WO2016157388A1 - 携帯端末、サーバ、音場測定データ提供方法、及び、プログラム - Google Patents
携帯端末、サーバ、音場測定データ提供方法、及び、プログラム Download PDFInfo
- Publication number
- WO2016157388A1 WO2016157388A1 PCT/JP2015/060008 JP2015060008W WO2016157388A1 WO 2016157388 A1 WO2016157388 A1 WO 2016157388A1 JP 2015060008 W JP2015060008 W JP 2015060008W WO 2016157388 A1 WO2016157388 A1 WO 2016157388A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- sound field
- measurement data
- vehicle type
- server
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R11/00—Arrangements for holding or mounting articles, not otherwise provided for
- B60R11/02—Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K15/00—Acoustics not otherwise provided for
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/04—Circuits for transducers, loudspeakers or microphones for correcting frequency response
Definitions
- the present invention relates to a method for correcting a sound field characteristic in a vehicle.
- Patent Document 1 describes a technique of using a built-in microphone of a mobile phone as a microphone for measuring a sound field in an audio system having a sound field correction function.
- correction data is generated by synchronously adding a large number of measurement data obtained indoors, so that it takes a long time, for example, 7 to 8 minutes to measure the sound field.
- the user since a relatively high level of test sound is output in the room during that time, the user generally needs to leave the room during sound field measurement.
- An object of this invention is to provide the terminal device which can measure a sound field easily and can correct the sound field characteristic of a compartment.
- the invention according to claim 1 is a portable terminal capable of communicating with a server that generates vehicle-specific sound field correction data using a plurality of uploaded vehicle-specific sound field measurement data, and the sound of the first vehicle Measuring means for measuring a field to generate first sound field measurement data; acquisition means for acquiring vehicle type information of the vehicle that is the object of measurement; the first sound field measurement data and the vehicle type information; Is generated by measuring the sound field of the second vehicle which is a vehicle different from the first vehicle and is the vehicle type.
- Receiving means for receiving, from the server, vehicle type sound field correction data corresponding to the vehicle type information generated based on the second sound field measurement data.
- a sound field measurement data providing method executed by a portable terminal capable of communicating with a server that generates vehicle-specific sound field correction data using a plurality of uploaded vehicle-specific sound field measurement data.
- a measurement step of measuring a sound field of a first vehicle to generate first sound field measurement data, an acquisition step of acquiring vehicle type information of the vehicle subjected to the measurement, and the first A transmission step of transmitting the sound field measurement data and the vehicle type information to the server, the first sound field measurement data, and the first vehicle being a vehicle different from the first vehicle.
- the invention according to claim 5 is a program executed by a portable terminal having a computer and capable of communicating with a server that generates a vehicle-specific sound field correction data using a plurality of uploaded vehicle-specific sound field measurement data.
- the measuring means for measuring the sound field of the first vehicle to generate the first sound field measurement data
- the acquiring means for acquiring the vehicle type information of the vehicle to be measured
- the first sound Transmitting means for transmitting the field measurement data and the vehicle type information to the server; the first sound field measurement data; and the sound of the second vehicle which is a vehicle different from the first vehicle and which is the vehicle type.
- the second sound field measurement data generated by measuring the field, and the vehicle type sound field correction data corresponding to the vehicle type information generated on the basis of the second sound field measurement data from the server.
- the invention according to claim 7 is a server communicable with a portable terminal, and sound field measurement data which is data obtained by measuring vehicle type information and a sound field of the vehicle from a plurality of portable terminals.
- 1 shows a configuration of a sound field correction system according to an embodiment. It is a block diagram which shows the structure of a server. An example of correction data is shown. It is a block diagram which shows the structure of the portable terminal and vehicle equipment in a vehicle interior. It is a flowchart of the correction data provision process by 1st Example. The example of the sample number according to the measurement item in 2nd Example is shown. It is a flowchart of the correction data provision process by 2nd Example. The example of the model evaluation of the portable terminal in 3rd Example is shown. It is a flowchart of the correction data provision process by 3rd Example. The example of the correction data in 4th Example is shown. It is a flowchart of the correction data provision process by 4th Example. The example of the correction data provision process by 4th Example. The example of the correction data in 5th Example is shown. It is a flowchart of the correction data provision process by 5th Example.
- a portable terminal capable of communicating with a server that generates vehicle-specific sound field correction data using a plurality of uploaded vehicle-specific sound field measurement data uses the sound field of the first vehicle.
- Measuring means for measuring and generating first sound field measurement data acquisition means for acquiring vehicle type information of the vehicle subjected to the measurement, the first sound field measurement data and the vehicle type information
- the transmission means for transmitting to the server, the first sound field measurement data, and the first vehicle generated by measuring the sound field of the second vehicle which is a vehicle different from the first vehicle and which is the vehicle type.
- Receiving means for receiving, from the server, vehicle type sound field correction data corresponding to the vehicle type information generated based on the sound field measurement data.
- the above mobile terminal is used in the vehicle cabin.
- the portable terminal measures the sound field characteristics of the first vehicle to generate first sound field measurement data, and acquires the vehicle type information of the vehicle to be measured based on user input and the like.
- a portable terminal transmits 1st sound field measurement data and vehicle type information to a server.
- the server receives the first sound field measurement data from the first vehicle, is a vehicle different from the first vehicle, and is a second vehicle from the second vehicle that is the same vehicle type as the first vehicle. Receive sound field measurement data.
- a server produces
- the server can collect sound field measurement data from a plurality of portable terminals and generate and provide sound field correction data for each vehicle type.
- the measurement unit includes an output unit that outputs a test signal to the vehicle-mounted device attached to the vehicle, and the vehicle-mounted device reproduces the test signal in the vehicle compartment of the vehicle.
- Sound collecting means for collecting the output test sound and generating the sound field measurement data.
- sound field correction data can be generated by outputting a test signal to the vehicle-mounted device and collecting the test sound reproduced by the vehicle-mounted device in the vehicle interior by the sound collecting means of the mobile terminal.
- the portable terminal includes transmission means for transmitting the vehicle-specific sound field correction data to a playback device mounted on the first vehicle.
- the sound field in the vehicle of a 1st vehicle can be correct
- sound field measurement data executed by a portable terminal capable of communicating with a server that generates vehicle type sound field correction data using a plurality of uploaded vehicle type sound field measurement data.
- the providing method includes a measurement step of measuring a sound field of the first vehicle to generate first sound field measurement data, an acquisition step of acquiring vehicle type information of the vehicle that is the measurement target, and the first A transmission step of transmitting the sound field measurement data and the vehicle type information to the server, the first sound field measurement data, and the first vehicle being a vehicle different from the first vehicle.
- the server can collect sound field measurement data from a plurality of portable terminals, and generate and provide sound field correction data for each vehicle type.
- a portable terminal having a computer and capable of communicating with a server that generates vehicle type sound field correction data using a plurality of uploaded vehicle type sound field measurement data.
- the program for measuring the sound field of the first vehicle and generating first sound field measurement data the acquisition means for acquiring the vehicle type information of the vehicle that is the object of measurement, the first sound Transmitting means for transmitting the field measurement data and the vehicle type information to the server; the first sound field measurement data; and the sound of the second vehicle which is a vehicle different from the first vehicle and which is the vehicle type.
- the server can collect sound field measurement data from a plurality of portable terminals and generate and provide sound field correction data for each vehicle type.
- This program can be stored and handled in a storage medium.
- the server capable of communicating with the mobile terminal is a sound field measurement data which is data obtained by measuring the vehicle type information of the vehicle and the sound field of the vehicle from a plurality of mobile terminals.
- a generation unit configured to generate type correction data; and a transmission unit configured to transmit the vehicle type correction data to the portable terminal that transmitted the vehicle type information.
- the server can collect sound field measurement data from a plurality of portable terminals, and generate and provide sound field correction data for each vehicle type.
- FIG. 1 shows the overall configuration of the sound field correction system according to the first embodiment.
- the server 10 and the mobile terminal 20 used in the vehicle 7 can communicate with each other through the network 5.
- a typical example of the network 5 is the Internet.
- the server 10 receives in-vehicle sound field measurement data for each vehicle type from a plurality of portable terminals 20. And the server 10 produces
- FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
- the portable terminal 20 is connected to the vehicle-mounted device 30 that is an acoustic device.
- the portable terminal 20 transmits the measurement data of the sound field characteristics of the passenger compartment to the server 10.
- the mobile terminal 20 receives the sound field correction data from the server 10 and transfers it to the vehicle-mounted device 30.
- the transferred sound field correction data is set in the vehicle-mounted device 30.
- FIG. 2 shows the internal configuration of the server 10.
- the server 10 includes a communication unit 11, a control unit 12, a storage unit 13, and a correction data DB (database) 14.
- the communication unit 11 is a unit for communicating with the mobile terminal 20 via the network 5.
- the control unit 12 controls the entire server 10.
- the control unit 12 includes a computer such as a CPU, and performs various controls by executing a program prepared in advance.
- the storage unit 13 includes a ROM, a RAM, a hard disk, and the like, and stores various programs executed by the control unit 12.
- the storage unit 13 also functions as a work memory when the control unit 12 performs various processes.
- the correction data DB 14 stores sound field correction data (hereinafter simply referred to as “correction data”) for each vehicle type.
- the correction data is data for correcting the sound field characteristics in the vehicle when the audio device reproduces music in the vehicle, which is set in the audio device mounted on the vehicle 7.
- FIG. 3 shows an example of the contents stored in the correction data DB 14.
- the correction data DB 14 stores correction data for performing appropriate sound field correction in the vehicle compartment of each vehicle type.
- the “vehicle type” information includes “year” in addition to “vehicle type name”.
- FIG. 4 shows the configuration of the mobile terminal 20 and the vehicle-mounted device 30 in the vehicle 7.
- the portable terminal 20 is connected to the vehicle-mounted device 30, and the vehicle-mounted device 30 is connected to a speaker 35 mounted on the vehicle.
- the mobile terminal 20 and the vehicle-mounted device 30 may be wired by a cable or the like, or may be wirelessly connected by Bluetooth (registered trademark) or the like.
- the mobile terminal 20 includes a communication unit 21, a control unit 22, a storage unit 23, a touch panel 24, a microphone 25, and an output unit 26.
- the communication unit 21 is a unit for communicating with the server 10 via the network 5.
- the control unit 22 controls the entire mobile terminal 20.
- the control unit 22 is configured by a computer such as a CPU, and performs various types of control, particularly correction data provision processing described later, by executing a program prepared in advance.
- the storage unit 23 includes a ROM, a RAM, a hard disk, and the like, and stores various programs executed by the control unit 22.
- the control unit 22 also functions as a work memory when performing various processes.
- storage part 23 has memorize
- the test signal St is downloaded from the server 10 and stored in the storage unit 23 before the sound field is measured in the vehicle.
- the touch panel 24 has both a display function and an input function. Information / images displayed to the user are displayed on the touch panel 24, and input performed when the user touches the touch panel with a finger or the like is acquired by the touch panel 24.
- the microphone 25 is a microphone built in the mobile terminal 20.
- the output unit 26 outputs a test signal St to the vehicle-mounted device 30 when the sound field measurement is performed in the vehicle 7.
- the communication unit 21 functions as the transmission unit, reception unit, and transfer unit of the present invention
- the control unit 22, the microphone 25, and the output unit 26 function as the measurement unit of the present invention
- the touch panel 24 of the present invention It functions as an acquisition means.
- the output unit 26 functions as output means of the present invention
- the microphone 25 functions as sound collection means of the present invention.
- the mobile terminal 20 outputs a test signal St prepared in advance to the vehicle-mounted device 30, and the vehicle-mounted device 30 reproduces the test signal St through the speaker 35 and outputs the test sound S to the vehicle interior.
- the test signal St is a signal prepared for measuring an impulse response, a frequency characteristic, a reverberation characteristic, and the like as the sound field characteristic.
- the test sound S output into the passenger compartment is picked up by the microphone 25 and temporarily stored in the storage unit 23.
- the control unit 22 transmits the collected data as measurement data to the server 10 via the communication unit 21.
- the portable terminal 20 adds the vehicle type information of the vehicle 7 when transmitting the measurement data to the server 10. That is, the measurement data is uploaded to the server 10 together with the vehicle type information of the vehicle that has performed the measurement.
- the server 10 classifies the measurement data uploaded from the mobile terminals 20 of a plurality of vehicles for each vehicle type, and generates correction data. Specifically, the server 10 generates correction data by synchronously adding a plurality of measurement data uploaded from a plurality of portable terminals 20 for the same vehicle type. Synchronous addition emphasizes the sound field characteristics unique to the vehicle model, and smoothes the characteristics and characteristic variations of individual vehicles, and correct data that accurately represents the sound field characteristics of the vehicle cabin of the vehicle model. Is obtained.
- the portable terminal 20 acquires one measurement data by one measurement and uploads it to the server 10, and the server 10 acquires a large number of measurement data from the plurality of portable terminals 20, Increase the number of samples for synchronous addition. This makes it possible to collect a large number of samples and generate accurate correction data for each vehicle type while preventing an excessive measurement load on each vehicle 7.
- Examples of actual sound field correction include time alignment correction, frequency characteristic correction, reverberation characteristic correction, and the like.
- the time alignment correction is a correction that corrects a difference in distance between a plurality of speakers mounted on the vehicle and a listening position in the passenger compartment so that sounds output from the plurality of speakers simultaneously reach the listening position.
- the correction of the frequency characteristic is correction for adjusting the gain for each band so that the frequency characteristic in the passenger compartment is basically flat.
- the reverberation characteristic correction is correction for adjusting the reverberation time in the passenger compartment to an appropriate time.
- FIG. 5 is a flowchart of the correction data providing process according to the first embodiment. This process is performed mainly by the control unit 12 of the server 10 and the control unit 22 of the mobile terminal 20 executing a prepared program.
- the user operates the touch panel 24 to input the vehicle type information of the vehicle 7, and the mobile terminal 20 acquires this (step S11).
- the portable terminal 20 performs the sound field measurement in the vehicle interior as described above, and generates measurement data (step S12). And the portable terminal 20 transmits vehicle type information and measurement data to the server 10 (step S13).
- the server 10 extracts the measurement data of the same vehicle type already stored in the correction data DB 14 based on the vehicle type information, that is, the measurement data transmitted from the mobile terminal 20 of the other vehicle 7 until then. Then, using the measurement data received in step S13 and the measurement data extracted from the correction data DB 14, synchronous addition is performed as described above to generate correction data (step S14), and the correction data is transmitted to the portable terminal 20. (Step S15).
- the mobile terminal 20 When the mobile terminal 20 receives the correction data, the mobile terminal 20 transfers the correction data to the vehicle-mounted device 30 in the vehicle 7 (step S16). Thereby, the correction data transmitted from the server 10 is set in the vehicle-mounted device 30. Therefore, the music reproduced by the vehicle-mounted device 30 is subjected to sound field correction suitable for the vehicle type based on the correction data.
- the server 10 collects measurement data measured in the plurality of vehicles 7 from each portable terminal 20 and performs synchronous addition using measurement data of a large number of samples. To generate correction data. Therefore, the measurement time in each vehicle can be shortened, so that the user can be in the vehicle during the sound field measurement. Thus, sound field correction data suitable for the type of vehicle can be generated while reducing the measurement burden on each vehicle.
- the vehicle type information is transmitted from the mobile terminal 20 to the server 10, and the server 10 generates correction data for each vehicle type and provides it to the mobile terminal 20.
- information on the vehicle-mounted device used in the vehicle is also transmitted from the portable terminal 20 to the server 10, and the server 10 generates correction data for each vehicle type and each type of the vehicle-mounted device 30 to generate the portable terminal 20. May be provided.
- the second embodiment relates to processing when there are a plurality of measurement items for sound field correction.
- the measurement item A may be an impulse response
- the measurement item B may be a frequency characteristic
- the measurement item C may be a reverberation characteristic.
- the server 10 receives measurement data from a plurality of portable terminals 20 for each vehicle type and generates correction data by synchronous addition, but the number of measurement data samples is insufficient as described above. If so, it is difficult to ensure the accuracy of the generated correction data.
- the server 10 stores the number of measurement data samples collected for each measurement item in the storage unit 13, and the measurement item for which the number of samples is insufficient (hereinafter referred to as "sample shortage item"). To the portable terminal 20 to request measurement data for the measurement item.
- FIG. 6 is an example of the number of samples for each measurement item stored in the storage unit 13 of the server 10.
- the server 10 For each vehicle type, the number of measurement data samples already obtained for the measurement items A to C is stored. Assuming that the number of samples of 50 or more is necessary in order to ensure the accuracy of the correction data to be created, the measurement item having the number of samples in FIG. This is a sample shortage item. Therefore, the server 10 notifies the sample shortage item and requests transmission of measurement data for the vehicle of the vehicle type having the sample shortage item. As a result, the server 10 can facilitate the collection of measurement data for the sample shortage items and ensure the accuracy of the correction data provided to the mobile terminal 20.
- FIG. 7 is a flowchart of the correction data providing process in the second embodiment.
- the portable terminal 20 when a user operates the touch panel 24 and inputs the vehicle type information of the vehicle 7, the portable terminal 20 acquires this (step S21) and transmits it to the server 10 (step S22).
- the server 10 When the server 10 receives the vehicle type information, the server 10 refers to the number of samples for each measurement item as illustrated in FIG. 6 and identifies a sample shortage item for the vehicle type (step S23). Then, the server 10 notifies the portable terminal 20 of the specified sample shortage item (step S24).
- the mobile terminal 20 receives the notification of the sample shortage item, performs measurement on the measurement item, generates measurement data (step S25), and transmits the measurement data to the server 10 (step S26).
- the server 10 generates correction data for the sample shortage item using the transmitted measurement data and stores it in the correction data DB 14 (step S27). Then, the server 10 acquires correction data relating to the vehicle type (in this example, correction data for the measurement items A to C) from the correction data DB 14 and transmits the correction data to the portable terminal 20 (step S28). As a result, for the sample shortage item, correction data newly created using the measurement data transmitted from the mobile terminal 20 in step S26 is transmitted to the mobile terminal 20.
- the vehicle type in this example, correction data for the measurement items A to C
- step S29 the portable terminal 20 will transfer to the onboard equipment 30 in the vehicle 7, if correction data are received (step S29).
- the correction data transmitted from the server 10 is set in the vehicle-mounted device 30. Therefore, the music reproduced by the vehicle-mounted device 30 is subjected to sound field correction suitable for the vehicle type based on the correction data.
- the server 10 not only notifies the portable terminal 20 of the sample shortage item for which the measurement data is lacking as described above, but also transmits a test sound for measuring the sample shortage item to the portable terminal 20.
- the test sound is a signal prepared for measuring an impulse response, a frequency characteristic, a reverberation characteristic, etc. according to a sample shortage item.
- the server 10 transmits a signal for measuring the impulse response as the test sound.
- the sample shortage item is the measurement item B
- the server 10 transmits a signal for measuring frequency characteristics as a test sound.
- the server 10 notifies the portable terminal 20 of the measurement item for which the number of samples is insufficient, and promotes the collection of measurement data for the measurement item. For this reason, the server 10 can quickly collect measurement data of the number of samples necessary to ensure the accuracy of the correction data, and can quickly ensure the accuracy of the correction data provided to the mobile terminal 20. It becomes.
- correction data is generated in consideration of the appropriateness in the measurement of the mobile terminal 20 used for the sound field measurement in the vehicle 7.
- various portable terminals 20 are used, and the performance of the built-in microphone 25 is also different. Therefore, the measurement data measured by the portable terminal 20 including the low-performance microphone 25 may be inappropriate for creating correction data on the server 10 side.
- the model information of the mobile terminal 20 is also transmitted.
- the server 10 creates correction data for each vehicle type and for each model of the mobile terminal 20, and evaluates the appropriateness of each mobile terminal 20 for each vehicle type.
- FIG. 8 shows an example of the evaluation result of the mobile terminal 20.
- the appropriateness of the vehicle type is determined for the combination of the portable terminal 20 and the vehicle type.
- the appropriateness for each vehicle type can be considered to indicate the compatibility between the mobile terminal 20 and the vehicle type.
- the overall suitability for the mobile terminal 20 is determined by summing up the suitability of each vehicle type.
- these evaluations are basically performed by generating a distribution of correction data values generated using each mobile terminal 20 and calculating a deviation value. That is, it is determined that the appropriateness is high when the value of the obtained correction data is close to the standard value, and the appropriateness is low when it is far from the standard value.
- the correction data when performing time alignment correction as sound field correction, the correction data is given as a delay amount from the farthest speaker. Therefore, the delay amount is calculated as the correction data for each combination of the mobile terminal and the vehicle type, and the appropriateness is determined based on the distribution. In the example of FIG. 8, the appropriateness is determined in three stages of ranks A to C based on whether or not the value of the correction data is close to the standard value. The appropriateness A rank is the closest to the standard value, and the appropriateness C rank is the farthest from the standard value.
- the server 10 calculates the appropriateness of the vehicle type and the overall appropriateness, and creates correction data to be finally stored in the correction data DB 14 in consideration of this.
- the measurement data acquired from the mobile terminal 20 whose overall suitability is C rank is not used for generation of correction data.
- the measurement data is used by weighting according to the total suitability. For example, the weight value “2” is assigned to the measurement data acquired from the mobile terminal 20 with the overall suitability level A rank, and the weight value “1” is assigned to the measurement data acquired from the mobile terminal 20 with the overall suitability degree B rank.
- the correction data is generated by assigning a weight value “0.5” to the measurement data acquired from the mobile terminal 20 having the overall suitability C rank.
- the appropriateness is evaluated for each mobile terminal 20 that uploads the measurement data, and the correction data is generated in consideration of the appropriateness, so that highly accurate correction is not affected by the performance difference of the mobile terminal 20. Data can be generated.
- the appropriateness is set in three ranks A to C, and the weight value is set for each.
- the appropriateness may be set as a numerical value from 0 to 1 (“0” is the lowest appropriateness, “1” is the highest appropriateness), and the value may be used as the weight value.
- FIG. 9 is a flowchart of the correction data providing process according to the third embodiment.
- the user operates the touch panel 24 to input the vehicle type information of the vehicle 7, and the mobile terminal 20 acquires this (step S31).
- the mobile terminal 20 acquires model information of the mobile terminal 20 (step S32). Specifically, when model information such as the model number of the mobile terminal 20 is stored in the storage unit 23 of the mobile terminal 20, the mobile terminal 20 simply reads the model information. On the other hand, when the model information is not stored in the storage unit 23 or the like, the mobile terminal 20 requests the user to input the model information, and acquires the model information input by the user operating the touch panel 24.
- the mobile terminal 20 performs the sound field measurement in the passenger compartment as described above, and generates measurement data (step S33). And the portable terminal 20 transmits vehicle type information, model information, and measurement data to the server 10 (step S34).
- the server 10 extracts the measurement data of the same vehicle type already stored in the correction data DB 14 based on the vehicle type information, that is, the measurement data transmitted from the mobile terminal 20 of the other vehicle 7 until then. Then, using the measurement data received in step S34 and the measurement data extracted from the correction data DB 14, synchronous addition is performed as described above to generate correction data (step S35). At this time, as described above, the server 10 refers to the appropriateness of the mobile terminal 20 based on the received model information of the mobile terminal 20, performs necessary weighting, and generates correction data. Then, the server 10 transmits the generated correction data to the mobile terminal 20 (step S36).
- the mobile terminal 20 When the mobile terminal 20 receives the correction data, the mobile terminal 20 transfers the correction data to the vehicle-mounted device 30 in the vehicle 7 (step S37). Thereby, the correction data transmitted from the server 10 is set in the vehicle-mounted device 30. Therefore, the music reproduced by the vehicle-mounted device 30 is subjected to sound field correction suitable for the vehicle type based on the correction data.
- the server 10 can generate highly accurate correction data by eliminating the influence of the performance difference of the mobile terminal 20 that generates and transmits measurement data.
- the terminal 20 can also correct the sound field in the passenger compartment based on such highly accurate correction data.
- correction data is created according to the position in the passenger compartment when the sound field is measured by the vehicle 7.
- the measurement position that is, the listening position
- the measurement position is the position where the mobile terminal 20 is disposed. That is, if the mobile terminal 20 is placed in the driver's seat and the sound field is measured, the obtained data becomes measurement data with the driver's seat as the listening position, and the mobile terminal 20 is installed in the passenger seat and the sound field is measured.
- the obtained measurement data is measurement data with the passenger seat as the listening position. Therefore, in the fourth example, when the portable terminal 20 uploads the measurement data to the server 10, it transmits the position information indicating the measurement position together.
- the server 10 classifies the measurement data collected from the plurality of mobile terminals 20 for each measurement position, and generates correction data for each measurement position.
- FIG. 10 shows an example of correction data stored in the correction data DB 14 when correction data is generated for each measurement position in the passenger compartment.
- three driver positions, a passenger seat, and a rear seat (rear seat) are used as measurement positions.
- the measurement is performed with the user sitting on these seats and holding the portable terminal 20 near the head.
- the measurement data is uploaded from the portable terminal 20 to the server 10 for each measurement position in the vehicle interior, and the server 10 generates correction data for each measurement position, thereby taking into account the actual listening position of the user in the vehicle interior.
- the sound field can be corrected with high accuracy.
- the measurement positions are classified into the driver seat, the passenger seat, and the rear seat, but the application of the present invention is not limited to this.
- the rear seat may be further divided into a rear left seat and a rear right seat.
- the driver seat, the passenger seat, the front seat, the rear seat, and all seats may be classified.
- “rear seat” refers to the case where the measurement position is between the rear left seat and the rear right seat.
- All seats refers to the case where the measurement position is approximately in the center of the passenger compartment (between the front and rear seats and between the left and right seats).
- FIG. 11 is a flowchart of correction data providing processing according to the fourth embodiment.
- the user operates the touch panel 24 to input the vehicle type information of the vehicle 7, and the mobile terminal 20 acquires this (step S41).
- the portable terminal 20 acquires measurement position information (step S42). Specifically, the portable terminal 20 requests the user to input a measurement position, and acquires the measurement position input by the user operating the touch panel 24 as measurement position information.
- the portable terminal 20 performs the sound field measurement in the vehicle interior as described above, and generates measurement data (step S43). And the portable terminal 20 transmits vehicle type information, measurement position information, and measurement data to the server 10 (step S44).
- the server 10 extracts the measurement data of the same vehicle type already stored in the correction data DB 14 based on the vehicle type information, that is, the measurement data transmitted from the mobile terminal 20 of the other vehicle 7 until then. Then, using the measurement data received in step S44 and the measurement data extracted from the correction data DB 14, synchronous addition is performed as described above to generate correction data (step S45). At this time, as described above, the server 10 generates correction data for the measurement position acquired in step S44. Then, the server 10 transmits the generated correction data to the mobile terminal 20 (step S46).
- the portable terminal 20 When receiving the correction data, the portable terminal 20 transfers the correction data to the vehicle-mounted device 30 in the vehicle 7 (step S47). Thereby, the correction data transmitted from the server 10 is set in the vehicle-mounted device 30. Therefore, the music reproduced by the vehicle-mounted device 30 is subjected to sound field correction suitable for the vehicle type based on the correction data.
- the server 10 can generate and provide correction data for each measurement position, so that the optimum sound field correction is performed according to the listening position in the passenger compartment. Can do.
- the server 10 when the number of measurement data samples when the correction data is created in the server 10 is insufficient, the server 10 first creates correction data with the insufficient number and provides the correction data to the portable terminal 20. Thereafter, when the necessary number of samples is obtained, correction data is generated again and transmitted to the portable terminal 20.
- the accuracy of the correction data generated by the server 10 can be ensured.
- the accuracy of the correction data generated is ensured. Difficult to do.
- the server 10 does not provide the correction data until a sufficient number of samples of measurement data are obtained, the user provides the correction data even though the user has performed the sound field measurement and uploaded the measurement data to the server 10. Will not be accepted, and willingness to upload measurement data will be reduced.
- the server 10 first generates correction data and provides it to the portable terminal 20 even when the number of samples is insufficient.
- the correction data provided at that time is not necessarily accurate enough, so when a sufficient number of samples are obtained and high-precision correction data can be generated, the high-precision correction data is renewed.
- the mobile terminal 20 Provides to the mobile terminal 20. In this way, collection of measurement data from the user is facilitated, and correction data with high accuracy can be provided from the server 10 at an early stage.
- FIG. 12 is an example of data stored in the correction data DB 14 of the server 10 in the fifth embodiment.
- the correction data generated at that time is stored in association with the vehicle type, and the number of samples of measurement data used when the correction data is generated is stored. Now, it is assumed that the number of measurement data samples necessary to generate correction data with sufficient accuracy is “50”. That is, when the number of measurement data samples is 50 or less, the number of samples is insufficient (in FIG. 12, the number of samples in the insufficient state is underlined). Therefore, correction data generated in a state where the number of samples is insufficient (hereinafter referred to as “sample shortage correction data”) is stored in association with the terminal ID of the mobile terminal 20 that provided the correction data. . In the example of FIG.
- the number of measurement data samples is “15”, and the correction data is insufficient sample number correction data.
- the terminal ID of the provision destination is stored. Then, when the number of measurement data samples exceeds “50” and correction data with a certain level of accuracy can be generated, the correction data is provided again to the portable terminal 20 stored as the provision destination terminal ID.
- FIG. 13 is a flowchart of the correction data providing process according to the fifth embodiment.
- the user operates the touch panel 24 to input the vehicle type information of the vehicle 7, and the mobile terminal 20 acquires this (step S51).
- the portable terminal 20 performs the sound field measurement in the vehicle interior as described above, and generates measurement data (step S52). And the portable terminal 20 transmits vehicle type information and measurement data to the server 10 (step S53).
- the server 10 extracts the measurement data of the same vehicle type already stored in the correction data DB 14 based on the vehicle type information, that is, the measurement data transmitted from the mobile terminal 20 of the other vehicle 7 until then. Then, using the measurement data received in step S53 and the measurement data extracted from the correction data DB 14, synchronous addition is performed as described above to generate correction data (step S54). At this time, the server 10 refers to the number of samples of the measurement data used to create the correction data, and determines whether the number of samples is sufficient, that is, whether the generated correction data corresponds to the insufficient sample number correction data. (Step S55).
- step S55: Yes If the sample number deficiency correction data is satisfied (step S55: Yes), the server 10 stores the terminal ID of the portable terminal 20 at that time in the correction data DB 14 as illustrated in FIG. 12 (step S56). On the other hand, when the sample number deficiency correction data is not applicable (step S55: No), the process of step S56 is not performed. Then, the server 10 transmits the generated correction data to the mobile terminal 20 (step S57).
- the portable terminal 20 transfers the correction data to the vehicle-mounted device 30 in the vehicle 7 (step S58).
- the correction data transmitted from the server 10 is set in the vehicle-mounted device 30. Therefore, when the sample number shortage correction data is transmitted from the server 10, the correction data is set in the vehicle-mounted device 30, so that the accuracy of the sound field correction in the passenger compartment is not necessarily sufficient.
- the server 10 when the number of samples of the measurement data of the same vehicle type increases in the server 10 after that and reaches a sufficient number of samples, the server 10 generates highly accurate correction data and refers to the correction data DB 14 in the past. High-precision correction data is transmitted to the portable terminal 20 that has transmitted the shortage correction data. Therefore, the portable terminal 20 receives the high-accuracy correction data, transfers it to the vehicle-mounted device 30, and sets it, thereby enabling high-accuracy sound field correction.
- the server 10 may notify the user of the mobile terminal 20 by transmitting a message to that effect. For example, “The correction data to be sent this time was generated with an insufficient number of samples. When the number of samples becomes sufficient later, we will send more accurate correction data.” May be sent. This allows the user to wait for highly accurate correction data even if the sound field correction by the correction data transmitted first is somewhat unsatisfactory.
- the present invention can be used in a system for playing music in a passenger compartment.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Mechanical Engineering (AREA)
- Multimedia (AREA)
- Stereophonic System (AREA)
Abstract
携帯端末は車両の車室内において使用される、車両の音場を測定して音場測定データを生成するとともに、ユーザの入力などに基づいて、測定の対象となった車両の車種情報を取得する。そして、携帯端末は、音場測定データと車種情報とを前記サーバに送信する。サーバは複数の携帯端末から音場測定データを収集し、車種別の音場補正データを生成する。生成された音場補正データはユーザの携帯端末に送信され、車載器に設定される。
Description
本発明は、車内の音場特性を補正する手法に関する。
AVシステムによりリスニングルームなどの音場特性を補正する方法が知られている。例えば、特許文献1は、音場補正機能を有するオーディオシステムにおいて、音場測定用のマイクロホンとして携帯電話機の内蔵マイクロホンを利用する手法を記載している。
従来の音場補正手法では、室内で得られた多数の測定データを同期加算することにより補正データを生成しているため、音場測定に例えば7~8分という長い時間を要する。また、その間に室内には比較的高いレベルのテスト音が出力されるため、一般的に、ユーザは音場測定中に部屋から出る必要がある。
一方、車室の音場特性を補正する機能を備える車載機器も存在するが、測定用マイクを機器に接続するのが手間である、音場測定を行う時間が長いなどの理由により、音場補正機能が有効に用いられていなかった。
本発明が解決しようとする課題としては、上記のものが例として挙げられる。本発明は、簡単に音場測定を行い、車室の音場特性を補正することが可能な端末装置を提供することを目的とする。
請求項1に記載の発明は、アップロードされた車種別の音場測定データを複数個用いて車種別音場補正データを生成するサーバと通信可能な携帯端末であって、第1の車両の音場を測定して第1の音場測定データを生成する測定手段と、前記測定の対象となった車両の車種情報を取得する取得手段と、前記第1の音場測定データと前記車種情報とを前記サーバに送信する送信手段と、前記第1の音場測定データと、前記第1の車両とは異なる車両であり、かつ前記車種である第2の車両の音場を測定して生成された第2の音場測定データと、に基づき生成された前記車種情報に対応する車種別音場補正データを、前記サーバから受信する受信手段と、を備えることを特徴とする。
請求項4に記載の発明は、アップロードされた車種別の音場測定データを複数個用いて車種別音場補正データを生成するサーバと通信可能な携帯端末によって実行される音場測定データ提供方法であって、第1の車両の音場を測定して第1の音場測定データを生成する測定工程と、前記測定の対象となった車両の車種情報を取得する取得工程と、前記第1の音場測定データと前記車種情報とを前記サーバに送信する送信工程と、前記第1の音場測定データと、前記第1の車両とは異なる車両であり、かつ前記車種である第2の車両の音場を測定して生成された第2の音場測定データと、に基づき生成された前記車種情報に対応する車種別音場補正データを、前記サーバから受信する受信工程と、を備えることを特徴とする。
請求項5に記載の発明は、コンピュータを有し、アップロードされた車種別の音場測定データを複数個用いて車種別音場補正データを生成するサーバと通信可能な携帯端末によって実行されるプログラムであって、第1の車両の音場を測定して第1の音場測定データを生成する測定手段、前記測定の対象となった車両の車種情報を取得する取得手段、前記第1の音場測定データと前記車種情報とを前記サーバに送信する送信手段、前記第1の音場測定データと、前記第1の車両とは異なる車両であり、かつ前記車種である第2の車両の音場を測定して生成された第2の音場測定データと、に基づき生成された前記車種情報に対応する車種別音場補正データを、前記サーバから受信する受信手段、として前記携帯端末を機能させることを特徴とする。
請求項7に記載の発明は、携帯端末と通信可能なサーバであって、複数の携帯端末から、車両の車種情報と当該車両の音場を測定して得られたデータである音場測定データをと受信する受信手段と、前記車種情報に基づき、前記音場測定データを車種別に分類する分類手段と、前記車種別に分類された複数の音場測定データに基づき、前記車種情報に対応する車種別補正データを生成する生成手段と、前記車種別補正データを当該車種情報を送信した携帯端末に対して送信する送信手段と、を有することを特徴とする。
本発明の好適な実施形態では、アップロードされた車種別の音場測定データを複数個用いて車種別音場補正データを生成するサーバと通信可能な携帯端末は、第1の車両の音場を測定して第1の音場測定データを生成する測定手段と、前記測定の対象となった車両の車種情報を取得する取得手段と、前記第1の音場測定データと前記車種情報とを前記サーバに送信する送信手段と、前記第1の音場測定データと、前記第1の車両とは異なる車両であり、かつ前記車種である第2の車両の音場を測定して生成された第2の音場測定データと、に基づき生成された前記車種情報に対応する車種別音場補正データを、前記サーバから受信する受信手段と、を備える。
上記の携帯端末は車両の車室内において使用される。携帯端末は、第1の車両の音場特性を測定して第1の音場測定データを生成するとともに、ユーザの入力などに基づいて、測定の対象となった車両の車種情報を取得する。そして、携帯端末は、第1の音場測定データと車種情報とをサーバに送信する。サーバは、第1の車両から第1の音場測定データと受信するとともに、第1の車両とは異なる車両であり、かつ、第1の車両と同じ車種である第2の車両から第2の音場測定データを受信する。そして、サーバは、第1の音場測定データと第2の音場測定データとに基づいて、当該車種情報に対応する車種別音場補正データを生成し、携帯端末へ送信する。こうして、サーバは、複数の携帯端末から音場測定データを収集し、車種別に音場補正データを生成して提供することができる。
上記の携帯端末の一態様では、前記測定手段は、前記車両に取り付けられた車載器にテスト信号を出力する出力手段と、前記車載器が前記テスト信号を再生することにより前記車両の車室に出力されたテスト音を収音して前記音場測定データを生成する収音手段と、を備える。この態様では、テスト信号を車載機に出力し、車載器が車室内で再生したテスト音を携帯端末の収音手段で収音することにより、音場補正データを生成することができる。
上記の携帯端末の他の一態様では、前記車種別音場補正データを、前記第1の車両に搭載された再生装置へ送信する送信手段を有する。これにより、第1の車両の車内の音場を適切に補正することができる。
本発明の他の好適な実施形態では、アップロードされた車種別の音場測定データを複数個用いて車種別音場補正データを生成するサーバと通信可能な携帯端末によって実行される音場測定データ提供方法は、第1の車両の音場を測定して第1の音場測定データを生成する測定工程と、前記測定の対象となった車両の車種情報を取得する取得工程と、前記第1の音場測定データと前記車種情報とを前記サーバに送信する送信工程と、前記第1の音場測定データと、前記第1の車両とは異なる車両であり、かつ前記車種である第2の車両の音場を測定して生成された第2の音場測定データと、に基づき生成された前記車種情報に対応する車種別音場補正データを、前記サーバから受信する受信工程と、を備える。この方法により、サーバは複数の携帯端末から音場測定データを収集し、車種別に音場補正データを生成して提供することができる。
本発明の他の好適な実施形態では、コンピュータを有し、アップロードされた車種別の音場測定データを複数個用いて車種別音場補正データを生成するサーバと通信可能な携帯端末によって実行されるプログラムは、第1の車両の音場を測定して第1の音場測定データを生成する測定手段、前記測定の対象となった車両の車種情報を取得する取得手段、前記第1の音場測定データと前記車種情報とを前記サーバに送信する送信手段、前記第1の音場測定データと、前記第1の車両とは異なる車両であり、かつ前記車種である第2の車両の音場を測定して生成された第2の音場測定データと、に基づき生成された前記車種情報に対応する車種別音場補正データを、前記サーバから受信する受信手段、として前記携帯端末を機能させる。このプログラムを実行することにより、サーバは複数の携帯端末から音場測定データを収集し、車種別に音場補正データを生成して提供することができる。このプログラムは、記憶媒体に記憶して取り扱うことができる。
本発明の他の好適な実施形態では、携帯端末と通信可能なサーバは、複数の携帯端末から、車両の車種情報と当該車両の音場を測定して得られたデータである音場測定データをと受信する受信手段と、前記車種情報に基づき、前記音場測定データを車種別に分類する分類手段と、前記車種別に分類された複数の音場測定データに基づき、前記車種情報に対応する車種別補正データを生成する生成手段と、前記車種別補正データを当該車種情報を送信した携帯端末に対して送信する送信手段と、を有する。これにより、サーバは複数の携帯端末から音場測定データを収集し、車種別に音場補正データを生成して提供することができる。
以下、図面を参照して本発明の好適な実施例について説明する。
[第1実施例]
(構成)
図1は、第1実施例に係る音場補正システムの全体構成を示す。サーバ10と、車両7において使用される携帯端末20とはネットワーク5を通じて通信可能となっている。ネットワーク5の典型的な例はインターネットである。
(構成)
図1は、第1実施例に係る音場補正システムの全体構成を示す。サーバ10と、車両7において使用される携帯端末20とはネットワーク5を通じて通信可能となっている。ネットワーク5の典型的な例はインターネットである。
サーバ10は、複数の携帯端末20から車種別に車内音場の測定データを受信する。そして、サーバ10は、車種ごとに車室用の音場補正データを生成して記憶し、車両7の携帯端末20にその車両の音場補正データを送信する。
車両7において、携帯端末20は、音響機器である車載器30に接続されている。携帯端末20は、車室の音場特性の測定データをサーバ10へ送信する。また、携帯端末20はサーバ10から音場補正データを受信し、車載器30に転送する。転送された音場補正データは車載器30に設定される。こうして、車載器30により音楽を再生する際には、設定された音場補正データに基づいた音場補正が行われる。
次に、サーバ10について詳しく説明する。図2は、サーバ10の内部構成を示す。サーバ10は、通信部11と、制御部12と、記憶部13と、補正データDB(データベース)14とを備える。
通信部11は、ネットワーク5を介して携帯端末20と通信するためのユニットである。制御部12は、サーバ10の全体を制御する。制御部12はCPUなどのコンピュータにより構成され、予め用意されたプログラムを実行することにより各種の制御を行う。
記憶部13は、ROM、RAM、ハードディスクなどにより構成され、制御部12により実行される各種のプログラムを記憶している。また、記憶部13は、制御部12が各種の処理を行う際のワークメモリとしても機能する。
補正データDB14は、車両の車種ごとに音場補正データ(以下、単に「補正データ」と呼ぶ。)を記憶している。補正データは、車両7に搭載された音響機器に設定され、車内で音響機器が音楽を再生する際の車内の音場特性を補正するためのデータである。
図3は、補正データDB14の記憶内容の一例を示す。補正データDB14は、車種ごとに、その車両の車室において適切な音場補正を行うための補正データを記憶している。なお、好ましくは「車種」の情報には「車種名」に加えて「年式」も含まれる。
次に、車両7における構成について説明する。図4は、車両7における携帯端末20及び車載器30の構成を示す。携帯端末20は車載器30に接続されており、車載器30は車両に搭載されたスピーカ35に接続されている。なお、携帯端末20と車載器30はケーブルなどにより有線接続されていてもよく、Bluetooth(登録商標)などにより無線接続されていてもよい。
携帯端末20は、通信部21と、制御部22と、記憶部23と、タッチパネル24と、マイク25と、出力部26とを備える。
通信部21は、ネットワーク5を介してサーバ10と通信するためのユニットである。制御部22は、携帯端末20の全体を制御する。制御部22は、CPUなどのコンピュータにより構成され、予め用意されたプログラムを実行することにより各種の制御、特に後述する補正データ提供処理を行う。
記憶部23は、ROM、RAM、ハードディスクなどにより構成され、制御部22により実行される各種のプログラムを記憶している。また、制御部22は各種の処理を行う際のワークメモリとしても機能する。さらに、記憶部23は、車内での音場測定に使用するテスト信号を記憶している。テスト信号Stは車内で音場測定を行う前にサーバ10からダウンロードされ、記憶部23に記憶されている。
タッチパネル24は表示機能と入力機能とを併せ持つ。ユーザに対して表示される情報・画像はタッチパネル24に表示され、ユーザがタッチパネルに指などでタッチすることにより行われる入力はタッチパネル24により取得される。
マイク25は携帯端末20に内蔵されているマイクである。また、出力部26は、車両7において音場測定を行う際に、テスト信号Stを車載器30に出力する。
上記の構成において、通信部21は本発明の送信手段、受信手段及び転送手段として機能し、制御部22、マイク25及び出力部26は本発明の測定手段として機能し、タッチパネル24は本発明の取得手段として機能する。また、出力部26は本発明の出力手段として機能し、マイク25は本発明の収音手段として機能する。
(音場測定の方法)
次に、車両7の車内で行われる音場測定について説明する。音場測定においては、携帯端末20は予め用意されたテスト信号Stを車載器30に出力し、車載器30はスピーカ35によりテスト信号Stを再生して車室内にテスト音Sを出力する。なお、テスト信号Stは、音場特性として、インパルス応答、周波数特性、残響特性などを測定するために用意される信号である。
次に、車両7の車内で行われる音場測定について説明する。音場測定においては、携帯端末20は予め用意されたテスト信号Stを車載器30に出力し、車載器30はスピーカ35によりテスト信号Stを再生して車室内にテスト音Sを出力する。なお、テスト信号Stは、音場特性として、インパルス応答、周波数特性、残響特性などを測定するために用意される信号である。
車室内に出力されたテスト音Sはマイク25により収音され、一時的に記憶部23に記憶される。制御部22は、収音されたデータを測定データとして通信部21を介してサーバ10へ送信する。なお、携帯端末20は、測定データをサーバ10へ送信する際、車両7の車種情報を付加する。即ち、測定データは、その測定を行った車両の車種情報とともにサーバ10にアップロードされる。
(補正データの生成方法)
次に、サーバ10において補正データを生成する方法について説明する。上記のように、複数の携帯端末20が測定データをサーバ10にアップロードすることにより、サーバ10には多数の測定データが集められる。サーバ10は、複数の車両の携帯端末20からアップロードされた測定データを車種ごとに分類し、補正データを生成する。具体的には、サーバ10は、同一の車種について複数の携帯端末20からアップロードされた複数の測定データを同期加算することにより補正データを生成する。同期加算により、その車種に固有の音場特性が強調されるとともに、個々の車両における固有の特性や特性のバラツキは平滑化され、その車種の車室の音場特性を的確に表した補正データが得られる。
次に、サーバ10において補正データを生成する方法について説明する。上記のように、複数の携帯端末20が測定データをサーバ10にアップロードすることにより、サーバ10には多数の測定データが集められる。サーバ10は、複数の車両の携帯端末20からアップロードされた測定データを車種ごとに分類し、補正データを生成する。具体的には、サーバ10は、同一の車種について複数の携帯端末20からアップロードされた複数の測定データを同期加算することにより補正データを生成する。同期加算により、その車種に固有の音場特性が強調されるとともに、個々の車両における固有の特性や特性のバラツキは平滑化され、その車種の車室の音場特性を的確に表した補正データが得られる。
基本的に、同期加算の対象とする測定データの数(以下、「サンプル数」とも呼ぶ。)が多いほど、正確な補正データを作成することができる。一方で、各車両7において、測定を繰り返し行ったり、長時間の測定を行うのはユーザの負担が大きい。そこで、各車両7では携帯端末20は1回の測定により1つの測定データを取得してサーバ10へアップロードすることとし、サーバ10は複数の携帯端末20から多数の測定データを取得することにより、同期加算の対象とするサンプル数を増加させる。これにより、各車両7における測定の負荷が過大となることと防止しつつ、多数のサンプルを収集して車種ごとに的確な補正データを生成することが可能となる。
なお、実際の音場補正の例としては、例えばタイムアライメント補正、周波数特性の補正、残響特性の補正などが挙げられる。タイムアライメント補正とは、車両に搭載された複数のスピーカと、車室における聴取位置との距離差を補正し、複数のスピーカから出力された音が同時に聴取位置に到達するようにする補正である。周波数特性の補正とは、基本的に車室内における周波数特性がフラットになるように、帯域毎のゲインを調整する補正である。残響特性の補正とは、車室における残響時間を適切な時間となるように調整する補正である。
(補正データ提供処理)
次に、補正データ提供処理について説明する。図5は第1実施例による補正データ提供処理のフローチャートである。この処理は、主としてサーバ10の制御部12と携帯端末20の制御部22が予め用意されたプログラムを実行することにより行われる。
次に、補正データ提供処理について説明する。図5は第1実施例による補正データ提供処理のフローチャートである。この処理は、主としてサーバ10の制御部12と携帯端末20の制御部22が予め用意されたプログラムを実行することにより行われる。
まず、携帯端末20において、ユーザがタッチパネル24を操作して車両7の車種情報を入力し、携帯端末20はこれを取得する(ステップS11)。次に、携帯端末20は、車室内で上述のように音場測定を行い、測定データを生成する(ステップS12)。そして、携帯端末20は、車種情報と測定データをサーバ10へ送信する(ステップS13)。
サーバ10は、車種情報に基づいて、補正データDB14に既に記憶されている同一車種の測定データ、即ち、それまでに他の車両7の携帯端末20から送信された測定データを抽出する。そして、ステップS13で受信した測定データと補正データDB14から抽出した測定データを利用して上述のように同期加算を行って補正データを生成し(ステップS14)、その補正データを携帯端末20へ送信する(ステップS15)。
携帯端末20は、補正データを受信すると、車両7内の車載器30へ転送する(ステップS16)。これにより、車載器30には、サーバ10から送信された補正データが設定される。よって、車載器30により再生される音楽は、補正データに基づいてその車種に適した音場補正がなされたものとなる。
以上のように、第1実施例によれば、サーバ10は、複数の車両7において測定された測定データを各携帯端末20から収集し、多数のサンプル数の測定データを使用して同期加算を行って補正データを生成する。よって、各車両における測定時間を短くすることができ、そのためユーザは音場測定中に車内にいることできる。こうして、各車両における測定の負担を軽減しつつ、車両の種類に適合した音場補正データを生成することができる。
(変形例)
上記の例では、携帯端末20から車種情報をサーバ10へ送信し、サーバ10は車種ごとに補正データを生成して携帯端末20に提供している。これに加えて、車両で使用されている車載器の情報も携帯端末20からサーバ10へ送信し、サーバ10は車種ごと、かつ、車載器30の種類ごとに補正データを生成して携帯端末20へ提供してもよい。
上記の例では、携帯端末20から車種情報をサーバ10へ送信し、サーバ10は車種ごとに補正データを生成して携帯端末20に提供している。これに加えて、車両で使用されている車載器の情報も携帯端末20からサーバ10へ送信し、サーバ10は車種ごと、かつ、車載器30の種類ごとに補正データを生成して携帯端末20へ提供してもよい。
[第2実施例]
第2実施例は、音場補正のために複数の測定項目がある場合の処理に関するものである。いま、音場補正のための測定項目として測定項目A~Cの3つがあるとする。例えば、測定項目Aはインパルス応答、測定項目Bは周波数特性、測定項目Cは残響特性としてもよい。この場合、サーバ10は、各測定項目について、車種ごとに複数の携帯端末20から測定データを受信して同期加算により補正データを生成するのであるが、前述のように測定データのサンプル数が不足していると、生成される補正データの精度を確保することが難しい。そこで、サーバ10は、測定項目ごとに、収集できた測定データのサンプル数を記憶部13に記憶しておき、サンプル数が不足している測定項目(以下、「サンプル不足項目」と呼ぶ。)を携帯端末20に通知してその測定項目についての測定データを要求する。
第2実施例は、音場補正のために複数の測定項目がある場合の処理に関するものである。いま、音場補正のための測定項目として測定項目A~Cの3つがあるとする。例えば、測定項目Aはインパルス応答、測定項目Bは周波数特性、測定項目Cは残響特性としてもよい。この場合、サーバ10は、各測定項目について、車種ごとに複数の携帯端末20から測定データを受信して同期加算により補正データを生成するのであるが、前述のように測定データのサンプル数が不足していると、生成される補正データの精度を確保することが難しい。そこで、サーバ10は、測定項目ごとに、収集できた測定データのサンプル数を記憶部13に記憶しておき、サンプル数が不足している測定項目(以下、「サンプル不足項目」と呼ぶ。)を携帯端末20に通知してその測定項目についての測定データを要求する。
図6は、サーバ10の記憶部13に記憶される測定項目別のサンプル数の例である。車種ごとに、測定項目A~Cについて既に得られている測定データのサンプル数が記憶されている。いま、作成される補正データの精度を確保するために50以上のサンプル数が必要であると仮定すると、図6中のサンプル数が50未満である測定項目(数値に下線を伏して示す)はサンプル不足項目となる。よって、サーバ10は、サンプル不足項目を有する車種の車両について、サンプル不足項目を通知して測定データの送信を要求する。これにより、サーバ10は、サンプル不足項目について測定データの収集を促進し、携帯端末20に提供する補正データの精度を確保することが可能となる。
図7は、第2実施例における補正データ提供処理のフローチャートである。まず、携帯端末20において、ユーザがタッチパネル24を操作して車両7の車種情報を入力すると、携帯端末20はこれを取得し(ステップS21)、サーバ10へ送信する(ステップS22)。
サーバ10は、車種情報を受信すると、図6に例示したような測定項目別のサンプル数を参照し、その車種についてのサンプル不足項目を特定する(ステップS23)。そして、サーバ10は、特定したサンプル不足項目を携帯端末20に通知する(ステップS24)。
携帯端末20は、サンプル不足項目の通知を受け取り、その測定項目について測定を行って測定データを生成し(ステップS25)、サーバ10へ送信する(ステップS26)。
サーバ10は、送信された測定データを使用して当該サンプル不足項目についての補正データを生成して補正データDB14に記憶する(ステップS27)。そして、サーバ10は、その車種に関する補正データ(本例では測定項目A~Cについての補正データ)を補正データDB14から取得し、携帯端末20へ送信する(ステップS28)。これにより、サンプル不足項目については、ステップS26で携帯端末20から送信された測定データを利用して新たに作成された補正データが携帯端末20へ送信されることになる。
そして、携帯端末20は、補正データを受信すると、車両7内の車載器30へ転送する(ステップS29)。これにより、車載器30には、サーバ10から送信された補正データが設定される。よって、車載器30により再生される音楽は、補正データに基づいてその車種に適した音場補正がなされたものとなる。
なお、サーバ10は上記のように測定データが不足しているサンプル不足項目を携帯端末20に通知するだけでなく、このサンプル不足項目を測定するためのテスト音を携帯端末20に送信してもよい。テスト音はサンプル不足項目に応じて、インパルス応答、周波数特性、残響特性などを測定するために用意された信号とする。例えば、サンプル不足項目が測定項目Aである場合は、サーバ10は、テスト音としてインパルス応答を測定するための信号を送信する。同様に、サンプル不足項目が測定項目Bである場合は、サーバ10は、テスト音として周波数特性を測定するための信号を送信する。
以上のように、第2実施例によれば、サーバ10は、サンプル数が不足している測定項目を携帯端末20に通知して、その測定項目についての測定データの収集を促進する。このため、サーバ10は補正データの精度を確保するために必要なサンプル数の測定データを迅速に収集することができ、携帯端末20に提供される補正データの精度を迅速に確保することが可能となる。
[第3実施例]
第3実施例は、車両7で音場測定に使用される携帯端末20の測定における適正度を考慮して補正データを作成するものである。車両7では多種の携帯端末20が使用され、内蔵するマイク25の性能も異なる。よって、性能の低いマイク25を備える携帯端末20で測定された測定データは、サーバ10側での補正データ作成に不適当なこともある。
第3実施例は、車両7で音場測定に使用される携帯端末20の測定における適正度を考慮して補正データを作成するものである。車両7では多種の携帯端末20が使用され、内蔵するマイク25の性能も異なる。よって、性能の低いマイク25を備える携帯端末20で測定された測定データは、サーバ10側での補正データ作成に不適当なこともある。
そこで、第3実施例では、携帯端末20が測定データをサーバ10へアップロードする際、その携帯端末20の機種情報も送信する。サーバ10では、車種ごと、かつ、携帯端末20の機種毎に補正データを作成し、各車種について各携帯端末20の適正度を評価する。
図8は、携帯端末20の評価結果の一例を示す。携帯端末20と車種との組合せに対して車種別適正度が決定される。車種別適正度は、その携帯端末20と車種との相性を示すものと考えることもできる。そして、全ての車種についての車種別適正度を総合して、その携帯端末20に対する総合適正度が決定される。なお、これらの評価は、基本的には各携帯端末20を用いて生成された補正データの値の分布を生成し、偏差値を算出することにより行われる。即ち、得られた補正データの値が標準値に近い場合には適正度は高く、標準値から遠い場合には適正度は低いと判定される。例えば、音場補正としてタイムアライメントの補正を行う際、補正データは最も遠いスピーカからの遅延量で与えられる。よって、各携帯端末と車種との組合せについて補正データとして遅延量を算出し、その分布に基づいて適正度を決定する。図8の例では、補正データの値が標準値に近いか否かに基づいて、適正度をA~Cランクの3段階で決定している。なお、適正度Aランクが最も標準値に近く、適正度Cランクは最も標準値から遠いものとする。
サーバ10は、車種別適正度及び総合適正度を算出し、これを考慮して最終的に補正データDB14に記憶する補正データを作成する。一例では、総合適正度がCランクである携帯端末20から取得した測定データは、補正データの生成に使用しないこととする。他の例では、総合適正度に応じて重み付けをして測定データを使用する。例えば、総合適正度がAランクの携帯端末20から取得した測定データには重み値「2」を付与し、総合適正度がBランクの携帯端末20から取得した測定データには重み値「1」を付与し、総合適正度がCランクの携帯端末20から取得した測定データには重み値「0.5」を付与して補正データを生成する。このように、測定データをアップロードする携帯端末20毎に適正度を評価し、適正度を考慮して補正データを生成することにより、携帯端末20の性能差の影響を受けずに精度の高い補正データを生成することが可能となる。
なお、上記の例では、適正度をA~Cの3ランクで設定し、それぞれに重み値を設定しているが、本発明の適用はこれには限られない。代わりに、例えば適正度を0~1の数値で設定し(「0」は適正度が最低、「1」は適正度が最高)、その値を重み値として使用してもよい。
図9は第3実施例による補正データ提供処理のフローチャートである。まず、携帯端末20において、ユーザがタッチパネル24を操作して車両7の車種情報を入力し、携帯端末20はこれを取得する(ステップS31)。次に、携帯端末20は、携帯端末20の機種情報を取得する(ステップS32)。具体的には、携帯端末20の記憶部23にその携帯端末20の型番などの機種情報が記憶されている場合には、携帯端末20は単にその機種情報を読み出せばよい。一方、記憶部23などに機種情報が記憶されていない場合には、携帯端末20はユーザに機種情報の入力を要求し、ユーザがタッチパネル24を操作して入力した機種情報を取得する。
次に、携帯端末20は、車室内で上述のように音場測定を行い、測定データを生成する(ステップS33)。そして、携帯端末20は、車種情報と、機種情報と、測定データとをサーバ10へ送信する(ステップS34)。
サーバ10は、車種情報に基づいて、補正データDB14に既に記憶されている同一車種の測定データ、即ち、それまでに他の車両7の携帯端末20から送信された測定データを抽出する。そして、ステップS34で受信した測定データと補正データDB14から抽出した測定データを利用して上述のように同期加算を行って補正データを生成する(ステップS35)。この際、サーバ10は上述のように、受信した携帯端末20の機種情報に基づいてその携帯端末20の適正度を参照し、必要な重み付けなどを行って補正データを生成する。そして、サーバ10は、生成した補正データを携帯端末20へ送信する(ステップS36)。
携帯端末20は、補正データを受信すると、車両7内の車載器30へ転送する(ステップS37)。これにより、車載器30には、サーバ10から送信された補正データが設定される。よって、車載器30により再生される音楽は、補正データに基づいてその車種に適した音場補正がなされたものとなる。
以上のように、第3実施例によれば、サーバ10は、測定データを生成して送信する携帯端末20の性能差の影響を排除して精度の高い補正データを生成することができ、携帯端末20もそのような精度の高い補正データに基づいて車室内の音場補正を行うことができる。
[第4実施例]
第4実施例は、車両7で音場測定を行った際の車室内における位置に応じて補正データを作成するものである。車両7で音場測定を行う際、測定位置(即ち、聴取位置)は携帯端末20を配置した位置となる。即ち、携帯端末20を運転席に配置して音場測定を行えば、得られたデータは運転席を聴取位置とする測定データとなり、携帯端末20を助手席に設置して音場測定を行えば、得られた測定データは助手席を聴取位置とする測定データとなる。よって、第4実施例では、携帯端末20は測定データをサーバ10へアップロードする際に、測定位置を示す位置情報を一緒に送信する。サーバ10は、複数の携帯端末20から収集した測定データを測定位置毎に分類し、測定位置毎に補正データを生成する。
第4実施例は、車両7で音場測定を行った際の車室内における位置に応じて補正データを作成するものである。車両7で音場測定を行う際、測定位置(即ち、聴取位置)は携帯端末20を配置した位置となる。即ち、携帯端末20を運転席に配置して音場測定を行えば、得られたデータは運転席を聴取位置とする測定データとなり、携帯端末20を助手席に設置して音場測定を行えば、得られた測定データは助手席を聴取位置とする測定データとなる。よって、第4実施例では、携帯端末20は測定データをサーバ10へアップロードする際に、測定位置を示す位置情報を一緒に送信する。サーバ10は、複数の携帯端末20から収集した測定データを測定位置毎に分類し、測定位置毎に補正データを生成する。
図10は、車室の測定位置毎に補正データを生成した場合の補正データDB14に記憶される補正データの例を示す。この例では、測定位置として、運転席、助手席、後席(後部座席)の3つを使用している。なお、実際には、ユーザがこれらの座席に座って携帯端末20を頭部付近で保持した状態で測定を行うことになる。
このように、車室内の測定位置ごとに携帯端末20からサーバ10へ測定データをアップロードし、サーバ10が測定位置ごとに補正データを生成することにより、車室内における実際のユーザの聴取位置を考慮した高精度な音場補正が可能となる。
なお、図10の例では、測定位置を運転席、助手席、後席の3つに分類しているが、本発明の適用はこれには限られない。例えば、後席をさらに後部左座席と後部右座席に分けてもよい。また、別の分類方法として、運転席、助手席、前席、後席、全席に分類してもよい。この場合、「前席」は測定位置(=聴取位置)が運転席と助手席の間にある場合を指し、「後席」は測定位置が後部左座席と後部右座席の間にある場合を指し、「全席」は測定位置が車室のほぼ中央(前席と後席の間、かつ、左右の座席の間)にある場合を指す。
図11は第4実施例による補正データ提供処理のフローチャートである。まず、携帯端末20において、ユーザがタッチパネル24を操作して車両7の車種情報を入力し、携帯端末20はこれを取得する(ステップS41)。次に、携帯端末20は、測定位置情報を取得する(ステップS42)。具体的には、携帯端末20はユーザに測定位置の入力を要求し、ユーザがタッチパネル24を操作して入力した測定位置を測定位置情報として取得する。
次に、携帯端末20は、車室内で上述のように音場測定を行い、測定データを生成する(ステップS43)。そして、携帯端末20は、車種情報と、測定位置情報と、測定データとをサーバ10へ送信する(ステップS44)。
サーバ10は、車種情報に基づいて、補正データDB14に既に記憶されている同一車種の測定データ、即ち、それまでに他の車両7の携帯端末20から送信された測定データを抽出する。そして、ステップS44で受信した測定データと補正データDB14から抽出した測定データを利用して上述のように同期加算を行って補正データを生成する(ステップS45)。この際、サーバ10は上述のように、ステップS44で取得した測定位置について、補正データを生成する。そして、サーバ10は、生成した補正データを携帯端末20へ送信する(ステップS46)。
携帯端末20は、補正データを受信すると、車両7内の車載器30へ転送する(ステップS47)。これにより、車載器30には、サーバ10から送信された補正データが設定される。よって、車載器30により再生される音楽は、補正データに基づいてその車種に適した音場補正がなされたものとなる。
以上のように、第4実施例によれば、サーバ10は、測定位置ごとに補正データを生成して提供することができるので、車室内の聴取位置に応じて最適な音場補正を行うことができる。
[第5実施例]
第5実施例は、サーバ10で補正データを作成する際の測定データのサンプル数が不足している場合に、サーバ10はまずその不足した数で補正データを作成して携帯端末20に提供し、その後に必要なサンプル数が得られたときに再度補正データを作成してその携帯端末20へ送信するものである。
第5実施例は、サーバ10で補正データを作成する際の測定データのサンプル数が不足している場合に、サーバ10はまずその不足した数で補正データを作成して携帯端末20に提供し、その後に必要なサンプル数が得られたときに再度補正データを作成してその携帯端末20へ送信するものである。
前述のように、測定データのサンプル数が十分な場合にはサーバ10で生成される補正データの精度が確保できるが、測定データのサンプル数が少ない場合には生成される補正データの精度を確保することは難しい。しかしながら、サーバ10が十分なサンプル数の測定データが得られるまで補正データを提供しないこととすると、ユーザ側としてはせっかく音場測定を行って測定データをサーバ10にアップロードしたのに補正データの提供を受けられないこととなり、測定データをアップロードしようという意欲が低下してしまう。
そこで、第5実施例では、サーバ10は、サンプル数が不足している状態であっても、まずは補正データを生成して携帯端末20へ提供する。但し、その時点で提供した補正データは精度が必ずしも十分とは言えないので、その後に十分なサンプル数が得られて精度の高い補正データが生成できた時点で、その精度の高い補正データを改めて携帯端末20へ提供する。こうすることにより、ユーザからの測定データの収集を促進し、サーバ10から早期に精度の高い補正データを提供できるようにする。
図12は、第5実施例において、サーバ10の補正データDB14に記憶されるデータの例である。車種に対応付けて、その時点で生成されている補正データが記憶されるとともに、その補正データを生成した際に使用した測定データのサンプル数が記憶される。いま、十分な精度の補正データを生成するために必要な測定データのサンプル数を「50」と仮定する。即ち、測定データのサンプル数が50以下である状態はサンプル数が不足している状態となる(図12では、不足状態のサンプル数に下線を付している)。そこで、サンプル数が不足している状態で生成された補正データ(以下、「サンプル不足補正データ」と呼ぶ。)については、それを提供した携帯端末20の端末IDを対応付けて記憶しておく。図12の例では、車種「A社AAA 2012~現在」については、測定データのサンプル数が「15」であり、その補正データはサンプル数不足補正データであるので、サーバ10はそのサンプル数不足補正データを提供した際に提供先の端末IDを記憶しておく。そして、その後に測定データのサンプル数が「50」を超え、一定の精度が確保された補正データが生成できた際に、提供先端末IDとして記憶されている携帯端末20に改めて提供する。
図13は第5実施例による補正データ提供処理のフローチャートである。まず、携帯端末20において、ユーザがタッチパネル24を操作して車両7の車種情報を入力し、携帯端末20はこれを取得する(ステップS51)。
次に、携帯端末20は、車室内で上述のように音場測定を行い、測定データを生成する(ステップS52)。そして、携帯端末20は、車種情報と測定データとをサーバ10へ送信する(ステップS53)。
サーバ10は、車種情報に基づいて、補正データDB14に既に記憶されている同一車種の測定データ、即ち、それまでに他の車両7の携帯端末20から送信された測定データを抽出する。そして、ステップS53で受信した測定データと補正データDB14から抽出した測定データを利用して上述のように同期加算を行って補正データを生成する(ステップS54)。この際、サーバ10は、補正データの作成に使用した測定データのサンプル数を参照し、サンプル数が足りているか、即ち、生成した補正データがサンプル数不足補正データに該当するか否かを判定する(ステップS55)。
サンプル数不足補正データに該当する場合(ステップS55:Yes)、サーバ10は図12に例示するように、補正データDB14にそのときの携帯端末20の端末IDを記憶する(ステップS56)。一方、サンプル数不足補正データに該当しない場合(ステップS55:No)、ステップS56の処理は行われない。そして、サーバ10は、生成した補正データを携帯端末20へ送信する(ステップS57)。
携帯端末20は、補正データを受信すると、車両7内の車載器30へ転送する(ステップS58)。これにより、車載器30には、サーバ10から送信された補正データが設定される。よって、サーバ10からサンプル数不足補正データが送信された場合には、その補正データが車載器30に設定されるので、車室内の音場補正の精度は必ずしも十分ではない状態となる。
しかし、その後にサーバ10において同一車種の測定データのサンプル数が増加して十分なサンプル数に達した場合、サーバ10は高精度の補正データを生成し、補正データDB14を参照して過去にサンプル数不足補正データを送信した携帯端末20へ高精度の補正データを送信する。よって、携帯端末20は、その高精度の補正データを受信し、車載器30に転送して設定することにより、高精度の音場補正が可能となる。
なお、サーバ10は、ステップS57でサンプル数不足補正データを携帯端末20へ送信する際には、その旨のメッセージなどを送信して携帯端末20のユーザに通知してもよい。例えば、「今回送信する補正データはサンプル数が不十分な状態で生成されたものです。後日サンプル数が十分な数になった際には、より高精度の補正データをお送りします。」などのメッセージを送信してもよい。これにより、ユーザは最初に送信された補正データによる音場補正が多少満足できないものであったとしても、高精度の補正データを待つことができる。
本発明は、車室内で音楽を再生するシステムに利用することができる。
5 ネットワーク
10 サーバ
12 制御部
14 補正データDB
20 端末装置
22 制御部
25 マイク
30 車載器
35 スピーカ
10 サーバ
12 制御部
14 補正データDB
20 端末装置
22 制御部
25 マイク
30 車載器
35 スピーカ
Claims (7)
- アップロードされた車種別の音場測定データを複数個用いて車種別音場補正データを生成するサーバと通信可能な携帯端末であって、
第1の車両の音場を測定して第1の音場測定データを生成する測定手段と、
前記測定の対象となった車両の車種情報を取得する取得手段と、
前記第1の音場測定データと前記車種情報とを前記サーバに送信する送信手段と、
前記第1の音場測定データと、前記第1の車両とは異なる車両であり、かつ前記車種である第2の車両の音場を測定して生成された第2の音場測定データと、に基づき生成された前記車種情報に対応する車種別音場補正データを、前記サーバから受信する受信手段と、
を備えることを特徴とする携帯端末。 - 前記測定手段は、
前記車両に取り付けられた車載器にテスト信号を出力する出力手段と、
前記車載器が前記テスト信号を再生することにより前記車両の車室に出力されたテスト音を収音して前記音場測定データを生成する収音手段と、
を備えることを特徴とする請求項1に記載の携帯端末。 - 前記車種別音場補正データを、前記第1の車両に搭載された再生装置へ送信する送信手段を有することを特徴とする請求項1又は2に記載の携帯端末。
- アップロードされた車種別の音場測定データを複数個用いて車種別音場補正データを生成するサーバと通信可能な携帯端末によって実行される音場測定データ提供方法であって、
第1の車両の音場を測定して第1の音場測定データを生成する測定工程と、
前記測定の対象となった車両の車種情報を取得する取得工程と、
前記第1の音場測定データと前記車種情報とを前記サーバに送信する送信工程と、
前記第1の音場測定データと、前記第1の車両とは異なる車両であり、かつ前記車種である第2の車両の音場を測定して生成された第2の音場測定データと、に基づき生成された前記車種情報に対応する車種別音場補正データを、前記サーバから受信する受信工程と、
を備えることを特徴とする音場測定データ提供方法。 - コンピュータを有し、アップロードされた車種別の音場測定データを複数個用いて車種別音場補正データを生成するサーバと通信可能な携帯端末によって実行されるプログラムであって、
第1の車両の音場を測定して第1の音場測定データを生成する測定手段、
前記測定の対象となった車両の車種情報を取得する取得手段、
前記第1の音場測定データと前記車種情報とを前記サーバに送信する送信手段、
前記第1の音場測定データと、前記第1の車両とは異なる車両であり、かつ前記車種である第2の車両の音場を測定して生成された第2の音場測定データと、に基づき生成された前記車種情報に対応する車種別音場補正データを、前記サーバから受信する受信手段、
として前記携帯端末を機能させることを特徴とするプログラム。 - 請求項5に記載のプログラムを記憶したことを特徴とする記憶媒体。
- 携帯端末と通信可能なサーバであって、
複数の携帯端末から、車両の車種情報と当該車両の音場を測定して得られたデータである音場測定データをと受信する受信手段と、
前記車種情報に基づき、前記音場測定データを車種別に分類する分類手段と、
前記車種別に分類された複数の音場測定データに基づき、前記車種情報に対応する車種別補正データを生成する生成手段と、
前記車種別補正データを当該車種情報を送信した携帯端末に対して送信する送信手段と、を有することを特徴とするサーバ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/060008 WO2016157388A1 (ja) | 2015-03-30 | 2015-03-30 | 携帯端末、サーバ、音場測定データ提供方法、及び、プログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/060008 WO2016157388A1 (ja) | 2015-03-30 | 2015-03-30 | 携帯端末、サーバ、音場測定データ提供方法、及び、プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016157388A1 true WO2016157388A1 (ja) | 2016-10-06 |
Family
ID=57005311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/060008 WO2016157388A1 (ja) | 2015-03-30 | 2015-03-30 | 携帯端末、サーバ、音場測定データ提供方法、及び、プログラム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016157388A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016191725A (ja) * | 2015-03-30 | 2016-11-10 | パイオニア株式会社 | 携帯端末、サーバ、音場補正方法、及び、プログラム |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001028799A (ja) * | 1999-05-10 | 2001-01-30 | Sony Corp | 車載用音響再生装置 |
JP2008078955A (ja) * | 2006-09-21 | 2008-04-03 | Alpine Electronics Inc | オーディオ装置及びオーディオ装置の音質補正方法 |
WO2011083610A1 (ja) * | 2010-01-05 | 2011-07-14 | クラリオン株式会社 | 車両用音響特性調整装置 |
JP2013135320A (ja) * | 2011-12-26 | 2013-07-08 | Toshiba Corp | 周波数特性調整システムおよび周波数特性調整方法 |
JP2013530420A (ja) * | 2010-05-06 | 2013-07-25 | ドルビー ラボラトリーズ ライセンシング コーポレイション | 可搬型メディア再生装置に関するオーディオ・システム等化処理 |
JP2013207580A (ja) * | 2012-03-28 | 2013-10-07 | Jvc Kenwood Corp | 音響パラメータ設定装置、サーバ、音響パラメータ設定方法、及び、プログラム |
-
2015
- 2015-03-30 WO PCT/JP2015/060008 patent/WO2016157388A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001028799A (ja) * | 1999-05-10 | 2001-01-30 | Sony Corp | 車載用音響再生装置 |
JP2008078955A (ja) * | 2006-09-21 | 2008-04-03 | Alpine Electronics Inc | オーディオ装置及びオーディオ装置の音質補正方法 |
WO2011083610A1 (ja) * | 2010-01-05 | 2011-07-14 | クラリオン株式会社 | 車両用音響特性調整装置 |
JP2013530420A (ja) * | 2010-05-06 | 2013-07-25 | ドルビー ラボラトリーズ ライセンシング コーポレイション | 可搬型メディア再生装置に関するオーディオ・システム等化処理 |
JP2013135320A (ja) * | 2011-12-26 | 2013-07-08 | Toshiba Corp | 周波数特性調整システムおよび周波数特性調整方法 |
JP2013207580A (ja) * | 2012-03-28 | 2013-10-07 | Jvc Kenwood Corp | 音響パラメータ設定装置、サーバ、音響パラメータ設定方法、及び、プログラム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016191725A (ja) * | 2015-03-30 | 2016-11-10 | パイオニア株式会社 | 携帯端末、サーバ、音場補正方法、及び、プログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11501772B2 (en) | Context aware hearing optimization engine | |
US20200236463A1 (en) | Headphone device, terminal device, information transmitting method, program, and headphone system | |
US11048472B2 (en) | Dynamically adjustable sound parameters | |
US20180115841A1 (en) | System and method for remote hearing aid adjustment and hearing testing by a hearing health professional | |
JP5313549B2 (ja) | 音響情報提供システム及び車載音響装置 | |
CN109817214B (zh) | 应用于车辆的交互方法和装置 | |
US11928390B2 (en) | Systems and methods for providing a personalized virtual personal assistant | |
CN113746983B (zh) | 助听方法及装置、存储介质、智能终端 | |
JP2021106390A (ja) | 音声補正装置 | |
JP2016192587A (ja) | 携帯端末、音場補正方法、及び、プログラム | |
KR101853568B1 (ko) | 스마트단말 및 이를 이용한 사운드 최적화 방법 | |
JP2016192585A (ja) | 携帯端末、音場補正方法、及び、プログラム | |
WO2016157388A1 (ja) | 携帯端末、サーバ、音場測定データ提供方法、及び、プログラム | |
JP6491012B2 (ja) | 携帯端末、サーバ、音場補正方法、及び、プログラム | |
JP2016192586A (ja) | 携帯端末、音場補正方法、及び、プログラム | |
CN113895385A (zh) | 一种主驾驶音场自动控制方法、系统及设备 | |
CN105843581A (zh) | 一种频响校正方法、服务器、终端设备及系统 | |
CN211742643U (zh) | 一种车载降噪控制装置 | |
JP2021164109A (ja) | 音場補正方法、音場補正プログラムおよび音場補正システム | |
WO2020170789A1 (ja) | ノイズキャンセル信号生成装置および方法、並びにプログラム | |
EP3691297B1 (en) | Test arrangement and test method | |
CN103916433B (zh) | 一种卡拉ok数据处理方法、装置、物联网服务平台及终端 | |
JP2003091290A (ja) | 通信型車室内音場制御システムおよびデータ配信センター並びに車載音響システム | |
CN114554379B (zh) | 助听器验配方法、装置、充电盒和计算机可读介质 | |
US20220369059A1 (en) | Active sound design (asd) tuning device of vehicle and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15887541 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15887541 Country of ref document: EP Kind code of ref document: A1 |