[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016155603A1 - 具有纵向不同厚度的板材的轧制方法 - Google Patents

具有纵向不同厚度的板材的轧制方法 Download PDF

Info

Publication number
WO2016155603A1
WO2016155603A1 PCT/CN2016/077628 CN2016077628W WO2016155603A1 WO 2016155603 A1 WO2016155603 A1 WO 2016155603A1 CN 2016077628 W CN2016077628 W CN 2016077628W WO 2016155603 A1 WO2016155603 A1 WO 2016155603A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
thickness
segments
length
equal
Prior art date
Application number
PCT/CN2016/077628
Other languages
English (en)
French (fr)
Inventor
张春伟
李山青
姜正连
熊斐
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to KR1020177030356A priority Critical patent/KR102028502B1/ko
Priority to JP2017550505A priority patent/JP2018509301A/ja
Priority to EP16771358.5A priority patent/EP3278889A4/en
Priority to US15/561,043 priority patent/US10610914B2/en
Publication of WO2016155603A1 publication Critical patent/WO2016155603A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/30Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/24Automatic variation of thickness according to a predetermined programme
    • B21B37/26Automatic variation of thickness according to a predetermined programme for obtaining one strip having successive lengths of different constant thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/12Rolling load or rolling pressure; roll force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2271/00Mill stand parameters
    • B21B2271/02Roll gap, screw-down position, draft position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/04Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring thickness, width, diameter or other transverse dimensions of the product

Definitions

  • the present invention relates to sheet metal rolling technology, and more particularly to a rolling method for sheet materials having longitudinally different thicknesses.
  • the rolling technology for producing variable thickness is called flexible rolling technology and is derived from a project funded by the German Research Fund (DFG) in 1997. Mubea, which was originally involved in the project, is currently the main supplier of thickened boards on the market.
  • the core of flexible rolling technology is to change the thickness of the outlet by changing the roll gap (see Figure 1).
  • the object of the present invention is to propose a rolling method for a sheet material having different thicknesses in the longitudinal direction, which eliminates the subsequent straightening and shearing processes of the industrial roll-to-roll thickness rolling, and can be conveniently and quickly in the product development stage. Sheets with different set thicknesses in the longitudinal direction are provided.
  • variable thickness plate (VRB) having different thicknesses in the longitudinal direction obtained by rolling generally has the shape shown in FIG.
  • the present invention proposes a unequal thickness rolling process on a conventional single-piece rolling mill, which is intended to roll a single sheet of sheet material having different thicknesses in the longitudinal direction in a simple and flexible manner.
  • a rolling method of a sheet material having longitudinally different thicknesses of the present invention comprising the steps of:
  • Thickness H>max(h 1 ,h 2 ,...,h N ), unit, mm;
  • the length of the required raw material is L0+L, unit, mm; wherein L0 is the length of the clamp and the balance of the roll inlet;
  • P i is the set rolling force of the i-th equal thickness section, kN;
  • R the working roll radius, mm
  • ⁇ s0 — is the initial yield stress of the strip, kN/mm 2 ;
  • the coefficient of friction between the work roll and the rolled piece, 0.02 to 0.12;
  • T-rolling temperature °C
  • V r — is the rack speed, m / min
  • C H — is the Young's modulus of the rolled piece, Mpa;
  • G i the set roll gap of the i-th equal thickness section, mm;
  • L i , T i the i-th equal thickness segment, the length of the transition, mm;
  • the widening is ignored, and the equal thickness segments and the starting and ending points of the transition segment are marked on the raw materials.
  • the corresponding lengths of the equal thickness segments and the transition segments are calculated as follows:
  • a single-piece reciprocating test mill can be used to prepare a single qualified thickened plate material by several rolling optimization data. In this way, it is not necessary to prepare raw materials for the coil, which saves the raw materials; it also does not need to study the complicated control method of rolling thick rolling, which saves debugging time. It is especially suitable for providing debugging materials for the initial stage of product development.
  • Figure 1 is a schematic view of flexible rolling.
  • FIG. 2 is a schematic view showing the thickness profile of the longitudinal period variable thickness sheet of the present invention.
  • Figure 3 is a schematic view of the production of unequal thick plates in a single-piece rolling mill.
  • Figure 4 is a schematic view showing the shape of unequal thickness samples.
  • the present invention performs unequal thickness rolling on a conventional single-piece rolling mill to produce unequal-thickness sheets as shown in Fig. 4, 10 is a rolling mill, 20 is a clamp, and 30 is a sheet. Specifically, the production is as follows:
  • Thickness H>max(h 1 , h 2 , h 3 , h 4 , h 5 ), mm;
  • the length of the required raw material is L0 + L (mm).
  • the thickness of the thick section of the rolled piece is determined by the roll gap G i or the rolling force P i , and the length of the equal thickness section and the transition section is determined by the rolling time t i .
  • the actual rolling effect is related to the rolling speed. Therefore, the rolling speed is set first during rolling so that the rolling can be carried out at a constant speed V r .
  • the rolling speed must meet:
  • control set value of rolling is the roll gap, rolling force and rolling time of each equal thickness section, the change of sheet strength and the fluctuation of sheet rolling speed during actual rolling.
  • the shape of the rolled piece often does not match the set shape. Therefore, it is necessary to adjust the set value according to the shape of the rolled piece after rolling.
  • the simpler method is:
  • the present invention can be implemented on a single-piece reciprocating mill simply by making certain improvements to the control system. It can be promoted in the field of variable thickness plate research. With the increasing emphasis on car lightweighting, this technology will have the same broad prospects as VRB.
  • the process of the invention can also be used in the production of another lightweight material, magnesium alloy. Temperature and rolling speed are critical factors in the rolling process of magnesium alloy strips. The use of this technique in a single-plate hot rolling mill ensures that the different reductions of the strip can be achieved with exactly the same boundary conditions. This is very important for studying the properties of magnesium alloy strips.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)

Abstract

一种具有纵向不同厚度的板材的轧制方法,包括如下步骤:1)设定样件的等厚段段数N、各等厚段的厚度h 1,h 2,…,,h N,各等厚段长度L 1,L 2,…,L N以及各等厚段之间的过渡段长度T 1,T 2,…,T N-1,N个等厚段有N-1个过渡段;上述厚度、长度单位均为mm;2)原料选择;3)对每段的轧制力、辊缝以及轧制时间设定;4)轧制准备;5)轧制;6)优化轧制参数,测量轧制后轧件各等厚段的厚度与长度及过渡段的长度,将测得的各等厚段的厚度与设定的样件厚度进行比较,进而对步骤3)设定的每段轧制力P i、辊缝G i进行修正;将测得的长度与步骤4)所做标记位置进行比较,进而对步骤3)设定的每段轧制时间进行修正;用同尺寸原料,重复步骤4)、5),并再次修正,经过2~3次试轧,可轧制出符合样件要求的轧件。该方法无需准备成卷的原料,无需研究成卷变厚轧制的复杂控制方法,节省了原料并节约了调试时间。

Description

具有纵向不同厚度的板材的轧制方法 技术领域
本发明涉及板材轧制技术,特别涉及一种具有纵向不同厚度的板材的轧制方法。
背景技术
为了实现汽车轻量化的目标,目前汽车行业正在推广使用一种通过轧制得到的纵向厚度连续变化的带材——变厚板(VRB,Various-thickness Rolled Blanks)。
生产变厚度的轧制技术称为柔性轧制(Flexible Rolling)技术源自1997年德国研究基金(DFG)资助的一个项目。当初参与项目的Mubea公司是目前市场上变厚板的主要供应商。柔性轧制的技术核心是通过改变辊缝的方式实现出口厚度的变化(见图1)。
为了保证生产效率,工业上采用成卷的方式来生产VRB冷轧板,参见图2)。
在产品开发阶段往往只需要若干片的变厚板来验证材料性能、进行成型试验等,此时,成卷的方式显得不够灵活,不仅造成了材料浪费,还增加了后续的矫直与剪切工序。
发明内容
本发明的目的在于提出一种具有纵向不同厚度的板材的轧制方法,省去了目前工业上成卷变厚度轧制的后续矫直、剪切等工序,在产品开发阶段,可以便捷快速地提供纵向具有不同设定厚度的板材。
所谓通过轧制获得的纵向具有不同厚度的变厚度板(VRB),一般具有图2所示的形状。
在产品开发阶段,需要对不同材质、不同形状的板材进行性能分析、成型试验,该阶段对同一类型的不等厚板的需求量不是非常大,若用成卷 的方式生产,不仅不太经济,还增加了后续的矫平、剪切等工序,也需要耗费一定的时间。
因此,本发明提出在普通的单片轧机上进行不等厚轧制的方案,旨在用一种简单、灵活的方式轧制单片纵向具有不同厚度的板材。
本发明的具有纵向不同厚度的板材的轧制方法,其包括如下步骤:
1)设定样件的等厚段段数N、各等厚段的厚度h1,h2,…,hN,各等厚段长度L1,L2,…,LN以及各等厚段之间的过渡段长度T1,T2,…,TN-1,N个等厚段有N-1个过渡段;上述厚度、长度单位均为mm;
2)原料选择
厚度:H>max(h1,h2,…,hN),单位,mm;
长度:
Figure PCTCN2016077628-appb-000001
单位,mm;
因此,所需原料的长度为L0+L,单位,mm;其中,L0为夹钳长度与轧辊入口余量;
3)对每段的轧制力、辊缝以及轧制时间设定
①轧制力计算:
Figure PCTCN2016077628-appb-000002
式中,Pi—为第i个等厚段的设定轧制力,kN;
H、hi—分别为轧件的入口、第i个等厚段出口厚度,mm;
b—为轧件宽度,mm;
R—为工作辊半径,mm;
σs0—为带材的初始屈服应力,kN/mm2
μ—工作辊与轧件之间的摩擦系数,0.02~0.12;
tb、tf—夹钳施加在轧件上的后、前张力,MPa;
T—轧制温度,℃;
Figure PCTCN2016077628-appb-000003
—变形速率,s-1,采用Ekelend公式计算:
Figure PCTCN2016077628-appb-000004
Vr—为机架速度,m/min;
CH—为轧件的杨氏模量,Mpa;
②辊缝根据轧机的弹跳方程进行计算:
Figure PCTCN2016077628-appb-000005
其中,Gi—第i个等厚段的设定辊缝,mm;
Pi—为第i个等厚段的设定轧制力,kN;
M—机架刚度,kN/mm,机架固有参数,在轧制开始之前进行测定;
③轧制时间计算:
t2i-1=Li/Vr或者t2i=Ti/Vr    (3)
其中,Li、Ti—第i个等厚段、过渡的长度,mm;
Vr—轧制速度,mm/s;
4)轧制准备
根据样件要求的形状,按照体积不变的原理,忽略宽展,在原料上标记各等厚段及过渡段起止点,各等厚段及过渡段相应的长度计算如下:
Figure PCTCN2016077628-appb-000006
Figure PCTCN2016077628-appb-000007
5)轧制
按照步骤3)计算的设定值,进行轧制;
6)优化轧制参数
测量轧制后轧件各等厚段的厚度与长度及过渡段的长度,将测得的各等厚段的厚度与设定的样件厚度进行比较,进而对步骤3)设定的每段轧制力Pi、辊缝Gi进行修正;将测得的长度与步骤4)所做标记位置进行比较,进而对步骤3)设定的每段轧制时间进行修正;用同尺寸原料,重复步骤4)、5),并再次修正,经过2~3次试轧,可以轧制出符合样件要求的轧件。
本发明的有益效果:
采用本发明的方法,可以利用单片往复式试验轧机,通过几次轧制优化的数据,制备出单张合格的变厚板板材。这种方式无需准备成卷的原料,节省了原料;也无需研究成卷变厚轧制的复杂控制方法,节约了调试时间。 特别适合为产品开发初期提供调试料。
此外,由于单片轧制过程中速度、温度等边界条件完全一样,可以用来研究镁合金板材在不同压下量时的性能。
附图说明
图1为柔性轧制的示意图。
图2为本发明纵向周期变厚度板材厚度轮廓示意图。
图3为单片轧机生产不等厚板示意图。
图4为不等厚样件形状示意图。
具体实施方式
下面结合实施例和附图对本发明做进一步说明。
参见图3,本发明在普通的单片轧机上进行不等厚轧制,以生产如图4所示的不等厚板材为例,10为轧机,20为夹钳,30为板材。具体按如下步骤进行生产:
1)设定样件的等厚段段数N=5、各等厚段的厚度h1,h2,h3,h4,h5,各等厚段长度L1,L2,L3,L4,L5以及各等厚段之间的过渡段长度T1,T2,T3,T4,5个等厚段有4个过渡段;上述厚度、长度单位均为mm;
2)原料选择
厚度:H>max(h1,h2,h3,h4,h5),mm;
长度:要考虑夹钳长度与轧辊入口余量,假设这部分长度为L0;还要考虑板材的延伸,按照体积不变的原理,忽略宽展,这部分的长度可以按下式进行计算:
Figure PCTCN2016077628-appb-000008
因此,所需原料的长度为L0+L(mm)。
3)设定值给定:对于图4所示的形状,进行如下设定(设定辊缝、轧制力和轧制时间的方法见公式(1)、(2)、(3))
Figure PCTCN2016077628-appb-000009
Figure PCTCN2016077628-appb-000010
轧件等厚段的厚度由辊缝Gi或者轧制力Pi决定,而等厚段与过渡段的长度由轧制时间ti决定。实际轧制效果与轧制速度有关,因此,在轧制时要先设定好轧制速度,使轧制可以在恒定的速度Vr下进行。
轧机的最大有载压下速度为Vp,因此,
Figure PCTCN2016077628-appb-000011
轧制速度必须满足:
Figure PCTCN2016077628-appb-000012
4)轧制准备
控制值的调整:如上述,轧制的控制设定值是各等厚段的辊缝、轧制力与轧制时间,实际轧制时由于板材强度的变化、板材轧制速度的波动等因素,轧件的形状往往会与设定形状不相符。因此,需要根据轧件轧后形状对设定值进行适当的调整,较为简便的方法是:
在原始板材上做标记,根据轧后要求的形状,按照体积不变的原理,忽略宽展,在原始板材上标记对应的0…9点,各等厚段及过渡段相应的长度可以计算如下:
Figure PCTCN2016077628-appb-000013
Figure PCTCN2016077628-appb-000014
5)轧制
按照步骤3)进行设定并轧制;
6)优化轧制参数
测量轧制后轧件各等厚段的厚度与长度及过渡段的长度,将测得的各等厚段的厚度与设定的样件厚度进行比较,进而对步骤3)设定的每段轧制力Pi、辊缝Gi进行修正;将测得的长度与步骤4)所做标记位置进行比较,进而对步骤3)设定的每段轧制时间进行修正;用同尺寸原料,重复步骤4)、5),并再次修正,经过2~3次试轧,可以轧制出符合样件要求的轧件。
本发明只需对控制系统进行一定的改进,就可以在单片往复轧机上实施本方法。在变厚度板研究领域可以进行推广,随着对汽车轻量化的日益重视,该技术将与VRB一样具有广阔前景。
此外,本发明方法还可用于另一种轻量化材料——镁合金的生产。镁合金板带轧制过程中,温度和轧制速度是很关键的因素,在单片温轧机上使用该技术,可以确保在边界条件完全一样的情况下,实现板带的不同压下量,这对与研究镁合金板带的性能有很重要的意义。

Claims (1)

  1. 具有纵向不同厚度的板材的轧制方法,其特征是,包括如下步骤:
    1)设定样件的等厚段段数N、各等厚段的厚度h1,h2,…,hN,各等厚段长度L1,L2,…,LN以及各等厚段之间的过渡段长度T1,T2,…,TN-1,N个等厚段有N-1个过渡段;上述厚度、长度单位均为mm;
    2)原料选择
    厚度:H>max(h1,h2,…,hN),单位,mm;
    长度:
    Figure PCTCN2016077628-appb-100001
    单位,mm;
    因此,所需原料的长度为L0+L,单位,mm;其中,L0为夹钳长度与轧辊入口余量;
    3)对每段的轧制力、辊缝以及轧制时间设定
    ①轧制力计算:
    Figure PCTCN2016077628-appb-100002
    式中,Pi—为第i个等厚段的设定轧制力,kN;
    H、hi—分别为轧件的入口、第i个等厚段出口厚度,mm;
    b—为轧件宽度,mm;
    R—为工作辊半径,mm;
    σs0—为带材的初始屈服应力,kN/mm2
    μ—工作辊与轧件之间的摩擦系数,0.02~0.12;
    tb、tf—夹钳施加在轧件上的后、前张力,MPa;
    T—轧制温度,℃;
    Figure PCTCN2016077628-appb-100003
    —变形速率,s-1,采用Ekelend公式计算:
    Figure PCTCN2016077628-appb-100004
    Vr—为机架速度,m/min;
    CH—为轧件的杨氏模量,Mpa;
    ②辊缝根据轧机的弹跳方程进行计算:
    Figure PCTCN2016077628-appb-100005
    其中,Gi—第i个等厚段的设定辊缝,mm;
    Pi—为第i个等厚段的设定轧制力,kN;
    M—机架刚度,kN/mm,机架固有参数,在轧制开始之前进行测定;
    ③轧制时间计算:
    Figure PCTCN2016077628-appb-100006
    或者
    Figure PCTCN2016077628-appb-100007
    其中,Li、Ti—第i个等厚段、过渡的长度,mm;
    Vr—轧制速度,mm/s;
    4)轧制准备
    根据样件要求的形状,按照体积不变的原理,忽略宽展,在原料上标记各等厚段及过渡段起止点,各等厚段及过渡段相应的长度计算如下:
    Figure PCTCN2016077628-appb-100008
    Figure PCTCN2016077628-appb-100009
    5)轧制
    按照步骤3)计算的设定值,进行轧制;
    6)优化轧制参数
    测量轧制后轧件各等厚段的厚度与长度及过渡段的长度,将测得的各等厚段的厚度与设定的样件厚度进行比较,进而对步骤3)设定的每段轧制力Pi、辊缝Gi进行修正;将测得的长度与步骤4)所做标记位置进行比较,进而对步骤3)设定的每段轧制时间进行修正;用同尺寸原料,重复步骤4)、5),并再次修正,经过2~3次试轧,可以轧制出符合样件要求的轧件。
PCT/CN2016/077628 2015-03-30 2016-03-29 具有纵向不同厚度的板材的轧制方法 WO2016155603A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177030356A KR102028502B1 (ko) 2015-03-30 2016-03-29 세로방향에서 상이한 두께를 가진 판재의 압연방법
JP2017550505A JP2018509301A (ja) 2015-03-30 2016-03-29 縦方向の厚さが異なる板材の圧延方法
EP16771358.5A EP3278889A4 (en) 2015-03-30 2016-03-29 Rolling method for boards with different longitudinal thicknesses
US15/561,043 US10610914B2 (en) 2015-03-30 2016-03-29 Rolling method for boards with different longitudinal thicknesses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510141809.0 2015-03-30
CN201510141809.0A CN104741377B (zh) 2015-03-30 2015-03-30 具有纵向不同厚度的板材的轧制方法

Publications (1)

Publication Number Publication Date
WO2016155603A1 true WO2016155603A1 (zh) 2016-10-06

Family

ID=53581957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077628 WO2016155603A1 (zh) 2015-03-30 2016-03-29 具有纵向不同厚度的板材的轧制方法

Country Status (6)

Country Link
US (1) US10610914B2 (zh)
EP (1) EP3278889A4 (zh)
JP (1) JP2018509301A (zh)
KR (1) KR102028502B1 (zh)
CN (1) CN104741377B (zh)
WO (1) WO2016155603A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741377B (zh) * 2015-03-30 2017-01-04 宝山钢铁股份有限公司 具有纵向不同厚度的板材的轧制方法
HUE063023T2 (hu) 2016-12-30 2023-12-28 Outokumpu Oy Eljárás és berendezés fémszalagok rugalmas hengerlésére
CN108284130A (zh) * 2017-01-09 2018-07-17 宝山钢铁股份有限公司 一种冷轧变厚度板材的轧制方法
CN108906893B (zh) * 2018-08-03 2020-05-05 中铝瑞闽股份有限公司 一种提高铝热精轧穿带成功率的轧制方法
CN109108732B (zh) * 2018-08-09 2020-05-08 上海宝钢包装钢带有限公司 变厚板的自动激光定位装置及其定位方法
WO2020035107A1 (de) * 2018-08-16 2020-02-20 Bilstein Gmbh & Co. Kg Verfahren und anlage zur herstellung von bandabschnitten aus blech sowie bandausschnitt aus blechbandmaterial
DE102019215265A1 (de) * 2018-12-06 2020-06-10 Sms Group Gmbh Verfahren zum Betreiben eines Walzgerüstes zum Stufenwalzen
CN110328232A (zh) * 2019-05-29 2019-10-15 邯郸钢铁集团有限责任公司 一种利用过程控制轧制楔形钢板的方法
CN111680433B (zh) * 2020-04-29 2023-02-21 中国第一汽车股份有限公司 一种板材厚度的赋值方法、装置、设备及存储介质
CN113751502B (zh) * 2021-08-05 2023-06-20 包头钢铁(集团)有限责任公司 一种同一冷轧钢带轧制不同厚度的方法
CN113830180B (zh) * 2021-10-26 2023-02-28 岚图汽车科技有限公司 一种汽车变断面顶盖横梁结构及汽车车身

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033809A (ja) * 1983-08-01 1985-02-21 Kawasaki Steel Corp タンデム圧延機の走間板厚変更時の制御方法
WO2014067037A1 (zh) * 2012-10-31 2014-05-08 宝山钢铁股份有限公司 热连轧机组生产长度方向不同目标厚度带钢的方法
CN103926834A (zh) * 2014-03-20 2014-07-16 燕山大学 一种变厚度带材过渡区的曲线过渡方法
CN104338748A (zh) * 2013-07-24 2015-02-11 宝山钢铁股份有限公司 一种用于变厚度带材轧制的两道次轧制方法
CN104741377A (zh) * 2015-03-30 2015-07-01 宝山钢铁股份有限公司 具有纵向不同厚度的板材的轧制方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7506790A (nl) 1975-06-07 1976-12-09 Stamicarbon Werkwijze voor het bereiden van cycloalkanonen en cycloalkanolen.
JPS5741805A (en) * 1980-08-25 1982-03-09 Hitachi Ltd Forming apparatus
JPS5935807A (ja) * 1982-08-20 1984-02-27 Toshiba Corp 圧延方法
JPS60162517A (ja) * 1984-02-01 1985-08-24 Nippon Steel Corp ホツトストリツプミルの走間板幅変更制御方法
JPS63290605A (ja) 1987-05-23 1988-11-28 Nippon Steel Corp 異厚圧延方法
JPH03281010A (ja) 1990-03-30 1991-12-11 Nippon Steel Corp 多段差厚圧延方法
JPH07265924A (ja) 1994-03-31 1995-10-17 Kawasaki Steel Corp 差厚鋼板の圧延方法
JP2752589B2 (ja) * 1994-11-22 1998-05-18 日新製鋼株式会社 連続圧延機における形状制御方法およびその装置
JP4603193B2 (ja) 2001-05-10 2010-12-22 本田技研工業株式会社 車体パネルの製造方法
JP4568164B2 (ja) 2005-05-02 2010-10-27 新日本製鐵株式会社 差厚鋼板の圧延矯正方法
DE102006011939A1 (de) * 2006-03-15 2007-09-27 Siemens Ag Walzverfahren für ein Walzgut zum Einbringen einer Stufe in das Walzgut
CN1850374A (zh) * 2006-04-29 2006-10-25 东北大学 阶梯厚度钢板的轧制方法
CN101602065B (zh) * 2009-07-07 2011-04-27 东北大学 周期变厚度带材轧制过程中轧件的微跟踪方法及系统
CN103386419B (zh) * 2013-07-15 2015-08-26 莱芜钢铁集团有限公司 大展宽比钢板头尾宽度的控制方法
CN203686557U (zh) * 2013-12-30 2014-07-02 福建三钢闽光股份有限公司 一种中厚板生产的末道次展宽后的中间坯轧件形状

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033809A (ja) * 1983-08-01 1985-02-21 Kawasaki Steel Corp タンデム圧延機の走間板厚変更時の制御方法
WO2014067037A1 (zh) * 2012-10-31 2014-05-08 宝山钢铁股份有限公司 热连轧机组生产长度方向不同目标厚度带钢的方法
CN104338748A (zh) * 2013-07-24 2015-02-11 宝山钢铁股份有限公司 一种用于变厚度带材轧制的两道次轧制方法
CN103926834A (zh) * 2014-03-20 2014-07-16 燕山大学 一种变厚度带材过渡区的曲线过渡方法
CN104741377A (zh) * 2015-03-30 2015-07-01 宝山钢铁股份有限公司 具有纵向不同厚度的板材的轧制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3278889A4 *

Also Published As

Publication number Publication date
US10610914B2 (en) 2020-04-07
KR20170130516A (ko) 2017-11-28
JP2018509301A (ja) 2018-04-05
CN104741377B (zh) 2017-01-04
EP3278889A1 (en) 2018-02-07
US20180071803A1 (en) 2018-03-15
CN104741377A (zh) 2015-07-01
KR102028502B1 (ko) 2019-10-04
EP3278889A4 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
WO2016155603A1 (zh) 具有纵向不同厚度的板材的轧制方法
JP4452323B2 (ja) 熱間での板圧延における圧延負荷予測の学習方法
Liu et al. Variable blankholder force in U-shaped part forming for eliminating springback error
CN102527774B (zh) 一种辊式矫直机压下工艺参数动态调整方法
CN102548681B (zh) 用于连续拉伸-弯曲-校平金属带的方法和装置
TW200612214A (en) Material controlling method and device for rolling, forging or straightening line
CN112926173A (zh) 一种热轧高强钢板成形极限图的计算方法
CN106547959A (zh) 一种基于辊径方差最小的cvc辊形参数优化计算方法
WO2004085086A1 (ja) 継目無管の製造方法
JP5971293B2 (ja) 調質圧延機の制御装置及び制御方法
CN104615824A (zh) 一种二辊矫直机凹辊辊形的设计方法
CN113877987A (zh) 一种辊式矫直机工作参数预设定方法
CN110293135B (zh) 一种粗轧宽度动态前馈控制方法
JP4986463B2 (ja) 冷間圧延における形状制御方法
KR20120075276A (ko) 교정 조건 설정 방법
JP2004290979A (ja) 厚鋼板の圧延方法
CN111633059B (zh) 基于板型特征的辊式矫直机压下量控制方法
KR101462332B1 (ko) 압연기의 압연속도 제어장치 및 방법
CN104646433B (zh) 一种减少铝卷由于头部卷径厚跃造成表面起折粘伤的方法
CN111215454B (zh) 一种热轧带钢平整板形控制方法
JP5757263B2 (ja) 熱間圧延における平坦形状制御方法及び製造装置
JPH08267114A (ja) 冷間圧延におけるエッジドロップ制御圧延方法
WO2016035505A1 (ja) 調質圧延機の制御装置及び制御方法
JP2005177818A (ja) 冷間圧延における形状制御方法
Dong et al. Research on the relationship between the number of rotary draw bendings and the shape precision of a bent hat-section profile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771358

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15561043

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017550505

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177030356

Country of ref document: KR

Kind code of ref document: A