[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016158943A1 - Filler composition and polyolefin resin composition - Google Patents

Filler composition and polyolefin resin composition Download PDF

Info

Publication number
WO2016158943A1
WO2016158943A1 PCT/JP2016/060109 JP2016060109W WO2016158943A1 WO 2016158943 A1 WO2016158943 A1 WO 2016158943A1 JP 2016060109 W JP2016060109 W JP 2016060109W WO 2016158943 A1 WO2016158943 A1 WO 2016158943A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
range
parts
particles
fibrous
Prior art date
Application number
PCT/JP2016/060109
Other languages
French (fr)
Japanese (ja)
Inventor
出光 隆
祥大朗 飛田
哲生 高山
良一 野村
Original Assignee
宇部マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015209060A external-priority patent/JP6591859B2/en
Priority claimed from JP2015209061A external-priority patent/JP6591860B2/en
Application filed by 宇部マテリアルズ株式会社 filed Critical 宇部マテリアルズ株式会社
Priority to CN201680019877.2A priority Critical patent/CN107406637B/en
Priority to KR1020177030514A priority patent/KR102208291B1/en
Priority to US15/559,754 priority patent/US10479877B2/en
Publication of WO2016158943A1 publication Critical patent/WO2016158943A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a filler composition.
  • the present invention also relates to a polyolefin resin composition comprising the filler composition.
  • Polyolefin resin represented by polypropylene resin
  • polypropylene resin is used as a material for the manufacture of various molded products such as exterior and interior materials for automobiles, exterior materials for household appliances such as refrigerators and washing machines, and trays, shelf boards, and packaging sheets. Widely used. And, in order to improve physical properties such as rigidity and impact resistance of the molded polyolefin resin, it is widely used that the polyolefin resin is used as a polyolefin resin composition to which a filler (filler) is added. .
  • filler fillers used for such purposes, fibrous inorganic fillers and non-fibrous inorganic fillers are common.
  • Patent Document 1 there is little mold contamination at the time of molding, it is excellent in antistatic property, stability against light deterioration and molding processability, and has a good balance between high rigidity and impact resistance, so that it is a molded body.
  • an inorganic filler (or 99 to 60 parts by mass of a polypropylene polymer and an average particle diameter of 0.01 to 100 ⁇ m) is used as a polypropylene resin composition capable of obtaining a molded article having an excellent flow mark and weld appearance.
  • a polypropylene resin composition containing 1 to 40 parts by mass of an inorganic filler) and 0.05 to 5 parts by mass of a specific hindered amine light stabilizer is described. It is described that a non-fibrous inorganic filler, a fibrous inorganic filler, or a mixture thereof can be used as the inorganic filler.
  • Patent Document 2 includes inorganic fibers made of an inorganic material and spherical silica particles having a volume average particle diameter of 0.01 ⁇ m or more and 5 ⁇ m or less as a filler composition filled in a thermoplastic resin or a thermosetting resin. Filler compositions are described. In this document, it is described that the resin composition containing this filler composition is excellent in flow characteristics, and as an example of inorganic fibers, a carbon material having an aspect ratio of 5 or more or a carbon material as a main component And glass and those containing glass as a main component.
  • Patent Document 3 describes a silica particle material obtained by subjecting silica particles to surface treatment with a silane coupling agent and an organosilazane as a fine silica particle material having excellent affinity for resin and aggregation suppression effect. .
  • One of the recent improvement themes of automobiles is to reduce the weight of the vehicle body for the purpose of saving fuel.
  • an exterior material such as an automobile bumper
  • it has been studied to reduce the thickness in order to reduce the weight.
  • the thickness in the bumper of an automobile, even when the thickness is reduced, it is not easily deformed due to high impact resistance and the action of external force so as not to be easily damaged by an impact caused by contact with another automobile or various objects.
  • High rigidity is required.
  • polypropylene resin widely used as a material for automobile bumpers the impact resistance and rigidity of the molded product are generally in a trade-off relationship. Therefore, when one physical property is increased, the other physical property is decreased. Tend to be.
  • the inventors of the present invention examined the use of fillers described in Patent Documents 1, 2, and 3 as fillers for polyolefin resins. As a result, even if a thin molded article is produced using a polyolefin resin composition to which a filler described in those documents is added, the high impact resistance required for an automobile bumper is obtained. It has been found that it is difficult to obtain the molded body shown without sacrificing rigidity.
  • the inventor of the present invention is a polyolefin resin that is a molded body of a polyolefin resin such as a polypropylene resin, and enables the production of a resin molded body that exhibits both high rigidity and high impact resistance. Intense research was conducted to obtain the composition.
  • the inventor of the present invention contains polyolefin resin and fibrous basic magnesium sulfate particles in an amount ranging from 99: 1 to 50:50 by mass ratio, and the average particle size is 0.00. Fine non-fibrous inorganic fine particles in the range of 001 to 0.5 ⁇ m are added in an amount in the range of 0.001 to 50 parts by mass and / or 100 parts by mass of resin with respect to 100 parts by mass of fibrous basic magnesium sulfate particles.
  • the polyolefin resin composition molded body produced by using a composition containing an amount in the range of 0.0002 to 10 parts by mass does not substantially lower the flexural modulus as an index of rigidity,
  • the present inventors have found that the Izod impact strength, which is an index of sex, is greatly improved.
  • the present invention includes polyolefin resin and fibrous basic magnesium sulfate particles in an amount ranging from 99: 1 to 50:50 by mass ratio, and further has an average particle diameter of 0.001 to 0.5 ⁇ m.
  • the non-fibrous inorganic fine particles in the range are in the range of 0.001 to 50 parts by mass with respect to 100 parts by mass of the fibrous basic magnesium sulfate particles and / or 0.0002 to 10 parts by mass with respect to 100 parts by mass of the resin.
  • the polyolefin resin composition contains in an amount in the range of parts.
  • the present invention also provides fibrous basic magnesium sulfate particles and non-fibrous inorganic fine particles having an average particle diameter in the range of 0.001 to 0.5 ⁇ m in a mass ratio of 100: 0.001 to 100: 50. There is also a filler composition containing in an amount of.
  • Preferred embodiments of the polyolefin resin composition of the present invention are as follows.
  • the non-fibrous inorganic fine particles are spherical silicon dioxide particles.
  • the average major axis and the average minor axis of the fibrous basic magnesium sulfate particles are in the range of 5 to 50 ⁇ m and 0.1 to 2.0 ⁇ m, respectively, and the aspect ratio expressed by the average major axis / average minor axis is It is in the range of 5-50.
  • the average particle diameter of the non-fibrous inorganic fine particles is in the range of 1/5 to 1/500 with respect to the average minor diameter of the fibrous basic magnesium sulfate particles.
  • Non-fibrous inorganic fine particles are surface-treated with a coupling agent.
  • the polyolefin resin is a polypropylene resin.
  • Preferred embodiments of the filler composition of the present invention are as follows.
  • the non-fibrous inorganic fine particles are spherical silicon dioxide particles.
  • the average particle diameter of the spherical silicon dioxide particles is in the range of 0.005 to 0.1 ⁇ m.
  • the average major axis and the average minor axis of the fibrous basic magnesium sulfate particles are in the range of 5 to 50 ⁇ m and 0.1 to 2.0 ⁇ m, respectively, and the aspect ratio expressed by the average major axis / average minor axis is It is in the range of 5-50.
  • the average particle diameter of the non-fibrous inorganic fine particles is in the range of 1/5 to 1/500 with respect to the average short diameter of the fibrous basic magnesium sulfate particles.
  • the content of non-fibrous inorganic fine particles with respect to 100 parts by mass of fibrous basic magnesium sulfate particles is in the range of 0.001 to 8 parts by mass.
  • the content of non-fibrous inorganic fine particles with respect to 100 parts by mass of the fibrous basic magnesium sulfate particles is in the range of 0.005 to 2 parts by mass.
  • the surface is treated with a coupling agent.
  • a resin composition comprising the filler composition of the present invention, particularly a molded article produced using a polyolefin resin composition, exhibits both high impact resistance and rigidity, and is therefore advantageously used as an exterior material for automobile bumpers and the like. can do.
  • the molded object manufactured using the resin composition containing the filler composition of this invention, especially the polyolefin resin composition can be advantageously used also as automobile interior materials, such as an instrument panel.
  • the filler composition of the present invention contains fibrous basic magnesium sulfate particles and fine non-fibrous inorganic fine particles having an average particle diameter in the range of 0.001 to 0.5 ⁇ m. It is preferable that the non-fibrous inorganic fine particles adhere to the surface of the fibrous basic magnesium sulfate particles.
  • the content of the non-fibrous inorganic fine particles with respect to 100 parts by mass of the fibrous basic magnesium sulfate particles is in the range of 0.001 to 50, preferably in the range of 0.001 to 20 parts by mass, more preferably 0.00.
  • the amount is in the range of 001-8 parts by weight, particularly preferably in the range of 0.005-2 parts by weight.
  • Fibrous basic magnesium sulfate particles generally have an average major axis in the range of 5 to 50 ⁇ m, preferably in the range of 10 to 30 ⁇ m, and an average minor axis in the range of generally 0.1 to 2.0 ⁇ m, preferably 0.5 to
  • the average aspect ratio (average major axis / average minor axis) is generally 2 or more, preferably 5 or more, and particularly preferably 5 to 50.
  • the average major axis and the average minor axis of the fibrous basic magnesium sulfate particles mean the average values of the major axis and the minor axis of 1000 particles measured from an enlarged image by a scanning electron microscope (SEM).
  • the non-fibrous inorganic fine particles used in the present invention have an average particle size (average particle size of primary particles) in the range of 0.001 to 0.5 ⁇ m (1 nm to 500 nm), preferably 0.002 to 0.2 ⁇ m ( 2 nm to 200 nm), particularly preferably 0.005 to 0.1 ⁇ m (5 nm to 100 nm).
  • the average particle diameter of the non-fibrous inorganic fine particles is generally in the range of 1/2 to 1/1000, preferably in the range of 1/2 to 1/500 with respect to the average short diameter of the fibrous basic magnesium sulfate particles. Particularly preferably, it is in the range of 1/5 to 1/500.
  • the average particle size of the non-fibrous inorganic fine particles can be measured using image analysis of SEM photographs or a particle size distribution measuring device.
  • non-fibrous inorganic fine particles examples include silicon dioxide particles, magnesium oxide particles, magnesium hydroxide particles, basic magnesium carbonate particles, and calcium carbonate particles.
  • the non-fibrous inorganic fine particles are preferably spherical particles.
  • the spherical particles mean that the average aspect ratio (average major axis / average minor axis) is less than 2, preferably 1.5 or less.
  • the non-fibrous inorganic fine particles are preferably spherical silicon dioxide particles.
  • the filler composition of the present invention can be produced, for example, by mixing fibrous basic magnesium sulfate particles and non-fibrous inorganic fine particles. Mixing may be performed by dry mixing using a dry mixing apparatus, or may be performed by wet mixing using a liquid dispersion medium. In order to uniformly disperse the fibrous basic magnesium sulfate particles and the non-fibrous inorganic fine particles, it is preferable to use wet mixing.
  • mixing devices used in dry mixing include high-speed rotary mills (eg, cutter mills, cage mills, hammer mills, pin mills, turbo type mills, centrifugal classification mills), and jet mills.
  • high-speed rotary mills eg, cutter mills, cage mills, hammer mills, pin mills, turbo type mills, centrifugal classification mills
  • jet mills eg, jet mills.
  • dispersion medium used in wet mixing examples include water, lower alcohols and ketones.
  • Wet mixing is a method of mixing a dispersion of fibrous basic magnesium sulfate particles and a dispersion of non-fibrous inorganic fine particles, and mixing a dispersion of fibrous basic magnesium sulfate particles and a powder of non-fibrous inorganic fine particles.
  • a method of mixing fibrous basic magnesium sulfate particle powder with a dispersion of non-fibrous inorganic fine particles, a mixture of fibrous basic magnesium sulfate particle powder, non-fibrous inorganic fine particle powder and a liquid medium You may carry out by any method of the method to do.
  • Examples of the mixing device used in the wet mixing include a stirrer and a medium stirring mill.
  • a rotary disperser such as an ultrasonic disperser and a homomixer, a high-pressure homomixer, a wet jet mill, and the like can also be used.
  • the filler composition of the present invention may be surface-treated with a coupling agent in order to increase the affinity for the resin.
  • a coupling agent include an alkoxysilane having at least one functional group selected from the group consisting of phenyl group, vinyl group, epoxy group, methacryl group, amino group, ureido group, mercapto group, isocyanate group and acrylic group ( Silane coupling agent).
  • the surface treatment with the coupling agent may be performed only on the fibrous basic magnesium sulfate particles or the non-fibrous inorganic fine particles.
  • the filler composition of the present invention can be added to thermoplastic resins other than polyolefin resins and also to thermosetting resins.
  • the thermoplastic resin include a polyolefin resin, a polyester resin, a polyamide resin, and a polyacrylic resin.
  • polyolefin resins include ethylene homopolymers, propylene homopolymers, ethylene and propylene copolymers, ethylene and ⁇ -olefin copolymers, and propylene and ⁇ -olefin copolymers.
  • Examples of the polyester resin include polyethylene terephthalate and polybutylene terephthalate.
  • the polyamide resin include 6-nylon and 6,6-nylon.
  • the polyacrylic resin include polymethyl methacrylate. It can also be added to polycarbonate, polyetherimide and the like.
  • the thermosetting resin include an epoxy resin, a phenol resin, and a urethane resin.
  • the filler composition of the present invention exhibits an excellent effect of improving physical properties particularly when it is contained in a polyolefin resin such as a polypropylene resin or a polyethylene resin.
  • the amount of the filler composition added to the resin is generally in the range of 99: 1 to 50:50, preferably in the range of 99: 1 to 70:30, as the mass ratio of the resin to the filler composition (the former: the latter). Is the amount.
  • a kneading machine such as a uniaxial melt kneading extruder, a biaxial melt kneading extruder, or a Banbury mixer can be used.
  • Resins such as antioxidants, UV absorbers, pigments, antistatic agents, corrosion inhibitors, flame retardants, lubricants, neutralizers, foaming agents, plasticizers, anti-bubble agents, and crosslinking agents, as well as filler compositions Additives generally used for improving the physical properties and characteristics of the composition may be added.
  • the resin composition to which the filler composition of the present invention has been added can be formed into a resin molded body using any molding method.
  • molding methods include injection molding methods, extrusion molding methods, calendar molding methods, blow molding methods, foam molding methods and stretch molding methods.
  • the obtained polypropylene resin composition pellets were injection molded using a small injection molding machine (TE3-1E, manufactured by Nissei Plastic Industry Co., Ltd.) to prepare a test piece.
  • the test piece was a 1BB type (small dumbbell) test piece specified by JIS-K-7162.
  • the Izod impact strength and the flexural modulus were measured by the following method using the above test piece, the Izod impact strength was 3.7 kJ / m 2 and the flexural modulus was 3.5 GPa.
  • Izod impact strength Measured by a method according to JIS-K-7110 using a notching machine (manufactured by Imoto Seisakusho Co., Ltd.).
  • Flexural modulus Measured using a universal testing machine (Strograph VGF, manufactured by Toyo Seiki Seisakusho Co., Ltd.).
  • Example 1 100 parts by mass of fibrous basic magnesium sulfate particles used in Comparative Example 1 and 0.15 parts by mass of spherical silica particles (Admanano, manufactured by Admatechs, average particle size: 10 nm, measured by SEM)
  • the filler composition was prepared by dry mixing. Except that 15 parts by mass of the filler composition prepared above was added to 85 parts by mass of the polypropylene resin, a polypropylene resin composition pellet was produced in the same manner as in Comparative Example 1, and this pellet was used to produce Comparative Example 1.
  • a test piece was prepared in the same manner as described above.
  • the flexural modulus was the same value as the test piece prepared in Comparative Example 1, but the Izod impact strength was in Comparative Example 1. It was confirmed that the value was clearly higher than that of the test piece prepared.
  • MFR temperature 230 ° C., load 2.16 kg
  • fibrous basic magnesium sulfate particles used in Comparative Example 1 were mixed.
  • the resulting mixture was melt-kneaded using a twin-screw melt-kneading extruder (L /
  • the obtained polypropylene resin composition pellets were injection molded at a cylinder temperature of 230 ° C. and a mold temperature of 50 ° C. using a small injection molding machine (manual injection molding machine, Shinsei Serbit, Handy Try), and a test piece (Strip shape, width 5 mm ⁇ thickness 2 mm ⁇ length 50 mm) was prepared. Using this test piece, Izod impact strength and flexural modulus were measured by the following method. The measurement results are shown in Table 1.
  • Izod impact strength Measured according to JIS-K-7110 using an Izod impact tester (manufactured by Mize Tester).
  • Flexural modulus Electric measuring stand (manufactured by Imada Co., Ltd., MX-500N) + digital force gauge (manufactured by Imada Co., Ltd., ZTA-500N), with a load speed of 10 mm / min and a distance between fulcrums of 40 mm It was measured.
  • Example 2 A filler composition was prepared by dry-mixing 100 parts by mass of fibrous basic magnesium sulfate particles used in Comparative Example 1 and 0.015 parts by mass of spherical silica particles.
  • a polypropylene resin composition pellet was produced in the same manner as in Comparative Example 2 except that 15 parts by mass of the filler composition prepared above was added to 85 parts by mass of the polypropylene resin.
  • a test piece was prepared in the same manner as described above. Using this test piece, Izod impact strength and flexural modulus were measured. The measurement results are shown in Table 1.
  • Example 3 A filler composition was prepared in the same manner as in Example 2 except that the spherical silica particles mixed with 100 parts by mass of the fibrous basic magnesium sulfate particles were changed to 0.15 parts by mass. Product pellets were produced. A test piece was prepared using this pellet, and Izod impact strength and flexural modulus were measured. The measurement results are shown in Table 1.
  • Example 4 A filler composition was prepared in the same manner as in Example 2 except that the spherical silica particles mixed with 100 parts by mass of the fibrous basic magnesium sulfate particles were changed to 1.5 parts by mass. Product pellets were produced. A test piece was prepared using this pellet, and Izod impact strength and flexural modulus were measured. The measurement results are shown in Table 1.
  • Example 5 85 parts by mass of polypropylene resin [MFR (temperature 230 ° C., load 2.16 kg): 52 g / min], fibrous basic magnesium sulfate particles (MOS A-1, manufactured by Ube Materials Co., Ltd., average major axis: 15 ⁇ m, 15 parts by mass of average minor axis (0.5 ⁇ m) and spherical silica particles (Admanano, manufactured by Admatechs Co., Ltd., average particle diameter: 10 nm, measured by SEM) were mixed at a ratio of 0.0015 parts by mass. The obtained mixture was melted under the conditions of a temperature of 230 ° C.
  • melt-kneaded product was kneaded and extruded into a strand shape, and then cut to obtain a polypropylene resin composition pellet containing fibrous basic magnesium sulfate particles and spherical silica particle pellets.
  • Example 6 A polypropylene resin composition pellet was obtained in the same manner as in Example 5 except that the amount of the spherical silica particles was 0.015 part by mass.
  • Example 7 Polypropylene resin composition pellets were obtained in the same manner as in Example 5 except that the amount of the spherical silica particles was 0.15 parts by mass.
  • Example 8 Polypropylene resin composition pellets were obtained in the same manner as in Example 5 except that the amount of the spherical silica particles was 0.75 parts by mass.
  • Example 9 A polypropylene resin composition pellet was obtained in the same manner as in Example 5 except that the amount of the spherical silica particles was 1.0 part by mass.
  • Example 10 A polypropylene resin composition pellet was obtained in the same manner as in Example 5 except that the amount of the spherical silica particles was 1.5 parts by mass.
  • Example 11 A polypropylene resin composition pellet was obtained in the same manner as in Example 5 except that the amount of the spherical silica particles was 4.5 parts by mass.
  • Example 12 A polypropylene resin composition pellet was obtained in the same manner as in Example 5 except that the amount of the spherical silica particles was 7.5 parts by mass.
  • A Amount of polypropylene resin used (unit: parts by mass)
  • B Blending amount of fibrous basic magnesium sulfate particles (unit: parts by mass)
  • C Blending amount of spherical silica particles (unit: parts by mass)
  • C / A Compounding ratio of spherical silica particles to 100 parts by mass of polypropylene resin
  • C / B Compounding ratio of spherical silica particles to 100 parts by mass of fibrous basic magnesium sulfate particles
  • C / A Compounding ratio of spherical silica particles to 100 parts by mass of polypropylene resin
  • C / B Compounding ratio of spherical silica particles to 100 parts by mass of fibrous basic magnesium sulfate particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a filler composition comprising, in amounts within the range of 100:0.001 to 100:50 by mass ratio, fibrous basic magnesium sulfate particles and nonfibrous inorganic microparticles having an average particle diameter within the range of 0.001 to 0.5 µm. Also provided is a polyolefin resin composition comprising: polyolefin resin and fibrous basic magnesium sulfate particles in amounts within the range of 99:1 to 50:50 by mass ratio; and nonfibrous inorganic microparticles having an average particle diameter within the range of 0.001 to 0.5 µm, the microparticles being in an amount within the range of 0.001 to 50 parts by mass relative to 100 parts by mass of the fibrous basic magnesium sulfate particles and/or in an amount within the range of 0.0002 to 10 parts by mass relative to 100 parts by mass of the resin.

Description

フィラー組成物及びポリオレフィン樹脂組成物Filler composition and polyolefin resin composition
 本発明は、フィラー組成物に関する。本発明はまた、そのフィラー組成物を含むポリオレフィン樹脂組成物にも関する。 The present invention relates to a filler composition. The present invention also relates to a polyolefin resin composition comprising the filler composition.
 ポリプロピレン樹脂に代表されるポリオレフィン樹脂は、自動車の外装材や内装材、冷蔵庫及び洗濯機などの家庭電化製品の外装材、またトレー、棚板、包装シートなどの各種成形体の製造用の材料として広く利用されている。そして、成形後のポリオレフィン樹脂成形体の剛性や耐衝撃性などの物性を向上させるために、ポリオレフィン樹脂を、充填材(フィラー)を添加したポリオレフィン樹脂組成物として使用することは広く行われている。そのような目的で使用される充填材としては、繊維状無機充填材と非繊維状無機充填材が一般的である。 Polyolefin resin, represented by polypropylene resin, is used as a material for the manufacture of various molded products such as exterior and interior materials for automobiles, exterior materials for household appliances such as refrigerators and washing machines, and trays, shelf boards, and packaging sheets. Widely used. And, in order to improve physical properties such as rigidity and impact resistance of the molded polyolefin resin, it is widely used that the polyolefin resin is used as a polyolefin resin composition to which a filler (filler) is added. . As fillers used for such purposes, fibrous inorganic fillers and non-fibrous inorganic fillers are common.
 特許文献1には、成形時の金型汚染が少なく、帯電防止性、耐光劣化安定性、成形加工性に優れ、かつ、高い剛性と耐衝撃性の良好なバランスを有し、成形体にした場合、フローマークとウエルド外観に優れた成形体を得ることができるポリプロピレン系樹脂組成物として、ポリプロピレン系重合体を99~60質量部、平均粒子径が0.01~100μmの無機充填剤(または無機充填材)を1~40質量部、そして特定のヒンダードアミン系光安定剤を0.05~5質量部の量にて含有するポリプロピレン系樹脂組成物が記載されている。無機充填材としては、非繊維状無機充填材、繊維状無機充填材又はこれらの混合物が用いることができると記載されている。 In Patent Document 1, there is little mold contamination at the time of molding, it is excellent in antistatic property, stability against light deterioration and molding processability, and has a good balance between high rigidity and impact resistance, so that it is a molded body. In this case, an inorganic filler (or 99 to 60 parts by mass of a polypropylene polymer and an average particle diameter of 0.01 to 100 μm) is used as a polypropylene resin composition capable of obtaining a molded article having an excellent flow mark and weld appearance. A polypropylene resin composition containing 1 to 40 parts by mass of an inorganic filler) and 0.05 to 5 parts by mass of a specific hindered amine light stabilizer is described. It is described that a non-fibrous inorganic filler, a fibrous inorganic filler, or a mixture thereof can be used as the inorganic filler.
 特許文献2には、熱可塑性樹脂もしくは熱硬化性樹脂に充填するフィラー組成物として、無機材料からなる無機繊維と、体積平均粒径が0.01μm以上、5μm以下である球状シリカ粒子とを含むフィラー組成物が記載されている。この文献には、このフィラー組成物を含有する樹脂組成物は、流動特性に優れると記載されていて、無機繊維の例として、アスペクト比が5以上の炭素材料又は炭素材料を主成分とするものやガラスやガラスを主成分とするものが記載されている。 Patent Document 2 includes inorganic fibers made of an inorganic material and spherical silica particles having a volume average particle diameter of 0.01 μm or more and 5 μm or less as a filler composition filled in a thermoplastic resin or a thermosetting resin. Filler compositions are described. In this document, it is described that the resin composition containing this filler composition is excellent in flow characteristics, and as an example of inorganic fibers, a carbon material having an aspect ratio of 5 or more or a carbon material as a main component And glass and those containing glass as a main component.
 特許文献3には、樹脂に対する親和性と凝集抑制効果に優れた微細なシリカ粒子材料として、シリカ粒子をシランカップリング剤とオルガノシラザンとで表面処理して得たシリカ粒子材料が記載されている。 Patent Document 3 describes a silica particle material obtained by subjecting silica particles to surface treatment with a silane coupling agent and an organosilazane as a fine silica particle material having excellent affinity for resin and aggregation suppression effect. .
特開2009-167407号公報JP 2009-167407 A 特開2015-13978号公報Japanese Patent Laid-Open No. 2015-13978 特開2011-213514号公報JP 2011-213514 A
 近年の自動車の改良テーマの一つとして、省燃費を目的とした車体の軽量化がある。例えば、自動車のバンパーなどの外装材では、軽量化のために厚みを薄くすることが検討されている。ただし、自動車のバンパーでは、厚みを薄くした場合でも、他の自動車や各種物体との接触により発生する衝撃により容易に破損しないように、高い耐衝撃性と、外力の作用により容易に変形しないような高い剛性とが要求される。しかしながら、自動車のバンパーの材料として広く使用されているポリプロピレン樹脂では、その成形体の耐衝撃性と剛性とは一般にトレードオフの関係にあることから、一方の物性を高くすると、他方の物性が低くなる傾向がある。 One of the recent improvement themes of automobiles is to reduce the weight of the vehicle body for the purpose of saving fuel. For example, in an exterior material such as an automobile bumper, it has been studied to reduce the thickness in order to reduce the weight. However, in the bumper of an automobile, even when the thickness is reduced, it is not easily deformed due to high impact resistance and the action of external force so as not to be easily damaged by an impact caused by contact with another automobile or various objects. High rigidity is required. However, in polypropylene resin widely used as a material for automobile bumpers, the impact resistance and rigidity of the molded product are generally in a trade-off relationship. Therefore, when one physical property is increased, the other physical property is decreased. Tend to be.
 本発明の発明者は、ポリオレフィン樹脂の充填材として、特許文献1、2、3のそれぞれに記載されている充填剤の使用を検討した。そして、その結果、それらの文献に記載されている充填材を添加したポリオレフィン樹脂組成物を用いて厚みの薄い成形体を製造しても、自動車のバンパーに要求されるような高い耐衝撃性を示す成形体を、剛性を犠牲にすることなく得ることが難しいとの知見を得た。 The inventors of the present invention examined the use of fillers described in Patent Documents 1, 2, and 3 as fillers for polyolefin resins. As a result, even if a thin molded article is produced using a polyolefin resin composition to which a filler described in those documents is added, the high impact resistance required for an automobile bumper is obtained. It has been found that it is difficult to obtain the molded body shown without sacrificing rigidity.
 上記の知見に基づき、本発明の発明者は、ポリプロピレン樹脂などのポリオレフィン樹脂の成形体であって、高い剛性と高い耐衝撃性とを併せ示す樹脂成形体を製造することを可能にするポリオレフィン樹脂組成物を得るために鋭意研究を行った。 Based on the above findings, the inventor of the present invention is a polyolefin resin that is a molded body of a polyolefin resin such as a polypropylene resin, and enables the production of a resin molded body that exhibits both high rigidity and high impact resistance. Intense research was conducted to obtain the composition.
 上記の研究の結果、本発明の発明者は、ポリオレフィン樹脂と繊維状塩基性硫酸マグネシウム粒子とを質量比で99:1~50:50の範囲の量にて含み、さらに平均粒子径が0.001~0.5μmの範囲にある微細な非繊維状無機物微粒子を、繊維状塩基性硫酸マグネシウム粒子100質量部に対して0.001~50質量部の範囲の量及び/又は樹脂100質量部に対して0.0002~10質量部の範囲の量にて含む組成物を用いて製造したポリオレフィン樹脂組成物成形体は、剛性の指標となる曲げ弾性率が実質的に低下することなく、耐衝撃性の指標となるアイゾッド衝撃強さが大幅に向上することを見出し、本発明を完成させた。 As a result of the above research, the inventor of the present invention contains polyolefin resin and fibrous basic magnesium sulfate particles in an amount ranging from 99: 1 to 50:50 by mass ratio, and the average particle size is 0.00. Fine non-fibrous inorganic fine particles in the range of 001 to 0.5 μm are added in an amount in the range of 0.001 to 50 parts by mass and / or 100 parts by mass of resin with respect to 100 parts by mass of fibrous basic magnesium sulfate particles. On the other hand, the polyolefin resin composition molded body produced by using a composition containing an amount in the range of 0.0002 to 10 parts by mass does not substantially lower the flexural modulus as an index of rigidity, The present inventors have found that the Izod impact strength, which is an index of sex, is greatly improved.
 従って、本発明は、ポリオレフィン樹脂と繊維状塩基性硫酸マグネシウム粒子とを質量比で99:1~50:50の範囲の量にて含み、さらに、平均粒子径が0.001~0.5μmの範囲にある非繊維状無機物微粒子を、繊維状塩基性硫酸マグネシウム粒子100質量部に対して0.001~50質量部の範囲の量及び/又は樹脂100質量部に対して0.0002~10質量部の範囲の量にて含むポリオレフィン樹脂組成物にある。 Therefore, the present invention includes polyolefin resin and fibrous basic magnesium sulfate particles in an amount ranging from 99: 1 to 50:50 by mass ratio, and further has an average particle diameter of 0.001 to 0.5 μm. The non-fibrous inorganic fine particles in the range are in the range of 0.001 to 50 parts by mass with respect to 100 parts by mass of the fibrous basic magnesium sulfate particles and / or 0.0002 to 10 parts by mass with respect to 100 parts by mass of the resin. The polyolefin resin composition contains in an amount in the range of parts.
 本発明はまた、繊維状塩基性硫酸マグネシウム粒子と、平均粒子径が0.001~0.5μmの範囲にある非繊維状無機物微粒子とを質量比で100:0.001~100:50の範囲の量にて含むフィラー組成物にもある。 The present invention also provides fibrous basic magnesium sulfate particles and non-fibrous inorganic fine particles having an average particle diameter in the range of 0.001 to 0.5 μm in a mass ratio of 100: 0.001 to 100: 50. There is also a filler composition containing in an amount of.
 本発明のポリオレフィン樹脂組成物の好ましい態様は、次の通りである。
(1)非繊維状無機物微粒子が球状二酸化ケイ素粒子である。
(2)繊維状塩基性硫酸マグネシウム粒子の平均長径と平均短径がそれぞれ5~50μmの範囲と0.1~2.0μmの範囲にあり、平均長径/平均短径で表されるアスペクト比が5~50の範囲にある。
(3)非繊維状無機物微粒子の平均粒子径が繊維状塩基性硫酸マグネシウム粒子の平均短径に対して1/5~1/500の範囲にある。
(4)繊維状塩基性硫酸マグネシウム粒子100質量部に対する非繊維状無機物微粒子の含有量が0.005~2質量部の範囲にある。
(5)非繊維状無機物微粒子がカップリング剤で表面処理されている。
(6)ポリオレフィン樹脂がポリプロピレン樹脂である。
Preferred embodiments of the polyolefin resin composition of the present invention are as follows.
(1) The non-fibrous inorganic fine particles are spherical silicon dioxide particles.
(2) The average major axis and the average minor axis of the fibrous basic magnesium sulfate particles are in the range of 5 to 50 μm and 0.1 to 2.0 μm, respectively, and the aspect ratio expressed by the average major axis / average minor axis is It is in the range of 5-50.
(3) The average particle diameter of the non-fibrous inorganic fine particles is in the range of 1/5 to 1/500 with respect to the average minor diameter of the fibrous basic magnesium sulfate particles.
(4) The content of non-fibrous inorganic fine particles with respect to 100 parts by mass of fibrous basic magnesium sulfate particles is in the range of 0.005 to 2 parts by mass.
(5) Non-fibrous inorganic fine particles are surface-treated with a coupling agent.
(6) The polyolefin resin is a polypropylene resin.
 本発明のフィラー組成物の好ましい態様は、次の通りである。
(1)非繊維状無機物微粒子が、球状二酸化ケイ素粒子である
(2)球状二酸化ケイ素粒子の平均粒子径が0.005~0.1μmの範囲にある。
(3)繊維状塩基性硫酸マグネシウム粒子の平均長径と平均短径がそれぞれ5~50μmの範囲と0.1~2.0μmの範囲にあり、平均長径/平均短径で表されるアスペクト比が5~50の範囲にある。
(4)非繊維状無機物微粒子の平均粒子径が繊維状塩基性硫酸マグネシウム粒子の平均短径に対して1/5~1/500の範囲にある。
(5)繊維状塩基性硫酸マグネシウム粒子100質量部に対する非繊維状無機物微粒子の含有量が0.001~8質量部の範囲にある。
(6)繊維状塩基性硫酸マグネシウム粒子100質量部に対する非繊維状無機物微粒子の含有量が0.005~2質量部の範囲にある。
(7)カップリング剤で表面処理されている。
Preferred embodiments of the filler composition of the present invention are as follows.
(1) The non-fibrous inorganic fine particles are spherical silicon dioxide particles. (2) The average particle diameter of the spherical silicon dioxide particles is in the range of 0.005 to 0.1 μm.
(3) The average major axis and the average minor axis of the fibrous basic magnesium sulfate particles are in the range of 5 to 50 μm and 0.1 to 2.0 μm, respectively, and the aspect ratio expressed by the average major axis / average minor axis is It is in the range of 5-50.
(4) The average particle diameter of the non-fibrous inorganic fine particles is in the range of 1/5 to 1/500 with respect to the average short diameter of the fibrous basic magnesium sulfate particles.
(5) The content of non-fibrous inorganic fine particles with respect to 100 parts by mass of fibrous basic magnesium sulfate particles is in the range of 0.001 to 8 parts by mass.
(6) The content of non-fibrous inorganic fine particles with respect to 100 parts by mass of the fibrous basic magnesium sulfate particles is in the range of 0.005 to 2 parts by mass.
(7) The surface is treated with a coupling agent.
 本発明のフィラー組成物を含む樹脂組成物、特にポリオレフィン樹脂組成物を用いて製造した成形体は、高い耐衝撃性と剛性とを併せ示すことから、自動車のバンパーなどの外装材として有利に使用することができる。また、本発明のフィラー組成物を含む樹脂組成物、特にポリオレフィン樹脂組成物を用いて製造した成形体は、インストルメントパネルなどの自動車内装材としても有利に使用できる。 A resin composition comprising the filler composition of the present invention, particularly a molded article produced using a polyolefin resin composition, exhibits both high impact resistance and rigidity, and is therefore advantageously used as an exterior material for automobile bumpers and the like. can do. Moreover, the molded object manufactured using the resin composition containing the filler composition of this invention, especially the polyolefin resin composition can be advantageously used also as automobile interior materials, such as an instrument panel.
 次に、本発明のフィラー組成物及びポリオレフィン樹脂組成物に関する詳しい説明を記載する。 Next, a detailed description of the filler composition and the polyolefin resin composition of the present invention will be described.
 本発明のフィラー組成物は、繊維状塩基性硫酸マグネシウム粒子と平均粒子径が0.001~0.5μmの範囲にある微細な非繊維状無機物微粒子とを含む。非繊維状無機物微粒子は、繊維状塩基性硫酸マグネシウム粒子の表面に点在した状態で付着していることが好ましい。繊維状塩基性硫酸マグネシウム粒子100質量部に対する非繊維状無機物微粒子の含有量は、0.001~50の範囲の量、好ましくは0.001~20質量部の範囲の量、より好ましくは0.001~8質量部の範囲の量、特に好ましくは0.005~2質量部の範囲の量である。 The filler composition of the present invention contains fibrous basic magnesium sulfate particles and fine non-fibrous inorganic fine particles having an average particle diameter in the range of 0.001 to 0.5 μm. It is preferable that the non-fibrous inorganic fine particles adhere to the surface of the fibrous basic magnesium sulfate particles. The content of the non-fibrous inorganic fine particles with respect to 100 parts by mass of the fibrous basic magnesium sulfate particles is in the range of 0.001 to 50, preferably in the range of 0.001 to 20 parts by mass, more preferably 0.00. The amount is in the range of 001-8 parts by weight, particularly preferably in the range of 0.005-2 parts by weight.
 繊維状塩基性硫酸マグネシウム粒子は、平均長径が一般に5~50μmの範囲、好ましくは10~30μmの範囲であり、平均短径が一般に0.1~2.0μmの範囲、好ましくは0.5~1.0μmの範囲であり、平均アスペクト比(平均長径/平均短径)は、一般に2以上、好ましくは5以上、特に好ましくは5~50の範囲である。繊維状塩基性硫酸マグネシウム粒子の平均長径及び平均短径は、走査型電子顕微鏡(SEM)による拡大画像から測定した1000個の粒子の長径及び短径のそれぞれの平均値を意味する。 Fibrous basic magnesium sulfate particles generally have an average major axis in the range of 5 to 50 μm, preferably in the range of 10 to 30 μm, and an average minor axis in the range of generally 0.1 to 2.0 μm, preferably 0.5 to The average aspect ratio (average major axis / average minor axis) is generally 2 or more, preferably 5 or more, and particularly preferably 5 to 50. The average major axis and the average minor axis of the fibrous basic magnesium sulfate particles mean the average values of the major axis and the minor axis of 1000 particles measured from an enlarged image by a scanning electron microscope (SEM).
 本発明で使用する非繊維状無機物微粒子は、その平均粒子径(一次粒子の平均粒子径)が0.001~0.5μm(1nm~500nm)の範囲、好ましくは0.002~0.2μm(2nm~200nm)の範囲、特に好ましくは0.005~0.1μm(5nm~100nm)の範囲にある。非繊維状無機物微粒子の平均粒子径はまた、繊維状塩基性硫酸マグネシウム粒子の平均短径に対して、一般に1/2~1/1000の範囲、好ましくは1/2~1/500の範囲、特に好ましくは1/5~1/500の範囲にある。非繊維状無機物微粒子の平均粒子径は、SEM写真の画像解析あるいは粒度分布測定装置を用いて測定することができる。 The non-fibrous inorganic fine particles used in the present invention have an average particle size (average particle size of primary particles) in the range of 0.001 to 0.5 μm (1 nm to 500 nm), preferably 0.002 to 0.2 μm ( 2 nm to 200 nm), particularly preferably 0.005 to 0.1 μm (5 nm to 100 nm). The average particle diameter of the non-fibrous inorganic fine particles is generally in the range of 1/2 to 1/1000, preferably in the range of 1/2 to 1/500 with respect to the average short diameter of the fibrous basic magnesium sulfate particles. Particularly preferably, it is in the range of 1/5 to 1/500. The average particle size of the non-fibrous inorganic fine particles can be measured using image analysis of SEM photographs or a particle size distribution measuring device.
 非繊維状無機物微粒子の例としては、二酸化ケイ素粒子、酸化マグネシウム粒子、水酸化マグネシウム粒子、塩基性炭酸マグネシウム粒子、及び炭酸カルシウム粒子を挙げることができる。非繊維状無機物微粒子は球状粒子であることが好ましい。ここで、球状粒子であるとは、平均アスペクト比(平均長径/平均短径)が2未満、好ましくは1.5以下であることを意味する。非繊維状無機物微粒子は、球状二酸化ケイ素粒子であることが好ましい。 Examples of non-fibrous inorganic fine particles include silicon dioxide particles, magnesium oxide particles, magnesium hydroxide particles, basic magnesium carbonate particles, and calcium carbonate particles. The non-fibrous inorganic fine particles are preferably spherical particles. Here, the spherical particles mean that the average aspect ratio (average major axis / average minor axis) is less than 2, preferably 1.5 or less. The non-fibrous inorganic fine particles are preferably spherical silicon dioxide particles.
 本発明のフィラー組成物は、例えば、繊維状塩基性硫酸マグネシウム粒子と非繊維状無機物微粒子とを混合することによって製造することができる。混合は、乾式混合装置を用いる乾式混合により行なってもよいし、液体分散媒を利用する湿式混合により行なってもよい。繊維状塩基性硫酸マグネシウム粒子と非繊維状無機物微粒子とを均一に分散させるためには、湿式混合を利用することが好ましい。 The filler composition of the present invention can be produced, for example, by mixing fibrous basic magnesium sulfate particles and non-fibrous inorganic fine particles. Mixing may be performed by dry mixing using a dry mixing apparatus, or may be performed by wet mixing using a liquid dispersion medium. In order to uniformly disperse the fibrous basic magnesium sulfate particles and the non-fibrous inorganic fine particles, it is preferable to use wet mixing.
 乾式混合で使用する混合装置の例としては、高速回転ミル(例、カッターミル、ケージミル、ハンマーミル、ピンミル、ターボタイプミル、遠心分級ミル)、ジェットミルを挙げることができる。 Examples of mixing devices used in dry mixing include high-speed rotary mills (eg, cutter mills, cage mills, hammer mills, pin mills, turbo type mills, centrifugal classification mills), and jet mills.
 湿式混合で使用する分散媒の例としては、水、低級アルコール及びケトンを挙げることができる。湿式混合は、繊維状塩基性硫酸マグネシウム粒子の分散液と非繊維状無機物微粒子の分散液とを混合する方法、繊維状塩基性硫酸マグネシウム粒子の分散液と非繊維状無機物微粒子の粉末とを混合する方法、繊維状塩基性硫酸マグネシウム粒子の粉末と非繊維状無機物微粒子の分散液とを混合する方法、繊維状塩基性硫酸マグネシウム粒子の粉末と非繊維状無機物微粒子の粉末と液体媒体とを混合する方法のいずれの方法により行なってもよい。湿式混合で使用する混合装置の例としては、撹拌機、媒体撹拌ミルを挙げることができる。また、超音波分散機、ホモミキサー等の回転式の分散機、高圧ホモミキサー、湿式ジェットミルなどを使用することもできる。 Examples of the dispersion medium used in wet mixing include water, lower alcohols and ketones. Wet mixing is a method of mixing a dispersion of fibrous basic magnesium sulfate particles and a dispersion of non-fibrous inorganic fine particles, and mixing a dispersion of fibrous basic magnesium sulfate particles and a powder of non-fibrous inorganic fine particles. , A method of mixing fibrous basic magnesium sulfate particle powder with a dispersion of non-fibrous inorganic fine particles, a mixture of fibrous basic magnesium sulfate particle powder, non-fibrous inorganic fine particle powder and a liquid medium You may carry out by any method of the method to do. Examples of the mixing device used in the wet mixing include a stirrer and a medium stirring mill. In addition, a rotary disperser such as an ultrasonic disperser and a homomixer, a high-pressure homomixer, a wet jet mill, and the like can also be used.
 本発明のフィラー組成物は、樹脂への親和性を高めるために、カップリング剤で表面処理してもよい。カップリング剤の例としては、フェニル基、ビニル基、エポキシ基、メタクリル基、アミノ基、ウレイド基、メルカプト基、イソシアネート基及びアクリル基からなる群より選ばれる少なくとも一種の官能基を有するアルコキシシラン(シランカップリング剤)を挙げることができる。カップリング剤による表面処理は、繊維状塩基性硫酸マグネシウム粒子もしくは非繊維状無機物微粒子のいずれかのみに行ってもよい。 The filler composition of the present invention may be surface-treated with a coupling agent in order to increase the affinity for the resin. Examples of the coupling agent include an alkoxysilane having at least one functional group selected from the group consisting of phenyl group, vinyl group, epoxy group, methacryl group, amino group, ureido group, mercapto group, isocyanate group and acrylic group ( Silane coupling agent). The surface treatment with the coupling agent may be performed only on the fibrous basic magnesium sulfate particles or the non-fibrous inorganic fine particles.
 本発明のフィラー組成物は、ポリオレフィン樹脂以外の熱可塑性樹脂、また熱硬化性樹脂にも添加することができる。熱可塑性樹脂の例としては、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリアクリル樹脂を挙げることができる。ポリオレフィン樹脂の例としては、エチレンの単独重合体、プロピレンの単独重合体、エチレンとプロピレンの共重合体、エチレンとα-オレフィンとの共重合体、及びプロピレンとα-オレフィンとの共重合体を挙げることができる。ポリエステル樹脂の例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレートを挙げることができる。ポリアミド樹脂の例としては、6-ナイロン、6,6-ナイロンを挙げることができる。ポリアクリル樹脂の例としては、ポリメタクリル酸メチルを挙げることができる。また、ポリカーボネート、ポリエーテルイミドなどにも添加することができる。熱硬化性樹脂の例としては、エポキシ樹脂、フェノール樹脂、ウレタン樹脂を挙げることができる。 The filler composition of the present invention can be added to thermoplastic resins other than polyolefin resins and also to thermosetting resins. Examples of the thermoplastic resin include a polyolefin resin, a polyester resin, a polyamide resin, and a polyacrylic resin. Examples of polyolefin resins include ethylene homopolymers, propylene homopolymers, ethylene and propylene copolymers, ethylene and α-olefin copolymers, and propylene and α-olefin copolymers. Can be mentioned. Examples of the polyester resin include polyethylene terephthalate and polybutylene terephthalate. Examples of the polyamide resin include 6-nylon and 6,6-nylon. Examples of the polyacrylic resin include polymethyl methacrylate. It can also be added to polycarbonate, polyetherimide and the like. Examples of the thermosetting resin include an epoxy resin, a phenol resin, and a urethane resin.
 本発明のフィラー組成物は、特にポリプロピレン樹脂やポリエチレン樹脂などのポリオレフィン樹脂に含有させた場合に優れた物性向上効果が発現する。 The filler composition of the present invention exhibits an excellent effect of improving physical properties particularly when it is contained in a polyolefin resin such as a polypropylene resin or a polyethylene resin.
 フィラー組成物の樹脂への添加量は、樹脂とフィラー組成物との質量比(前者:後者)で一般に99:1~50:50の範囲の量、好ましくは99:1~70:30の範囲の量である。フィラー組成物の樹脂への添加には、一軸溶融混練押出機、二軸溶融混練押出機、バンバリミキサーなどの混練機を用いることができる。樹脂には、フィラー組成物と共に酸化防止剤、紫外線吸収剤、顔料、帯電防止剤、腐食防止剤、難燃剤、滑剤、中和剤、発泡剤、可塑剤、気泡防止剤、架橋剤などの樹脂組成物の物性や特性を改良するために一般的に使用されている添加剤を添加していてもよい。 The amount of the filler composition added to the resin is generally in the range of 99: 1 to 50:50, preferably in the range of 99: 1 to 70:30, as the mass ratio of the resin to the filler composition (the former: the latter). Is the amount. For the addition of the filler composition to the resin, a kneading machine such as a uniaxial melt kneading extruder, a biaxial melt kneading extruder, or a Banbury mixer can be used. Resins such as antioxidants, UV absorbers, pigments, antistatic agents, corrosion inhibitors, flame retardants, lubricants, neutralizers, foaming agents, plasticizers, anti-bubble agents, and crosslinking agents, as well as filler compositions Additives generally used for improving the physical properties and characteristics of the composition may be added.
 本発明のフィラー組成物が添加された樹脂組成物は、任意の成形方法を利用して樹脂成形体とすることができる。成形方法の例としては、射出成形法、押出成形法、カレンダー成形法、ブロー成形法、発泡成形法及び延伸成形法を挙げることができる。 The resin composition to which the filler composition of the present invention has been added can be formed into a resin molded body using any molding method. Examples of molding methods include injection molding methods, extrusion molding methods, calendar molding methods, blow molding methods, foam molding methods and stretch molding methods.
[比較例1]
 ポリプロピレン樹脂[MFR(温度230℃、荷重2.16kg):52g/分]を85質量部、そして繊維状塩基性硫酸マグネシウム粒子(MOS A-1、宇部マテリアルズ(株)製、平均長径:15μm、平均短径:0.5μm)を15質量部の割合にて混合した。得られた混合物を、二軸溶融混練押出機(ラボプラストミルマイクロ、L/D=18、(株)東洋精機製作所製)を用いて、温度230℃、軸の回転数250rpmの条件にて溶融混練し、生成した溶融混練物をストランド状に押出した後、切断して、繊維状塩基性硫酸マグネシウム粒子を含有するポリプロピレン樹脂組成物のペレットを得た。
[Comparative Example 1]
85 parts by mass of polypropylene resin [MFR (temperature 230 ° C., load 2.16 kg): 52 g / min], and fibrous basic magnesium sulfate particles (MOS A-1, manufactured by Ube Materials Co., Ltd., average major axis: 15 μm) , Average minor axis: 0.5 μm) at a ratio of 15 parts by mass. The obtained mixture was melted under the conditions of a temperature of 230 ° C. and a shaft rotation speed of 250 rpm using a twin-screw melt kneading extruder (Laboplast Mill Micro, L / D = 18, manufactured by Toyo Seiki Seisakusho Co., Ltd.). The resulting melt-kneaded product was kneaded and extruded into a strand shape, and then cut to obtain a polypropylene resin composition pellet containing fibrous basic magnesium sulfate particles.
 得られたポリプロピレン樹脂組成物のペレットを、小型射出成形機(TE3-1E、日精樹脂工業(株)製)を用いて射出成形し、試験片を作成した。試験片はJIS-K-7162で規定する1BB型(小型ダンベル)試験片とした。 The obtained polypropylene resin composition pellets were injection molded using a small injection molding machine (TE3-1E, manufactured by Nissei Plastic Industry Co., Ltd.) to prepare a test piece. The test piece was a 1BB type (small dumbbell) test piece specified by JIS-K-7162.
 上記の試験片を用いて下記の方法によりアイゾット衝撃強さと曲げ弾性率とを測定したところ、アイゾッド衝撃強さは3.7kJ/m2であり、曲げ弾性率は3.5GPaであった。 When the Izod impact strength and the flexural modulus were measured by the following method using the above test piece, the Izod impact strength was 3.7 kJ / m 2 and the flexural modulus was 3.5 GPa.
 アイゾット衝撃強さ:ノッチングマシン((株)井元製作所製)を用い、JIS-K-7110に準拠した方法により測定した。
 曲げ弾性率:万能力学試験機(ストログラフVGF、(株)東洋精機製作所製)を用いて測定した。
Izod impact strength: Measured by a method according to JIS-K-7110 using a notching machine (manufactured by Imoto Seisakusho Co., Ltd.).
Flexural modulus: Measured using a universal testing machine (Strograph VGF, manufactured by Toyo Seiki Seisakusho Co., Ltd.).
[実施例1]
 比較例1で用いた繊維状塩基性硫酸マグネシウム粒子を100質量部そして球状シリカ粒子(アドマナノ、(株)アドマテックス製、平均粒子径:10nm、SEMによる測定値)を0.15質量部の割合にて乾式混合して、フィラー組成物を調製した。
 ポリプロピレン樹脂85質量部に、上記で調製したフィラー組成物を15質量部加えたこと以外は、比較例1と同様にしてポリプロピレン樹脂組成物のペレットを製造し、このペレットを用いて、比較例1と同様にして試験片を作成した。この試験片を用いてアイゾット衝撃強さと曲げ弾性率とを測定したところ、曲げ弾性率は、比較例1で作成した試験片と同等の値であったが、アイゾッド衝撃強さは比較例1にて作成した試験片よりも明らかに高い値を示すことが確認された。
[Example 1]
100 parts by mass of fibrous basic magnesium sulfate particles used in Comparative Example 1 and 0.15 parts by mass of spherical silica particles (Admanano, manufactured by Admatechs, average particle size: 10 nm, measured by SEM) The filler composition was prepared by dry mixing.
Except that 15 parts by mass of the filler composition prepared above was added to 85 parts by mass of the polypropylene resin, a polypropylene resin composition pellet was produced in the same manner as in Comparative Example 1, and this pellet was used to produce Comparative Example 1. A test piece was prepared in the same manner as described above. When the Izod impact strength and the flexural modulus were measured using this test piece, the flexural modulus was the same value as the test piece prepared in Comparative Example 1, but the Izod impact strength was in Comparative Example 1. It was confirmed that the value was clearly higher than that of the test piece prepared.
[比較例2]
 ポリプロピレン樹脂[MFR(温度230℃、荷重2.16kg):52g/分]を85質量部、そして比較例1で用いた繊維状塩基性硫酸マグネシウム粒子を15質量部の割合にて混合した。得られた混合物を、二軸溶融混練押出機(L/D=25、(株)井元製作所製)を用いて、温度230℃、軸の回転数90rpmの条件にて溶融混練し、生成した溶融混練物をストランド状に押出した後、切断して、繊維状塩基性硫酸マグネシウム粒子を含有するポリプロピレン樹脂組成物のペレットを得た。
[Comparative Example 2]
85 parts by mass of polypropylene resin [MFR (temperature 230 ° C., load 2.16 kg): 52 g / min] and 15 parts by mass of fibrous basic magnesium sulfate particles used in Comparative Example 1 were mixed. The resulting mixture was melt-kneaded using a twin-screw melt-kneading extruder (L / D = 25, manufactured by Imoto Seisakusho Co., Ltd.) at a temperature of 230 ° C. and a shaft rotation speed of 90 rpm. The kneaded product was extruded into strands and then cut to obtain polypropylene resin composition pellets containing fibrous basic magnesium sulfate particles.
 得られたポリプロピレン樹脂組成物ペレットを、小型射出成形機(手動式射出成形機、新興セルビット製、ハンディトライ)を用いて、シリンダ温度230℃、金型温度50℃にて射出成形し、試験片(短冊状、幅5mm×厚さ2mm×長さ50mm)を作成した。
この試験片を用いて下記の方法によりアイゾッド衝撃強さと曲げ弾性率とを測定した。測定結果を表1に示す。
The obtained polypropylene resin composition pellets were injection molded at a cylinder temperature of 230 ° C. and a mold temperature of 50 ° C. using a small injection molding machine (manual injection molding machine, Shinsei Serbit, Handy Try), and a test piece (Strip shape, width 5 mm × thickness 2 mm × length 50 mm) was prepared.
Using this test piece, Izod impact strength and flexural modulus were measured by the following method. The measurement results are shown in Table 1.
 アイゾッド衝撃強さ:アイゾッド衝撃試験器((株)マイズ試験機製)を用い、JIS-K-7110に準拠した方法により測定した。
 曲げ弾性率:電動計測スタンド((株)イマダ製、MX-500N)+デジタルフォースゲージ((株)イマダ製、ZTA-500N)を用い、負荷速度10mm/分、支点間距離40mmの条件にて測定した。
Izod impact strength: Measured according to JIS-K-7110 using an Izod impact tester (manufactured by Mize Tester).
Flexural modulus: Electric measuring stand (manufactured by Imada Co., Ltd., MX-500N) + digital force gauge (manufactured by Imada Co., Ltd., ZTA-500N), with a load speed of 10 mm / min and a distance between fulcrums of 40 mm It was measured.
[実施例2]
 比較例1で用いた繊維状塩基性硫酸マグネシウム粒子を100質量部そして球状シリカ粒子を0.015質量部の割合にて乾式混合して、フィラー組成物を調製した。
 ポリプロピレン樹脂85質量部に、上記で調製したフィラー組成物を15質量部加えたこと以外は、比較例2と同様にしてポリプロピレン樹脂組成物のペレットを製造し、このペレットを用いて、比較例2と同様にして試験片を作成した。この試験片を用いてアイゾッド衝撃強さと曲げ弾性率とを測定した。測定結果を表1に示す。
[Example 2]
A filler composition was prepared by dry-mixing 100 parts by mass of fibrous basic magnesium sulfate particles used in Comparative Example 1 and 0.015 parts by mass of spherical silica particles.
A polypropylene resin composition pellet was produced in the same manner as in Comparative Example 2 except that 15 parts by mass of the filler composition prepared above was added to 85 parts by mass of the polypropylene resin. A test piece was prepared in the same manner as described above. Using this test piece, Izod impact strength and flexural modulus were measured. The measurement results are shown in Table 1.
[実施例3]
 繊維状塩基性硫酸マグネシウム粒子100質量部に混合する球状シリカ粒子を0.15質量部に変えた以外は実施例2と同様な方法にてフィラー組成物を調製し、次いで同様にしてポリプロピレン樹脂組成物のペレットを製造した。このペレットを用いて試験片を作成し、アイゾッド衝撃強さと曲げ弾性率とを測定した。測定結果を表1に示す。
[Example 3]
A filler composition was prepared in the same manner as in Example 2 except that the spherical silica particles mixed with 100 parts by mass of the fibrous basic magnesium sulfate particles were changed to 0.15 parts by mass. Product pellets were produced. A test piece was prepared using this pellet, and Izod impact strength and flexural modulus were measured. The measurement results are shown in Table 1.
[実施例4]
 繊維状塩基性硫酸マグネシウム粒子100質量部に混合する球状シリカ粒子を1.5質量部に変えた以外は実施例2と同様な方法にてフィラー組成物を調製し、次いで同様にしてポリプロピレン樹脂組成物のペレットを製造した。このペレットを用いて試験片を作成し、アイゾッド衝撃強さと曲げ弾性率とを測定した。測定結果を表1に示す。
[Example 4]
A filler composition was prepared in the same manner as in Example 2 except that the spherical silica particles mixed with 100 parts by mass of the fibrous basic magnesium sulfate particles were changed to 1.5 parts by mass. Product pellets were produced. A test piece was prepared using this pellet, and Izod impact strength and flexural modulus were measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
(注)
 C/B:繊維状塩基性硫酸マグネシウム粒子(B)100質量部に対する球状シリカ粒子(C)の配合比
Figure JPOXMLDOC01-appb-T000001
(note)
C / B: Compounding ratio of spherical silica particles (C) to 100 parts by mass of fibrous basic magnesium sulfate particles (B)
[実施例5]
 ポリプロピレン樹脂[MFR(温度230℃、荷重2.16kg):52g/分]を85質量部、繊維状塩基性硫酸マグネシウム粒子(MOS A-1、宇部マテリアルズ(株)製、平均長径:15μm、平均短径:0.5μm)を15質量部、球状シリカ粒子(アドマナノ、(株)アドマテックス製、平均粒子径:10nm、SEMによる測定値)を0.0015質量部の割合にて混合した。得られた混合物を、二軸溶融混練押出機(ラボプラストミルマイクロ、L/D=18、(株)東洋精機製作所製)を用いて、温度230℃、軸の回転数250rpmの条件にて溶融混練し、生成した溶融混練物をストランド状に押出した後、切断して、繊維状塩基性硫酸マグネシウム粒子と球状シリカ粒子ペレットとを含有するポリプロピレン樹脂組成物のペレットを得た。
[Example 5]
85 parts by mass of polypropylene resin [MFR (temperature 230 ° C., load 2.16 kg): 52 g / min], fibrous basic magnesium sulfate particles (MOS A-1, manufactured by Ube Materials Co., Ltd., average major axis: 15 μm, 15 parts by mass of average minor axis (0.5 μm) and spherical silica particles (Admanano, manufactured by Admatechs Co., Ltd., average particle diameter: 10 nm, measured by SEM) were mixed at a ratio of 0.0015 parts by mass. The obtained mixture was melted under the conditions of a temperature of 230 ° C. and a shaft rotation speed of 250 rpm using a twin-screw melt kneading extruder (Laboplast Mill Micro, L / D = 18, manufactured by Toyo Seiki Seisakusho Co., Ltd.). The resulting melt-kneaded product was kneaded and extruded into a strand shape, and then cut to obtain a polypropylene resin composition pellet containing fibrous basic magnesium sulfate particles and spherical silica particle pellets.
[実施例6]
 球状シリカ粒子の配合量を0.015質量部としたこと以外は実施例5と同様にしてポリプロピレン樹脂組成物ペレットを得た。
[Example 6]
A polypropylene resin composition pellet was obtained in the same manner as in Example 5 except that the amount of the spherical silica particles was 0.015 part by mass.
[実施例7]
 球状シリカ粒子の配合量を0.15質量部としたこと以外は実施例5と同様にしてポリプロピレン樹脂組成物ペレットを得た。
[Example 7]
Polypropylene resin composition pellets were obtained in the same manner as in Example 5 except that the amount of the spherical silica particles was 0.15 parts by mass.
[実施例8]
 球状シリカ粒子の配合量を0.75質量部としたこと以外は実施例5と同様にしてポリプロピレン樹脂組成物ペレットを得た。
[Example 8]
Polypropylene resin composition pellets were obtained in the same manner as in Example 5 except that the amount of the spherical silica particles was 0.75 parts by mass.
[実施例9]
 球状シリカ粒子の配合量を1.0質量部としたこと以外は実施例5と同様にしてポリプロピレン樹脂組成物ペレットを得た。
[Example 9]
A polypropylene resin composition pellet was obtained in the same manner as in Example 5 except that the amount of the spherical silica particles was 1.0 part by mass.
[実施例10]
 球状シリカ粒子の配合量を1.5質量部としたこと以外は実施例5と同様にしてポリプロピレン樹脂組成物ペレットを得た。
[Example 10]
A polypropylene resin composition pellet was obtained in the same manner as in Example 5 except that the amount of the spherical silica particles was 1.5 parts by mass.
[実施例11]
 球状シリカ粒子の配合量を4.5質量部としたこと以外は実施例5と同様にしてポリプロピレン樹脂組成物ペレットを得た。
[Example 11]
A polypropylene resin composition pellet was obtained in the same manner as in Example 5 except that the amount of the spherical silica particles was 4.5 parts by mass.
[実施例12]
 球状シリカ粒子の配合量を7.5質量部としたこと以外は実施例5と同様にしてポリプロピレン樹脂組成物ペレットを得た。
[Example 12]
A polypropylene resin composition pellet was obtained in the same manner as in Example 5 except that the amount of the spherical silica particles was 7.5 parts by mass.
[比較例3]
 球状シリカ粒子を配合しなかったこと以外は実施例5と同様にしてポリプロピレン樹脂組成物ペレットを得た。
[Comparative Example 3]
Polypropylene resin composition pellets were obtained in the same manner as in Example 5 except that the spherical silica particles were not blended.
 実施例1~8及び比較例1にて得られたペレットのポリプロピレン樹脂、繊維状塩基性硫酸マグネシウム粒子、球状シリカ粒子の配合量、そして、ポリプロピレン樹脂100質量部に対する球状シリカ粒子の配合比と繊維状塩基性硫酸マグネシウム粒子100質量部に対する球状シリカ粒子の配合比を下記の表1に示す。 The pellets of the polypropylene resin, fibrous basic magnesium sulfate particles, and the amount of spherical silica particles obtained in Examples 1 to 8 and Comparative Example 1, and the mixing ratio of the spherical silica particles to 100 parts by mass of the polypropylene resin and the fibers Table 1 below shows the compounding ratio of the spherical silica particles to 100 parts by mass of the shaped basic magnesium sulfate particles.
Figure JPOXMLDOC01-appb-T000002
(注)
 A:ポリプロピレン樹脂の使用量(単位:質量部)
 B:繊維状塩基性硫酸マグネシウム粒子の配合量(単位:質量部)
 C:球状シリカ粒子の配合量(単位:質量部)
 C/A:ポリプロピレン樹脂100質量部に対する球状シリカ粒子の配合比
 C/B:繊維状塩基性硫酸マグネシウム粒子100質量部に対する球状シリカ粒子の配合比
Figure JPOXMLDOC01-appb-T000002
(note)
A: Amount of polypropylene resin used (unit: parts by mass)
B: Blending amount of fibrous basic magnesium sulfate particles (unit: parts by mass)
C: Blending amount of spherical silica particles (unit: parts by mass)
C / A: Compounding ratio of spherical silica particles to 100 parts by mass of polypropylene resin C / B: Compounding ratio of spherical silica particles to 100 parts by mass of fibrous basic magnesium sulfate particles
[評価]
 実施例5~12及び比較例3にて得られたポリプロピレン樹脂組成物ペレットのそれぞれを、小型射出成形機(TE3-1E、日精樹脂工業(株)製)を用いて射出成形して、試験片を作成した。試験片はJIS-K-7162で規定する1BB型(小型ダンベル)試験片とした。
 作成した試験片を用いて前述の方法によりアイゾッド衝撃強さと曲げ弾性率とを測定した。その結果を下記の表3に、上記表2に記載したC/A、C/Bと共に示す。
[Evaluation]
Each of the polypropylene resin composition pellets obtained in Examples 5 to 12 and Comparative Example 3 was injection molded using a small injection molding machine (TE3-1E, manufactured by Nissei Plastic Industry Co., Ltd.), and a test piece was obtained. It was created. The test piece was a 1BB type (small dumbbell) test piece specified by JIS-K-7162.
The Izod impact strength and bending elastic modulus were measured by the above-described method using the prepared test piece. The results are shown in Table 3 below together with C / A and C / B described in Table 2 above.
Figure JPOXMLDOC01-appb-T000003
 
(注)
 C/A:ポリプロピレン樹脂100質量部に対する球状シリカ粒子の配合比
 C/B:繊維状塩基性硫酸マグネシウム粒子100質量部に対する球状シリカ粒子の配合比
Figure JPOXMLDOC01-appb-T000003

(note)
C / A: Compounding ratio of spherical silica particles to 100 parts by mass of polypropylene resin C / B: Compounding ratio of spherical silica particles to 100 parts by mass of fibrous basic magnesium sulfate particles
 表1~3に示した測定結果から、ポリプロピレン樹脂、繊維状塩基性硫酸マグネシウム粒子及び無機物微粒子としての球状シリカ粒子を本発明の範囲で含むポリプロピレン樹脂組成物(実施例1~12)を用いて製造した成形体は、ポリプロピレン樹脂と繊維状塩基性硫酸マグネシウム粒子のみを含むポリプロピレン樹脂組成物(比較例1~3)を用いて製造した成形体と比較して、曲げ弾性率は同等もしくはそれ以上の値を示しつつ、アイゾッド衝撃強さの値が向上することが分かる。 From the measurement results shown in Tables 1 to 3, using polypropylene resin compositions (Examples 1 to 12) containing polypropylene resin, fibrous basic magnesium sulfate particles and spherical silica particles as inorganic fine particles within the scope of the present invention. The manufactured molded body has a bending elastic modulus equal to or higher than that of a molded body manufactured using a polypropylene resin composition containing only polypropylene resin and fibrous basic magnesium sulfate particles (Comparative Examples 1 to 3). It can be seen that the value of Izod impact strength is improved.

Claims (15)

  1.  繊維状塩基性硫酸マグネシウム粒子と、平均粒子径が0.001~0.5μmの範囲にある非繊維状無機物微粒子とを質量比で100:0.001~100:50の範囲の量にて含むフィラー組成物。 Fibrous basic magnesium sulfate particles and non-fibrous inorganic fine particles having an average particle diameter in the range of 0.001 to 0.5 μm are included in an amount in the range of 100: 0.001 to 100: 50 by mass ratio. Filler composition.
  2.  非繊維状無機物微粒子が、球状二酸化ケイ素粒子である請求項1に記載のフィラー組成物。 The filler composition according to claim 1, wherein the non-fibrous inorganic fine particles are spherical silicon dioxide particles.
  3.  球状二酸化ケイ素粒子の平均粒子径が0.005~0.1μmの範囲にある請求項1に記載のフィラー組成物。 2. The filler composition according to claim 1, wherein the spherical silicon dioxide particles have an average particle diameter in the range of 0.005 to 0.1 μm.
  4.  繊維状塩基性硫酸マグネシウム粒子の平均長径と平均短径がそれぞれ5~50μmの範囲と0.1~2.0μmの範囲にあり、平均長径/平均短径で表されるアスペクト比が5~50の範囲にある請求項1に記載のフィラー組成物。 The average major axis and the minor minor axis of the fibrous basic magnesium sulfate particles are in the range of 5 to 50 μm and 0.1 to 2.0 μm, respectively, and the aspect ratio expressed by the mean major axis / average minor axis is 5 to 50. The filler composition according to claim 1 in the range of
  5.  非繊維状無機物微粒子の平均粒子径が繊維状塩基性硫酸マグネシウム粒子の平均短径に対して1/5~1/500の範囲にある請求項1に記載のフィラー組成物。 The filler composition according to claim 1, wherein the average particle diameter of the non-fibrous inorganic fine particles is in the range of 1/5 to 1/500 with respect to the average short diameter of the fibrous basic magnesium sulfate particles.
  6.  繊維状塩基性硫酸マグネシウム粒子100質量部に対する非繊維状無機物微粒子の含有量が0.001~8質量部の範囲にある請求項1に記載のフィラー組成物。 The filler composition according to claim 1, wherein the content of the non-fibrous inorganic fine particles is in the range of 0.001 to 8 parts by mass with respect to 100 parts by mass of the fibrous basic magnesium sulfate particles.
  7.  繊維状塩基性硫酸マグネシウム粒子100質量部に対する非繊維状無機物微粒子の含有量が0.005~2質量部の範囲にある請求項1に記載のフィラー組成物。 The filler composition according to claim 1, wherein the content of the non-fibrous inorganic fine particles with respect to 100 parts by mass of the fibrous basic magnesium sulfate particles is in the range of 0.005 to 2 parts by mass.
  8.  カップリング剤で表面処理されている請求項1に記載のフィラー組成物。 The filler composition according to claim 1, which has been surface-treated with a coupling agent.
  9.  ポリオレフィン樹脂と繊維状塩基性硫酸マグネシウム粒子とを質量比で99:1~50:50の範囲の量にて含み、さらに、平均粒子径が0.001~0.5μmの範囲にある非繊維状無機物微粒子を繊維状塩基性硫酸マグネシウム粒子100質量部に対して0.001~50質量部の範囲の量及び/又は樹脂100質量部に対して0.0002~10質量部の範囲の量にて含むポリオレフィン樹脂組成物。 A non-fibrous material containing a polyolefin resin and fibrous basic magnesium sulfate particles in a mass ratio of 99: 1 to 50:50 and an average particle diameter of 0.001 to 0.5 μm. The inorganic fine particles in an amount in the range of 0.001 to 50 parts by mass with respect to 100 parts by mass of the fibrous basic magnesium sulfate particles and / or in an amount in the range of 0.0002 to 10 parts by mass with respect to 100 parts by mass of the resin. Polyolefin resin composition containing.
  10.  非繊維状無機物微粒子が球状二酸化ケイ素粒子である請求項9に記載のポリオレフィン樹脂組成物。 The polyolefin resin composition according to claim 9, wherein the non-fibrous inorganic fine particles are spherical silicon dioxide particles.
  11.  繊維状塩基性硫酸マグネシウム粒子の平均長径と平均短径がそれぞれ5~50μmの範囲と0.1~2.0μmの範囲にあり、平均長径/平均短径で表されるアスペクト比が5~50の範囲にある請求項9に記載のポリオレフィン樹脂組成物。 The average major axis and the minor minor axis of the fibrous basic magnesium sulfate particles are in the range of 5 to 50 μm and 0.1 to 2.0 μm, respectively, and the aspect ratio expressed by the mean major axis / average minor axis is 5 to 50. The polyolefin resin composition according to claim 9, which is in the range of
  12.  非繊維状無機物微粒子の平均粒子径が繊維状塩基性硫酸マグネシウム粒子の平均短径に対して1/5~1/500の範囲にある請求項9に記載のポリオレフィン樹脂組成物。 10. The polyolefin resin composition according to claim 9, wherein the average particle diameter of the non-fibrous inorganic fine particles is in the range of 1/5 to 1/500 with respect to the average short diameter of the fibrous basic magnesium sulfate particles.
  13.  繊維状塩基性硫酸マグネシウム粒子100質量部に対する非繊維状無機物微粒子の含有量が0.005~2質量部の範囲にある請求項9に記載のポリオレフィン樹脂組成物。 The polyolefin resin composition according to claim 9, wherein the content of non-fibrous inorganic fine particles in the range of 0.005 to 2 parts by mass with respect to 100 parts by mass of the fibrous basic magnesium sulfate particles.
  14.  非繊維状無機物微粒子がカップリング剤で表面処理されている請求項9に記載のポリオレフィン樹脂組成物。 The polyolefin resin composition according to claim 9, wherein the non-fibrous inorganic fine particles are surface-treated with a coupling agent.
  15.  ポリオレフィン樹脂がポリプロピレン樹脂である請求項9に記載のポリオレフィン樹脂組成物。 The polyolefin resin composition according to claim 9, wherein the polyolefin resin is a polypropylene resin.
PCT/JP2016/060109 2015-03-30 2016-03-29 Filler composition and polyolefin resin composition WO2016158943A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680019877.2A CN107406637B (en) 2015-03-30 2016-03-29 Filler composition and polyolefin resin composition
KR1020177030514A KR102208291B1 (en) 2015-03-30 2016-03-29 Filler composition and polyolefin resin composition
US15/559,754 US10479877B2 (en) 2015-03-30 2016-03-29 Filler composition and polyolefin resin composition

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015067908 2015-03-30
JP2015-067908 2015-03-30
JP2015-067907 2015-03-30
JP2015067907 2015-03-30
JP2015-209060 2015-10-23
JP2015-209061 2015-10-23
JP2015209060A JP6591859B2 (en) 2015-03-30 2015-10-23 Filler composition
JP2015209061A JP6591860B2 (en) 2015-03-30 2015-10-23 Polyolefin resin composition

Publications (1)

Publication Number Publication Date
WO2016158943A1 true WO2016158943A1 (en) 2016-10-06

Family

ID=57007192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060109 WO2016158943A1 (en) 2015-03-30 2016-03-29 Filler composition and polyolefin resin composition

Country Status (1)

Country Link
WO (1) WO2016158943A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069236A1 (en) * 2015-10-23 2017-04-27 宇部マテリアルズ株式会社 Filler composition
JP2018076389A (en) * 2016-11-07 2018-05-17 宇部マテリアルズ株式会社 Resin composition and master batch pellet, and resin composition molded body and method for producing the same
WO2019112004A1 (en) * 2017-12-06 2019-06-13 宇部興産株式会社 Foam and method for manufacturing foam

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09156986A (en) * 1995-12-05 1997-06-17 Ube Ind Ltd Cement composition having high fluidity
JP2001172557A (en) * 1999-12-20 2001-06-26 Kansai Paint Co Ltd Epoxy resin coating for repairing tube inner surface
JP2009035713A (en) * 2007-07-09 2009-02-19 Japan Polypropylene Corp Propylene-based polymer composition
JP2009138113A (en) * 2007-12-07 2009-06-25 Japan Polypropylene Corp Propylene-based copolymer composition
JP2010195956A (en) * 2009-02-26 2010-09-09 Sekisui Chem Co Ltd Polyolefin resin composition, polyolefin resin molded product and method for producing the molded product
JP2010196012A (en) * 2009-02-27 2010-09-09 Toyo Ink Mfg Co Ltd Resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09156986A (en) * 1995-12-05 1997-06-17 Ube Ind Ltd Cement composition having high fluidity
JP2001172557A (en) * 1999-12-20 2001-06-26 Kansai Paint Co Ltd Epoxy resin coating for repairing tube inner surface
JP2009035713A (en) * 2007-07-09 2009-02-19 Japan Polypropylene Corp Propylene-based polymer composition
JP2009138113A (en) * 2007-12-07 2009-06-25 Japan Polypropylene Corp Propylene-based copolymer composition
JP2010195956A (en) * 2009-02-26 2010-09-09 Sekisui Chem Co Ltd Polyolefin resin composition, polyolefin resin molded product and method for producing the molded product
JP2010196012A (en) * 2009-02-27 2010-09-09 Toyo Ink Mfg Co Ltd Resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069236A1 (en) * 2015-10-23 2017-04-27 宇部マテリアルズ株式会社 Filler composition
JP2018076389A (en) * 2016-11-07 2018-05-17 宇部マテリアルズ株式会社 Resin composition and master batch pellet, and resin composition molded body and method for producing the same
WO2019112004A1 (en) * 2017-12-06 2019-06-13 宇部興産株式会社 Foam and method for manufacturing foam
JPWO2019112004A1 (en) * 2017-12-06 2020-12-10 宇部興産株式会社 Foam and manufacturing method of foam
JP7192790B2 (en) 2017-12-06 2022-12-20 Ube株式会社 Foam and method for producing foam

Similar Documents

Publication Publication Date Title
JP6615615B2 (en) Talc composition and use thereof
KR102208291B1 (en) Filler composition and polyolefin resin composition
JP2020189986A (en) Talc particulate and uses thereof
US20150315371A1 (en) Pellet mixture, carbon fiber-reinforced polypropylene resin composition, molded body, and method for producing pellet mixture
Siriwardena et al. A comparison of the mechanical properties and water absorption behavior of white rice husk ash and silica filled polypropylene composites
WO2016158943A1 (en) Filler composition and polyolefin resin composition
CN109971145A (en) Resin combination, resin molded body, the method for manufacturing resin molded body and electronic equipment
CN109810421B (en) Semi-permeable display HIPS resin and preparation method thereof
CN107337841A (en) Composition of polypropylene having excellent touch and dimensional stability
JP6591860B2 (en) Polyolefin resin composition
KR100387648B1 (en) Composition of polypropylene resin
JP6764416B2 (en) Filler composition
JP3678338B2 (en) Propylene resin composition
JP6591859B2 (en) Filler composition
Studziński et al. Modified nanosilica-filled polypropylene composites with glycidyl methacrylate grafted ethylene/n-octene copolymer as compatibilizer
CN109642056B (en) Resin composition, masterbatch pellet, resin composition molded body, and method for producing same
JP7132562B2 (en) Talc particles, method for producing the same, and resin composition
JPWO2018193893A1 (en) Polyolefin resin composition and molded article of polyolefin resin composition
JP7132571B2 (en) Talc particles and resin composition
JP2023047080A (en) Polypropylene resin composition and method for producing the same, and molding
Wong et al. Nucleating agent effects on selected properties of polypropylene
JP2010024293A (en) Resin composition
Chuayjuljit Onusa Saravari, Harutasai Waipunya and

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772824

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15559754

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177030514

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16772824

Country of ref document: EP

Kind code of ref document: A1