[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016157396A1 - 電子機器の冷却システム - Google Patents

電子機器の冷却システム Download PDF

Info

Publication number
WO2016157396A1
WO2016157396A1 PCT/JP2015/060031 JP2015060031W WO2016157396A1 WO 2016157396 A1 WO2016157396 A1 WO 2016157396A1 JP 2015060031 W JP2015060031 W JP 2015060031W WO 2016157396 A1 WO2016157396 A1 WO 2016157396A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
coolant
boiling
boiling point
heat
Prior art date
Application number
PCT/JP2015/060031
Other languages
English (en)
French (fr)
Inventor
齊藤 元章
Original Assignee
株式会社ExaScaler
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ExaScaler filed Critical 株式会社ExaScaler
Priority to JP2016507718A priority Critical patent/JP5956099B1/ja
Priority to EP15887549.2A priority patent/EP3279764A4/en
Priority to PCT/JP2015/060031 priority patent/WO2016157396A1/ja
Priority to US15/563,428 priority patent/US10123454B2/en
Publication of WO2016157396A1 publication Critical patent/WO2016157396A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20236Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures by immersion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20263Heat dissipaters releasing heat from coolant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • H05K7/20772Liquid cooling without phase change within server blades for removing heat from heat source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • H05K7/20809Liquid cooling with phase change within server blades for removing heat from heat source
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/201Cooling arrangements using cooling fluid

Definitions

  • the present invention relates to a cooling system for electronic devices, and more particularly to efficiently cool electronic devices that require super-high performance operation and stable operation such as supercomputers and data centers and generate a large amount of heat from itself.
  • the present invention relates to a cooling system for electronic equipment.
  • Non-Patent Document 1 In order to locally cool a heating element that generates a large amount of heat, such as a CPU, there are several examples of cooling devices that use a boiling cooling system that transports and dissipates heat through a cycle of cooling liquid vaporization and condensation. Or has been proposed.
  • One is a cooling module that connects the evaporation section connected to the heat generating surface of the processor and the condensing section connected to an air-cooling fan or water-cooled pipe with two pipes to perform refrigerant circulation using gas-liquid equilibrium. (Non-Patent Document 1).
  • a cooling vessel is sealed in a flat container with a special flow channel wall inside, the heat receiving area of the flat container is thermally connected to the heating element, and the heat dissipation area of the flat container is dissipated. It is connected to a heat radiating part such as a fin, and the heat radiating area is an example of forming a coolant flow path in the heat radiating area (for example, Patent Document 3).
  • JP 2013-187251 A Special table 2012-527109 gazette JP 2013-69740 A Green Network System Technology Research and Development Project “Research and Development of Heated Boiling Cooling System (FY2008-FY2012, 5 Years)” 8-9, 11 pages, July 17, 2013 URL: http: //www.nedo. go.jp/content/100532511.pdf
  • the cooling system disclosed in Patent Document 1 uses a fluorocarbon coolant having a boiling point of 100 ° C. or lower because it uses heat of vaporization (latent heat) to cool electronic devices. Then, the heat of the element is taken by the heat of vaporization (latent heat) when the coolant evaporates due to the heat generated by the element mounted on the electronic device, and the element is cooled. Accordingly, the fluorocarbon-based coolant may boil locally on the surface of the high-temperature element and bubbles may form a heat insulating film, so that the high heat conduction ability inherent in the coolant is impaired. There is a problem.
  • the target to be cooled is not only CPU (Central Processing Unit) but also GPU (Graphics Processing Unit), high-speed memory, chipset, network unit, There are many PCI Express buses, bus switch units, SSDs (Solid State Drives), power units (AC-DC converters, DC-DC voltage converters, etc.) and all these objects with different vaporization temperatures. Are equally difficult to cool, and the cooling efficiency is extremely low for an object whose surface refrigerant does not evaporate.
  • the cooling system disclosed in Patent Document 2 adopts a configuration of a sealed module that houses one or more heat-generating electronic devices. For this reason, the entire mechanism for circulating the coolant through the individual sealed modules is complicated, and the entire electronic device cannot be easily taken out from the sealed module, resulting in poor maintenance of the electronic device. is there.
  • the cooling module proposed by the Green Network System Technology Research and Development Project requires two separate pipes to connect the evaporation section on the processor and the condensation section installed away from it. There exists a problem that the structure of the whole cooling module becomes large and complicated. In addition, the presence of these pipes hinders the cooling of surrounding electronic components that must rely on air cooling, and in the secondary cooling using a cooling fan or pipes, pipes are used especially when using pipes. Since the cooling efficiency is restricted to be low due to the restriction of the internal flow rate, there is a problem that the cooling performance of the entire electronic device is restricted. On the other hand, the cooling device disclosed in Patent Document 3 is advantageous because it can provide a small boiling cooling device for local primary cooling, but by applying the conventional secondary cooling technology with low cooling efficiency. However, there is a problem that the cooling performance of the entire electronic device cannot be improved.
  • the conventional immersion cooling method has a problem that the entire mechanism for circulating the coolant through the sealed module is complicated, and the maintainability of the electronic device is inferior.
  • the conventional boiling cooling method is suitable for local cooling of electronic equipment, the entire mechanism may be large and complicated, and the cooling efficiency of the secondary cooling is low, so the cooling performance of the entire electronic equipment is low. There is a problem that improvement cannot be achieved.
  • an object of the present invention is to provide a simple and efficient cooling system that solves the above-mentioned problems of the prior art and improves the cooling performance of electronic equipment.
  • a cooling system that directly cools an electronic device by immersing it in a cooling liquid, the heat generation of the electronic device having at least one heating element.
  • a cooling apparatus which is thermally connected to the body, the same or the first and the cooling apparatus in which a first coolant having a boiling point T 1 is sealed, and the boiling point T 1 of the first cooling liquid
  • the boiling cooling device includes a sealed container having a heat receiving side and a heat radiating side, and a heat radiating member provided on the heat radiating side, and the boiling cooling device and the When the electronic device is immersed in the second coolant, the electronic device may be configured to be thermally connected to the heat generating body so that the heat radiating side is located above the heat receiving side.
  • the boiling point of the first cooling liquid is 100 ° C. or lower
  • the boiling point of the second cooling liquid is 150 ° C. or higher
  • the third refrigerant You may comprise so that the boiling point of may be 50 degrees C or less.
  • the first coolant and / or the third refrigerant may include a fluorocarbon compound as a main component.
  • the second coolant may be configured to contain a fully fluorinated product as a main component.
  • the cooling system further includes a second heat exchanger that is placed outside the cooling tank and cools the third refrigerant,
  • the heat exchanger and the second heat exchanger may be connected by a first flow path.
  • the cooling tank has a top plate attached to the upper opening of the cooling tank so as to be detachable or openable.
  • One heat exchanger may be held.
  • the cooling tank has an inlet and an outlet for the second coolant, and the outlet and the inlet are outside the cooling tank.
  • at least one pump for moving the second cooling liquid and a third heat exchanger for cooling the second cooling liquid may be provided in the flow path. .
  • a cooling system for directly cooling a plurality of electronic devices by immersing them in a cooling liquid
  • the cooling tank having an open space formed by a bottom wall and a side wall;
  • a plurality of arrayed storage units formed by dividing the open space by providing a plurality of internal partition walls in the cooling tank, each storing at least one electronic device in each storage unit
  • a cooling liquid inflow opening and an outflow opening formed in each of the plurality of storage parts, wherein the inflow opening is formed in a bottom portion or a side surface of each storage part, and the outflow opening is
  • the cooling system is formed in the vicinity of the liquid level of the coolant flowing through each storage unit, and the cooling system is further a boiling cooling device thermally connected to at least one heating element of the at least one electronic device.
  • a cooling system is provided.
  • the first cooling liquid sealed in the boiling cooling device thermally connected to the heating element is vaporized, so that the boiling cooling device is locally and from the heating element.
  • the electronic equipment is totally cooled by taking it away completely.
  • the second cooling liquid having the same boiling point as that of the first cooling liquid or having a boiling point higher than that of the first cooling liquid effectively and strongly cools peripheral electronic components mounted on the electronic device.
  • the secondary cooling refrigerant (second cooling liquid) for boiling cooling of the processor which is the main heat source, also functions as an effective primary cooling refrigerant for the surrounding electronic components.
  • the local cooling of the main heat source by the boiling cooling device by the boiling cooling device, the immersion cooling of the boiling cooling device and the entire surrounding electronic components by the secondary cooling refrigerant (second cooling liquid), and the first heat
  • the cooling performance of the electronic device can be significantly improved.
  • a coolant having a relatively high boiling point can be used as the second coolant, the second coolant is unlikely to evaporate, and the cooling tank into which the second coolant is placed is an unsealed open space.
  • the volume occupied by the components in the cooling tank can be reduced. Therefore, simplification and miniaturization of the cooling system are realized.
  • conventional boiling cooling systems require complex piping and large heat sinks to cool the processor, which is the main heat source, and the presence of these must be dependent on air cooling. This has also hindered the cooling of electronic components.
  • the present invention eliminates the need for complicated piping and large heat sinks, and is advantageous for cooling peripheral electronic components. 2), the peripheral electronic components can be cooled with high efficiency.
  • the cooling tank having the “open space” in the present specification includes a cooling tank having a simple sealed structure that does not impair maintainability of the electronic device.
  • a structure in which the top plate is attached to the opening of the cooling tank via a packing or the like so as to be detachable or openable can be said to be a simple sealed structure.
  • the first heat exchanger since it is only necessary to immerse the first heat exchanger in the surface layer portion of the second coolant, the first heat exchanger can be mechanically held on the top plate.
  • a processor including a die (semiconductor chip) and a heat spreader that surrounds the die is referred to as a heating element.
  • the structure of the principal part of a cooling system which stores and cools the electronic device mounted on the board in a cooling tank will be described.
  • the electronic system includes a cooling system that houses and cools the electronic device in a cooling tank while simply showing only one unit including a board on which a plurality of processors are mounted. The overall configuration will be described.
  • FIG. 4 to FIG. 6 a configuration of a high-density cooling system in which an electronic device is housed and cooled in each of a plurality of housing portions formed in a cooling tank.
  • This is merely an example, and the number and type (CPU or GPU) of processors per board are arbitrary, and the number of electronic device units in the cooling system is also arbitrary. It is not limited.
  • a cooling system 10 includes a cooling tank 12, and a second cooling liquid 13 having a boiling point T 2 is placed in an open space of the cooling tank 12.
  • the electronic device 100 mounted on the board 120 using the processor 110 as a heating element is housed and immersed in the second coolant 13.
  • the processor 110 includes a die 111 and a heat spreader 112 surrounding the die. The use of the heat spreader is optional and may be omitted.
  • a plurality of other processors and peripheral electronic components are naturally mounted on the board 120 of the electronic device 100 in addition to the processor 110, but the illustration of the other plurality of processors and electronic components is omitted.
  • the boiling cooling device 200 includes a sealed container 210 having a heat receiving side 211 and a heat radiating side 212, and a heat radiating member 220 provided on the heat radiating side 212.
  • the sealed container 210 has a thin box shape constituted by six flat plates, thereby forming a space having a rectangular cross section. Note that the outer shape and internal structure of the sealed container 210 are arbitrary, and the size and shape may be appropriately determined in consideration of the area of the heat radiation surface to be cooled and the amount of heat generated.
  • the lower half of the box-shaped sealed container 210 is referred to as a heat receiving side 211 and the upper half is referred to as a heat radiating side 212. It should be noted, however, that only one side of the lower half of the sealed container 210 is connected to the heat generating surface of the processor 110, as will be described later.
  • a metal having good thermal conductivity such as aluminum, copper, and silver can be used, but is not limited thereto.
  • an amount of the first coolant 11 is filled so as to fill the space on the heat receiving side 211.
  • trade names of 3M company “Novec (trademark of 3M company, the same applies below) 7000” (boiling point 34 ° C.), “Novec 7100” (boiling point 61 ° C.), “Novec 7200” (boiling point 76 ° C.), Hydrofluoroether (HFE) compounds known as “Novec 7300” (boiling point 98 ° C.) can be suitably used, but are not limited thereto.
  • HFE Hydrofluoroether
  • the back surface of the box-shaped sealed container 210 is thermally connected to the heat generating surface of the processor 110.
  • an adhesive such as metal grease having excellent thermal conductivity can be used, but the present invention is not limited to this.
  • the heat radiation side 212 is the heat receiving side 211. The orientation should be higher.
  • heat radiation members (heat radiation fins) 220 are provided on the front and back surfaces of the box-shaped sealed container 210, respectively.
  • the heat radiating member 220 can manage the amount of heat taken by the second coolant by increasing or decreasing the surface area of the heat radiating side 212.
  • the material of the heat radiating member 220 may be the same material as that of the sealed container 210, and a known method such as brazing may be used as a fixing method to the sealed container.
  • FIG. 2B shows another example of the boiling cooling device, and the same reference numerals are used for the same parts as in FIG. 2A.
  • the boiling cooling device 300 increases the amount of heat released from the boiling cooling device 200 shown in FIG. 2A by increasing the size of the heat dissipation member 220 in the width direction and increasing the number of fins. Yes.
  • the attachment of the heat radiating member 220 may be omitted. That is, as in another example shown in FIG. 2C, the boiling cooling device 400 may be configured only by the sealed container 210 to which no heat dissipation member is attached.
  • the cooling tank 12 is filled with the second coolant 13 up to the liquid level 19 in an amount sufficient to immerse the entire boiling cooling device 200 and the electronic device 100.
  • the second coolant trade names of 3M Company “Fluorinert (trademark of 3M Company, hereinafter the same) FC-72” (boiling point 56 ° C.), “Fluorinert FC-770” (boiling point 95 ° C.), “Fluorinert FC- 3283 "(boiling point 128 ° C),” Fluorinert FC-40 “(boiling point 155 ° C),” Fluorinert FC-43 "(boiling point 174 ° C), a fluorinated inert liquid composed of a fully fluorinated product (perfluorocarbon compound)
  • FC-72 trade names of 3M Company “Fluorinert (trademark of 3M Company, hereinafter the same) FC-72” (boiling point 56 ° C.)
  • a refrigerant having a boiling point T 2 that is the same as the boiling point T 1 of the first cooling liquid 11 or higher than the boiling point T 1 of the first cooling liquid 11 is selected as the second cooling liquid 13. This is very important. As an example, when “Novec 7000” (boiling point 34 ° C.) or “Novec 7100” (boiling point 61 ° C.) is used for the first cooling liquid 11, “Fluorinert FC-43” (boiling point 174) is used for the second cooling liquid 13. ° C) can be preferably used.
  • the present inventor is a compound in which a fully fluorinated product has high electrical insulation and high heat transfer ability, is inert, has high thermal and chemical stability, is nonflammable, and does not contain oxygen. Therefore, paying attention to the excellent characteristics such as zero ozone depletion coefficient, a coolant containing such a fully fluorinated product as a main component is used as a coolant for immersion cooling of high-density electronic equipment.
  • the invention of the cooling system to be used has been completed and a patent application has been filed (Japanese Patent Application No. 2014-170616).
  • the top plate 20 provided in the upper opening of the cooling tank 12 is used for maintenance of the electronic device 100. It may be attached to the upper opening so as to be detachable or openable and closable so that it can be easily performed.
  • the top plate 20 may be supported by a hinge portion (not shown) provided at one edge of the upper opening of the cooling bath 12 so as to be freely opened and closed.
  • An inlet 16 through which the second coolant flows is provided below the side of the cooling tank 12, and an outlet 18 through which the second coolant flows out above the side of the cooling tank 12. Is provided.
  • the electronic device 100 accommodated in the open space of the cooling tank 12 is configured to be directly cooled by being immersed in the second coolant 13 flowing in the open space of the cooling tank 12.
  • the cooling system 10 further includes a first heat exchanger 22 that is mechanically held by the top plate 20, and the first heat exchanger 22 is a second heat exchanger 22. It is immersed in the surface layer portion in the coolant 13.
  • the mechanical holding method of the 1st heat exchanger 22 may use the suspension support member (not shown) fixed to the top plate 20, for example, it is not limited to this.
  • the third refrigerant does not leak into the outside air, and the third refrigerant is separated from the first heat exchanger by another component (for example, a later-described first component). It is not limited to move to the second heat exchanger) or to circulate between the first heat exchanger and other components.
  • “Novec 7000” (boiling point 34 ° C.) is used as the first coolant 11
  • “Novec 7000” (boiling point 34 ° C.) can be suitably used as the third refrigerant.
  • “Novec 7100” (boiling point 61 ° C.) is used for No. 11
  • the cooling system 10 may further include a second heat exchanger 24 placed outside the cooling bath 12.
  • the first heat exchanger 22 and the second heat exchanger 24 are connected by a first flow passage 26, and the third refrigerant passes through the first flow passage 26 and performs the first heat exchange. It can be moved or circulated between the heat exchanger 22 and the second heat exchanger 24.
  • As the first heat exchanger it is preferable to use a thin heat exchanger so as to be immersed in the surface layer portion in the second coolant 13. For example, a coil shape or a spiral shape as shown in FIG.
  • the heat exchanger may be a heat exchanger composed of a meandered tube, but the structure of the heat exchanger (plate type heat exchanger, plate and fin type heat exchanger, etc.) is not limited.
  • the second heat exchanger 24 may be a heat exchanger that cools the third refrigerant moving from the first heat exchanger 22 to the second heat exchanger 24.
  • a cooler radiator or chiller
  • cooler may be used.
  • the outlet 18 and the inlet 16 of the cooling tank 12 are connected by a second flow passage 30, and a pump 40 that moves the second coolant 13 into the second flow passage 30.
  • a third heat exchanger 90 for cooling the second coolant 13 is provided.
  • a flow rate adjusting valve 50 and a flow meter 70 for adjusting the flow rate of the second coolant 13 flowing through the second flow passage 30 are also provided in the second flow passage 30.
  • the pump 40 preferably has a performance of moving a liquid having a relatively large kinematic viscosity (a kinematic viscosity at room temperature of 25 ° C. exceeds 3 cSt).
  • a kinematic viscosity at room temperature of 25 ° C. exceeds 3 cSt For example, when Fluorinert FC-43 or FC-40 is used as the second coolant 13, the dynamic viscosity of FC-43 is about 2.5 to 2.8 cSt, and the dynamic viscosity of FC-40 is 1. This is because it is about 8 to 2.2 cSt.
  • the flow rate adjustment valve 50 may be manually operated, or may be provided with an adjustment mechanism that keeps the flow rate constant based on the measurement value of the flow meter 70.
  • the third heat exchanger 90 may be various circulation heat exchangers (a radiator or a chiller) or a cooler.
  • the boiling cooling device 200 is sealed.
  • the first cooling liquid 11 sealed in the container 210 starts to evaporate as bubbles from the inner wall surface of the heat receiving side 211 of the sealed container 210.
  • the vaporized first coolant 11 rises in the space on the heat radiation side 212 of the sealed container 210.
  • the second coolant 13 (for example, Fluorinert FC-43) around the boiling cooling device 200 and the electronic device 100 is vaporized because its temperature is kept low, for example, 17 ° C.-23 ° C.
  • the first cooling liquid 11 is condensed on the inner wall surface of the heat radiation side 212 of the sealed container 210, and the first cooling liquid 11 travels on the inner wall surface toward the heat receiving side 211 in a liquid phase state, and is caused by gravity. Fall. Due to the refrigerant circulation in the vapor phase and the liquid phase in the boiling cooling device 200 as described above, the boiling cooling device 200 takes heat from the processor 110 locally and strongly, and at the same time, the second cooling liquid 13 around it.
  • the electronic device is totally cooled by completely taking the heat from the boiling cooling device 200 (mainly through the heat radiation member 220).
  • the second coolant 13 having a high boiling point effectively and powerfully cools peripheral electronic components (not shown) mounted on the board 120 of the electronic device 100. That is, the secondary cooling refrigerant (second cooling liquid 13) for the boiling cooling of the processor 110, which is the main heat generation source, is effective for the peripheral electronic components (not shown). Also works.
  • First heat exchanger 22 to the third refrigerant is filled with a low boiling point T 3 than the boiling point T 1 of the same or the first cooling liquid and the boiling point T 1 of the first coolant 11, cooling tank 12 is immersed in the surface layer portion of the second coolant 13 in the second coolant 13, the heat of the surface layer portion of the second coolant 13 is taken away and taken out of the cooling bath 12.
  • a coolant having a relatively high boiling point for example, Fluorinert FC-43 or FC-40 has a boiling point of 150 ° C. or higher
  • FC-43 or FC-40 has a boiling point of 150 ° C. or higher
  • FC-40 has a boiling point of 150 ° C. or higher
  • the cooling tank 12 into which the second coolant 13 is put may be an unsealed open space, and it is not necessary to adopt a complicated and expensive sealing structure.
  • the first heat exchanger 22 since the first heat exchanger 22 only needs to be immersed in the surface layer portion of the second coolant 13, the volume occupied by the components in the cooling bath 12 can be small. Therefore, simplification and miniaturization of the cooling system are realized.
  • the present invention eliminates the need for complicated piping and a large heat sink, and is advantageous for cooling peripheral electronic components (not shown), as well as secondary cooling.
  • the refrigerant (second cooling liquid 13) for use spreads over the entire board 120 of the electronic device 100, so that peripheral electronic components (not shown) can be cooled with high efficiency.
  • the boiling point T 1 is, the same cooling liquid and the boiling point T 2 of the second coolant 13 that is placed in a cooling bath 12 Even if a coolant having the same boiling point as the boiling point T 2 of the second coolant 13 is used as the third refrigerant to be used and / or used in the first heat exchanger 22, Of course, the object of greatly improving the cooling efficiency can be achieved.
  • FIGS. 1-3 the cooling system which concerns on one Embodiment.
  • the present invention can be applied to a high-density cooling system in which a plurality of units of electronic devices are stored in a cooling tank with high density and cooled.
  • FIGS. 4 to 6 the configuration of a high-density cooling system according to another embodiment of the present invention will be described with reference to FIGS. 4 to 6.
  • symbol is used for the part similar to the cooling system shown in FIG.1 and FIG.3, and detailed description is abbreviate
  • a configuration of a high-density cooling system will be described in which one unit including a board on which a plurality of processors are mounted is stored as an electronic device in a total of 16 units in each storage section of the cooling tank and cooled.
  • This is merely an example, and the number and type (CPU or GPU) of processors per board are arbitrary, and the number of electronic device units in the high-density cooling system is also arbitrary.
  • the configuration is not limited.
  • a cooling system 500 includes a cooling tank 12, and an open space 10a is formed by a bottom wall 12a and a side wall 12b of the cooling tank 12.
  • an open space 10a is formed by a bottom wall 12a and a side wall 12b of the cooling tank 12.
  • storage unit 15aa 16 storage units 15aa, 15ab, 15ac, 15ad, 15ba, 15bb, 15bc, 15bd, 15ca, 15cb, 15cc, 15cd, 15da, 15db, 15dc, 15dd (hereinafter collectively referred to as “storage unit 15aa”) May be described as “ ⁇ 15dd”). And at least 1 electronic device 100 is accommodated in each accommodating part. In the open space 10 a of the cooling tank 12, the second cooling liquid 13 is put up to the liquid level 19.
  • the inlets 16aa, 16ab of the second coolant 13 are formed at the bottoms of the storage portions 15aa, 15ab, 15ac, 15ad, 15ba, 15bb, 15bc, 15bd, 15ca, 15cb, 15cc, 15cd, 15da, 15db, 15dc, 15dd.
  • 16ac, 16ad, 16ba, 16bb, 16bc, 16bd, 16ca, 16cb, 16cc, 16cd, 16da, 16db, 16dc, 16dd (hereinafter may be collectively referred to as “inflow openings 16aa to 16dd”).
  • inflow openings 16aa to 16dd has been.
  • the outflow openings 17aa, 17ab, 17ac, 17ad, 17ae, 17ba, 17bb, 17bc, 17bd, 17be, 17ca, 17cb, 17 cc, 17 cd, 17 ce, 17 da, 17 db, 17 dc, 17 dd, 17 de, 17 ea, 17 eb, 17 ec, 17 ed, 17 ee (hereinafter sometimes collectively referred to as “outflow openings 17 aa to 17 ee”) are formed. .
  • the outflow opening is formed at or near a position where a plurality of internal partition walls forming each storage portion intersect each other.
  • the storage portion 15aa is formed by vertical internal partition walls 13a and 13b and horizontal internal partition walls 14a and 14b, and the internal partition wall 13a and the internal partition wall 14a intersect each other.
  • Outflow openings 17aa, 17ba, 17ab, so as to be located at a point where the partition wall 13a and the inner partition wall 14b intersect, a point where the inner partition wall 13b and the inner partition wall 14a intersect, and a point where the inner partition wall 13b and the inner partition wall 14b intersect, respectively. 17bb is formed.
  • FIG. 1 is formed by vertical internal partition walls 13a and 13b and horizontal internal partition walls 14a and 14b, and the internal partition wall 13a and the internal partition wall 14a intersect each other.
  • Outflow openings 17aa, 17ba, 17ab so as to be located at a point where the partition wall 13a and the inner partition wall 14b intersect
  • the storage portion 15bb is formed by vertical internal partition walls 13b and 13c and horizontal internal partition walls 14b and 14c, and the internal partition wall 13b and the internal partition wall 14b intersect.
  • the outflow openings 17bb, 17cb are respectively positioned at the point where the internal partition wall 13b and the internal partition wall 14c intersect, the point where the internal partition wall 13c and the internal partition wall 14b intersect, and the point where the internal partition wall 13c and the internal partition wall 14c intersect. 17bc and 17cc are formed.
  • the outflow opening is formed at one end of an outflow pipe 170 that extends through the bottom wall 12a of the cooling tank 12 to the vicinity of the liquid surface 19.
  • the outflow openings 17bb, 17cb, 17bc, 17cc are formed by vertical internal partition walls 13b, 13c and horizontal internal partition walls 14b, 14c. 13b and the inner partition wall 14b intersect, the inner partition wall 13b and the inner partition wall 14c intersect, the inner partition wall 13c and the inner partition wall 14b intersect, and the inner partition wall 13c and the inner partition wall 14c intersect, respectively. It is formed at one end of the outflow pipe 170.
  • the other end of the outflow pipe has a bottom opening 18aa, 18ab, 18ac, 18ad, 18ae, 18ba, 18bb, 18bc, 18bd, 18be, 18ca, 18cb, 18cc, 18cd, 18ce, 18da, 18db, 18dc, 18dd, 18de, 18ea, 18eb, 18ec, 18ed, and 18ee (hereinafter, collectively referred to as “bottom openings 18aa to 18ee”) are formed.
  • outflow openings 17bb, 17bc, 17cb, and 17cc are formed by the outflow pipes 170 arranged at the four corners.
  • the outflow opening 17bb is a part of the outflow opening for the storage part 15aa and at the same time a part of the outflow opening for the storage parts 15ab, 15ba, and 15bb.
  • outflow openings 17bc, 17cb, and 17cc are arbitrary, and one or a plurality of outflow pipes may be provided in the vicinity of a position where a plurality of internal partition walls forming each storage part intersect each other.
  • the outflow pipe does not need to be integrated with the internal partition, and may be a pipe disposed away from the internal partition.
  • one or more small holes 171 may be formed in the outflow pipe 170 in the longitudinal direction of the outflow pipe 170. These small holes 171 promote the circulation of the second coolant 13 in the middle of the depth direction of the storage portion.
  • the inflow openings 16aa to 16dd do not need to be cylindrical openings as shown in the figure.
  • a header having a plurality of nozzles is connected to one end of the cylinder to form inflow openings by a number of nozzles. May be.
  • the electronic device 100 is stored and immersed in the second coolant 13.
  • the electronic device 100 is the same as the electronic device in the previous embodiment, and a detailed description thereof is omitted here.
  • the second cooling liquid 13 is placed up to the liquid level 19.
  • the second coolant 13 is the same as the second coolant in the previous embodiment, and a detailed description thereof is omitted here.
  • the cooling tank 12 has an inlet 16 for distributing the second cooling liquid 13 through distribution pipes (not shown) toward the inflow openings 16aa to 16dd provided in the storage portions 15aa to 15dd, and An outlet 18 is provided for collecting the second coolant 13 that has passed through the outflow openings 17aa to 17ee of the storage portions 15aa to 15dd via a collecting pipe (not shown).
  • the second coolant 13 that has been cooled to a desired temperature is continuously supplied to each of the storage units 15aa to 15aa so that the electronic device 100 stored in each of the storage units 15aa to 15dd is maintained at a predetermined temperature or lower during operation.
  • the second cooling liquid 13 coming out from the outlet 18 of the cooling tank 12 is cooled by the third heat exchanger, and the cooled cooling liquid is returned to the inlet 16 of the cooling tank 12.
  • the second flow path may be configured. Since an example of such a flow path and associated equipment has already been described in detail with reference to FIG. 3, description thereof is omitted here.
  • Each of the distributed first heat exchangers 22aa to 22dd is immersed in the surface layer portion of the second coolant 13 in each of the storage portions 15aa to 15dd.
  • Each of the distributed first heat exchangers 22aa to 22dd may be mechanically held on a top plate (not shown), similarly to the first heat exchanger in one embodiment.
  • Each of the distributed first heat exchangers 22aa to 22dd is similar to the example shown in FIG. 1 in that the second heat exchanger placed outside the cooling tank 12 and the first flow path ( (Not shown).
  • the same number of second heat exchangers as the distributed first heat exchangers 22aa to 22dd are prepared and individually connected, and the distributed first heat exchangers 22aa to 22dd are A method in which one group is divided into a plurality of (for example, four) groups of several (for example, four) heat exchangers, and a second heat exchanger is prepared for each group and individually connected, or Any of the methods of connecting one second heat exchanger to all the distributed first heat exchangers 22aa to 22dd may be used.
  • the second coolant 13 that has entered from the inlet 16 is distributed toward inflow openings 16aa to 16dd formed at the bottoms of the storage portions 15aa to 15dd via a distribution pipe (not shown).
  • the second coolant 13 blows upward from the inflow openings 16aa to 16dd, and is mounted on the board 120 of the electronic device 100 and thermally connected to the processor and the peripheral electronic components (see FIG. Cool not directly).
  • the second cooling liquid 13 blows up from the inflow opening 16bb, the liquid level 19 is removed while removing heat from the surfaces of the boiling cooling apparatus 200 and peripheral electronic components (not shown) thermally connected to the processor.
  • the volume of the storage portions 15aa to 15dd is as small as about 1/16 of the volume of the open space 10a of the cooling bath 12, and the electronic device 100 stored therein is also about 1 / of the width of the cooling bath 12. Therefore, the cooling efficiency of the electronic device 100 by the second coolant 13 is very good, and the second coolant 13 can be effectively prevented from staying around the electronic device 100.
  • each of the distributed first heat exchangers 22aa to 22dd takes the heat of the surface layer portion in the second coolant 13 and takes it out of the cooling bath 12.
  • Triple cooling including immersion cooling and heat removal from the surface layer of the secondary cooling refrigerant by the distributed first heat exchangers 22aa to 22dd is performed.
  • the second coolant 13 passes through the outflow openings 17aa to 17ee located in the vicinity of the liquid surface 19 on the cooling tank 12, descends in the outflow pipe 170, passes through the bottom openings 18aa to 18ee, and collects the pipe (not shown). To the outlet 18 via
  • the inflow opening is formed in the bottom of each storage unit
  • the inflow opening may be formed in the side surface of each storage unit.
  • the volume of the open space of the cooling tank is about 1/4 or less than about 1/4 (for example, about 1 of the volume of the open space). / 9 (when divided into 3 ⁇ 3), 1/12 (when divided into 3 ⁇ 4), and 1/16 (when divided into 4 ⁇ 4))
  • a plurality of electronic devices are individually and efficiently cooled by storing electronic devices having a smaller width (for example, about 1/2, 1/3, 1/4) and distributing the coolant individually. be able to.
  • the warmed coolant can be discharged from the central portion of the cooling bath, the warmed coolant is discharged from the side surface of the cooling bath.
  • the cooling liquid stays near the center of the cooling tank and the cooling performance varies depending on the storage position of the electronic device in the cooling tank. Therefore, it is possible to improve the cooling performance of a plurality of electronic devices and stabilize the cooling performance without variations. In addition, since the size of the electronic device stored in the storage unit can be reduced, the handling and maintenance of the electronic device can be improved.
  • the cooling tank 12 includes the inlet 16 and the outlet 18 of the second cooling liquid 13 so that the second cooling liquid 13 can flow through the cooling tank 12.
  • the entrance and exit may be omitted. This is because, even in a cooling system without an inlet and an outlet, the boiling cooling device 200 locally cools the main heat source, and the boiling cooling device 200 using the secondary cooling refrigerant (second cooling liquid 13) and the surrounding electronic components. Since the entire liquid immersion cooling and triple cooling including the heat removal from the surface portion of the secondary cooling refrigerant by the first heat exchanger 22 or the distributed first heat exchangers 22aa to 22dd are performed. It is.
  • the cooling system according to one embodiment is divided into an open space by arranging a plurality of internal partition walls in the cooling tank, like the cooling tank in the cooling system shown in the other embodiments, and arranged in a plurality.
  • the inflow opening and the outflow opening may be omitted.
  • the processor mounted on the board of the electronic device 100 may include either or both of a CPU and a GPU, and a high-speed memory, a chipset, a network unit, A PCI Express bus, bus switch unit, SSD, and power unit (AC-DC converter, DC-DC voltage converter, etc.) may be included.
  • the electronic device 100 may be an electronic device such as a server including a blade server, a storage device such as a router, and an SSD.
  • electronic devices having a smaller width for example, about 1/2, 1/3, 1/4) than the conventional general width may be used. is there.
  • the example which has a vertically long thin box shape is illustrated as the airtight container 210 in the boiling cooling device 200, this is set horizontally and a horizontally long box shape is shown. You may use as what you have.
  • the heat receiving side and the heat radiating side of the sealed container 210 have been described as being divided into an upper half and a lower half of the vertically long box-shaped sealed container 210 for convenience, the heat receiving side and the heat radiating side are shared in the vertical direction. (However, the heat receiving surface is the surface that is thermally connected to the heat generating surface of the processor 110).
  • the example in which the boiling cooling device 200 is thermally connected to a processor that is a main heating element included in the electronic device 100 has been described. It does not require that the boil cooling device be thermally connected individually to all the heating elements included in the electronic device, and the electronic device is a storage device such as a server, router, SSD, etc. In the case of a device, the electronic device as a whole is not necessarily required to be thermally connected to one or a plurality of boiling cooling devices with one heating element.
  • heating element among a plurality of heating elements included in the electronic device how to connect the boiling cooling device thermally, and to the whole electronic device as one heating element, one or a plurality of boiling cooling Whether a device is thermally connected may be arbitrarily determined by those skilled in the art according to the structure, characteristics, usage state, and the like of the electronic device.
  • the present invention can be widely applied to cooling systems that efficiently cool electronic devices.
  • Cooling system 100 Electronic device 110 Processor 111 Die (chip) 112 Heat Spreader 120 Board 200, 300, 400 Boiling Cooling Device 210 Sealed Container 211 Heat Receiving Side 212 Heat Dissipating Side 220 Heat Dissipating Member (Heat Dissipating Fin) 10a Open space 11 1st cooling liquid 12 Cooling tank 12a Bottom wall 12b Side wall 13 2nd cooling liquid 13a, 13b, 13c, 13d, 13e Internal partition 14a, 14b, 14c, 14d, 14e Internal partition 15aa, 15ab, 15ac 15ad, 15ba, 15bb, 15bc, 15bd, 15ca, 15cb, 15cc, 15cd, 15da, 15db, 15dc, 15dd storage 16 inlet 16aa, 16ab, 16ac, 16ad, 16ba, 16bb, 16bc, 16bd, 16ca, 16cb 16cc, 16cd, 16da, 16db, 16dc

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 電子機器の冷却性能を向上させた、簡単かつ効率的な冷却システムを提供する。冷却システム10は冷却槽12を有し、冷却槽12の開放空間内には沸点Tを有する第2の冷却液13が入れられている。冷却槽12の開放空間内には、プロセッサ110を発熱体としてボード120上に搭載した電子機器100が収納され、第2の冷却液13に浸漬されている。沸騰冷却装置200は、プロセッサ110に熱的に接続されている冷却装置であって、沸点T(ただし、T=T又はT<T)を有する第1の冷却液11が封入されている。冷却槽12内の第2の冷却液中の表層部には、第1の熱交換器22が浸漬されている。第1の熱交換器22内には、沸点T(ただし、T=T又はT>T)を有する第3の冷媒が封入されている。

Description

電子機器の冷却システム
 本発明は電子機器の冷却システムに係り、特に、スーパーコンピュータやデータセンター等の超高性能動作や安定動作が要求され、かつそれ自体からの発熱量が大きな電子機器を、効率的に冷却するための電子機器の冷却システムに関するものである。
 近年のスーパーコンピュータの性能の限界を決定する最大の課題の一つは消費電力であり、スーパーコンピュータの省電力性に関する研究の重要性は、既に広く認識されている。すなわち、消費電力当たりの速度性能(Flops/W)が、スーパーコンピュータを評価する一つの指標となっている。また、データセンターにおいては、データセンター全体の消費電力の45%程度を冷却に費やしているとされ、冷却効率の向上による消費電力の削減の要請が大きくなっている。
 スーパーコンピュータやデータセンターの冷却には、従来から空冷式と液冷式が用いられている。液冷式は、空気より格段に熱伝達性能の優れる液体を用いるため、一般的に冷却効率がよいとされている。例えば、東京工業大学が構築した「TSUBAME-KFC」では、合成油を用いた液浸冷却システムにより、4.50GFlops/Wを達成し、2013年11月、及び2014年6月発表の「Supercomputer Green500 List」において1位を獲得している。しかし、冷却液に粘性の高い合成油を用いているため、油浸ラックから取り出した電子機器から、そこに付着した油を完全に除去することが困難であり、電子機器のメンテナンス(具体的には、例えば調整、点検、修理、交換、増設。以下同様)が極めて困難であるという問題がある。更には、使用する合成油が、冷却系を構成するパッキン等を短期間に腐食させて漏えいするなどし、運用に支障を来す問題の発生も報告されている。
 他方、上記のような問題を生ずる合成油ではなく、フッ化炭素系冷却液を用いる液浸冷却システムが提案されている。具体的には、フッ化炭素系の冷却液(3M社の商品名「Novec(3M社の商標。以下同様)7100」、「Novec7200」、「Novec7300」で知られる、ハイドロフルオロエーテル(HFE)化合物)を用いる例である(例えば、特許文献1、特許文献2)。
 ところで、CPUなど特に大量の熱を発生する発熱体を局所的に冷却するために、冷却液の気化と凝縮のサイクルによって熱の輸送・放熱を行う沸騰冷却方式を用いる冷却装置の例が、いくつか提案されている。一つは、プロセッサの発熱表面に接続した蒸発部と、空冷ファンもしくは水冷配管に接続した凝縮部とを、2本の配管で接続して、気液平衡を利用した冷媒循環を行う、冷却モジュールの例である(非特許文献1)。もう一つは、特別な流路壁を内部に形成した平板状容器に、冷却液を封入し、平板状容器の受熱領域を発熱体と熱的に接続し、平板状容器の放熱領域を放熱フィンなどの放熱部と接続し、放熱領域は、放熱領域における冷却液の流路を形成する例である(例えば、特許文献3)。
特開2013-187251号公報 特表2012-527109号公報 特開2013-69740号公報 グリーンネットワーク・システム技術研究開発プロジェクト 「集熱沸騰冷却システムの研究開発(2008年度~2012年度 5年間)」 8-9、11頁、2013年7月17日 URL:http://www.nedo.go.jp/content/100532511.pdf
 特許文献1が開示する冷却システムは、電子機器の冷却に気化熱(潜熱)を使用するため、沸点が100℃以下のフッ化炭素系冷却液を用いている。そして、電子機器に搭載された素子の発熱で冷却液が蒸発するときの気化熱(潜熱)により素子の熱を奪い取り、当該素子を冷却している。従って、高温の素子表面で、局所的にフッ化炭素系冷却液が沸騰して気泡が断熱膜を形成することがあるため、冷却液が本来有している高い熱伝導能力が損なわれてしまうという問題がある。また、最近のスーパーコンピュータやデータセンター等で使用される電子機器には、冷却すべき対象がCPU(Central Processing Unit)以外にも、GPU(Graphics Processing Unit)、高速メモリ、チップセット、ネットワークユニット、PCI Expressバスや、バススイッチユニット、SSD(Solid State Drive)、パワーユニット(交流-直流変換器、直流-直流電圧変換器等)等、多数存在しており、気化する温度が異なるこれらの対象物全てを等しく冷却することは困難であり、表面の冷媒が気化しない対象物では冷却効率が極めて低くなってしまう。
 また、特許文献2が開示する冷却システムは、1つ又はそれ以上の発熱する電子機器を収容する密封型モジュールの構成を採用している。このため、個々の密封型モジュールに冷却液を流通させるための機構全体が複雑となり、また、密封型モジュールから電子機器全体を簡単に取り出すことができないため、電子機器のメンテナンス性に劣るという問題がある。
 グリーンネットワーク・システム技術研究開発プロジェクトが提案する冷却モジュールは、プロセッサ上の蒸発部とそこから離れたところに設置される凝縮部とを接続する2本の配管を別途設けることが必要となるため、冷却モジュール全体の構成が大型かつ複雑となるという問題がある。加えて、これら配管の存在が、空冷に頼らなければならない周辺の電子部品の冷却の妨げになるため、また、冷却ファンもしくは配管を使用した二次冷却では、特に配管を使用する場合には配管内の流量の制約から冷却効率が低く制約されてしまうため、電子機器全体としての冷却性能が制限されてしまうという問題がある。他方、特許文献3が開示する冷却装置は、局所的な一次冷却用の、小型の沸騰冷却装置を提供できるので有利であるものの、従来の、冷却効率の低い二次冷却技術を適用することによっては、電子機器全体の冷却性能の向上を図ることができないという問題がある。
 以上のように、従来の液浸冷却方式においては、密封型モジュールに冷却液を流通させるための機構全体が複雑となり、電子機器のメンテナンス性に劣るという問題がある。また、従来の沸騰冷却方式は、電子機器の局所的冷却に適しているものの、機構全体が大型かつ複雑となるおそれがあり、また二次冷却の冷却効率が低いため電子機器全体の冷却性能の向上を図ることができないという問題がある。
 従って、本発明の目的は、上記した従来技術の問題点を解決し、電子機器の冷却性能を向上させた、簡単かつ効率的な冷却システムを提供することにある。
 上記の課題を解決するために、本発明の一局面によれば、電子機器を冷却液中に浸漬して直接冷却する、冷却システムであって、少なくとも1つの発熱体を有する電子機器の前記発熱体に熱的に接続される沸騰冷却装置であって、沸点Tを有する第1の冷却液が封入されている沸騰冷却装置と、前記第1の冷却液の沸点Tと同じ又は前記第1の冷却液の沸点Tよりも高い沸点T(T=T又はT>T)を有する第2の冷却液が入れられた冷却槽であって、前記沸騰冷却装置及び前記電子機器が前記第2の冷却液中に浸漬されて直接冷却される冷却槽と、前記第1の冷却液の沸点Tと同じ又は前記第1の冷却液の沸点Tよりも低い沸点T(T=T又はT<T)を有する第3の冷媒が封入されている第1の熱交換器であって、前記冷却槽内の前記第2の冷却液中の表層部に浸漬される第1の熱交換器と、を含む冷却システムが提供される。
 本発明に係る冷却システムの好ましい実施の形態において、前記沸騰冷却装置は、受熱側と放熱側を有する密閉容器と、前記放熱側に設けられた放熱部材とを有し、前記沸騰冷却装置及び前記電子機器が前記第2の冷却液中に浸漬されるとき、前記放熱側が前記受熱側より上に位置するように前記発熱体に熱的に接続されているよう構成してよい。
 また、本発明に係る冷却システムの好ましい実施の形態において、前記第1の冷却液の沸点が100℃以下であり、前記第2の冷却液の沸点が150℃以上であり、前記第3の冷媒の沸点が50℃以下であるよう構成してよい。
 さらに、本発明に係る冷却システムの好ましい実施の形態において、前記第1の冷却液及び/又は前記第3の冷媒が、主成分としてフッ化炭素化合物を含むよう構成してよい。
 また、本発明に係る冷却システムの好ましい実施の形態において、前記第2の冷却液が、主成分として完全フッ素化物を含むよう構成してよい。
 さらに、本発明に係る冷却システムの好ましい実施の形態において、前記冷却システムが前記冷却槽の外部に置かれた、前記第3の冷媒を冷やす第2の熱交換器をさらに有し、前記第1の熱交換器と前記第2の熱交換器は第1の流通路により連結されていてよい。
 また、本発明に係る冷却システムの好ましい実施の形態において、前記冷却槽が、前記冷却槽の上部開口に対して着脱可能又は開閉可能に取り付けられた天板を有し、該天板が前記第1の熱交換器を保持していてよい。
 さらに、本発明に係る冷却システムの好ましい実施の形態において、前記冷却槽は、前記第2の冷却液の入口と出口を有し、前記出口と前記入口が、前記冷却槽の外部にある第2の流通路により連結されており、前記流通路中に、前記第2の冷却液を移動させる少なくとも1つのポンプと、前記第2の冷却液を冷やす第3の熱交換器が設けられていてよい。
 加えて、本発明のもう一つの局面によれば、複数の電子機器を冷却液中に浸漬して直接冷却する冷却システムであって、底壁及び側壁によって形成される開放空間を有する冷却槽と、前記冷却槽内に複数の内部隔壁を設けることにより前記開放空間を分割して形成される、配列された複数の収納部であって、各収納部に少なくとも1つの電子機器を収納するための収納部と、前記複数の収納部の各々に形成される、冷却液の流入開口及び流出開口と、を有し、前記流入開口は、各収納部の底部又は側面に形成され、前記流出開口は、各収納部を流通する前記冷却液の液面近傍に形成されており、前記冷却システムはさらに、前記少なくとも1つの電子機器が有する少なくとも1つの発熱体に熱的に接続される沸騰冷却装置であって、沸点Tを有する第1の冷却液が封入されている沸騰冷却装置と、前記第1の冷却液の沸点Tと同じ又は前記第1の冷却液の沸点Tよりも低い沸点T(T=T又はT<T)を有する第3の冷媒が封入されている第1の熱交換器とを有し、前記複数の収納部の各々には、前記第1の冷却液の沸点Tと同じ又は前記第1の冷却液の沸点Tよりも高い沸点T(T=T又はT>T)を有する第2の冷却液が入れられ、前記沸騰冷却装置及び前記少なくとも1つの電子機器が各収納部内の前記第2の冷却液中に浸漬されて直接冷却され、前記第1の熱交換器が各収納部内の前記第2の冷却液中の表層部に浸漬されている、冷却システムが提供される。
 本発明に係る冷却システムによれば、発熱体に熱的に接続されている沸騰冷却装置に封入された第1の冷却液が気化することにより、沸騰冷却装置が、発熱体から局所的にかつ強力に熱を奪い取ると同時に、第1の冷却液の沸点Tと同じ又は第1の冷却液の沸点Tよりも高い沸点Tを有する第2の冷却液が、その熱を沸騰冷却装置から完全に奪い取ることにより、電子機器を全体的に冷却する。このとき、第1の冷却液と沸点が同じ又は第1の冷却液より沸点が高い第2の冷却液が、電子機器に搭載される周辺の電子部品を、有効かつ強力に冷却する。すなわち、主要な発熱源であるプロセッサの沸騰冷却に対する二次冷却用の冷媒(第2の冷却液)が、周辺の電子部品に対して、有効な一次冷却用の冷媒としても機能する。また、第1の冷却液の沸点Tと同じ又は第1の冷却液の沸点Tよりも低い沸点T(T=T又はT<T)を有する第3の冷媒が封入されている第1の熱交換器が、冷却槽内の第2の冷却液中の表層部に浸漬されているので、第2の冷却液中の表層部の熱を奪い、冷却槽の外部に取り出す。このようにして、沸騰冷却装置による主要な発熱源の局所冷却、二次冷却用の冷媒(第2の冷却液)による沸騰冷却装置と周辺の電子部品全体の液浸冷却、及び第1の熱交換器による二次冷却用の冷媒の表層部からの奪熱を含む三重の冷却が行われることにより、電子機器の冷却性能を、著しく向上させることができる。また、第2の冷却液として沸点が比較的高い冷却液を使用できるので、第2の冷却液が蒸発しにくく、第2の冷却液を入れる冷却槽が非密閉の開放空間になっていてもよく、複雑で高価な密封構造を採る必要がない。加えて、第1の熱交換器を第2の冷却液中の表層部に浸漬するだけでよいため、冷却槽内で構成部品が占める体積が小さくて済む。従って、冷却システムの簡素化及び小型化が実現される。さらに、従来の沸騰冷却方式では、主要な発熱源であるプロセッサを冷却するために、複雑な配管や大型のヒートシンクなどの機構を要し、これらの存在が、空冷に頼らなくてはならない周辺の電子部品の冷却を妨げる結果にもなっていた。このような従来技術に対して、本発明によれば、複雑な配管や大型のヒートシンクが不要となって周辺の電子部品の冷却に有利であることに加えて、二次冷却用の冷媒(第2の冷却液)が、遍く電子機器のボード全体に行き渡ることによって、高い効率で周辺の電子部品を冷却することが可能となる。なお、本明細書における「開放空間」を有する冷却槽には、電子機器の保守性を損なわない程度の簡素な密閉構造を有する冷却槽も含まれるものである。例えば、冷却槽の開口部に、パッキン等を介して天板を着脱可能又は開閉可能に取り付ける構造は、簡素な密閉構造といえる。特に、第1の熱交換器を第2の冷却液中の表層部に浸漬するだけでよいため、第1の熱交換器を当該天板に機械的に保持させることが可能である。
 上記した本発明の目的及び利点並びに他の目的及び利点は、以下の実施の形態の説明を通じてより明確に理解される。もっとも、以下に記述する実施の形態は例示であって、本発明はこれに限定されるものではない。
本発明の一実施形態に係る冷却システムの要部の構成を示す、部分拡大縦断面図である。 沸騰冷却装置の一例を示す斜視図である。 沸騰冷却装置の他の例を示す斜視図である。 沸騰冷却装置の他の例を示す斜視図である。 本発明の一実施形態に係る冷却システムの模式図である。 本発明の他の実施形態に係る高密度冷却システムの構成を示す、部分断面を示す斜視図である。 本発明の他の実施形態に係る高密度冷却システムにおける要部を示す斜視図である。 本発明の他の実施形態に係る高密度冷却システムにおける、第1の熱交換器の設置例を示す模式図である。
 以下、本発明に係る冷却システムの好ましい実施の形態を、図面に基づいて詳細に説明する。本実施形態の説明では、最初に、好ましい一実施形態について、図1、図2A、図2B及び図2Cを参照して、ダイ(半導体チップ)とダイを取り囲むヒートスプレッダとからなるプロセッサを、発熱体としてボード上に搭載した電子機器を、冷却槽内に収納して冷却する、冷却システムの要部の構成を説明する。続いて、図3を参照して、電子機器として、複数個のプロセッサを搭載したボードを含む1ユニットのみを簡略的に示しながら、当該電子機器を冷却槽内に収納して冷却する冷却システムの全体構成を説明する。次に、他の好ましい実施形態について、図4から図6を参照して、冷却槽内に形成された複数の収納部の各々に電子機器を収納して冷却する、高密度冷却システムの構成を説明する。なお、これは例示であって、ボード当たりのプロセッサの数や種類(CPU又はGPU)は任意であり、また、冷却システムにおける電子機器のユニット数も任意であり、本発明における電子機器の構成を限定するものではない。
 図1を参照して、一実施形態に係る冷却システム10は冷却槽12を有し、冷却槽12の開放空間内には沸点Tを有する第2の冷却液13が入れられている。冷却槽12の開放空間内には、プロセッサ110を発熱体としてボード120上に搭載した電子機器100が収納され、第2の冷却液13に浸漬されている。プロセッサ110は、ダイ111とダイを取り囲むヒートスプレッダ112とを含む。なお、ヒートスプレッダの使用は任意であり、省略してよい。電子機器100のボード120上には、プロセッサ110以外に、他の複数のプロセッサ及び周辺の電子部品が当然に搭載されているが、これら他の複数のプロセッサ及び電子部品については図示を省略している。沸騰冷却装置200は、発熱体としてのプロセッサ110に熱的に接続されている冷却装置であって、沸点T(ただし、T=T又はT>T)を有する第1の冷却液11が封入されている。
 図1及び図2Aに示すように、沸騰冷却装置200は、受熱側211と放熱側212を有する密閉容器210と、放熱側212に設けられた放熱部材220とを有している。図示する例では、密閉容器210は、6つの平板によって構成された薄い箱形を有しており、これにより断面矩形状の空間が形成されている。なお、密閉容器210の外形及び内部構造については任意であり、冷却する対象の放熱表面の面積や発生する熱量を考慮して、寸法及び形状を適宜に決定してよい。本実施形態では、便宜上、箱形の密閉容器210の下半分を受熱側211、上半分を放熱側212と呼ぶこととする。もっとも、後述するように、プロセッサ110の発熱表面に接続されるのは、密閉容器210の下半分の一つの面に過ぎないことに留意されたい。密閉容器210の材料としては、アルミニウム、銅、銀などの熱伝導性のよい金属を使用できるが、これらに限定されるものではない。
 密閉容器210内には、受熱側211の空間を充たす程度の量の第1の冷却液11が封入されている。第1の冷却液としては、3M社の商品名「Novec(3M社の商標。以下同様)7000」(沸点34℃)、「Novec7100」(沸点61℃)、「Novec7200」(沸点76℃)、「Novec7300」(沸点98℃)として知られるハイドロフルオロエーテル(HFE)化合物を、好適に使用することができるが、これらに限定されるものではない。通常、プロセッサの動作温度を100℃以下に管理することが望ましいと考えられることから、沸騰冷却装置200の沸騰冷却機能が失われないよう、100℃以下の沸点を有する冷却液を使用することが好ましい。なお、密閉容器210内に第1の冷却液を封入する方法には、公知の方法を適用できるので、ここでの詳しい説明を省略する。
 密閉容器210の受熱側211において、箱形の密閉容器210の背面が、プロセッサ110の発熱表面に熱的に接続されている。この接続には、熱伝導性の優れた金属グリスなどの接着剤を用いることができるが、これに限定されるものではない。なお、沸騰冷却装置200をプロセッサ110の発熱表面に接続するときの向きについては、沸騰冷却装置200及び電子機器100が第2の冷却液13中に浸漬されるとき、放熱側212が受熱側211より上に位置するような向きとするとよい。
 密閉容器210の放熱側212において、箱形の密閉容器210の正面と背面には、それぞれ放熱部材(放熱フィン)220が設けられている。放熱部材220は、放熱側212の表面積を増減することで、第2の冷却液が奪い取る熱量を管理することができる。放熱部材220の材料としては、密閉容器210と同様の材料でよく、密閉容器への固定方法も、ろう付けなどの公知の方法を使用してよい。
 図2Bは、沸騰冷却装置の他の例を示しており、図2Aと同様の部分には同様の符号を用いている。図2Bに示す例において、沸騰冷却装置300は、放熱部材220のサイズを幅方向に拡大し、フィンの数を増やすことで、図2Aに示す沸騰冷却装置200よりも放出される熱量を増やしている。逆に、将来の密閉容器210の素材技術の進歩により、放熱部材220の付設による表面積の増大をしなくても、所望の冷却性能を得られるときには、放熱部材220の付設を省略してよい。すなわち、図2Cに示す他の例のように、沸騰冷却装置400を、放熱部材が付設されていない密閉容器210のみで構成してもよい。
 図1に戻って、冷却槽12には、沸騰冷却装置200及び電子機器100の全体を浸漬するのに十分な量の第2の冷却液13が、液面19まで入れられている。第2の冷却液としては、3M社の商品名「フロリナート(3M社の商標、以下同様)FC-72」(沸点56℃)、「フロリナートFC-770」(沸点95℃)、「フロリナートFC-3283」(沸点128℃)、「フロリナートFC-40」(沸点155℃)、「フロリナートFC-43」(沸点174℃)として知られる、完全フッ素化物(パーフルオロカーボン化合物)からなるフッ素系不活性液体を好適に使用することができるが、これらに限定されるものではない。ただし、本発明に従い、第2の冷却液13には、第1の冷却液11の沸点Tと同じ又は第1の冷却液11の沸点Tよりも高い沸点Tを有する冷媒を選択することが重要である。一例として、第1の冷却液11に、「Novec7000」(沸点34℃)又は「Novec7100」(沸点61℃)を使用する場合、第2の冷却液13に、「フロリナートFC-43」(沸点174℃)を好適に使用することができる。
 本発明者は、完全フッ素化物が、高い電気絶縁性と、高い熱伝達能力を有し、不活性で熱的・化学的に安定性が高く、不燃性で、かつ酸素を含まない化合物であるためオゾン破壊係数がゼロである等の優れた特性を有している点に着目し、そのような完全フッ素化物を主成分として含む冷却液を、高密度の電子機器の浸漬冷却用の冷媒として使用する冷却システムの発明を完成し、特許出願している(特願2014-170616)。この先行出願において開示しているように、特に、フロリナートFC-43又はFC-40を第2の冷却液に用いると、開放空間を有する冷却槽からの、第2の冷却液13の蒸発による損失を大幅に低減しながら、小さい体積の冷却槽内に高密度に設置された複数の電子機器を効率よく冷却することができ、極めて有利である。ただし、既に述べたように、本発明に従い、第2の冷却液13には、第1の冷却液11の沸点Tと同じ又は第1の冷却液11の沸点Tよりも高い沸点Tを有する冷却液として、フロリナートFC-72、FC-770、FC-3283のいずれかを選択することを制限するものではないことは勿論である。
 なお、フロリナートFC-43又はFC-40は、その沸点が150℃以上であり、極めて蒸発しにくい性質を有するため、冷却槽12の上部開口に設けられる天板20は、電子機器100のメンテナンスを容易に行えるよう、上部開口に対して着脱可能又は開閉可能に取り付けられていてよい。例えば、天板20は、冷却槽12の上部開口の一方縁部に設けられた図示しないヒンジ部により、開閉自在に支持されていてよい。また、冷却槽12の側部の下方には、第2の冷却液が流入する入口16が設けられており、冷却槽12の側部の上方には、第2の冷却液が流出する出口18が設けられている。これにより冷却槽12の開放空間内に収容された電子機器100が、冷却槽12の開放空間内を流通する第2の冷却液13中に浸漬されて直接冷却されるよう構成されている。
 図1を参照して、一実施形態に係る冷却システム10は、天板20に機械的に保持されている第1の熱交換器22をさらに有し、第1の熱交換器22が第2の冷却液13中の表層部に浸漬されている。第1の熱交換器22の機械的な保持方法は、例えば天板20に固定された懸垂支持部材(図示せず)を使用することでよいが、これに限定されるものではない。第1の熱交換器22には、第1の冷却液の沸点Tと同じ又は第1の冷却液の沸点Tよりも低い沸点T(T=T又はT<T)を有する第3の冷媒(図示せず)が封入されている。ここで、「封入」されているとは、第3の冷媒が外気中に漏れないことを意味し、第3の冷媒が、第1の熱交換器から他の構成部分(例えば、後述する第2の熱交換器)へ移動すること、又は第1の熱交換器と他の構成部分との間を循環することを制限するものではない。第3の冷却液としては、第1の冷却液と同様、3M社の商品名「Novec7000」(沸点34℃)、「Novec7100」(沸点61℃)、「Novec7200」(沸点76℃)、「Novec7300」(沸点98℃)として知られるハイドロフルオロエーテル(HFE)化合物を好適に使用することができるが、これらに限定されるものではない。ただし、本発明に従い、第3の冷媒には、第1の冷却液11の沸点Tと同じ又は第1の冷却液11の沸点Tよりも低い沸点Tを有する冷媒を選択することが重要である。一例として、第1の冷却液11に「Novec7000」(沸点34℃)を使用する場合、第3の冷媒に「Novec7000」(沸点34℃)を好適に使用することができ、第1の冷却液11に「Novec7100」(沸点61℃)を使用する場合、第3の冷媒に「Novec7000」(沸点34℃)又は「Novec7100」(沸点61℃)を好適に使用することができる。
 図1及び図3に示すように、一実施形態に係る冷却システム10は、冷却槽12の外部に置かれた第2の熱交換器24をさらに有するとよい。第1の熱交換器22と前記第2の熱交換器24は、第1の流通路26により連結されており、第3の冷媒が、第1の流通路26を通って第1の熱交換器22と第2の熱交換器24の間を移動可能又は循環可能に構成されている。第1の熱交換器には、第2の冷却液13中の表層部に浸漬されるよう、薄型な熱交換器を使用するのが好ましく、例えば、図1に示すようなコイル状、渦巻状、又は蛇行状に成形した管からなる熱交換器でよいが、熱交換器の構造(プレート形熱交換器、プレートアンドフィン形熱交換器等)を制限するものではない。第2の熱交換器24は、第1の熱交換器22から第2の熱交換器24に移動する第3の冷媒を冷やす熱交換器であればよく、例えば、循環式の各種の熱交換器(ラジエータ又はチラー)や冷却器でよい。
 図3を参照して、冷却槽12の出口18と入口16が第2の流通路30により連結されており、第2の流通路30中に、第2の冷却液13を移動させるポンプ40と、第2の冷却液13を冷やす第3の熱交換器90が設けられている。なお、第2の流通路30を流れる第2の冷却液13の流量を調整するための流量調整バルブ50と流量計70も、第2の流通路30中に設けられている。
 ポンプ40は、動粘度が比較的大きい(室温25℃における動粘度が3cStを超える)液体を移動させる性能を備えていることが好ましい。例えば、第2の冷却液13として、フロリナートFC-43又はFC-40を使用する場合、FC-43の動粘度は2.5~2.8cSt程度であり、FC-40の動粘度は1.8~2.2cSt程度だからである。流量調整バルブ50は、手動で動作させるものでよく、また、流量計70の計測値に基づき流量を一定に保つような調整機構を備えたものでもよい。加えて、第3の熱交換器90は、循環式の各種の熱交換器(ラジエータ又はチラー)や冷却器でよい。
 次に、一実施形態に係る冷却システム10の動作について説明する。電子機器100の運用が開始された後、プロセッサ110の表面温度が上昇して第1の冷却液11の沸点(例えば、Novec7000において34℃)よりも高い温度に達すると、沸騰冷却装置200の密閉容器210内に封入された第1の冷却液11が、密閉容器210の受熱側211の内壁表面から気泡となって蒸発し始める。気化した第1の冷却液11は、密閉容器210の放熱側212の空間を上昇する。しかし、沸騰冷却装置200及び電子機器100の周囲にある第2の冷却液13(例えば、フロリナートFC-43)は、その温度が、例えば17℃-23℃と低く保たれているため、気化した第1の冷却液11は、密閉容器210の放熱側212の内壁表面において凝縮され、第1の冷却液11が液相状態にある受熱側211に向かって、内壁表面上を伝わって、重力で落下する。このような、沸騰冷却装置200における気相及び液相の冷媒循環により、沸騰冷却装置200が、プロセッサ110から局所的にかつ強力に熱を奪い取ると同時に、その周囲にある第2の冷却液13が、その熱を沸騰冷却装置200から(主に、放熱部材220を通して)完全に奪い取ることにより、電子機器を全体的に冷却する。このとき、沸点が高い第2の冷却液13が、電子機器100のボード120上に搭載される周辺の電子部品(図示せず)を、有効かつ強力に冷却する。すなわち、主要な発熱源であるプロセッサ110の沸騰冷却に対する二次冷却用の冷媒(第2の冷却液13)が、周辺の電子部品(図示せず)に対して、有効な一次冷却用の冷媒としても機能する。第1の冷却液11の沸点Tと同じ又は第1の冷却液の沸点Tよりも低い沸点Tを有する第3の冷媒が封入されている第1の熱交換器22が、冷却槽12内の第2の冷却液13中の表層部に浸漬されているので、第2の冷却液13中の表層部の熱を奪い、冷却槽12の外部に取り出す。このようにして、沸騰冷却装置200による主要な発熱源の局所冷却、二次冷却用の冷媒(第2の冷却液13)による沸騰冷却装置200と周辺の電子部品(図示せず)全体の液浸冷却、及び第1の熱交換器22による二次冷却用の冷媒の表層部からの奪熱を含む三重の冷却が行われることにより、電子機器100の冷却性能を、著しく向上させることができる。
 また、第2の冷却液13として沸点が比較的高い冷却液(例えば、フロリナートFC-43又はFC-40は、その沸点が150℃以上である)を使用できるので、第2の冷却液13が蒸発しにくく、第2の冷却液13を入れる冷却槽12が非密閉の開放空間になっていてもよく、複雑で高価な密封構造を採る必要がない。加えて、第1の熱交換器22を第2の冷却液13中の表層部に浸漬するだけでよいため、冷却槽12内で構成部品が占める体積が小さくて済む。従って、冷却システムの簡素化及び小型化が実現される。さらに、従来の沸騰冷却方式では、主要な発熱源であるプロセッサを冷却するために、複雑な配管や大型のヒートシンクなどの機構を要し、これらの存在が、空冷に頼らなくてはならない周辺の電子部品の冷却を妨げる結果にもなっていた。このような従来技術に対して、本発明によれば、複雑な配管や大型のヒートシンクが不要となって周辺の電子部品(図示せず)の冷却に有利であることに加えて、二次冷却用の冷媒(第2の冷却液13)が、遍く電子機器100のボード120全体に行き渡ることによって、高い効率で周辺の電子部品(図示せず)を冷却することが可能となる。なお、本実施形態において、沸騰冷却装置200に使用する第1の冷却液11として、その沸点Tが、冷却槽12に入れられた第2の冷却液13の沸点Tと同じ冷却液を使用し、及び/又は第1の熱交換器22に使用する第3の冷媒として、その沸点が第2の冷却液13の沸点Tと同じ冷却液を使用しても、従来の冷却システムにおける冷却効率を大幅に改善するという目的を達成することができることは勿論である。
 以上、一実施形態に係る冷却システムについて、図1から図3を参照しつつ、1ユニットの電子機器を冷却槽に収納する例を説明したが、これは本発明の要部を説明するために簡略化したものであり、本発明はこれに限定されるものではない。本発明が、複数のユニットの電子機器を冷却槽に高密度に収納して冷却する、高密度冷却システムに適用することができることは勿論である。以下、図4から図6を参照して、本発明の他の実施形態に係る高密度冷却システムの構成を説明する。なお、図1及び図3に示した冷却システムと同様の部分には同様の符号を用い、詳しい説明を省略する。
 他の実施形態の説明では、電子機器として、プロセッサを複数搭載したボードを含む1ユニットを、合計16ユニット、冷却槽の各収納部に収納して冷却する、高密度冷却システムの構成を説明する。なお、これは例示であって、ボード当たりのプロセッサの数や種類(CPU又はGPU)は任意であり、また、高密度冷却システムにおける電子機器のユニット数も任意であり、本発明における電子機器の構成を限定するものではない。
 図4~図6を参照して、他の実施形態に係る冷却システム500は冷却槽12を有し、冷却槽12の底壁12a及び側壁12bによって開放空間10aが形成されている。冷却槽12内に、縦方向の内部隔壁13a、13b、13c、13d、13eと、横方向の内部隔壁14a、14b、14c、14d、14eを設けることにより、開放空間10aを均等に16分割して、配列された16個の収納部15aa、15ab、15ac、15ad、15ba、15bb、15bc、15bd、15ca、15cb、15cc、15cd、15da、15db、15dc、15dd(以下、まとめて「収納部15aa~15dd」と記載することがある。)が形成されている。そして、各収納部に少なくとも1つの電子機器100が収納される。冷却槽12の開放空間10a内には、第2の冷却液13が液面19まで入れられている。収納部15aa、15ab、15ac、15ad、15ba、15bb、15bc、15bd、15ca、15cb、15cc、15cd、15da、15db、15dc、15ddの底部には、第2の冷却液13の流入開口16aa、16ab、16ac、16ad、16ba、16bb、16bc、16bd、16ca、16cb、16cc、16cd、16da、16db、16dc、16dd(以下、まとめて「流入開口16aa~16dd」と記載することがある。)が形成されている。
 また、収納部15aa~15ddを流通する第2の冷却液13の液面19近傍には、流出開口17aa、17ab、17ac、17ad、17ae、17ba、17bb、17bc、17bd、17be、17ca、17cb、17cc、17cd、17ce、17da、17db、17dc、17dd、17de、17ea、17eb、17ec、17ed、17ee(以下、まとめて「流出開口17aa~17ee」と記載することがある。)が形成されている。
 他の実施形態に係る冷却システム500において、流出開口は、各収納部を形成している複数の内部隔壁が互いに交差する位置もしくはその近傍に形成されている。例えば、図4を参照すると、収納部15aaは、縦方向の内部隔壁13a、13bと、横方向の内部隔壁14a、14bによって形成されており、内部隔壁13aと内部隔壁14aが交差する点、内部隔壁13aと内部隔壁14bが交差する点、内部隔壁13bと内部隔壁14aが交差する点、及び内部隔壁13bと内部隔壁14bが交差する点にそれぞれ位置するように、流出開口17aa、17ba、17ab、17bbが形成されている。同様にして、図5を参照すると、収納部15bbは、縦方向の内部隔壁13b、13cと、横方向の内部隔壁14b、14cによって形成されており、内部隔壁13bと内部隔壁14bが交差する点、内部隔壁13bと内部隔壁14cが交差する点、内部隔壁13cと内部隔壁14bが交差する点、及び内部隔壁13cと内部隔壁14cが交差する点にそれぞれ位置するように、流出開口17bb、17cb、17bc、17ccが形成されている。
 他の実施形態に係る冷却システム500において、流出開口は、冷却槽12の底壁12aを貫通し液面19近傍まで延びる流出管170の一端に形成されている。例えば、図5を参照すると、収納部15bbに関し、流出開口17bb、17cb、17bc、17ccは、縦方向の内部隔壁13b、13cと、横方向の内部隔壁14b、14cによって形成されており、内部隔壁13bと内部隔壁14bが交差する点、内部隔壁13bと内部隔壁14cが交差する点、内部隔壁13cと内部隔壁14bが交差する点、及び内部隔壁13cと内部隔壁14cが交差する点にそれぞれ位置する流出管170の一端に形成されている。なお、流出管の他端には、底部開口18aa、18ab、18ac、18ad、18ae、18ba、18bb、18bc、18bd、18be、18ca、18cb、18cc、18cd、18ce、18da、18db、18dc、18dd、18de、18ea、18eb、18ec、18ed、18ee(以下、まとめて「底部開口18aa~18ee」という場合がある。)が形成されている。
 流出開口が、各収納部を形成している複数の内部隔壁が互いに交差する位置に形成されている場合、各収納部に設けられる流出開口を、各収納部の四隅に分散して確保できるので有利である。例えば、収納部15bbでは、その四隅に配置される流出管170によって、流出開口17bb、17bc、17cb、及び17ccが形成されている。なお、このように流出開口が形成されている場合、1つの流出開口が複数の収納部にとっての共通の流出開口となりうる。例えば、流出開口17bbは、収納部15aaにとっての流出開口の一部であると同時に、収納部15ab、15ba、及び15bbにとっての流出開口の一部でもある。同様のことが、流出開口17bc、17cb、及び17ccについても当てはまる。ただし、各収納部について、流出管を設ける位置及び本数は任意であり、各収納部を形成している複数の内部隔壁が互いに交差する位置の近傍に流出管を1本又は複数本設けてよいことは勿論である。また、流出管は、内部隔壁と一体化されている必要はなく、内部隔壁から離れて配置された管であってもよい。
 また、流出管170には、図5に示すように、流出管170の長手方向に1つ以上の小孔171が形成されていてよい。これら小孔171は、収納部の深さ方向の途中における第2の冷却液13の流通を促進する。一方、流入開口16aa~16ddは、図示のように円筒状の開口であることは必要でなく、例えば、複数のノズルを有するヘッダを円筒の一端に連結して、多数のノズルによって流入開口を形成してもよい。
 各収納部15aa~15ddには、電子機器100が収納され、第2の冷却液13に浸漬されている。電子機器100は、先の一実施形態における電子機器と同様であり、ここでの詳しい説明を省略する。
 冷却槽12には、電子機器100の全体を浸漬するのに十分な量の第2の冷却液13が、液面19まで入れられている。第2の冷却液13は、先の一実施形態における第2の冷却液と同様であり、ここでの詳しい説明を省略する。
 冷却槽12には、各収納部15aa~15ddに設けられた流入開口16aa~16ddに向けて、分配管(図示せず)を介して第2の冷却液13を分配するための入口16と、各収納部15aa~15ddの流出開口17aa~17eeを通った第2の冷却液13を、集合管(図示せず)を介して集めるための出口18とが設けられている。
 各収納部15aa~15ddに収納された電子機器100が、動作中に所定の温度以下に保たれるよう、所望の温度に冷やされた第2の冷却液13が連続的に各収納部15aa~15dd内を流通するようにするために、冷却槽12の出口18から出た第2の冷却液13を、第3の熱交換器で冷やし、冷えた冷却液を冷却槽12の入口16に戻す第2の流通路を構成するとよい。かかる流通路及び付随する設備の一例は、既に図3を参照して詳しく説明したので、ここでの説明を省略する。
 図6を参照して、他の実施形態に係る冷却システム500は、第1の冷却液11の沸点Tと同じ又は第1の冷却液11の沸点Tよりも低い沸点T(T=T又はT>T)を有する第3の冷媒が封入されている、分散型の第1の熱交換器22aa、22ab、22ac、22ad、22ba、22bb、22bc、22bd、22ca、22cb、22cc、22cd、22da、22db、22dc、22dd(以下、まとめて「分散型の第1の熱交換器22aa~22dd」と記載することがある。)を有している。分散型の第1の熱交換器22aa~22ddの各々が、各収納部15aa~15dd内の第2の冷却液13中の表層部に浸漬されている。分散型の第1の熱交換器22aa~22ddの各々は、一実施形態における第1の熱交換器と同様に、天板(図示せず)に機械的に保持されていてよい。また、分散型の第1の熱交換器22aa~22ddの各々は、図1に示す例と同様に、冷却槽12の外部に置かれた第2の熱交換器と、第1の流通路(図示せず)により連結されていてよい。この連結は、分散型の第1の熱交換器22aa~22ddと同数の第2の熱交換器を用意して個別に連結する方法、分散型の第1の熱交換器22aa~22ddを、1つのグループがいくつか(例えば4つ)の熱交換器からなる複数(例えば4つ)のグループに分け、当該グループの数だけ第2の熱交換器を用意して個別に連結する方法、又は、分散型の第1の熱交換器22aa~22dd全部に対して1つの第2の熱交換器を連結する方法のいずれでもよい。
 次に、他の実施形態に係る冷却システム500の動作について説明する。入口16から入った第2の冷却液13は、図示しない分配管を介して、収納部15aa~15ddの底部に形成された流入開口16aa~16ddに向けて分配される。第2の冷却液13は、流入開口16aa~16ddから上方に吹き上がり、電子機器100のボード120上に搭載された、プロセッサに熱的に接続された沸騰冷却装置200及び周辺の電子部品(図示せず)を直接冷却する。例えば、第2の冷却液13は、流入開口16bbから吹き上がると、プロセッサに熱的に接続された沸騰冷却装置200並びに周辺の電子部品(図示せず)の表面から熱を奪い取りながら液面19に向けて上昇し、さらには流出開口17bb、17bc、17cb、17ccに向けて移動する。このとき、収納部15aa~15ddの体積は、冷却槽12の開放空間10aの体積の約1/16の体積と小さく、そこに収納される電子機器100も、冷却槽12の幅の約1/4の幅と小さいため、第2の冷却液13による電子機器100の冷却効率が極めてよく、また、電子機器100の周囲で第2の冷却液13が滞留するのを有効に防ぐことができる。
 加えて、各収納部15aa~15ddにおいて、分散型の第1の熱交換器22aa~22ddの各々は、第2の冷却液13中の表層部の熱を奪い、冷却槽12の外部に取り出す。このようにして、沸騰冷却装置200による主要な発熱源の局所冷却、二次冷却用の冷媒(第2の冷却液13)による沸騰冷却装置200と周辺の電子部品(図示せず)全体の液浸冷却、及び分散型の第1の熱交換器22aa~22ddによる二次冷却用の冷媒の表層部からの奪熱を含む三重の冷却が行われる。第2の冷却液13は、冷却槽12上の液面19の近傍に位置する流出開口17aa~17eeを通り、流出管170内を下降し、底部開口18aa~18eeを通り、集合管(図示せず)を介して出口18に集められる。
 上記の他の実施形態では、流入開口を各収納部の底部に形成する例を説明したが、流入開口を各収納部の側面に形成してもよい。
 上記した他の実施形態に係る高密度冷却システムによれば、冷却槽の開放空間の体積の約1/4の体積か、約1/4よりも小さい体積(例えば、開放空間の体積の約1/9(縦3×横3に分割する場合)、1/12(縦3×横4に分割する場合)、1/16(縦4×横4に分割する場合))の収納部に、従来よりも小さい幅(例えば、約1/2、1/3、1/4)の電子機器を収納して、冷却液を個別に流通させることにより、複数の電子機器を、個別に効率よく冷却することができる。換言すると、他の実施形態に係る高密度冷却システムにおいては、温められた冷却液を冷却槽の中央部からも流出させることができるので、温められた冷却液を冷却槽の側面から流出させる従来技術におけるように、冷却液が冷却槽の中央付近に滞留して、冷却槽内の電子機器の収納位置によって冷却性能に差が生じるのを避けることができる。従って、複数の電子機器の冷却性能を向上させ、かつ冷却性能のばらつきを無くして安定化させることができる。また、収納部に収納する電子機器のサイズを小さくできるので、電子機器の取り扱い性及びメンテナンス性を向上させることができる。
 上記の一実施形態及び他の実施形態では、冷却槽12が、第2の冷却液13の入口16と出口18を有することにより、第2の冷却液13が冷却槽12内を流通できるよう構成したが、入口と出口を省略してもよい。これは、入口と出口がない冷却システムにおいても、沸騰冷却装置200による主要な発熱源の局所冷却、二次冷却用の冷媒(第2の冷却液13)による沸騰冷却装置200と周辺の電子部品全体の液浸冷却、及び第1の熱交換器22又は分散型の第1の熱交換器22aa~22ddによる二次冷却用の冷媒の表層部からの奪熱を含む三重の冷却が行われるためである。従って、一実施形態に係る冷却システムを、他の実施形態に示した冷却システムにおける冷却槽のように、冷却槽内に複数の内部隔壁を設けることにより開放空間を分割して、配列された複数の収納部を形成する一方、流入開口及び流出開口を省略する構成に変更してもよい。
 上記の一実施形態及び他の実施形態において、電子機器100のボード上に搭載されるプロセッサはCPU又はGPUのいずれか又は両方を含んでよく、また、図示しない高速メモリ、チップセット、ネットワークユニット、PCI Expressバスや、バススイッチユニット、SSD、パワーユニット(交流-直流変換器、直流-直流電圧変換器等)を含んでよい。また、電子機器100は、ブレードサーバを含むサーバ、ルータ、SSD等の記憶装置等の電子機器であってもよい。ただし、既に述べたように、他の実施形態においては、従来の一般的な幅よりも小さい幅(例えば、約1/2、1/3、1/4)の電子機器でよいことは勿論である。
 また、上記の一実施形態及び他の実施形態において、沸騰冷却装置200における密閉容器210として、縦長の薄い箱形を有する例を図示しているが、これを横置きに、横長の箱形を有するものとして使用してもよい。また、密閉容器210の受熱側と放熱側とを、便宜上、縦長の箱形の密閉容器210の上半分と下半分に分けて説明したが、受熱側と放熱側が上下方向で共通化されていてもよい(ただし、プロセッサ110の発熱表面と熱的に接続される面側が受熱側となる)。
 また、上記の一実施形態及び他の実施形態において、沸騰冷却装置200が、電子機器100に含まれる主要な発熱体であるプロセッサに熱的に接続される例を説明したが、本発明は、電子機器に含まれるすべての発熱体に対して、個別に沸騰冷却装置が熱的に接続されることを要求するものではなく、また、電子機器が例えばサーバ、ルータ、SSD等の記憶装置等の機器である場合に、当該電子機器全体を1つの発熱体として、1つ又は複数の沸騰冷却装置が熱的に接続されることを要求するものでもない。電子機器に含まれる複数の発熱体のうちどの発熱体に対して、沸騰冷却装置をどのように熱的に接続するか、また、電子機器全体を1つの発熱体として1つ又は複数の沸騰冷却装置を熱的に接続するかは、電子機器の構造、特性、使用状態等に応じて当業者が任意に決定してよい。
 本発明は、電子機器を効率よく冷却する、冷却システムに広く適用することができる。
 10、500  冷却システム
 100  電子機器
 110  プロセッサ
 111  ダイ(チップ)
 112  ヒートスプレッダ
 120  ボード
 200、300、400  沸騰冷却装置
 210  密閉容器
 211  受熱側
 212  放熱側
 220  放熱部材(放熱フィン)
 10a  開放空間
 11  第1の冷却液
 12  冷却槽
 12a  底壁
 12b  側壁
 13  第2の冷却液
 13a、13b、13c、13d、13e  内部隔壁
 14a、14b、14c、14d、14e  内部隔壁
 15aa、15ab、15ac、15ad、15ba、15bb、15bc、15bd、15ca、15cb、15cc、15cd、15da、15db、15dc、15dd  収納部
 16  入口
 16aa、16ab、16ac、16ad、16ba、16bb、16bc、16bd、16ca、16cb、16cc、16cd、16da、16db、16dc、16dd  流入開口
 17aa、17ab、17ac、17ad、17ae、17ba、17bb、17bc、17bd、17be、17ca、17cb、17cc、17cd、17ce、17da、17db、17dc、17dd、17de、17ea、17eb、17ec、17ed、17ee  流出開口
 170  流出管
 171  小孔
 18  出口
 18aa、18ab、18ac、18ad、18ae、18ba、18bb、18bc、18bd、18be、18ca、18cb、18cc、18cd、18ce、18da、18db、18dc、18dd、18de、18ea、18eb、18ec、18ed、18ee  底部開口
 19  液面
 20  天板
 22  第1の熱交換器
 22aa、22ab、22ac、22ad、22ba、22bb、22bc、22bd、22ca、22cb、22cc、22cd、22da、22db、22dc、22dd  分散型の第1の熱交換器
 24  第2の熱交換器
 26  第1の流通路
 30  第2の流通路
 40  ポンプ
 50  流量調整バルブ
 70  流量計
 90  第3の熱交換器
 

Claims (9)

  1.  電子機器を冷却液中に浸漬して直接冷却する、冷却システムであって、
     少なくとも1つの発熱体を有する電子機器の前記発熱体に熱的に接続される沸騰冷却装置であって、沸点Tを有する第1の冷却液が封入されている沸騰冷却装置と、
     前記第1の冷却液の沸点Tと同じ又は前記第1の冷却液の沸点Tよりも高い沸点T(T=T又はT>T)を有する第2の冷却液が入れられた冷却槽であって、前記沸騰冷却装置及び前記電子機器が前記第2の冷却液中に浸漬されて直接冷却される冷却槽と、
     前記第1の冷却液の沸点Tと同じ又は前記第1の冷却液の沸点Tよりも低い沸点T(T=T又はT<T)を有する第3の冷媒が封入されている第1の熱交換器であって、前記冷却槽内の前記第2の冷却液中の表層部に浸漬される第1の熱交換器と、
     を含む冷却システム。
  2.  前記沸騰冷却装置は、受熱側と放熱側を有する密閉容器と、前記放熱側に設けられた放熱部材とを有し、前記沸騰冷却装置及び前記電子機器が前記第2の冷却液中に浸漬されるとき、前記放熱側が前記受熱側より上に位置するように前記発熱体に熱的に接続されている、請求項1に記載の冷却システム。
  3.  前記第1の冷却液の沸点が100℃以下であり、前記第2の冷却液の沸点が150℃以上であり、前記第3の冷媒の沸点が50℃以下である、請求項1又は2に記載の冷却システム。
  4.  前記第1の冷却液及び/又は前記第3の冷媒が、主成分としてフッ化炭素化合物を含む、請求項3に記載の冷却システム。
  5.  前記第2の冷却液が、主成分として完全フッ素化物を含む、請求項3に記載の冷却システム。
  6.  前記冷却槽の外部に置かれた、前記第3の冷媒を冷やす第2の熱交換器をさらに有し、前記第1の熱交換器と前記第2の熱交換器は第1の流通路により連結されている、請求項1に記載の冷却システム。
  7.  前記冷却槽が、前記冷却槽の上部開口に対して着脱可能又は開閉可能に取り付けられた天板を有し、該天板が前記第1の熱交換器を保持している、請求項1に記載の冷却システム。
  8.  前記冷却槽は、前記第2の冷却液の入口と出口を有し、
     前記出口と前記入口が、前記冷却槽の外部にある第2の流通路により連結されており、
     前記流通路中に、前記第2の冷却液を移動させる少なくとも1つのポンプと、前記第2の冷却液を冷やす第3の熱交換器が設けられている、請求項1に記載の冷却システム。
  9.  複数の電子機器を冷却液中に浸漬して直接冷却する冷却システムであって、
     底壁及び側壁によって形成される開放空間を有する冷却槽と、
     前記冷却槽内に複数の内部隔壁を設けることにより前記開放空間を分割して形成される、配列された複数の収納部であって、各収納部に少なくとも1つの電子機器を収納するための収納部と、
     前記複数の収納部の各々に形成される、冷却液の流入開口及び流出開口と、
     を有し、
     前記流入開口は、各収納部の底部又は側面に形成され、前記流出開口は、各収納部を流通する前記冷却液の液面近傍に形成されており、
     前記冷却システムはさらに、
     前記少なくとも1つの電子機器が有する少なくとも1つの発熱体に熱的に接続される沸騰冷却装置であって、沸点Tを有する第1の冷却液が封入されている沸騰冷却装置と、
     前記第1の冷却液の沸点Tと同じ又は前記第1の冷却液の沸点Tよりも低い沸点T(T=T又はT<T)を有する第3の冷媒が封入されている第1の熱交換器とを有し、
     前記複数の収納部の各々には、前記第1の冷却液の沸点Tと同じ又は前記第1の冷却液の沸点Tよりも高い沸点T(T=T又はT>T)を有する第2の冷却液が入れられ、前記沸騰冷却装置及び前記少なくとも1つの電子機器が各収納部内の前記第2の冷却液中に浸漬されて直接冷却され、
     前記第1の熱交換器が各収納部内の前記第2の冷却液中の表層部に浸漬されている、
     冷却システム。
PCT/JP2015/060031 2015-03-30 2015-03-30 電子機器の冷却システム WO2016157396A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016507718A JP5956099B1 (ja) 2015-03-30 2015-03-30 電子機器の冷却システム
EP15887549.2A EP3279764A4 (en) 2015-03-30 2015-03-30 Electronic-device cooling system
PCT/JP2015/060031 WO2016157396A1 (ja) 2015-03-30 2015-03-30 電子機器の冷却システム
US15/563,428 US10123454B2 (en) 2015-03-30 2015-03-30 Electronic-device cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060031 WO2016157396A1 (ja) 2015-03-30 2015-03-30 電子機器の冷却システム

Publications (1)

Publication Number Publication Date
WO2016157396A1 true WO2016157396A1 (ja) 2016-10-06

Family

ID=56418690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060031 WO2016157396A1 (ja) 2015-03-30 2015-03-30 電子機器の冷却システム

Country Status (4)

Country Link
US (1) US10123454B2 (ja)
EP (1) EP3279764A4 (ja)
JP (1) JP5956099B1 (ja)
WO (1) WO2016157396A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012470A (ja) * 2017-06-30 2019-01-24 富士通株式会社 冷却装置、冷却システム及び電子装置の冷却方法
JP2023513716A (ja) * 2020-02-11 2023-04-03 アイスオトープ・グループ・リミテッド 複数の電子機器の液浸冷却のためのハウジング

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6790855B2 (ja) * 2017-01-18 2020-11-25 富士通株式会社 液浸冷却装置、液浸冷却システム及び電子装置の冷却方法
JP6939034B2 (ja) * 2017-04-05 2021-09-22 富士通株式会社 冷却システム、冷却装置、及び電子システム
CN111615291B (zh) * 2019-02-25 2023-04-11 富联精密电子(天津)有限公司 浸没式冷却装置
US10925180B2 (en) * 2019-03-04 2021-02-16 Baidu Usa Llc IT container system design approach for fast deployment and high compatibility application scenarios
CN109922643B (zh) * 2019-04-02 2020-11-27 苏州佳世达光电有限公司 水冷系统及应用该系统的电子装置
US11116113B2 (en) * 2019-04-08 2021-09-07 Google Llc Cooling electronic devices in a data center
CN112020265B (zh) * 2019-05-31 2022-06-28 华为技术有限公司 一种散热装置及处理器
US11495519B2 (en) * 2019-06-07 2022-11-08 Dana Canada Corporation Apparatus for thermal management of electronic components
US12050061B2 (en) * 2020-12-14 2024-07-30 Aavid Thermalloy, Llc Shrouded powder patch
EP4068930B1 (en) 2021-04-01 2024-03-13 Ovh A rack system for housing an electronic device
CA3152605A1 (en) 2021-04-01 2022-10-01 Ovh Systems and methods for autonomously activable redundant cooling of a heat generating component
US11924998B2 (en) * 2021-04-01 2024-03-05 Ovh Hybrid immersion cooling system for rack-mounted electronic assemblies
CA3151725A1 (en) 2021-04-01 2022-10-01 Ovh Immersion cooling system with dual dielectric cooling liquid circulation
TWI807318B (zh) * 2021-05-07 2023-07-01 緯穎科技服務股份有限公司 具有浸沒式冷卻系統的電子設備及其操作方法
US11606879B2 (en) * 2021-06-23 2023-03-14 Baidu Usa Llc Multi-phase change thermal management systems for servers
WO2023081401A1 (en) * 2021-11-05 2023-05-11 Rochester Institute Of Technology Cooling device having a boiling chamber with submerged condensation and method
TWI833311B (zh) * 2022-08-02 2024-02-21 緯創資通股份有限公司 浸沒式冷卻單元及電子設備
US20240057304A1 (en) * 2022-08-10 2024-02-15 Raytheon Company Two-phase liquid-cooled electrical power apparatus
US20240074120A1 (en) * 2022-08-28 2024-02-29 Cooler Master Co., Ltd. Two-phase immersion cooling apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04207098A (ja) * 1990-11-30 1992-07-29 Fujitsu Ltd プリント基板ユニットの冷却方法
JP2002181427A (ja) * 2000-12-13 2002-06-26 Smc Corp 自動回収機構付き冷却液循環装置
JP2002295983A (ja) * 2001-03-28 2002-10-09 Maruyasu Industries Co Ltd 熱交換器および熱交換器の熱交換能力を高める方法
JP2007109695A (ja) * 2005-10-11 2007-04-26 Sumitomo Precision Prod Co Ltd 起動特性に優れる素子冷却器
JP2008025858A (ja) * 2006-07-18 2008-02-07 Toshiba Corp サブクール低温装置
JP2013007501A (ja) * 2011-06-22 2013-01-10 Nec Corp 冷却装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3406244A (en) * 1966-06-07 1968-10-15 Ibm Multi-liquid heat transfer
US4590538A (en) * 1982-11-18 1986-05-20 Cray Research, Inc. Immersion cooled high density electronic assembly
JPS6154654A (ja) * 1984-08-27 1986-03-18 Fujitsu Ltd 液冷装置
EP0456508A3 (en) * 1990-05-11 1993-01-20 Fujitsu Limited Immersion cooling coolant and electronic device using this coolant
JPH06177297A (ja) * 1992-12-10 1994-06-24 Toyota Motor Corp 電子部品の冷却構造
FR2713405B1 (fr) * 1993-12-03 1996-01-19 Gec Alsthom Electromec Module d'amenée de courant pour l'alimentation d'une charge électrique supraconductrice à basse température critique.
JPH11288809A (ja) * 1998-03-31 1999-10-19 Toshiba Corp 超電導マグネット装置
DE19826733A1 (de) * 1998-06-16 1999-12-23 Isad Electronic Sys Gmbh & Co Kühlsystem für eine Leistungselektronik zum Betreiben wenigstens eines elektrischen Aggregats eines Kraftfahrzeugs
US6758593B1 (en) * 2000-10-09 2004-07-06 Levtech, Inc. Pumping or mixing system using a levitating magnetic element, related system components, and related methods
US7547385B2 (en) * 2005-11-14 2009-06-16 Eden Innovations Ltd. Method and system for producing a supercritical cryogenic fuel (SCCF)
US8369090B2 (en) * 2009-05-12 2013-02-05 Iceotope Limited Cooled electronic system
JP5863643B2 (ja) 2009-05-12 2016-02-16 アイセオトープ リミテッド 冷却される電子システム
US8014150B2 (en) * 2009-06-25 2011-09-06 International Business Machines Corporation Cooled electronic module with pump-enhanced, dielectric fluid immersion-cooling
JP2013069740A (ja) 2011-09-21 2013-04-18 Nec Corp 平板型冷却装置及びその使用方法
JP2013187251A (ja) 2012-03-06 2013-09-19 Sohki:Kk 電子装置の冷却システムおよび方法
KR20170013224A (ko) * 2014-04-17 2017-02-06 빅토리아 링크 엘티디 극저온에서 냉각되는 부품으로부터 연장되는 열 전도성 구조의 효과적인 냉각을 위한 극저온 액체 순환 설계
EP3236726B1 (en) * 2016-04-20 2020-10-14 CGG Services SAS Methods and system for oil immersion cooling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04207098A (ja) * 1990-11-30 1992-07-29 Fujitsu Ltd プリント基板ユニットの冷却方法
JP2002181427A (ja) * 2000-12-13 2002-06-26 Smc Corp 自動回収機構付き冷却液循環装置
JP2002295983A (ja) * 2001-03-28 2002-10-09 Maruyasu Industries Co Ltd 熱交換器および熱交換器の熱交換能力を高める方法
JP2007109695A (ja) * 2005-10-11 2007-04-26 Sumitomo Precision Prod Co Ltd 起動特性に優れる素子冷却器
JP2008025858A (ja) * 2006-07-18 2008-02-07 Toshiba Corp サブクール低温装置
JP2013007501A (ja) * 2011-06-22 2013-01-10 Nec Corp 冷却装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279764A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012470A (ja) * 2017-06-30 2019-01-24 富士通株式会社 冷却装置、冷却システム及び電子装置の冷却方法
JP7019981B2 (ja) 2017-06-30 2022-02-16 富士通株式会社 冷却装置、冷却システム及び電子装置の冷却方法
JP2023513716A (ja) * 2020-02-11 2023-04-03 アイスオトープ・グループ・リミテッド 複数の電子機器の液浸冷却のためのハウジング
JP7450047B2 (ja) 2020-02-11 2024-03-14 アイスオトープ・グループ・リミテッド 複数の電子機器の液浸冷却のためのハウジング

Also Published As

Publication number Publication date
US20180092243A1 (en) 2018-03-29
JP5956099B1 (ja) 2016-07-20
JPWO2016157396A1 (ja) 2017-04-27
EP3279764A1 (en) 2018-02-07
US10123454B2 (en) 2018-11-06
EP3279764A4 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP5956099B1 (ja) 電子機器の冷却システム
JP6064083B1 (ja) 電子機器の冷却システム
WO2016157397A1 (ja) 電子機器の冷却システム
WO2016075838A1 (ja) 電子機器の冷却システム、及び冷却方法
JP5956097B1 (ja) 電子機器の冷却装置
JP5956098B1 (ja) 電子機器、及び電子機器の冷却装置
JP2017050548A (ja) 電子機器の冷却システム
Wang et al. Energy saving potential of using heat pipes for CPU cooling
US8619425B2 (en) Multi-fluid, two-phase immersion-cooling of electronic component(s)
US7231961B2 (en) Low-profile thermosyphon-based cooling system for computers and other electronic devices
TWI631888B (zh) 冷卻在一資料中心中之電子裝置
US7958935B2 (en) Low-profile thermosyphon-based cooling system for computers and other electronic devices
US8369091B2 (en) Interleaved, immersion-cooling apparatus and method for an electronic subsystem of an electronics rack
WO2018135327A1 (ja) 液浸冷却装置、液浸冷却システム及び電子装置の冷却方法
Kulkarni et al. Enabling Thermal Management of High-Powered Server Processors Using Passive Thermosiphon Heat Sink
Kulkarni et al. Compact liquid enhanced air cooling thermal solution for high power processors in existing air-cooled platforms
JP6244066B1 (ja) 冷却システム
WO2024065847A1 (en) Immersion cooling systems, apparatus, and related methods

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016507718

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887549

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15563428

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015887549

Country of ref document: EP