[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016157892A1 - 情報提示装置 - Google Patents

情報提示装置 Download PDF

Info

Publication number
WO2016157892A1
WO2016157892A1 PCT/JP2016/001816 JP2016001816W WO2016157892A1 WO 2016157892 A1 WO2016157892 A1 WO 2016157892A1 JP 2016001816 W JP2016001816 W JP 2016001816W WO 2016157892 A1 WO2016157892 A1 WO 2016157892A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emission
risk
driver
spot
target
Prior art date
Application number
PCT/JP2016/001816
Other languages
English (en)
French (fr)
Inventor
友紀 藤澤
裕章 田中
下ノ本 詞之
光雄 玉垣
卓也 森
神谷 玲朗
川島 毅
哲洋 林
拓弥 久米
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016048661A external-priority patent/JP6319350B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/562,712 priority Critical patent/US10723264B2/en
Publication of WO2016157892A1 publication Critical patent/WO2016157892A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/26Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using acoustic output
    • B60K35/265Voice
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/28Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor characterised by the type of the output information, e.g. video entertainment or vehicle dynamics information; characterised by the purpose of the output information, e.g. for attracting the attention of the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/29Instruments characterised by the way in which information is handled, e.g. showing information on plural displays or prioritising information according to driving conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/80Arrangements for controlling instruments
    • B60K35/81Arrangements for controlling instruments for controlling displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K37/00Dashboards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/10Input arrangements, i.e. from user to vehicle, associated with vehicle functions or specially adapted therefor

Definitions

  • the present disclosure relates to an information presentation device that presents vehicle information to a driver.
  • Patent Document 1 discloses a vehicle display device including an instrument display disposed on an instrument panel of a vehicle.
  • the instrument display can display a plurality of images taken around the vehicle and a marker that moves along the width direction of the vehicle.
  • the vehicle display device disclosed in Patent Literature 1 guides the driver's line of sight to the gaze image by selecting a gaze image to be watched by the driver and moving the marker toward the gaze image.
  • one of the objects of the present disclosure is to provide an information presentation device capable of accurately directing the driver's attention to an important risk target even in a scene where a plurality of risk targets are detected. Is to provide.
  • An information presentation device is an information presentation device that is mounted on a vehicle together with a periphery monitoring device that detects a risk target to be noticed by a driver and presents vehicle information to the driver.
  • a light emitting display section that displays at least one light emitting spot in a light emitting area that is arranged on the instrument panel and is defined to extend along the width direction of the vehicle, and controls the light emitting mode of the light emitting spot in the light emitting area.
  • the information acquisition unit that acquires the monitoring information including at least the position information of the risk target detected by the periphery monitoring device, and the monitoring information acquired by the information acquisition unit, it is detected from the region in the traveling direction of the vehicle.
  • a risk calculation unit that calculates individual risk levels for each risk target, and the light emission control unit detects a plurality of risk targets by the peripheral monitoring device.
  • the maximum risk target having the maximum risk level calculated by the risk calculation unit is selected from among the plurality of risk targets, and the light emission spot indicating the direction of the maximum risk target as viewed from the driver is selected as the light emission region. To display.
  • the light emission control unit selects the maximum risk target indicating the maximum risk level from among the plurality of risk targets. . And the light emission spot which shows the direction where the largest risk object exists seeing from a driver
  • the information presenting apparatus can accurately direct the driver's attention to an important risk target.
  • FIG. 1 is a diagram showing a layout around a driver's seat in the host vehicle.
  • FIG. 2 is a block diagram showing the overall configuration of the in-vehicle network.
  • FIG. 3 is a diagram showing functional blocks constructed in the control circuit of the vehicle control ECU.
  • FIG. 4 is a block diagram illustrating a configuration of the light emitting device.
  • FIG. 5 is a diagram showing functional blocks constructed in the control circuit of the HCU.
  • FIG. 6 is a diagram showing the transition of the change in brightness repeated at the light emission spot.
  • FIG. 7 is a state transition diagram showing details of the transition of the light emission control mode of the light emitting device.
  • FIG. 8 is a diagram showing a display of light emission spots during manual operation.
  • FIG. 9 is a diagram showing the display of the light emission spots during the LKA operation.
  • FIG. 10 is a diagram showing a light emission spot whose display width is enlarged as the risk level increases.
  • FIG. 11 is a diagram illustrating a state in which the reference position of the light emission spot has been moved in order to indicate the planned travel locus of the host vehicle during manual operation.
  • FIG. 12 is a diagram illustrating a state in which the reference position of the light emission spot is moved in order to indicate the planned traveling locus of the host vehicle during LKA operation.
  • FIG. 13 is a diagram for explaining that the movement amount of the reference position does not change during the LKA operation or during the manual operation.
  • FIG. 14 is a diagram showing a series of displays for guiding the driver's line of sight to the right during LKA operation.
  • FIG. 15 is a diagram showing a series of displays for guiding the driver's line of sight to the left during manual driving.
  • FIG. 16 is a diagram illustrating a series of displays that guide the driver's line of sight in a rightward looking direction to the front during manual driving.
  • FIG. 17 is a diagram showing a series of displays that guide the driver's line of sight in a leftward looking state to the front during LKA operation.
  • FIG. 18 is a flowchart showing the reference position setting process.
  • FIG. 18 is a flowchart showing the reference position setting process.
  • FIG. 19 is a flowchart showing the light emission mode setting process.
  • FIG. 20 is a diagram for sequentially explaining the operation of the instrument panel light emission line in the risk target warning mode.
  • FIG. 21 is a diagram showing a light emission mode in a scene where a risk target exists inside the front pillar.
  • FIG. 22 is a diagram illustrating a light emission mode in a scene in which a risk target exists outside the front pillar.
  • FIG. 23 is a diagram illustrating a light emission mode in a scene where a plurality of risk objects are densely present.
  • FIG. 24 is a diagram illustrating a light emission mode in a scene where a plurality of risk objects exist apart from each other.
  • FIG. 20 is a diagram for sequentially explaining the operation of the instrument panel light emission line in the risk target warning mode.
  • FIG. 21 is a diagram showing a light emission mode in a scene where a risk target exists inside the front pillar.
  • FIG. 22 is a diagram illustrating a light emission mode in
  • FIG. 25 is a diagram illustrating a light emission mode in a scene in which a plurality of risk objects having different distances from the host vehicle exist in a specific direction.
  • FIG. 26 is a diagram illustrating an example of a scene in which a plurality of risk targets are detected with a time difference.
  • FIG. 27 is a diagram showing the transition of the risk level of each risk target in the scene shown in FIG. 26, the transition of the display position of the light emission spot, and the transition of the driver's line of sight in time series.
  • FIG. 28 is a diagram showing a traveling direction viewed from the driver and display of an instrument panel light emission line in the scene shown in FIG. FIG.
  • FIG. 29 shows the transition of the risk level, the transition of the display position of the light emission spot, and the transition of the driver's line of sight in time series in the scene shown in FIG.
  • FIG. 30 is a diagram illustrating another example of a scene in which a plurality of risk targets are detected with a time difference.
  • FIG. 31 is a diagram showing a traveling direction seen from the driver and display of the instrument panel light emission line in the scene shown in FIG.
  • FIG. 32 is a flowchart showing a warning target selection process in the first embodiment.
  • FIG. 33 is a diagram for explaining a method of setting the length of the light emission spot.
  • FIG. 34 is a diagram for explaining a method of setting the length of the light emission spot.
  • FIG. 35 is a flowchart showing a warning target selection process in the second embodiment.
  • FIG. 36 is a diagram illustrating a first modification of FIG.
  • An HCU (HMI (Human Machine Interface) Control Unit) 100 is an electronic device mounted on the host vehicle A as shown in FIGS. 1 and 2.
  • the HCU 100 is one of a plurality of nodes provided in the in-vehicle network 1.
  • the in-vehicle network 1 includes an external recognition system 90, a locator 95, a V2X communication device 96, a vehicle control system 60, a wearable communication device 97, an HMI system 10, and a communication bus 99 to which these are connected.
  • the external environment recognition system 90 includes external sensors such as the front camera unit 92 and the radar units 93 and 94, and a surrounding monitoring ECU 91, and detects a risk object that the driver should be aware of.
  • the external environment recognition system 90 includes pedestrians, non-human animals, bicycles, motorcycles, and other moving objects such as motorcycles, as well as falling objects on the road, traffic signals, guardrails, curbs, road signs, road markings. Detect stationary objects such as lane markings and trees.
  • the external recognition system 90 can include external sensors such as lidar and sonar in addition to the units 92 to 94.
  • the front camera unit 92 is, for example, a monocular or compound eye camera installed near the rearview mirror of the host vehicle A.
  • the front camera unit 92 is directed in the traveling direction of the host vehicle A, and can photograph a range of about 80 meters from the host vehicle A with a horizontal viewing angle of about 45 degrees, for example.
  • the front camera unit 92 sequentially outputs captured image data showing a moving object and a stationary object to the periphery monitoring ECU 91.
  • the radar unit 93 is installed, for example, at the front part of the host vehicle A.
  • the radar unit 93 emits 77 GHz millimeter waves from the transmission antenna toward the traveling direction of the host vehicle A.
  • the radar unit 93 receives millimeter waves reflected by a moving object and a stationary object in the traveling direction by a receiving antenna.
  • the radar unit 93 can scan a range of about 60 meters from the host vehicle A at a horizontal scanning angle of about 55 degrees, for example.
  • the radar unit 93 sequentially outputs the scanning result based on the received signal to the periphery monitoring ECU 91.
  • the radar units 94 are installed on the left and right of the rear part of the host vehicle A, for example.
  • the radar unit 94 emits a quasi-millimeter wave in the 24 GHz band from the transmitting antenna toward the rear side of the host vehicle A.
  • the radar unit 94 receives a quasi-millimeter wave reflected by a moving object and a stationary object on the rear side by a receiving antenna.
  • the radar unit 94 can scan a range of about 30 meters from the host vehicle A at a horizontal scanning angle of about 120 degrees, for example.
  • the radar unit 94 sequentially outputs the scanning result based on the received signal to the periphery monitoring ECU 91.
  • the periphery monitoring ECU 91 is mainly configured by a microcomputer having a processor and a memory.
  • the periphery monitoring ECU 91 is communicably connected to the front camera unit 92, the radar units 93 and 94, and the communication bus 99.
  • the surrounding monitoring ECU 91 detects the relative position and the like of a moving object and a stationary object (hereinafter “detected object”) in the traveling direction by integrating information acquired from the units 92 and 93.
  • the periphery monitoring ECU 91 detects the relative position and the like of the detected object on the rear side based on the information acquired from the radar unit 94.
  • the surrounding monitoring ECU 91 is configured to detect the relative position information of the preceding and parallel vehicles traveling around the host vehicle A, the relative position information of pedestrians and the like existing around the host vehicle A, and the vehicle A. Information on the shape of the lane marking in the traveling direction is output to the communication bus 99 as monitoring information.
  • the locator 95 includes a GNSS receiver 95a, a map database 95b, an inertial sensor, and the like.
  • a GNSS (Global Navigation Satellite System) receiver 95a receives positioning signals transmitted from a plurality of artificial satellites.
  • the locator 95 measures the position of the host vehicle A by combining the positioning signal received by the GNSS receiver 95a and the measurement result of the inertial sensor.
  • the map database 95b has a storage medium that stores a large number of map information.
  • the locator 95 provides the vehicle control system 60 and the HMI system 10 through the communication bus 99 with the position information of the host vehicle A and the map information of the surroundings and the traveling direction of the host vehicle A.
  • the V2X communication device 96 exchanges information by wireless communication between an on-vehicle communication device mounted on another vehicle and a roadside device installed on the side of the road.
  • the V2X communication device 96 includes at least position information of risk objects such as other vehicles and pedestrians that are difficult to see directly from the driver by, for example, road-to-vehicle communication with a roadside device provided at an intersection or the like. Get monitoring information.
  • the V2X communication device 96 sequentially outputs the acquired information to the communication bus 99.
  • the vehicle control system 60 includes detection sensors that detect driving operations such as an accelerator position sensor 61, a brake pedal force sensor 62, and a steering torque sensor 63.
  • the vehicle control system 60 includes a travel control device such as an electronic control throttle 66, a brake actuator 67, and an EPS (Electric Power Steering) motor 68, and a vehicle control ECU 70.
  • the vehicle control system 60 controls the traveling of the host vehicle A based on the driving operation by the driver, the monitoring information by the external environment recognition system 90, and the like.
  • the accelerator position sensor 61 detects the amount of depression of the accelerator pedal by the driver and outputs it to the vehicle control ECU 70.
  • the brake pedaling force sensor 62 detects the pedaling force of the brake pedal by the driver and outputs it to the vehicle control ECU 70.
  • the steering torque sensor 63 detects the steering torque of the steering wheel (hereinafter referred to as steering) 16 by the driver and outputs it to the vehicle control ECU 70.
  • the electronic control throttle 66 controls the opening of the throttle based on a control signal output from the vehicle control ECU 70.
  • the brake actuator 67 controls the braking force generated on each wheel by generating a brake pressure based on a control signal output from the vehicle control ECU 70.
  • the EPS motor 68 controls the steering force and the steering force applied to the steering mechanism based on a control signal output from the vehicle control ECU 70.
  • the vehicle control ECU 70 is one or a plurality of types including at least an integrated control ECU among a power unit control ECU, a brake control ECU, an integrated control ECU, and the like.
  • the control circuit 70a of the vehicle control ECU 70 includes a processor 71, a rewritable nonvolatile memory 73, an input / output interface 74 for inputting / outputting information, and a bus for connecting them.
  • the vehicle control ECU 70 is connected to the sensors 61 to 63 and the travel control devices.
  • the vehicle control ECU 70 acquires detection signals output from the sensors 61 to 63 and outputs control signals to the travel control devices.
  • the vehicle control ECU 70 is connected to the communication bus 99 and can communicate with the HCU 100 and the periphery monitoring ECU 91.
  • the vehicle control ECU 70 is provided with a plurality of driving support functions for supporting or acting on behalf of the driver by controlling the driving force, braking force, steering force, and the like of the host vehicle A.
  • the vehicle control ECU 70 executes a vehicle control program stored in the memory 73 by the processor 71, thereby constructing a plurality of functional blocks (81 to 84) that realize the driving support function as shown in FIG.
  • the vehicle control ECU 70 can output operation information of each driving support function by each functional block to the communication bus 99.
  • the ACC function unit 81 adjusts the driving force and the braking force based on the monitoring information of the preceding vehicle acquired from the surrounding monitoring ECU 91, thereby controlling the traveling speed of the host vehicle A (see FIG. 1). Control) function.
  • the ACC supports or substitutes acceleration / deceleration operations among a plurality of driving operations by the driver.
  • the ACC function unit 81 cruises the host vehicle A at the target speed set by the driver when the preceding vehicle is not detected. On the other hand, when the preceding vehicle is detected, the ACC function unit 81 causes the host vehicle A to follow the preceding vehicle while maintaining the inter-vehicle distance to the preceding vehicle.
  • the LKA function unit 82 realizes the function of LKA (Lane Keeping Assist) for controlling the steering angle of the steered wheels of the host vehicle A (see FIG. 1) by adjusting the steering force.
  • LKA assists or substitutes for steering among a plurality of driving operations by the driver.
  • the LKA function part 82 maintains the host vehicle A in the traveling lane by generating a steering force in a direction that prevents the approach to the lane marking, and causes the host vehicle A to travel along the lane.
  • the LCA (Lane Change Assist) function unit 83 realizes an automatic lane change function for moving the host vehicle A (see FIG. 1) from the currently running lane to the adjacent lane.
  • the automatic lane change can be executed when the LKA is in operation, and assists or substitutes for the steering by the driver in the same manner as the LKA.
  • the LCA function unit 83 moves the host vehicle A to the adjacent lane by generating a steering force in the direction toward the adjacent lane.
  • the traveling locus setting unit 84 calculates the planned traveling locus of the host vehicle A in association with the shape information of the lane markings in the traveling direction acquired from the surrounding monitoring ECU 91.
  • the travel locus setting unit 84 calculates a target steering direction and a target steering amount for realizing traveling of the host vehicle along the planned travel locus. Based on the target steering direction and target steering amount calculated by the travel locus setting unit 84, the LKA function unit 82 and the LCA function unit 83 execute steering control.
  • the travel locus setting unit 84 can output the target steering direction and the target steering amount to the communication bus 99 as steering information.
  • the travel locus setting unit 84 can calculate the steering information and output it to the communication bus 99 even when both the LKA function unit 82 and the LCA function unit 83 are not operating.
  • the wearable communication device 97 shown in FIG. 1 and FIG. 2 is mounted on the host vehicle A and is communicably connected to the communication bus 99. Wearable communication device 97 is provided with an antenna for wireless communication. The wearable communication device 97 can perform wireless communication with the wearable device 110 existing in the passenger compartment of the host vehicle A using a wireless LAN, Bluetooth (registered trademark), or the like.
  • Wearable device 110 is worn by a driver, and is attached to the driver's head, ear, wrist, fingertip, neck, and the like, for example.
  • the wearable device 110 can acquire the driver's biological information, for example, the pulse rate, heart rate, body temperature, blood pressure, and the like, and output the acquired information to the in-vehicle network 1.
  • the wearable device 110 can detect the face direction or line-of-sight direction of the driver.
  • the wearable device 110 transmits information indicating the driver's face direction or information indicating the line-of-sight direction to the wearable communication device 97 as line-of-sight information.
  • the line-of-sight information is provided to the HCU 100 and the like through the wearable communication device 97.
  • the HMI system 10 includes an operation device such as a winker lever 15 and a DSM (Driver Status Monitor) 11 together with the HCU 100 described above.
  • the HMI system 10 is provided with a plurality of display devices such as a HUD (Head-Up Display) device 14, a combination meter 12a, a CID (Center Information Display) 12b, and a light emitting device 40.
  • the HMI system 10 provides information to the passengers of the host vehicle A including the driver seated in the driver's seat 17d.
  • the winker lever 15 is provided in a column portion that supports the steering 16. An operation for operating the winker is input to the winker lever 15 by the driver.
  • the blinker lever 15 outputs an operation signal based on the driver's input to the HCU 100.
  • the DSM 11 includes a near-infrared light source and a near-infrared camera, and a control unit that controls them.
  • the DSM 11 is disposed on the upper surface of the instrument panel 19 in a posture in which the near-infrared camera faces the driver's seat 17d.
  • the DSM 11 photographs a driver's face irradiated with near infrared light from a near infrared light source with a near infrared camera.
  • the image captured by the near-infrared camera is analyzed by the control unit.
  • the control unit extracts, for example, the driver's face direction, the driver's line-of-sight direction, the driver's eye opening degree, and the like from the captured image.
  • the DSM 11 outputs line-of-sight information indicating the driver's face direction or line-of-sight direction to the HCU 100 based on the analysis by the control unit. In addition, when the DSM 11 determines that the driver is looking aside without facing the front, the DSM 11 outputs to the HCU 100 as the driver's looking-aside information. Further, when the DSM 11 determines the dozing state in which the driver's eyes are closed, the DSM 11 can output the dozing information of the driver to the HCU 100.
  • the HCU 100 is connected to each operation device, the DSM 11, and each display device.
  • the HCU 100 acquires an operation signal output from the operation device and information output from the DSM 11.
  • the HCU 100 controls the display by these display devices by outputting a control signal to each display device.
  • the control circuit 20a of the HCU 100 includes a main processor 21, a drawing processor 22, a rewritable nonvolatile memory 23, an input / output interface 24 for inputting / outputting information, and a bus for connecting them.
  • the HUD device 14 projects the light of the image based on the data acquired from the HCU 100 onto the projection area 14 a defined by the windshield 18.
  • the light of the image reflected on the vehicle interior side by the windshield 18 is perceived by the driver sitting in the driver's seat 17d.
  • the driver can visually recognize the virtual image of the image projected by the HUD device 14 on the outside scene in front of the host vehicle A.
  • the combination meter 12a is arranged in front of the driver's seat 17d in the passenger compartment of the host vehicle A.
  • the combination meter 12a has a liquid crystal display that can be visually recognized by the driver sitting on the driver's seat 17d.
  • the combination meter 12a displays an image of a speedometer or the like on the liquid crystal display based on the data acquired from the HCU 100.
  • the CID 12b is disposed in the center of the instrument panel 19 in the cabin of the host vehicle A.
  • the CID 12b has a liquid crystal display that can be viewed by a passenger sitting on the passenger seat 17p in addition to the driver.
  • the CID 12b displays a navigation guidance screen, an air conditioner operation screen, an audio device operation screen, and the like on a liquid crystal display based on data acquired from the HCU 100.
  • the light emitting device 40 includes an instrument panel light emitting line 41, a steer light emitting ring 42, a power interface 43, a communication interface 44, a driver circuit 45, and a control circuit 46, as shown in FIGS.
  • the light emitting device 40 presents the information of the host vehicle A to the driver by the light emitting spots 51 and 56 displayed on the instrument panel light emitting line 41 and the steer light emitting ring 42, respectively.
  • the instrument panel light emission line 41 is disposed on the instrument panel 19 of the host vehicle A.
  • the instrument panel light emitting line 41 has a linear light emitting region 52.
  • the linear light emitting region 52 is defined to extend linearly along the width direction WD of the host vehicle A.
  • the linear light emitting region 52 is located above the CID 12b.
  • the end portions 53a and 53b in the width direction WD are extended to the bases of the pillars located on both sides of the windshield 18.
  • the linear light emitting region 52 is out of the central view range CVA of the driver seated on the driver's seat 17d.
  • almost the entire linear light emitting region 52 is within the range PVA for peripheral vision of the driver seated on the driver's seat 17d.
  • the instrument panel light emitting line 41 displays at least one light emitting spot 51 in the linear light emitting region 52 by causing at least a part of the light emitting elements to emit light.
  • the instrument panel emission line 41 can move the emission spot 51 in the width direction WD within the linear emission region 52.
  • the instrument panel emission line 41 can change the emission color and emission size of the emission spot 51.
  • the steering light emitting ring 42 is disposed on the steering 16 of the host vehicle A.
  • the steer light emitting ring 42 has an annular light emitting region 57.
  • the annular light emitting region 57 is defined to extend in an annular shape along the edge of the setter pad portion 16 a of the steering 16.
  • the annular light emitting region 57 is located below the combination meter 12a.
  • the top of the annular light emitting region 57 is within the range PVA for peripheral vision of the driver seated on the driver's seat 17d.
  • a plurality of light emitting elements are arranged in the annular light emitting region 57 along the circumferential direction of the steering 16.
  • the steer light emitting ring 42 displays at least one light emitting spot 56 in the annular light emitting region 57 by causing at least some of the light emitting elements to emit light.
  • the steer light emitting ring 42 can move the light emitting spot 56 in the circumferential direction within the annular light emitting region 57.
  • the steer light emitting ring 42 can change the light emission color and light emission size of the light emission spot 56.
  • the power interface 43 is supplied with power from a battery or the like mounted on the vehicle through a power circuit 49.
  • the power interface 43 supplies power to each component of the light emitting device 40.
  • the instrument panel light emission line 41 and the steer light emission ring 42 emit and display the light emission spots 51 and 56 by the power supplied through the power interface 43.
  • the communication interface 44 is connected to the HCU 100. Command signals for instructing light emission modes of the instrument panel light emission line 41 and the steer light emission ring 42 are input from the HCU 100 to the communication interface 44.
  • the driver circuit 45 controls the current flowing through each light emitting element provided in the instrument panel light emitting line 41 and the steer light emitting ring 42.
  • the driver circuit 45 converts the power supplied from the power interface 43 and applies a current to the light emitting element specified by the control signal acquired from the control circuit 46.
  • the control circuit 46 is mainly composed of a microcomputer having a processor and a memory.
  • the control circuit 46 acquires a command signal from the HCU 100 through the communication interface 44.
  • the control circuit 46 generates a control signal to be output to the driver circuit 45 in order to cause each light emitting element to emit light with the light emission pattern corresponding to the acquired command signal.
  • the control circuit 20a of the HCU 100 shown in FIG. 5 executes the light emission control program stored in the memory 23 by each of the processors 21 and 22, thereby allowing a plurality of functional blocks (31 To 35).
  • the control circuit 20a of the HCU 100 shown in FIG. 5 executes the light emission control program stored in the memory 23 by each of the processors 21 and 22, thereby allowing a plurality of functional blocks (31 To 35).
  • the details of functional blocks related to information presentation using the instrument panel light emission line 41 and the steer light emission ring 42 will be described with reference to FIGS. 1 and 4 based on FIG. 5.
  • the information acquisition unit 31 acquires various information related to the host vehicle A.
  • the information acquisition unit 31 outputs the acquired information to the risk determination unit 32, the blinking cycle setting unit 33, and the light emission control unit 34.
  • the information acquisition unit 31 acquires line-of-sight information and armpit information by the DSM 11, monitoring information by the surrounding monitoring ECU 91 and the V2X communication device 96, line-of-sight information and biological information by the wearable device 110, and the like.
  • the information acquisition unit 31 acquires operation information and steering information of the driving support function in the vehicle control ECU 70 and map information in the traveling direction provided from the locator 95.
  • the information acquisition part 31 acquires the occurrence information of the said event at the time of the generation
  • the risk determination unit 32 determines a plurality of types of risk levels related to the host vehicle A based on the information acquired from the information acquisition unit 31. For example, the risk determination unit 32 can calculate an internal risk level caused by the driver and an external risk level caused by other vehicles, pedestrians, traffic environments, and the like. The risk determination unit 32 provides the determination result and calculation result of each risk level to the light emission control unit 34.
  • the risk determination unit 32 determines the internal risk level caused by the driver, for example, in five stages. The risk determination unit 32 determines that the state with the lowest risk level is “normal” and determines the state with the highest risk level as “risk level 4”. The risk determination unit 32 determines that the risk level is high when the level of the driver's random state increases. The risk determination unit 32 outputs the risk level determination result to the information acquisition unit 31.
  • the risk determination unit 32 calculates individual risk levels for dynamic risk targets such as moving objects and traffic lights based on the monitoring information provided from the external environment recognition system 90 and the V2X communication device 96.
  • the risk determination unit 32 can sequentially calculate the risk level for at least the risk target detected from the area in the traveling direction of the host vehicle A.
  • the risk determination unit 32 extracts a static risk target caused by a road structure such as an intersection with a poor view and a sharp curve.
  • the risk determination unit 32 can calculate a risk level for a static risk target as well as a dynamic risk target.
  • the risk determination unit 32 can individually calculate the risk level of each risk target.
  • the risk level calculated by the risk determination unit 32 becomes higher as the risk object is more important to the driver.
  • the blinking cycle setting unit 33 sets a blinking cycle for blinking each of the light emitting spots 51 and 56 in a state notification mode to be described later.
  • the blinking cycle of each light emitting spot 51, 56 is set to a cycle corresponding to the normal heart rate or pulse rate of the driver.
  • biological information acquired by the wearable device 110 may be used, or a preset general value (for example, 60 times per minute) may be used.
  • the blinking cycle setting unit 33 sets the blinking cycle so that a bright state and a dark state are repeated every second as shown in FIG.
  • the brightness in the dark state is, for example, about one third of the brightness in the bright state.
  • the light emission control unit 34 controls the light emission modes of the light emission spots 51 and 56 in the instrument light emission line 41 and the steer light emission ring 42.
  • the light emission control unit 34 can switch the light emission control mode of the light emitting device 40 among a plurality using at least a part of the information acquired by the information acquisition unit 31.
  • the plurality of light emission control modes include a state notification mode, a lane change notification mode, an approaching vehicle notification mode, an aside look attention mode, and a risk target warning mode.
  • priority is set for the lane change notification mode for notifying the occurrence of an event, the approaching vehicle notification mode, the side-attention warning mode, and the risk target warning mode.
  • the priorities in the first embodiment are, in order from the highest, the risk target warning mode, the side watch attention mode, the approaching vehicle notification mode, and the lane change notification mode.
  • the state notification mode is a light emission control mode for notifying the driver of the current internal risk level of the vehicle A.
  • the state notification mode the light emission mode of each of the light emission spots 51 and 56 is changed based on the determination result of the risk level based on the driver by the risk determination unit 32 (see FIG. 5).
  • the driver's line of sight is directed toward the left or right direction in which the event is occurring when an event that the driver should be aware of occurs on either side of the vehicle A
  • the light emission control unit 34 switches the light emission control mode from the state notification mode to the lane change notification mode based on the operation of the blinker accompanying the lane change.
  • the driver's line of sight is guided toward the destination lane as the attention direction.
  • the light emission control unit 34 switches from the state notification mode to the approaching vehicle notification mode when a parallel running vehicle is detected in the destination lane in addition to the operation of the blinker accompanying the lane change. And switch the light emission control mode.
  • the driver's line of sight is guided toward the parallel running vehicle as the attention direction by the light emitting display in the approaching vehicle notification mode.
  • the light emission control unit 34 determines whether or not the driver's face is directed at a predetermined angle (for example, 45 degrees) or more in the left or right attention direction based on the line-of-sight information. As a result, when it is determined that the driver's face is directed in the attention direction, the light emission control mode is returned from the lane change notification mode or the approaching vehicle notification mode to the state notification mode.
  • a predetermined angle for example, 45 degrees
  • Aside look attention mode is a light emission control mode that guides the driver's line of sight to the front.
  • the light emission control unit 34 (see FIG. 5) switches from the state notification mode to the side look attention mode based on the driver's side look information.
  • the driver's line of sight is guided to the front by the light-emitting display in the side-attention mode.
  • the light emission control part 34 determines whether a driver
  • the risk target warning mode is a light emission control mode that guides the driver's line of sight toward the risk target when there is a risk target that the driver should be aware of around the host vehicle A or in the traveling direction.
  • the light emission control unit 34 acquires the relative position information of the risk target from the information acquisition unit 31 and acquires the risk level calculated for the risk target from the risk determination unit 32.
  • a threshold th L for determining whether or not the risk target is a warning target for the driver is set in advance.
  • the light emission control unit 34 switches the light emission control mode from the state notification mode to the risk target warning when at least one risk target whose risk level exceeds the threshold th L occurs.
  • the light emission control unit 34 When there is no risk target whose risk level exceeds the threshold th L , the light emission control unit 34 returns the light emission control mode from the risk target warning mode to the state notification mode.
  • the threshold th L used for the trigger for switching from the state notification mode to the risk target warning mode may be substantially the same as th L used for the trigger for switching from the risk target warning mode to the state notification mode, Alternatively, it may be set to a high value.
  • the light emission control unit 34 displays the light emission spot 51 in the range of the linear light emitting region 52 in the direction where the risk target exists as viewed from the driver.
  • the light emission control unit 34 determines the position of the light emission spot 51 in the linear light emission region 52 based on the position information acquired by the information acquisition unit 31 so as to follow the relative position change of the risk target with respect to the host vehicle A. Move.
  • the light emission control part 34 can change aspects, such as the light emission color of the light emission spot 51, and light emission size, according to the risk level of a risk object.
  • the light emission control unit 34 selects the maximum risk target having the maximum risk level among the plurality of risk targets.
  • the light emission control unit 34 displays a light emission spot 51 indicating the direction of the selected maximum risk object among the plurality of risk objects in the linear light emission region 52.
  • the light emission control unit 34 can switch the display position of the light emission spot 51 in accordance with the change of the maximum risk target when the risk target having the maximum risk level transitions.
  • the light emission control unit 34 linearly displays the plurality of light emission spots 51 each indicating the direction of each maximum risk target. It can be displayed in the light emitting area 52.
  • the voice control unit 35 controls the voice reproduction device 140 to notify the driver through hearing.
  • the sound reproduction device 140 includes a speaker and the like, and can reproduce a notification sound and a sound message that can be heard by all passengers of the host vehicle A in the vehicle interior.
  • the voice control unit 35 cooperates with the light emission control unit 34 to combine the light emission spot 51 and the voice message to reliably warn the driver of the existence of the risk target.
  • a range in which dots are written indicates a light-off state
  • a white area indicates a lighted state.
  • the reference positions RPa and RPm for displaying the light emitting spot 51 are displayed when the driving support function is activated and when the driving assistance function is not activated. Be changed.
  • Each reference position RPa, RPm defines the center position of the light emission spot 51.
  • the reference positions RPa and RPm of the light emission spot 51 are switched based on whether or not the LKA is operating among a plurality of driving support functions.
  • the reference position RPa when the LKA is operating is defined closer to the center in the width direction WD of the host vehicle A than the reference position RPm when the LKA is not operating.
  • the reference position RPm when the LKA is not operating is located above the center of the combination meter 12a arranged in front of the driver's seat 17d (see FIG. 8). That is, the reference position RPm is set in front of the driver.
  • the reference position RPa when the LKA is operating is located above the center 52c of the linear light emitting region 52 in the width direction WD, that is, above the center of the CID 12b (see FIG. 9).
  • Each light emission spot 51, 56 in the state notification mode can present the current risk level of the host vehicle A to the driver by a change in the light emission color. At the normal time when the risk level is the lowest, each of the light emission spots 51 and 56 emits green light. On the other hand, in the state of the risk level “4” having the highest risk level, each of the light emission spots 51 and 56 emits yellow light. The light emission colors of the light emission spots 51 and 56 are changed stepwise from green to yellow as the risk level increases. In addition, the display width of the light emission spot 51 in the width direction WD increases or decreases according to the risk level. Specifically, as shown in FIG.
  • the light emission spot 51 is increased along the width direction WD as the risk level is increased, and is decreased along the width direction WD as the risk level is decreased. Further, each of the light emitting spots 51 and 56 repeats a change in brightness at a cycle set by the blinking cycle setting unit 33 (see FIG. 5).
  • the light emitting spots 51 and 56 are moved along the width direction WD in accordance with the planned traveling locus after a few seconds set by the traveling locus setting unit 84 (see FIG. 3).
  • the light emission spot 51 of the linear light emitting area 52 is moved in the linear light emitting area 52 by a movement amount corresponding to the target steering amount in either the left or right direction corresponding to the target steering direction after a few seconds.
  • Each reference position RPa, RPm is moved.
  • the amount of movement of each reference position RPa, RPm is set to match the amount of movement in the width direction WD of the outer edge of the steering wheel 16 when the target steering amount is realized, for example, as schematically shown in FIG. .
  • the movement amount of the reference position RPa when the LKA is operating and the movement amount of the reference position RPm when the LKA is not operating are substantially the same.
  • the light emitting spot 56 of the annular light emitting region 57 shown in FIGS. 11 and 12 also moves along the circumferential direction by an angle corresponding to the target steering amount in either the left or right direction corresponding to the target steering direction after a few seconds. Is done.
  • FIG. 14 shows the display of the lane change notification mode that attracts the driver to the right direction as the destination when the own vehicle A is moved to the adjacent lane on the right side by the automatic lane change.
  • the light emission control mode is switched from the state notification mode to the lane change notification mode.
  • the light emitting spot 51 is temporarily turned off from the linear light emitting region 52 (FIG. 14A).
  • the light emission spot 51 is displayed again at the reference position RPa in the light emission color corresponding to the risk level, as in the state notification mode (FIG. 14B).
  • the re-displayed light emission spot 51 starts moving in the right direction, which is the planned movement direction of the host vehicle A, in a shape with a tail trailing backward. And the light emission spot 51 reaches
  • the light emission spot 51 that has reached the end 52a is divided into a plurality of divided light emission spots 51s. Each divided light emission spot 51s repeats the movement in the right direction while maintaining the interval between them (FIG. 14D). Thereafter, each of the divided light emission spots 51s is stacked toward the inner side in the width direction WD at the end portion 52a. Then, an integrated light emission spot 51 is formed again at the end 52a (FIG. 14C).
  • FIG. 15 shows a display of a lane change notification mode that attracts the driver in the left direction as the destination when the host vehicle A is moved to the left adjacent lane by the driver's driving operation.
  • the light emission spot 51 once turned off is displayed again at the reference position RPm in the light emission color corresponding to the risk level (FIG. 15A).
  • the re-displayed light emission spot 51 moves to the end position EP in the left direction, which is the planned movement direction of the host vehicle A (FIG. 15B).
  • the end point position EP is located between the end 52b in the left direction and the center 52c extending toward the passenger seat 17p (see FIG. 1) in the linear light emitting region 52.
  • the end point position EP is located inside the peripheral vision range PVA (see FIG. 1). Further, the moving speed of the light emitting spot 51 is substantially constant regardless of whether the LKA is operating. In addition, the moving speed of the light emitting spot 51 is substantially the same whether the light emitting spot 51 moves to the left or the light emitting spot 51 moves to the right.
  • each divided light-emitting spot 51s repeats a leftward movement while maintaining a mutual interval (FIG. 15C). Thereafter, each of the divided light emission spots 51s is stacked toward the inner side in the width direction WD at the end portion 52b. Then, the integral light emission spot 51 is displayed on the end portion 52b (FIG. 15D).
  • the light emission control mode is switched from the state notification mode to the approaching vehicle notification mode.
  • the light emission spots 51 (FIGS. 14B and 15A) redisplayed at the respective reference positions RPa and RPm have a specific light emission color regardless of the current risk level.
  • the light emission color of the light emission spot 51 flowing through the linear light emission region 52 is set to “amber (orange)” having a stronger warning image than the risk level “4”.
  • the display width of the re-displayed light emission spot 51 is a predetermined display width corresponding to the risk level “4”, for example, regardless of the current risk level.
  • FIG. 16 shows a display for improving the driver's right-handed look in the state where the LKA is not operating. If the state notification mode is switched to the side look attention mode based on the right look side information by the DSM 11, the light emission spot 51 displayed at the reference position RPm is temporarily turned off from the linear light emission region 52 (FIG. 16A). , FIG. 16B).
  • the light-emitting spot 51 is displayed in a portion of the linear light-emitting region 52 extending in the width direction WD that the driver's line of sight is facing (for example, the right end 52 a). (FIG. 16C).
  • the light emitting spot 51 is redisplayed with a specific color such as amber as in the approaching vehicle warning mode.
  • the re-displayed light emission spot 51 is moved to the reference position RPm at the center of the combination meter 12a, that is, to the front of the driver.
  • FIG. 17 shows a display for improving the driver's left look in the left direction while the LKA is operating.
  • the light emission spot 51 (FIG. 17A) displayed at the reference position RPa is temporarily turned off.
  • a light emission spot 51 that emits light to the amber is displayed in the direction in which the driver's line of sight is facing (FIG. 17B).
  • the redisplayed light emission spot 51 starts moving in the right direction (FIG. 17C).
  • the light emission spot 51 moves to the center of the combination meter 12a located in front of the driver (FIG. 17D).
  • the end position of the light emission spot 51 is set to the reference position RPm regardless of whether the LKA is operating.
  • FIG. 19 Details of each process performed by the control circuit 20a in order to realize the display of the light emitting spot 51 in the state notification mode, the lane change notification mode, the approaching vehicle notification mode, and the side-viewing attention mode described so far are shown in FIG. Based on FIG. 19, it demonstrates, referring FIG. First, a reference position setting process for setting the respective reference positions RPa and RPm (see FIGS. 8 and 9) of the light emission spot 51 will be described based on the flowchart of FIG. The process shown in FIG. 18 is repeatedly started by the light emission control unit 34 of the control circuit 20a based on the fact that the vehicle is ready to travel.
  • operation information related to activation and termination of LKA is acquired from the vehicle control ECU 70 (see FIG. 3), and the process proceeds to S102.
  • S102 it is determined based on the operation information acquired in S101 whether the LKA is operating. When it is determined that the LKA is operating, the process proceeds to S103.
  • S103 the reference position RPa is set at the center 52c of the linear light emitting region 52 (see FIG. 9), and the process proceeds to S105.
  • the process proceeds to S104.
  • the reference position RPm is set in front of the driver (see FIG. 8), and the process proceeds to S105.
  • S105 steering information based on the planned travel locus after several (t) seconds is acquired from the vehicle control ECU 70 (see FIG. 3), and the process proceeds to S106.
  • the target steering amount included in the steering information acquired in S105 is equal to or greater than a lower limit threshold value.
  • the lower limit threshold is defined as a value such that the movement of the light emitting spot 51 is performed only when the curve and the lane change.
  • the lower limit threshold value is set as a value that excludes the steering amount that is necessary when maintaining traveling in a lane that can be regarded as a straight line. If it is determined in S106 that the target steering amount is less than the lower limit threshold, the series of processes is terminated. On the other hand, if it is determined in S106 that the target steering amount is equal to or greater than the lower limit threshold value, the process proceeds to S107.
  • the reference positions RPa and RPm set in S103 or S104 are moved to the left and right along the width direction WD (see FIGS. 11 and 12), and a series of processing is performed. finish.
  • the value of t is a value for ensuring a time that can be overridden after the driver recognizes the movement of the reference positions RPa and RPm and determines whether or not the traveling direction is right, and is set to 3 seconds, for example. Yes.
  • the process shown in FIG. 19 is also started by the light emission control unit 34 (see FIG. 5) when the vehicle is ready to travel.
  • S121 the blinking cycle set by the blinking cycle setting unit 33 is acquired, and the process proceeds to S122.
  • S122 the latest reference position set by the reference position setting process is acquired, and the process proceeds to S123.
  • S123 the latest risk level determination result determined by the risk determination unit 32 is acquired, and the process proceeds to S124.
  • S124 the light emission color, display width, and display position of the light emission spot 51 are set or updated based on the information acquired in S121 to S123, and the process returns to S122.
  • a value set by repeating the processing of S122 to S124 is output as a command signal to the light emitting device 40 of FIG.
  • the scene shown in FIG. 20 is a scene in which the own vehicle A in which the driving support function is not operating reaches an intersection with poor visibility by the driving operation of the driver.
  • the light emitting spot 51 is lit and displayed with the front of the driver as the reference position RPm in the linear light emitting region 52. (See FIG. 20A).
  • the light emission control mode is switched from the state notification mode to the risk target warning mode as the static risk level increases based on the map information.
  • both the left and right risk levels increase.
  • the light emission spots 51 are displayed at both end portions 52a and 52b of the linear light emission region 52 so as to warn of poor left and right visibility (see FIG. 20B).
  • Switching from the state notification mode to the risk target warning mode is performed, for example, several seconds (about 3 to 5 seconds) before the host vehicle A reaches the planned stop position.
  • Each light emitting spot 51 is displayed in a light emitting color such as green so as to indicate a moderate risk level to the driver.
  • the other vehicle A1 is The risk target includes the risk and the dynamic risk of approaching the host vehicle A.
  • the risk level of the other vehicle A1 having a complex risk is calculated to be higher than the risk level of the blind intersection.
  • the left and right light emitting spots 51 that alert the blind intersection are turned off, and the light emitting spots 51 that warn other vehicles A1 are turned on (see FIG. 20C).
  • the light emitting spot 51 that warns the other vehicle A1 is displayed in a light emitting color such as red so that the height of the risk level can be clearly shown to the driver.
  • the light emitting spot 51 that warns the other vehicle A1 can move in the linear light emitting region 52 following the movement of the other vehicle A1. Specifically, when the other vehicle A1 travels from the right side to the left side of the front of the host vehicle A, the light emission spot 51 is directed from the vicinity of the front pillar located on the right side of the driver toward the left side of the driver. (See FIG. 20C).
  • the light emitting spot 51 that warns the other vehicle A1 is turned off. Then, the pair of light emitting spots 51 that alert the blind intersection is again displayed on both ends 52a and 52b of the linear light emitting region 52 (see FIG. 20D).
  • the combined spot of another vehicle A1 is warned by the light emitting spot 51.
  • the light emission spot is always lit by approaching an intersection or the like. Therefore, it causes the driver to get used to, and induces mistrust such as "I'm shining this time, but the car won't come.”
  • driver's overconfidence may be caused by dynamic risk-only notification. Specifically, when the risk target is not detected, the driver may make a false determination that “the car will not come because it is not shining”. In order to avoid the occurrence of such suspiciousness and overconfidence, it is desirable to implement warnings that combine two types of risks: static risks and dynamic risks.
  • the warning mode in the risk warning mode is changed depending on the relative position of the risk target with respect to the host vehicle A.
  • the pedestrian P1 who is the maximum risk target is above the linear light emitting region 52 extending in the width direction WD and between the pair of front pillars. Visible.
  • the instrument panel light emission line 41 causes the light emission spot 51 to emit light and display in a range located below the pedestrian P1 on the appearance of the driver in the linear light emission region 52. As a result, the light emission spot 51 becomes a display indicating the direction in which the risk target exists as viewed from the driver.
  • the risk level of the pedestrian P1 increases as the pedestrian P1 and the host vehicle A approach each other. Therefore, the light emission color of the light emission spot 51 changes in order of yellow, amber, and red with the approach of the pedestrian P1.
  • the sound reproducing device 140 such as a speaker is not used for the risk target warning.
  • the instrument panel light emission line 41 displays an animation that slides in the light emission spot 51 from the end of one linear light emission region 52 close to the pedestrian P1 toward the center of the linear light emission region 52.
  • the light emission spot 51 may be in a display mode in which the light emission spot 51 is slid in while blinking in the linear light emission region 52. Since the linear light emitting region 52 is located within the peripheral vision range PVA (see FIG. 1), the driver can notice the displayed animation. Therefore, the instrument panel light emission line 41 can guide the driver's line of sight outside the front pillar by the movement of the light emission spot 51.
  • the instrument panel light emission line 41 can reliably attract the driver to the outside of the front pillar.
  • the maximum risk targets there are two or more maximum risk targets indicating the maximum risk level.
  • a plurality of pedestrians Pa to Pc that are subject to maximum risk are close to each other and exist within a predetermined range. Therefore, substantially the same risk level is calculated by the risk determination unit 32 for each pedestrian Pa to Pc.
  • the light emission spot 51 is enlarged along the width direction WD so as to include a plurality of pedestrians Pa to Pc that are close to each other, and is displayed in a light emission color corresponding to the risk level of each pedestrian Pa to Pc.
  • the driver's eyepoint IP is defined in advance in the cabin of the host vehicle A.
  • the eye point IP is a specific coordinate on the space where it is assumed that the eyes of the driver seated on the driver's seat 17d (see FIG. 1) are located.
  • the relative coordinates of the pedestrians Pa to Pc with respect to the host vehicle A are acquired based on the position information by the external environment recognition system 90 and the like.
  • the light emission control unit 34 sets the size of the light emission spot 51 using the coordinates of the eye point IP, the coordinates of the pedestrians Pa to Pc, and the coordinates indicating the installation range of the linear light emission region 52.
  • a virtual line connecting the eye point IP and each pedestrian Pa-Pc is defined.
  • Each virtual line is defined substantially parallel to the road surface on which the host vehicle A travels.
  • the angle between two imaginary lines adjacent to each other is the difference between the two maximum risk target directions ⁇ ab and ⁇ bc viewed from the eye point IP.
  • both ends of the light emission spot 51 in the width direction WD straddle two outermost virtual lines and extend to the outside of these two virtual lines. I'm out.
  • the virtual line from the eye point IP to the coordinates of the center of gravity intersects the center point of the light emission spot 51 in a pseudo manner. According to the expansion of the light emission spot 51 in the width direction WD, a single light emission spot 51 can alert a plurality of pedestrians Pa to Pc together on the foreground visually recognized by the driver.
  • two pedestrians Pd and Pe that are subject to maximum risk exist at positions separated from each other when viewed from the driver.
  • the substantially same risk level is calculated for the pedestrians Pd and Pe.
  • a plurality of light emission spots 51 respectively indicating the directions of the pedestrians Pd, Pe are linearly emitted. It is displayed in area 52.
  • the display position of each light-emitting spot 51 is set with reference to a pseudo intersection where the linear light-emitting region 52 pseudo-crosses each virtual line in a plan view of each virtual line and eye point IP viewed from above.
  • FIG. 25 shows a scene where two pedestrians Pf and Pg having different distances from the own vehicle A exist as risk targets.
  • the risk level of one pedestrian Pg that is close to the host vehicle A is higher than the risk level of the other pedestrian Pf. Therefore, one light emission spot 51 that warns one pedestrian Pg as the maximum risk target is displayed in the linear light emission region 52.
  • the light emitting spot 51 alerts the two pedestrians Pf, Pg together. It becomes possible. As described above, the light emitting spot 51 that warns of the maximum risk target may exhibit a function of secondary warning of other risk targets. In this case, the emission color of the instrument panel emission line 41 is set based on the risk level calculated for the pedestrian Pg.
  • the transition of the display mode of the instrument panel light emission line 41 when a plurality of risk objects are detected at different timings and the risk object warned by the light emission spot 51 is changed will be described with reference to FIGS. Will be described with reference to FIG.
  • the light emission spot 51 that is initially displayed and indicates the direction of the maximum risk target is referred to as “first light emission spot 51a”, and the light emission spot displayed at a position different from the first light emission spot 51a. 51 is referred to as a “second light emission spot 51b”.
  • the second light emission spot 51b indicates the direction of the quasi-maximum risk target indicating the maximum risk level among the other risk targets excluding the maximum risk target.
  • the host vehicle A approaches the intersection where the traffic light Sg is installed while passing by the side of the pedestrian P1.
  • the traffic light Sg is switched from blue to yellow through red at the timing when the host vehicle A passes by the side of the pedestrian P1.
  • the risk level Rp calculated for the pedestrian P1 exceeds the threshold th L (t 1 ).
  • the first light emission spot 51a is displayed in a range indicating the direction of the pedestrian P1 in the linear light emission region 52.
  • the driver's line of sight is directed to the pedestrian P1 by being guided by the first light emission spot 51a.
  • the light emission control unit 34 drives when the driver's line of sight is continuously directed to the maximum risk target (pedestrian P1) for a predetermined time (for example, about 1.0 to 1.5 seconds). It is determined that the person has watched the pedestrian P1.
  • the traffic light Sg switches from blue to yellow after the risk level Rp of the pedestrian P1 exceeds the threshold th L (t 2 ).
  • the traffic light Sg is detected as a risk target, and the risk level Rs of the traffic light Sg is calculated.
  • the risk level Rs of the traffic light Sg exceeds the threshold th L (t 3 ).
  • the traffic light Sg is selected as a quasi-maximum risk target.
  • the display of the first light emission spot 51a that has warned the pedestrian P1 is stopped. Then, after the first light emission spot 51a is turned off, the light emission spot 51 moves from the display position of the first light emission spot 51a toward the display position of the second light emission spot 51b indicating the direction of the traffic light Sg. Due to the transition of the light emission spot 51, the driver's line of sight is guided to the traffic light Sg.
  • the moving speed of the light emitting spot 51 is set to a speed that the driver can perceive in the peripheral visual field.
  • a time lag t lag (for example, about 0.1 to 0.3 seconds) is intentionally provided between the turn-off of the first light emission spot 51a and the start of the transition.
  • the driver's line of sight is guided to the traffic light Sg by the second light emitting spot 51b.
  • the driver's reaction delay t d (for example, about 0.3 to 1.0 second) inevitably occurs from when the second light emitting spot 51b is turned on until the driver's line of sight is directed toward the traffic light Sg.
  • the light emission control unit 34 determines that the driver has watched the traffic light Sg when the driver's line of sight is continuously directed to the quasi-maximum risk target (the traffic light Sg).
  • the light emission spot 51 (third light emission) that warns the new risk object instead of the second light emission spot 51b. Spot) is displayed in the linear light emitting region 52.
  • the risk level Rs of the traffic light Sg becomes higher than the risk level Rp of the pedestrian P1 (t 4 ). And if the own vehicle A passes the side of the pedestrian P1 (t 5 ), the risk level Rp of the pedestrian P1 becomes substantially zero. Thereafter, when the driver stops the host vehicle A by a brake operation, the risk level Rp of the traffic light Sg is also substantially zero. As a result, the second light emission spot 51b is turned off. In this manner, when a new risk target whose risk level exceeds the threshold th L is not detected, the display of the second light emission spot 51b is continued until the near maximum risk target disappears.
  • the light emission control unit 34 displays the first light emission spot 51a indicating the direction of the pedestrian P1. Can be continued.
  • the driver may turn his gaze in a direction away from the pedestrian P1 without being attracted to the first light emission spot 51a.
  • the light emission control unit 34 can perform a transition in which the light emission spot 51 is displayed in a range in which the driver's line of sight faces in the linear light emission region 52 and moved in the direction of the pedestrian P1.
  • the driver's line of sight is guided to the second light emission spot 51b and directed toward the traffic light Sg, whereby the pedestrian P1 is out of the driver's gaze target (t 31 ). Thereafter, it is assumed that the risk level Rp of the pedestrian P1 has rapidly increased (t 32 ). When increased risk level from line-of-sight direction when changing risk level Rp1 becomes more threshold .DELTA.th L of a preset amount of change (Rp2, t 33), the pedestrian P1 is the risk subject is alerted by a light emitting spots 51 Will be selected again.
  • the display of the second light emission spot 51b is stopped. Then, after the second light emitting spot 51b is turned off, the light emitting spot 51 moves from the display position of the second light emitting spot 51b toward the display position of the first light emitting spot 51a indicating the latest direction of the pedestrian P1. Thus, the driver's line of sight is again guided to the pedestrian P1.
  • the risk level Rp of the pedestrian P1 becomes substantially zero.
  • the second light emission spot indicating the direction of the traffic light Sg in order to continue the alerting to the traffic light Sg as the first light emission spot 51a is turned off. 51b is displayed again. In this case, the transition of the light emission spot 51 is omitted.
  • FIGS. 30 and 31 there is a crossing pedestrian P2 crossing the pedestrian crossing in the traveling direction of the own vehicle A about to turn right.
  • a straight oncoming vehicle A2 is approaching from the front of the host vehicle A.
  • Risk level Rp calculated to cross the pedestrian P2 for example greater than the threshold value th L in cross start timing crosswalk (see FIG. 27 t 1).
  • the first light emission spot 51a is displayed in a range indicating the direction of the crossing pedestrian P2 in the linear light emission region 52.
  • the driver's line of sight is directed to the crossing pedestrian P2 by being guided by the first light emission spot 51a.
  • the light emission control unit 34 performs gaze determination of the crossing pedestrian P2 when the driver's line of sight is continuously directed to the crossing pedestrian P2 for a predetermined time based on the line-of-sight information.
  • the risk level Ra of straight oncoming vehicle A2 depending access to an intersection, exceeds the threshold value th L (see FIG. 27 t 3).
  • the straight oncoming vehicle A2 is selected as a quasi-maximum risk target.
  • the risk target to be warned by the light emission spot 51 is from the crossing pedestrian P2 that is the maximum risk target to the straight oncoming vehicle A2 that is the quasi-maximum risk target. Can be switched.
  • the display of the first light emitting spot 51a that has warned the crossing pedestrian P2 is stopped. Then, after the first light emission spot 51a is turned off, the light emission spot 51 moves from the display position of the first light emission spot 51a toward the display position of the second light emission spot 51b indicating the direction of the straight oncoming vehicle A2. Due to the transition of the light emission spot 51, the driver's line of sight is guided to the straight oncoming vehicle A2.
  • the light emission control unit 34 performs gaze determination of the straight oncoming vehicle A2 based on the line-of-sight information.
  • risk level Ra of straight oncoming vehicle A2 is higher than the risk level Rp cross pedestrian P2 (see FIG. 27 t 4).
  • the risk level Rp cross pedestrian P2 becomes substantially zero.
  • the risk level Rp of the straight oncoming vehicle A2 also becomes substantially zero.
  • the second light emission spot 51b is turned off.
  • the details of the warning target selection process executed by the control circuit 20a in order to realize the display of the instrument panel light emission line 41 described so far will be described based on FIG. 32 and with reference to FIGS. explain.
  • the warning target selection process shown in FIG. 32 is repeatedly performed by the control circuit 20a based on the fact that the light emission control mode is switched to the risk target warning mode. The warning target selection process is continued until the risk target warning mode is terminated.
  • S141 it is determined whether or not a risk target is detected based on the monitoring information or the like. If it is determined in S141 that a risk target has been detected, the process proceeds to S142. On the other hand, when the risk target is not detected, the determination of S141 is repeatedly performed.
  • the risk level of the risk target detected in S141 is calculated, and the process proceeds to S143.
  • a risk level is calculated for each of the plurality of risk targets.
  • S143 it determines whether or not at risk risk level is the threshold value th L or more calculated in S142. If it is determined in S143 that there is no risk target indicating a risk level equal to or higher than the threshold th L , the process returns to S141. On the other hand, if it is determined in S143 that there is a risk target indicating a risk level equal to or higher than the threshold th L , the process proceeds to S144.
  • S144 it is determined whether or not there are a plurality of risk targets indicating a risk level equal to or higher than the threshold th L. If it is determined in S144 that the risk level of a plurality of risk targets exceeds the threshold th L , the process proceeds to S146. On the other hand, if it is determined that there is one risk target indicating a risk level equal to or higher than the threshold th L , the process proceeds to S145.
  • one risk object showing a risk level equal to or higher than the threshold th L is selected as a warning object, and the process returns to S142.
  • the light emission spot 51 indicating the direction of the risk target selected in S145 is displayed in the linear light emission region 52.
  • S146 it is determined whether or not there is a risk target that is currently warned by the light emitting spot 51. If it is determined in S146 that there is a risk target being warned by the light emission spot 51, the process proceeds to S148. On the other hand, when it determines with it being before the start of the warning of the risk target by the light emission spot 51, it progresses to S147.
  • the maximum risk object indicating the maximum risk level is selected from the plurality of risk objects, and the process returns to S142.
  • a plurality of risk targets indicating the maximum risk level a plurality of maximum risk targets are selected.
  • one or more light emission spots 51 (first light emission spots 51a) indicating the direction of the maximum risk object selected in S147 are displayed in the linear light emission region 52.
  • S ⁇ b> 148 it is determined whether or not there is a risk target whose risk level increase is equal to or greater than the change amount threshold value ⁇ th L among the plurality of risk targets. If it is determined in S148 that there is no risk target for which the increase in risk level is equal to or greater than the threshold value ⁇ th L , the process proceeds to S150. On the other hand, if it is determined that there is a risk target for which the increase in the risk level is equal to or greater than the threshold value ⁇ th L , the process proceeds to S149.
  • the risk target showing an increase in the risk level equal to or greater than the threshold ⁇ th L is selected, and the process returns to S142. According to the above, the light emission spot 51 that has been displayed so far is turned off, and the light emission spot 51 indicating the direction of the risk target selected in S149 is newly displayed.
  • S150 it is determined whether or not the selected risk target is watched. If it is determined in S150 that the gaze determination for the risk target is not established, the process proceeds to S151. In S151, the selection of the same risk target as the present is continued, and the process returns to S142. As described above, the lighting spot 51 is continuously turned on until the driver's line of sight is directed.
  • the process proceeds to S152.
  • a quasi-maximum risk target indicating the maximum risk level is selected other than the risk target (maximum risk target) that is a warning target, and the process returns to S142. According to the above, the display of the light emission spot 51 (first light emission spot 51a) is terminated, and the second light emission spot 51b indicating the direction of the quasi-maximum risk target is displayed.
  • the length of the light emission spot 51 is adjusted by the light emission control unit 34 (see FIG. 5) according to the direction of the risk target with respect to the traveling direction of the host vehicle A and the distance from the host vehicle A to the risk target. Specifically, even when the driver's eyepoint IP is moved forward and backward of the host vehicle A by the sliding of the driver's seat 17d, the light emission spot 51 viewed from the driver indicates the direction of the pedestrian P1 that is the maximum risk target. As described above, the size of the light emission spot 51 is defined. That is, even when the position of the driver's seat 17d (see FIG. 1) is changed in the front-rear direction of the host vehicle A, the light emission spot 51 is lit below the risk target on the foreground visually recognized by the driver. Not only the position of the light emission spot 51 but also the length of the light emission spot 51 is changed.
  • the eye point IP is an eye point IPc that is assumed to have the driver's eyes in a state where the driver's seat 17d (see FIG. 1) is positioned at the center of the slide range, for example.
  • the point IPb can be defined in advance.
  • a virtual line substantially parallel to the road surface on which the vehicle A travels can be defined between the eye points IPf and IPb at the foremost position and the last position and the pedestrian P1 as the risk target.
  • the direction difference ⁇ fb generated between the two imaginary lines with the pedestrian P1 as the center is the difference in viewing direction that occurs with the difference between the eye points IPf and IPb.
  • virtual lines substantially parallel to the road surface on which the vehicle A travels can also be defined between both ends of the light emitting spot 51 and the pedestrian P1.
  • the lighting angle ⁇ lgt of the light-emitting spot 51 is set to a value larger than the direction difference ⁇ fb.
  • the center of the light emission spot 51 in the width direction WD is defined as a position where the linear light emission region 52 artificially intersects with a virtual line from the eye point IPc toward the pedestrian P1.
  • the light emission control unit 34 increases the calculated direction difference ⁇ fb and consequently the lighting angle ⁇ lgt as the risk target approaches the host vehicle A, and the light emission spot 51 in the width direction WD. Enlarge. According to the adjustment of the length of the light emission spot 51, the light emission spot 51 is turned on below the risk target, and the direction of the risk target can be indicated to the driver.
  • the length of the light emission spot 51 is expanded in the width direction WD as the display position of the light emission spot 51 is moved away from the driver. That is, when the size of the risk target and the relative position with respect to the host vehicle A are substantially the same, the risk target is narrowest at the front of the driver, and gradually increases as the distance from the front along the linear light emitting region 52 increases.
  • the angle hereinafter referred to as “viewing angle”
  • the viewing angle ⁇ vis is set to about 10 °, for example.
  • the light emission control unit 34 enlarges the light emission spot 51 in the width direction WD by increasing the number of light emitting elements to be lit as the display position of the light emission spot 51 deviates from the front of the driver. According to the adjustment of the length of the light emitting spot 51, the driver can be surely noticed even if the light emitting spot 51 is light-emitting and displayed on the passenger seat side that is far from the driver.
  • the HCU 100 displays the maximum risk object indicating the maximum risk level among the plurality of risk objects. Select. A light emission spot 51 indicating the direction in which the maximum risk target exists as viewed from the driver is displayed in the linear light emission region 52.
  • the light emitting device 40 can accurately direct the driver's attention to the important risk targets.
  • the second light emission spot 51b is a linear light emission region as the light emission spot 51 indicating the direction in which the sub maximum risk target exists. 52 is displayed. According to the above, the light emitting device 40 can sequentially select the driver's line of sight by selecting in order from the risk object having the highest risk level among the plurality of risk objects.
  • the first light emission spot 51a that warns the maximum risk target is turned off when the second light emission spot 51b is displayed. According to the above, since the second light emitting spot 51b can be made conspicuous, the driver's line of sight can be reliably guided from the already recognized maximum risk object to the quasi-maximum risk object.
  • the HCU 100 can guide the driver's line of sight more accurately in accordance with the change in the situation of the risk target.
  • the driver when a new risk target showing a risk level exceeding the threshold thL is not detected, even if the driver focuses on the light spot 51 that warns the risk target until the risk target disappears. Will continue to be displayed. According to the above, although the risk object still exists, the driver does not cause a misunderstanding as if the risk object has disappeared due to the light emission spot 51 being extinguished.
  • the instrument panel light emission line 41 changes the display position of the light emission spot 51 by causing a transition. According to such display of the light emission spot 51, the instrument panel light emission line 41 can smoothly guide the driver's line of sight to a new risk target.
  • the first light emission spot 51a Display continues. According to the above, the light emitting device 40 does not attract the driver in a direction different from the maximum risk target without the driver viewing the important maximum risk target.
  • the light emitting device 40 can perform a display in which the light emitting spot 51 is moved from the direction in which the driver's line of sight is directed toward the direction in which the maximum risk target exists. According to the above, even in a scene where a plurality of risk targets are detected, the HCU 100 can surely direct the driver's attention toward an important risk target.
  • the light emitting device 40 can indicate the direction of each maximum risk target by displaying a plurality of light emission spots 51. Such a display makes it more difficult for the driver to overlook important risk targets.
  • the light emitting device 40 displays the direction in which the maximum risk objects are present together by displaying the light emission spot 51 enlarged. Show. According to the above, the light emitting device 40 can warn the driver of a risk object with a high risk level in a simple manner by displaying it in a simple manner.
  • the HCU 100 and the light emitting device 40 correspond to an “information presentation device”, and the risk determination unit 32 corresponds to a “risk calculation unit”.
  • the instrument panel light emission line 41 corresponds to a “light emission display unit”
  • the linear light emission region 52 corresponds to a “light emission region”
  • the outside recognition system 90 corresponds to a “periphery monitoring device”.
  • the second embodiment is a modification of the first embodiment.
  • display control of the instrument panel light emission line 41 is performed without using the driver's line-of-sight information. Therefore, the DSM 11, the wearable device 110, and the wearable communication device 97 shown in FIG. 2 are not necessary.
  • the light emission control unit 34 (see FIG. 5) is newly selected A light emission spot 51 indicating the direction of the maximum risk target is displayed in the linear light emission region 52.
  • the display of the light emission spot 51 indicating the direction of the risk target whose risk level is no longer maximum is terminated. Details of the warning target selection process according to the second embodiment will be described with reference to FIG. 1 based on FIG.
  • S241 to S244 are substantially the same as S141 to S144 of the first embodiment. If it is determined in S244 that there is only one risk target indicating a risk level equal to or higher than the threshold th L , the process proceeds to S245. In S245, one risk target showing a risk level equal to or higher than the threshold th L is selected as a warning target, and the process returns to S242. As described above, the light emission spot 51 indicating the direction of the risk target selected in S245 is displayed in the linear light emission region 52.
  • the process proceeds to S246.
  • the maximum risk target indicating the maximum risk level is selected from the plurality of risk targets, and the process returns to S242.
  • one or more light emission spots 51 indicating the direction of the maximum risk target selected in S246 are displayed in the linear light emission region 52.
  • the light emission spot 51 is displayed in the linear light emission region 52 so as to indicate the direction of the new maximum risk target. According to the above display control, even if the driver's line-of-sight direction is not detected, the light emission spot 51 can accurately attract the driver to a risk object with a high risk level.
  • the display of the light emission spot 51 indicating the direction of the risk target whose risk level is no longer maximum is terminated. Therefore, the number of light emitting spots 51 displayed in the linear light emitting region 52 can be minimized. According to the above, the display by the instrument panel light emission line 41 becomes a display that is easy to understand by the driver and is difficult to feel bothersome.
  • the maximum risk object when the maximum risk object is changed, or when the semi-maximum risk object is selected after gaze determination, when the risk object to be warned by the light emission spot 51 is changed, it is displayed until then.
  • the light emitting spot that had been turned off was turned off.
  • the light emitting spot that has been displayed so far may be continuously lit.
  • the second light emission spot of the first embodiment is continuously displayed until the disappearance of the quasi-risk target when no other risk target is detected. However, the display of the second light emission spot may be terminated based on the driver's gaze determination of the quasi-maximum risk target.
  • the driver when the risk target to be warned is changed, the driver is attracted by the transition of the light emission spot.
  • these transitions may be omitted.
  • the light emission spot displayed in the driver's line of sight is moved in the direction of the maximum risk target.
  • an invitation to the maximum risk target may be omitted.
  • a plurality of light emission spots can be displayed.
  • the number of risk targets to be warned by the light emission spot may be limited to one by adding the rule for selecting the maximum risk target.
  • a light emission spot does not need to be expanded.
  • the monitoring information for the risk target is output to the HCU not only by the external recognition system but also by the V2X communication device.
  • the monitoring information may be detected only by the external environment recognition system.
  • the V2X communication device can function as the “periphery monitoring device”, the risk target warning may be performed based only on the monitoring information acquired through road-to-vehicle communication.
  • various stationary objects and moving objects such as parked vehicles, lane-regulated sections, and construction vehicles that are performing road construction can be subject to risk.
  • the instrument panel light emission line when the state notification mode is changed to another light emission control mode, the light emission spot is once turned off before the movement starts.
  • the instrument panel light emission line according to the modified example 2 can display a sub light emission spot having a light emission color different from that of the main light emission spot on the main light emission spot while displaying the main light emission spot for notifying the state at the reference position. it can.
  • the instrument panel light emission line can guide the driver's line of sight by moving the sub light emission spot to either the left or right.
  • the type of light emission control mode set in the light emitting device can be changed as appropriate.
  • the priority of each light emission control mode may be changed as appropriate.
  • Each reference position RPa, RPm in the above embodiment defines the center position of the light emission spot 51 when the host vehicle A is in a straight traveling state in the state notification mode.
  • the reference position may be set at any position in the light emission spot as long as the position of the light emission spot can be defined.
  • the reference position can be set at the right end or the left end.
  • Each reference position may be manually adjustable by the driver.
  • the light emission spot 51 of the above embodiment can change both the light emission color and the display width according to the risk level.
  • the emission color associated with the risk level is not limited to the color range from green to red as in the above embodiment.
  • the light emission spot may change only one of the emission color and the display width according to the risk level.
  • the light-emitting spot can be enlarged in a left-right asymmetric manner and have a shape that extends more to the left of the reference position than to the right of the reference position.
  • the light emission spot 51 of the linear light emission region 52 and the light emission spot 56 of the annular light emission region 57 are matched to each other.
  • each light emission spot can emit light with different emission colors.
  • the change in brightness of each light emitting spot can be synchronized with each other.
  • each light emitting spot may repeat a change in brightness at a different period.
  • the information presentation in which the instrument panel light emission line 41 and the steer light emission ring 42 are synchronized is realized. However, by omitting the steer light emission ring 42, the operation of the driving support device is performed by the instrument panel light emission line 41 alone. Information can be presented to the occupant.
  • the light emission spot 56 of the annular light emission region 57 is turned off so as not to prevent the driver's attraction.
  • the light emission spot of the steering can be turned on.
  • the instrument panel light emission line 41 has a linear light emitting region 52 extending in the horizontal direction above the combination meter 12a and the CID 12b.
  • the shape and arrangement of such a “light emitting region” can be changed as appropriate. For example, as long as the linear light-emitting region extends so as to straddle each center of the combination meter and the CID, the end may not reach the root of each pillar.
  • the linear light emitting region can be disposed, for example, below the combination meter and the CID.
  • the instrument panel light emission line is a “light emission display part” that allows the driver to visually recognize the light emission spot formed as a virtual image by reflecting the emitted light projected on the lower edge part of the windshield at the lower edge part. May be. With such a configuration, the “light emitting area” is defined at the lower edge of the windshield. Further, the instrument panel light emission line can be formed with a plurality of linear light emission regions on the instrument panel.
  • an instrument panel light emission line for displaying a movable light emission spot may be realized by using a self-luminous panel such as an organic EL formed in a band shape instead of the configuration of the light emitting diode.
  • the reference position is switched based on whether or not the LKA is operating.
  • the driving support function used as a trigger for switching the reference position is not limited to LKA.
  • the switching of the reference position may be performed based on the operation and stop of various functions that can be exhibited by the “driving support device”.
  • the reference position may be switched when an automatic lane change, an automatic overtaking, or the like further operates under the LKA operating state.
  • the reference position may be switched based on the operation of the ACC.
  • the reference position may be switched when a fully automatic operation in which all control is always performed by an on-board automatic operation system is activated.
  • the moving speeds of the light emitting spots to the left and right are aligned with each other.
  • the moving speed of the light emitting spot can be changed as appropriate.
  • the moving speed of the light emission spot is set to the fastest speed within a speed range that can be recognized as movement by the driver.
  • the movement speed of the light emission spot in the right direction and the movement speed in the left direction may be different from each other.
  • the moving speed of the light emitting spot may be different between when the driving support function is activated and when it is not activated.
  • the light emission spot that flows leftward from the reference position RPm during manual operation may continue to move until reaching the end 52b without ending the movement at the end point position EP.
  • the light emitting spot in the above embodiment periodically blinks to change the brightness.
  • the light emitting spot may be turned off.
  • the brightness change of the light emission spot may be realized by changing the hue (lightness) of the emission color in addition to or in place of the brightness change.
  • the light emission spot may be a display that periodically expands and contracts in the width direction WD.
  • the light emitting spot in the above embodiment presents information such as the operating state and risk level of the driving support function to the driver.
  • the information presented by the light emitting spot is not limited to such information.
  • the instrument panel light emission line can light a light emission spot for eye catching.
  • an indicator is displayed on the combination meter, the HUD device and the like together with the eye catch by the light emission spot.
  • the light emission color of the light emission spot is matched with the display color of the indicator, and is a color that is easily noticed by the driver, such as blue and red.
  • the above embodiment includes a light emitting device mounted on a right-hand drive vehicle.
  • a mode provided with a light-emitting device mounted on a left-hand drive vehicle can naturally be an embodiment.
  • the driver's line of sight is guided to the front by the light emitting spot that moves to the center of the combination meter regardless of whether the driving support function (device) is operating.
  • the driver's line of sight can be guided to the reference position RPa in the center of the CID.
  • the end point position of the invitation that corrects the side look can be changed according to the operation of the driving support function, similarly to the reference position.
  • the end point position can be set to substantially the same position as the reference position.
  • the end point position in the look-ahead notification mode may be set in a direction in which the driver's line of sight is desired.
  • the length of the light emission spot is changed by a plurality of adjustment methods.
  • these adjustment methods may be omitted as appropriate.
  • the tracking of the light emission spot to the risk target may not be performed in a scene where a plurality of maximum risk targets are detected, for example.
  • the driver's vagueness is used to determine the internal risk level.
  • the internal risk level determination method can be changed as appropriate.
  • the risk determination unit may determine the risk level of the driver based on the degree of sleepiness of the driver, the fluctuation of the behavior of the own vehicle A, information on other vehicles traveling around the own vehicle A, and the like. it can.
  • the functions provided by the processors 21 and 22 of the control circuit 20a can be provided by hardware and software different from those described above, or a combination thereof.
  • part or all of the reference position setting process, the light emission mode setting process, the warning target selection process, and the like are performed by the control circuit of the light emitting device or the control circuit of the vehicle control ECU. It is feasible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

 情報提示装置を提供する。発光装置(40)及びHCU(100)は、情報提示装置として車両(A)に搭載されている。発光装置(40)は、インスツルメントパネル(19)に配置され、車両の幅方向(WD)に沿って延伸するよう規定された線状発光領域(52)に、少なくとも一つの発光スポット(51)を表示する。HCUは、周辺監視ECU(91)によって検出されたリスク対象の位置情報を少なくとも含む監視情報を取得し、監視情報に基づき、車両の進行方向から検出されたリスク対象について個々のリスクレベルを算出する。複数のリスク対象が検出された場合、HCUは、リスクレベルが最大となる最大リスク対象を選択し、最大リスク対象の方向を示す発光スポットを線状発光領域に表示させる。

Description

情報提示装置 関連出願の相互参照
 本出願は、2015年4月3日に出願された日本国特許出願2015-77088号および2016年3月11日に出願された日本国特許出願2016-48661号に基づくものであり、それらの開示をここに参照により援用する。
 本開示は、車両の情報を運転者に提示する情報提示装置に関する。
 従来、例えば特許文献1には、車両のインスツルメントパネルに配置されたインストルメントディスプレイを備える車両表示装置が開示されている。インストルメントディスプレイは、車両周囲を撮影した複数の映像と、車両の幅方向に沿って移動するマーカとを表示可能である。特許文献1の車両表示装置は、運転者の注視すべき注視映像を選択し、注視映像へ向けてマーカを移動させることにより、運転者の視線を注視映像に誘導する。
JP2012-113672A
 さて、特許文献1の車両表示装置では、運転者の注意すべきリスク対象について、個々のリスクレベルを算出する処理が何ら実施されていない。故に、例えば対向車線上の対向車と横断歩道上の横断者のように複数のリスク対象が検出されたシーンでは、特許文献1の車両表示装置は、対向車を映す注視映像へ向けて移動するマーカと、横断者を注意喚起する矢印とを併せて表示する。このように、リスクレベルの高低に係わらず、複数のリスク対象が並行して注意喚起されると、重要なリスク対象に運転者の注意を向けさせることが困難となり得た。
 このような点に鑑みて、本開示の目的の一つは、複数のリスク対象が検出されるシーンにおいても、重要なリスク対象に運転者の注意を的確に向けさせることが可能な情報提示装置を提供することにある。
 本開示の一例に係る情報提示装置は、運転者が注意すべきリスク対象を検出する周辺監視装置と共に車両に搭載され、車両の情報を運転者に提示する情報提示装置であって、車両のインスツルメントパネルに配置され、当該車両の幅方向に沿って延伸するよう規定された発光領域に、少なくとも一つの発光スポットを表示する発光表示部と、発光領域内における発光スポットの発光態様を制御する発光制御部と、周辺監視装置によって検出されたリスク対象の位置情報を少なくとも含む監視情報を取得する情報取得部と、情報取得部の取得する監視情報に基づき、車両の進行方向の領域から検出されたリスク対象について個々のリスクレベルを算出するリスク算出部と、を備え、発光制御部は、周辺監視装置にて複数のリスク対象が検出された場合に、複数のリスク対象のうちでリスク算出部にて算出されたリスクレベルが最大となる最大リスク対象を選択し、運転者から見て最大リスク対象の方向を示す発光スポットを、発光領域に表示させる。
 この情報提示装置では、運転者の注意すべきリスク対象が周辺監視装置によって複数検出されると、発光制御部は、これら複数のリスク対象のうちで最大のリスクレベルを示す最大リスク対象を選択する。そして、運転者から見て最大リスク対象の存在する方向を示す発光スポットが、発光表示部の発光表示領域内に表示される。
 以上によれば、複数のリスク対象のうちで相対的にリスクレベルの低いリスク対象が注意喚起され難くなる一方で、リスクレベルの高いリスク対象は、発光スポットによって優先的に注意喚起される。したがって、複数のリスク対象が検出されるシーンにおいても、情報提示装置は、重要なリスク対象に運転者の注意を的確に向けさせることができる。
 本開示についての上記および他の目的、特徴や利点は、添付図面を参照した下記詳細な説明から、より明確になる。添付図面において、
図1は、自車両における運転席周辺のレイアウトを示す図である。 図2は、車載ネットワークの全体構成を示すブロック図である。 図3は、車両制御ECUの制御回路に構築される機能ブロックを示す図である。 図4は、発光装置の構成を示すブロック図である。 図5は、HCUの制御回路に構築される機能ブロックを示す図である。 図6は、発光スポットにて繰り返される明るさの変化の推移を示す図である。 図7は、発光装置の発光制御モードの遷移の詳細を示す状態遷移図である。 図8は、マニュアル運転時における発光スポットの表示を示す図である。 図9は、LKA作動時における発光スポットの表示を示す図である。 図10は、リスクレベルの上昇に伴って表示幅を拡大された発光スポットを示す図である。 図11は、マニュアル運転時において、自車両の予定走行軌跡を示すため、発光スポットの基準位置が移動された状態を示す図である。 図12は、LKA作動時において、自車両の予定走行軌跡を示すため、発光スポットの基準位置が移動された状態を示す図である。 図13は、LKA作動時でもマニュアル運転時でも基準位置の移動量が変わらないことを説明するための図である。 図14は、LKA作動時において、運転者の視線を右方向へ誘導する一連の表示を示す図である。 図15は、マニュアル運転時において、運転者の視線を左方向へ誘導する一連の表示を示す図である。 図16は、マニュアル運転時において、右方向への脇見状態にある運転者の視線を、正面へ誘導する一連の表示を示す図である。 図17は、LKA作動時において、左方向への脇見状態にある運転者の視線を、正面へ誘導する一連の表示を示す図である。 図18は、基準位置設定処理を示すフローチャートである。 図19は、発光態様設定処理を示すフローチャートである。 図20は、リスク対象警告モードにおけるインパネ発光ラインの作動を順に説明する図である。 図21は、フロントピラーの内側にリスク対象が存在するシーンでの発光態様を示す図である。 図22は、フロントピラーの外側にリスク対象が存在するシーンでの発光態様を示す図である。 図23は、複数のリスク対象が密集して存在するシーンでの発光態様を示す図である。 図24は、複数のリスク対象が離れて存在するシーンでの発光態様を示す図である。 図25は、自車両からの距離の異なる複数のリスク対象が特定の方向に存在するシーンでの発光態様を示す図である。 図26は、複数のリスク対象が時間差で検出されるシーンの一例を示す図である。 図27は、図26に示すシーンでの各リスク対象のリスクレベルの推移、発光スポットの表示位置の推移、及び運転者の視線方向の推移を、時系列に沿って示す図である。 図28は、図26に示すシーンにおいて、運転者からの見た進行方向の様子とインパネ発光ラインの表示とを示す図である。 図29は、図26に示すシーンにて、歩行者のリスクレベルが急上昇した場合のリスクレベルの推移、発光スポットの表示位置の推移、及び運転者の視線方向の推移を、時系列に沿って示す図である。 図30は、複数のリスク対象が時間差で検出されるシーンの別の一例を示す図である。 図31は、図30に示すシーンにおいて、運転者からの見た進行方向の様子とインパネ発光ラインの表示とを示す図である。 図32は、第一実施形態における警告対象選択処理を示すフローチャートである。 図33は、発光スポットの長さの設定方法を説明するための図である。 図34は、発光スポットの長さの設定方法を説明するための図である。 図35は、第二実施形態における警告対象選択処理を示すフローチャートである。 図36は、図32の変形例1を示す図である。
 以下、複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。そして、複数の実施形態及び変形例に記述された構成同士の明示されていない組み合わせも、以下の説明によって開示されているものとする。
 (第一実施形態)
 第一実施形態のHCU(HMI(Human Machine Interface)Control Unit)100は、図1及び図2に示すように、自車両Aに搭載される電子装置である。HCU100は、車載ネットワーク1に設けられた複数のノードのうちの一つとなる。車載ネットワーク1は、外界認識システム90、ロケータ95、V2X通信器96、車両制御システム60、ウェアラブル通信器97、HMIシステム10、及びこれらが接続される通信バス99等によって構成されている。
 外界認識システム90は、前方カメラユニット92、レーダユニット93,94等の外界センサと、周辺監視ECU91とを備えており、運転者が注意すべきリスク対象を検出する。具体的に、外界認識システム90は、歩行者、人間以外の動物、自転車、オートバイ、及び他の車両のような移動物体、さらに路上の落下物、交通信号、ガードレール、縁石、道路標識、道路標示、区画線、及び樹木のような静止物体を検出する。外界認識システム90は、各ユニット92~94に加えて、ライダ及びソナー等の外界センサを備えることが可能である。
 前方カメラユニット92は、例えば自車両Aのバックミラー近傍に設置された単眼式、又は複眼式のカメラである。前方カメラユニット92は、自車両Aの進行方向を向けられており、例えば約45度程度の水平視野角度で自車両Aから約80メートルの範囲を撮影できる。前方カメラユニット92は、移動物体及び静止物体が写る撮像画像のデータを、周辺監視ECU91へ逐次出力する。
 レーダユニット93は、例えば自車両Aのフロント部に設置されている。レーダユニット93は、77GHz帯のミリ波を送信アンテナから自車両Aの進行方向に向けて放出する。レーダユニット93は、進行方向の移動物体及び静止物体等で反射されたミリ波を、受信アンテナによって受信する。レーダユニット93は、例えば約55度程度の水平走査角度で自車両Aから約60メートルの範囲を走査できる。レーダユニット93は、受信信号に基づく走査結果を周辺監視ECU91へ逐次出力する。
 レーダユニット94は、例えば自車両Aのリヤ部の左右にそれぞれ設置されている。レーダユニット94は、24GHz帯の準ミリ波を送信アンテナから自車両Aの後側方に向けて放出する。レーダユニット94は、後側方の移動物体及び静止物体等で反射された準ミリ波を、受信アンテナによって受信する。レーダユニット94は、例えば約120度程度の水平走査角度で自車両Aから約30メートルの範囲を走査できる。レーダユニット94は、受信信号に基づく走査結果を周辺監視ECU91へ逐次出力する。
 周辺監視ECU91は、プロセッサ及びメモリを有するマイクロコンピュータを主体として構成されている。周辺監視ECU91は、前方カメラユニット92及び各レーダユニット93,94、並びに通信バス99と通信可能に接続されている。周辺監視ECU91は、各ユニット92,93から取得した情報を統合することにより、進行方向にある移動物体及び静止物体(以下、「検出物」)の相対位置等を検出する。加えて周辺監視ECU91は、レーダユニット94から取得した情報により、後側方にある検出物の相対位置等を検出する。周辺監視ECU91は、自車両Aの周囲を走行する前走車及び並走車の相対的な位置情報、自車両Aの周囲に存在する歩行者等の相対的な位置情報、並びに自車両Aの進行方向における区画線の形状情報等を、監視情報として通信バス99へ出力する。
 ロケータ95は、GNSS受信器95a、地図データベース95b、及び慣性センサ等を含む構成である。GNSS(Global Navigation Satellite System)受信器95aは、複数の人工衛星から送信された測位信号を受信する。ロケータ95は、GNSS受信器95aで受信した測位信号と、慣性センサの計測結果とを組み合わせることにより、自車両Aの位置を測位する。地図データベース95bは、多数の地図情報を格納した記憶媒体を有している。ロケータ95は、自車両Aの位置情報と、自車両Aの周囲及び進行方向の地図情報とを、通信バス99を通じて車両制御システム60及びHMIシステム10に提供する。
 V2X通信器96は、他の車両に搭載された車載通信器及び道路脇に設置された路側器との間で、無線通信によって情報をやり取りする。V2X通信器96は、例えば交差点等に設けられた路側器との間での路車間通信により、運転者から直接的に目視困難な他の車両及び歩行者等のリスク対象の位置情報を少なくとも含む監視情報を取得する。V2X通信器96は、取得した情報を通信バス99に逐次出力する。
 車両制御システム60は、アクセルポジションセンサ61、ブレーキ踏力センサ62、及び操舵トルクセンサ63等の運転操作を検出する検出センサを備えている。加えて車両制御システム60は、電子制御スロットル66、ブレーキアクチュエータ67、及びEPS(Electric Power Steering)モータ68等の走行制御デバイスと、車両制御ECU70とを備えている。車両制御システム60は、運転者による運転操作、外界認識システム90による監視情報等に基づいて、自車両Aの走行を制御する。
 アクセルポジションセンサ61は、運転者によるアクセルペダルの踏み込み量を検出し、車両制御ECU70へ出力する。ブレーキ踏力センサ62は、運転者によるプレーキペダルの踏力を検出し、車両制御ECU70へ出力する。操舵トルクセンサ63は、運転者によるステアリングホイール(以下、ステアリング)16の操舵トルクを検出し、車両制御ECU70へ出力する。
 電子制御スロットル66は、車両制御ECU70から出力される制御信号に基づき、スロットルの開度を制御する。ブレーキアクチュエータ67は、車両制御ECU70から出力される制御信号に基づいたブレーキ圧の発生により、各車輪に発生させる制動力を制御する。EPSモータ68は、車両制御ECU70から出力される制御信号に基づき、ステアリング機構に印加される操舵力及び保舵力を制御する。
 車両制御ECU70は、パワーユニット制御ECU、ブレーキ制御ECU、及び統合制御ECU等のうち、統合制御ECUを少なくとも含む一種類又は複数種類である。車両制御ECU70の制御回路70aは、プロセッサ71、書き換え可能な不揮発性のメモリ73、情報の入出力を行う入出力インターフェース74、及びこれらを接続するバス等を有している。車両制御ECU70は、各センサ61~63及び各走行制御デバイスと接続されている。車両制御ECU70は、各センサ61~63から出力される検出信号を取得し、各走行制御デバイスへ制御信号を出力する。加えて車両制御ECU70は、通信バス99と接続されており、HCU100及び周辺監視ECU91と通信可能である。
 車両制御ECU70は、自車両Aの駆動力、制動力、及び操舵力等を制御することにより、運転者による運転操作の支援又は代行を行う複数の運転支援機能を備えている。車両制御ECU70は、メモリ73に記憶された車両制御プログラムをプロセッサ71によって実行することで、図3に示すように、運転支援機能を実現する複数の機能ブロック(81~84)を構築する。車両制御ECU70は、各機能ブロックによる各運転支援機能の作動情報を通信バス99へ出力可能である。
 ACC機能部81は、周辺監視ECU91から取得する前走車の監視情報に基づいて駆動力及び制動力を調整することで、自車両A(図1参照)の走行速度を制御するACC(Adaptive Cruise Control)の機能を実現する。ACCは、運転者による複数の運転操作のうちで、加減速の操作を支援又は代行する。ACC機能部81は、前走車が検出されていない場合には、運転者によって設定された目標速度で、自車両Aを巡航させる。一方、前走車が検出されている場合には、ACC機能部81は、前走車までの車間距離を維持しつつ、自車両Aを前走車に対して追従走行させる。
 LKA機能部82は、操舵力を調整することで、自車両A(図1参照)の操舵輪の舵角を制御するLKA(Lane Keeping Assist)の機能を実現する。LKAは、運転者による複数の運転操作のうちで、操舵を支援又は代行する。LKA機能部82は、区画線への接近を阻む方向への操舵力を発生させることで自車両Aを走行中の車線内に維持させ、自車両Aを車線に沿って走行させる。
 LCA(Lane Change Assist)機能部83は、自車両A(図1参照)を現在走行中の車線から、隣接車線へと移動させる自動レーンチェンジの機能を実現する。自動レーンチェンジは、LKAの作動時において実行可能とされ、LKAと同様に運転者による操舵を支援又は代行する。LCA機能部83は、車線変更が可能である場合に、隣接車線へ向かう方向への操舵力を発生させることにより、自車両Aを隣接車線へ移動させる。
 走行軌跡設定部84は、周辺監視ECU91から取得する進行方向の区画線の形状情報に対応させて、自車両Aの予定走行軌跡を演算する。走行軌跡設定部84は、予定走行軌跡に沿った自車両の走行を実現させるための目標操舵方向及び目標操舵量を算出する。走行軌跡設定部84によって算出された目標操舵方向及び目標操舵量に基づき、LKA機能部82及びLCA機能部83は、操舵の制御を実行する。走行軌跡設定部84は、目標操舵方向及び目標操舵量を、操舵情報として通信バス99へ出力可能である。走行軌跡設定部84は、LKA機能部82及びLCA機能部83が共に作動していない場合でも、操舵情報を算出し、通信バス99へ出力することができる。
 図1及び図2に示すウェアラブル通信器97は、自車両Aに搭載され、通信バス99と通信可能に接続されている。ウェアラブル通信器97には、無線通信のためのアンテナが設けられている。ウェアラブル通信器97は、自車両Aの車室内に存在するウェアラブルデバイス110と、無線LAN及びブルートゥース(登録商標)等を使用して無線通信可能である。
 ウェアラブルデバイス110は、運転者によって身に付けられており、例えば運転者の頭部、耳部、手首、指先、及び首等に装着されている。ウェアラブルデバイス110は、運転者の生体情報、例えば、脈拍数、心拍数、体温、及び血圧等を取得し、車載ネットワーク1へ出力することができる。加えてウェアラブルデバイス110は、運転者の顔の向き又は視線方向を検出可能である。ウェアラブルデバイス110は、運転者の顔向きを示す情報又は視線方向を示す情報を、視線情報としてウェアラブル通信器97に送信する。視線情報は、ウェアラブル通信器97を通じてHCU100等に提供される。
 HMIシステム10は、ウィンカーレバー15等の操作デバイス、及びDSM(Driver Status Monitor)11を、上述のHCU100と共に備えている。加えてHMIシステム10には、HUD(Head-Up Display)装置14、コンビネーションメータ12a、CID(Center Information Display)12b、発光装置40等の複数の表示デバイスが設けられている。HMIシステム10は、運転席17dに着座した運転者を含む自車両Aの乗員に情報を提供する。
 ウィンカーレバー15は、ステアリング16を支持するコラム部に設けられている。ウィンカーレバー15には、運転者によってウィインカーを作動させる操作が入力される。ウィンカーレバー15は、運転者の入力に基づく操作信号を、HCU100へ出力する。
 DSM11は、近赤外光源及び近赤外カメラと、これらを制御する制御ユニットとを備えている。DSM11は、近赤外カメラを運転席17d側に向けた姿勢にて、インスツルメントパネル19の上面に配置されている。DSM11は、近赤外光源によって近赤外光を照射された運転者の顔を、近赤外カメラによって撮影する。近赤外カメラによる撮像画像は、制御ユニットによって画像解析される。制御ユニットは、例えば運転者の顔の向き、運転者の視線方向、及び運転者の目の開き具合等を、撮像画像から抽出する。
 DSM11は、制御ユニットによる解析に基づき、運転者の顔向き又は視線方向を示す視線情報を、HCU100へ出力する。加えてDSM11は、運転者が正面を向いていない脇見状態であると判定すると、運転者の脇見情報としてHCU100へ出力する。さらに、DSM11は、運転者の目が閉じた居眠り状態を判定すると、運転者の居眠り情報としてHCU100へ出力可能である。
 HCU100は、各操作デバイス、DSM11、及び各表示デバイス等と接続されている。HCU100は、操作デバイスから出力される操作信号と、DSM11から出力される情報とを取得する。HCU100は、各表示デバイスに制御信号を出力することにより、これら表示デバイスによる表示を制御する。HCU100の制御回路20aは、メインプロセッサ21、描画プロセッサ22、書き換え可能な不揮発性のメモリ23、情報の入出力を行う入出力インターフェース24、及びこれらを接続するバス等を有している。
 HUD装置14は、HCU100から取得したデータに基づく画像の光を、ウインドシールド18に規定された投影領域14aへ投影する。ウインドシールド18によって車室内側に反射された画像の光は、運転席17dに着座する運転者によって知覚される。運転者は、HUD装置14によって投影された画像の虚像を、自車両Aの前方の外界風景と重ねて視認可能となる。
 コンビネーションメータ12aは、自車両Aの車室内にて運転席17dの前方に配置されている。コンビネーションメータ12aは、運転席17dに着座する運転者によって視認可能な液晶ディスプレイを有している。コンビネーションメータ12aは、HCU100から取得したデータに基づいて、スピードメータ等の画像を液晶ディスプレイに表示する。
 CID12bは、自車両Aの車室内にてインスツルメントパネル19の中央に配置されている。CID12bは、運転者に加えて、助手席17pに着座する乗員にも視認可能な液晶ディスプレイを有している。CID12bは、HCU100から取得したデータに基づいて、ナビゲーションの案内画面、空調機器の操作画面、及びオーディオ機器の操作画面等を、液晶ディスプレイに表示する。
 発光装置40は、図1及び図4に示すように、インパネ発光ライン41、ステア発光リング42、電源インターフェース43、通信インターフェース44、ドライバ回路45、及び制御回路46を備えている。発光装置40は、インパネ発光ライン41及びステア発光リング42にそれぞれ表示される発光スポット51,56により、自車両Aの情報を運転者に提示する。
 インパネ発光ライン41は、自車両Aのインスツルメントパネル19に配置されている。インパネ発光ライン41は、線状発光領域52を有している。線状発光領域52は、自車両Aの幅方向WDに沿って線状に延伸するよう規定されている。線状発光領域52は、CID12bの上方に位置している。線状発光領域52は、幅方向WDの各端部53a,53bを、ウインドシールド18両側に位置する各ピラーの根本まで延伸させている。線状発光領域52は、運転席17dに着座した運転者の中心視の範囲CVAからは外れている。一方で、線状発光領域52の概ね全体が、運転席17dに着座した運転者の周辺視の範囲PVA内に収まっている。線状発光領域52には、複数の発光素子が幅方向WDに沿って並べられている。インパネ発光ライン41は、多数の発光素子のうちで少なくとも一部を発光させることにより、線状発光領域52に少なくとも一つの発光スポット51を表示する。インパネ発光ライン41は、線状発光領域52内にて発光スポット51を幅方向WDに移動可能である。加えてインパネ発光ライン41は、発光スポット51の発光色及び発光サイズを変更可能である。
 ステア発光リング42は、自車両Aのステアリング16に配置されている。ステア発光リング42は、環状発光領域57を有している。環状発光領域57は、ステアリング16のセッターパッド部16aの縁部に沿って円環状に延伸するよう規定されている。環状発光領域57は、コンビネーションメータ12aの下方に位置している。環状発光領域57の頂部は、運転席17dに着座した運転者の周辺視の範囲PVA内に収まっている。環状発光領域57には、ステアリング16の周方向に沿って複数の発光素子が並べられている。ステア発光リング42は、多数の発光素子のうちで少なくとも一部を発光させることにより、環状発光領域57に少なくとも一つの発光スポット56を表示する。ステア発光リング42は、環状発光領域57内にて発光スポット56を周方向に移動可能である。加えてステア発光リング42は、発光スポット56の発光色及び発光サイズを変更可能である。
 電源インターフェース43には、電源回路49を通じて、車両に搭載されたバッテリ等から電力が供給されている。電源インターフェース43は、発光装置40の各構成に電力を供給する。電源インターフェース43を通じて供給される電力により、インパネ発光ライン41及びステア発光リング42は、各発光スポット51,56を発光表示する。
 通信インターフェース44は、HCU100と接続されている。通信インターフェース44には、インパネ発光ライン41及びステア発光リング42の発光態様を指示する指令信号が、HCU100から入力される。
 ドライバ回路45は、インパネ発光ライン41及びステア発光リング42に設けられた各発光素子に流れる電流を制御する。ドライバ回路45は、電源インターフェース43から供給される電力を変換し、制御回路46から取得した制御信号によって指定される発光素子に、電流を印加する。
 制御回路46は、プロセッサ及びメモリを有するマイクロコンピュータを主体として構成されている。制御回路46は、通信インターフェース44を通じて、HCU100から指令信号を取得する。制御回路46は、取得した指令信号に対応する発光パターンにて各発光素子を発光させるために、ドライバ回路45に出力する制御信号を生成する。
 以上の発光装置40の発光を制御するため、図5に示すHCU100の制御回路20aは、メモリ23に記憶された発光制御プログラムを各プロセッサ21,22によって実行することで、複数の機能ブロック(31~35)を構築する。以下、インパネ発光ライン41及びステア発光リング42を用いた情報提示に係る機能ブロックの詳細を、図5に基づき、図1及び図4を参照しつつ説明する。
 情報取得部31は、自車両Aに係る種々の情報を取得する。情報取得部31は、取得した情報をリスク判定部32、明滅周期設定部33、及び発光制御部34へ出力する。具体的に、情報取得部31は、DSM11による視線情報及び脇見情報、周辺監視ECU91及びV2X通信器96による監視情報、並びにウェアラブルデバイス110による視線情報及び生体情報等を取得する。加えて情報取得部31は、車両制御ECU70における運転支援機能の作動情報及び操舵情報、及びロケータ95から提供される進行方向の地図情報を取得する。さらに情報取得部31は、自車両Aの左右を運転者が注意すべきイベントの発生時に、当該イベントの発生情報を取得する。具体的には、車線変更を行うために、運転者又は車両制御ECU70によってウィンカーの作動が開始された旨の情報が、発生情報として情報取得部31に取得される。
 リスク判定部32は、情報取得部31から取得する情報に基づいて、自車両Aに係る複数種類のリスクレベルを判定する。例えばリスク判定部32は、運転者を要因とした内的なリスクレベルと、他の車両、歩行者、及び交通環境等を要因とした外的なリスクレベルとを、それぞれ算出可能である。リスク判定部32は、各リスクレベルの判定結果及び算出結果を、発光制御部34に提供する。
 リスク判定部32は、運転者を要因とする内的なリスクレベルを、例えば五段階で判定する。リスク判定部32は、最もリスクレベルの低い状態を「通常時」と判定し、最もリスクレベルの高い状態を「リスクレベル4」と判定する。リスク判定部32は、運転者における漫然状態の度合いが上昇した場合に、リスクレベルを高く判定する。リスク判定部32は、リスクレベルの判定結果を情報取得部31へ出力する。
 リスク判定部32は、外界認識システム90及びV2X通信器96から提供される監視情報に基づき、移動物体及び信号機等の動的なリスク対象について、個々のリスクレベルを算出する。リスク判定部32は、少なくとも自車両Aの進行方向の領域から検出されたリスク対象について、リスクレベルを逐次算出可能である。
 加えてリスク判定部32は、ロケータ95から提供される地図情報等に基づき、例えば見通しの悪い交差点及び急カーブ等の道路構造に起因した静的なリスク対象を抽出する。リスク判定部32は、静的なリスク対象についても、動的なリスク対象と同様に、リスクレベルを算出できる。
 さらにリスク判定部32は、外界認識システム90等によって複数のリスク対象が検出されていた場合、リスク判定部32は、各リスク対象のリスクレベルを個別に算出可能である。運転者にとって重要性の高いリスク対象ほど、リスク判定部32によって算出されるリスレベルは高くなる。
 明滅周期設定部33は、後述する状態通知モードにおいて、各発光スポット51,56を明滅させる明滅周期を設定する。各発光スポット51,56の明滅周期は、運転者の通常時の心拍数又は脈拍数に対応周期に設定される。心拍数及び脈拍数には、ウェアラブルデバイス110によって取得された生体情報が用いられてもよく、又は予め設定された一般的な値(例えば、毎分60回)が用いられてもよい。例えば、心拍数が毎分60回であった場合、明滅周期設定部33は、図6に示すように、明るい状態と暗い状態とが1秒毎に繰り返されるよう、明滅周期を設定する。暗い状態での輝度は、例えば明るい状態の輝度の3分の1程度とされる。
 図5に示す発光制御部34は、情報取得部31の取得する情報に基づき、発光装置40に出力する指令信号を生成する。発光制御部34は、インパネ発光ライン41及びステア発光リング42における各発光スポット51,56の発光態様を制御する。発光制御部34は、情報取得部31にて取得される情報の少なくとも一部を用いて、発光装置40の発光制御モードを、複数のうちで切り替えることができる。
 複数の発光制御モードには、図7に示すように、状態通知モード、車線変更通知モード、接近車両通知モード、脇見注意モード、及びリスク対象警告モードが含まれている。これら複数の発光制御モードのうちで、イベントの発生を通知する車線変更通知モード、接近車両通知モード、脇見注意モード、及びリスク対象警告モードには、優先度が設定されている。第一実施形態における優先度は、高い方から順に、リスク対象警告モード、脇見注意モード、接近車両通知モード、車線変更通知モードとされている。
 状態通知モードは、自車両Aの現在の内的なリスクレベルを運転者へ通知する発光制御モードである。状態通知モードでは、リスク判定部32(図5参照)による運転者を要因としたリスクレベルの判定結果に基づいて、各発光スポット51,56の発光態様が変更される。
 車線変更通知モード及び接近車両通知モードは、自車両Aの左右を運転者が注意すべきイベントの発生時に、イベントが発生している左右いずれかの注意方向へ向けて、運転者の視線を誘導する発光制御モードである。発光制御部34(図5参照)は、車線変更に伴ったウィンカーの作動に基づき、状態通知モードから車線変更通知モードへと、発光制御モードを切り替える。車線変更通知モードによる発光表示により、運転者の視線は、注意方向としての移動先の車線へ向けて誘導される。
 一方で、発光制御部34(図5参照)は、車線変更に伴ったウィンカーの作動に加えて、移動先の車線に並走車が検出された場合に、状態通知モードから接近車両通知モードへと、発光制御モードを切り替える。接近車両通知モードによる発光表示により、運転者の視線は、注意方向としての並走車へ向けて誘導される。
 発光制御部34(図5参照)は、視線情報に基づき、左右いずれかの注意方向へ、所定の角度(例えば、45度)以上、運転者の顔が向けられたか否かを判定する。その結果、運転者の顔が注意方向へ向けられたと判定された場合には、発光制御モードは、車線変更通知モード又は接近車両通知モードから、状態通知モードに戻される。
 脇見注意モードは、脇見をしている運転者の視線を正面へ誘導する発光制御モードである。発光制御部34(図5参照)は、運転者の脇見情報に基づき、状態通知モードから脇見注意モードへと切り替える。脇見注意モードによる発光表示により、運転者の視線は、正面へ誘導される。そして、発光制御部34は、視線情報に基づき、運転者の顔向きが改善されたか否かを判定する。運転者の顔向きが改善されたと判定された場合には、発光制御モードは、脇見注意モードから状態通知モードに戻される。
 リスク対象警告モードは、自車両Aの周囲又は進行方向に運転者が注意すべきリスク対象が存在している場合に、リスク対象へ向けて運転者の視線を誘導する発光制御モードである。発光制御部34は、リスク対象の相対的な位置情報を情報取得部31から取得すると共に、リスク対象について算出されたリスクレベルをリスク判定部32から取得する。発光制御部34には、リスク対象を運転者への警告対象とするか否かを判定する閾値thが予め設定されている。発光制御部34は、リスクレベルが閾値thを超えるリスク対象が少なくとも一つ発生した場合に、発光制御モードを状態通知モードからリスク対象警告へと切り替える。そして、リスクレベルが閾値thを超えるリスク対象が無くなった場合に、発光制御部34は、発光制御モードをリスク対象警告モードから状態通知モードに戻す。尚、状態通知モードからリスク対象警告モードへの切り替えのトリガーに用いられる閾値thは、リスク対象警告モードから状態通知モードへの切り替えのトリガーに用いられるthと実質同一であってもよく、又は高い値に設定されていてもよい。
 リスク対象警告モードにおいて、発光制御部34は、線状発光領域52のうちで運転者から見てリスク対象の存在する方向の範囲に、発光スポット51を表示させる。発光制御部34は、自車両Aに対するリスク対象の相対的な位置変化に追従するよう、情報取得部31にて取得される位置情報に基づいて、線状発光領域52における発光スポット51の位置を移動させる。加えて発光制御部34は、リスク対象のリスクレベルに応じて、発光スポット51の発光色及び発光サイズ等の態様を変更できる。
 さらに発光制御部34は、外界認識システム90等により複数のリスク対象が検出された場合に、複数のリスク対象のうちでリスクレベルが最大となる最大リスク対象を選択する。発光制御部34は、複数のリスク対象のうちで、選択した最大リスク対象の方向を示す発光スポット51を、線状発光領域52に表示させる。発光制御部34は、リスクレベルが最大となるリスク対象が遷移した場合に、最大リスク対象の変更にあわせて、発光スポット51の表示位置を切り替えることができる。加えて発光制御部34は、複数のリスク対象の中に最大のリスクレベルを示す最大リスク対象が二つ以上ある場合に、各最大リスク対象の方向をそれぞれ示す複数の発光スポット51を、線状発光領域52に表示させることができる。
 音声制御部35は、音声再生装置140を制御することにより、聴覚を通じた運転者への報知を実施する。音声再生装置140は、スピーカ等を含む構成であって、自車両Aの乗員全てによって聞き取り可能な報知音及び音声メッセージを車室内に再生できる。音声制御部35は、発光制御部34と連携することにより、発光スポット51と音声メッセージとを組み合わせて、リスク対象の存在を運転者に確実に警告する。
 次に、状態通知モード、車線変更通知モード及び接近車両通知モード、並びに脇見注意モードにおけるインパネ発光ライン41の発光態様の詳細を、ステア発光リング42の発光態様の詳細と共に、図8~図17に基づき、図2を参照しつつ説明する。尚、図8~図17の線状発光領域52及び環状発光領域57において、ドットの記載された範囲が消灯状態を示し、白抜きとされた範囲が点灯状態を示している。
 状態通知モードでは、図8及び図9に示すように、運転支援機能が作動している場合と、運転支援機能が作動していない場合とで、発光スポット51を表示する基準位置RPa,RPmが変更される。各基準位置RPa,RPmは、発光スポット51の中央の位置を規定している。第一実施形態では、複数の運転支援機能のうちで、LKAが作動しているか否かに基づいて、発光スポット51の基準位置RPa,RPmが切り替えられる。LKAが作動している場合の基準位置RPaは、LKAが作動してない場合の基準位置RPmよりも、自車両Aの幅方向WDの中央寄りに規定される。その結果、LKAが作動していない場合の基準位置RPmは、運転席17dの前方に配置されたコンビネーションメータ12a中央の上方に位置する(図8参照)。即ち、基準位置RPmは、運転者の正面に設定される。一方で、LKAが作動している場合の基準位置RPaは、幅方向WDにおける線状発光領域52の中央52c、即ち、CID12b中央の上方に位置する(図9参照)。
 状態通知モードにおける各発光スポット51,56は、自車両Aの現在のリスクレベルを発光色の変化によって運転者に提示可能である。リスクレベルが最も低い通常時においては、各発光スポット51,56は、緑色に発光する。一方、リスクレベルが最も高いリスクレベル「4」の状態においては、各発光スポット51,56は、黄色に発光する。各発光スポット51,56の発光色は、リスクレベルが高くなるに従い、緑色から黄色へと段階的に変更される。加えて、幅方向WDにおける発光スポット51の表示幅は、リスクレベルに応じて、増減する。具体的には、図10の如く、発光スポット51は、リスクレベルが高くなるに従い幅方向WDに沿って大きくされ、リスクレベルが低くなるに従い幅方向WDに沿って小さくされる。さらに、各発光スポット51,56は、明滅周期設定部33(図5参照)によって設定された周期にて、明るさの変化を繰り返す。
 図11及び図12に示すように、各発光スポット51,56は、走行軌跡設定部84(図3参照)によって設定された数秒後の予定走行軌跡に合わせて、幅方向WDに沿って移動される。線状発光領域52の発光スポット51は、操舵情報に基づき、数秒後の目標操舵方向に対応した左右いずれかの方向へ、目標操舵量に対応した移動量だけ、線状発光領域52内にて各基準位置RPa,RPmを移動される。各基準位置RPa,RPmの移動量は、例えば図13に模式的に示すように、目標操舵量が実現された場合のステアリング16外縁の幅方向WDにおける移動量と合うように、設定されている。加えて、LKAが作動している場合の基準位置RPaの移動量と、LKAが作動していない場合の基準位置RPmの移動量は、互いに実質同一とされる。さらに、図11及び図12に示す環状発光領域57の発光スポット56も、数秒後の目標操舵方向に対応した左右いずれかの方向へ、目標操舵量に対応した角度だけ、周方向に沿って移動される。
 次に、車線変更通知モード及び接近車両通知モードにおけるインパネ発光ライン41の発光表示を、図14及び図15に基づいて説明する。
 図14には、自動レーンチェンジによって右側の隣接車線へ自車両Aを移動させる場合に、移動先となる右方向へ運転者を誘目する車線変更通知モードの表示が示されている。自車両Aに接近する接近車両が移動先の車線にいない場合、発光制御モードは、状態通知モードから車線変更通知モードへと切り替えられる。車線変更通知モードへの切り替えに伴い、発光スポット51は、線状発光領域52から一旦消灯される(図14A)。その後、発光スポット51は、状態通知モードと同様に、リスクレベルに対応した発光色にて、再び基準位置RPaに表示される(図14B)。再表示された発光スポット51は、後方に尾を引く形状にて、自車両Aの予定移動方向である右方向への移動を開始する。そして、発光スポット51は、線状発光領域52の右方向の端部52aに到達する(図14C)。
 端部52aまで到達した発光スポット51は、複数の分割発光スポット51sに分割される。各分割発光スポット51sは、互いの間隔を維持しつつ右方向への移動を繰り返す(図14D)。その後、各分割発光スポット51sは、端部52aにて幅方向WDの内側に向けて積み上がる。そして、再び一体的な発光スポット51が端部52aに形成される(図14C)。
 図15には、運転者の運転操作によって左側の隣接車線へ自車両Aを移動させる場合に、移動先となる左方向へ運転者を誘目する車線変更通知モードの表示が示されている。車線変更通知モードへの切り替えに伴い、一旦消灯された発光スポット51は、リスクレベルに対応した発光色にて、基準位置RPmに再表示される(図15A)。再表示された発光スポット51は、自車両Aの予定移動方向である左方向へ向けて、終点位置EPまで移動する(図15B)。終点位置EPは、線状発光領域52において助手席17p(図1参照)側に延伸する左方向の端部52bと中央52cとの間に位置している。終点位置EPは、周辺視の範囲PVA(図1参照)の内側に位置している。また、発光スポット51の移動速度は、LKAが作動しているか否かに係わらず、実質一定とされている。加えて、発光スポット51の移動速度は、発光スポット51が左に移動する場合でも、発光スポット51が右へ移動する場合でも、実質同一とされている。
 発光スポット51の終点位置EPへの到達により、複数の分割発光スポット51sが左方向の端部52bに表示される。各分割発光スポット51sは、互いの間隔を維持しつつ左方向への移動を繰り返す(図15C)。その後、各分割発光スポット51sは、端部52bにおいて幅方向WDの内側に向けて積み上がる。そして、一体的な発光スポット51が端部52bに表示される(図15D)。
 一方、自車両Aに接近する接近車両が移動先の車線に存在する場合、発光制御モードは、状態通知モードから接近車両通知モードへと切り替えられる。この場合、各基準位置RPa,RPmに再表示される発光スポット51(図14B,図15A)は、現在のリスクレベルとは関係無く、特定の発光色とされる。具体的に接近車両通知モードでは、線状発光領域52を流れる発光スポット51の発光色は、リスクレベル「4」よりも警告のイメージの強い「アンバー(橙色)」等に設定される。加えて、再表示される発光スポット51の表示幅は、現在のリスクレベルとは関係無く、例えばリスクレベル「4」相当の所定の表示幅とされる。
 次に、脇見注意モードにおけるインパネ発光ライン41の発光表示を、図16及び図17に基づいて説明する。
 図16には、LKAの作動していない状態で運転者の右方向への脇見を改善させるための表示が示されている。DSM11による右方向への脇見情報に基づき、状態通知モードから脇見注意モードへと切り替えられると、基準位置RPmに表示されていた発光スポット51は、線状発光領域52から一旦消灯される(図16A,図16B)。
 その後、DSM11の視線情報に基づき、幅方向WDに延伸する線状発光領域52のうちで運転者の視線が向いている部分(例えば、右方向の端部52a)に、発光スポット51が表示される(図16C)。発光スポット51は、接近車両注意モードと同様に、アンバー等の特定色によって再表示される。再表示された発光スポット51は、コンビネーションメータ12a中央の基準位置RPm、即ち、運転者の正面まで移動される。
 図17には、LKAの作動している状態で運転者の左方向への脇見を改善させるための表示が示されている。DSM11による左方向への脇見情報に基づき、状態通知モードから脇見注意モードへと切り替えられると、基準位置RPaに表示されていた発光スポット51(図17A)は、一旦消灯される。その後、DSM11の視線情報に基づき、運転者の視線が向いている方向に、アンバーに発光する発光スポット51が表示される(図17B)。再表示された発光スポット51は、右方向への移動を開始する(図17C)。LKAの作動時においても、発光スポット51は、運転者の正面に位置するコンビネーションメータ12aの中央まで移動する(図17D)。以上のように、脇見注意モードでは、LKAが作動しているか否かに係わらず、発光スポット51の終着位置は、基準位置RPmとされる。
 ここまで説明した状態通知モード、車線変更通知モード、接近車両通知モード、及び脇見注意モードにおける発光スポット51の表示を実現するために、制御回路20aによって実施される各処理の詳細を、図18及び図19に基づき、図5を参照しつつ説明する。まず図18のフローチャートに基づいて、発光スポット51の各基準位置RPa,RPm(図8及び図9参照)を設定する基準位置設定処理を説明する。図18に示す処理は、車両が走行可能な状態になったことに基づき、制御回路20aの発光制御部34によって繰り返し開始される。
 S101では、車両制御ECU70(図3参照)からLKAについての起動及び終了に係る作動情報を取得し、S102に進む。S102では、S101にて取得した作動情報に基づき、LKAが作動中か否かを判定する。LKAが作動していると判定した場合、S103に進む。S103では、線状発光領域52の中央52cに基準位置RPaを設定し(図9参照)、S105に進む。一方で、S102にてLKAが作動していないと判定した場合、S104に進む。S104では、運転者の正面に基準位置RPmを設定し(図8参照)、S105に進む。
 S105では、車両制御ECU70(図3参照)から数(t)秒後の予定走行軌跡に基づく操舵情報を取得し、S106に進む。
 S106では、S105にて取得した操舵情報に含まれる目標操舵量が下限閾値以上か否かを判定する。下限閾値は、発光スポット51の移動がカーブ及び車線変更時に限って実施されるような値に規定されている。換言すると、下限閾値は、直線と見なすことができる車線内での走行を維持する際に必要となる操舵量を除外する値として設定される。S106にて、目標操舵量が下限閾値未満であると判定した場合、一連の処理を終了する。一方で、S106にて、目標操舵量が下限閾値以上であると判定した場合、S107に進む。S107では、S105にて取得した操舵情報に基づき、S103又はS104にて設定した基準位置RPa,RPmを幅方向WDに沿って左右へ移動させて(図11及び図12参照)、一連の処理を終了する。尚、tの値は、運転者が基準位置RPa,RPmの移動を認識し、進行方向の是非を判断したうえで、オーバーライドできる時間を確保するための値であり、例えば3秒に設定されている。
 次に、状態通知モードにおいて、発光スポット51の発光態様を設定する処理の詳細を説明する。図19に示す処理も、車両の走行可能な状態になったことに基づき、発光制御部34(図5参照)によって開始される。
 S121では、明滅周期設定部33によって設定された明滅周期を取得し、S122に進む。S122では、基準位置設定処理によって設定された最新の基準位置を取得し、S123に進む。S123では、リスク判定部32によって判定された最新のリスクレベルの判定結果を取得し、S124に進む。S124では、S121~S123にて取得した情報に基づき、発光スポット51の発光色、表示幅、及び表示位置を設定又は更新し、S122に戻る。S122~S124の処理の繰り返しによって設定される値が指令信号として図1の発光装置40へ出力されることにより、発光スポット51による状態通知が実現される。
 次に、リスク対象警告モードにおけるインパネ発光ライン41の発光態様の詳細を、図20~図25に基づき、図2及び図5を参照しつつ説明する。
 図20に示されるシーンは、運転支援機能の作動していない自車両Aが、運転者の運転操作によって見通しの悪い交差点に到達する場面である。運転者の運転操作によって自車両Aが走行している場合、発光スポット51は、線状発光領域52のうちで運転者の正面を基準位置RPmとして発光表示されている。(図20A参照)。
 自車両Aが見通しの悪い交差点に接近すると、地図情報に基づく静的なリスクレベルの上昇に伴い、発光制御モードは、状態通知モードから、リスク対象警告モードへと切り替えられる。このように自車両Aの停止予定位置の左右に運転者の視界を遮る遮蔽物が存在するブラインド交差点への接近によれば、左右のリスクレベルは、共に上昇する。その結果、左右の見通しの悪さを警告するように、線状発光領域52の両端部52a,52bに発光スポット51が表示される(図20B参照)。状態通知モードからリスク対象警告モードへの切り替えは、例えば自車両Aが停止予定位置に到達する数秒(約3~5秒)前に実施される。各発光スポット51は、中程度のリスクレベルを運転者に示すように、例えば緑色等の発光色にて表示される。
 外界認識システム90又はV2X通信器96(図2参照)の出力する情報に基づき、交差点に進入する他の車両A1の位置情報が取得された場合、他の車両A1は、遮蔽物による静的なリクスと、自車両Aに接近する動的なリスクとを備えたリスク対象となる。このように複合的なリスクを備えた他の車両A1のリスクレベルは、ブラインド交差点のリスクレベルよりも高く算出される。その結果、ブラインド交差点を注意喚起する左右の発光スポット51が消灯されたうえで、他の車両A1を警告する発光スポット51が点灯される(図20C参照)。他の車両A1を警告する発光スポット51は、リスクレベルの高さを運転者に明示できるように、例えば赤色等の発光色にて表示される。
 他の車両A1を警告する発光スポット51は、他の車両A1の移動に追従して線状発光領域52を移動可能である。具体的に、他の車両A1が自車両Aの前方を右側から左側へ向けて走行する場合、発光スポット51は、運転者の右側に位置するフロントピラーの根本近傍から、運転者の左側へ向けて移動する(図20C参照)。
 他の車両A1が自車両Aの前方を通過すると、他の車両A1は、リスク対象ではなくなる。故に、他の車両A1を警告する発光スポット51は、消灯される。そして、ブラインド交差点を注意喚起する一対の発光スポット51が再び線状発光領域52の両端部52a,52bに発光表示される(図20D参照)。
 以上のシーンでは、他の車両A1の複合的なリスクが発光スポット51によって警告される。例えば、静的なリスクのみの報知では、交差点等への接近によって常に発光スポットが点灯する。故に、運転者の慣れを引き起こし、「今回も光っているけど、車は来ないだろう」といった不信が誘発されてしまう。一方で、動的なリスクのみの報知では、運転者の過信が引き起こされ得る。具体的には、リスク対象が検知されなかった場合に、運転者は、「光っていないから車は来ないだろ」といった誤判断し得る。こうした不審及び過信の発生を回避するため、静的なリスクと動的なリスクという二種類のリスクを組み合わせた警告の実施が望ましいのである。
 図21及び図22に示すように、リスク警告モードにおける警告態様は、自車両Aに対するリスク対象の相対的な位置の違いによって変更される。図21に示すシーンでは、運転者の視認する前景上にて、最大リスク対象である歩行者P1は、幅方向WDに伸びる線状発光領域52の上方であって、一対のフロントピラーの間に視認される。インパネ発光ライン41は、線状発光領域52のうちで、運転者の見た目上にて歩行者P1の下方に位置する範囲に、発光スポット51を発光表示させる。その結果、発光スポット51は、運転者から見てリスク対象の存在する方向を示す表示となる。
 尚、歩行者P1と自車両Aとが互いに接近するほど、歩行者P1のリスクレベルは高くなる。故に、発光スポット51の発光色は、歩行者P1の接近に伴って、黄色、アンバー、赤色と順に変化する。加えて、ウインドシールド18越しに歩行者P1が視認可能な場合、スピーカ等の音声再生装置140は、リスク対象の警告に使用されない。
 図22に示すシーンでは、運転者の視認する前景上にて、歩行者P1は、線状発光領域52の上方から外れた位置に視認される。このように、一対のフロントピラーの外側に歩行者P1が視認される場合、運転者は、歩行者P1に気付き難くなる。そのため、インパネ発光ライン41は、歩行者P1に近い一方の線状発光領域52の端部から、線状発光領域52の中央へ向けて、発光スポット51をスライドインさせるアニメーションを表示する。発光スポット51は、線状発光領域52に点滅しながらスライドインされる表示態様であってもよい。線状発光領域52が周辺視の範囲PVA(図1参照)内に位置しているため、運転者は、表示されるアニメーションに気付くことができる。故に、インパネ発光ライン41は、発光スポット51の動きによってフロントピラーの外側に運転者の視線を誘導し得る。
 加えて、歩行者P1がフロントピラーの外側に視認される等、運転者から見た最大リスク対象の方向が線状発光領域52の延伸する範囲から外れている場合、リスク対象の警告には、スピーカ等によって再生される警告音及び警告メッセージが用いられる。例えば、音声制御部35の制御に基づき、最大リスク対象の存在を運転者に警告する音声メッセージが音声再生装置140によって再生される。以上のように、視覚刺激と聴覚刺激とを併用したリスク対象の警告によれば、インパネ発光ライン41は、フロントピラーの外側へも運転者を確実に誘目できる。
 図23及び図24に示すシーンでは、最大のリスクレベルを示す最大リスク対象が二つ以上存在している。図23に示すシーンにおいて、最大リスク対象とされる複数の歩行者Pa~Pcは、互いに近接しており、予め規定された範囲内に存在している。故に、各歩行者Pa~Pcに対しては、リスク判定部32により、実質同一のリスクレベルが算出されている。発光スポット51は、互いに近接する複数の歩行者Pa~Pcを包含するように幅方向WDに沿って拡大され、各歩行者Pa~Pcのリスクレベルに対応した発光色にて表示される。
 詳記すると、自車両Aの車室内には、運転者のアイポイントIPが予め規定されている。アイポイントIPは、運転席17d(図1参照)に着座した運転者の目が位置すると想定される空間上の特定座標である。加えて、外界認識システム90等による位置情報に基づき、各歩行者Pa~Pcの自車両Aに対する相対的な座標が取得される。発光制御部34は、アイポイントIPの座標、各歩行者Pa~Pcの座標、及び線状発光領域52の設置範囲を示す座標を用いて、発光スポット51の大きさを設定する。
 まず、アイポイントIPと各歩行者Pa~Pcとを結ぶ仮想線が規定される。各仮想線は、自車両Aの走行する路面と実質的に平行に規定される。これらの仮想線のうちで、互いに隣接する二つの仮想線の間の角度が、アイポイントIPから見た二つの最大リスク対象の方角差θab,θbcとなる。方角差θab,θbcが予め設定された閾値角θよりも小さい場合、各最大リスク対象は、一体的にマージされて、予め規定された範囲内に存在しているとして、一つの発光スポット51によって警告される。
 各仮想線及びアイポイントIPを上側から見た平面視上において、発光スポット51の幅方向WDの両端は、最も外側に位置する二つの仮想線を跨ぎ、これら二つの仮想線よりも外側まで延出している。また、各歩行者Pa~Pcの重心の座標を規定した場合、アイポイントIPから重心の座標へ向かう仮想線は、発光スポット51の中心点と擬似的に交差する。このような発光スポット51の幅方向WDへの拡大によれば、運転者の視認する前景上では、一つの発光スポット51が複数の歩行者Pa~Pcを纏めて警告可能となる。
 図24に示すシーンでは、最大リスク対象とされる二人の歩行者Pd,Peが運転者から見て互いに離れた位置に存在している。自車両Aから各歩行者Pd,Peまでの各距離が概ね等しい場合、各歩行者Pd,Peに対して実質同一のリスクレベルが算出される。アイポイントIPと各歩行者Pd,Peとを結ぶ二つの仮想線の方角差θdeが閾値角θthよりも大きい場合、各歩行者Pd,Peの方向をそれぞれ示す複数の発光スポット51が線状発光領域52に表示される。各発光スポット51の表示位置は、各仮想線及びアイポイントIPを上側から見た平面視上において、線状発光領域52が各仮想線と擬似的に交差する擬似交差点を基準に設定される。
 図25には、自車両Aからの距離の異なる二人の歩行者Pf,Pgがリスク対象として存在するシーンが示されている。このシーンでは、自車両Aまでの距離が近い一方の歩行者Pgのリスクレベルは、他方の歩行者Pfのリスクレベルよりも高くなる。故に、一方の歩行者Pgを最大リスク対象として警告する一つの発光スポット51が線状発光領域52に表示される。
 しかしながら、アイポイントIPと各歩行者Pf,Pgとを結ぶ二つの仮想線の方角差θfgが閾値角θthよりも小さい場面では、発光スポット51は、二人の歩行者Pf,Pgを纏めて警告可能となる。以上のように、最大リスク対象を警告する発光スポット51は、副次的に他のリスク対象を警告する機能を発揮してもよい。この場合のインパネ発光ライン41の発光色は、歩行者Pgに対して算定されたリスクレベルに基づいて設定される。
 次に、複数のリスク対象が異なるタイミングで検出され、発光スポット51によって警告されるリスク対象が変更される場合のインパネ発光ライン41の表示態様の推移を、図26~図32に基づき、図5を参照しつつ説明する。尚、以下の説明では便宜的に、最初に表示されて最大リスク対象の方向を示す発光スポット51を「第一発光スポット51a」とし、第一発光スポット51aとは異なる位置に表示される発光スポット51を「第二発光スポット51b」とする。第二発光スポット51bは、最大リスク対象を除く他のリスク対象のうちで最大のリスクレベルを示す準最大リスク対象の方向を示す。
 図26~図28に示すシーンでは、自車両Aは、歩行者P1の側方を通過しつつ、信号機Sgの設置された交差点に接近する。信号機Sgは、自車両Aが歩行者P1の側方を通りすぎるタイミングで、青色から黄色を経て赤色へと切り替えられる。例えば毎時40キロメートル程度で走行する自車両A(t)が歩行者P1に接近すると、歩行者P1に対し算出されるリスクレベルRpは、閾値thを超える(t)。歩行者P1のリスクレベルRpが閾値thを超えたことに基づき、線状発光領域52のうちで歩行者P1の方向を示す範囲に、第一発光スポット51aが表示される。
 運転者の視線は、第一発光スポット51aによって誘導されることにより、歩行者P1へ向けられる。発光制御部34は、視線情報に基づき、運転者の視線が所定の時間(例えば1.0~1.5秒程度)継続して最大リスク対象(歩行者P1)に向けられた場合に、運転者が歩行者P1を注視したと判定する。
 一方、信号機Sgは、歩行者P1のリスクレベルRpが閾値thを超えた後、青色から黄色へと切り替わる(t)。その結果、信号機Sgがリスク対象として検出され、信号機SgのリスクレベルRsが算出される。自車両Aの交差点への接近によれば、信号機SgのリスクレベルRsは、閾値thを超える(t)。これにより信号機Sgは、準最大リスク対象として選択される。運転者が歩行者P1を注視したと判定されていた場合、発光スポット51によって警告されるリスク対象は、最大リスク対象である歩行者P1から、準最大リスク対象である信号機Sgへと切り替えられる。
 以上により、歩行者P1を警告していた第一発光スポット51aの表示が中止される。そして、第一発光スポット51aの消灯後、第一発光スポット51aの表示位置から、信号機Sgの方向を示す第二発光スポット51bの表示位置へ向けて、発光スポット51が移動する。こうした発光スポット51のトランジションにより、運転者の視線は、信号機Sgへと誘導される。発光スポット51の移動速度は、運転者が周辺視野にて知覚可能な速度に設定されている。また、第一発光スポット51aの消灯からトランジションの開始までの間には、タイムラグtlag(例えば0.1~0.3秒程度)が意図的に設けられている。
 運転者の視線は、第二発光スポット51bによって信号機Sgへ誘導される。第二発光スポット51bの点灯から、運転者の視線方向が信号機Sgに向けられるまで、運転者の反応遅れt(例えば、0.3~1.0秒程度)が不可避的に生じる。発光制御部34は、視線情報に基づき、運転者の視線が所定の時間継続して準最大リスク対象(信号機Sg)に向けられた場合に、運転者が信号機Sgを注視したと判定する。この後、歩行者P1及び信号機Sgを除く他のリスク対象のリスクレベルが閾値thを超えた場合、第二発光スポット51bに替えて、新たなリスク対象を警告する発光スポット51(第三発光スポット)が線状発光領域52に表示される。
 自車両Aの交差点への接近により、信号機SgのリスクレベルRsは、歩行者P1のリスクレベルRpよりも高くなる(t)。そして、歩行者P1の側方を自車両Aが通り過ぎると(t)、歩行者P1のリスクレベルRpは、実質的にゼロとなる。その後、運転者がブレーキ操作によって自車両Aを停止させる等によれば、信号機SgのリスクレベルRpも実質的にゼロとなる。その結果、第二発光スポット51bは消灯される。このように、リスクレベルが閾値thを超えるような新たなリスク対象が検出されない場合、第二発光スポット51bの表示は、準最大リスク対象の消失まで継続される。
 以上説明したシーンでの運転者は、第一発光スポット51aに誘目されて、歩行者P1を注視した。しかし、視線情報に基づき、運転者の視線が歩行者P1ではなく、信号機Sgに向けられていると判定した場合、発光制御部34は、歩行者P1の方向を示す第一発光スポット51aの表示を継続させることができる。
 また、運転者は、第一発光スポット51aに誘目されることなく、歩行者P1から外れた方向に視線を向けている場合もある。この場合、発光制御部34は、線状発光領域52のうちで運転者の視線が向く範囲に発光スポット51を表示させて、歩行者P1の方向へ移動させるトランジッションを行うことができる。
 次に、図26に示すシーンにて、歩行者P1が車道側にはみ出してくる等により、歩行者P1のリスクレベルRpが急速に上昇した場合のインパネ発光ライン41の表示態様の推移を、図29に基づき、図28を参照しつつ説明する。
 運転者の視線が第二発光スポット51bに誘導されて信号機Sgに向けられることにより、歩行者P1は、運転者の注視対象から外れた状態となる(t31)。その後に、歩行者P1のリスクレベルRpが、急速に上昇したとする(t32)。視線方向変更時のリスクレベルRp1からのリスクレベルの上昇が予め設定された変化量の閾値Δthを以上となると(Rp2,t33)、歩行者P1は、発光スポット51によって警告されるリスク対象として再び選択される。
 以上により、第二発光スポット51bの表示が中止される。そして、第二発光スポット51bの消灯後、第二発光スポット51bの表示位置から、最新の歩行者P1の方向を示す第一発光スポット51aの表示位置へ向けて、発光スポット51が移動する。以上により、運転者の視線は、再び歩行者P1へと誘導される。
 そして、歩行者P1の側方を自車両Aが通り過ぎると(t)、歩行者P1のリスクレベルRpは、実質的にゼロとなる。このとき、信号機SgのリスクレベルRsが閾値thを超えていれば、第一発光スポット51aの消灯と共に、信号機Sgへの注意喚起を継続させるために、信号機Sgの方向を示す第二発光スポット51bが再び表示される。この場合の発光スポット51のトランジッションは、省略される。
 さらに図30及び図31に示す別のシーンでは、右折しようとしている自車両Aの進行方向に、横断歩道を横断する横断歩行者P2が存在している。加えて、自車両Aの前方からは、直進対向車A2が接近してきている。横断歩行者P2に対し算出されるリスクレベルRpは、例えば横断歩道の横断開始のタイミングで閾値thを超える(図27 t参照)。その結果、線状発光領域52のうちで横断歩行者P2の方向を示す範囲に、第一発光スポット51aが表示される。
 運転者の視線は、第一発光スポット51aによって誘導されることにより、横断歩行者P2へ向けられる。発光制御部34は、視線情報に基づき、運転者の視線が所定時間、継続して横断歩行者P2に向けられた場合に、横断歩行者P2の注視判定を行う。一方、直進対向車A2のリスクレベルRaは、交差点への接近によって、閾値thを超える(図27 t参照)。これにより直進対向車A2は、準最大リスク対象として選択される。運転者が横断歩行者P2を注視したと判定されていた場合、発光スポット51によって警告されるリスク対象は、最大リスク対象である横断歩行者P2から、準最大リスク対象である直進対向車A2へと切り替えられる。
 以上により、横断歩行者P2を警告していた第一発光スポット51aの表示が中止される。そして、第一発光スポット51aの消灯後、第一発光スポット51aの表示位置から、直進対向車A2の方向を示す第二発光スポット51bの表示位置へ向けて、発光スポット51が移動する。こうした発光スポット51のトランジションにより、運転者の視線は、直進対向車A2へと誘導される。発光制御部34は、視線情報に基づき、直進対向車A2の注視判定を行う。
 直進対向車A2の交差点への進入により、直進対向車A2のリスクレベルRaは、横断歩行者P2のリスクレベルRpよりも高くなる(図27 t参照)。そして、横断歩道を渡り終えると(図27 t参照)、横断歩行者P2のリスクレベルRpは、実質的にゼロとなる。その後、直進対向車A2が交差点を通過すると、直進対向車A2のリスクレベルRpも実質的にゼロとなる。以上により、第二発光スポット51bは消灯される。
 ここまで説明したインパネ発光ライン41の表示を実現するために、制御回路20a(図2参照)によって実施される警告対象選択処理の詳細を、図32に基づき、図28及び図31を参照しつつ説明する。図32に示す警告対象選択処理は、発光制御モードがリスク対象警告モードに切り替えられたことに基づき、制御回路20aによって繰り返し実施される。警告対象選択処理は、リスク対象警告モードが終了されるまで継続される。
 S141では、監視情報等に基づき、リスク対象が検出されているか否かを判定する。S141にて、リスク対象が検出されたと判定すると、S142に進む。一方で、リスク対象が検出されていない場合は、S141の判定が繰り返し実施される。
 S142では、S141にて検出されたリスク対象のリスクレベルを算出し、S143に進む。複数のリスク対象が検出されていた場合、複数のリスク対象のそれぞれについて、リスクレベルを算出する。
 S143では、S142にて算出のリスクレベルが閾値th以上であるリスク対象の有無を判定する。S143にて、閾値th以上のリスクレベルを示すリスク対象が無いと判定した場合、S141に戻る。一方、S143にて、閾値th以上のリスクレベルを示すリスク対象が有ると判定した場合、S144に進む。
 S144では、閾値th以上のリスクレベルを示すリスク対象が複数存在するか否かを判定する。S144にて、複数のリスク対象のリスクレベルが閾値thを超えていると判定すると、S146に進む。一方で、閾値th以上のリスクレベルを示すリスク対象が一つであると判定すると、S145に進む。
 S145では、閾値th以上のリスクレベルを示した一つのリスク対象を、警告の対象として選択し、S142に戻る。以上により、S145にて選択されたリスク対象の方向を示す発光スポット51が線状発光領域52に表示される。
 S146では、現在、発光スポット51によって警告されているリスク対象が有るか否かを判定する。S146にて、発光スポット51によって警告中のリスク対象があると判定した場合、S148に進む。一方で、発光スポット51によるリスク対象の警告の開始前であると判定した場合する場合、S147に進む。
 S147では、複数のリスク対象のうちで、最大のリスクレベルを示す最大リスク対象を選択し、S142に戻る。最大のリスクレベルを示すリスク対象が複数存在していた場合、複数の最大リスク対象が選択される。以上により、S147にて選択された最大リスク対象の方向を示す一つ以上の発光スポット51(第一発光スポット51a)が、線状発光領域52に表示される。
 S148では、複数のリスク対象の中に、リスクレベルの上昇分が変化量の閾値Δth以上となったリスク対象が有るか否かを判定する。S148にて、リスクレベルの上昇分が閾値Δth以上となったリスク対象が無いと判定すると、S150に進む。一方で、リスクレベルの上昇分が閾値Δth以上となったリスク対象が有ると判定すると、S149に進む。
 S149では、閾値Δth以上のリスクレベルの上昇を示したリスク対象を選択し、S142に戻る。以上によれば、それまで表示されていた発光スポット51が消灯されると共に、S149にて選択されたリスク対象の方向を示す発光スポット51が新たに表示される。
 S150では、選択中のリスク対象への注視の有無を判定する。S150にて、リスク対象への注視判定が成立していないと判定すると、S151に進む。S151では、現在と同じリスク対象の選択を継続し、S142に戻る。以上により、運転者の視線が向けられるまで、発光スポット51の点灯が継続される。
 一方、S150にて、選択中のリスク対象への注視が有ったと判定した場合、S152に進む。S152では、警告対象とされているリスク対象(最大リスク対象)以外で、最大のリスクレベルを示す準最大リスク対象を選択し、S142に戻る。以上によれば、発光スポット51(第一発光スポット51a)の表示が終了されると共に、準最大リスク対象の方向を示す第二発光スポット51bが表示される。
 次に、ここまで説明した発光スポット51の幅方向WDの長さをリスク対象の相対位置に応じて変更する調整の詳細を、図33に基づいて説明する。
 発光スポット51の長さは、自車両Aの進行方向に対するリスク対象の方向と、自車両Aからリスク対象までの距離とに応じて、発光制御部34(図5参照)により調整される。具体的には、運転席17dのスライドによって運転者のアイポイントIPが自車両Aの前後に移動した場合でも、運転者から見た発光スポット51が最大リスク対象である歩行者P1の方向を示すように、発光スポット51の大きさは規定される。即ち、自車両Aの前後方向に運転席17d(図1参照)の位置が変更された場合でも、運転者の視認する前景上にて、リスク対象の下方に発光スポット51が点灯されるように、発光スポット51の位置だけでなく、発光スポット51の長さも変更される。
 詳記すると、上記のアイポイントIPは、運転席17d(図1参照)をスライド範囲の例えば中央に位置させた状態で、運転者の目が位置すると想定されるアイポイントIPcである。このアイポイントIPcに加えて、運転席17dをスライド範囲の最も前方に位置させた状態で想定されるアイポイントIPfと、運転席17dをスライド範囲の最も後方に位置させた状態で想定されるアイポイントIPbとが予め規定可能である。
 これら最前位置及び最後位置の各アイポイントIPf,IPbと、リスク対象としての歩行者P1との間には、自車両Aの走行する路面と実質的に平行な仮想線がそれぞれ規定できる。歩行者P1を中心として二つの仮想線の間に生じる方角差θfbが、各アイポイントIPf,IPbの違いに伴って生じる視認方向のずれ分となる。
 一方、発光スポット51の両端と歩行者P1との間にも、自車両Aの走行する路面と実質的に平行な仮想線がそれぞれ規定可能である。歩行者P1を中心として二つの仮想線の間に生じる角度を、発光スポット51の点灯角θlgtとすると、点灯角θlgtは、方角差θfbよりも大きい値に設定される。この点灯角θlgtの範囲内に運転者のアイポイントIPを位置させる設定によれば、発光スポット51は、運転者の前景上にて、歩行者P1の下方に視認されるようになる。尚、発光スポット51の幅方向WDの中央は、線状発光領域52がアイポイントIPcから歩行者P1へ向かう仮想線と擬似的に交差した位置に規定される。
 以上の設定方法を用いることで、発光制御部34は、リスク対象の自車両Aへの接近に伴って、算出する方角差θfb、ひいては点灯角θlgtを大きくし、発光スポット51を幅方向WDに拡大させる。こうした発光スポット51の長さの調整によれば、発光スポット51は、リスク対象の下方に点灯されて、リスク対象の方向を運転者に示すことができる。
 次に、発光スポット51の幅方向WDの長さを、発光スポット51の表示位置に応じて変更する方法を、図34に基づいて説明する。
 発光スポット51の長さは、発光スポット51の表示位置が運転者から遠ざかるに従って、幅方向WDに拡大される。即ち、リスク対象の大きさ及び自車両Aに対する相対位置が実質同一である場合、運転者の正面において最も狭くされ、線状発光領域52に沿って正面から外れるに従い、次第に大きくされる。具体的には、線状発光領域52の各箇所に表示される発光スポット51において、各両端とアイポイントIPとを結ぶ仮想線の間の角度(以下、「視野角」)θvisが、実質的に一定とされる。視野角θvisは、例えば10°程度に設定される。
 以上の設定方法を用いることで、発光制御部34は、発光スポット51の表示位置が運転者の正面から外れるに従って、点灯させる発光素子を増やすことにより、発光スポット51を幅方向WDに拡大させる。こうした発光スポット51の長さの調整によれば、運転者からの距離が遠い助手席側に発光表示された発光スポット51であっても、運転者には確実に気付かれるようになる。
 ここまで説明した第一実施形態では、運転者の注意すべきリスク対象が外界認識システム90によって複数検出されると、HCU100は、これら複数のリスク対象のうちで最大のリスクレベルを示す最大リスク対象を選択する。そして、運転者から見て最大リスク対象の存在する方向を示す発光スポット51が、線状発光領域52内に表示される。
 以上によれば、複数のリスク対象のうちで相対的にリスクレベルの低いリスク対象が注意喚起され難くなる一方で、リスクレベルの高いリスク対象は、発光スポット51によって優先的に注意喚起される。したがって、複数のリスク対象が検出されるシーンにおいても、発光装置40は、重要なリスク対象に運転者の注意を的確に向けさせることができる。
 加えて第一実施形態では、最大リスク対象の存在する方向に運転者の視線が向けられると、準最大リスク対象の存在する方向を示す発光スポット51として、第二発光スポット51bが線状発光領域52内に表示される。以上によれば、発光装置40は、複数のリスク対象のうちで、リスクレベルの高いリスク対象から順に選択して、運転者の視線を連続的に誘導できる。
 また第一実施形態では、最大リスク対象を警告する第一発光スポット51aは、第二発光スポット51bの表示に伴って消灯される。以上によれば、第二発光スポット51bを目立たせることができるので、運転者の視線は、既に視認された最大リスク対象から、準最大リスク対象へと確実に誘導され得る。
 さらに第一実施形態では、運転者によって注視された最大リスク対象であっても、運転者の視線が外れた後に急速なリスクレベルの上昇があった場合には、最大リスク対象を警告する発光スポット51が再び表示される。以上の制御によれば、HCU100は、リスク対象の状況の変化に合わせて、運転者の視線をさらに的確に誘導できる。
 加えて第一実施形態では、閾値thLを超えたリスクレベルを示す新たなリスク対象が検出されない場合、運転者によって注視されたとしても、リスク対象の消滅まで、当該リスク対象を警告する発光スポット51の表示は継続される。以上によれば、リスク対象が依然として存在しているにも係わらず、発光スポット51の消灯により、リスク対象が消失したかのような誤解を運転者に生じさせてしまう事態は生じない。
 また第一実施形態によれば、警告の対象となるリスク対象が遷移した場合に、インパネ発光ライン41は、トランジッションを生じさせることで、発光スポット51の表示位置を変更する。こうした発光スポット51の表示によれば、インパネ発光ライン41は、運転者の視線を円滑に新たなリスク対象へ誘導することができる。
 さらに第一実施形態によれば、第一発光スポット51aの表示後、運転者の視線が最大リスク対象ではなく、準最大リスク対象の存在する方向に向けられている場合、第一発光スポット51aの表示は、継続される。以上によれば、発光装置40は、重要な最大リスク対象を運転者が視認しないまま、最大リスク対象とは違う方向へ運転者を誘目してしまうことがない。
 加えて第一実施形態の発光装置40は、運転者の視線が向けられた方向から、最大リスク対象の存在する方向へ向けて、発光スポット51を移動させる表示を行うことができる。以上によれば、複数のリスク対象が検出されるシーンにおいても、HCU100は、重要なリスク対象へ向けて運転者の注意を確実に向けさせることができる。
 また第一実施形態では、最大リスク対象が二つ以上存在する場合に、発光装置40は、複数の発光スポット51を表示させることにより、各最大リスク対象の方向をそれぞれ示すことができる。こうした表示によれば、運転者は、重要なリスク対象をさらに見落とし難くなる。
 さらに第一実施形態では、最大のリスクレベルを示す複数の最大リスク対象が近接していた場合、発光装置40は、発光スポット51を拡大させた表示により、最大リスク対象が纏まって存在する方向を示す。以上によれば、発光装置40は、リスクレベルの高いリスク対象を簡素な態様の表示によって運転者に分かり易く警告できる。
 尚、第一実施形態において、HCU100及び発光装置40が「情報提示装置」に相当し、リスク判定部32が「リスク算出部」に相当する。また、インパネ発光ライン41が「発光表示部」に相当し、線状発光領域52が「発光領域」に相当し、外界認識システム90が「周辺監視装置」に相当する。
 (第二実施形態)
 第二実施形態は、第一実施形態の変形例である。第二実施形態のリスク対象警告モードでは、運転者の視線情報を用いることなく、インパネ発光ライン41の表示制御が実施される。故に、図2に示すDSM11並びにウェアラブルデバイス110及びウェアラブル通信器97は不要となる。
 以上の構成では、複数のリスク対象が検出されるシーンにて、最大リスク対象が変更されたタイミング(図27 t参照)にて、発光制御部34(図5参照)は、新たに選択した最大リスク対象の方向を示す発光スポット51を、線状発光領域52に表示させる。加えて、新たに選択された最大リスク対象の方向を示す発光スポット51が表示されると、リスクレベルが最大ではなくなったリスク対象の方向を示す発光スポット51の表示は、終了される。このような第二実施形態による警告対象選択処理の詳細を、図35に基づき、図1を参照しつつ説明する。
 S241~S244は、第一実施形態のS141~S144と実質同一の内容である。S244にて、閾値th以上のリスクレベルを示すリスク対象が一つであると判定すると、S245に進む。S245では、閾値th以上のリスクレベルを示した一つのリスク対象を、警告の対象として選択し、S242に戻る。以上により、S245にて選択されたリスク対象の方向を示す発光スポット51が線状発光領域52に表示される。
 一方で、S244にて、複数のリスク対象のリスクレベルが閾値thを超えていると判定すると、S246に進む。S246では、複数のリスク対象のうちで、最大のリスクレベルを示す最大リスク対象を選択し、S242に戻る。以上により、S246にて選択された最大リスク対象の方向を示す一つ以上の発光スポット51が、線状発光領域52に表示される。
 ここまで説明した第二実施形態でも、第一実施形態と同様の効果を奏し、リスクレベルの高いリスク対象が発光スポット51によって優先的に注意喚起されることで、重要なリスク対象に運転者の注意が的確に向けられるようになる。
 加えて第二実施形態では、最大リスク対象が変更された場合、発光スポット51は、新たな最大リスク対象の方向を示すように、線状発光領域52に表示される。以上の表示制御によれば、運転者の視線方向を検出しない形態であっても、発光スポット51は、リスクレベルの高いリスク対象に的確に運転者を誘目できる。
 また第二実施形態では、リスクレベルが最大ではなくなったリスク対象の方向を示す発光スポット51の表示は終了される。故に、線状発光領域52に表示される発光スポット51の数を最少に抑えることが可能となる。以上によれば、インパネ発光ライン41による表示は、運転者によって分かり易く、且つ煩わしく感じられ難い表示となる。
 (他の実施形態)
 以上、複数の実施形態について例示したが、実施形態は、上記実施形態に限定されるものではない。本開示の技術的思想は、種々の実施形態及び組み合わせに適用することができる。
 図36に示す第一実施形態の変形例1では、リスクレベルの急上昇したリスク対象を優先的に報知する処理(図32 S148及びS149参照)が省略されている。変形例1における警告対象選択処理のS341~S347は、第一実施形態のS141~S147(図32参照)と実質同一の内容である。また、S348~S350は、第一実施形態のS150~S152(図32参照)と実質同一の内容である。以上の変形例1であっても、第一実施形態と同様に、重要なリスク対象に運転者の注意を的確に向けさせる効果は発揮される。
 上記実施形態では、最大リスク対象が変更された場合、及び注視判定後に準最大リスク対象が選定された場合等、発光スポット51によって警告されるリスク対象が変更された場合には、それまで表示されていた発光スポットは、消灯されていた。しかし、新たな発光スポットが表示された後も、それまで表示されていた発光スポットが継続点灯される形態であってもよい。
 上記第一実施形態の第二発光スポットは、他のリスク対象が検出されない場合には、準リスク対象の消失まで、継続して表示されていた。しかし、第二発光スポットは、運転者の準最大リスク対象の注視判定に基づいて、表示を終了されてもよい。
 上記実施形態のリスク対象警告モードでは、警告対象となるリスク対象が変更された場合に、発光スポットのトランジションにより、運転者を誘目していた。しかし、こうしたトランジションは、省略されてもよい。
 上記第一実施形態では、最大リスク対象から運転者の視線が外れていると判定した場合、運転者の視線方向に表示させた発光スポットを、最大リスク対象の方向へ移動させていた。しかし、こうした最大リスク対象への誘目は、省略されてもよい。
 上記実施形態では、最大リスク対象が複数存在している場合に、複数の発光スポットが表示され得た。しかし、最大リスク対象の選定ルールの追加により、発光スポットによって警告されるリスク対象の数は、一つに限定されてもよい。また、密集する複数の最大リスク対象を纏めて警告する場合であっても、発光スポットは拡大されなくてもよい。
 上記実施形態において、リスク対象の監視情報は、外界認識システムだけでなく、V2X通信器によってもHCUに出力されていた。しかし、監視情報は、外界認識システムのみによって検出されてもよい。また、V2X通信器が「周辺監視装置」として機能可能であれば、路車間通信を通じて取得される監視情報のみに基づいて、リスク対象の警告が実施されてもよい。さらに、駐車車両、車線規制の区間、道路工事を実施中の工事車両等、種々の静止物体及び移動物体がリスク対象となり得る。
 上記実施形態では、状態通知モードから他の発光制御モードへ遷移する際に、発光スポットは、移動開始前に一旦消灯されていた。しかし、変形例2によるインパネ発光ラインは、状態通知を行うメイン発光スポットを基準位置に表示させたまま、メイン発光スポットとは異なる発光色のサブ発光スポットを、メイン発光スポットに重畳表示させることができる。そして、インパネ発光ラインは、サブ発光スポットを左右のいずれかへ移動させることにより、運転者の視線を誘導することが可能である。また、発光装置に設定される発光制御モードの種類は、適宜変更可能である。さらに、各発光制御モードの優先度も、適宜変更されてよい。
 上記実施形態における各基準位置RPa,RPmは、状態通知モードにて自車両Aが直進状態にある場合での発光スポット51の中央位置を規定していた。しかし、基準位置は、発光スポットの位置を規定することができれば、発光スポット中のどの位置に設定されてもよい。例えば、基準位置は、右端部又は左端部等に設定可能である。また、各基準位置は、運転者による手動での調整が可能であってもよい。
 上記実施形態の発光スポット51は、リスクレベルに応じて発光色及び表示幅を共に変更可能であった。このように、リスクレベルに関連付けられる発光色は、上記実施形態のような緑色から赤色までの色の範囲に限定されない。また発光スポットは、発光色及び表示幅の一方のみを、リスクレベルに応じて変化させてもよい。さらに、LKAが作動していないマニュアル運転時においては、発光スポットを右方向へ大きく拡大することは困難である。故に、発光スポットは、左右非対称に拡大され、基準位置の右方向よりも基準位置の左方向へ大きく延伸する形状とすることが可能である。
 上記実施形態において、線状発光領域52の発光スポット51と、環状発光領域57の発光スポット56とは、互いの発光色を合わせられていた。しかし、各発光スポットは、互いに異なる発光色にて、発光可能である。加えて、各発光スポットの明るさの変化は、互いに同期可能である。一方で、各発光スポットは、互いに異なる周期にて明るさの変化を繰り返していてもよい。また上記実施形態においては、インパネ発光ライン41とステア発光リング42とを同期させた情報提示を実現していたが、ステア発光リング42の省略により、インパネ発光ライン41単独で、運転支援装置の作動情報を乗員に提示可能である。
 上記実施形態において、線状発光領域52の発光スポット51によって運転者の誘目を行っている場合には、運転者の誘目を妨げないよう、環状発光領域57の発光スポット56は、消灯されていた。しかし、運転者の誘目を行う発光制御モードにおいても、ステアリングの発光スポットは、点灯可能である。
 上記実施形態におけるインパネ発光ライン41は、コンビネーションメータ12a及びCID12bの上方に、水平方向に沿って延伸する線状発光領域52を形成していた。このような「発光領域」の形状及び配置は、適宜変更可能である。例えば、線状発光領域は、コンビネーションメータ及びCIDの各中央を跨ぐように延伸していれば、各ピラーの根本まで端部を到達させていなくてもよい。加えて線状発光領域は、例えばコンビネーションメータ及びCIDの下方に配置可能である。さらにインパネ発光ラインは、ウインドシールドの下縁部に投影した射出光を当該下縁部にて反射させることにより、虚像として結像された発光スポットを運転者に視認させる「発光表示部」であってもよい。こうした構成であれば、「発光領域」は、ウインドシールドの下縁部に規定される。また、インパネ発光ラインは、複数の線状発光領域をインスツルメントパネルに形成可能である。
 さらに、インパネ発光ライン41を構成する多数の発光素子の数及び配列態様は、適宜変更可能である。また、発光ダイオードのような構成に替えて、帯状に形成された有機EL等の自発光パネルを用いて、移動可能な発光スポットを表示するインパネ発光ラインが実現されていてもよい。
 上記実施形態では、LKAが作動しているか否かに基づいて、基準位置の切り替えが行われていた。しかし、基準位置を切り替えるトリガーとして用いられる運転支援機能は、LKAに限定されない。「運転支援装置」の発揮可能な種々の機能の作動及び停止に基づいて、基準位置の切り替えは実施されてよい。
 例えば、LKAの作動状態下、自動レーンチェンジ及び自動追い越し等がさらに作動した場合に、基準位置の切り替えが行われてもよい。加えて、基準位置の切り替えは、ACCの作動に基づいて行われてもよい。或いは、車載された自動運転システムによって全ての制御を常に実施する完全な自動運転が作動した場合に、基準位置の切り替えが行われてもよい。
 上記実施形態において、発光スポットの左右への移動速度は、互いに揃えられていた。しかし発光スポットの移動速度は、適宜変更可能である。発光スポットの移動速度が速すぎた場合、運転者の周辺視では、発光スポットは、単なる線状の発光と視認され、移動を知覚させることができない。故に、誘目を実現するためには、発光スポットの移動速度は、運転者に動きとして認識され得る速度範囲のうちで、最も速い速度に設定されることが望ましい。
 また、イベントを通知する各発光制御モードにおいて、発光スポットの右方向への移動速度と、左方向への移動速度とが、互いに異なっていてもよい。加えて、発光スポットの移動速度は、運転支援機能の作動時と非作動時において、互いに異なっていてもよい。また、マニュアル運転時の基準位置RPmから左方向へと流れる発光スポットは、終点位置EPにて移動を終了せずに、端部52bに達するまで移動を継続してもよい。
 上記実施形態の発光スポットは、状態通知モードにて、明るさを変化させる明滅を周期的に繰り返していた。こうした明滅作動において、例えば最も暗い状態において、発光スポットは、消灯状態とされていてもよい。さらに、輝度の変化に加えて、又は輝度の変化に替えて、発光色の色合い(明度)を変化させることにより、発光スポットの明るさの変化が実現されてもよい。或いは、発光スポットは、幅方向WDへの伸縮を周期的に繰り返す表示であってもよい。
 上記実施形態の発光スポットは、運転支援機能の作動状態やリスクレベル等の情報を運転者に提示していた。しかし、発光スポットによって提示される情報は、これらの情報に限定されない。例えば、自車両Aに異常が生じた場合には、インパネ発光ラインは、アイキャッチのために発光スポットを点灯させることができる。この場合、発光スポットによるアイキャッチと共に、コンビネーションメータ及びHUD装置等には、インジケータが表示される。発光スポットの発光色は、インジケータの表示色と合わせられており、例えば青色及び赤色等の運転者によって気づかれ易い色とされる。
 上記実施形態は、右ハンドルの車両に搭載される発光装置を備える。しかし、左ハンドルの車両に搭載される発光装置を備えた形態も、当然に実施形態とすることができる。
 上記実施形態の脇見通知モードでは、運転支援機能(装置)が作動しているか否かに係わらず、コンビネーションメータ中央まで移動する発光スポットにより、運転者の視線は、正面に誘導されていた。しかし、運転支援装置の作動時においては、運転者の視線は、CID中央の基準位置RPaに誘導することが可能である。以上のように、脇見を是正する誘目の終点位置は、基準位置と同様に、運転支援機能の作動に応じて変更可能である。加えて、終点位置は、基準位置と実質同じ位置に設定可能である。さらに、運転者の視線を向かせたい方向に、脇見通知モードにおける終点位置が設定されてもよい。
 上記実施形態のリスク対象警告モードでは、複数の調整方法によって発光スポットの長さが変更されていた。しかし、これらの調整方法は、適宜省略されてよい。また、発光スポットのリスク対象への追従は、例えば複数の最大リスク対象が検出されるシーン等においては、実施されなくてもよい。
 上記実施形態において、内的なリスクレベルの判定には、運転者の漫然度合いが用いられていた。しかし、内的なリスクレベルの判定方法は、適宜変更可能である。例えば、リスク判定部は、運転者の眠気度合い、自車両Aの挙動のふらつき、自車両Aの周囲を走行する他の車両の情報等に基づいて、運転者におけるリスクレベルの判定を行うことができる。
 上記実施形態において、制御回路20aの各プロセッサ21,22によって提供されていた機能は、上述のものとは異なるハードウェア及びソフトウェア、或いはこれらの組み合わせによって提供可能である。例えば、HCU100が省略された車載ネットワークにおいては、基準位置設定処理、発光態様設定処理、及び警告対象選択処理等の一部又は全部が、発光装置の制御回路又は車両制御ECUの制御回路等により、実行可能である。

 

Claims (17)

  1.  運転者が注意すべきリスク対象を検出する周辺監視装置(90)と共に車両(A)に搭載され、前記車両の情報を前記運転者に提示する情報提示装置であって、
     前記車両のインスツルメントパネル(19)に配置され、当該車両の幅方向に沿って延伸するよう規定された発光領域(52)に、少なくとも一つの発光スポット(51)を表示する発光表示部(41)と、
     前記発光領域内における前記発光スポットの発光態様を制御する発光制御部(34)と、
     前記周辺監視装置によって検出された前記リスク対象の位置情報を少なくとも含む監視情報を取得する情報取得部(31)と、
     前記情報取得部の取得する監視情報に基づき、前記車両の進行方向の領域から検出された前記リスク対象について個々のリスクレベルを算出するリスク算出部(32)と、を備え、
     前記発光制御部は、前記周辺監視装置にて複数の前記リスク対象が検出された場合に、複数の前記リスク対象のうちで前記リスク算出部にて算出されたリスクレベルが最大となる最大リスク対象を選択し、前記運転者から見て前記最大リスク対象の方向を示す前記発光スポットを、前記発光領域に表示させる情報提示装置。
  2.  前記情報取得部は、前記運転者の視線方向を検出した視線情報をさらに取得する請求項1に記載の情報提示装置。
  3.  前記発光制御部は、前記最大リスク対象の方向を示す前記発光スポットとしての第一発光スポット(51a)を前記発光領域に表示させた後、前記視線情報に基づき前記運転者の視線が前記最大リスク対象へ向けられたと判定した場合に、複数の前記リスク対象のうちで前記最大リスク対象に次いでリスクレベルの高い準最大リスク対象を選択し、前記運転者から見て前記準最大リスク対象の存在する方向を示す第二発光スポット(51b)を、前記発光領域に表示させる請求項2に記載の情報提示装置。
  4.  前記発光制御部は、前記第二発光スポットの表示に伴い、前記第一発光スポットの表示を終了させる請求項3に記載の情報提示装置。
  5.  前記発光制御部は、前記準最大リスク対象の存在する方向に前記運転者の視線が向けられたと判定した後、前記最大リスク対象のリスクレベルが予め設定された閾値以上増加した場合に、前記最大リスク対象の存在する方向を示す前記第一発光スポットを再び表示させる請求項4に記載の情報提示装置。
  6.  前記発光制御部は、前記準最大リスク対象の方向に前記運転者の視線が向けられたと判定した後、前記最大リスク対象及び前記準最大リスク対象以外の前記リスク対象が検出されない場合には、前記準最大リスク対象の消失まで前記第二発光スポットの表示を継続させる請求項3~5のいずれか一項に記載の情報提示装置。
  7.  前記発光表示部は、前記第二発光スポットを前記発光領域に表示するときに、前記第一発光スポットの表示位置から前記第二発光スポットの表示位置へ向けて、前記発光スポットを移動させる請求項3~6のいずれか一項に記載の情報提示装置。
  8.  前記発光制御部は、前記視線情報に基づき、前記準最大リスク対象の方向に前記運転者の視線が向けられていると判定した場合に、前記最大リスク対象の方向を示す前記第一発光スポットの表示を継続させる請求項3~7のいずれか一項に記載の情報提示装置。
  9.  前記発光制御部は、前記視線情報に基づき、前記最大リスク対象から前記運転者の視線が外れていると判定した場合に、前記発光領域のうちで前記運転者の視線が向く範囲に表示させた前記発光スポットを、前記最大リスク対象の方向へ移動させる請求項2~8のいずれか一項に記載の情報提示装置。
  10.  前記発光制御部は、複数の前記リスク対象のうちで、最大のリスクレベルを示す前記最大リスク対象が変更された場合に、新たに選択した前記最大リスク対象の方向を示す前記発光スポットを、前記発光領域に表示させる請求項1に記載の情報提示装置。
  11.  前記発光制御部は、新たに選択した前記最大リスク対象の方向を示す前記発光スポットを表示させた場合に、リスクレベルが最大ではなくなった前記リスク対象の方向を示す前記発光スポットの表示を終了させる請求項10に記載の情報提示装置。
  12.  前記発光制御部は、複数の前記リスク対象の中に最大のリスクレベルを示す前記最大リスク対象が二つ以上ある場合に、各前記最大リスク対象の方向をそれぞれ示す複数の前記発光スポットを、前記発光領域に表示させる請求項1~11のいずれか一項に記載の情報提示装置。
  13.  前記発光制御部は、複数の前記最大リスク対象が予め規定された範囲内に存在する場合、前記車両の幅方向に沿って拡大した前記発光スポットを前記発光領域に表示させることで、複数の前記最大リスク対象が纏まって存在する方向を前記運転者に示す請求項12に記載の情報提示装置。
  14.  前記発光制御部は、前記車両に対する前記最大リスク対象の相対的な位置変化に追従するよう、前記発光領域における前記発光スポットの位置を移動させる請求項1~13のいずれか一項に記載の情報提示装置。
  15.  前記運転者から見た前記最大リスク対象の方向が前記発光領域の延伸する範囲から外れている場合に、音声再生装置(140)の音声によって前記最大リスク対象の存在を前記運転者に警告する音声制御部(35)、をさらに備える請求項1~14のいずれか一項に記載の情報提示装置。
  16.  前記発光制御部は、前記発光スポットの表示位置が前記運転者から遠ざかるに従って、前記発光スポットを拡大する請求項1~15のいずれか一項に記載の情報提示装置。
  17.  前記発光制御部は、運転席(17d)のスライドによって前記運転者のアイポイント(IP)が前記車両の前後に移動した場合でも、前記運転者から見た前記発光スポットが前記最大リスク対象の方向を示すように、前記発光スポットの大きさを規定する請求項1~16のいずれか一項に記載の情報提示装置。

     
PCT/JP2016/001816 2015-04-03 2016-03-29 情報提示装置 WO2016157892A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/562,712 US10723264B2 (en) 2015-04-03 2016-03-29 Information presentation apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-077088 2015-04-03
JP2015077088 2015-04-03
JP2016-048661 2016-03-11
JP2016048661A JP6319350B2 (ja) 2015-04-03 2016-03-11 情報提示装置

Publications (1)

Publication Number Publication Date
WO2016157892A1 true WO2016157892A1 (ja) 2016-10-06

Family

ID=57006634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001816 WO2016157892A1 (ja) 2015-04-03 2016-03-29 情報提示装置

Country Status (1)

Country Link
WO (1) WO2016157892A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109532490A (zh) * 2018-01-05 2019-03-29 南京知行新能源汽车技术开发有限公司 车载健康平台的系统、计算机实现方法及非暂态计算机可读介质
EP3492318A4 (en) * 2016-07-29 2019-08-28 TS Tech Co., Ltd. LIGHT EMITTING UNIT FOR A VEHICLE
WO2023100741A1 (ja) * 2021-12-01 2023-06-08 本田技研工業株式会社 車両並びにその制御装置及び制御方法
JP7347207B2 (ja) 2019-12-26 2023-09-20 トヨタ自動車株式会社 運転支援装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063105A (ja) * 2003-08-11 2005-03-10 Toyota Motor Corp 脇見判定装置
US20090187343A1 (en) * 2006-03-13 2009-07-23 Hermann Koch-Groeber Method and device for assisting in driving a vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063105A (ja) * 2003-08-11 2005-03-10 Toyota Motor Corp 脇見判定装置
US20090187343A1 (en) * 2006-03-13 2009-07-23 Hermann Koch-Groeber Method and device for assisting in driving a vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3492318A4 (en) * 2016-07-29 2019-08-28 TS Tech Co., Ltd. LIGHT EMITTING UNIT FOR A VEHICLE
US10807523B2 (en) 2016-07-29 2020-10-20 Ts Tech Co., Ltd. Light emitting unit for conveyance
US11318881B2 (en) 2016-07-29 2022-05-03 Ts Tech Co., Ltd. Light emitting unit for conveyance
CN109532490A (zh) * 2018-01-05 2019-03-29 南京知行新能源汽车技术开发有限公司 车载健康平台的系统、计算机实现方法及非暂态计算机可读介质
JP7347207B2 (ja) 2019-12-26 2023-09-20 トヨタ自動車株式会社 運転支援装置
WO2023100741A1 (ja) * 2021-12-01 2023-06-08 本田技研工業株式会社 車両並びにその制御装置及び制御方法

Similar Documents

Publication Publication Date Title
JP6319350B2 (ja) 情報提示装置
JP7249914B2 (ja) 走行制御装置及び車載システム
US11267480B2 (en) Travel control apparatus and travel control method
JP6372402B2 (ja) 画像生成装置
US10723367B2 (en) Information presentation device and information presentation method
EP3321913A1 (en) Vehicle-use image display system and method
US20170028995A1 (en) Vehicle control apparatus
JP4825868B2 (ja) 車両用警報装置
WO2016157816A1 (ja) 情報提示装置及び情報提示方法
WO2020261781A1 (ja) 表示制御装置、表示制御プログラム、および持続的有形コンピュータ読み取り媒体
JP6555646B2 (ja) 車両運転支援システム
JP6608095B2 (ja) 表示システムおよび表示方法
JP2017185946A (ja) 車両の自動運転システム
US11752940B2 (en) Display controller, display system, mobile object, image generation method, and carrier means
WO2016157892A1 (ja) 情報提示装置
JP2019045901A (ja) 情報提示装置
JP6471575B2 (ja) 車両用表示制御装置及び車両用表示ユニット
WO2016157891A1 (ja) 情報提示装置
JP6471707B2 (ja) 運転教示装置
JP7101053B2 (ja) 情報提示方法及び情報提示装置
JP2018167834A (ja) 画像生成装置
WO2023176737A1 (ja) 表示制御装置、表示制御方法
WO2024150530A1 (ja) 支援装置、支援方法、及びドライバ支援プログラム
WO2013034182A1 (en) Method for creating a vehicle surroundings map, driver assistance device, and vehicle having a driver assistance device
JP2023166219A (ja) 運転支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771779

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15562712

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771779

Country of ref document: EP

Kind code of ref document: A1