[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016157963A1 - Switching power supply device - Google Patents

Switching power supply device Download PDF

Info

Publication number
WO2016157963A1
WO2016157963A1 PCT/JP2016/052077 JP2016052077W WO2016157963A1 WO 2016157963 A1 WO2016157963 A1 WO 2016157963A1 JP 2016052077 W JP2016052077 W JP 2016052077W WO 2016157963 A1 WO2016157963 A1 WO 2016157963A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
input
circuit
coil
bridge circuit
Prior art date
Application number
PCT/JP2016/052077
Other languages
French (fr)
Japanese (ja)
Inventor
石倉祐樹
堀井浩幸
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2016157963A1 publication Critical patent/WO2016157963A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present invention relates to a switching power supply device including an LLC resonant circuit.
  • Patent Document 1 discloses a power conversion device using a piezoelectric transformer.
  • the power conversion efficiency of the piezoelectric transformer becomes closer to the maximum value as the driving frequency of the piezoelectric transformer approaches the resonance frequency of the piezoelectric transformer. Therefore, in Patent Document 1, in order to bring the power conversion efficiency of the piezoelectric transformer close to the maximum value, the drive frequency of the piezoelectric transformer is swept, the output voltage is differentiated by a differentiation circuit, and the point where the differential value becomes zero is detected. By doing so, the resonance frequency of the piezoelectric transformer is detected.
  • a differential circuit is used to detect the resonance frequency of the piezoelectric transformer.
  • the differentiation circuit is easily affected by high-frequency noise, and may not be able to accurately detect the frequency peak.
  • the power can be controlled by frequency control, so the same can be performed.
  • the LLC resonant converter has a low resonance frequency determined by an excitation inductance, a resonance inductance, a resonance capacitor and a load, and a fixed high resonance frequency determined only by the resonance inductance and the resonance capacitor.
  • the LLC resonant converter has two resonance frequencies as described above, in the method using the differential circuit as described in Patent Document 1, which of the two resonance frequencies is detected. It is difficult to drive at a frequency that maximizes power conversion efficiency.
  • an object of the present invention is to provide a switching power supply device with high power conversion efficiency.
  • the switching power supply includes a first input / output port, a second input / output port, a first circuit connected to the first input / output port, a series circuit of the first switching element and the second switching element, a first capacitor, A first half bridge circuit configured by connecting a series circuit of second capacitors in parallel; a series circuit of a third switching element and a fourth switching element connected to the second input / output port; and a third capacitor And a second half bridge circuit configured by connecting a series circuit of a fourth capacitor in parallel, a first control circuit for switching control of the first half bridge circuit, and a switching control of the second half bridge circuit.
  • a second control circuit and a first coil and a second coil that are magnetically coupled, wherein the first coil is connected to the first half-bridge circuit; Between the first coil and the first half-bridge circuit, or between the second coil and the second half-bridge circuit.
  • a resonance inductor and a resonance capacitor provided at one of the terminals, a first power detection unit for detecting a first power input / output to / from the first input / output port, and an input / output to / from the second input / output port.
  • the first control circuit sweeps the switching frequency of the first half bridge circuit, and the transmission efficiency calculated by the transmission efficiency calculation unit is the highest transmission efficiency.
  • the second control circuit switches the second half-bridge circuit.
  • the second half-bridge circuit is subjected to switching control at a switching frequency at the highest transmission efficiency among the transmission efficiencies calculated by the transmission efficiency calculation unit by sweeping the frequency.
  • the switching power supply device includes an LLC resonance circuit
  • the switching frequency with the highest gain is detected based on the gain characteristic of the LLC resonance circuit, and the first half-bridge circuit or the second half-bridge circuit is subjected to switching control with the switching frequency. It is preferable.
  • the gain characteristic of the LLC resonant circuit changes due to manufacturing errors such as inductors and capacitors, or the weight of the load connected to the device output side. For this reason, it is difficult to detect a switching frequency with high transmission efficiency. Therefore, an optimum switching frequency can be obtained by determining the switching frequency based on the transmission efficiency calculated from the input power and the output power.
  • the first control circuit and the second control circuit are integrated on one chip.
  • the switching power supply device can be downsized.
  • the switching power supply includes a first input / output port, a second input / output port, a first circuit connected to the first input / output port, a series circuit of the first switching element and the second switching element, a first capacitor, A half bridge circuit configured by connecting a series circuit of second capacitors in parallel; a full bridge circuit connected to the second input / output port; and a third control circuit for controlling the switching of the half bridge circuit; A fourth control circuit that performs switching control of the full bridge circuit; a first coil and a second coil that are magnetically coupled; the first coil is connected to the half bridge circuit; and the second coil is the full bridge circuit. Or between the first coil and the half-bridge circuit, or between the second coil and the full-circuit.
  • a resonance inductor and a resonance capacitor provided on one side of the wedge circuit, a first power detection unit for detecting a first power input to and output from the first input / output port, and the second input / output port A second power detection unit that detects second power input to and output from the first power source; and a transmission efficiency calculation unit that calculates transmission efficiency from the first power and the second power, and the first coil of the transformer When the power is transmitted from the first coil to the second coil, the third control circuit sweeps the switching frequency of the half-bridge circuit, and the transmission efficiency calculated by the transmission efficiency calculation unit is the highest transmission efficiency.
  • the fourth control circuit is configured to Sweeping the switching frequency of the road, among the transmission efficiency of the transmission efficiency calculator has calculated, at the switching frequency when the highest transmission efficiency, it is preferable to switching control the full bridge circuit.
  • the switching power supply device includes an LLC resonance circuit
  • the gain characteristic of the LLC resonant circuit changes due to manufacturing errors such as inductors and capacitors, or the weight of the load connected to the device output side. For this reason, it is difficult to detect a switching frequency with high transmission efficiency. Therefore, an optimum switching frequency can be obtained by determining the switching frequency based on the transmission efficiency calculated from the input power and the output power.
  • the third control circuit and the fourth control circuit are integrated on one chip.
  • the switching power supply device can be downsized.
  • a switching power supply includes a first input / output port and a second input / output port, a first full bridge circuit connected to the first input / output port, A second full bridge circuit connected to the second input / output port; a fifth control circuit for switching control of the first full bridge circuit; a sixth control circuit for switching control of the second full bridge circuit; A transformer having a first coil and a second coil to be coupled, wherein the first coil is connected to the first full bridge circuit, and the second coil is connected to the second full bridge circuit; and the first coil And a resonance inductor and a resonance capacitor provided on one side between the first full bridge circuit or between the second coil and the second full bridge circuit, and are inputted to and outputted from the first input / output port.
  • the first full bridge circuit is controlled to be switched at the switching frequency at the highest transmission efficiency among the transmission efficiencies calculated by the transmission efficiency calculation unit, and the first coil is switched from the second coil of the transformer.
  • the sixth control circuit sweeps the switching frequency of the second full-bridge circuit, and the switching frequency at the highest transmission efficiency among the transmission efficiencies calculated by the transmission efficiency calculation unit
  • the second full bridge circuit is controlled to be switched.
  • the switching power supply device includes an LLC resonance circuit
  • the switching frequency with the highest gain is detected based on the gain characteristic of the LLC resonance circuit, and the first full bridge circuit or the second full bridge circuit is controlled to be switched at the switching frequency. It is preferable.
  • the gain characteristic of the LLC resonant circuit changes due to manufacturing errors such as inductors and capacitors, or the weight of the load connected to the device output side. For this reason, it is difficult to detect a switching frequency with high transmission efficiency. Therefore, an optimum switching frequency can be obtained by determining the switching frequency from the transmission efficiency calculated from the input power and the output power.
  • the fifth control circuit and the sixth control circuit are integrated on one chip.
  • the switching power supply device can be downsized.
  • the first power detection unit and the second power detection unit detect an average value within a predetermined period.
  • the resonance inductor is a leakage inductance of the transformer.
  • Circuit diagram of switching power supply apparatus Block diagram showing functions of control circuit
  • the figure which shows the gain characteristic of the LLC resonance circuit Flow chart showing processing executed by control circuit
  • the figure which shows another example of a switching power supply device The figure which shows another example of a switching power supply device
  • FIG. 1 is a circuit diagram of a switching power supply device 1 according to the first embodiment.
  • the switching power supply device 1 is used, for example, in a solar power generation system.
  • the switching power supply device 1 includes input / output terminals 11, 12, 21, and 22.
  • the input / output terminals 11 and 12 are connected to a solar panel and a power system.
  • the input / output terminals 21 and 22 are connected to a storage battery that stores electric power generated by the solar panel.
  • the input / output terminals 11 and 12 are examples of the “first input / output port” according to the present invention.
  • the input / output terminals 21 and 22 are examples of the “second input / output port” according to the present invention.
  • the switching power supply device 1 is a bidirectional DC-DC converter, which transforms a DC voltage input from the input / output terminals 11 and 12 to a predetermined value and outputs it to a storage battery connected to the input / output terminals 21 and 22. Charge. In addition, when the charging voltage of the storage battery is input from the input / output terminals 21 and 22, the switching power supply device 1 transforms the storage battery 1 to a predetermined value and supplies it to the power system connected to the input / output terminals 11 and 12.
  • the capacitor Ca and the switching circuit 13 are connected to the input / output terminals 11 and 12.
  • the switching circuit 13 is a full bridge circuit in which a series circuit of switching elements Q11 and Q12 and a series circuit of switching elements Q13 and Q14 are connected in parallel.
  • the switching circuit 13 is an example of the “first full bridge circuit” according to the present invention.
  • the switching elements Q11 to Q14 are MOS-FETs, and their gates are connected to the control circuit 14.
  • the connection point of the switching elements Q11 and Q12 is connected to the primary winding N1 of the transformer T via the inductor L1.
  • the primary winding N1 is an example of the “first coil” according to the present invention.
  • the connection point of the switching elements Q13 and Q14 is connected to the primary winding N1 of the transformer T through the capacitor C1.
  • An inductor Lm shown in FIG. 1 is an exciting inductance of the transformer T.
  • the inductor Lm may be an external actual part.
  • the inductor L1, the capacitor C1, and the inductor Lm constitute an LLC resonance circuit.
  • the inductor L1 is an example of the “resonance inductor” according to the present invention.
  • the capacitor C1 is an example of the “resonance capacitor” according to the present invention.
  • the inductor L1 may be a leakage inductance of the transformer T instead of an actual external component. In this case, since the number of parts can be reduced, cost reduction and size reduction are possible.
  • the capacitor Cb and the switching circuit 23 are connected to the input / output terminals 21 and 22.
  • the switching circuit 23 is a full bridge circuit in which a series circuit of switching elements Q21 and Q22 and a series circuit of switching elements Q23 and Q24 are connected in parallel.
  • the switching circuit 23 is an example of the “second full bridge circuit” according to the present invention.
  • the switching elements Q21 to Q24 are MOS-FETs, and their gates are connected to the control circuit 14.
  • connection point of the switching elements Q21 and Q22 is connected to the secondary winding N2 of the transformer T.
  • the connection point of the switching elements Q23 and Q24 is connected to the secondary winding N2 of the transformer T.
  • the secondary winding N2 is an example of the “second coil” according to the present invention.
  • the control circuit 14 is an integrated circuit in which a plurality of elements are integrated on one chip, and outputs a control signal to the gates of the switching elements Q11 to Q14 and the switching elements Q21 to Q24, and the switching elements Q11 to Q14, Q21 to Q24 is switching-controlled. Specifically, the control circuit 14 turns on and off the switching elements Q11 and Q12 and the switching elements Q13 and Q14 alternately. In addition, the control circuit 14 turns on and off the switching elements Q21 and Q22 and the switching elements Q23 and Q24 alternately.
  • the control circuit 14 is an example of the “fifth control circuit” and the “sixth control circuit” according to the present invention. By making the control circuit 14 an integrated circuit, the switching power supply device 1 can be reduced in size.
  • the switching power supply device 1 is a bidirectional DC-DC converter.
  • the control circuit 14 performs switching control of the switching circuit 13 at the switching frequency at which the power transmission efficiency is highest.
  • a voltage detecting resistor 15 and a current detecting element (current transformer) 16 are connected to the input / output terminals 11 and 12. Then, the control circuit 14 detects current and voltage input / output from the input / output terminals 11 and 12. Further, a voltage detection voltage dividing resistor 25 and a current detection element 26 are connected to the input / output terminals 21 and 22. The control circuit 14 detects currents and voltages input / output from the input / output terminals 21 and 22. The control circuit 14 determines an optimum switching frequency from the detected current and voltage, and controls the switching circuit 13 for switching.
  • FIG. 2 is a block diagram showing the functions of the control circuit 14.
  • the control circuit 14 is a DSP (Digital Signal Processor), and includes a switching control unit 141, a current detection unit 142, a voltage detection unit 143, a power calculation unit 144, a transmission efficiency calculation unit 145, and a frequency setting unit 146.
  • DSP Digital Signal Processor
  • the switching control unit 141 outputs a control signal to the gates of the switching elements Q11 to Q14, and alternately switches the switching elements Q11, Q12 and the switching elements Q13, Q14 at a switching frequency set by a frequency setting unit 146 described later. Turn on and off. Further, the switching control unit 141 sweeps the switching frequency for a predetermined period, and turns on and off the switching elements Q11 and Q12 and the switching elements Q13 and Q14 alternately. The switching control unit 141 outputs a control signal to the gates of the switching elements Q21 to Q24, and alternately turns on and off the switching elements Q21 and Q22 and the switching elements Q23 and Q24.
  • the current detector 142 detects the current input / output from the input / output terminals 11 and 12.
  • the current detector 142 detects currents input / output from the input / output terminals 21 and 22.
  • the voltage detector 143 detects the voltage input / output from the input / output terminals 11 and 12. Further, the voltage detection unit 143 detects the voltage input / output from the input / output terminals 21 and 22.
  • the current detection unit 142 and the voltage detection unit 143 detect current and voltage as needed.
  • the current detection unit 142 and the voltage detection unit 143 detect current and voltage as needed during a predetermined period, and calculate an average value thereof. Then, the current detection unit 142 and the voltage detection unit 143 output the calculated average value to the power calculation unit 144.
  • the current detection unit 142 and the voltage detection unit 143 exclude transient fluctuation components, noise, measurement errors, and the like from the output value to the power calculation unit 144 in order to calculate the average value of the current and voltage detected during a predetermined period. it can.
  • the power calculation unit 144 calculates input power from the input current and the input voltage. Further, the power calculation unit 144 calculates output power from the output current and the output voltage. As described above, during the switching frequency sweep period, the current detection unit 142 and the voltage detection unit 143 detect current and voltage as needed. The power calculation unit 144 calculates the input current and the input voltage every time the current detection unit 142 and the voltage detection unit 143 detect the current and the voltage.
  • the voltage dividing resistors 15 and 25, the current detection elements 16 and 26, the current detection unit 142, the voltage detection unit 143, and the power calculation unit 144 are the “first power detection unit” and the “second power detection unit” according to the present invention. Is an example.
  • the transmission efficiency calculation unit 145 calculates the power transmission efficiency of the switching power supply device 1 from the input power and the output power. The transmission efficiency calculation unit 145 calculates the power transmission efficiency each time the power calculation unit 144 calculates the input current and the input voltage.
  • the frequency setting unit 146 selects the highest power transmission efficiency from the plurality of power transmission efficiencies calculated by the transmission efficiency calculation unit 145 during the switching frequency sweeping period. And the frequency setting part 146 sets the frequency which opposes the selected power transmission efficiency to a switching frequency.
  • the switching frequency with the highest gain is detected based on the gain characteristic of the LLC resonant circuit, and the switching circuit 13 is switched at the switching frequency. It is preferable to control.
  • the gain characteristic of the LLC resonant circuit changes depending on manufacturing errors of inductors, capacitors, etc., or the charge amount of the storage battery connected to the input / output terminals 21 and 22 (light weight of the load).
  • FIG. 3 is a diagram showing gain characteristics of the LLC resonant circuit.
  • the horizontal axis in FIG. 3 indicates the frequency ratio (switching frequency / resonance frequency), and the vertical axis indicates the gain (output voltage / input voltage).
  • the gain peak increases as the load decreases.
  • the switching frequency is low.
  • the gain peak is small.
  • the switching frequency is high (same as the resonance frequency). That is, high power transmission efficiency cannot be obtained unless the switching frequency is appropriately set according to the load weight.
  • control circuit 14 calculates the transmission efficiency from the input / output power, and sets the frequency with the highest transmission efficiency as the switching frequency.
  • FIG. 4 is a flowchart showing processing executed by the control circuit 14.
  • the control circuit 14 executes a soft start process (S1).
  • the soft start process the control circuit 14 starts switching control of the switching circuit 13 at a switching frequency higher than the resonance frequency of the LLC resonance circuit. Thereafter, the switching frequency is lowered, the switching frequency is set to the resonance frequency, and the switching circuit 13 is subjected to switching control.
  • the control circuit 14 detects input power (S2). Specifically, the current detection unit 142 detects the input current, and the voltage detection unit 143 detects the input voltage. At this time, the current detection unit 142 and the voltage detection unit 143 detect the input current and the input voltage for a predetermined period, and calculate an average value for the period. Then, the power calculation unit 144 calculates input power from the input current and the input voltage.
  • the control circuit 14 detects the output power (S3). Specifically, the current detection unit 142 detects the output current, and the voltage detection unit 143 detects the output voltage. At this time, the current detection unit 142 and the voltage detection unit 143 detect the output current and the output voltage for a predetermined period, and calculate an average value for the period. Then, the power calculation unit 144 calculates output power from the output current and output voltage.
  • the transmission efficiency calculation unit 145 of the control circuit 14 calculates the power transmission efficiency from the input power and output power calculated by the power calculation unit 144 (S4).
  • the control circuit 14 determines whether or not the power transmission efficiency has been calculated N times (S5). If not performed N times (S5: NO), the switching control unit 141 of the control circuit 14 sweeps the switching frequency and performs switching control of the switching circuit 13 (S6). Thereafter, the control circuit 14 executes the processes after S2.
  • the control circuit 14 selects the highest transmission efficiency among the calculated transmission efficiencies (S7). Next, the control circuit 14 sets the frequency when the selected transmission efficiency is calculated to the switching frequency (S8). And the control circuit 14 performs the steady mode which carries out switching control of the switching circuit 13 with the set switching frequency (S9). Thereby, the switching power supply device 1 can be driven with high transmission efficiency.
  • processing shown in FIG. 4 is performed, for example, at the time of the inspection process or startup of the switching power supply device 1. This process may be performed only once, or may be performed every predetermined period (for example, every month). When it is performed only once, it is not necessary to execute processing frequently, so that the control circuit 14 does not need to be configured with a high-performance DSP. Moreover, when performing regularly, it can respond to the secular change of components.
  • the switching power supply device 1 can obtain high power transmission efficiency by controlling the switching of the switching circuit 13 at a frequency when the power transmission efficiency is high.
  • the switching circuit 13 of the switching power supply device 1 has been described as a full bridge circuit, but may be a half bridge circuit.
  • FIG. 5 is a diagram illustrating the switching power supply device 2 according to the second embodiment.
  • the switching power supply device 2 has a configuration in which the switching circuit 13A on the primary side of the transformer T is a half bridge circuit.
  • the switching circuit 13A and the switching circuit 23 are subjected to switching control by the control circuit 14A.
  • Other configurations are the same as those of the switching power supply device 1 according to the first embodiment.
  • the switching circuit 13A is configured by connecting a series circuit of capacitors C21 and C22 and a series circuit of switching elements Q31 and Q32 in parallel.
  • the switching element Q31 is an example embodiment that corresponds to the “first switching element” according to the present invention.
  • the switching element Q32 is an example embodiment that corresponds to the “second switching element” according to the present invention.
  • the capacitor C21 is an example of the “first capacitor” according to the present invention.
  • the capacitor C22 is an example of the “second capacitor” according to the present invention.
  • connection point of the capacitors C21 and C22 and the connection point of the switching elements Q31 and Q32 are connected to the transformer T via the inductor L1.
  • the capacitors C21 and C22, the inductor L1, and the inductor Lm constitute an LLC resonance circuit.
  • the control circuit 14A is an integrated circuit in which a plurality of elements are integrated on one chip.
  • the control circuit 14A sets the switching frequency of the switching circuit 13A and controls the switching of the switching circuit 13A in the same manner as the setting method described in the first embodiment.
  • the control circuit 14A sets the switching frequency of the switching circuit 23 and controls the switching circuit 23 for switching.
  • the control circuit 14A is an example of a “third control circuit” and a “fourth control circuit” according to the present invention. By making the control circuit 14A an integrated circuit, the switching power supply device 2 can be reduced in size.
  • the switching power supply device 2 includes a half-bridge circuit, high power transmission efficiency can be obtained by setting the switching frequency from the input / output power.
  • FIG. 6 is a diagram illustrating the switching power supply device 3 according to the third embodiment.
  • the switching power supply device 3 has a configuration in which the switching circuits 13A and 23A on the primary side and the secondary side of the transformer T are half bridge circuits.
  • the switching circuit 13A and the switching circuit 23A are subjected to switching control by the control circuit 14B.
  • Other configurations are the same as those of the switching power supply device 1 according to the first embodiment.
  • the switching circuit 23A is configured by connecting a series circuit of capacitors C21 and C22 and a series circuit of switching elements Q41 and Q42 in parallel.
  • the switching element Q41 is an example embodiment that corresponds to the “third switching element” according to the present invention.
  • the switching element Q42 is an example embodiment that corresponds to the “fourth switching element” according to the present invention.
  • the capacitor C31 is an example of the “third capacitor” according to the present invention.
  • the capacitor C32 is an example of the “fourth capacitor” according to the present invention.
  • the secondary winding N2 of the transformer T is connected to the connection point of the capacitors C31 and C32 and the connection point of the switching elements Q41 and Q42.
  • the control circuit 14B is an integrated circuit in which a plurality of elements are integrated on one chip.
  • the control circuit 14B sets the switching frequency of the switching circuit 13A and controls the switching of the switching circuit 13A in the same manner as the setting method described in the first embodiment.
  • the control circuit 14B sets the switching frequency of the switching circuit 23A and controls the switching of the switching circuit 23A.
  • the control circuit 14B is an example of a “first control circuit” and a “second control circuit” according to the present invention. By making the control circuit 14B an integrated circuit, the switching power supply device 2 can be downsized.
  • the switching power supply device 2 includes a half bridge circuit on each of the primary side and the secondary side of the transformer T, high power transmission efficiency can be obtained by setting the switching frequency from the input / output power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

This switching power supply device (1) is provided with: a full-bridge switching circuit (13); a control circuit (14) that controls switching of the switching circuit (13); a transformer (T) of which a first primary winding (N1) is connected to a midpoint of the switching circuit (13); and an inductor (L1) and capacitor (C1) that are provided between the switching circuit (13) and the transformer (T). The control circuit (14), while sweeping the switching frequency of the switching circuit (13), detects an input voltage and output voltage, and calculates transmission efficiency from the input voltage and output voltage. Switching control is performed on the switching circuit (13) at the switching frequency at the time of the highest transmission efficiency from among the calculated transmission efficiencies. This makes it possible to provide a switching power supply device having a high power conversion efficiency.

Description

スイッチング電源装置Switching power supply
 本発明は、LLC共振回路を含むスイッチング電源装置に関する。 The present invention relates to a switching power supply device including an LLC resonant circuit.
 特許文献1には、圧電トランスを用いた電力変換装置が開示されている。圧電トランスの電力変換効率は、圧電トランスの駆動周波数が圧電トランスの共振周波数に近くなるほど、最大値に近くなる。したがって、特許文献1では、圧電トランスの電力変換効率を最大値に近づけるために、圧電トランスの駆動周波数をスイープさせ、出力電圧を微分回路で微分して、その微分値がゼロとなる点を検出することによって、圧電トランスの共振周波数を検出している。 Patent Document 1 discloses a power conversion device using a piezoelectric transformer. The power conversion efficiency of the piezoelectric transformer becomes closer to the maximum value as the driving frequency of the piezoelectric transformer approaches the resonance frequency of the piezoelectric transformer. Therefore, in Patent Document 1, in order to bring the power conversion efficiency of the piezoelectric transformer close to the maximum value, the drive frequency of the piezoelectric transformer is swept, the output voltage is differentiated by a differentiation circuit, and the point where the differential value becomes zero is detected. By doing so, the resonance frequency of the piezoelectric transformer is detected.
特開平10-164848号公報JP-A-10-164848
 特許文献1では、圧電トランスの共振周波数を検出するために微分回路を用いている。しかしながら、微分回路は高周波ノイズの影響を受けやすく、周波数ピークを正確に検出できない場合がある。一方、高電力変換効率及び低ノイズ特性を有するLLC共振コンバータにおいても、周波数制御によって電力制御するため、同様のことを行うことができる。ここで、LLC共振コンバータは、励磁インダクタンス、共振インダクタンス及び共振コンデンサと負荷とで決まる低い共振周波数と、共振インダクタンス及び共振コンデンサのみで決まる固定の高い共振周波数を有している。しかしながら、LLC共振コンバータは、前述の通り2つの共振周波数を有しているため、特許文献1に記載にあるような微分回路を用いる方式では、2つの共振周波数のうちどちらの共振周波数を検出しているのか判別ができず、電力変換効率が最大となる周波数で駆動させることは難しい。 In Patent Document 1, a differential circuit is used to detect the resonance frequency of the piezoelectric transformer. However, the differentiation circuit is easily affected by high-frequency noise, and may not be able to accurately detect the frequency peak. On the other hand, in the LLC resonant converter having high power conversion efficiency and low noise characteristics, the power can be controlled by frequency control, so the same can be performed. Here, the LLC resonant converter has a low resonance frequency determined by an excitation inductance, a resonance inductance, a resonance capacitor and a load, and a fixed high resonance frequency determined only by the resonance inductance and the resonance capacitor. However, since the LLC resonant converter has two resonance frequencies as described above, in the method using the differential circuit as described in Patent Document 1, which of the two resonance frequencies is detected. It is difficult to drive at a frequency that maximizes power conversion efficiency.
 そこで、前記問題点を鑑み、本発明の目的は、電力変換効率が高いスイッチング電源装置を提供することにある。 Therefore, in view of the above problems, an object of the present invention is to provide a switching power supply device with high power conversion efficiency.
 本発明に係るスイッチング電源装置は、第1入出力ポート及び第2入出力ポートと、前記第1入出力ポートに接続され、第1スイッチング素子及び第2スイッチング素子の直列回路と、第1キャパシタ及び第2キャパシタの直列回路とが並列に接続されて構成された第1ハーフブリッジ回路と、前記第2入出力ポートに接続され、第3スイッチング素子及び第4スイッチング素子の直列回路と、第3キャパシタ及び第4キャパシタの直列回路とが並列に接続されて構成された第2ハーフブリッジ回路と、前記第1ハーフブリッジ回路をスイッチング制御する第1制御回路と、前記第2ハーフブリッジ回路をスイッチング制御する第2制御回路と、磁気結合する第1コイル及び第2コイルを有し、前記第1コイルが前記第1ハーフブリッジ回路に接続され、前記第2コイルが前記第2ハーフブリッジ回路に接続されたトランスと、前記第1コイル及び前記第1ハーフブリッジ回路の間、又は、前記第2コイル及び前記第2ハーフブリッジ回路の間の一方に設けられた共振用インダクタ及び共振用キャパシタと、前記第1入出力ポートに入出力される第1電力を検出する第1電力検出部と、前記第2入出力ポートに入出力される第2電力を検出する第2電力検出部と、前記第1電力と前記第2電力とから伝送効率を算出する伝送効率算出部と、を備え、前記トランスの前記第1コイルから前記第2コイルへ電力を伝送する場合、前記第1制御回路が、前記第1ハーフブリッジ回路のスイッチング周波数を掃引し、前記伝送効率算出部が算出した伝送効率のうち、最も高い伝送効率のときのスイッチング周波数で、前記第1ハーフブリッジ回路をスイッチング制御し、前記トランスの前記第2コイルから前記第1コイルへ電力を伝送する場合、前記第2制御回路が、前記第2ハーフブリッジ回路のスイッチング周波数を掃引し、前記伝送効率算出部が算出した伝送効率のうち、最も高い伝送効率のときのスイッチング周波数で、前記第2ハーフブリッジ回路をスイッチング制御する、ことを特徴とする。 The switching power supply according to the present invention includes a first input / output port, a second input / output port, a first circuit connected to the first input / output port, a series circuit of the first switching element and the second switching element, a first capacitor, A first half bridge circuit configured by connecting a series circuit of second capacitors in parallel; a series circuit of a third switching element and a fourth switching element connected to the second input / output port; and a third capacitor And a second half bridge circuit configured by connecting a series circuit of a fourth capacitor in parallel, a first control circuit for switching control of the first half bridge circuit, and a switching control of the second half bridge circuit. A second control circuit, and a first coil and a second coil that are magnetically coupled, wherein the first coil is connected to the first half-bridge circuit; Between the first coil and the first half-bridge circuit, or between the second coil and the second half-bridge circuit. A resonance inductor and a resonance capacitor provided at one of the terminals, a first power detection unit for detecting a first power input / output to / from the first input / output port, and an input / output to / from the second input / output port. A second power detection unit for detecting second power, and a transmission efficiency calculation unit for calculating transmission efficiency from the first power and the second power, and from the first coil of the transformer to the second When transmitting power to the coil, the first control circuit sweeps the switching frequency of the first half bridge circuit, and the transmission efficiency calculated by the transmission efficiency calculation unit is the highest transmission efficiency. When the first half-bridge circuit is controlled to be switched at the switching frequency and power is transmitted from the second coil of the transformer to the first coil, the second control circuit switches the second half-bridge circuit. The second half-bridge circuit is subjected to switching control at a switching frequency at the highest transmission efficiency among the transmission efficiencies calculated by the transmission efficiency calculation unit by sweeping the frequency.
 この構成では、最も高い効率で電力伝送を行える。スイッチング電源装置がLLC共振回路を備える場合、LLC共振回路のゲイン特性に基づき、利得が最も高くなるスイッチング周波数を検出し、そのスイッチング周波数で第1ハーフブリッジ回路又は第2ハーフブリッジ回路をスイッチング制御することが好ましい。しかし、インダクタ、キャパシタ等の製造誤差、又は、装置出力側に接続される負荷の軽重によって、LLC共振回路のゲイン特性は変化する。このため、伝送効率が高いスイッチング周波数を検出することは難しい。そこで、入力電力と出力電力とから算出する伝送効率を基にスイッチング周波数を決定することで、最適なスイッチング周波数を得ることができる。 In this configuration, power can be transmitted with the highest efficiency. When the switching power supply device includes an LLC resonance circuit, the switching frequency with the highest gain is detected based on the gain characteristic of the LLC resonance circuit, and the first half-bridge circuit or the second half-bridge circuit is subjected to switching control with the switching frequency. It is preferable. However, the gain characteristic of the LLC resonant circuit changes due to manufacturing errors such as inductors and capacitors, or the weight of the load connected to the device output side. For this reason, it is difficult to detect a switching frequency with high transmission efficiency. Therefore, an optimum switching frequency can be obtained by determining the switching frequency based on the transmission efficiency calculated from the input power and the output power.
 本発明に係るスイッチング電源装置では、前記第1制御回路及び前記第2制御回路は、1チップに集積化されていることが好ましい。 In the switching power supply according to the present invention, it is preferable that the first control circuit and the second control circuit are integrated on one chip.
 この構成では、スイッチング電源装置の小型化を実現できる。 In this configuration, the switching power supply device can be downsized.
 本発明に係るスイッチング電源装置は、第1入出力ポート及び第2入出力ポートと、前記第1入出力ポートに接続され、第1スイッチング素子及び第2スイッチング素子の直列回路と、第1キャパシタ及び第2キャパシタの直列回路とが並列に接続されて構成されたハーフブリッジ回路と、前記第2入出力ポートに接続されたフルブリッジ回路と、前記ハーフブリッジ回路をスイッチング制御する第3制御回路と、前記フルブリッジ回路をスイッチング制御する第4制御回路と、磁気結合する第1コイル及び第2コイルを有し、前記第1コイルが前記ハーフブリッジ回路に接続され、前記第2コイルが前記フルブリッジ回路に接続されたトランスと、前記第1コイル及び前記ハーフブリッジ回路の間、又は、前記第2コイル及び前記フルブリッジ回路の間の一方に設けられた共振用インダクタ及び共振用キャパシタと、前記第1入出力ポートに入出力される第1電力を検出する第1電力検出部と、前記第2入出力ポートに入出力される第2電力を検出する第2電力検出部と、前記第1電力と前記第2電力とから伝送効率を算出する伝送効率算出部と、を備え、前記トランスの前記第1コイルから前記第2コイルへ電力を伝送する場合、前記第3制御回路が、前記ハーフブリッジ回路のスイッチング周波数を掃引し、前記伝送効率算出部が算出した伝送効率のうち、最も高い伝送効率のときのスイッチング周波数で、前記ハーフブリッジ回路をスイッチング制御し、前記トランスの前記第2コイルから前記第1コイルへ電力を伝送する場合、前記第4制御回路が、前記フルブリッジ回路のスイッチング周波数を掃引し、前記伝送効率算出部が算出した伝送効率のうち、最も高い伝送効率のときのスイッチング周波数で、前記フルブリッジ回路をスイッチング制御することが好ましい。 The switching power supply according to the present invention includes a first input / output port, a second input / output port, a first circuit connected to the first input / output port, a series circuit of the first switching element and the second switching element, a first capacitor, A half bridge circuit configured by connecting a series circuit of second capacitors in parallel; a full bridge circuit connected to the second input / output port; and a third control circuit for controlling the switching of the half bridge circuit; A fourth control circuit that performs switching control of the full bridge circuit; a first coil and a second coil that are magnetically coupled; the first coil is connected to the half bridge circuit; and the second coil is the full bridge circuit. Or between the first coil and the half-bridge circuit, or between the second coil and the full-circuit. A resonance inductor and a resonance capacitor provided on one side of the wedge circuit, a first power detection unit for detecting a first power input to and output from the first input / output port, and the second input / output port A second power detection unit that detects second power input to and output from the first power source; and a transmission efficiency calculation unit that calculates transmission efficiency from the first power and the second power, and the first coil of the transformer When the power is transmitted from the first coil to the second coil, the third control circuit sweeps the switching frequency of the half-bridge circuit, and the transmission efficiency calculated by the transmission efficiency calculation unit is the highest transmission efficiency. When the half-bridge circuit is switching-controlled at a switching frequency and power is transmitted from the second coil of the transformer to the first coil, the fourth control circuit is configured to Sweeping the switching frequency of the road, among the transmission efficiency of the transmission efficiency calculator has calculated, at the switching frequency when the highest transmission efficiency, it is preferable to switching control the full bridge circuit.
 この構成では、最も高い効率で電力伝送を行える。スイッチング電源装置がLLC共振回路を備える場合、LLC共振回路のゲイン特性に基づき、利得が最も高くなるスイッチング周波数を検出し、そのスイッチング周波数でハーフブリッジ回路又はフルブリッジ回路をスイッチング制御することが好ましい。しかし、インダクタ、キャパシタ等の製造誤差、又は、装置出力側に接続される負荷の軽重によって、LLC共振回路のゲイン特性は変化する。このため、伝送効率が高いスイッチング周波数を検出することは難しい。そこで、入力電力と出力電力とから算出する伝送効率を基にスイッチング周波数を決定することで、最適なスイッチング周波数を得ることができる。 In this configuration, power can be transmitted with the highest efficiency. When the switching power supply device includes an LLC resonance circuit, it is preferable to detect a switching frequency with the highest gain based on the gain characteristic of the LLC resonance circuit and to control the switching of the half bridge circuit or the full bridge circuit with the switching frequency. However, the gain characteristic of the LLC resonant circuit changes due to manufacturing errors such as inductors and capacitors, or the weight of the load connected to the device output side. For this reason, it is difficult to detect a switching frequency with high transmission efficiency. Therefore, an optimum switching frequency can be obtained by determining the switching frequency based on the transmission efficiency calculated from the input power and the output power.
 本発明に係るスイッチング電源装置では、前記第3制御回路及び前記第4制御回路は、1チップに集積化されていることが好ましい。 In the switching power supply according to the present invention, it is preferable that the third control circuit and the fourth control circuit are integrated on one chip.
 この構成では、スイッチング電源装置の小型化を実現できる。 In this configuration, the switching power supply device can be downsized.
 本発明に係るスイッチング電源装置は、第1入出力ポート及び第2入出力ポートと、前記第1入出力ポートに接続された第1フルブリッジ回路と、
 前記第2入出力ポートに接続された第2フルブリッジ回路と、前記第1フルブリッジ回路をスイッチング制御する第5制御回路と、前記第2フルブリッジ回路をスイッチング制御する第6制御回路と、磁気結合する第1コイル及び第2コイルを有し、前記第1コイルが前記第1フルブリッジ回路に接続され、前記第2コイルが前記第2フルブリッジ回路に接続されたトランスと、前記第1コイル及び前記第1フルブリッジ回路の間、又は、前記第2コイル及び前記第2フルブリッジ回路の間の一方に設けられた共振用インダクタ及び共振用キャパシタと、前記第1入出力ポートに入出力される第1電力を検出する第1電力検出部と、前記第2入出力ポートに入出力される第2電力を検出する第2電力検出部と、前記第1電力と前記第2電力とから伝送効率を算出する伝送効率算出部と、を備え、前記トランスの前記第1コイルから前記第2コイルへ電力を伝送する場合、前記第5制御回路が、前記第1フルブリッジ回路のスイッチング周波数を掃引し、前記伝送効率算出部が算出した伝送効率のうち、最も高い伝送効率のときのスイッチング周波数で、前記第1フルブリッジ回路をスイッチング制御し、前記トランスの前記第2コイルから前記第1コイルへ電力を伝送する場合、前記第6制御回路が、前記第2フルブリッジ回路のスイッチング周波数を掃引し、前記伝送効率算出部が算出した伝送効率のうち、最も高い伝送効率のときのスイッチング周波数で、前記第2フルブリッジ回路をスイッチング制御することを特徴とする。
A switching power supply according to the present invention includes a first input / output port and a second input / output port, a first full bridge circuit connected to the first input / output port,
A second full bridge circuit connected to the second input / output port; a fifth control circuit for switching control of the first full bridge circuit; a sixth control circuit for switching control of the second full bridge circuit; A transformer having a first coil and a second coil to be coupled, wherein the first coil is connected to the first full bridge circuit, and the second coil is connected to the second full bridge circuit; and the first coil And a resonance inductor and a resonance capacitor provided on one side between the first full bridge circuit or between the second coil and the second full bridge circuit, and are inputted to and outputted from the first input / output port. A first power detector that detects first power, a second power detector that detects second power input to and output from the second input / output port, the first power, and the second power. A transmission efficiency calculating unit for calculating transmission efficiency from the first coil of the transformer to the second coil, the fifth control circuit is configured to switch the switching frequency of the first full bridge circuit. The first full bridge circuit is controlled to be switched at the switching frequency at the highest transmission efficiency among the transmission efficiencies calculated by the transmission efficiency calculation unit, and the first coil is switched from the second coil of the transformer. When transmitting power to the coil, the sixth control circuit sweeps the switching frequency of the second full-bridge circuit, and the switching frequency at the highest transmission efficiency among the transmission efficiencies calculated by the transmission efficiency calculation unit Thus, the second full bridge circuit is controlled to be switched.
 この構成では、最も高い効率で電力伝送を行える。スイッチング電源装置がLLC共振回路を備える場合、LLC共振回路のゲイン特性に基づき、利得が最も高くなるスイッチング周波数を検出し、そのスイッチング周波数で第1フルブリッジ回路又は第2フルブリッジ回路をスイッチング制御することが好ましい。しかし、インダクタ、キャパシタ等の製造誤差、又は、装置出力側に接続される負荷の軽重によって、LLC共振回路のゲイン特性は変化する。このため、伝送効率が高いスイッチング周波数を検出することは難しい。そこで、入力電力と出力電力とから算出する伝送効率からスイッチング周波数を決定することで、最適なスイッチング周波数を得ることができる。 In this configuration, power can be transmitted with the highest efficiency. When the switching power supply device includes an LLC resonance circuit, the switching frequency with the highest gain is detected based on the gain characteristic of the LLC resonance circuit, and the first full bridge circuit or the second full bridge circuit is controlled to be switched at the switching frequency. It is preferable. However, the gain characteristic of the LLC resonant circuit changes due to manufacturing errors such as inductors and capacitors, or the weight of the load connected to the device output side. For this reason, it is difficult to detect a switching frequency with high transmission efficiency. Therefore, an optimum switching frequency can be obtained by determining the switching frequency from the transmission efficiency calculated from the input power and the output power.
 本発明に係るスイッチング電源装置では、前記第5制御回路及び前記第6制御回路は、1チップに集積化されていることが好ましい。 In the switching power supply according to the present invention, it is preferable that the fifth control circuit and the sixth control circuit are integrated on one chip.
 この構成では、スイッチング電源装置の小型化を実現できる。 In this configuration, the switching power supply device can be downsized.
 本発明に係るスイッチング電源装置では、前記第1電力検出部及び前記第2電力検出部は、所定期間内の平均値を検出することが好ましい。 In the switching power supply according to the present invention, it is preferable that the first power detection unit and the second power detection unit detect an average value within a predetermined period.
 この構成では、過渡的な変動成分、ノイズ、計測誤差などを除外して電力を検知できる。 In this configuration, power can be detected by removing transient fluctuation components, noise, measurement errors, etc.
 本発明に係るスイッチング電源装置では、前記共振用インダクタは、前記トランスの漏れインダクタンスであることが好ましい。 In the switching power supply according to the present invention, it is preferable that the resonance inductor is a leakage inductance of the transformer.
 この構成では、部品点数を削減できるため、コストダウン、小型化が可能である。 ∙ With this configuration, the number of parts can be reduced, thus reducing costs and downsizing.
 本発明によれば、LLC共振回路のゲイン特性は変化した場合であっても、最も高い効率で電力伝送を行える。 According to the present invention, even when the gain characteristic of the LLC resonant circuit changes, power can be transmitted with the highest efficiency.
実施形態1に係るスイッチング電源装置の回路図Circuit diagram of switching power supply apparatus according to Embodiment 1 制御回路が有する機能を示すブロック図Block diagram showing functions of control circuit LLC共振回路のゲイン特性を示す図The figure which shows the gain characteristic of the LLC resonance circuit 制御回路が実行する処理を示すフローチャートFlow chart showing processing executed by control circuit スイッチング電源装置の別の例を示す図The figure which shows another example of a switching power supply device スイッチング電源装置の別の例を示す図The figure which shows another example of a switching power supply device
(実施形態1)
 図1は、実施形態1に係るスイッチング電源装置1の回路図である。
(Embodiment 1)
FIG. 1 is a circuit diagram of a switching power supply device 1 according to the first embodiment.
 スイッチング電源装置1は、例えば、太陽光発電システムに用いられる。スイッチング電源装置1は、入出力端子11,12,21,22を備えている。入出力端子11,12は、ソーラパネル及び電力系統に接続される。入出力端子21,22は、ソーラパネルで発電された電力を蓄電する蓄電池に接続される。入出力端子11,12は、本発明に係る「第1入出力ポート」の一例である。入出力端子21,22は、本発明に係る「第2入出力ポート」の一例である。 The switching power supply device 1 is used, for example, in a solar power generation system. The switching power supply device 1 includes input / output terminals 11, 12, 21, and 22. The input / output terminals 11 and 12 are connected to a solar panel and a power system. The input / output terminals 21 and 22 are connected to a storage battery that stores electric power generated by the solar panel. The input / output terminals 11 and 12 are examples of the “first input / output port” according to the present invention. The input / output terminals 21 and 22 are examples of the “second input / output port” according to the present invention.
 スイッチング電源装置1は双方向DC-DCコンバータであり、入出力端子11,12から入力された直流電圧を所定値に変圧し、入出力端子21,22に接続される蓄電池へ出力し、蓄電池を充電する。また、スイッチング電源装置1は、蓄電池の充電電圧が入出力端子21,22から入力されると、所定値に変圧し、入出力端子11,12に接続される電力系統へ供給する。 The switching power supply device 1 is a bidirectional DC-DC converter, which transforms a DC voltage input from the input / output terminals 11 and 12 to a predetermined value and outputs it to a storage battery connected to the input / output terminals 21 and 22. Charge. In addition, when the charging voltage of the storage battery is input from the input / output terminals 21 and 22, the switching power supply device 1 transforms the storage battery 1 to a predetermined value and supplies it to the power system connected to the input / output terminals 11 and 12.
 入出力端子11,12には、キャパシタCa及びスイッチング回路13が接続されている。スイッチング回路13は、スイッチング素子Q11,Q12の直列回路と、スイッチング素子Q13,Q14の直列回路とが並列接続されたフルブリッジ回路である。スイッチング回路13は、本発明に係る「第1フルブリッジ回路」の一例である。スイッチング素子Q11~Q14はMOS-FETであり、そのゲートは制御回路14に接続されている。 The capacitor Ca and the switching circuit 13 are connected to the input / output terminals 11 and 12. The switching circuit 13 is a full bridge circuit in which a series circuit of switching elements Q11 and Q12 and a series circuit of switching elements Q13 and Q14 are connected in parallel. The switching circuit 13 is an example of the “first full bridge circuit” according to the present invention. The switching elements Q11 to Q14 are MOS-FETs, and their gates are connected to the control circuit 14.
 スイッチング素子Q11,Q12の接続点は、インダクタL1を介してトランスTの1次巻線N1に接続されている。1次巻線N1は、本発明に係る「第1コイル」の一例である。また、スイッチング素子Q13,Q14の接続点は、キャパシタC1を介してトランスTの1次巻線N1に接続されている。図1に示すインダクタLmはトランスTの励磁インダクタンスである。なお、インダクタLmは、外付けの実部品であってもよい。インダクタL1、キャパシタC1及びインダクタLmは、LLC共振回路を構成している。インダクタL1は、本発明に係る「共振用インダクタ」の一例である。キャパシタC1は、本発明に係る「共振用キャパシタ」の一例である。 The connection point of the switching elements Q11 and Q12 is connected to the primary winding N1 of the transformer T via the inductor L1. The primary winding N1 is an example of the “first coil” according to the present invention. The connection point of the switching elements Q13 and Q14 is connected to the primary winding N1 of the transformer T through the capacitor C1. An inductor Lm shown in FIG. 1 is an exciting inductance of the transformer T. The inductor Lm may be an external actual part. The inductor L1, the capacitor C1, and the inductor Lm constitute an LLC resonance circuit. The inductor L1 is an example of the “resonance inductor” according to the present invention. The capacitor C1 is an example of the “resonance capacitor” according to the present invention.
 なお、インダクタL1は外付けの実部品でなく、トランスTの漏れインダクタンスであってもよい。この場合、部品点数を削減できるため、コストダウン、小型化が可能である。 Note that the inductor L1 may be a leakage inductance of the transformer T instead of an actual external component. In this case, since the number of parts can be reduced, cost reduction and size reduction are possible.
 入出力端子21,22には、キャパシタCb及びスイッチング回路23が接続されている。スイッチング回路23は、スイッチング素子Q21,Q22の直列回路と、スイッチング素子Q23,Q24の直列回路とが並列接続されたフルブリッジ回路である。スイッチング回路23は、本発明に係る「第2フルブリッジ回路」の一例である。スイッチング素子Q21~Q24はMOS-FETであり、そのゲートは制御回路14に接続されている。 The capacitor Cb and the switching circuit 23 are connected to the input / output terminals 21 and 22. The switching circuit 23 is a full bridge circuit in which a series circuit of switching elements Q21 and Q22 and a series circuit of switching elements Q23 and Q24 are connected in parallel. The switching circuit 23 is an example of the “second full bridge circuit” according to the present invention. The switching elements Q21 to Q24 are MOS-FETs, and their gates are connected to the control circuit 14.
 スイッチング素子Q21,Q22の接続点は、トランスTの2次巻線N2に接続されている。また、スイッチング素子Q23,Q24の接続点はトランスTの2次巻線N2に接続されている。2次巻線N2は、本発明に係る「第2コイル」の一例である。 The connection point of the switching elements Q21 and Q22 is connected to the secondary winding N2 of the transformer T. The connection point of the switching elements Q23 and Q24 is connected to the secondary winding N2 of the transformer T. The secondary winding N2 is an example of the “second coil” according to the present invention.
 制御回路14は、複数の素子を1つのチップに集積された集積回路であり、スイッチング素子Q11~Q14及びスイッチング素子Q21~Q24のゲートに制御信号を出力し、各スイッチング素子Q11~Q14,Q21~Q24をスイッチング制御する。具体的には、制御回路14は、スイッチング素子Q11,Q12と、スイッチング素子Q13,Q14とを交互にオンオフする。また、制御回路14は、スイッチング素子Q21,Q22と、スイッチング素子Q23,Q24とを交互にオンオフする。制御回路14は、本発明に係る「第5制御回路」及び「第6制御回路」の一例である。制御回路14を集積回路とすることで、スイッチング電源装置1の小型化を実現できる。 The control circuit 14 is an integrated circuit in which a plurality of elements are integrated on one chip, and outputs a control signal to the gates of the switching elements Q11 to Q14 and the switching elements Q21 to Q24, and the switching elements Q11 to Q14, Q21 to Q24 is switching-controlled. Specifically, the control circuit 14 turns on and off the switching elements Q11 and Q12 and the switching elements Q13 and Q14 alternately. In addition, the control circuit 14 turns on and off the switching elements Q21 and Q22 and the switching elements Q23 and Q24 alternately. The control circuit 14 is an example of the “fifth control circuit” and the “sixth control circuit” according to the present invention. By making the control circuit 14 an integrated circuit, the switching power supply device 1 can be reduced in size.
 スイッチング電源装置1は双方向DC-DCコンバータであるが、以下では、入出力端子21,22から入力される直流電圧を、入出力端子21,22から出力する場合について説明する。この場合、制御回路14は、電力伝送効率が最も高くなるスイッチング周波数で、スイッチング回路13をスイッチング制御する。 The switching power supply device 1 is a bidirectional DC-DC converter. Hereinafter, a case where a DC voltage input from the input / output terminals 21 and 22 is output from the input / output terminals 21 and 22 will be described. In this case, the control circuit 14 performs switching control of the switching circuit 13 at the switching frequency at which the power transmission efficiency is highest.
 入出力端子11,12には、電圧検出用の分圧抵抗15、及び電流検出素子(カレントトランス)16が接続されている。そして、制御回路14は、入出力端子11,12から入出力される電流及び電圧を検出する。また、入出力端子21,22には、電圧検出用の分圧抵抗25、及び電流検出素子26が接続されている。そして、制御回路14は、入出力端子21,22から入出力される電流及び電圧を検出する。制御回路14は、検出した電流及び電圧から、最適なスイッチング周波数を決定し、スイッチング回路13をスイッチング制御する。 A voltage detecting resistor 15 and a current detecting element (current transformer) 16 are connected to the input / output terminals 11 and 12. Then, the control circuit 14 detects current and voltage input / output from the input / output terminals 11 and 12. Further, a voltage detection voltage dividing resistor 25 and a current detection element 26 are connected to the input / output terminals 21 and 22. The control circuit 14 detects currents and voltages input / output from the input / output terminals 21 and 22. The control circuit 14 determines an optimum switching frequency from the detected current and voltage, and controls the switching circuit 13 for switching.
 図2は、制御回路14が有する機能を示すブロック図である。 FIG. 2 is a block diagram showing the functions of the control circuit 14.
 制御回路14は、DSP(Digital Signal Processor)であり、スイッチング制御部141、電流検出部142、電圧検出部143、電力算出部144、伝送効率算出部145及び周波数設定部146を有している。 The control circuit 14 is a DSP (Digital Signal Processor), and includes a switching control unit 141, a current detection unit 142, a voltage detection unit 143, a power calculation unit 144, a transmission efficiency calculation unit 145, and a frequency setting unit 146.
 スイッチング制御部141は、スイッチング素子Q11~Q14のゲートに制御信号を出力し、後述の周波数設定部146により設定されるスイッチング周波数で、スイッチング素子Q11,Q12と、スイッチング素子Q13,Q14とを交互にオンオフする。また、スイッチング制御部141は、所定期間スイッチング周波数を掃引して、スイッチング素子Q11,Q12と、スイッチング素子Q13,Q14とを交互にオンオフする。また、スイッチング制御部141は、スイッチング素子Q21~Q24のゲートに制御信号を出力し、スイッチング素子Q21,Q22と、スイッチング素子Q23,Q24とを交互にオンオフする。 The switching control unit 141 outputs a control signal to the gates of the switching elements Q11 to Q14, and alternately switches the switching elements Q11, Q12 and the switching elements Q13, Q14 at a switching frequency set by a frequency setting unit 146 described later. Turn on and off. Further, the switching control unit 141 sweeps the switching frequency for a predetermined period, and turns on and off the switching elements Q11 and Q12 and the switching elements Q13 and Q14 alternately. The switching control unit 141 outputs a control signal to the gates of the switching elements Q21 to Q24, and alternately turns on and off the switching elements Q21 and Q22 and the switching elements Q23 and Q24.
 電流検出部142は、入出力端子11,12から入出力される電流を検出する。また、電流検出部142は、入出力端子21,22から入出力される電流を検出する。電圧検出部143は、入出力端子11,12から入出力される電圧を検出する。また、電圧検出部143は、入出力端子21,22から入出力される電圧を検出する。 The current detector 142 detects the current input / output from the input / output terminals 11 and 12. The current detector 142 detects currents input / output from the input / output terminals 21 and 22. The voltage detector 143 detects the voltage input / output from the input / output terminals 11 and 12. Further, the voltage detection unit 143 detects the voltage input / output from the input / output terminals 21 and 22.
 スイッチング制御部141がスイッチング周波数を掃引して、スイッチング素子Q11~Q14をスイッチング制御する間、電流検出部142及び電圧検出部143は、電流及び電圧を随時検出する。また、電流検出部142及び電圧検出部143は、所定期間に電流及び電圧を随時検出し、その平均値を算出する。そして、電流検出部142及び電圧検出部143は、算出した平均値を電力算出部144へ出力する。電流検出部142及び電圧検出部143は、所定期間に検出した電流及び電圧の平均値を算出するため、電力算出部144への出力値から、過渡的な変動成分、ノイズ、計測誤差などを除外できる。 While the switching control unit 141 sweeps the switching frequency and performs switching control of the switching elements Q11 to Q14, the current detection unit 142 and the voltage detection unit 143 detect current and voltage as needed. In addition, the current detection unit 142 and the voltage detection unit 143 detect current and voltage as needed during a predetermined period, and calculate an average value thereof. Then, the current detection unit 142 and the voltage detection unit 143 output the calculated average value to the power calculation unit 144. The current detection unit 142 and the voltage detection unit 143 exclude transient fluctuation components, noise, measurement errors, and the like from the output value to the power calculation unit 144 in order to calculate the average value of the current and voltage detected during a predetermined period. it can.
 電力算出部144は、入力電流及び入力電圧から入力電力を算出する。また、電力算出部144は、出力電流及び出力電圧から出力電力を算出する。前記のように、スイッチング周波数の掃引期間中、電流検出部142及び電圧検出部143は、電流及び電圧を随時検出する。そして、電力算出部144は、電流検出部142及び電圧検出部143が電流及び電圧を検出する毎に、入力電流及び入力電圧を算出する。 The power calculation unit 144 calculates input power from the input current and the input voltage. Further, the power calculation unit 144 calculates output power from the output current and the output voltage. As described above, during the switching frequency sweep period, the current detection unit 142 and the voltage detection unit 143 detect current and voltage as needed. The power calculation unit 144 calculates the input current and the input voltage every time the current detection unit 142 and the voltage detection unit 143 detect the current and the voltage.
 なお、分圧抵抗15,25、電流検出素子16,26、電流検出部142、電圧検出部143及び電力算出部144は、本発明に係る「第1電力検出部」及び「第2電力検出部」の一例である。 The voltage dividing resistors 15 and 25, the current detection elements 16 and 26, the current detection unit 142, the voltage detection unit 143, and the power calculation unit 144 are the “first power detection unit” and the “second power detection unit” according to the present invention. Is an example.
 伝送効率算出部145は、入力電力及び出力電力から、スイッチング電源装置1の電力伝送効率を算出する。伝送効率算出部145は、電力算出部144が入力電流及び入力電圧を算出する毎に、電力伝送効率を算出する。 The transmission efficiency calculation unit 145 calculates the power transmission efficiency of the switching power supply device 1 from the input power and the output power. The transmission efficiency calculation unit 145 calculates the power transmission efficiency each time the power calculation unit 144 calculates the input current and the input voltage.
 周波数設定部146は、スイッチング周波数の掃引期間中に、伝送効率算出部145が算出した複数の電力伝送効率から、最も高い電力伝送効率を選択する。そして、周波数設定部146は、選択した電力伝送効率に対向する周波数をスイッチング周波数に設定する。 The frequency setting unit 146 selects the highest power transmission efficiency from the plurality of power transmission efficiencies calculated by the transmission efficiency calculation unit 145 during the switching frequency sweeping period. And the frequency setting part 146 sets the frequency which opposes the selected power transmission efficiency to a switching frequency.
 LLC共振回路を備えるスイッチング電源装置1において、高い電力伝送効率を得るためには、LLC共振回路のゲイン特性に基づき、利得が最も高くなるスイッチング周波数を検出し、そのスイッチング周波数でスイッチング回路13をスイッチング制御することが好ましい。しかし、インダクタ、キャパシタ等の製造誤差、又は、入出力端子21,22に接続される蓄電池の充電量(負荷の軽重)によって、LLC共振回路のゲイン特性は変化する。 In order to obtain high power transmission efficiency in the switching power supply device 1 provided with the LLC resonant circuit, the switching frequency with the highest gain is detected based on the gain characteristic of the LLC resonant circuit, and the switching circuit 13 is switched at the switching frequency. It is preferable to control. However, the gain characteristic of the LLC resonant circuit changes depending on manufacturing errors of inductors, capacitors, etc., or the charge amount of the storage battery connected to the input / output terminals 21 and 22 (light weight of the load).
 図3は、LLC共振回路のゲイン特性を示す図である。図3の横軸は、周波数比(スイッチング周波数/共振周波数)を示し、縦軸は、ゲイン(出力電圧/入力電圧)を示す。 FIG. 3 is a diagram showing gain characteristics of the LLC resonant circuit. The horizontal axis in FIG. 3 indicates the frequency ratio (switching frequency / resonance frequency), and the vertical axis indicates the gain (output voltage / input voltage).
 図3に示すように、負荷が軽くなるとゲインのピークは大きい。この場合、スイッチング周波数は低い。また、負荷が重くなるとゲインのピークは小さい。この場合、スイッチング周波数は高い(共振周波数と同じ)。すなわち、負荷の軽重に応じて、スイッチング周波数を適切に設定しないと、高い電力伝送効率は得られない。 As shown in Fig. 3, the gain peak increases as the load decreases. In this case, the switching frequency is low. Further, when the load becomes heavy, the gain peak is small. In this case, the switching frequency is high (same as the resonance frequency). That is, high power transmission efficiency cannot be obtained unless the switching frequency is appropriately set according to the load weight.
 そこで、制御回路14は、入出力電力から伝送効率を算出し、最も高い伝送効率となる周波数を、スイッチング周波数に設定する。 Therefore, the control circuit 14 calculates the transmission efficiency from the input / output power, and sets the frequency with the highest transmission efficiency as the switching frequency.
 図4は、制御回路14が実行する処理を示すフローチャートである。 FIG. 4 is a flowchart showing processing executed by the control circuit 14.
 制御回路14は、ソフトスタート処理を実行する(S1)。ソフトスタート処理では、制御回路14は、LLC共振回路の共振周波数より高いスイッチング周波数でスイッチング回路13のスイッチング制御を開始する。その後、スイッチング周波数を低くし、スイッチング周波数を共振周波数に設定して、スイッチング回路13をスイッチング制御する。 The control circuit 14 executes a soft start process (S1). In the soft start process, the control circuit 14 starts switching control of the switching circuit 13 at a switching frequency higher than the resonance frequency of the LLC resonance circuit. Thereafter, the switching frequency is lowered, the switching frequency is set to the resonance frequency, and the switching circuit 13 is subjected to switching control.
 制御回路14は、入力電力を検知する(S2)。詳しくは、電流検出部142が入力電流を検出し、電圧検出部143が入力電圧を検出する。このとき、電流検出部142及び電圧検出部143は、所定期間、入力電流及び入力電圧を検出し、その期間の平均値を算出する。そして、電力算出部144は、入力電流及び入力電圧から、入力電力を算出する。 The control circuit 14 detects input power (S2). Specifically, the current detection unit 142 detects the input current, and the voltage detection unit 143 detects the input voltage. At this time, the current detection unit 142 and the voltage detection unit 143 detect the input current and the input voltage for a predetermined period, and calculate an average value for the period. Then, the power calculation unit 144 calculates input power from the input current and the input voltage.
 次に、制御回路14は、出力電力を検知する(S3)。詳しくは、電流検出部142が出力電流を検出し、電圧検出部143が出力電圧を検出する。このとき、電流検出部142及び電圧検出部143は、所定期間、出力電流及び出力電圧を検出し、その期間の平均値を算出する。そして、電力算出部144は、出力電流及び出力電圧から、出力電力を算出する。 Next, the control circuit 14 detects the output power (S3). Specifically, the current detection unit 142 detects the output current, and the voltage detection unit 143 detects the output voltage. At this time, the current detection unit 142 and the voltage detection unit 143 detect the output current and the output voltage for a predetermined period, and calculate an average value for the period. Then, the power calculation unit 144 calculates output power from the output current and output voltage.
 制御回路14の伝送効率算出部145は、電力算出部144が算出した入力電力及び出力電力から、電力伝送効率を算出する(S4)。制御回路14は、電力伝送効率の算出をN回行ったか否かを判定する(S5)。N回行っていない場合(S5:NO)、制御回路14のスイッチング制御部141は、スイッチング周波数を掃引して、スイッチング回路13をスイッチング制御する(S6)。その後、制御回路14は、S2以降の処理を実行する。 The transmission efficiency calculation unit 145 of the control circuit 14 calculates the power transmission efficiency from the input power and output power calculated by the power calculation unit 144 (S4). The control circuit 14 determines whether or not the power transmission efficiency has been calculated N times (S5). If not performed N times (S5: NO), the switching control unit 141 of the control circuit 14 sweeps the switching frequency and performs switching control of the switching circuit 13 (S6). Thereafter, the control circuit 14 executes the processes after S2.
 電力伝送効率の算出をN回行った場合(S5:YES)、制御回路14は、算出した伝送効率のうち、最も高い伝送効率を選択する(S7)。次に、制御回路14は、選択した伝送効率を算出したときの周波数を、スイッチング周波数に設定する(S8)。そして、制御回路14は、設定したスイッチング周波数でスイッチング回路13をスイッチング制御する定常モードを実行する(S9)。これにより、高い伝送効率で、スイッチング電源装置1を駆動することができる。 When the power transmission efficiency is calculated N times (S5: YES), the control circuit 14 selects the highest transmission efficiency among the calculated transmission efficiencies (S7). Next, the control circuit 14 sets the frequency when the selected transmission efficiency is calculated to the switching frequency (S8). And the control circuit 14 performs the steady mode which carries out switching control of the switching circuit 13 with the set switching frequency (S9). Thereby, the switching power supply device 1 can be driven with high transmission efficiency.
 なお、図4に示す処理は、例えば、スイッチング電源装置1の検査工程時、又は、起動時等に行われる。この処理は、1回のみ行ってもよいし、所定期間経過毎(例えば、1か月毎)に行ってもよい。1回のみ行う場合、頻繁に処理を実行する必要がないため、制御回路14は高性能なDSPで構成する必要がない。また、定期的に行う場合、部品の経年変化に対応できる。 Note that the processing shown in FIG. 4 is performed, for example, at the time of the inspection process or startup of the switching power supply device 1. This process may be performed only once, or may be performed every predetermined period (for example, every month). When it is performed only once, it is not necessary to execute processing frequently, so that the control circuit 14 does not need to be configured with a high-performance DSP. Moreover, when performing regularly, it can respond to the secular change of components.
 以上説明したように、スイッチング電源装置1は、電力伝送効率が高いときの周波数でスイッチング回路13をスイッチング制御することで、高い電力伝送効率が得られる。 As described above, the switching power supply device 1 can obtain high power transmission efficiency by controlling the switching of the switching circuit 13 at a frequency when the power transmission efficiency is high.
 なお、本実施形態では、スイッチング電源装置1のスイッチング回路13は、フルブリッジ回路として説明したが、ハーフブリッジ回路であってもよい。 In the present embodiment, the switching circuit 13 of the switching power supply device 1 has been described as a full bridge circuit, but may be a half bridge circuit.
(実施形態2)
 図5は、実施形態2に係るスイッチング電源装置2を示す図である。スイッチング電源装置2は、トランスTの1次側のスイッチング回路13Aをハーフブリッジ回路とした構成である。スイッチング回路13Aと、スイッチング回路23とは、制御回路14Aによりスイッチング制御される。他の構成は、実施形態1に係るスイッチング電源装置1と同じである。
(Embodiment 2)
FIG. 5 is a diagram illustrating the switching power supply device 2 according to the second embodiment. The switching power supply device 2 has a configuration in which the switching circuit 13A on the primary side of the transformer T is a half bridge circuit. The switching circuit 13A and the switching circuit 23 are subjected to switching control by the control circuit 14A. Other configurations are the same as those of the switching power supply device 1 according to the first embodiment.
 スイッチング回路13Aは、キャパシタC21,C22の直列回路と、スイッチング素子Q31,Q32の直列回路とが並列接続されて構成されている。スイッチング素子Q31は、本発明に係る「第1スイッチング素子」の一例である。スイッチング素子Q32は、本発明に係る「第2スイッチング素子」の一例である。キャパシタC21は、本発明に係る「第1キャパシタ」の一例である。キャパシタC22は、本発明に係る「第2キャパシタ」の一例である。 The switching circuit 13A is configured by connecting a series circuit of capacitors C21 and C22 and a series circuit of switching elements Q31 and Q32 in parallel. The switching element Q31 is an example embodiment that corresponds to the “first switching element” according to the present invention. The switching element Q32 is an example embodiment that corresponds to the “second switching element” according to the present invention. The capacitor C21 is an example of the “first capacitor” according to the present invention. The capacitor C22 is an example of the “second capacitor” according to the present invention.
 キャパシタC21,C22の接続点と、スイッチング素子Q31,Q32の接続点とは、インダクタL1を介してトランスTに接続されている。そして、キャパシタC21,C22、インダクタL1、及びインダクタLmは、LLC共振回路を構成している。 The connection point of the capacitors C21 and C22 and the connection point of the switching elements Q31 and Q32 are connected to the transformer T via the inductor L1. The capacitors C21 and C22, the inductor L1, and the inductor Lm constitute an LLC resonance circuit.
 制御回路14Aは、複数の素子を1つのチップに集積された集積回路である。入出力端子11,12が入力側である場合、制御回路14Aは、実施形態1で説明した設定方法と同様にして、スイッチング回路13Aのスイッチング周波数の設定し、スイッチング回路13Aをスイッチング制御する。また、入出力端子21,22が入力側である場合、制御回路14Aは、スイッチング回路23のスイッチング周波数の設定し、スイッチング回路23をスイッチング制御する。 The control circuit 14A is an integrated circuit in which a plurality of elements are integrated on one chip. When the input / output terminals 11 and 12 are on the input side, the control circuit 14A sets the switching frequency of the switching circuit 13A and controls the switching of the switching circuit 13A in the same manner as the setting method described in the first embodiment. When the input / output terminals 21 and 22 are on the input side, the control circuit 14A sets the switching frequency of the switching circuit 23 and controls the switching circuit 23 for switching.
 制御回路14Aは、本発明に係る「第3制御回路」及び「第4制御回路」の一例である。制御回路14Aを集積回路とすることで、スイッチング電源装置2の小型化を実現できる。 The control circuit 14A is an example of a “third control circuit” and a “fourth control circuit” according to the present invention. By making the control circuit 14A an integrated circuit, the switching power supply device 2 can be reduced in size.
 スイッチング電源装置2がハーフブリッジ回路を備えた場合であっても、入出力電力からスイッチング周波数を設定することで、高い電力伝送効率が得られる。 Even when the switching power supply device 2 includes a half-bridge circuit, high power transmission efficiency can be obtained by setting the switching frequency from the input / output power.
(実施形態3)
 図6は、実施形態3に係るスイッチング電源装置3を示す図である。スイッチング電源装置3は、トランスTの1次側及び2次側それぞれのスイッチング回路13A,23Aをハーフブリッジ回路とした構成である。スイッチング回路13Aと、スイッチング回路23Aとは、制御回路14Bによりスイッチング制御される。他の構成は、実施形態1に係るスイッチング電源装置1と同じである。
(Embodiment 3)
FIG. 6 is a diagram illustrating the switching power supply device 3 according to the third embodiment. The switching power supply device 3 has a configuration in which the switching circuits 13A and 23A on the primary side and the secondary side of the transformer T are half bridge circuits. The switching circuit 13A and the switching circuit 23A are subjected to switching control by the control circuit 14B. Other configurations are the same as those of the switching power supply device 1 according to the first embodiment.
 スイッチング回路23Aは、キャパシタC21,C22の直列回路と、スイッチング素子Q41,Q42の直列回路とが並列接続されて構成されている。スイッチング素子Q41は、本発明に係る「第3スイッチング素子」の一例である。スイッチング素子Q42は、本発明に係る「第4スイッチング素子」の一例である。キャパシタC31は、本発明に係る「第3キャパシタ」の一例である。キャパシタC32は、本発明に係る「第4キャパシタ」の一例である。 The switching circuit 23A is configured by connecting a series circuit of capacitors C21 and C22 and a series circuit of switching elements Q41 and Q42 in parallel. The switching element Q41 is an example embodiment that corresponds to the “third switching element” according to the present invention. The switching element Q42 is an example embodiment that corresponds to the “fourth switching element” according to the present invention. The capacitor C31 is an example of the “third capacitor” according to the present invention. The capacitor C32 is an example of the “fourth capacitor” according to the present invention.
 キャパシタC31,C32の接続点と、スイッチング素子Q41,Q42の接続点とには、トランスTの2次巻線N2が接続されている。 The secondary winding N2 of the transformer T is connected to the connection point of the capacitors C31 and C32 and the connection point of the switching elements Q41 and Q42.
 制御回路14Bは、複数の素子を1つのチップに集積された集積回路である。入出力端子11,12が入力側である場合、制御回路14Bは、実施形態1で説明した設定方法と同様にして、スイッチング回路13Aのスイッチング周波数の設定し、スイッチング回路13Aをスイッチング制御する。また、入出力端子21,22が入力側である場合、制御回路14Bは、スイッチング回路23Aのスイッチング周波数の設定し、スイッチング回路23Aをスイッチング制御する。 The control circuit 14B is an integrated circuit in which a plurality of elements are integrated on one chip. When the input / output terminals 11 and 12 are on the input side, the control circuit 14B sets the switching frequency of the switching circuit 13A and controls the switching of the switching circuit 13A in the same manner as the setting method described in the first embodiment. When the input / output terminals 21 and 22 are on the input side, the control circuit 14B sets the switching frequency of the switching circuit 23A and controls the switching of the switching circuit 23A.
 制御回路14Bは、本発明に係る「第1制御回路」及び「第2制御回路」の一例である。制御回路14Bを集積回路とすることで、スイッチング電源装置2の小型化を実現できる。 The control circuit 14B is an example of a “first control circuit” and a “second control circuit” according to the present invention. By making the control circuit 14B an integrated circuit, the switching power supply device 2 can be downsized.
 スイッチング電源装置2が、トランスTの1次側及び2次側それぞれにハーフブリッジ回路を備えた場合であっても、入出力電力からスイッチング周波数を設定することで、高い電力伝送効率が得られる。 Even when the switching power supply device 2 includes a half bridge circuit on each of the primary side and the secondary side of the transformer T, high power transmission efficiency can be obtained by setting the switching frequency from the input / output power.
C1,C21,C22,Ca,Cb,C31,C32…キャパシタ
L1…インダクタ
Lm…インダクタ
N1…1次巻線
N2…2次巻線
Q11,Q12,Q13,Q14,Q21,Q22,Q23,Q24,Q31,Q32,Q41,Q42…スイッチング素子
T…トランス
1,2…スイッチング電源装置
11,12…入出力端子
13,13A…スイッチング回路
14,14A,14B…制御回路
15…分圧抵抗
16…電流検出素子
21,22…入出力端子
23,23A…スイッチング回路
25…分圧抵抗
26…電流検出素子
141…スイッチング制御部
142…電流検出部
143…電圧検出部
144…電力算出部
145…伝送効率算出部
146…周波数設定部
C1, C21, C22, Ca, Cb, C31, C32 ... capacitor L1 ... inductor Lm ... inductor N1 ... primary winding N2 ... secondary windings Q11, Q12, Q13, Q14, Q21, Q22, Q23, Q24, Q31 , Q32, Q41, Q42 ... switching element T ... transformer 1, 2 ... switching power supply device 11, 12 ... input / output terminals 13, 13A ... switching circuit 14, 14A, 14B ... control circuit 15 ... voltage dividing resistor 16 ... current detection element 21, 22, input / output terminals 23, 23 A, switching circuit 25, voltage dividing resistor 26, current detection element 141, switching control unit 142, current detection unit 143, voltage detection unit 144, power calculation unit 145, transmission efficiency calculation unit 146 ... Frequency setting section

Claims (8)

  1.  第1入出力ポート及び第2入出力ポートと、
     前記第1入出力ポートに接続され、第1スイッチング素子及び第2スイッチング素子の直列回路と、第1キャパシタ及び第2キャパシタの直列回路とが並列に接続されて構成された第1ハーフブリッジ回路と、
     前記第2入出力ポートに接続され、第3スイッチング素子及び第4スイッチング素子の直列回路と、第3キャパシタ及び第4キャパシタの直列回路とが並列に接続されて構成された第2ハーフブリッジ回路と、
     前記第1ハーフブリッジ回路をスイッチング制御する第1制御回路と、
     前記第2ハーフブリッジ回路をスイッチング制御する第2制御回路と、
     磁気結合する第1コイル及び第2コイルを有し、前記第1コイルが前記第1ハーフブリッジ回路に接続され、前記第2コイルが前記第2ハーフブリッジ回路に接続されたトランスと、
     前記第1コイル及び前記第1ハーフブリッジ回路の間、又は、前記第2コイル及び前記第2ハーフブリッジ回路の間の一方に設けられた共振用インダクタ及び共振用キャパシタと、
     前記第1入出力ポートに入出力される第1電力を検出する第1電力検出部と、
     前記第2入出力ポートに入出力される第2電力を検出する第2電力検出部と、
     前記第1電力と前記第2電力とから伝送効率を算出する伝送効率算出部と、
     を備え、
     前記トランスの前記第1コイルから前記第2コイルへ電力を伝送する場合、前記第1制御回路が、前記第1ハーフブリッジ回路のスイッチング周波数を掃引し、前記伝送効率算出部が算出した伝送効率のうち、最も高い伝送効率のときのスイッチング周波数で、前記第1ハーフブリッジ回路をスイッチング制御し、
     前記トランスの前記第2コイルから前記第1コイルへ電力を伝送する場合、前記第2制御回路が、前記第2ハーフブリッジ回路のスイッチング周波数を掃引し、前記伝送効率算出部が算出した伝送効率のうち、最も高い伝送効率のときのスイッチング周波数で、前記第2ハーフブリッジ回路をスイッチング制御する、
     スイッチング電源装置。
    A first input / output port and a second input / output port;
    A first half bridge circuit connected to the first input / output port and configured by connecting a series circuit of a first switching element and a second switching element and a series circuit of a first capacitor and a second capacitor in parallel; ,
    A second half bridge circuit connected to the second input / output port and configured by connecting a series circuit of a third switching element and a fourth switching element and a series circuit of a third capacitor and a fourth capacitor in parallel; ,
    A first control circuit for controlling the switching of the first half-bridge circuit;
    A second control circuit for controlling the switching of the second half-bridge circuit;
    A transformer having a first coil and a second coil that are magnetically coupled, wherein the first coil is connected to the first half-bridge circuit, and the second coil is connected to the second half-bridge circuit;
    A resonance inductor and a resonance capacitor provided between one of the first coil and the first half-bridge circuit or one of the second coil and the second half-bridge circuit;
    A first power detector for detecting a first power input / output to / from the first input / output port;
    A second power detector for detecting second power input to and output from the second input / output port;
    A transmission efficiency calculation unit for calculating transmission efficiency from the first power and the second power;
    With
    When transmitting power from the first coil of the transformer to the second coil, the first control circuit sweeps the switching frequency of the first half-bridge circuit, and the transmission efficiency calculated by the transmission efficiency calculation unit Of these, the switching control of the first half bridge circuit at the switching frequency at the highest transmission efficiency,
    When power is transmitted from the second coil of the transformer to the first coil, the second control circuit sweeps the switching frequency of the second half bridge circuit, and the transmission efficiency calculated by the transmission efficiency calculation unit Among them, the second half-bridge circuit is subjected to switching control at a switching frequency at the highest transmission efficiency.
    Switching power supply.
  2.  前記第1制御回路及び前記第2制御回路は、1チップに集積化されている、
     請求項1に記載のスイッチング電源装置。
    The first control circuit and the second control circuit are integrated on one chip;
    The switching power supply device according to claim 1.
  3.  第1入出力ポート及び第2入出力ポートと、
     前記第1入出力ポートに接続され、第1スイッチング素子及び第2スイッチング素子の直列回路と、第1キャパシタ及び第2キャパシタの直列回路とが並列に接続されて構成されたハーフブリッジ回路と、
     前記第2入出力ポートに接続されたフルブリッジ回路と、
     前記ハーフブリッジ回路をスイッチング制御する第3制御回路と、
     前記フルブリッジ回路をスイッチング制御する第4制御回路と、
     磁気結合する第1コイル及び第2コイルを有し、前記第1コイルが前記ハーフブリッジ回路に接続され、前記第2コイルが前記フルブリッジ回路に接続されたトランスと、
     前記第1コイル及び前記ハーフブリッジ回路の間、又は、前記第2コイル及び前記フルブリッジ回路の間の一方に設けられた共振用インダクタ及び共振用キャパシタと、
     前記第1入出力ポートに入出力される第1電力を検出する第1電力検出部と、
     前記第2入出力ポートに入出力される第2電力を検出する第2電力検出部と、
     前記第1電力と前記第2電力とから伝送効率を算出する伝送効率算出部と、
     を備え、
     前記トランスの前記第1コイルから前記第2コイルへ電力を伝送する場合、前記第3制御回路が、前記ハーフブリッジ回路のスイッチング周波数を掃引し、前記伝送効率算出部が算出した伝送効率のうち、最も高い伝送効率のときのスイッチング周波数で、前記ハーフブリッジ回路をスイッチング制御し、
     前記トランスの前記第2コイルから前記第1コイルへ電力を伝送する場合、前記第4制御回路が、前記フルブリッジ回路のスイッチング周波数を掃引し、前記伝送効率算出部が算出した伝送効率のうち、最も高い伝送効率のときのスイッチング周波数で、前記フルブリッジ回路をスイッチング制御する、
     スイッチング電源装置。
    A first input / output port and a second input / output port;
    A half bridge circuit connected to the first input / output port and configured by connecting a series circuit of a first switching element and a second switching element and a series circuit of a first capacitor and a second capacitor in parallel;
    A full bridge circuit connected to the second input / output port;
    A third control circuit for switching control of the half-bridge circuit;
    A fourth control circuit for controlling the switching of the full bridge circuit;
    A transformer having a first coil and a second coil that are magnetically coupled, wherein the first coil is connected to the half-bridge circuit, and the second coil is connected to the full-bridge circuit;
    A resonance inductor and a resonance capacitor provided between one of the first coil and the half-bridge circuit or one of the second coil and the full-bridge circuit;
    A first power detector for detecting a first power input / output to / from the first input / output port;
    A second power detector for detecting second power input to and output from the second input / output port;
    A transmission efficiency calculation unit for calculating transmission efficiency from the first power and the second power;
    With
    When transmitting power from the first coil of the transformer to the second coil, the third control circuit sweeps the switching frequency of the half bridge circuit, and among the transmission efficiency calculated by the transmission efficiency calculation unit, Switching control of the half bridge circuit at the switching frequency at the highest transmission efficiency,
    When transmitting power from the second coil of the transformer to the first coil, the fourth control circuit sweeps the switching frequency of the full bridge circuit, and among the transmission efficiency calculated by the transmission efficiency calculation unit, Switching control of the full bridge circuit at the switching frequency at the highest transmission efficiency,
    Switching power supply.
  4.  前記第3制御回路及び前記第4制御回路は、1チップに集積化されている、
     請求項3に記載のスイッチング電源装置。
    The third control circuit and the fourth control circuit are integrated on one chip;
    The switching power supply device according to claim 3.
  5.  第1入出力ポート及び第2入出力ポートと、
     前記第1入出力ポートに接続された第1フルブリッジ回路と、
     前記第2入出力ポートに接続された第2フルブリッジ回路と、
     前記第1フルブリッジ回路をスイッチング制御する第5制御回路と、
     前記第2フルブリッジ回路をスイッチング制御する第6制御回路と、
     磁気結合する第1コイル及び第2コイルを有し、前記第1コイルが前記第1フルブリッジ回路に接続され、前記第2コイルが前記第2フルブリッジ回路に接続されたトランスと、
     前記第1コイル及び前記第1フルブリッジ回路の間、又は、前記第2コイル及び前記第2フルブリッジ回路の間の一方に設けられた共振用インダクタ及び共振用キャパシタと、
     前記第1入出力ポートに入出力される第1電力を検出する第1電力検出部と、
     前記第2入出力ポートに入出力される第2電力を検出する第2電力検出部と、
     前記第1電力と前記第2電力とから伝送効率を算出する伝送効率算出部と、
     を備え、
     前記トランスの前記第1コイルから前記第2コイルへ電力を伝送する場合、前記第5制御回路が、前記第1フルブリッジ回路のスイッチング周波数を掃引し、前記伝送効率算出部が算出した伝送効率のうち、最も高い伝送効率のときのスイッチング周波数で、前記第1フルブリッジ回路をスイッチング制御し、
     前記トランスの前記第2コイルから前記第1コイルへ電力を伝送する場合、前記第6制御回路が、前記第2フルブリッジ回路のスイッチング周波数を掃引し、前記伝送効率算出部が算出した伝送効率のうち、最も高い伝送効率のときのスイッチング周波数で、前記第2フルブリッジ回路をスイッチング制御する、
     スイッチング電源装置。
    A first input / output port and a second input / output port;
    A first full bridge circuit connected to the first input / output port;
    A second full bridge circuit connected to the second input / output port;
    A fifth control circuit for controlling the switching of the first full bridge circuit;
    A sixth control circuit for controlling the switching of the second full bridge circuit;
    A transformer having a first coil and a second coil that are magnetically coupled, wherein the first coil is connected to the first full bridge circuit, and the second coil is connected to the second full bridge circuit;
    A resonance inductor and a resonance capacitor provided between one of the first coil and the first full bridge circuit or one of the second coil and the second full bridge circuit;
    A first power detector for detecting a first power input / output to / from the first input / output port;
    A second power detector for detecting second power input to and output from the second input / output port;
    A transmission efficiency calculation unit for calculating transmission efficiency from the first power and the second power;
    With
    When transmitting electric power from the first coil of the transformer to the second coil, the fifth control circuit sweeps the switching frequency of the first full bridge circuit, and the transmission efficiency calculated by the transmission efficiency calculation unit Of these, the first full bridge circuit is switching-controlled at the switching frequency at the highest transmission efficiency,
    When transmitting electric power from the second coil of the transformer to the first coil, the sixth control circuit sweeps the switching frequency of the second full bridge circuit, and the transmission efficiency calculated by the transmission efficiency calculator Of these, the second full bridge circuit is controlled to be switched at the switching frequency at the highest transmission efficiency.
    Switching power supply.
  6.  前記第5制御回路及び前記第6制御回路は、1チップに集積化されている、
     請求項5に記載のスイッチング電源装置。
    The fifth control circuit and the sixth control circuit are integrated on one chip;
    The switching power supply device according to claim 5.
  7.  前記第1電力検出部及び前記第2電力検出部は、所定期間内の平均値を検出する、
     請求項1から6のいずれかに記載のスイッチング電源装置。
    The first power detection unit and the second power detection unit detect an average value within a predetermined period.
    The switching power supply device according to claim 1.
  8.  前記共振用インダクタは、前記トランスの漏れインダクタンスである、
     請求項1から7のいずれかに記載のスイッチング電源装置。
    The resonance inductor is a leakage inductance of the transformer.
    The switching power supply device according to claim 1.
PCT/JP2016/052077 2015-03-30 2016-01-26 Switching power supply device WO2016157963A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015067952 2015-03-30
JP2015-067952 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016157963A1 true WO2016157963A1 (en) 2016-10-06

Family

ID=57004120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052077 WO2016157963A1 (en) 2015-03-30 2016-01-26 Switching power supply device

Country Status (1)

Country Link
WO (1) WO2016157963A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106786667A (en) * 2016-12-23 2017-05-31 芜湖国睿兆伏电子有限公司 A kind of phase shift frequency modulation mixing control circuit for LLC resonant powers
CN108011395A (en) * 2017-12-11 2018-05-08 江苏辉伦太阳能科技有限公司 The control method of charging and discharging circuit automatic optimal in a kind of mixing inverter
JPWO2017213029A1 (en) * 2016-06-06 2018-09-20 株式会社村田製作所 Switching power supply
JP2019220373A (en) * 2018-06-21 2019-12-26 三菱電機株式会社 Lighting device, lighting fixture, and lighting system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072137A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Grid-connected inverter device
JP2011120370A (en) * 2009-12-03 2011-06-16 Origin Electric Co Ltd Dc-dc bidirectional converter circuit
JP2013545426A (en) * 2010-10-28 2013-12-19 エルテック ヴァレア アクティーゼルスカブ Method for controlling a series resonance type DC / DC converter
JP2014007914A (en) * 2012-06-27 2014-01-16 Hitachi Information & Telecommunication Engineering Ltd Dc-dc converter
JP2014217199A (en) * 2013-04-26 2014-11-17 株式会社ノーリツ Power conversion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072137A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Grid-connected inverter device
JP2011120370A (en) * 2009-12-03 2011-06-16 Origin Electric Co Ltd Dc-dc bidirectional converter circuit
JP2013545426A (en) * 2010-10-28 2013-12-19 エルテック ヴァレア アクティーゼルスカブ Method for controlling a series resonance type DC / DC converter
JP2014007914A (en) * 2012-06-27 2014-01-16 Hitachi Information & Telecommunication Engineering Ltd Dc-dc converter
JP2014217199A (en) * 2013-04-26 2014-11-17 株式会社ノーリツ Power conversion device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017213029A1 (en) * 2016-06-06 2018-09-20 株式会社村田製作所 Switching power supply
CN106786667A (en) * 2016-12-23 2017-05-31 芜湖国睿兆伏电子有限公司 A kind of phase shift frequency modulation mixing control circuit for LLC resonant powers
CN108011395A (en) * 2017-12-11 2018-05-08 江苏辉伦太阳能科技有限公司 The control method of charging and discharging circuit automatic optimal in a kind of mixing inverter
CN108011395B (en) * 2017-12-11 2021-04-02 江苏辉伦太阳能科技有限公司 Control method for automatically optimizing charge-discharge loop in hybrid inverter
JP2019220373A (en) * 2018-06-21 2019-12-26 三菱電機株式会社 Lighting device, lighting fixture, and lighting system
JP7067307B2 (en) 2018-06-21 2022-05-16 三菱電機株式会社 Lighting system

Similar Documents

Publication Publication Date Title
EP3565100B1 (en) Llc resonant converter
CN110677013B (en) Control method and device of flyback converter
JP6390823B2 (en) Switching power supply
WO2014174809A1 (en) Bidirectional dc-dc convertor
US20150103562A1 (en) Switching Power Supply with a Resonant Converter and Method Controlling the Same
WO2016157963A1 (en) Switching power supply device
US10020686B2 (en) Power transmission system
KR20180085282A (en) Apparatus for transmiting power wirelessly
JP2010263683A (en) Charger
RU2705090C2 (en) Double-bridge dc-to-dc power converter
US10868472B2 (en) Power conversion circuit with switching modes, and control method thereof
CN111371189B (en) Determination of Q factor in wireless charging system with complex resonant circuit
JP2014230368A (en) Power conversion device and power correction method
US20170126141A1 (en) Switched-Mode Power Supply Unit
WO2018146746A1 (en) Power transmission-side apparatus
JP6230561B2 (en) Power circuit for driving creeping discharge elements
CN108781039B (en) Resonance type power conversion device and abnormality determination method
JP2016220483A (en) Resonance type power supply device
JP6353142B2 (en) Power circuit for driving creeping discharge elements
JP6684637B2 (en) Resonant power supply
WO2015072009A1 (en) Bidirectional converter
JP4211743B2 (en) Charger
JP2012210028A (en) Switching power supply device
CN111903047A (en) Power conversion device
US10897208B2 (en) Full bridge configuration power conversion apparatus for power conversion among at least three devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP