレクトロスピンでノズルから出射された繊維の径は上記PLLA-βTCP-SiVの場合と比較して安定していないが、繊維径は約65-80μm程度であった。得られた繊維のSEM写真を図2に示す。
<参考例3> PLLA100% 
 参考例1と2で用いたPLLA100%からなる生分解性樹脂を同じ条件でエレクトロスピニングで紡糸した繊維を図3に示す。
 混合する薬剤が微量であれば、エレクトロスピニングによる紡糸は同様の繊維が得られると考えられる。
<参考例4> PLGAとSiV(50SiV-50PLGA)
ステップ1
 薬剤とPLGAとをニーダーで混練する。
 装置の設定温度を160~165℃に設定して3分間加熱したニーダーにPLGA(molar ratio 82:18、融点130-140℃)のペレット25gを投入して、設定温度160℃~165℃で4分間程度加熱混練する。その後、SiV粉末25gを混合した粉末を、ニーダーに投入して、さらに同じ設定温度で10分程度混練する。
 ニーダーの設定温度160℃~165℃で加熱すると、その状態でニーダーでトルクをかけて混練することができる。ニーダーで加熱したPLGAの状態は必ずしも明らかでない。本発明者等の推測によれば、自身の融点に達して溶融している部分と、溶融寸前の軟化状態である部分とがあると考えられる。
 ポリ乳L酸を加熱することによって溶融状態には達せず軟化状態であっても、軟化した状態でニーダーでトルクをかけて混練できる限り、粉末微粒子をマトリクス樹脂中に均一に分散させることが可能である。
 混練によって、後から投入したSiVの粉末はPLGAとよく混合し、マトリクス樹脂中に均一に分散する。分散状態について本発明の発明者等の推測では、PLGAのカルボキシル基と炭酸カルシウムのカルシウムとが配位結合し、ケイ素のアミノ基とがアミノ結合をすることで、ポリ乳酸のマトリクス樹脂中に固定されていると考えられる。
ステップ2
 SiVとPLGAのコンポジットを作製する。
その後、得られたSiVとPLGAの混練物をニーダーから取り出して、常温で放置することで冷却する。PLGAと薬剤のコンポジット塊が得られる。
ステップ3
 上記で得られたPLGAとSiVのコンポジット塊を溶剤(例クロロホルム)で溶かして、PLGAの濃度が約13~15重量%の紡糸溶液を作成する。コンポジット塊を溶剤で溶かす方法としては、コンポジット塊を溶剤(例:クロロホルム)中に入れた容器をmagnetic stirrer を用いてゆっくり回転させて5時間程度撹拌する。
ステップ4
 紡糸溶液をエレクトロスピニング装置のシリンジに充填し、ノズルから繊維を出射し、繊維をコレクターに堆積させる。
 エレクトロスピニングにあたっては、設置した電極をコレクター側に設置し、その電極にノズルから出射される糸を電極方向に誘導する。コレクターはエタノール溶液を満たした容器に収容しており、ノズルから電極方向に誘導された糸は放物線を描いてエタノール液面に入射し、入射した位置でエタノール液中に沈む。沈んだ糸は網状に形成したコレクターのメッシュ上に堆積させることで、綿状に形成した。
<比較例1>TCP-SiV-PLLA作成実績
 参考例1と同様の条件でPLLAとβーリン酸三カルシウムとSi含有バテライト相炭酸カルシウムの比率を変えて作成を試みた。以下の表1が成功した条件であり、表2が失敗した条件である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 ポリマーの割合が20wt%では、粉体の割合が多く、混練できなかった。またニーダー工程を用いずに直接クロロホルムに溶解し混練すると、スピニングできず、溶液が針先からポタポタと落ちるだけであった。
<比較例2>TCP-SiV-PLGA作成実績
 PLLAの代わりにPLGA(LG855S  (Evonik社製、PLLA:PGA = 85:15))を用いて作成を試みた。以下の表3が成功した条件であり、表4が失敗した条件である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 ポリマーの割合が20wt%では、粉体の割合が多く、混練できなかった。また混練の温度が低いと、ポリマーが融けず混練できず、ニーダー工程を行わないものも、繊維としてスピニングできなかった。
<実施例1> PLLA又はPLGAと抗がん剤(カルボプラチン粉末、エトポシド粉末、ドキソルビシン塩酸塩粉末)、抗生物質
 PLLA又はPLGAを溶剤で溶かした溶液に抗がん剤(カルボプラチン粉末、エトポシド粉末、ドキソルビシン塩酸塩粉末)、抗生物質を少量混合したものを紡糸溶液として、エレクトロスピニングで紡糸する。
材料
 生分解性樹脂:PLGA(LG855S  (Evonik社製、PLLA:PGA = 85:15))
 カルボプラチン(cis-Diamine(1,1-cyclobutanedicarboxylato)platinum(II))(CAS番号:41575-94-4 製品コード:C2043;東京化成工業株式会社)
方法
ステップ1
 PLGA3gと以下の表5に記載の量のカルボプラチンをクロロホルムで溶かして、PLGAの濃度が約6重量%の紡糸溶液を作成した。作製された紡糸溶液をエレクトロスピニング装置(例Mecc 社 nanon)のシリンジに充填し 上記で作製された紡糸溶液をエレクトロスピニング装置(例Mecc 社 nanon)のシリンジ(直径15.8mm;押し出し速度15ml/h)に充填し、約28kVの電圧をかけてノズル(シリンジ針18G)から繊維を出射し、ノズルを移動幅100mm~150mm移動速度40mm/sec、針先クリーニング間隔2分で移動させながら、繊維をコレクターに堆積させた(庫内条件温度30度以下;湿度50%以下;針先から装置床まで37cm)。堆積させた繊維を室温で乾燥し、カルボプラチン含有綿状物を得た。
Figure JPOXMLDOC01-appb-T000005
結果
 得られたカルボプラチン含有ポリ乳酸-グリコール酸共重合体(30倍量)のSEM写真を図5に示す。繊維が3次元方向に絡み合って綿状を形成している。該繊維は長手方向に互いに接着されておらず、ふわふわの3次元立体綿構造を形成している。平均外径50μm~110μmであり、一部外径1~10μmの部分も散見された。
<実施例2> 弾性力測定
 実施例1で作成された30倍量カルボプラチン含有ポリ乳酸-グリコール酸共重合体(以下DDS用サンプル)、及びReBOSSIS(登録商標)(参考例1の40TCP-30SiV-30PLLA)の弾性力について既承認の人工骨製品であるリフィット(HOYA Technosurgical 株式会社)とオスフェリオン(オリンパステルモバイオマテリアル株式会社)と比較し、測定した。
材料
使用する各サンプルの概要を表6に示す。
Figure JPOXMLDOC01-appb-T000006
方法
 内径22 mmの透明チューブにReBOSSIS及びDDS用サンプルは0.1 g、リフィット及びオスフェリオンは10×10×10 mm(1.0 ml)入れた。水和時実験には、ReBOSSISは0.8 cc、DDS用サンプルは1.6 cc、リフィット及びオスフェリオンには1 ccの純水を加えたもので行なった。その上に指定されたフタ(0.417 g)を載せる。この時の嵩高さをh0とする。
 その後、指定された重り(9.911 g)をフタ上に載せ、この時の嵩高さをh1とする。
最後に、重りを取り除いた後の嵩高さをh2とする。h0、h1、h2はフタの四隅の高さを測定した平均値により算出した。
圧縮率及び回復率の計算方法を図6に示す。
結果
 弾性力試験結果を次頁に表7として示す。また、計算により算出した圧縮率・回復率を表8に示す。さらに、実験写真(左:加重前、中央:加重時、右:重り除去後)を併せて図7として示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 リフィット及びオスフェリオンでは圧縮率、回復率共に0であったのに対し、ReBOSSIS及びDDS用サンプルでは一定の圧縮率、回復率が見られた。
 なお、JIS規格L1097を参考に計測した場合、実施例のDDS用サンプルのかさ密度は乾燥時:0.0177 g/cm3、水和時:0.0266 g/cm3であった。
 従って、本願発明に係る生体吸収性綿状素材は、圧縮してインジェクター内などに挿入し、低侵襲医療手技にて体内にインジェクターを介して導入後、体内にて速やかにその体積を戻すことが可能であることが示唆された。
<実施例3> 形状サイズ加工性
 実施例1で作成された30倍量カルボプラチン含有ポリ乳酸-グリコール酸共重合体(以下DDS用サンプル)、及びReBOSSIS(登録商標)(参考例1の40TCP-30SiV-30PLLA)の形状加工性とサイズ加工性について、既承認の人工骨製品であるリフィット(HOYA Technosurgical 株式会社)とオスフェリオン(オリンパステルモバイオマテリアル株式会社)と比較した。
 使用する各サンプルの概要を表9に、形状を図8に示す。
Figure JPOXMLDOC01-appb-T000009
 
1.形状加工性
 各サンプルを直径8.5~9 mmの円柱状のプラスチック容器に入るような形状に、器具を用いて加工できるかどうか検証した。使用する器具はピンセット、カッター、骨切りバサミとし、これらの器具で加工できるかどうかと、円柱状に加工するのに要する時間を調べた。各サンプルとも乾燥状態と水和状態にて行った。使用するサンプルや水和量は上記参照。
2.サイズ加工性
 各サンプルを手で半分に千切れるかどうか、また千切った後で再びまとめられるかどうかを調べた。各サンプルとも乾燥状態と水和状態にて行った。使用するサンプルや水和量は上記参照。
結果
1.形状加工性
Figure JPOXMLDOC01-appb-T000010
 加工後のサンプルとプラスチック容器に詰めた様子を図9に示す。
ReBOSSISは乾燥・水和状態共に用手成形が可能であり、プラスチック容器に詰める際も容易に形状を加工できたため、短時間で詰めることが出来た。リフィットは乾燥状態ではカッターでの加工が必要であり、成形に時間がかかったが、水和状態では多少手で形を変えられるため比較的早く成形できた。オスフェリオンは水和させてもほとんど性状が変化しないため、どちらも成形に時間がかかった。
DDS用サンプルはReBOSSIS同様、短時間で形状加工が可能であった。
2.サイズ加工性
Figure JPOXMLDOC01-appb-T000011
 ReBOSSISは乾燥・水和状態共に手で千切ることができ、その後再びまとめることもできた。リフィットは水和後に手で千切ることができたが、任意の形状に千切ることは出来ず、ReBOSISSほどのサイズ加工の自由度はなかった。DDS用サンプルはReBOSSISと同様に、手で千切ることができ、その後再度まとめることもできた。
 従って、本願発明に係る生体吸収性綿状素材は、埋設する場所に併せて、極めて容易に成形可能であることが示唆された。
<実施例4> 抗がん剤を担持させた生体吸収性綿状物の徐放能
方法
 30倍量カルボプラチン担持綿状物質25 mgを1.5 cm3エッペンチューブに秤り分けた。ここに純水0.5 cm3を加え、浸漬させる。指定した時間毎に綿状物をピンセットで抜き取り、空の1.5 cm3エッペンチューブに移した。空のエッペンチューブに新たに純水0.5 cm3を加えることで溶液を交換した。(1日以上のものは朝に一度交換した)。
各サンプリング時間のカルボプラチンの量を紫外分光光度計により測定した。各サンプリング時間の保管溶液から10 μl秤り取り、100 μlセル内に含むように超純水を加えて測定した(10倍希釈)。実験はn = 3のサンプル数で測定を行なった。徐放およびUVの測定条件は以下の通りである。
測定条件
  サンプリング時間        : 5 min、1、2、4、6h、1、2、3、4、7day 
  検出条件                : UV(220nm)
結果
 綿状担体からは168時間にわたるカルボプラチンの徐放挙動も観察された(図10)。
 したがって、綿状担体は、抗がん剤を長期に局所投与が可能な非常に優れた薬剤担体と言える。
<実施例5> 抗がん剤を担持させた生体吸収性綿状物の新規ドラッグデリバリー(DDS)素材としての有効性
方法
 交感神経特異的な酵素であるTyrosine Hydroxylase (TH)のプロモーターからMYCN遺伝子を発現させるトランスジェニック (Tg) マウス(非特許文献5:Weiss et al)を129tTer/SvJcl wild-type mice (CLEA Japan)でバッククロスして系統化したホモ接合型(Tg/Tg)マウスを用いた(非特許文献6:Kishida et al)。神経堤細胞が交感神経へと分化する運命を獲得し、マーカーの一つであるTHを発現するタイミングで同時にMYCNを発現させるこのマウスでは、交感神経節の一つである上腸間膜神経節から、神経芽腫を自然発症し、およそ7~8~9週齢で死亡し、ヘテロ接合型マウスは、性成熟の生後2ヶ月以降(9~20週にかけて)に、腫瘍を発生し死亡する。
 実施例1で作成された30倍体量カルボプラチン含有ポリ乳酸-グリコール酸共重合体(生体吸収性綿状物(綿状担体))をホモ接合型(Tg/Tg)マウスの腹腔(主な神経芽腫発生部位である腹部上腸間膜神経節付近(両側の腎臓の間))に、以下の実験プロトコール(表12)に従い留置した場合と、綿状担体が含有するカルボプラチン量と同量を、直接腹腔内に投与した場合、さらに比較対象としてリン酸緩衝生理食塩水(PBS)を腹腔内に投与した場合の実験を行った。
Figure JPOXMLDOC01-appb-T000012
結果
 綿状担体を埋植しなかったマウスは、7~8週齢で死亡したが、綿状担体を埋植したマウスは、8週齢を超えて生存し続け、F166及びF179は12週齢時に安楽死させた。
 がんを発症し、8週齢で死亡したマウスの解剖時の様子を図11に、綿状担体を埋植し、12週齢時に安楽死させたマウス(F166)の解剖時の様子を図12に示す。
埋植手術後のマウスの体重変化を図13に示す。
 図11では、左右の腎臓間を埋めてしまうほどの非常に大きな腫瘍が確認でき、がんによる死亡が明らかであったが、図12では、12週も経っているにもかかわらず、腫瘍が全く観察できなかった。そのため、腹部神経節(F166)を摘出ホルマリン固定した(図14)。
 また、図12で綿状担体が残存しているが、これは埋植後8週(12週齢)しか経っていないためで、埋植後半年程度で全量が生体に吸収されると思われる。
 図13では、綿状担体を埋植したマウスは、疑似手術のマウスと同等の体重増加を示しており、抗がん剤による副作用は起きていないことがわかる。疑似手術のマウスが8週齢でがん死した後も、順調に体重が増え続けており、がんが治癒していることが示唆される。
 綿状担体を埋植したマウス(図14)のH&E染色切片の様子を、図15及び図16に示す。
 図15及び図16より、下記の所見が得られた。
・細胞体が小さく細胞質の乏しい「神経芽腫細胞」は見られなかった。
 ・石灰化と繊維芽細胞を伴う瘢痕が確認できた。
 以上より、綿状担体による抗がん作用により、がん細胞が死滅し、そのがん細胞の死滅痕が瘢痕という形で残ったものだと推測される。
 ここで、綿状担体が含有するカルボプラチンと同量を腹腔内に直接投与したマウスと、比較対象としてPBSを直接投与したマウスの外見と解剖時の様子を図17及び図18に示す。
 なお、この腹腔内直接投与は健常マウスを用いたが、カルボプラチンを腹腔内投与したマウスは全匹が数日で死亡した。一方で、PBSでは投与後3週間以上生存したため、投与後4週目に安楽死させている。
 図17及び図18により、綿状担体に含有されるカルボプラチンと同量を直接投与した場合は、重大な副作用を生じ、マウスは死亡した。
 マウス腹腔内カルボプラチン投与のLD50(半数致死量)は150mg/kgであり、体重30gの場合、4.5mgである。30倍量担体0.05g中のカルボプラチン量は7.5mgであり、LD50より多量に留置した事になるが、M169 、F166及びF179のマウスは生存し、癌の治療に成功した。当該担体を用いることで、LD50を超す量であっても、徐放される事で副作用が軽減されると考えられた。
まとめ
 神経芽腫モデルマウスでの実験において、カルボプラチンを直接投与したマウスは、重大な副作用によって寿命を待たず数日で死亡した。一方で、綿状担体を埋植したマウスは、副作用も見られず、寿命である8週齢を超えて12週齢で剖検のため安楽死となったが、病理検査の結果がん細胞は観察されなかった。  
 綿状担体により抗がん剤の、全身性の副作用を生じさせない局所投与が可能となり、なおかつがん細胞を死滅させることができたといえる。 
 以上より、抗がん剤を担持させた生体吸収性綿状物の新規ドラッグデリバリー(DDS)素材としての有効性は非常に高いものであると思われる。
 以上により本願発明に係る生分解性繊維は、薬剤を体内の任意の場所に局所的に長期除放性させることが可能であり、かつ生体吸収性があり、薬剤除放後、生体内に吸収分解される、剤形素材を提供することが可能である。
 さらに剤形を患者に埋設することにより、全身性の副作用を生じさせず、QOL(Quality of Life)を高める治療/予防効果をもたらすことが可能である。

Claims (20)

  1.  薬剤及び生分解性樹脂を含有する平均外径が1μm以上150μm以下である繊維状物質から構成される、綿状又不織布状構造を有する生体吸収性綿状素材。
  2.  前記繊維状物質の平均分子量が5万以上100万未満である、請求項1に記載の生体吸収性綿状素材。
  3.  かさ密度が0.01g/cm~0.1g/cmである、請求項1に記載の生体吸収性綿状素材。
  4.  前記生分解性樹脂がPLGAまたはその共重合体であることを特徴とする請求項1から3のいずれか一項に記載の生体吸収性綿状素材。
  5.  薬剤が抗がん剤である、請求項1から4のいずれか一項に記載の生体吸収性綿状素材。
  6.  滅菌処理されている請求項1から5のいずれか一項に記載の生体吸収性綿状素材。
  7.  1)生分解性樹脂と薬剤を溶剤に溶解して、紡糸溶液を作成し、
     2)前記紡糸溶液からエレクトロスピニングで紡糸することにより生成することを特徴とする生体吸収性綿状素材の製造方法。
  8.   ステップ2)において、紡糸溶液吐出側のノズル部分と、コレクター側のエタノール槽内に設置したプレート間に印加して、エレクトロスピニングで紡糸して、エタノール槽内に生体吸収性綿状素材を堆積させることにより、綿状の三次元立体構造を有する生体吸収性綿状素材を生成する、請求項7に記載の生体吸収性綿状素材の製造方法。
  9.  ステップ3)として滅菌処理工程を含む、請求項7又は8に記載の生体吸収性綿状素材の製造方法。
  10.  前記生分解性樹脂はPLGAまたはその共重合体であり、前記溶剤はクロロホルムもしくはジクロロメタンである、請求項7から9のいずれか一項に記載の生体吸収性綿状素材の製造方法。
  11.  薬剤が抗がん剤である、請求項7から10のいずれか一項に記載の製造方法。
  12.  1)患者の体内に請求項6に記載の生体吸収性綿状素材を埋設し、
     2)生体吸収性綿状素材から薬剤を徐放させ、その結果、
     3)徐放させた薬剤の効能によって、患者の疾患を治療又は予防する方法。
  13.  開腹手術で請求項6に記載の生体吸収性綿状素材を埋設することを特徴とする、請求項12に記載の方法。
  14.  インジェクターを用いた低侵襲医療手技で請求項6に記載の生体吸収性綿状素材を埋設することを特徴とする、請求項12に記載の方法。
  15.  薬剤が抗がん剤であり、疾患ががんである、請求項12に記載の方法。
  16.  患者が、がん組織又はがん細胞を切除後である、請求項15に記載の方法。
  17.  がんが、悪性骨腫瘍である、請求項15又は16に記載の方法。
  18.  請求項12又は13に記載の方法に用いるための、請求項6に記載の生体吸収性綿状素材を含む、キット。
  19.  請求項14に記載の方法に用いるための、インジェクター及び請求項6に記載の生体吸収性綿状素材を含む、キット。
  20.  請求項6に記載の生体吸収性綿状素材がインジェクターに内包されている、請求項19に記載のキット。
     
PCT/JP2016/060670 2015-03-31 2016-03-31 エレクトロスピニングを用いた、薬剤を含有する生分解性繊維素材の製造方法 WO2016159240A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
SG11201707988YA SG11201707988YA (en) 2015-03-31 2016-03-31 Method for manufacturing drug-containing biodegradable fiber material by electrospinning
BR112017020836-9A BR112017020836A2 (ja) 2015-03-31 2016-03-31 A manufacturing method of the biodegradable fibrin material containing a medicine using electrospinning
CN201680023901.XA CN107530276A (zh) 2015-03-31 2016-03-31 使用电纺丝制造含有药物的可生物降解的纤维状物质的方法
MX2017012400A MX2017012400A (es) 2015-03-31 2016-03-31 Metodo para la fabricacion de material de fibra biodegradable que contiene farmaco mediante electrohilado.
EP16773120.7A EP3278791A4 (en) 2015-03-31 2016-03-31 Method for manufacturing drug-containing biodegradable fiber material by electrospinning
JP2017510191A JPWO2016159240A1 (ja) 2015-03-31 2016-03-31 エレクトロスピニングを用いた、薬剤を含有する生分解性繊維素材の製造方法
US15/722,924 US20180021485A1 (en) 2015-03-31 2017-10-02 Method for manufacturing drug-containing biodegradable fiber material by electrospinning
ZA2017/06943A ZA201706943B (en) 2015-03-31 2017-10-13 Method for manufacturing drug-containing biodegradable fiber material by electrospinning
HK18108038.7A HK1249411A1 (zh) 2015-03-31 2018-06-22 使用電紡絲製造含有藥物的可生物降解的纖維狀物質的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562140722P 2015-03-31 2015-03-31
US62/140,722 2015-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/722,924 Continuation US20180021485A1 (en) 2015-03-31 2017-10-02 Method for manufacturing drug-containing biodegradable fiber material by electrospinning

Publications (1)

Publication Number Publication Date
WO2016159240A1 true WO2016159240A1 (ja) 2016-10-06

Family

ID=57006916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060670 WO2016159240A1 (ja) 2015-03-31 2016-03-31 エレクトロスピニングを用いた、薬剤を含有する生分解性繊維素材の製造方法

Country Status (10)

Country Link
US (1) US20180021485A1 (ja)
EP (1) EP3278791A4 (ja)
JP (1) JPWO2016159240A1 (ja)
CN (1) CN107530276A (ja)
BR (1) BR112017020836A2 (ja)
HK (1) HK1249411A1 (ja)
MX (1) MX2017012400A (ja)
SG (1) SG11201707988YA (ja)
WO (1) WO2016159240A1 (ja)
ZA (1) ZA201706943B (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188435A1 (ja) * 2016-04-28 2017-11-02 国立大学法人名古屋工業大学 エレクトロスピニング法を用いて生分解性繊維からなる骨再生用材料を製造するための方法
JP2018127745A (ja) * 2017-02-10 2018-08-16 国立大学法人 鹿児島大学 多孔質構造体製造方法及び多孔質構造体製造装置
CN109908107A (zh) * 2019-02-27 2019-06-21 广东省医疗器械研究所 一种负载抗菌药物串珠状纳米纤维膜及其制备方法
WO2019163696A1 (ja) * 2018-02-22 2019-08-29 国立大学法人 名古屋工業大学 エレクトロスピニング法を用いて製造した生分解性繊維材料を綿状に回収する方法、及びその方法を用いて製造された綿状の骨再生用材料
WO2019168000A1 (ja) * 2018-02-27 2019-09-06 国立大学法人 琉球大学 コラゲナーゲを用いないで脂肪組織から脂肪由来幹細胞を分離抽出培養するための方法、及び脂肪由来幹細胞分離抽出用キット
WO2019221159A1 (ja) * 2018-05-17 2019-11-21 学校法人明治大学 イノシトールリン酸を用いて抗菌性を付与した骨再生用材料の製造方法、及びその製造方法で製造された抗菌性骨再生用材料
WO2020002413A1 (en) * 2018-06-27 2020-01-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Multilayer patch for postoperative drug administration
WO2020054834A1 (ja) * 2018-09-14 2020-03-19 Orthorebirth株式会社 エレクトロスピニングを用いて製造された不織布からなる細胞培養基材、及びその製造方法
JP2020165069A (ja) * 2019-10-04 2020-10-08 Orthorebirth株式会社 生分解性繊維からなる不織布を用いて作製された細胞培養基材及びその製造方法
US11369473B2 (en) 2019-04-08 2022-06-28 Loubert S. Suddaby Extended release immunomodulatory implant to facilitate bone morphogenesis
US11779683B2 (en) 2019-04-08 2023-10-10 Loubert S. Suddaby Extended release immunomodulatory implant to facilitate bone morphogenesis

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3822402A4 (en) * 2018-07-09 2022-07-27 National Institute for Materials Science NON-WOVEN FABRIC, METHOD OF PRODUCTION AND COMPOSITION FOR ELECTROSPINNING
KR102348997B1 (ko) * 2020-11-03 2022-01-07 성균관대학교산학협력단 초음파 선택적 반응 시한성 나노복합소재 기반 마찰전기 발전소자 및 이를 이용한 신경 자극 치료 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521493A (ja) * 2000-01-28 2003-07-15 スミスクライン・ビーチャム・コーポレイション 電気紡糸された医薬組成物
US20090304771A1 (en) * 2008-04-03 2009-12-10 Drexel University Local Delivery System for the Chemotherapeutic Drug Paclitaxel
US20110038936A1 (en) * 2009-08-17 2011-02-17 Kimberly Ann Griswold System and method for electrospun drug loaded biodegradable chemotherapy applications
US20120058100A1 (en) * 2006-10-13 2012-03-08 Shastri V Prasad Modulation of drug release rate from electrospun fibers
JP2012161363A (ja) * 2011-02-03 2012-08-30 Yahashi Kogyo Kk ケイ素及びカルシウム徐放性綿状物及びその製造方法
WO2013013038A2 (en) * 2011-07-19 2013-01-24 Trustees Of Boston University Doping agents and polymeric compositions thereof for controlled drug delivery
WO2015005205A1 (ja) * 2013-07-09 2015-01-15 国立大学法人名古屋工業大学 骨欠損部充填材料、及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203235057U (zh) * 2012-01-13 2013-10-16 株式会社奥梭瑞贝斯 用于填充骨缺损的纤维填料
WO2013124869A2 (en) * 2012-02-21 2013-08-29 Amrita Vishwa Vidyapeetham University The art, method,manner process and system of fibrous bio-degradable polymeric wafers for the local delivery of therapeutic agents in combinations

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521493A (ja) * 2000-01-28 2003-07-15 スミスクライン・ビーチャム・コーポレイション 電気紡糸された医薬組成物
US20120058100A1 (en) * 2006-10-13 2012-03-08 Shastri V Prasad Modulation of drug release rate from electrospun fibers
US20090304771A1 (en) * 2008-04-03 2009-12-10 Drexel University Local Delivery System for the Chemotherapeutic Drug Paclitaxel
US20110038936A1 (en) * 2009-08-17 2011-02-17 Kimberly Ann Griswold System and method for electrospun drug loaded biodegradable chemotherapy applications
JP2012161363A (ja) * 2011-02-03 2012-08-30 Yahashi Kogyo Kk ケイ素及びカルシウム徐放性綿状物及びその製造方法
WO2013013038A2 (en) * 2011-07-19 2013-01-24 Trustees Of Boston University Doping agents and polymeric compositions thereof for controlled drug delivery
WO2015005205A1 (ja) * 2013-07-09 2015-01-15 国立大学法人名古屋工業大学 骨欠損部充填材料、及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3278791A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017257943B2 (en) * 2016-04-28 2020-04-30 National University Corporation Nagoya Institute Of Technology Method for manufacturing bone-regeneration material comprising biodegradable fibers by using electrospinning method
JP6251462B1 (ja) * 2016-04-28 2017-12-20 国立大学法人 名古屋工業大学 エレクトロスピニング法を用いて生分解性繊維からなる骨再生用材料を製造するための方法
JP2018057889A (ja) * 2016-04-28 2018-04-12 国立大学法人 名古屋工業大学 エレクトロスピニングを用いて生分解性繊維からなる骨再生用材料を製造するための方法
WO2017188435A1 (ja) * 2016-04-28 2017-11-02 国立大学法人名古屋工業大学 エレクトロスピニング法を用いて生分解性繊維からなる骨再生用材料を製造するための方法
EA038225B1 (ru) * 2016-04-28 2021-07-27 Нэшнл Юниверсити Корпорейшн Нагоя Инститьют Оф Текнолоджи Способ производства материала для регенерации кости, содержащего биоразлагаемое волокно, с использованием процесса электропрядения
JP2018127745A (ja) * 2017-02-10 2018-08-16 国立大学法人 鹿児島大学 多孔質構造体製造方法及び多孔質構造体製造装置
WO2019163696A1 (ja) * 2018-02-22 2019-08-29 国立大学法人 名古屋工業大学 エレクトロスピニング法を用いて製造した生分解性繊維材料を綿状に回収する方法、及びその方法を用いて製造された綿状の骨再生用材料
JPWO2019163696A1 (ja) * 2018-02-22 2021-02-12 国立大学法人 名古屋工業大学 エレクトロスピニング法を用いて製造した生分解性繊維材料を綿状に回収する方法、及びその方法を用いて製造された綿状の骨再生用材料
JP7228848B2 (ja) 2018-02-22 2023-02-27 国立大学法人 名古屋工業大学 エレクトロスピニング法を用いて製造した生分解性繊維材料を綿状に回収する方法、及びその方法を用いて製造された綿状の骨再生用材料
WO2019168000A1 (ja) * 2018-02-27 2019-09-06 国立大学法人 琉球大学 コラゲナーゲを用いないで脂肪組織から脂肪由来幹細胞を分離抽出培養するための方法、及び脂肪由来幹細胞分離抽出用キット
JPWO2019168000A1 (ja) * 2018-02-27 2020-08-20 国立大学法人 琉球大学 コラゲナーゲを用いないで脂肪組織から脂肪由来幹細胞を分離抽出培養するための方法、及び脂肪由来幹細胞分離抽出用キット
WO2019221159A1 (ja) * 2018-05-17 2019-11-21 学校法人明治大学 イノシトールリン酸を用いて抗菌性を付与した骨再生用材料の製造方法、及びその製造方法で製造された抗菌性骨再生用材料
WO2020002413A1 (en) * 2018-06-27 2020-01-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Multilayer patch for postoperative drug administration
WO2020054834A1 (ja) * 2018-09-14 2020-03-19 Orthorebirth株式会社 エレクトロスピニングを用いて製造された不織布からなる細胞培養基材、及びその製造方法
CN109908107A (zh) * 2019-02-27 2019-06-21 广东省医疗器械研究所 一种负载抗菌药物串珠状纳米纤维膜及其制备方法
CN109908107B (zh) * 2019-02-27 2022-07-08 广东省医疗器械研究所 一种负载抗菌药物串珠状纳米纤维膜及其制备方法
US11369473B2 (en) 2019-04-08 2022-06-28 Loubert S. Suddaby Extended release immunomodulatory implant to facilitate bone morphogenesis
US11779683B2 (en) 2019-04-08 2023-10-10 Loubert S. Suddaby Extended release immunomodulatory implant to facilitate bone morphogenesis
JP2020165069A (ja) * 2019-10-04 2020-10-08 Orthorebirth株式会社 生分解性繊維からなる不織布を用いて作製された細胞培養基材及びその製造方法

Also Published As

Publication number Publication date
HK1249411A1 (zh) 2018-11-02
ZA201706943B (en) 2018-12-19
EP3278791A4 (en) 2018-10-24
JPWO2016159240A1 (ja) 2018-02-01
BR112017020836A2 (ja) 2018-07-03
US20180021485A1 (en) 2018-01-25
CN107530276A (zh) 2018-01-02
SG11201707988YA (en) 2017-10-30
EP3278791A1 (en) 2018-02-07
MX2017012400A (es) 2018-01-26

Similar Documents

Publication Publication Date Title
WO2016159240A1 (ja) エレクトロスピニングを用いた、薬剤を含有する生分解性繊維素材の製造方法
CN100457445C (zh) 可生物降解和/或可生物吸收纤维制品及其在医学领域的应用
CN105748412B (zh) 针对术后慢性疼痛的药物负载微球
Liu et al. Tendon healing and anti-adhesion properties of electrospun fibrous membranes containing bFGF loaded nanoparticles
Liao et al. Injectable alginate hydrogel cross-linked by calcium gluconate-loaded porous microspheres for cartilage tissue engineering
Meinel et al. Electrospun matrices for localized drug delivery: current technologies and selected biomedical applications
US8017144B2 (en) Controlled release polymeric compositions of bone growth promoting compounds
EP2306991B1 (en) Injectable delivery of microparticles and compositions therefore
ES2730410T3 (es) Material para el tratamiento de insuficiencia cardíaca avanzada como dispositivo de regeneración miocárdica/cardiovascular
JP2020520344A (ja) フィブロインを含むナノファイバーならびにヒドロゲルおよび前記ナノファイバーを含むシステム
US20160325015A1 (en) Chitosan-enhanced electrospun fiber compositions
CN104602713A (zh) 用于制备丝微球的方法和组合物
PT2170287E (pt) Micropartículas compreendendo pcl e usos destas
KR20130118742A (ko) 항정신병약물 주사 가능한 데포 조성물
JP2008528204A (ja) ポリ−4−ヒドロキシブチレート粒子を使用した塞栓形成
ES2946262T3 (es) Lámina de liberación sostenida de fármaco para el tratamiento de la lesión nerviosa
WO2013124869A2 (en) The art, method,manner process and system of fibrous bio-degradable polymeric wafers for the local delivery of therapeutic agents in combinations
CN109289054B (zh) 一种特异靶向骨组织的plga-peg-zol载药纳米材料及其制备方法
Hazra et al. Polymeric composite matrix with high biobased content as pharmaceutically relevant molecular encapsulation and release platform
Abu Owida et al. Advancement of nanofibrous mats and common useful drug delivery applications
KR20230050084A (ko) Plga 및 약물을 함유하는 베타-사이클로덱스트린을 포함하는 약물 전달체
KR20120127471A (ko) 고분자 겔 제제
CN107206097A (zh) 用于治疗急性、术后或慢性疼痛的组合物及其使用方法
Kumar et al. Polymeric (PLGA-based) nanocomposites for application in drug delivery: Current state of the art and forthcoming perspectives
Surya et al. PLGA–the smart polymer for drug delivery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773120

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/012400

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 11201707988Y

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2017510191

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016773120

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017020836

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017020836

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170928