WO2016157235A1 - 高強度鋼及びその製造方法、並びに鋼管及びその製造方法 - Google Patents
高強度鋼及びその製造方法、並びに鋼管及びその製造方法 Download PDFInfo
- Publication number
- WO2016157235A1 WO2016157235A1 PCT/JP2015/001768 JP2015001768W WO2016157235A1 WO 2016157235 A1 WO2016157235 A1 WO 2016157235A1 JP 2015001768 W JP2015001768 W JP 2015001768W WO 2016157235 A1 WO2016157235 A1 WO 2016157235A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- strength
- steel
- temperature
- tensile strength
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
Definitions
- the present invention relates to a high-strength steel having a tensile strength of 620 MPa or more after long-term aging in an intermediate temperature range and a production method thereof, and a steel pipe composed of the high-strength steel and a production method thereof.
- the present invention can be preferably applied to high-strength steel pipes for steam piping.
- the temperature of the steam fed into the oil reservoir by the steam injection method is in the temperature range of 300 to 400 ° C. (hereinafter referred to as the intermediate temperature range).
- the intermediate temperature range steam having a temperature in the middle temperature range is sent into the oil reservoir at high pressure.
- a steel pipe is used for feeding the steam.
- Patent Document 1 There are Patent Document 1 and Patent Document 2 as conventional technologies for steel pipes for vapor transport that can be used in the steam injection method.
- Patent Document 2 a seamless pipe equivalent to API X80 is reported, and the maximum outer diameter of the steel pipe is 16 inches.
- Patent Documents 3 and 4 disclose manufacturing techniques for high-strength steel pipes having a strength of API X80 or higher, regarding manufacturing techniques for high-strength steel pipes manufactured by welding and capable of increasing the diameter.
- JP 2000-290728 A Japanese Patent No. 4821939 Japanese Patent No. 5055736 International Publication No. 2012/108027
- Patent Document 3 although the high temperature characteristic in the middle temperature range is about X80, the strength characteristic when used for a long time is not taken into consideration.
- Patent Document 4 As a manufacturing technique of high strength steel of API X100, there is Patent Document 4 described above. However, with the technique of Patent Document 4, a large amount of alloy components must be used in order to ensure the strength in the middle temperature range.
- Patent Document 4 has a remarkable decrease in tensile strength when held for a long time in an intermediate temperature range.
- the present invention is to solve the above-mentioned problems, and the object is to achieve a tensile strength of 620 MPa or more (API X80 or more) required for steel pipes of API X80 or higher even after long-term aging in the middle temperature range.
- the purpose is to provide technology that can be used.
- the present inventors diligently studied the characteristics of high-strength steel in the middle temperature range. As a result, in the manufacturing process of accelerated cooling after controlled rolling and subsequent reheating, reheating is performed during the bainite transformation in Nb steel in which Nb is dissolved or Nb-V steel in which Nb and V are dissolved. In addition to strengthening due to bainite transformation during accelerated cooling, precipitation strengthening due to fine precipitates precipitated from bainite and untransformed austenite during reheating, and suppression of dislocation recovery in the middle temperature range can reduce strength in the middle temperature range. The knowledge that suppression becomes possible was obtained.
- Nb and V are elements that form carbides in steel. Conventionally, strengthening steel by precipitation of NbC has been performed. V-based carbides are also useful elements for ensuring high-temperature creep strength because they are less likely to agglomerate and coarsen when held at high temperatures for long periods of time.
- the heating rate during reheating is increased to suppress the growth of precipitates during heating.
- Nb or a carbide containing Nb and V is basically finely precipitated in a large amount in the steel, and the effect of suppressing the strength decrease in the middle temperature range is obtained.
- the high-strength steel of the present invention in order to introduce a large amount of dislocations in the intragranular structure, prior to dispersion precipitation of fine carbides by reheating after accelerated cooling, accumulation at 900 ° C. or lower Adjust the rolling reduction and rolling finishing temperature. That is, when manufacturing the high-strength steel of the present invention, the dislocations in the grains are increased in both the rolling and accelerated cooling steps.
- the present invention secures high strength in the middle temperature range by increasing dislocations due to rolling and accelerated cooling, and suppressing recovery of dislocations in the middle temperature range due to fine carbides dispersed and precipitated by heating after accelerated cooling. To do.
- the present invention has been completed based on the above findings. Specifically, the present invention provides the following.
- [4] A steel pipe composed of the high-strength steel according to any one of [1] to [3].
- [5] A method for producing a high-strength steel according to any one of [1] to [3], A heating step of heating the steel material to 1050-1200 ° C .; In the hot rolling step, the steel material heated in the heating step is hot-rolled under a condition where the cumulative rolling reduction at 900 ° C. or less is 50% or more and the rolling end temperature is 850 ° C.
- the hot rolling step The obtained hot-rolled sheet is accelerated and cooled at a cooling rate of 5 ° C./second or more and a cooling stop temperature is 250 to 550 ° C., and immediately after the accelerated cooling, the heating rate is 0.5 And a reheating step of reheating the hot-rolled sheet at a temperature of 550 ° C./s or more and an ultimate temperature of 550 to 700 ° C.
- a cold forming step in which a steel plate composed of the high-strength steel according to any one of [1] to [3] is cold-formed into a tubular shape, and a steel sheet formed into a tubular shape in the cold forming step. And a welding process for welding the butt portion.
- the present invention even if the diameter of the steel pipe is increased, it is possible to obtain a steel pipe having a tensile strength of 620 MPa or more after being held for a long time in an intermediate temperature range.
- a steel pipe having the above characteristics can be obtained even if the amount of alloy elements used is reduced and the manufacturing cost is reduced.
- the high-strength steel of the present invention is, in mass%, C: 0.040 to 0.090%, Si: 0.05 to 0.30%, Mn: 1.50 to 2.50%, P: 0.020. %: S: 0.002% or less, Mo: 0.20 to 0.60%, Nb: 0.020 to 0.070%, Ti: 0.020% or less, V: 0.080% or less, Al : 0.045% or less, N: 0.010% or less.
- “%” representing the content of a component means “mass%”.
- C 0.040 to 0.090%
- C is an element necessary for securing the strength of steel by solid solution strengthening and precipitation strengthening.
- the increase in the amount of dissolved C and the formation of precipitates are important for securing the strength in the middle temperature range.
- the content is set to 0.040% or more, and preferably 0.050% or more. If the C content exceeds 0.09%, addition of C causes deterioration of toughness and weldability, so it is set to 0.090% or less, and preferably 0.080% or less.
- Si 0.05-0.30% Si is added for deoxidation. If the Si content is less than 0.05%, a sufficient deoxidation effect cannot be obtained, so it is preferable to contain 0.05% or more. On the other hand, if the Si content exceeds 0.30%, the toughness deteriorates, so the content is made 0.30% or less, preferably 0.20% or less. From the viewpoint of achieving a strength of API X100 or higher, 0.05 to 0.20% is preferable.
- Mn 1.50-2.50%
- Mn is an element effective for improving the strength and toughness of steel. The effect is fully acquired by making Mn content 1.50% or more. On the other hand, if the Mn content exceeds 2.50%, the toughness and weldability are significantly deteriorated. Therefore, the Mn content is set to 1.50 to 2.50%. The Mn content is preferably 2.00% or less.
- P 0.020% or less
- P is an impurity element and significantly deteriorates toughness. For this reason, it is desirable to reduce P content as much as possible. However, if the P content is excessively reduced, the manufacturing cost increases. Therefore, the P content is preferably 0.020% or less and preferably 0.010% or less.
- S 0.002% or less S is an impurity element and may significantly deteriorate toughness. For this reason, it is desirable to reduce S content as much as possible. In addition, even if S is added to Ca to control the morphology of MnS to CaS inclusions, finely dispersed CaS inclusions can cause toughness deterioration in the case of high strength materials of X80 grade or higher. obtain. Therefore, the S content is preferably 0.002% or less and preferably 0.001% or less.
- Mo 0.20 to 0.60% Mo greatly contributes to an increase in strength at room temperature and in the middle temperature range by forming a solid solution or a precipitate. However, if the Mo content is less than 0.2%, sufficient strength cannot be obtained in the middle temperature range, so 0.20% or more is contained, and preferably 0.25% or more. On the other hand, if the Mo content exceeds 0.60%, toughness and weldability deteriorate, so the content is made 0.60% or less, preferably 0.50% or less.
- Nb 0.020 to 0.070%
- Nb is an important element in the present invention. Specifically, Nb is a component that forms carbides and is necessary for securing strength at room temperature and in the middle temperature range. Also, Nb is necessary to suppress the growth of crystal grains during slab heating and rolling to refine the microstructure and impart sufficient strength and toughness. The effect is significant when the Nb content is 0.020% or more, so 0.020% or more is contained, and preferably 0.030% or more. When the Nb content exceeds 0.07%, not only the effect is almost saturated, but also the toughness is deteriorated. Therefore, the content is made 0.070% or less, and preferably 0.065% or less.
- Ti 0.020% or less Ti forms TiN to suppress grain growth at the time of slab heating or at the heat affected zone.
- Ti has an effect of improving the toughness by reducing the microstructure.
- the Ti content is preferably 0.005% or more. If the Ti content exceeds 0.020%, the presence of TiN makes it difficult for fine carbides to disperse and precipitate, making it difficult to suppress a decrease in strength in the middle temperature range. Therefore, the Ti content is set to 0.020% or less, and preferably 0.015% or less.
- V 0.080% or less V forms a composite precipitate together with Ti and Nb and contributes to an increase in strength.
- V-based carbides are less likely to agglomerate even when kept at high temperatures for a long time, and V is an element useful for ensuring high-temperature creep strength.
- the V content is preferably 0.010% or more. If the V content exceeds 0.080%, the toughness of the weld heat affected zone deteriorates. Therefore, the V content is regulated to 0.080% or less, and preferably 0.050% or less. In addition, if the effect by said V containing other than V is acquired, the high strength steel of this invention does not need to contain V.
- Al 0.045% or less Al is added as a deoxidizer.
- the Al content is preferably 0.020% or more. If the Al content exceeds 0.045%, the cleanliness of the steel decreases and the toughness deteriorates. Therefore, the Al content is set to 0.045% or less.
- N 0.010% or less N forms TiN together with Ti.
- TiN is finely dispersed in the high temperature region of the weld heat affected zone reaching 1350 ° C. or higher. By this fine dispersion, the prior austenite grains in the weld heat affected zone are refined, and the toughness of the weld heat affected zone is improved.
- the N content is preferably 0.0020% or more.
- the N content exceeds 0.010%, the base metal toughness deteriorates due to the coarsening of precipitates and the increase in solute N, and the toughness of the weld metal in the steel pipe deteriorates. Therefore, the N content is 0.010% or less, and preferably 0.006% or less. From the viewpoint of achieving a strength of API X100 or higher, 0.006% or less is preferable.
- P eff (%) 0.050% or more P eff is defined by (0.13Nb + 0.24V ⁇ 0.125Ti) / (C + 0.86N).
- the element symbol means the content (% by mass) of each element, and 0 is substituted for an element not contained.
- P eff it is necessary to adjust the content of the above elements so that P eff is 0.050%.
- P eff is an important factor for making steel having the above component ranges into steel having excellent strength in the middle temperature range.
- P eff (%) is less than 0.050%, the amount of finely dispersed carbide that precipitates during reheating after cooling decreases. As a result, the strength, particularly the tensile strength after long-time heat treatment, is significantly reduced. Therefore, P eff.
- (%) Is 0.050% or more, and is preferably 0.070% or more in order to sufficiently suppress a decrease in strength after heat treatment. Further, P eff is preferably 0.280% or less because a large amount of precipitation occurs in the weld heat affected zone and the toughness is deteriorated. From the viewpoint of achieving a strength of API X100 or more, 0.070% or more is preferable.
- the high-strength steel of the present invention may contain one or more of Cu, Ni, Cr, and Ca for the purpose of further improving the characteristics.
- Cu 0.50% or less
- Cu is one of elements effective for improving toughness and increasing strength.
- the Cu content is preferably 0.05% or more. Since the Cu content exceeding 0.50% inhibits weldability, the Cu content is set to 0.50% or less when Cu is added.
- Ni 0.50% or less
- Ni is one of elements effective for improving toughness and increasing strength.
- the Ni content is preferably 0.05% or more.
- the content is set to 0.50% or less.
- Cr 0.50% or less Cr is one of elements effective for increasing the strength. In order to obtain this effect, the Cr content is preferably 0.05% or more. If the Cr content exceeds 0.50%, the weldability is adversely affected. Therefore, when Cr is contained, the Cr content is set to 0.50% or less.
- Ca 0.0005 to 0.0040%
- Ca controls the form of sulfide inclusions and improves toughness. The effect appears by making Ca content 0.0005% or more. When the Ca content exceeds 0.004%, not only the effect is saturated, but also the cleanliness is lowered and the toughness is deteriorated. Therefore, when Ca is added, the Ca content is set to 0.0005 to 0.0040%.
- Cu + Ni + Cr + Mo 1.50% or less.
- Cu + Ni + Cr + Mo (the element symbol means the content of each element, and 0 is substituted for elements not contained) is preferably 1.50% or less.
- the upper limit of the total content of the above elements is preferably 1.50% or less in order to keep the production cost low. More preferably, it is 1.20 or less, More preferably, it is 1.00 or less. Note that it is one of the features of the present invention that desired characteristics can be obtained even if the amount of these components used is suppressed. It is preferable to have this configuration from the viewpoint of strength higher than API X100.
- Ti / N 2.0 to 4.0
- TiN is finely dispersed, and refinement of prior austenite grains at the weld heat affected zone is achieved. This refinement improves the toughness of the weld heat-affected zone in the low temperature range below -20 ° C and in the medium temperature range above 300 ° C.
- Ti / N is less than 2.0, the effect is not sufficient, so 2.0 or more, and preferably 2.4 or more.
- Ti / N exceeds 4.0, coarsening of prior austenite grains accompanying coarsening of precipitates is caused. Since this coarsening deteriorates the toughness of the weld heat affected zone, Ti / N is 4.0 or less, and preferably 3.8 or less.
- X 0.35Cr + 0.9Mo + 12.5Nb + 8V (2): 0.70% or more
- Cr, Mo, Nb, V mass%
- X 0.35Cr + 0.9Mo + 12.5Nb + 8V (2): 0.70% or more
- Cr, Mo, Nb, V mass%
- X is preferably set to 0.70% or more. More preferably, the content is 0.75% or more. In order to realize the strength of the X100 grade after the long-time heat treatment at 350 ° C., X is preferably 0.90% or more. More preferably, the content is 1.00% or more. Further, when X is 2.0% or more, the low temperature toughness of the welded portion may be lowered. Therefore, X is preferably less than 2.0%. Preferably it is less than 1.8%, More preferably, it is less than 1.6%.
- the structure of the high-strength steel of the present invention is not particularly limited, but the bainite fraction is preferably 70% or more in terms of area ratio. A bainite fraction of 70% or more is preferable because a strength-toughness balance can be secured.
- the upper limit of the bainite fraction is not particularly limited, but the bainite fraction is preferably 95% or less from the viewpoint of improving the deformation performance.
- ferrite, pearlite, martensite, island martensite (MA), or the like may be included in a total area ratio of 30% or less.
- LMP Lerson Miller Parameter
- TS 0 -TS tensile strength measured at 350 ° C. before aging is (TS 0 ).
- 0 ⁇ TS) / TS 0 ⁇ 0.050 is satisfied.
- (TS 0 -TS) / TS 0 is an index for evaluating a decrease in tensile strength when held in a medium temperature range for a long time. If this index is 0.050 or less, the decrease in tensile strength after holding for a long time in the middle temperature range is in a range that does not cause any practical problems.
- vE- 20 is 100 J or more
- the toughness of weld heat-affected zone (HAZ) formed when welding the high strength steel of the present invention with other steel is the Charpy with a test temperature of -20 ° C.
- Absorption energy vE ⁇ 20 when carried out by an impact test is 100 J or more. If vE- 20 is 100 J or more, toughness required as a structural pipe can be secured.
- the notch position of the Charpy impact test piece is 3 mm (HAZ 3 mm) from the bond portion, which is the boundary between the weld metal and the base material, to the base material side. Further, the case where the average value of the absorbed energy (vE- 20 ) is 100 J or more when the Charpy impact test is performed using three test pieces for each condition is within the scope of the present invention.
- the high strength steel of the present invention has a yield strength measured at 350 ° C. of 555 MPa or less and a tensile strength of 620 MPa or more. Moreover, the tensile strength after long-term aging in the middle temperature range is 620 MPa or more. These excellent physical properties can be realized by adjusting to a specific component composition and employing the manufacturing conditions described later.
- the steel pipe of this invention is comprised from said high strength steel. Since the steel pipe of the present invention is composed of the high-strength steel of the present invention, it has the strength characteristics required for a high-strength welded steel pipe for steam transportation even with a large diameter.
- the large diameter means that the outer diameter (diameter) of the steel pipe is 400 mm or more.
- the outer diameter up to 813 mm can be sufficiently increased while maintaining the strength characteristics required for high strength welded steel pipes for steam transportation.
- the thickness of the steel pipe is not particularly limited, but is 15 to 30 mm for steam transportation.
- the manufacturing method of the high strength steel of this invention has a heating process, a hot rolling process, an accelerated cooling process, and a reheating process.
- the temperature in the description of each step is the average temperature in the plate thickness direction of the steel plate.
- the average temperature in the plate thickness direction can be grasped by calculating from the surface temperature of the slab or the steel plate by heat transfer calculation such as a difference method using parameters such as plate thickness and thermal conductivity.
- the cooling rate is an average cooling rate obtained by dividing the temperature difference required for cooling to the cooling stop (end) temperature after the hot rolling is finished by the time required for the cooling.
- the reheating rate (temperature increase rate) is an average temperature increase rate divided by the time required to reheat the temperature difference necessary for reheating up to the reheating temperature after cooling.
- the heating step is a step of heating the steel material to 1050-1200 ° C.
- the steel material is, for example, a slab.
- the component composition of the steel material is the component composition of the high-strength steel
- the component composition of the high-strength steel may be adjusted at the stage of adjusting the component composition of the slab.
- it does not specifically limit about the steel manufacturing method of a steel raw material. From the economical point of view, it is desirable to cast steel pieces by a steelmaking process by a converter method and a continuous casting process.
- the heating temperature is set to 1050 ° C. or higher in order to sufficiently advance austenitization and solid solution of carbides and obtain sufficient strength at room temperature and in the middle temperature range.
- the heating temperature exceeds 1200 ° C., austenite grains grow remarkably and the base material toughness deteriorates. Therefore, the heating temperature was set to 1050 to 1200 ° C.
- Hot rolling process is a process in which the steel material heated in the heating process is hot-rolled under a condition that the cumulative rolling reduction at 900 ° C or less is 50% or more and the rolling end temperature is 850 ° C or less. is there.
- This process is an important manufacturing condition of the present invention.
- Rolling is performed in a temperature range of 900 ° C. or less, and the end temperature of rolling is 850 ° C. or less, so that the austenite grains extend and become fine grains in the plate thickness and width directions. Dislocation density increases.
- the cumulative rolling reduction at 900 ° C. or less is less than 50% or the rolling end temperature exceeds 850 ° C., the austenite grains are not sufficiently refined, and the increase in dislocation within the grains is small. As a result, the strength and toughness in the middle temperature range deteriorate. Therefore, the cumulative rolling reduction at 900 ° C. or lower is set to 50% or higher, and the rolling end temperature is set to 850 ° C. or lower.
- the upper limit of the cumulative rolling reduction is not particularly limited, it is preferably 80% or less because the work texture develops and leads to deterioration of the base material toughness.
- the lower limit of the rolling end temperature is not particularly limited, but is preferably 880 ° C. or lower for the purpose of increasing the reduction amount in the completely non-recrystallized region to achieve refinement of the structure.
- the accelerated cooling process is a process in which the hot-rolled sheet obtained in the hot rolling process is acceleratedly cooled at a cooling rate of 5 ° C./second or more and a cooling stop temperature of 250 to 550 ° C.
- the cooling stop temperature for accelerated cooling is set to 250 to 550 ° C.
- the reheating step is a step of reheating the hot-rolled sheet immediately after accelerated cooling under the conditions of a temperature rising rate of 0.5 ° C./s or more and an ultimate temperature of 550 to 700 ° C.
- “immediately after accelerated cooling” means within 150 seconds after the cooling stop temperature is reached. Preferably, it is within 120 seconds.
- the temperature increase rate after accelerated cooling a rate of 0.5 ° C./s or more, and an ultimate temperature: 550 to 700 ° C. are important in the present invention.
- fine precipitates that contribute to strengthening at room temperature and medium temperature can be precipitated during reheating.
- the cooling rate after reheating is basically air cooling.
- the rate of temperature rise is less than 0.5 ° C / s, it takes a long time to reach the target reheating temperature, resulting in a deterioration in production efficiency. Further, when the rate of temperature rise is less than 0.5 ° C./s, the precipitate grows, so that the dispersion precipitate of fine precipitate cannot be obtained and sufficient strength cannot be obtained. Therefore, the rate of temperature rise is 0.5 ° C./s or higher, and preferably 5.0 ° C./s or higher.
- the reheating temperature is set to 700 ° C. or less, and preferably 680 ° C. or less.
- the rate of temperature increase after accelerated cooling specified in the present invention a rate of 0.5 ° C./s or more is difficult to achieve in an atmospheric furnace depending on the plate thickness. Therefore, it is preferable to use a gas combustion furnace or induction heating device capable of rapid heating of the steel sheet as the heating device. And it is more preferable to install a gas combustion furnace and an induction heating apparatus on a conveyance line in the downstream of the cooling equipment for performing accelerated cooling.
- the induction heating device is easier to control the temperature than a soaking furnace, and its cost is relatively low.
- the induction heating device is particularly preferable because the steel plate after cooling can be rapidly heated.
- the number of induction heating devices to be energized and the supply power can be set by arbitrarily setting them. It is possible to freely control the temperature rate and the reheating temperature.
- the cooling rate after reheating is basically air cooling.
- the present invention makes a steel pipe using the steel plate manufactured by the above-mentioned method.
- the thickness of the steel sheet is preferably 15 to 30 mm.
- Examples of the method for forming a steel pipe include a method of forming into a steel pipe shape by cold forming such as a UOE process or a press bend (also referred to as a bending press).
- the end bending of the width direction end of the steel plate is performed using a press machine, and then the steel plate is processed using a press machine.
- the steel plate is formed into a cylindrical shape so that the widthwise ends of the steel plate face each other.
- the opposing widthwise ends of the steel plates are brought together and welded. This welding is called seam welding.
- seam welding a cylindrical steel plate is constrained, the widthwise ends of opposing steel plates are butted against each other in a tack welding process, and welding is performed on the inner and outer surfaces of the butt portion of the steel plate by the submerged arc welding method.
- a method having a two-stage process that is, a main welding process for performing the above-described process is preferable.
- pipe expansion is performed to remove residual welding stress and improve roundness of the steel pipe.
- the pipe expansion ratio ratio of the outer diameter change amount before and after the pipe expansion to the outer diameter of the pipe before the pipe expansion
- the tube expansion rate is preferably in the range of 0.5% to 1.2%.
- a steel pipe having a substantially circular cross-sectional shape is manufactured by successively forming a steel plate by repeating three-point bending. Thereafter, seam welding is performed in the same manner as the above-described UOE process. Also in the case of press bend, tube expansion may be performed after seam welding.
- Steel sheets A to Q having the chemical components shown in Table 1 were used and the steel plates (sheet thicknesses shown in Table 2) produced under the manufacturing conditions shown in Table 2 were cold-formed and then seam-welded.
- a steel pipe having a diameter and a pipe thickness (plate thickness) was produced.
- Rolling ratio means the cumulative rolling ratio at 900 ° C. or lower
- “Finish temperature” means rolling end temperature
- “Stop temperature” means cooling stop temperature.
- a steel structure observation sample is taken from the center of the plate width of the steel plate (steel plate before being made into a steel pipe) manufactured as described above, and the plate thickness section parallel to the rolling longitudinal direction is mirror-polished and then subjected to nital corrosion. The microstructure was made to appear. Thereafter, using an optical microscope, steel structure photographs were randomly taken for 5 fields of view at a magnification of 400 times, and the bainite fraction in the photographs was measured with an image analyzer. The results are shown in Table 2.
- tensile test specimens were collected in the circumferential direction, and yield strength and tensile strength at 350 ° C. were determined.
- the tensile test at 350 ° C. was performed using a round bar specimen having a diameter of 6 mm. Table 2 shows the results.
- the tensile strength of steel pipe characteristics is ((tensile strength before heat treatment (TS 0 ))-(tensile strength after heat treatment). (TS))) / Tensile strength before heat treatment (TS 0 ) was calculated, and 0.050 or less was evaluated as good.
- the weld heat affected zone (HAZ) toughness was evaluated by a Charpy impact test.
- the notch position of the Charpy impact test piece was set to a position of 3 mm (HAZ 3 mm) from the bond part, which is the boundary between the weld metal and the base material, to the base material side.
- the test temperature was ⁇ 20 ° C.
- a Charpy impact test was performed using three test pieces for each condition, and the average value of absorbed energy (vE- 20 ) at -20 ° C was 100 J or more, indicating excellent toughness. The results are shown in Table 2.
- Table 2 shows the manufacturing conditions of the steel sheet and the test results of the steel sheet and the steel pipe.
- the steels of the present invention (1 to 9) which are within the scope of the present invention in terms of chemical composition and steel plate production conditions, have a yield strength of 555 MPa or more and a tensile strength of 620 MPa before and after heat treatment (measured at 350 ° C.) of the steel plate and steel pipe. That's it.
- the inventive steels (1 to 9) had good results in both HAZ toughness and (TS 0 -TS) / TS 0 .
- the comparative steels (10 to 16) whose chemical components are within the scope of the present invention but whose steel plate production conditions are outside the scope of the present invention were inferior in (TS 0 -TS) / TS 0 .
- the comparative steels (17 to 24) whose chemical components are outside the scope of the present invention were inferior in HAZ toughness and at least one of (TS 0 -TS) / TS 0 .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
Peff(%)=(0.13Nb+0.24V-0.125Ti)/(C+0.86N) (1)
式(1)中の元素記号は各元素の含有量(質量%)を意味する。また、含有しない元素については0を代入する。
Peff(%)=(0.13Nb+0.24V-0.125Ti)/(C+0.86N) (1)
式(1)中の元素記号は各元素の含有量(質量%)を意味する。また、含有しない元素については0を代入する。
式(2)中における元素記号は各元素の含有量(質量%)を意味する。また、含有しない元素については0を代入する。
ベイナイト分率が70%以上であることを特徴とする[1]又は[2]に記載の高強度鋼。
鋼素材を1050~1200℃に加熱する加熱工程と、
前記加熱工程で加熱された鋼素材を、900℃以下での累積圧下率が50%以上、圧延終了温度が850℃以下の条件で熱間圧延する熱間圧延工程と、前記熱間圧延工程で得られた熱延板を、冷却速度が5℃/秒以上、冷却停止温度が250~550℃の条件で加速冷却する加速冷却工程と、前記加速冷却後、直ちに、昇温速度が0.5℃/s以上、到達温度が550~700℃の条件で、熱延板を再加熱する再加熱工程とを有することを特徴とする高強度鋼の製造方法。
本発明の高強度鋼は、質量%で、C:0.040~0.090%、Si:0.05~0.30%、Mn:1.50~2.50%、P:0.020%以下、S:0.002%以下、Mo:0.20~0.60%、Nb:0.020~0.070%、Ti:0.020%以下、V:0.080%以下、Al:0.045%以下、N:0.010%以下を含有する。以下の説明において、成分の含有量を表す「%」は「質量%」を意味する。
Cは固溶強化ならびに析出強化により鋼の強度を確保するために必要な元素である。特に固溶C量の増加と析出物の形成は中温度域での強度確保に重要である。C含有量を0.040%以上にすることで室温ならびに中温度域において所定の強度を確保できるので、0.040%以上とし、0.050%以上であることが好ましい。C含有量が0.09%を超えるとCの添加は靭性劣化ならびに溶接性劣化の原因になるので、0.090%以下とし、0.080%以下であることが好ましい。
Siは脱酸のために添加される。Si含有量が0.05%未満では充分な脱酸効果が得られないので0.05%以上含有させることが好ましい。一方、Si含有量が0.30%を超えると靱性が劣化するので0.30%以下とし、0.20%以下であることが好ましい。API X100以上の強度にする観点からは0.05~0.20%が好ましい。
Mnは鋼の強度および靱性の向上に有効な元素である。Mn含有量を1.50%以上にすることでその効果が十分に得られる。また、Mn含有量が2.50%を超えると靭性ならびに溶接性が著しく劣化する。そこで、Mnの含有量は1.50~2.50%とした。Mn含有量は、2.00%以下であることが好ましい。
Pは不純物元素であり靱性を著しく劣化させる。このため、P含有量は極力低減することが望ましい。しかし、P含有量を過度に低減しようとすると、製造コストの上昇を招く。そこで、Pの含有量を0.020%以下とし、0.010%以下とすることが好ましい。
Sは不純物元素であり靭性を著しく劣化させる場合がある。このため、S含有量は極力低減することが望ましい。また、SはCaを添加してMnSからCaS系の介在物に形態制御を行ったとしても、X80グレード以上の高強度材の場合には微細に分散したCaS系介在物も靱性劣化の要因となり得る。そこで、S含有量を0.002%以下とし、0.001%以下とすることが好ましい。
Moは固溶あるいは析出物の形成により室温ならびに中温度域での強度上昇に大きく寄与する。しかし、Mo含有量が0.2%未満では中温度域で十分な強度が得られないので0.20%以上含有させ、0.25%以上含有させることが好ましい。一方、Mo含有量が0.60%を超えると靭性ならびに溶接性が劣化するので0.60%以下とし、0.50%以下とすることが好ましい。
Nbは本発明において重要な元素である。具体的には、Nbは、炭化物を形成し室温ならびに中温度域での強度確保に必要な成分である。また、スラブ加熱時と圧延時の結晶粒の成長を抑制することにより、ミクロ組織を微細化し、充分な強度と靱性を付与するためにもNbは必要である。その効果はNb含有量が0.020%以上のときに顕著であるので0.020%以上含有させ、0.030%以上含有させることが好ましい。Nb含有量が0.07%を超えるとその効果がほぼ飽和するだけでなく、靭性が劣化するので0.070%以下とし、0.065%以下とすることが好ましい。
TiはTiNを形成してスラブ加熱時や溶接熱影響部の粒成長を抑制する。このようにTiはミクロ組織の微細化をもたらして靱性を改善する効果を有する。この効果を得るためにはTi含有量は0.005%以上であることが好ましい。Ti含有量が0.020%を超えると、TiNの存在により、微細な炭化物が分散析出し難くなり、中温度域での強度低下の抑制が困難となる。そこで、Ti含有量を0.020%以下とし、0.015%以下であることが好ましい。
VはTi、Nbと共に複合析出物を形成し、強度上昇に寄与する。また、V系炭化物は高温で長時間保持した際にも凝集粗大化しにくく、Vは、高温クリープ強度の確保などに有用な元素である。この効果を得るためにはV含有量は0.010%以上であることが好ましい。V含有量が0.080%を超えると溶接熱影響部の靭性が劣化する。そこで、V含有量は0.080%以下に規定し、0.050%以下であることが好ましい。なお、V以外で、上記V含有による効果が得られるのであれば、本発明の高強度鋼はVを含有しなくてもよい。
Alは脱酸剤として添加される。脱酸剤としての効果を得るためにはAl含有量を0.020%以上にすることが好ましい。Al含有量が0.045%を超えると鋼の清浄性が低下し、靱性が劣化する。そこで、Al含有量を0.045%以下とした。
NはTiと共にTiNを形成する。TiNは、1350℃以上に達する溶接熱影響部の高温域において微細分散する。この微細分散により、溶接熱影響部の旧オーステナイト粒を細粒化し溶接熱影響部の靭性が向上する。この効果を得るためにはN含有量を0.0020%以上にすることが好ましい。また、N含有量が0.010%を超えると、析出物の粗大化ならびに固溶Nの増加により母材靭性が劣化し、鋼管での溶接金属の靭性が劣化する。そこで、N含有量は0.010%以下とし、0.006%以下であることが好ましい。API X100以上の強度にする観点からは0.006%以下が好ましい。
Peffは(0.13Nb+0.24V-0.125Ti)/(C+0.86N)で定義される。この式において、元素記号は各元素の含有量(質量%)を意味し、含有しない元素については0を代入する。Peffが0.050%になるように、上記元素の含有量を調整することが、本発明において必要である。Peffは上記成分範囲で構成される鋼を中温度域で優れた強度を有する鋼とするための重要な因子である。Peff(%)が0.050%未満の場合には冷却後の再加熱時に析出する微細分散炭化物量が少なくなる。その結果、強度、特に長時間熱処理後における引張強度が顕著に低下する。そこで、Peff.(%)は0.050%以上とし、熱処理後の強度低下を十分に抑制するためには0.070%以上であることが好ましい。また、溶接熱影響部において多量の析出を生じ、靭性を劣化させる理由でPeffは0.280%以下であることが好ましい。API X100以上の強度にする観点からは0.070%以上が好ましい。
Cuは靭性の改善と強度の上昇に有効な元素の1つである。この効果を得るためにはCu含有量を0.05%以上にすることが好ましい。0.50%を超えるCuの含有は溶接性を阻害するため、Cuを添加する場合は0.50%以下とした。
Niは靭性の改善と強度の上昇に有効な元素の1つである。この効果を得るためにはNi含有量は0.05%以上が好ましい。Ni含有量が0.50%を超えると効果が飽和するだけでなく、製造コストの上昇を招く。そこで、Niを含有する場合、その含有量は0.50%以下とした。
Crは強度の上昇に有効な元素の一つである。この効果を得るためにはCr含有量は0.05%以上が好ましい。Cr含有量が0.50%を超えると溶接性に悪影響がある。そこで、Crを含有する場合、Cr含有量は0.50%以下とした。
Caは硫化物系介在物の形態を制御し靱性を改善する。Ca含有量を0.0005%以上にすることでその効果が現われる。Ca含有量が0.004%を超えると効果が飽和するだけでなく、清浄度が低下し靱性が劣化する。そこで、Caを添加する場合、Ca含有量は0.0005~0.0040%とした。
Cu+Ni+Cr+Mo(元素記号は各元素の含有量を意味し、含有しない元素については0を代入する)は、1.50%以下であることが好ましい。これらの元素は、強度上昇に寄与し、多量に含有するほど特性が高まる。しかし、製造コストを安価に抑えるため上記元素の合計含有量の上限を1.50%以下とすることが好ましい。より好ましくは1.20以下、さらに好ましくは1.00以下である。なお、これらの成分の使用量を抑えても所望の特性を得られることは、本発明の特徴の1つである。API X100以上の強度にする観点からはこの構成を有することが好ましい。
Ti/Nを適正な範囲に規定することにより、TiNが微細に分散し、溶接熱影響部での旧オーステナイト粒の微細化が達成される。この微細化により-20℃以下での低温域ならびに300℃以上での中温度域における溶接熱影響部の靭性が向上する。Ti/Nが2.0未満の場合、その効果が十分ではないので、2.0以上とし、2.4以上であることが好ましい。Ti/Nが4.0を超えると析出物の粗大化に伴う旧オーステナイト粒の粗大化を招く。この粗大化により溶接熱影響部の靭性が劣化するので、Ti/Nは4.0以下とし、3.8以下であることが好ましい。
ただし、Cr,Mo,Nb,V:質量%
Xを表す上記式は、上記成分範囲で構成される鋼について、焼き戻し軟化抵抗を向上、圧延中の粒内析出強化に寄与する。長時間熱処理後における中温度域でのX80グレード以上の優れた強度を有し、かつ、良好な低温靭性を有する鋼とするために、(2)式は重要な因子であるため本発明ではXが0.70%以上であることが好ましい。後に記述する製造条件と組み合わせることにより、(2)式を満たすことによる効果が大きく発現する。350℃での長時間熱処理後におけるX80グレードの強度の実現には、Xを0.70%以上とすることが好ましい。より好ましくは0.75%以上とする。350℃での長時間熱処理後におけるX100グレードの強度の実現には、Xを0.90%以上とすることが好ましい。より好ましくは1.00%以上とする。また、Xが2.0%以上になると溶接部低温靭性が低下する場合がある。そこで、Xは2.0%未満であることが好ましい。好ましくは1.8%未満、より好ましくは1.6%未満である。
本発明では、Lerson Miller Parameter (LMP)=15700の条件で行う時効後に測定した350℃での引張強度(TS)と、該時効前に測定した350℃での引張強度(TS0)が(TS0-TS)/TS0≦0.050の関係を満たす。(TS0-TS)/TS0は、中温度域で長時間保持した際に引張強度の低下を評価する指標である。この指標が0.050以下であれば、中温度域において長時間保持した後の引張強度の低下が実用上問題ない範囲となる。
本発明の高強度鋼を他の鋼と溶接したときに形成される溶接熱影響部(HAZ)の靭性は、試験温度が-20℃のシャルピー衝撃試験により実施したときの吸収エネルギーvE-20で100J以上である。vE-20が100J以上であれば、構造管として必要とされる靭性が確保できる。なお、シャルピー衝撃試験片のノッチ位置は、溶接金属と母材の境界であるボンド部から、母材側へ3mm(HAZ3mm)の位置とする。また、各条件につき3本の試験片を用いてシャルピー衝撃試験を実施したときの吸収エネルギー(vE-20)の平均値が100J以上の場合を本発明範囲内とする。
本発明の鋼管は、上記の高強度鋼から構成される。本発明の鋼管は、本発明の高強度鋼から構成されるため、大径としても、蒸気輸送用の高強度溶接鋼管に要求される強度特性を有する。
本発明の高強度鋼の製造方法は、加熱工程と、熱間圧延工程と、加速冷却工程と、再加熱工程とを有する。各工程の説明における温度は、特に規定しない限り、鋼板の板厚方向の平均温度とする。板厚方向の平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率等のパラメータを用いて差分法などの伝熱計算によって算出することにより把握することができる。また、冷却速度は、熱間圧延終了後、冷却停止(終了)温度まで冷却に必要な温度差をその冷却を行うのに要した時間で割った平均冷却速度である。また、再加熱速度(昇温速度)は、冷却後、再加熱温度までの再加熱に必要な温度差を再加熱するのに要した時間で割った平均昇温速度である。
加熱工程とは、鋼素材を1050~1200℃に加熱する工程である。ここで鋼素材とは、例えばスラブである。鋼素材の成分組成が、高強度鋼の成分組成となるため、高強度鋼の成分組成の調整は、スラブの成分組成の調整の段階で行えばよい。なお、鋼素材の製鋼方法については特に限定しない。経済性の観点から、転炉法による製鋼プロセスと、連続鋳造プロセスによる鋼片の鋳造を行うことが望ましい。
熱間圧延工程とは、加熱工程で加熱された鋼素材を、900℃以下での累積圧下率が50%以上、圧延終了温度が850℃以下の条件で熱間圧延する工程である。
加速冷却工程とは、熱間圧延工程で得られた熱延板を、冷却速度が5℃/秒以上、冷却停止温度が250~550℃の条件で加速冷却する工程である。
再加熱工程とは、加速冷却後、直ちに、昇温速度が0.5℃/s以上、到達温度が550~700℃の条件で、熱延板を再加熱する工程である。ここで、「加速冷却後、直ちに」とは冷却停止温度になってから150秒以内であることを意味する。好ましくは120秒以内である。
本発明は上述の方法によって製造された鋼板を用いて鋼管となす。
T:熱処理温度(℃)、t:熱処理時間(sec)とする。
Claims (6)
- 質量%で、C:0.040~0.090%、Si:0.05~0.30%、Mn:1.50~2.50%、P:0.020%以下、S:0.002%以下、Mo:0.20~0.60%、Nb:0.020~0.070%、Ti:0.020%以下、V:0.080%以下、Al:0.045%以下、N:0.0100%以下を含有し、残部がFe及び不可避的不純物からなり、
下記(1)式で示されるパラメータPeffが0.050%以上であり、
Lerson Miller Parameter (LMP)=15700の条件で行う時効後に測定した350℃での引張強度(TS)と、該時効前に測定した350℃での引張強度(TS0)が(TS0-TS)/TS0≦0.050の関係を満たし、
溶接したときに形成される溶接熱影響部の靱性がvE-20で100J以上であることを特徴とする高強度鋼。
Peff(%)=(0.13Nb+0.24V-0.125Ti)/(C+0.86N) (1)
式(1)中の元素記号は各元素の含有量(質量%)を意味する。また、含有しない元素については0を代入する。 - Ti/Nが2.0~4.0であり、
式(2)で表されるXが0.70%以上であることを特徴とする請求項1に記載の高強度鋼。
X=0.35Cr+0.9Mo+12Nb+8V (2)
式(2)中における元素記号は各元素の含有量(質量%)を意味する。また、含有しない元素については0を代入する。 - さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下及びCa:0.0005~0.0040%のうち1種または2種以上を含有し、
ベイナイト分率が70%以上であることを特徴とする請求項1又は2に記載の高強度鋼。 - 請求項1~3のいずれかに記載の高強度鋼から構成される鋼管。
- 請求項1~3のいずれかに記載の高強度鋼の製造方法であって、
鋼素材を1050~1200℃に加熱する加熱工程と、
前記加熱工程で加熱された鋼素材を、900℃以下での累積圧下率が50%以上、圧延終了温度が850℃以下の条件で熱間圧延する熱間圧延工程と、
前記熱間圧延工程で得られた熱延板を、冷却速度が5℃/秒以上、冷却停止温度が250~550℃の条件で加速冷却する加速冷却工程と、
前記加速冷却後、直ちに、昇温速度が0.5℃/s以上、到達温度が550~700℃の条件で、熱延板を再加熱する再加熱工程とを有することを特徴とする高強度鋼の製造方法。 - 請求項1~3のいずれかに記載の高強度鋼から構成される鋼板を管状に冷間成形する冷間成形工程と、
前記冷間成形工程で管状に成形された鋼板の突合せ部を溶接する溶接工程と、を有する鋼管の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177025931A KR101997381B1 (ko) | 2015-03-27 | 2015-03-27 | 고강도 강 및 그 제조 방법, 그리고 강관 및 그 제조 방법 |
PCT/JP2015/001768 WO2016157235A1 (ja) | 2015-03-27 | 2015-03-27 | 高強度鋼及びその製造方法、並びに鋼管及びその製造方法 |
EP15887393.5A EP3276020B1 (en) | 2015-03-27 | 2015-03-27 | High-strength steel plate, production method therefor, steel pipe, and production method therefor |
CA2980983A CA2980983C (en) | 2015-03-27 | 2015-03-27 | High-strength steel, method for manufacturing high-strength steel, steel pipe, and method for manufacturing steel pipe |
CN201580078182.7A CN107429339B (zh) | 2015-03-27 | 2015-03-27 | 高强度钢及其制造方法、以及钢管及其制造方法 |
JP2017508784A JP6137435B2 (ja) | 2015-03-27 | 2015-03-27 | 高強度鋼及びその製造方法、並びに鋼管及びその製造方法 |
US15/560,013 US10954576B2 (en) | 2015-03-27 | 2015-03-27 | High-strength steel, method for manufacturing high-strength steel, steel pipe, and method for manufacturing steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/001768 WO2016157235A1 (ja) | 2015-03-27 | 2015-03-27 | 高強度鋼及びその製造方法、並びに鋼管及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016157235A1 true WO2016157235A1 (ja) | 2016-10-06 |
Family
ID=57003981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/001768 WO2016157235A1 (ja) | 2015-03-27 | 2015-03-27 | 高強度鋼及びその製造方法、並びに鋼管及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10954576B2 (ja) |
EP (1) | EP3276020B1 (ja) |
JP (1) | JP6137435B2 (ja) |
KR (1) | KR101997381B1 (ja) |
CN (1) | CN107429339B (ja) |
CA (1) | CA2980983C (ja) |
WO (1) | WO2016157235A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3733879A4 (en) * | 2018-01-30 | 2021-03-17 | JFE Steel Corporation | STEEL MATERIAL FOR A CONDUIT TUBE AS WELL AS A METHOD FOR MANUFACTURING THE INVENTION THEREOF, AND A METHOD FOR MANUFACTURING A DUCT TUBE |
EP3733878A4 (en) * | 2018-01-30 | 2021-03-17 | JFE Steel Corporation | STEEL MATERIAL FOR LINE PIPE, MANUFACTURING METHODS FOR IT AND MANUFACTURING METHOD FOR LINE PIPE |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107429354B (zh) | 2015-03-27 | 2020-06-09 | 杰富意钢铁株式会社 | 高强度钢及其制造方法、以及钢管及其制造方法 |
WO2020196214A1 (ja) * | 2019-03-28 | 2020-10-01 | Jfeスチール株式会社 | ラインパイプ用鋼材およびその製造方法ならびにラインパイプおよびその製造方法 |
CN113122774B (zh) * | 2021-04-18 | 2022-04-22 | 南昌航空大学 | 一种含钛低锰高强钢及其基于温度和保温时间的控扎方法 |
CN115415642B (zh) * | 2022-08-15 | 2023-12-15 | 南京钢铁股份有限公司 | 一种tmcp态超高强海工钢的气保焊焊接工艺 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006316298A (ja) * | 2005-05-11 | 2006-11-24 | Nippon Steel Corp | 溶接性および靱性を兼ね備えた引張り強さ700MPa級以上の高張力鋼材およびその製造方法 |
JP2007224408A (ja) * | 2005-03-31 | 2007-09-06 | Jfe Steel Kk | 歪時効硬化特性に優れた熱延鋼板およびその製造方法 |
JP2011094231A (ja) * | 2009-09-30 | 2011-05-12 | Jfe Steel Corp | 低降伏比高強度高靭性鋼板及びその製造方法 |
JP2012017522A (ja) * | 2010-06-08 | 2012-01-26 | Sumitomo Metal Ind Ltd | ラインパイプ用鋼材 |
JP2012126925A (ja) * | 2010-12-13 | 2012-07-05 | Sumitomo Metal Ind Ltd | ラインパイプ用鋼材 |
JP2013112872A (ja) * | 2011-11-30 | 2013-06-10 | Jfe Steel Corp | 耐歪時効性に優れた高靱性低降伏比高強度鋼板 |
JP2013227671A (ja) * | 2012-03-29 | 2013-11-07 | Jfe Steel Corp | 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管 |
JP2014034708A (ja) * | 2012-08-09 | 2014-02-24 | Nippon Steel & Sumitomo Metal | 極低温用厚鋼板とその製造方法 |
JP2014040648A (ja) * | 2012-08-23 | 2014-03-06 | Kobe Steel Ltd | 極低温靱性に優れた厚鋼板 |
JP2014077642A (ja) * | 2012-10-09 | 2014-05-01 | Jfe Steel Corp | 鋼材のhic感受性の評価方法およびそれを用いた耐hic性に優れたラインパイプ用高強度厚鋼板の製造方法 |
JP2014088623A (ja) * | 2008-12-26 | 2014-05-15 | Jfe Steel Corp | 溶接熱影響部および母材部の耐延性き裂発生特性に優れた鋼材およびその製造方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4821939B1 (ja) | 1969-09-18 | 1973-07-02 | ||
JPS5055736A (ja) | 1973-09-20 | 1975-05-16 | ||
JP2000290728A (ja) | 1999-04-05 | 2000-10-17 | Sumitomo Metal Ind Ltd | スチーム・インジェクション用継目無鋼管の製造方法 |
EP1325967A4 (en) | 2001-07-13 | 2005-02-23 | Jfe Steel Corp | STEEL TUBE WITH HIGH RESISTANCE, HIGHER THAN THAT OF API X6 STANDARD |
US20050106411A1 (en) | 2002-02-07 | 2005-05-19 | Jfe Steel Corporation | High strength steel plate and method for production thereof |
JP4507708B2 (ja) * | 2003-06-12 | 2010-07-21 | Jfeスチール株式会社 | 低降伏比高強度高靱性鋼板の製造方法 |
JP5055736B2 (ja) | 2004-12-02 | 2012-10-24 | Jfeスチール株式会社 | 溶接熱影響部靭性に優れた高強度蒸気配管用鋼板の製造方法 |
JP4742617B2 (ja) | 2005-02-25 | 2011-08-10 | Jfeスチール株式会社 | 溶接熱影響部靭性に優れた高強度鋼板の製造方法 |
US8828154B2 (en) | 2005-03-31 | 2014-09-09 | Jfe Steel Corporation | Hot-rolled steel sheet, method for making the same, and worked body of hot-rolled steel sheet |
JP4904774B2 (ja) | 2005-10-31 | 2012-03-28 | Jfeスチール株式会社 | 中温域での強度に優れた高強度高靭性鋼材の製造方法 |
JP4741528B2 (ja) * | 2007-02-09 | 2011-08-03 | 新日本製鐵株式会社 | 高温特性に優れた蒸気輸送配管用鋼板及び鋼管並びにそれらの製造方法 |
KR101511615B1 (ko) * | 2009-11-25 | 2015-04-13 | 제이에프이 스틸 가부시키가이샤 | 높은 압축 강도 및 인성을 갖는 라인파이프용 용접 강관의 제조 방법 |
EP2505683B1 (en) | 2009-11-25 | 2017-04-05 | JFE Steel Corporation | Process for producing a welded steel pipe for linepipe with superior compressive strength and excellent sour resistance |
JP2011148970A (ja) | 2009-12-24 | 2011-08-04 | Idemitsu Kosan Co Ltd | 機器冷却用基油、該基油を配合してなる機器冷却油、該冷却油により冷却される機器、および該冷却油による機器冷却方法 |
AU2011228345B2 (en) | 2010-03-18 | 2013-06-06 | Nippon Steel Corporation | Seamless steel pipe for steam injection, and method of manufacturing same |
JP2012075667A (ja) * | 2010-10-01 | 2012-04-19 | Sanyo Electric Co Ltd | 空気清浄機及び電解水ミスト発生器 |
WO2012108027A1 (ja) | 2011-02-10 | 2012-08-16 | 住友金属工業株式会社 | スチーム配管用高強度鋼材およびその製造方法 |
JP5177310B2 (ja) | 2011-02-15 | 2013-04-03 | Jfeスチール株式会社 | 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法 |
JP5516784B2 (ja) | 2012-03-29 | 2014-06-11 | Jfeスチール株式会社 | 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管 |
WO2014041801A1 (ja) | 2012-09-13 | 2014-03-20 | Jfeスチール株式会社 | 熱延鋼板およびその製造方法 |
-
2015
- 2015-03-27 CA CA2980983A patent/CA2980983C/en active Active
- 2015-03-27 CN CN201580078182.7A patent/CN107429339B/zh active Active
- 2015-03-27 US US15/560,013 patent/US10954576B2/en active Active
- 2015-03-27 WO PCT/JP2015/001768 patent/WO2016157235A1/ja active Application Filing
- 2015-03-27 EP EP15887393.5A patent/EP3276020B1/en active Active
- 2015-03-27 JP JP2017508784A patent/JP6137435B2/ja active Active
- 2015-03-27 KR KR1020177025931A patent/KR101997381B1/ko active IP Right Grant
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007224408A (ja) * | 2005-03-31 | 2007-09-06 | Jfe Steel Kk | 歪時効硬化特性に優れた熱延鋼板およびその製造方法 |
JP2006316298A (ja) * | 2005-05-11 | 2006-11-24 | Nippon Steel Corp | 溶接性および靱性を兼ね備えた引張り強さ700MPa級以上の高張力鋼材およびその製造方法 |
JP2014088623A (ja) * | 2008-12-26 | 2014-05-15 | Jfe Steel Corp | 溶接熱影響部および母材部の耐延性き裂発生特性に優れた鋼材およびその製造方法 |
JP2011094231A (ja) * | 2009-09-30 | 2011-05-12 | Jfe Steel Corp | 低降伏比高強度高靭性鋼板及びその製造方法 |
JP2012017522A (ja) * | 2010-06-08 | 2012-01-26 | Sumitomo Metal Ind Ltd | ラインパイプ用鋼材 |
JP2012126925A (ja) * | 2010-12-13 | 2012-07-05 | Sumitomo Metal Ind Ltd | ラインパイプ用鋼材 |
JP2013112872A (ja) * | 2011-11-30 | 2013-06-10 | Jfe Steel Corp | 耐歪時効性に優れた高靱性低降伏比高強度鋼板 |
JP2013227671A (ja) * | 2012-03-29 | 2013-11-07 | Jfe Steel Corp | 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管 |
JP2014034708A (ja) * | 2012-08-09 | 2014-02-24 | Nippon Steel & Sumitomo Metal | 極低温用厚鋼板とその製造方法 |
JP2014040648A (ja) * | 2012-08-23 | 2014-03-06 | Kobe Steel Ltd | 極低温靱性に優れた厚鋼板 |
JP2014077642A (ja) * | 2012-10-09 | 2014-05-01 | Jfe Steel Corp | 鋼材のhic感受性の評価方法およびそれを用いた耐hic性に優れたラインパイプ用高強度厚鋼板の製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3733879A4 (en) * | 2018-01-30 | 2021-03-17 | JFE Steel Corporation | STEEL MATERIAL FOR A CONDUIT TUBE AS WELL AS A METHOD FOR MANUFACTURING THE INVENTION THEREOF, AND A METHOD FOR MANUFACTURING A DUCT TUBE |
EP3733878A4 (en) * | 2018-01-30 | 2021-03-17 | JFE Steel Corporation | STEEL MATERIAL FOR LINE PIPE, MANUFACTURING METHODS FOR IT AND MANUFACTURING METHOD FOR LINE PIPE |
US11401568B2 (en) | 2018-01-30 | 2022-08-02 | Jfe Steel Corporation | Steel material for line pipes, method for producing the same, and method for producing line pipe |
US12037666B2 (en) | 2018-01-30 | 2024-07-16 | Jfe Steel Corporation | Steel material for line pipes, method for producing the same, and method for producing line pipe |
Also Published As
Publication number | Publication date |
---|---|
CN107429339A (zh) | 2017-12-01 |
EP3276020A4 (en) | 2018-03-21 |
CN107429339B (zh) | 2020-03-17 |
KR101997381B1 (ko) | 2019-10-01 |
EP3276020A1 (en) | 2018-01-31 |
JPWO2016157235A1 (ja) | 2017-06-22 |
US10954576B2 (en) | 2021-03-23 |
US20180066332A1 (en) | 2018-03-08 |
KR20170117547A (ko) | 2017-10-23 |
EP3276020B1 (en) | 2020-09-23 |
CA2980983A1 (en) | 2016-10-06 |
JP6137435B2 (ja) | 2017-05-31 |
CA2980983C (en) | 2020-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5266791B2 (ja) | 耐sr特性および変形性能に優れたx100グレード以上の高強度鋼板およびその製造方法 | |
JP4819186B2 (ja) | 超高強度ラインパイプ用鋼板および鋼管の製造方法 | |
US10767250B2 (en) | Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes | |
US11555233B2 (en) | Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes | |
JP6137435B2 (ja) | 高強度鋼及びその製造方法、並びに鋼管及びその製造方法 | |
US20180298460A9 (en) | Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes | |
KR102004072B1 (ko) | 고강도 강 및 그 제조 방법, 그리고 강관 및 그 강관의 제조 방법 | |
KR102002241B1 (ko) | 구조관용 강판, 구조관용 강판의 제조 방법, 및 구조관 | |
JP2007270194A (ja) | 耐sr特性に優れた高強度鋼板の製造方法 | |
WO2016157856A1 (ja) | 高強度鋼及びその製造方法、並びに鋼管及びその製造方法 | |
JP4904806B2 (ja) | 中温域での強度ならびに変形能に優れた高強度高靭性鋼板の製造方法 | |
CN111655872B (zh) | 管线管用钢材及其制造方法以及管线管的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15887393 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017508784 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177025931 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15560013 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2980983 Country of ref document: CA |
|
REEP | Request for entry into the european phase |
Ref document number: 2015887393 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |