[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016152697A1 - 微生物の培養方法及び培養装置 - Google Patents

微生物の培養方法及び培養装置 Download PDF

Info

Publication number
WO2016152697A1
WO2016152697A1 PCT/JP2016/058430 JP2016058430W WO2016152697A1 WO 2016152697 A1 WO2016152697 A1 WO 2016152697A1 JP 2016058430 W JP2016058430 W JP 2016058430W WO 2016152697 A1 WO2016152697 A1 WO 2016152697A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
volume
main tank
culture
fermentation environment
Prior art date
Application number
PCT/JP2016/058430
Other languages
English (en)
French (fr)
Inventor
周知 佐藤
石井 徹哉
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CA2979789A priority Critical patent/CA2979789A1/en
Priority to CN201680016470.4A priority patent/CN107406819A/zh
Priority to US15/554,529 priority patent/US20180072978A1/en
Priority to JP2017508276A priority patent/JP6706612B2/ja
Priority to EP16768600.5A priority patent/EP3272853B1/en
Priority to EP20150493.3A priority patent/EP3656845A1/en
Publication of WO2016152697A1 publication Critical patent/WO2016152697A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/18External loop; Means for reintroduction of fermented biomass or liquid percolate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/14Pressurized fluid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/44Means for regulation, monitoring, measurement or control, e.g. flow regulation of volume or liquid level
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/54Acetic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method and apparatus for culturing microorganisms, and more particularly, to a culture method and apparatus for culturing gas-utilizing microorganisms that fermentate and produce valuable substances such as ethanol from a substrate gas such as synthesis gas.
  • Certain anaerobic microorganisms are known to produce valuable substances such as ethanol from a substrate gas by fermentation (see the following patent documents, etc.).
  • This type of gas-utilizing microorganism is cultured in a liquid medium.
  • the culture tank include a stirring type, an air lift type, a bubble column type, a loop type, a filling type, an open pond type, and a photobio type.
  • the substrate gas for example, a synthesis gas containing CO, H 2 , CO 2 or the like is used. Syngas is generated at steelworks, coal plants, waste disposal facilities, and the like. By supplying this synthesis gas to the culture tank, the gas assimilating microorganism is fermented.
  • the gas supply flow rate from the synthesis gas source is not always constant.
  • synthesis gas source substrate gas source
  • the amount of waste is not constant. Therefore, the production amount of synthesis gas is unstable.
  • the gas supply flow rate fluctuates greatly, for example, by half. If the amount of synthesis gas supplied to the culture tank is insufficient, almost all of the gas-utilizing microorganisms are uniformly weakened and die. When killed, it is necessary to re-cultivate from the inoculum.
  • an object of the present invention is to stably culture gas-assimilating microorganisms even when the supply flow rate of a substrate gas such as synthesis gas varies.
  • the method of the present invention is a method for cultivating a gas assimilating microorganism that ferments and produces a valuable material from a substrate gas,
  • the fermentation environment region refers to a region in which the gas-assimilating microorganism is in an environment (fermentation environment) in which a valuable material can be fermented and produced from the substrate gas. That is, it refers to a region where the activity of the gas-utilizing microorganism can be maintained, and refers to a region where a medium is present and a required amount of substrate gas can be supplied.
  • the volume of the fermentation environment area is reduced.
  • the volume of the fermentation environment is increased and returned to its original size.
  • the supply flow rate of the substrate gas per unit volume in the fermentation environment region can be maintained substantially constant regardless of the fluctuation of the substrate gas. Therefore, it is possible to stabilize the amount of substrate gas intake per individual gas-assimilating microorganism in the fermentation environment region.
  • the gas-assimilating microorganism can be stably cultured regardless of the change in the substrate gas, and the gas-assimilating microorganism can be prevented from dying due to the deterioration of the supply state of the substrate gas.
  • the reaction tank is a loop reactor having a main tank part and a reflux part, A circulation step of circulating the culture medium between the main tank part and the reflux part, In the adjustment step, it is preferable to adjust the volume of the circulation region in which the medium circulates in the main tank part and the reflux part. As a result, the gas-assimilating microorganism can be stably cultured.
  • the adjustment step it is preferable to adjust a communication position from the main tank portion to the reflux portion.
  • the volume of a circulation area can be adjusted and by extension, the volume of a fermentation environment area can be adjusted.
  • the volume changing body is moved back and forth in the reaction vessel.
  • the volume of the reaction vessel can be reduced by the amount that the volume changer has entered the reaction vessel.
  • the volume-changing body is retracted, the volume of the reaction tank increases accordingly. As a result, the volume of the fermentation environment region can be reliably increased or decreased.
  • the apparatus of the present invention is a gas assimilating microorganism culturing apparatus for fermenting and producing a valuable material from a substrate gas,
  • a reaction vessel for culturing the gas assimilating microorganisms in a liquid medium having a fermentation environment region capable of fermentation and occupying the fermentation environment region;
  • a gas supply unit for supplying the substrate gas to the fermentation environment region;
  • Volume variable means for changing the volume of the fermentation environment area; The volume is adjusted by the volume varying means according to the supply flow rate of the substrate gas.
  • this apparatus for example, when the supply flow rate of the substrate gas decreases, the volume of the fermentation environment region is reduced by the volume variable means.
  • the volume of the fermentation environment is returned to the original size by the volume variable means. Therefore, even if the supply flow rate of the substrate gas varies, the gas-assimilating microorganism can be stably cultured.
  • the reaction tank has a main tank part and a reflux part, and is a loop reactor that circulates the culture medium between the main tank part and the reflux part, It is preferable that the volume changing unit changes a volume of a circulation region in which the culture medium circulates in the main tank part and the reflux part. As a result, the gas-assimilating microorganism can be stably cultured.
  • the communication position from the main tank part to the reflux part is variable.
  • the volume of a circulation area can be adjusted and by extension, the volume of a fermentation environment area can be adjusted.
  • the intermediate part of the main tank part and the intermediate part of the reflux part are connected by one connection path that can be opened and closed or a plurality of connection paths that are separated from each other in the flow direction of the culture medium.
  • the communication position from the main tank part to the reflux part can be changed by opening one connection path or selectively opening one of the plurality of connection paths.
  • the volume variable means includes a volume changing body capable of changing the volume of the fermentation environment region by being advanced and retracted into the reaction tank.
  • the volume of the reaction vessel can be reduced by the amount that the volume changer has entered the reaction vessel.
  • the volume-changing body is retracted, the volume of the reaction tank increases accordingly. As a result, the volume of the fermentation environment region can be reliably increased or decreased.
  • the volume variable means includes a bag body that can be expanded and contracted in the reaction tank and a supply / discharge means for supplying and discharging fluid pressure to and from the bag body.
  • a bag body that can be expanded and contracted in the reaction tank and a supply / discharge means for supplying and discharging fluid pressure to and from the bag body.
  • the bag body By introducing a positive fluid pressure into the bag body, the bag body can be expanded (advanced).
  • the volume of the reaction tank can be reduced by the amount of expansion of the bag body, and consequently the volume of the fermentation environment region can be reduced.
  • the bag body can be contracted (retracted) by discharging or sucking the gas in the bag body.
  • the volume of the reaction tank can be increased by the amount of shrinkage of the bag, and thus the volume of the fermentation environment region can be increased.
  • the volume variable means includes a rod that can advance and retreat in the reaction vessel.
  • the volume of the reaction tank can be reduced by that amount, and the volume of the fermentation environment can be reduced accordingly.
  • the volume of the reaction tank can be increased by that amount, and the volume of the fermentation environment region can be increased accordingly.
  • the volume variable means includes a partition capable of partitioning the reaction tank into a chamber communicating with the gas supply unit and a chamber blocked from the gas supply unit, and capable of releasing the blockage.
  • a part (chamber) in the reaction tank is blocked from the gas supply unit by the partition.
  • the substrate gas is supplied to a chamber communicating with the gas supply unit, so that the activity of the gas-assimilating microorganisms in the chamber can be maintained.
  • the supply flow rate of the substrate gas recovers (increases)
  • the blocking is released by the partition.
  • the substrate gas is supplied to the chamber that has been shut off, and the volume of the fermentation environment region can be increased by returning the chamber to the fermentation environment.
  • the gas-assimilating microorganism can be stably cultured even if the supply flow rate of the substrate gas varies.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of the culture apparatus according to the first embodiment of the present invention in a normal operation mode.
  • FIG. 2 is an explanatory diagram showing a schematic configuration of the culture apparatus in a substrate gas supply shortage mode.
  • FIG. 3 is an explanatory view showing a schematic configuration of the culture apparatus according to the second embodiment of the present invention, where FIG. 3 (a) shows a normal operation mode, and FIG. 3 (b) shows a substrate gas supply shortage mode.
  • FIG. 4 is an explanatory diagram showing a schematic configuration of a culture apparatus according to a third embodiment of the present invention, where FIG. 4 (a) shows a normal operation mode and FIG. 4 (b) shows a substrate gas supply shortage mode. .
  • FIG. 4 is an explanatory diagram showing a schematic configuration of a culture apparatus according to a third embodiment of the present invention, where FIG. 4 (a) shows a normal operation mode and FIG. 4 (b) shows a substrate gas supply shortage mode. .
  • FIG. 5 is an explanatory view showing a schematic configuration of a culture apparatus according to a fourth embodiment of the present invention, where FIG. 5 (a) shows a normal operation mode and FIG. 5 (b) shows a substrate gas supply shortage mode.
  • FIG. 6 is an explanatory view showing a schematic configuration of a culture apparatus according to a fifth embodiment of the present invention, where FIG. 6 (a) shows a normal operation mode, and FIG. 6 (b) shows a substrate gas supply shortage mode. .
  • FIG. 1 and 2 show a culture apparatus 1 according to the first embodiment of the present invention.
  • anaerobic gas assimilating microorganisms b are cultured by a culture apparatus 1.
  • the gas assimilating microorganism b those disclosed in the above-mentioned patent documents and the like can be used.
  • the gas assimilating microorganism b produces a valuable material (target substance) by fermentation from the substrate gas g.
  • the target substance of the apparatus 1 is ethanol (C 2 H 5 OH).
  • synthesis gas containing CO, H 2 , CO 2 or the like is used.
  • the substrate gas g is produced at the substrate gas production facility 2 (synthesis gas production facility).
  • the substrate gas production facility 2 in the present embodiment is configured as a waste treatment facility. Examples of waste include municipal waste, tires, biomass, wood chips, and plastic waste.
  • the waste treatment facility is equipped with a melting furnace. In the melting furnace, the waste is burned by high-concentration oxygen gas and decomposed to a low molecular level.
  • a substrate gas g synthetic gas
  • the required component of the substrate gas g can be appropriately selected according to the type of the gas-assimilating microorganism b and the target substance.
  • the substrate gas g may contain only one of CO and H 2 .
  • the culture apparatus 1 includes a loop reactor 10 as a reaction tank or a culture tank.
  • the loop reactor 10 includes a main tank part 11 and a reflux part 12.
  • the main tank 11 has a cylindrical shape extending vertically (up and down).
  • a liquid medium 9 is accommodated in the main tank portion 11.
  • Most of the liquid medium 9 is water (H 2 O), in which nutrients such as vitamins and phosphoric acid are dissolved.
  • the gas assimilating microorganism b is cultured in the liquid medium 9.
  • a new culture medium supply source 3 is connected to the upper end of the main tank section 11 via a culture medium supply path 3a.
  • the new medium supply source 3 stores a new liquid medium 9A.
  • the new liquid medium 9A does not contain the gas-utilizing microorganism b.
  • An air diffuser 22 (gas supply unit) is disposed at the lower end inside the main tank unit 11.
  • a gas supply path 20 extends from the substrate gas production facility 2 and is connected to a diffuser tube 22.
  • a flow meter 21 is provided on the gas supply path 20.
  • the gas supply path 20 may further include a pretreatment unit such as a desulfurization unit or a deoxygenation unit.
  • An exhaust path 5 extends from the upper end of the main tank portion 11.
  • the reflux part 12 has a tubular shape extending vertically in parallel with the main tank part 11. An upper end portion of the reflux portion 12 is connected to a side portion near the upper end of the main tank portion 11. A lower end portion of the reflux portion 12 is connected to a bottom portion of the main tank portion 11. A circulation pump 13 is provided in the reflux unit 12.
  • the liquid level of the liquid medium 9 in the main tank 11 is located on the upper side of the main tank 11. Specifically, it is located above the upper end of the reflux unit 12.
  • the liquid culture medium 9 has spread over the part from the bottom part to the upper part in the main tank part 11 and the reflux part 12.
  • the liquid medium 9 is circulated between the main tank portion 11 and the reflux portion 12 by the circulation pump 13.
  • a region occupied by the liquid medium 9 in the loop reactor 10 or a region where the liquid medium 9 circulates (circulation region) is a fermentation environment region 19.
  • a required amount of substrate gas g is supplied to the liquid medium 9 in the fermentation environment area 19.
  • the gas assimilating microorganism b can produce a valuable material such as ethanol from the substrate gas g by fermentation.
  • the culture apparatus 1 is provided with volume variable means 30 for changing the volume of the fermentation environment area 19.
  • the volume varying means 30 includes a plurality of connection paths 31 to 33 and a delivery path 4.
  • the plurality of connection paths 31 to 33 are arranged apart from each other in the vertical direction (flow direction of the culture medium 9) between the main tank portion 11 and the reflux portion 12.
  • the intermediate portions in the extending direction of the main tank portion 11 and the reflux portion 12 are connected by the connection paths 31 to 33.
  • the upper connection path 31 connects the reflux portion 12 to a portion slightly below the connection portion with the upper end portion of the reflux portion 12 in the main tank portion 11.
  • the connection path 31 is provided with an on-off valve 31V.
  • the connection path 31 is opened and closed by the on-off valve 31V.
  • the middle connection path 32 connects the recirculation part 12 to a portion having a substantially intermediate height in the main tank part 11.
  • the connection path 32 is provided with an on-off valve 32V.
  • the connection path 32 is opened and closed by the on-off valve 32V.
  • the lower connection path 33 connects the portion of the main tank 11 below the connection path 32 to the reflux section 12.
  • the connection path 33 is provided with an on-off valve 33V.
  • the connection path 33 is opened and closed by the on-off valve 33V.
  • the number of connection paths of the volume variable means 30 is not limited to three, but may be one, two, or four or more.
  • the delivery path 4 is branched from a portion between the circulation pump 13 and the bottom of the main tank portion 11 in the reflux portion 12.
  • a delivery pump 41 is provided in the delivery path 4.
  • a delivery path 4 buffer tank 42 downstream from the delivery pump 41 is interposed.
  • the downstream end of the delivery path 4 extends to a subsequent processing section such as a distiller.
  • the delivery path 4 has both a function of sending the liquid medium 9 to a subsequent processing section such as a distillation tower and a function as a component of the volume variable means 30.
  • a method for culturing the gas-utilizing microorganism b using the culturing apparatus 1 and a method for producing valuable materials such as ethanol will be described.
  • ⁇ Normal operation mode> As shown in FIG. 1, it is now assumed that the culture apparatus 1 is in the normal operation mode. The on-off valves 31V to 33V are all closed.
  • ⁇ Substrate gas supply process> It is assumed that the waste treatment facility 2 is normally operated and produces a standard amount of substrate gas g.
  • the substrate gas g is sent to the diffuser tube 22 through the gas supply path 20.
  • the substrate gas g is supplied to the liquid medium 9 in the loop reactor 10, that is, the fermentation environment area 19 from the diffuser tube 22.
  • the substrate gas g dissolves in the liquid medium 9 while rising in the liquid medium 9 in the main tank portion 11.
  • the gas-assimilating microorganism b in the liquid medium 9 takes in CO and H 2 in the substrate gas g and performs fermentation, thereby producing ethanol (valuable material).
  • the produced ethanol is mixed in the liquid medium 9.
  • ⁇ Circulation process> At the same time, the circulation pump 13 is driven. Thereby, the liquid medium 9 of the loop reactor 10 circulates between the main tank portion 11 and the reflux portion 12. Specifically, the liquid medium 9 rises in the main tank portion 11. Then, the refrigerant enters the reflux part 12 from the upper part of the main tank part 11, descends the reflux part 12, and is returned to the bottom part of the main tank part 11.
  • ⁇ Sending process> A part of the liquid medium 9 in the loop reactor 10 is delivered to the delivery path 4.
  • ⁇ Purification process> A part of the liquid medium 9 is subjected to solid-liquid separation processing and the like, and is distilled in a distillation tower (not shown), thereby purifying ethanol.
  • ⁇ Replenishment process> The new liquid culture medium 9A for the delivery to the delivery path 4 is replenished to the loop reactor 10 from the new culture medium supply source 3. Thereby, the amount of the liquid medium 9 in the loop reactor 10 is kept constant. As a result, the volume of the fermentation environment area 19 is maintained constant.
  • the amount of substrate gas production in the substrate gas production facility 2 composed of a waste treatment facility varies greatly.
  • the supply flow rate of the substrate gas g is detected by the flow meter 21.
  • ⁇ Volume adjustment process of fermentation environment area 19> Based on the detected flow rate, the volume of the fermentation environment area 19 is adjusted. Specifically, when the supply flow rate of the substrate gas g is decreased from the normal operation mode, the volume of the fermentation environment area 19 is reduced. Thereby, the supply flow rate of the substrate gas g and the volume of the fermentation environment area 19 are correlated.
  • the volume adjustment of the fermentation environment area 19 may be performed by automatic control using a controller (control means). Alternatively, the administrator may manually adjust the volume of the fermentation environment area 19.
  • ⁇ Substrate gas supply shortage mode> For example, it is assumed that the supply flow rate of the substrate gas g is halved due to some trouble or maintenance of the substrate gas production facility 2. In this case, as shown in FIG. 2, about half of the liquid medium 9 in the loop reactor 10 is discharged to the delivery path 4. As a result, the volume of the fermentation environment area 19 is about half that of the normal operation mode (FIG. 1). (The new liquid medium 9A corresponding to the discharged amount is not added from the new medium supply source 3.) The discharged liquid medium 9 is stored in the buffer tank 42, taken out at any time, and sent to a distillation column or the like.
  • the liquid level of the liquid medium 9 after discharge is located, for example, between the upper connection path 31 and the middle connection path 32.
  • the middle opening / closing valve 32V is opened.
  • the upper opening / closing valve 31V and the lower opening / closing valve 33V are closed.
  • the communication position from the main tank part 11 to the reflux part 12 is changed from the height of the upper end part of the reflux part 12 to the height of the intermediate connection path 32.
  • the liquid medium 9 circulates in the order of the main tank part 11, the middle connection path 32, and the reflux part 12. Therefore, the volume of the circulation region of the liquid medium 9 is reduced to almost half.
  • the liquid level of the liquid medium 9 may be located between the upper end of the reflux unit 12 and the upper connection path 31 depending on the degree of decrease in the supply flow rate of the substrate gas g.
  • reflux part 12 may be made the height of the upper stage connection path 31 by opening the upper stage on-off valve 31V.
  • the liquid medium 9 may be circulated in the order of the main tank part 11, the upper connection path 31, and the reflux part 12.
  • the liquid level of the liquid medium 9 may be positioned between the middle connection path 32 and the lower connection path 33 depending on the degree of decrease in the supply flow rate of the substrate gas g.
  • reflux part 12 may be made the height of the lower stage connection path 33 by opening the lower stage on-off valve 33V. Accordingly, the liquid medium 9 may be circulated in the order of the main tank part 11, the lower connection path 33, and the reflux part 12.
  • the supply flow rate of the substrate gas g per unit volume of the fermentation environment zone 19 can be maintained almost constant regardless of the fluctuation of the substrate gas g.
  • concentration of the gas utilization microorganisms b in the fermentation environment area 19 hardly fluctuates before and after volume control. Therefore, the substrate gas intake per individual of the gas assimilating microorganisms b in the fermentation environment region 19 can be stabilized.
  • the gas assimilating microorganism b can be stably cultured regardless of the change in the substrate gas g, and the gas assimilating microorganism b can be prevented from being killed due to the shortage of the substrate gas. Even if the supply flow rate of the substrate gas g is half to less than the normal operation mode for a long period (for example, 2 days or more), the activity of the gas-assimilating microorganism b can be sufficiently maintained.
  • the concentration of the gas-utilizing microorganism b in the fermentation environment area 19 is temporarily reduced.
  • the gas-assimilating microorganism b proliferates actively.
  • the concentration of the gas assimilating microorganism b can be recovered in a short time to the size before adding the new liquid medium 9A.
  • FIG. 3 shows a culture apparatus 1B according to the second embodiment of the present invention.
  • the culture apparatus 1B instead of the connection paths 31 to 33, the upper end portion of the reflux portion 12B can be moved up and down along the main tank portion 11.
  • a sealing means 35 is provided between the upper end portion of the reflux portion 12B and the outer peripheral portion of the main tank portion 11.
  • the sealing means 35 liquid-tightly seals between the reflux unit 12B and the main tank unit 11 while allowing the upper end of the reflux unit 12B to move up and down.
  • the reflux part 12B can be expanded and contracted in accordance with the elevation of the upper end part.
  • a flexible tube, a telescopic expansion tube, a bellows expansion tube, or the like can be used as the reflux unit 12B that can expand and contract.
  • the height of the upper communication position with the reflux part 12B in the main tank part 11 can be adjusted steplessly according to the supply flow rate of the substrate gas g. Therefore, the volume of the fermentation environment area 19 can be more accurately followed with respect to the change in the supply flow rate of the substrate gas g. As a result, the substrate gas intake per individual gas-utilizing microorganism b in the fermentation environment region 19 can be more reliably stabilized, and the gas-utilizing microorganism b can be reliably and stably cultured.
  • the height adjustment of the upper end of the reflux unit 12B may be performed by automatic control based on the detected flow rate of the flow meter 21 using a controller, or may be performed manually.
  • FIG. 4 shows a culture apparatus 1C according to the third embodiment of the present invention.
  • the volume variable means 50 of the culture apparatus 1C includes a bag body 51 (volume change body) and a supply / discharge means 52.
  • the bag body 51 is configured by an airtight resin film.
  • the bag body 51 is expandable / contractable (can be advanced / retracted) in the loop reactor 10.
  • a bag accommodating portion 53 is provided on a side portion near the lower portion of the main tank portion 11. The inside of the bag housing part 53 communicates with the inside of the main tank part 11 through the communication part 53a.
  • the supply / discharge means 52 includes a compressor 54 and a vacuum pump 55.
  • One of the compressor 54 and the vacuum pump 55 can selectively communicate with the bag body 51 by operating the on-off valves 54V and 55V.
  • ⁇ Normal operation mode> As shown in FIG. 4A, in the normal operation mode, almost the entire bag body 51 is accommodated in the bag accommodating portion 53 in a contracted state and faces the main tank portion 11 through the communicating portion 53a.
  • ⁇ Substrate gas supply shortage mode> As shown in FIG. 4B, when the supply flow rate of the substrate gas g decreases, air pressure (fluid pressure) is introduced from the compressor 54 into the bag body 51. Thereby, the bag body 51 advances into the main tank portion 11 while expanding. Preferably, the degree of expansion of the bag body 51 is increased as the degree of decrease in the supply flow rate of the substrate gas g is increased.
  • the liquid medium 9 is discharged from the loop reactor 10 to the delivery path 4 and sent to the buffer tank 42 by an amount corresponding to the expansion of the bag body 51. Thereby, the volume of the fermentation environment area 19 is reduced.
  • the liquid level of the liquid medium 9 in the main tank 11 is kept substantially constant.
  • the vacuum pump 55 is driven to suck and exhaust the air in the bag body 51.
  • the bag body 51 is retracted from the main tank portion 11 by contracting into the bag housing portion 53.
  • the new liquid medium 9A is poured into the loop reactor 10 from the new medium supply source 3 by the contraction amount of the bag body 51.
  • the volume of the fermentation environment area 19 can be increased and returned to the level of the normal operation mode.
  • the expansion / contraction operation of the bag 51 by the compressor 54 and the vacuum pump 55 may be performed by automatic control based on the detected flow rate of the flow meter 21 using a controller, or may be performed manually.
  • FIG. 5 shows a culture apparatus 1D according to the fourth embodiment of the present invention.
  • the volume varying means 60 of the culture apparatus 1 ⁇ / b> D includes a rod body 61 (volume changing body) and a lift drive means 62.
  • the rod 61 extends linearly vertically.
  • the rod body 61 is moved up and down along the axis of the main tank portion 11, so that the rod body 61 can advance and retreat in the main tank portion 11.
  • An elevating drive means 62 is connected to the rod body 61.
  • the elevating drive means 62 includes a motor, a slide guide, and the like.
  • the rod body 61 can be adjusted to any elevation height by the elevation drive means 62.
  • Substrate gas supply shortage mode As shown in FIG. 5B, when the supply flow rate of the substrate gas g decreases (substrate gas supply shortage mode), the rod body 61 is lowered by the lift drive means 62. As a result, the rod 61 advances into the main tank 11 and enters the liquid medium 9. Preferably, the greater the degree of decrease in the supply flow rate of the substrate gas g, the deeper the rod body 61 enters the main tank portion 11. The liquid medium 9 is discharged to the delivery path 4 and sent to the buffer tank 42 as much as the rod 61 has entered. Thereby, the volume of the fermentation environment area 19 is reduced. The liquid level of the liquid medium 9 in the main tank 11 is kept substantially constant.
  • the rod body 61 is raised by the lifting drive means 62. As a result, the rod 61 is withdrawn upward from the liquid medium 9 in the main tank 11.
  • a new liquid medium 9A is poured into the loop reactor 10 from the new medium supply source 3 as much as the rod 61 is retracted. Thereby, the volume of the fermentation environment area 19 can be increased and returned to the normal operation level.
  • the concentration of the gas-utilizing microorganism b can be recovered in a short time to the size before adding the new liquid medium 9A.
  • the raising / lowering operation of the rod body 61 by the raising / lowering drive means 62 may be performed by automatic control based on the detected flow rate of the flowmeter 21 using a controller, or may be performed manually. After adjusting the height of the rod body 61 manually, the rod body 61 may be fixed to the main tank portion 11 by a fixing means such as a screw.
  • FIG. 6 shows a culture apparatus 1E according to the fifth embodiment of the present invention.
  • the volume changing means 70 of the culture apparatus 1E includes a plurality of fixed partitions 71 and two movable partitions 72 and 73 (volume changing bodies). By these partitions 71 to 73, the inside of the loop reactor 10 is divided into chambers 11c, 11d and the like communicating with the diffuser tube 22 (gas supply unit), and chambers 11a, 11b and the like blocked from the diffuser tube 22 (gas supply unit). Partitioning is possible and the blocking can be released.
  • the fixed partition 71 is disposed vertically inside the main tank portion 11.
  • the upper end portion of each fixed partition 71 is disposed slightly below the upper end portion of the reflux portion 12.
  • the lower end portion of each fixed partition 71 is disposed slightly above the diffuser tube 22.
  • the inside of the main tank portion 11 is partitioned into a plurality of chambers 11a to 11d by a plurality of fixed partitions 71.
  • Each chamber 11a to 11d extends vertically.
  • the liquid level of the liquid medium 9 in the main tank 11 is always located above the upper end of the fixed partition 71 and thus the upper ends of the chambers 11a to 11d.
  • the fixed partitions 71, 71 May be parallel plates, may have a lattice shape in plan view, or may have a radial shape in plan view. They may be concentric in a plan view, or may be a combination of these several shapes.
  • the two movable partitions 72 and 73 are arranged on the side portion of the main tank portion 11 apart from each other in the vertical direction. These movable partitions 72 and 73 have a horizontal plate shape. Each movable partition 72, 73 can be moved back and forth in the main tank portion 11. As shown in FIG. 6 (b), when the upper movable partition 72 enters the main tank 11, the upper end openings of the one or more chambers 11a to 11c are closed according to the degree of entry. When the lower movable partition 73 enters the main tank portion 11, the lower end openings of the one or more chambers 11a to 11c are closed according to the degree of entry.
  • the movable partitions 72 and 73 are advanced and retracted (slid) in synchronization with each other.
  • the upper and lower movable partitions 72, 73 at least the lower movable partition 73 may be installed, and the upper movable partition 72 may be omitted.
  • ⁇ Normal operation mode> As shown in FIG. 6A, in the normal operation mode, the movable partitions 72 and 73 are retracted to the outside of the main tank portion 11. Thereby, the upper and lower ends of all the chambers 11a to 11d of the main tank portion 11 are opened. The lower ends of the chambers 11a to 11d face the diffuser tube 22. As a result, the substrate gas g spreads over the liquid medium 9 in each of the chambers 11a to 11d, so that each of the chambers 11a to 11d becomes a fermentation environment.
  • the liquid culture medium 9 is divided into the chambers 11a to 11d at the bottom of the main tank portion 11, rises in the chambers 11a to 11d, and exits from the upper ends of the chambers 11a to 11d to join. Then, it is returned to the bottom part of the main tank part 11 by the reflux part 12.
  • ⁇ Substrate gas supply shortage mode> As shown in FIG. 6B, when the supply flow rate of the substrate gas g is lowered, the movable partitions 72 and 73 are caused to enter the main tank portion 11 according to the degree of decrease. Preferably, the upper and lower movable partitions 72 and 73 are inserted into the main tank portion 11 by the same amount. As a result, the upper and lower ends of some of the chambers 11a and 11b are closed. For this reason, these chambers 11a and 11b are shut off from the diffuser tube 22 (gas supply unit), and the substrate gas g is not supplied into the chambers 11a and 11b. Moreover, the liquid culture medium 9 in the chambers 11a and 11b is confined in the chambers 11a and 11b.
  • the chambers 11a and 11b are no longer in a fermentation environment, and the gas-utilizing microorganism b in the chambers 11a and 11b can be killed.
  • the substrate gas g from the air diffuser 22 is supplied to the remaining chambers 11c and 11d among the chambers 11a to 11d. Further, the liquid medium 9 other than the chambers 11 a and 11 b is circulated between the chambers 11 c and 11 d and the reflux unit 12. Therefore, the chambers 11c and 11d are maintained as a fermentation environment. That is, the volume of the fermentation environment area 19 (circulation area) can be reduced.
  • the amount of the liquid medium 9 in the entire loop reactor 10 is kept constant regardless of the supply flow rate of the substrate gas g. Therefore, the delivery path 4 is not a component of the volume variable means 70.
  • the delivery path 4 in the culture apparatus 1E only plays a role of delivering the liquid medium 9 to a subsequent processing section such as a distillation tower.
  • the buffer tank 42 may be omitted.
  • the movable partitions 72 and 73 are retracted to the outside of the main tank portion 11.
  • the block between the chambers 11a and 11b and the diffuser tube 22 (gas supply unit) is released, and the substrate gas g from the diffuser tube 22 enters the chambers 11a and 11b.
  • the liquid medium 9 is circulated between the chambers 11a and 11b and the reflux unit 12. Therefore, the volume of the fermentation environment area 19 increases because the chambers 11a and 11b return to the fermentation environment.
  • the gas-assimilating microorganisms b actively grow.
  • the advance / retreat operation of the movable partitions 72 and 73 may be performed by automatic control based on the detected flow rate of the flow meter 21 using a controller, or may be performed manually.
  • the substrate gas production facility 2 is not limited to a waste treatment facility, and may be an iron mill or a coal plant.
  • the valuable material is not limited to ethanol, and may be acetic acid or the like.
  • a discharge path for discharging a part of the liquid medium 9 from the loop reactor 10 when the volume of the fermentation environment area 19 is reduced. May be provided separately from the delivery path 4 to the subsequent processing section such as a distillation tower.
  • a plurality of embodiments may be combined.
  • the loop reactor 10 may have connection paths 31 to 33 (FIG.
  • the loop reactor 10 may have connection paths 31 to 33 (FIG. 1) and a rod 61 (FIG. 5).
  • the loop reactor 10 may have connection paths 31 to 33 (FIG. 1) and movable partitions 72 and 73 (FIG. 6).
  • movable partitions may be provided at heights slightly above the connection paths 31 to 33, respectively.
  • the delivery path 4 does not need to be a component of the volume variable means 30.
  • the hinged door movable partition can be rotated to the inner wall of the main tank portion 11 or the upper and lower ends of the fixed partition 71. It may be provided.
  • the loop reactor 10 may have a bag body 51 (FIG. 4) and a rod body 61 (FIG. 5).
  • the reaction vessel is not limited to the loop reactor 10, and may be a reaction vessel other than the loop type, such as a stirring type, an air lift type, a bubble column type, a packed type, an open pond type, and a photobio type.
  • a plurality of reaction vessels may be provided. Instead of the flow rate of the entire supply gas supplied to the reaction tank, the volume of the fermentation environment zone 19 may be adjusted according to the flow rate of the substrate components (substrate gas) such as CO and H 2 in the supply gas. .
  • substrate gas substrate gas
  • the present invention can be applied to, for example, an ethanol production system that synthesizes ethanol from carbon monoxide generated by incineration of industrial waste.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 基質ガスの供給流量が変動しても、ガス資化性微生物を安定的に培養する。 反応槽10におけるガス資化性微生物bが発酵可能な発酵環境域19を占める液状の培地9中で、ガス資化性微生物bを培養する。発酵環境域19にガス供給部22から基質ガスを供給する。基質ガスの供給流量に応じて、体積可変手段30によって、発酵環境域19の体積を調節する。

Description

微生物の培養方法及び培養装置
 本発明は、微生物を培養する方法及び装置に関し、特に、合成ガス等の基質ガスからエタノール等の有価物を発酵生成するガス資化性微生物を培養する培養方法及び培養装置に関する。
 ある種の嫌気性微生物は、発酵作用によって基質ガスからエタノール等の有価物を生成することが知られている(下記特許文献等参照)。この種のガス資化性微生物は、液状の培地で培養される。一般に、培養槽としては、撹拌型、エアリフト型、気泡塔型、ループ型、充填型、オープンポンド型、フォトバイオ型等が挙げられる。基質ガスとしては、例えばCO、H、CO等を含む合成ガスが用いられる。合成ガスは、製鉄所、石炭製造所、廃棄物処理施設等で生成される。この合成ガスを培養槽に供給することで、ガス資化性微生物に発酵を行わせる。
米国特許第8,658,415 米国公開公報US2013/0065282 特開2014-050406号公報
 合成ガス源(基質ガス源)からのガス供給流量は、一定とは限らない。特に、廃棄物処理施設の場合、多種多様な廃棄物が原料となり、分別の不徹底もあり得る。また、廃棄物の量も一定していない。そのため、合成ガスの生産量が不安定である。また、定期ないしは不定期のメンテナンスやトラブル発生等のために、例えば複数の処理棟のうちの一部の稼働を止めざるを得ないこともある。そのような場合には、ガス供給流量が半減する等、大きく変動する。
 培養槽への合成ガスの供給量が不足すると、ガス資化性微生物のほぼ全個体が一様に衰弱して死滅してしまう。死滅すると、種菌から培養をし直す必要がある。
 その対策としては、予備タンクに合成ガスを備蓄しておき、必要時に供出することが考えられるが、備蓄量には限界があり、合成ガスの供給不足が長期にわたると対応できない。培地を冷やすことでガス資化性微生物の活性を抑えるとの提案もあるが(特許文献1)、一時的な対策にとどまる。
 本発明は、上記事情に鑑み、合成ガス等の基質ガスの供給流量が変動しても、ガス資化性微生物を安定的に培養することを目的とする。
 上記課題を解決するため、本発明方法は、基質ガスから有価物を発酵生成するガス資化性微生物の培養方法であって、
 反応槽における前記発酵が可能な発酵環境域を占める液状の培地中で、前記ガス資化性微生物を培養する培養工程と、
 前記発酵環境域に前記基質ガスを供給するガス供給工程と、
 前記基質ガスの供給流量に応じて、前記発酵環境域の体積を調節する調節工程と、
 を備えたことを特徴とする。
 ここで、発酵環境域とは、ガス資化性微生物が、基質ガスから有価物を発酵生成可能な環境(発酵環境)になっている領域を言う。つまりは、ガス資化性微生物の活性を維持可能な領域を言い、培地が存在し、かつ所要量の基質ガスが供給され得る領域を言う。
 この方法によれば、例えば、基質ガスの供給流量が減少したときは、発酵環境域の体積を小さくする。基質ガスの供給流量が回復すれば発酵環境域の体積を増大させて元の大きさに戻す。これによって、発酵環境域の単位体積あたりの基質ガスの供給流量を、基質ガスの変動に拘わらずほぼ一定に維持できる。したがって、発酵環境域中のガス資化性微生物の各個体当たりの基質ガス摂取量を安定させることができる。この結果、基質ガスの変動に拘わらず、ガス資化性微生物を安定的に培養することができ、基質ガスの供給状況の悪化によってガス資化性微生物が死滅するのを防止することができる。
 前記反応槽が、主槽部と還流部とを有するループリアクターであり、
 前記培地を前記主槽部と前記還流部との間で循環させる循環工程を、更に備え、
 前記調節工程では、前記主槽部及び前記還流部における前記培地が循環する循環域の体積を調節することが好ましい。
 これによって、ガス資化性微生物を安定的に培養できる。
 前記調節工程では、前記主槽部から前記還流部への連通位置を調節することが好ましい。
 これによって、循環域の体積を調節でき、ひいては、発酵環境域の体積を調節できる。
 前記調節工程では、前記反応槽内に体積変更体を進退させることが好ましい。
 体積変更体が反応槽内に進出した分だけ反応槽の容積を小さくできる。体積変更体を後退させると、それだけ反応槽の容積が大きくなる。これによって、発酵環境域の体積を確実に増減できる。
 本発明装置は、基質ガスから有価物を発酵生成するガス資化性微生物の培養装置であって、
 前記発酵が可能な発酵環境域を有し、前記発酵環境域を占める液状の培地中で前記ガス資化性微生物を培養する反応槽と、
 前記発酵環境域に前記基質ガスを供給するガス供給部と、
 前記発酵環境域の体積を変更する体積可変手段と、
 を備え、前記基質ガスの供給流量に応じて、前記体積可変手段によって前記体積が調節されることを特徴とする。
 この装置によれば、例えば、基質ガスの供給流量が減少したときは、体積可変手段によって発酵環境域の体積を小さくする。基質ガスの供給流量が回復すれば、体積可変手段によって発酵環境域の体積を元の大きさに戻す。これによって、基質ガスの供給流量が変動しても、ガス資化性微生物を安定的に培養することができる。
 前記反応槽が、主槽部と還流部とを有して、前記培地を前記主槽部と前記還流部との間で循環させるループリアクターであり、
 前記体積可変手段が、前記主槽部及び前記還流部における前記培地が循環する循環域の体積を変更することが好ましい。
 これによって、ガス資化性微生物を安定的に培養できる。
 前記主槽部から前記還流部への連通位置が可変であることが好ましい。
 これによって、循環域の体積を調節でき、ひいては、発酵環境域の体積を調節できる。
 前記主槽部の中間部と前記還流部の中間部とが、開閉可能な1の接続路又は前記培地の流通方向に互いに離れた複数の接続路にて接続されていることが好ましい。
 1の接続路を開通させたり、複数の接続路のうちの1つを選択的に開通させたりすることによって、主槽部から還流部への連通位置を変更できる。これによって、循環域の体積を変更でき、ひいては、発酵環境域の体積を変更することができる。
 前記体積可変手段が、前記反応槽内に進退されることで前記発酵環境域の体積を変更可能な体積変更体を含むことが好ましい。
 体積変更体が反応槽内に進出した分だけ反応槽の容積を小さくできる。体積変更体を後退させると、それだけ反応槽の容積が大きくなる。これによって、発酵環境域の体積を確実に増減できる。 
 前記体積可変手段が、前記反応槽内において拡縮可能な袋体と、前記袋体内に流体圧を給排する給排手段とを含むことが好ましい。
 袋体内に正の流体圧を導入することによって袋体を膨張(進出)させることができる。袋体が膨張した分だけ、反応槽の容積を小さくでき、ひいては発酵環境域の体積を小さくできる。また、袋体内のガスを排出又は吸引することによって、袋体を収縮(後退)させることができる。袋体が収縮した分だけ、反応槽の容積を大きくでき、ひいては発酵環境域の体積を大きくできる。
 前記体積可変手段が、前記反応槽内に進退可能な棒体を含むことが好ましい。
 棒体を反応槽内に進出させると、その分だけ反応槽の容積を小さくでき、ひいては発酵環境域の体積を小さくできる。また、棒体を反応槽内から後退させると、その分だけ反応槽の容積を大きくでき、ひいては発酵環境域の体積を大きくできる。
 前記体積可変手段が、前記反応槽内を、前記ガス供給部と連通する室と、前記ガス供給部から遮断された室とに仕切り可能、かつ前記遮断を解除可能な仕切りを含むことが好ましい。
 基質ガスの供給流量が低下したときは、仕切りによって反応槽内の一部(室)をガス供給部から遮断する。すると、遮断された室には基質ガスが供給されないために、ガス資化性微生物が基質ガスから有価物を発酵生成可能な発酵環境ではなくなる。したがって、発酵環境域の体積を小さくできる。また、基質ガスが、ガス供給部と連通する室に供給されることで、当該室におけるガス資化性微生物の活性を維持できる。基質ガスの供給流量が回復(増大)したときは、仕切りによって前記遮断を解除する。これによって、遮断が解除された室に基質ガスが供給されるようになり、当該室を発酵環境に戻すことで、発酵環境域の体積を大きくできる。
 本発明によれば、基質ガスの供給流量が変動しても、ガス資化性微生物を安定的に培養することができる。
図1は、本発明の第1実施形態に係る培養装置の概略構成を、通常運転モードで示す解説図である。 図2は、上記培養装置の概略構成を、基質ガス供給不足モードで示す解説図である。 図3は、本発明の第2実施形態に係る培養装置の概略構成を示す解説図であり、同図(a)は通常運転モードで示し、同図(b)は基質ガス供給不足モードで示す。 図4は、本発明の第3実施形態に係る培養装置の概略構成を示す解説図であり、同図(a)は通常運転モードで示し、同図(b)は基質ガス供給不足モードで示す。 図5は、本発明の第4実施形態に係る培養装置の概略構成を示す解説図であり、同図(a)は通常運転モードで示し、同図(b)は基質ガス供給不足モードで示す。 図6は、本発明の第5実施形態に係る培養装置の概略構成を示す解説図であり、同図(a)は通常運転モードで示し、同図(b)は基質ガス供給不足モードで示す。
 以下、本発明の実施形態を図面にしたがって説明する。
[第1実施形態]
 図1及び図2は、本発明の第1実施形態に係る培養装置1を示したものである。図1に示すように、培養装置1によって嫌気性のガス資化性微生物bを培養している。ガス資化性微生物bとしては、上掲特許文献等に開示されたものを用いることができる。ガス資化性微生物bは、基質ガスgから有価物(目的物質)を発酵生成する。本装置1の目的物質は、エタノール(COH)である。
 基質ガスgとしては、CO、H、CO等を含む合成ガス(シンガス)が用いられている。基質ガスgは、基質ガス生産施設2(合成ガス生産施設)にて生産される。本実施形態における基質ガス生産施設2は、廃棄物処理施設にて構成されている。廃棄物としては、都市ゴミ、タイヤ、バイオマス、木質チップ、プラスチックごみ等が挙げられる。廃棄物処理施設には溶融炉が設けられている。溶融炉において、廃棄物が高濃度の酸素ガスによって燃焼されて低分子レベルまで分解される。最終的に、CO、H、CO等を含む基質ガスg(合成ガス)が生成される。
 なお、基質ガスgの所要成分は、ガス資化性微生物bの種類や、目的物質に応じて適宜選択可能である。基質ガスgが、CO及びHのうち、何れか一方だけを含んでいてもよい。
 培養装置1は、反応槽ないしは培養槽として、ループリアクター10を備えている。ループリアクター10は、主槽部11と、還流部12を含む。主槽部11は、鉛直(上下)に延びる筒状になっている。主槽部11内に液状培地9が収容されている。液状培地9の大部分は水(HO)であり、これにビタミンやリン酸等の栄養分が溶解されている。液状培地9中でガス資化性微生物bが培養されている。
 主槽部11の上端部に培地供給路3aを介して新規培地供給源3が接続されている。新規培地供給源3には、新規の液状培地9Aが蓄えられている。新規液状培地9Aには、ガス資化性微生物bが含まれていない。
 主槽部11の内部の下端部に散気管22(ガス供給部)が配置されている。基質ガス生産施設2からガス供給路20が延びて散気管22に接続されている。ガス供給路20上に流量計21が設けられている。なお、ガス供給路20には、さらに、脱硫部、脱酸素部等の前処理部を設けてもよい。
 主槽部11の上端部から排気路5が延びている。
 還流部12は、主槽部11と並行して鉛直に延びる管状になっている。還流部12の上端部が、主槽部11の上端近くの側部に接続されている。還流部12の下端部は、主槽部11の底部に接続されている。還流部12に循環ポンプ13が設けられている。
 通常運転モード(図1)では、主槽部11の液状培地9の液位は、主槽部11の上側部に位置している。詳しくは、還流部12の上端部よりも上に位置している。液状培地9が、主槽部11における底部から上側部までの部分と還流部12に行き渡っている。かつ、循環ポンプ13によって液状培地9が主槽部11と還流部12との間を循環される。ループリアクター10内における、上記液状培地9で占められた領域、ないしは液状培地9が循環する領域(循環域)が、発酵環境域19となっている。発酵環境域19の液状培地9には、所要量の基質ガスgが供給される。発酵環境域19において、ガス資化性微生物bが、基質ガスgからエタノール等の有価物を発酵生成可能である。
 さらに、培養装置1には、発酵環境域19の体積を変更するための体積可変手段30が設けられている。体積可変手段30は、複数の接続路31~33と、送出路4を含む。
 複数の接続路31~33は、主槽部11と還流部12との間に互いに上下(培地9の流れ方向)に離れて配置されている。各接続路31~33によって、主槽部11及び還流部12の延び方向の中間部どうしが接続されている。
 詳しくは、上段の接続路31は、主槽部11における還流部12の上端部との接続部の少し下側の部位と、還流部12とを連結している。接続路31には、開閉弁31Vが設けられている。開閉弁31Vによって接続路31が開閉される。
 中段の接続路32は、主槽部11におけるほぼ中間の高さの部位と、還流部12とを連結している。接続路32には、開閉弁32Vが設けられている。開閉弁32Vによって接続路32が開閉される。
 下段の接続路33は、主槽部11における接続路32より下側の部位と、還流部12とを連結している。接続路33には、開閉弁33Vが設けられている。開閉弁33Vによって接続路33が開閉される。
 なお、体積可変手段30の接続路の数は、3つに限られず、1つだけもよく、2つでもよく、4つ以上であってもよい。
 還流部12における循環ポンプ13と主槽部11の底部との間の部分から送出路4が分岐されている。送出路4に送出ポンプ41が設けられている。送出ポンプ41より下流側の送出路4バッファタンク42が介在されている。図示は省略するが、送出路4の下流端は、蒸留器等の後段処理部へ延びている。送出路4は、液状培地9を蒸留塔等の後段処理部へ送る機能と、体積可変手段30の構成要素としての機能とを兼備している。
 培養装置1によるガス資化性微生物bの培養方法、ひいてはエタノール等の有価物の生産方法を説明する。
<通常運転モード>
 図1に示すように、今、培養装置1は通常運転モードにあるものとする。開閉弁31V~33Vは、すべて閉じている。
<基質ガス供給工程>
 廃棄物処理施設2は、通常運転しており、規格量の基質ガスgを生産しているものとする。基質ガスgは、ガス供給路20を経て、散気管22へ送られる。この基質ガスgが、散気管22からループリアクター10中の液状培地9すなわち発酵環境域19に供給される。基質ガスgは、主槽部11の液状培地9内を上昇しながら液状培地9に溶け込む。
<発酵工程>
 そして、液状培地9内のガス資化性微生物bが、基質ガスg中のCOやHを取り込んで発酵を行なうことによって、エタノール(有価物)を生成する。生成されたエタノールは、液状培地9に混じる。
<循環工程>
 併行して、循環ポンプ13を駆動する。これによって、ループリアクター10の液状培地9が、主槽部11と還流部12との間を循環する。詳しくは、液状培地9は、主槽部11内を上昇する。そして、主槽部11の上側部から還流部12に入って還流部12を下降し、主槽部11の底部へ戻される。
<送出工程>
 ループリアクター10の液状培地9の一部は、送出路4に送出される。
<精製工程>
 この液状培地9の一部が、固液分離処理等を経て、不図示の蒸留塔で蒸留されることによって、エタノールが精製される。
<補充工程>
 送出路4への送出分の新規液状培地9Aが、新規培地供給源3からループリアクター10に補充される。これによって、ループリアクター10内の液状培地9の量が一定に維持される。ひいては、発酵環境域19の体積が一定に維持される。
<排気工程>
 ループリアクター10に供給された基質ガスgのうち、利用されなかったガスや、発酵による副生成ガスは、主槽部11の上端部の排気路5から排出される。排出ガスは、不純物除去等を経て再利用してもよい。
<流量検知工程>
 廃棄物処理施設からなる基質ガス生産施設2における基質ガス生産量は、変動が大きい。この基質ガスgの供給流量を流量計21によって検知する。
<発酵環境域19の体積調節工程>
 検知流量に基づいて、発酵環境域19の体積を調節する。
 詳しくは、基質ガスgの供給流量が通常運転モードよりも減少したときは、発酵環境域19の体積を小さくする。これによって、基質ガスgの供給流量と発酵環境域19の体積を相関させる。
 発酵環境域19を体積調節は、コントローラ(制御手段)を用いて自動制御によって行ってもよい。或いは、管理者が、手動で発酵環境域19を体積調節してもよい。
<基質ガス供給不足モード>
 例えば、基質ガス生産施設2の何らかのトラブルやメンテナンス等によって、基質ガスgの供給流量が半減したとする。この場合、図2に示すように、ループリアクター10内の液状培地9の約半分を送出路4へ排出する。これによって、発酵環境域19の体積が、通常運転モード(図1)の約半分になる。(排出分に相当する新規液状培地9Aを新規培地供給源3から注ぎ足すことはしない。)
 排出した液状培地9は、バッファタンク42に貯留しておき、随時取り出して蒸留塔等へ送る。
<循環域変更工程>
 図2に示すように、排出後の液状培地9の液位は、例えば上段接続路31と中段接続路32の間に位置する。
 これに対応して、中段の開閉弁32Vを開く。上段開閉弁31V及び下段開閉弁33Vは、閉じておく。これによって、主槽部11から還流部12への連通位置が、還流部12の上端部の高さから中段接続路32の高さに変更される。液状培地9は、主槽部11、中段接続路32、及び還流部12の順に循環する。したがって、液状培地9の循環域の体積が半分近くに減少する。
 なお、基質ガスgの供給流量の低下度合によっては、液状培地9の液位を還流部12の上端部と上段接続路31との間に位置させてもよい。かつ、上段開閉弁31Vを開くことで、主槽部11から還流部12への連通位置を上段接続路31の高さにしてもよい。これによって、液状培地9を、主槽部11、上段接続路31、及び還流部12の順に循環させてもよい。
 或いは、基質ガスgの供給流量の低下度合によっては、液状培地9の液位を中段接続路32と下段接続路33との間に位置させてもよい。かつ、下段開閉弁33Vを開くことで、主槽部11から還流部12への連通位置を下段接続路33の高さにしてもよい。これによって、液状培地9を、主槽部11、下段接続路33、及び還流部12の順に循環させてもよい。
 発酵環境域19の体積調節によって、発酵環境域19の単位体積あたりの基質ガスgの供給流量を、基質ガスgの変動に拘わらずほぼ一定に維持できる。また、発酵環境域19中のガス資化性微生物bの濃度は、体積調節の前後で殆ど変動しない。したがって、発酵環境域19におけるガス資化性微生物bの各個体当たりの基質ガス摂取量を安定させることができる。この結果、基質ガスgの変動に拘わらず、ガス資化性微生物bを安定的に培養することができ、ガス資化性微生物bが基質ガス不足によって死滅するのを防止することができる。
 基質ガスgの供給流量が、長期間(例えば2日以上)にわたって通常運転モードの半分~それ以下であっても、ガス資化性微生物bの活性を十分に維持することができる。
<回復工程>
 基質ガス生産施設2からの基質ガスgの供給流量が通常運転モードのレベルに回復したときは、新規培地供給源3から新規液状培地9Aをループリアクター10に注ぎ足す。これによって、図1に示すように、液状培地9の液位を主槽部11の上側部まで戻す。また、開閉弁32V等をはじめ、全ての開閉弁31V~33Vを閉状態にする。これによって、液状培地9が、主槽部11と還流部12の全長域との間を循環し、通常運転モードに戻る。
 新規液状培地9Aの注ぎ足しによって、発酵環境域19におけるガス資化性微生物bの濃度が一時的に低下する。一方、増量した液状培地9中に十分な基質ガスgが供給されることで、ガス資化性微生物bが盛んに増殖する。これによって、ガス資化性微生物bの濃度を新規液状培地9Aの注ぎ足し前の大きさまで短期間で回復できる。
 次に、本発明の他の実施形態を説明する。以下の実施形態において、既述の実施形態と重複する内容に関しては、図面に同一符号を付して説明を適宜省略する。
[第2実施形態]
 図3は、本発明の第2実施形態に係る培養装置1Bを示したものである。培養装置1Bでは、接続路31~33に代えて、還流部12Bの上端部が、主槽部11に沿って昇降可能になっている。還流部12Bの上端部と主槽部11の外周部との間には、シール手段35が設けられている。シール手段35は、還流部12Bの上端部が昇降するのを許容しながら、還流部12Bと主槽部11との間を液密にシールしている。還流部12Bは、上端部の昇降に合わせて伸縮変形可能になっている。伸縮可能な還流部12Bとしては、可撓管、テレスコピック式伸縮管、蛇腹式伸縮管等を用いることができる。
 培養装置1Bによれば、基質ガスgの供給流量に応じて、主槽部11における還流部12Bとの上側の連通位置の高さを無段階的に調節できる。したがって、発酵環境域19の体積を、基質ガスgの供給流量の変化に対して、より正確に追随させることができる。この結果、発酵環境域19中の個々のガス資化性微生物bあたりの基質ガス摂取量を一層確実に安定させることができ、ガス資化性微生物bを確実に安定培養できる。
 還流部12Bの上端部の高さ調節は、コントローラを用いて流量計21の検知流量に基づいて自動制御によって行ってもよく、手動で行ってもよい。
[第3実施形態]
 図4は、本発明の第3実施形態に係る培養装置1Cを示したものである。培養装置1Cの体積可変手段50は、袋体51(体積変更体)と、給排手段52を含む。袋体51は、気密性の樹脂膜にて構成されている。この袋体51が、ループリアクター10内において拡縮可能(進退可能)になっている。主槽部11の低部近くの側部には、袋収容部53が設けられている。袋収容部53の内部が、連通部53aを通して主槽部11の内部と連通している。
 給排手段52は、コンプレッサー54と真空ポンプ55を含む。開閉弁54V,55Vの操作によって、コンプレッサー54及び真空ポンプ55の一方が選択的に袋体51に連通可能になっている。
<通常運転モード>
 図4(a)に示すように、通常運転モードでは、袋体51のほぼ全体が、収縮状態で袋収容部53内に収容され、連通部53aを通して主槽部11内に臨んでいる。
<基質ガス供給不足モード>
 図4(b)に示すように、基質ガスgの供給流量が低下したときは、コンプレッサー54からエア圧(流体圧)を袋体51内に導入する。これによって、袋体51が、膨張しながら主槽部11内に進出する。好ましくは、基質ガスgの供給流量の低下度合が大きいほど、袋体51の膨張度合を大きくする。袋体51の膨張分だけ、ループリアクター10内から液状培地9を送出路4へ排出してバッファタンク42に送る。これによって、発酵環境域19の体積が減る。主槽部11内の液状培地9の液位は、ほぼ一定に保たれる。この結果、基質ガスgの供給流量の変動に拘わらず、発酵環境域19中の個々のガス資化性微生物bあたりの基質ガス摂取量を安定させることができ、ガス資化性微生物bを安定的に培養できる。
 図4(a)に示すように、基質ガスgの供給流量が回復したときは、真空ポンプ55を駆動して、袋体51内のエアを吸引排気する。これによって、袋体51が、収縮して袋収容部53に収まることで主槽部11内から退避される。また、袋体51の収縮分だけ、新規培地供給源3から新規液状培地9Aをループリアクター10に注ぎ足す。これによって、発酵環境域19の体積を増加させて通常運転モードのレベルまで戻すことができる。増量した液状培地9内でガス資化性微生物bが盛んに増殖することによって、ガス資化性微生物bの濃度を新規液状培地9Aの注ぎ足し前の大きさまで短期間で回復できる。
 コンプレッサー54及び真空ポンプ55による袋体51の拡縮操作は、コントローラを用いて流量計21の検知流量に基づいて自動制御によって行ってもよく、手動で行ってもよい。
[第4実施形態]
 図5は、本発明の第4実施形態に係る培養装置1Dを示したものである。図5(a)に示すように、培養装置1Dの体積可変手段60は、棒体61(体積変更体)と、昇降駆動手段62を含む。棒体61は、鉛直に直線状に延びている。この棒体61が、主槽部11の軸線に沿って昇降されることで、主槽部11内に進退可能になっている。棒体61に昇降駆動手段62が接続されている。詳細な図示は省略するが、昇降駆動手段62は、モータや、スライドガイド等を含む。昇降駆動手段62によって、棒体61を任意の昇降高さに調節できる。
<通常運転モード>
 図5(a)に示すように、通常運転モードでの棒体61は、上昇位置にある。このとき、棒体61の下端部は、還流部12の上端部よりも高所に位置し、ループリアクター10内の液状培地9の液面よりも上方に位置している。
<基質ガス供給不足モード>
 図5(b)に示すように、基質ガスgの供給流量が低下したときは(基質ガス供給不足モード)、昇降駆動手段62によって棒体61を下降させる。これによって、棒体61が、主槽部11内に進出して液状培地9内に入り込む。好ましくは、基質ガスgの供給流量の低下度合が大きいほど、棒体61を主槽部11内に深く入り込ませる。棒体61が入り込んだ分だけ、液状培地9を送出路4へ排出してバッファタンク42に送る。これによって、発酵環境域19の体積が減る。主槽部11内の液状培地9の液位は、ほぼ一定に保たれる。この結果、基質ガスgの供給流量の変動に拘わらず、発酵環境域19中の個々のガス資化性微生物bあたりの基質ガス摂取量を安定させることができ、ガス資化性微生物bを安定的に培養できる。
 図5(a)に示すように、基質ガスgの供給流量が回復したときは、昇降駆動手段62によって棒体61を上昇させる。これによって、棒体61が、主槽部11内の液状培地9から上方へ退避される。棒体61が退避した分だけ、新規培地供給源3から新規液状培地9Aをループリアクター10に注ぎ足す。これによって、発酵環境域19の体積を増加させて通常運転レベルまで戻すことができる。増量した液状培地9内でガス資化性微生物bが盛んに増殖することによって、ガス資化性微生物bの濃度を新規液状培地9Aの注ぎ足し前の大きさまで短期間で回復できる。
 昇降駆動手段62による棒体61の昇降操作は、コントローラを用いて流量計21の検知流量に基づいて自動制御によって行ってもよく、手動で行ってもよい。
 棒体61の高さを手動で調節した後、ネジ等の固定手段によって棒体61を主槽部11に固定してもよい。
[第5実施形態]
 図6は、本発明の第5実施形態に係る培養装置1Eを示したものである。培養装置1Eの体積可変手段70は、複数の固定仕切り71と、2つの可動仕切り72,73(体積変更体)を含む。これら仕切り71~73によって、ループリアクター10内が、散気管22(ガス供給部)と連通する室11c,11d等と、散気管22(ガス供給部)から遮断された室11a,11b等とに仕切り可能、かつ前記遮断を解除可能になっている。
 詳しくは、図6(a)に示すように、固定仕切り71は、主槽部11の内部に鉛直に配置されている。各固定仕切り71の上端部は、還流部12の上端部の少し下方に配置されている。各固定仕切り71の下端部は、散気管22の少し上方に配置されている。複数の固定仕切り71によって、主槽部11内が複数の室11a~11dに仕切られている。各室11a~11dは、上下に延びている。主槽部11内の液状培地9の液位は、常時、固定仕切り71の上端部ひいては室11a~11dの上端部よりも上方に位置している。
 なお、固定仕切り71,71…は、平行板になっていてもよく、平面視で格子状になっていてもよく、平面視で放射状になっていてもよく。平面視で同心円状になっていてもよく、これら幾つかの形状が組み合わされた形状になっていてもよい。
 2つの可動仕切り72,73は、上下に離れて主槽部11の側部に配置されている。これら可動仕切り72,73は、水平な板状になっている。各可動仕切り72,73が、主槽部11内に進退可能になっている。図6(b)に示すように、上側可動仕切り72が主槽部11内に進入すると、その進入度に応じて1又は複数の室11a~11cの上端開口を塞ぐ。下側可動仕切り73が主槽部11内に進入すると、その進入度に応じて1又は複数の室11a~11cの下端開口を塞ぐ。好ましくは、可動仕切り72,73は、互いに同期して進退(スライド)される。
 なお、上下の可動仕切り72,73のうち、少なくとも下側可動仕切り73が設置されていればよく、上側可動仕切り72は省略してもよい。
<通常運転モード>
 図6(a)に示すように、通常運転モードでは、可動仕切り72,73を主槽部11の外側に退避させておく。これによって、主槽部11のすべての室11a~11dの上下両端が開放される。各室11a~11dの下端部は、散気管22に臨んでいる。これによって、各室11a~11dの液状培地9に基質ガスgが行き渡ることで、各室11a~11dが発酵環境となる。液状培地9は、主槽部11の底部において室11a~11dごとに分かれ、各室11a~11d内を上昇し、室11a~11dの上端部から出て合流する。その後、還流部12によって主槽部11の底部に戻される。
<基質ガス供給不足モード>
 図6(b)に示すように、基質ガスgの供給流量が低下したときは、その低下度合に応じて可動仕切り72,73を主槽部11内に入り込ませる。好ましくは、上下の可動仕切り72,73を互いに同じ量だけ主槽部11内に入り込ませる。これによって、一部の室11a,11bの上下両端が塞がれる。このため、これら室11a,11bが、散気管22(ガス供給部)から遮断され、基質ガスgが室11a,11b内に供給されなくなる。また、室11a,11b内の液状培地9は、当該室11a,11bに閉じ込められる。したがって、室11a,11bは、発酵環境ではなくなり、室11a,11b内のガス資化性微生物bは死滅し得る。散気管22からの基質ガスgは、室11a~11dのうち残りの室11c,11dに供給される。また、室11a,11b以外の液状培地9が、室11c,11dと還流部12との間で循環される。したがって、室11c,11dは、発酵環境として維持される。つまり、発酵環境域19(循環域)の体積を縮小することができる。この結果、基質ガスgの供給流量の変動に拘わらず、発酵環境域19中の個々のガス資化性微生物bあたりの基質ガス摂取量を安定させることができ、ガス資化性微生物bを安定的に培養できる。
 なお、基質ガスgの供給流量の低下度合によっては、図6(b)よりも少数の室11aを遮断してもよく、図6(b)よりも多数の室11a,11b,11cを遮断してもよい。
 第5実施形態の培養装置1Eでは、ループリアクター10全体の液状培地9の量が、基質ガスgの供給流量に拘わらず一定に保たれる。したがって、送出路4は、体積可変手段70の構成要素ではない。培養装置1Eにおける送出路4は、液状培地9を蒸留塔等の後段処理部へ送出する役割だけを担っている。第5実施形態においては、バッファタンク42を省略してもよい。
 図6(a)に示すように、基質ガスgの供給流量が回復したときは、可動仕切り72,73を主槽部11の外側へ退避させる。これによって、室11a,11bと散気管22(ガス供給部)との遮断が解除され、散気管22からの基質ガスgが室11a,11bに入り込む。また、液状培地9が室11a,11bと還流部12との間でも循環するようになる。したがって、室11a,11bが、発酵環境に戻ることで、発酵環境域19の体積が増大する。室11a,11bでは、ガス資化性微生物bが盛んに増殖する。これによって、ガス資化性微生物bの濃度を所定の大きさまで速やかに回復できる。
 可動仕切り72,73の進退操作は、コントローラを用いて流量計21の検知流量に基づいて自動制御によって行ってもよく、手動で行ってもよい。
 本発明は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において種々の改変をなすことができる。
 例えば、基質ガス生産施設2は、廃棄物処理施設に限られず、製鉄所や石炭製造所であってもよい。
 有価物は、エタノールに限られず、酢酸等であってもよい。
 第1~第4実施形態の培養装置1,1B~1D(図1~図5)において、発酵環境域19の体積減少操作時にループリアクター10から液状培地9の一部を排出するための排出路を、蒸留塔等の後段処理部への送出路4とは別に設けてもよい。
 複数の実施形態を組み合わせてもよい。ループリアクター10が、接続路31~33(図1)と、袋体51(図4)とを有していてもよい。ループリアクター10が、接続路31~33(図1)と、棒体61(図5)とを有していてもよい。
 ループリアクター10が、接続路31~33(図1)と、可動仕切り72,73(図6)とを有していてもよい。第1実施形態(図1、図2)において、接続路31~33の少し上方の高さにそれぞれ可動仕切りを設けてもよい。基質ガスgの供給流量が低下したときは、その低下度合に応じて接続路31~33の1つを開通させるとともに、その接続路の直上の可動仕切りで主槽部11を上下に仕切ることで、当該可動仕切りより上側の液状培地9を残置しつつ発酵環境域19から除くことにしてもよい。この場合、送出路4を体積可変手段30の構成要素とする必要は無い。
 第5実施形態の培養装置1E(図6)において、スライド式の可動仕切り72,73に代えて、開き戸式の可動仕切りを主槽部11の内壁又は固定仕切り71の上下端部に回転可能に設けてもよい。
 ループリアクター10が、袋体51(図4)と棒体61(図5)を有していてもよい。
 反応槽は、ループリアクター10に限られず、撹拌型、エアリフト型、気泡塔型、充填型、オープンポンド型、フォトバイオ型等の、ループ型以外の反応槽であってもよい。
 反応槽が、複数段設けられていてもよい。
 反応槽へ供給される供給ガス全体の流量に代えて、該供給ガス中のCO、H等の基質成分(基質ガス)の流量に応じて、発酵環境域19の体積を調節してもよい。
 本発明は、例えば産業廃棄物の焼却処理で生じる一酸化炭素からエタノールを合成するエタノール生成システムに適用できる。
b    ガス資化性微生物
g    基質ガス
1,1B,1C,1D,1E  培養装置
9    液状培地(培地)
10   ループリアクター(反応槽)
11   主槽部
12,12B   還流部
19   発酵環境域(循環域)
22   散気管(ガス供給部)
30   体積可変手段
31,32,33  接続路
50  体積可変手段
51  袋体(体積変更体)
52  給排手段
60  体積可変手段
61  棒体(体積変更体)
70  体積可変手段
71  固定仕切り(仕切り、体積変更体)
72  上側可動仕切り(仕切り、体積変更体)
73  下側可動仕切り(仕切り、体積変更体)
11a~11d 室

Claims (12)

  1.  基質ガスから有価物を発酵生成するガス資化性微生物の培養方法であって、
     反応槽における前記発酵が可能な発酵環境域を占める液状の培地中で、前記ガス資化性微生物を培養する培養工程と、
     前記発酵環境域に前記基質ガスを供給するガス供給工程と、
     前記基質ガスの供給流量に応じて、前記発酵環境域の体積を調節する調節工程と、
     を備えたことを特徴とする培養方法。
  2.  前記反応槽が、主槽部と還流部とを有するループリアクターであり、
     前記培地を前記主槽部と前記還流部との間で循環させる循環工程を、更に備え、
     前記調節工程では、前記主槽部及び前記還流部における前記培地が循環する循環域の体積を調節することを特徴とする請求項1に記載の培養方法。
  3.  前記調節工程では、前記主槽部から前記還流部への連通位置を調節することを特徴とする請求項2に記載の培養方法。 
  4.  前記調節工程では、前記反応槽内に体積変更体を進退させることを特徴とする請求項1~3の何れか1項に記載の培養方法。
  5.  基質ガスから有価物を発酵生成するガス資化性微生物の培養装置であって、
     前記発酵が可能な発酵環境域を有し、前記発酵環境域を占める液状の培地中で前記ガス資化性微生物を培養する反応槽と、
     前記発酵環境域に前記基質ガスを供給するガス供給部と、
     前記発酵環境域の体積を変更する体積可変手段と、
     を備え、前記基質ガスの供給流量に応じて、前記体積可変手段によって前記体積が調節されることを特徴とする培養装置。
  6.  前記反応槽が、主槽部と還流部とを有して、前記培地を前記主槽部と前記還流部との間で循環させるループリアクターであり、
     前記体積可変手段が、前記主槽部及び前記還流部における前記培地が循環する循環域の体積を変更することを特徴とする請求項5に記載の培養装置。
  7.  前記主槽部から前記還流部への連通位置が可変であることを特徴とする請求項6に記載の培養装置。
  8.  前記主槽部の中間部と前記還流部の中間部とが、開閉可能な1の接続路又は前記培地の流通方向に互いに離れた複数の接続路にて接続されていることを特徴とする請求項6又は7に記載の培養装置。
  9.  前記体積可変手段が、前記反応槽内に進退されることで前記発酵環境域の体積を変更可能な体積変更体を含むことを特徴とする請求項5~8の何れか1項に記載の培養装置。
  10.  前記体積可変手段が、前記反応槽内において拡縮可能な袋体と、前記袋体内に流体圧を給排する給排手段とを含むことを特徴とする請求項5~9の何れか1項に記載の培養装置。
  11.  前記体積可変手段が、前記反応槽内に進退可能な棒体を含むことを特徴とする請求項5~10の何れか1項に記載の培養装置。
  12.  前記体積可変手段が、前記反応槽内を、前記ガス供給部と連通する室と、前記ガス供給部から遮断された室とに仕切り可能、かつ前記遮断を解除可能な仕切りを含むことを特徴とする請求項5~11の何れか1項に記載の培養装置。
PCT/JP2016/058430 2015-03-20 2016-03-17 微生物の培養方法及び培養装置 WO2016152697A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2979789A CA2979789A1 (en) 2015-03-20 2016-03-17 Microorganism culture method and culture apparatus
CN201680016470.4A CN107406819A (zh) 2015-03-20 2016-03-17 微生物的培养方法及培养装置
US15/554,529 US20180072978A1 (en) 2015-03-20 2016-03-17 Microorganism culture method and culture apparatus
JP2017508276A JP6706612B2 (ja) 2015-03-20 2016-03-17 微生物の培養方法及び培養装置
EP16768600.5A EP3272853B1 (en) 2015-03-20 2016-03-17 Culturing method for microorganism, and culture device
EP20150493.3A EP3656845A1 (en) 2015-03-20 2016-03-17 Microorganism culture method and culture apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-057463 2015-03-20
JP2015057463 2015-03-20

Publications (1)

Publication Number Publication Date
WO2016152697A1 true WO2016152697A1 (ja) 2016-09-29

Family

ID=56978498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058430 WO2016152697A1 (ja) 2015-03-20 2016-03-17 微生物の培養方法及び培養装置

Country Status (6)

Country Link
US (1) US20180072978A1 (ja)
EP (2) EP3272853B1 (ja)
JP (1) JP6706612B2 (ja)
CN (1) CN107406819A (ja)
CA (1) CA2979789A1 (ja)
WO (1) WO2016152697A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7544390B2 (ja) 2019-03-20 2024-09-03 シーエヌ バイオ イノベーションズ リミテッド 二重循環マイクロ生理学的システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11434461B2 (en) * 2018-03-20 2022-09-06 Keck Graduate Institute Of Applied Life Sciences Airlift perfusion bioreactor for the culture of cells
US20220081667A1 (en) * 2019-01-18 2022-03-17 Hewlett-Packard Development Company, L.P. Blood circulation for culture growth
CN110055160A (zh) * 2019-04-28 2019-07-26 北京师范大学 用于纤维素乙醇发酵的连续式梯级固定化反应方法及设备
US12060290B2 (en) * 2019-09-20 2024-08-13 Pancopia, Inc Animal husbandry nutrient and odor management system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148671A (ja) * 1990-10-09 1992-05-21 Hitachi Ltd 液面の検知方法及びその方法を実施する培養槽
JPH07313138A (ja) * 1994-05-05 1995-12-05 Envirex Inc 生物学的反応器用床高検知装置
JPH07328674A (ja) * 1994-06-08 1995-12-19 Fukusuke Kogyo Kk 活性液体生成装置
JPH10191961A (ja) * 1996-06-18 1998-07-28 Ming-Yi Liau 細胞の培養方法及び培養装置
JP2000140869A (ja) * 1998-11-12 2000-05-23 Canon Inc 希釈率を制御するリアクターによる有機塩素化合物汚染の生物的修復浄化方法および装置
JP2002508954A (ja) * 1998-01-19 2002-03-26 モー,ウルリヒ 細胞または組織成分を培養するための培養装置および方法
JP2003033777A (ja) * 2001-07-16 2003-02-04 Shokai Ri 液位操作浮体媒体生物膜浄化処理法
WO2007032265A1 (ja) * 2005-09-15 2007-03-22 New Century Fermentation Research Ltd. アルコール生産細菌の連続培養装置及びその方法
JP2007082438A (ja) * 2005-09-21 2007-04-05 Ebara Corp 微生物による有価物生産方法および有価物生産装置
JP2007511205A (ja) * 2003-10-08 2007-05-10 ウィルソン ウォルフ マニュファクチャリング コーポレイション 気体透過性物質を利用する細胞を培養する方法及び装置
JP2011142888A (ja) * 2010-01-18 2011-07-28 Ihi Corp バイオリアクター及びその運転方法
US8658415B2 (en) * 2009-02-26 2014-02-25 Lanza Tech New Zealand Limited Methods of sustaining culture viability

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221187A (en) * 1978-02-01 1980-09-09 Casey Robert F Apparatus for raising fish
US5017490A (en) * 1989-03-10 1991-05-21 Baxter International Inc. Method for in vitro reproduction and growth of cells in culture medium
US6432712B1 (en) * 1999-11-22 2002-08-13 Bioscience Consultants, Llc Transplantable recellularized and reendothelialized vascular tissue graft
US7033823B2 (en) * 2002-01-31 2006-04-25 Cesco Bioengineering, Inc. Cell-cultivating device
US20070224676A1 (en) * 2006-03-21 2007-09-27 Becton, Dickinson And Company Expandable culture roller bottle
US20080131960A1 (en) * 2006-11-15 2008-06-05 Millipore Corporation Self standing bioreactor construction
US20110076756A1 (en) * 2007-01-22 2011-03-31 Ian Malcolm Wright variable volume bioreactor
JP5023795B2 (ja) * 2007-04-27 2012-09-12 東洋製罐株式会社 細胞培養方法、細胞培養システム、及び培地調整装置
US9109193B2 (en) * 2007-07-30 2015-08-18 Ge Healthcare Bio-Sciences Corp. Continuous perfusion bioreactor system
US20100055764A1 (en) * 2008-08-27 2010-03-04 Martin Gregory R Cell culture apparatus and method
EP2425003B1 (en) 2009-04-29 2015-08-12 Lanzatech New Zealand Limited Improved carbon capture in fermentation
US9725688B2 (en) * 2011-06-30 2017-08-08 Peter Simpson Bell Bioreactor for syngas fermentation
US9068202B2 (en) 2011-09-08 2015-06-30 Lanzatech New Zealand Limited Fermentation process
US8936927B2 (en) * 2011-09-23 2015-01-20 Coskata, Inc. Processes for starting up deep tank anaerobic fermentation reactors for making oxygenated organic compound from carbon monoxide and hydrogen
US20130078689A1 (en) * 2011-09-23 2013-03-28 Coskata, Inc. Processes for enhancing the performance of large-scale, stirred tank anaerobic fermentors and apparatus therefor
CA2801768A1 (en) * 2013-01-09 2014-07-09 Soheyl S. M. Mottahedeh A photobioreactor bag with built-in sparger tube, agitator and water
CN105492614B (zh) * 2013-07-04 2019-12-13 朗泽科技新西兰有限公司 用于连续气体发酵的多反应器系统和方法
CN106414702A (zh) * 2014-03-10 2017-02-15 弗洛设计声能学公司 具有声致泳动设备的一次性生物反应器
US10604732B2 (en) * 2014-11-28 2020-03-31 Arizona Board Of Regents On Behalf Of The University Of Arizona Accordion air loop bioreactor
CA3034452A1 (en) * 2016-08-21 2018-03-01 Adva Biotechnology Ltd. Bioreactor and methods of use thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148671A (ja) * 1990-10-09 1992-05-21 Hitachi Ltd 液面の検知方法及びその方法を実施する培養槽
JPH07313138A (ja) * 1994-05-05 1995-12-05 Envirex Inc 生物学的反応器用床高検知装置
JPH07328674A (ja) * 1994-06-08 1995-12-19 Fukusuke Kogyo Kk 活性液体生成装置
JPH10191961A (ja) * 1996-06-18 1998-07-28 Ming-Yi Liau 細胞の培養方法及び培養装置
JP2002508954A (ja) * 1998-01-19 2002-03-26 モー,ウルリヒ 細胞または組織成分を培養するための培養装置および方法
JP2000140869A (ja) * 1998-11-12 2000-05-23 Canon Inc 希釈率を制御するリアクターによる有機塩素化合物汚染の生物的修復浄化方法および装置
JP2003033777A (ja) * 2001-07-16 2003-02-04 Shokai Ri 液位操作浮体媒体生物膜浄化処理法
JP2007511205A (ja) * 2003-10-08 2007-05-10 ウィルソン ウォルフ マニュファクチャリング コーポレイション 気体透過性物質を利用する細胞を培養する方法及び装置
WO2007032265A1 (ja) * 2005-09-15 2007-03-22 New Century Fermentation Research Ltd. アルコール生産細菌の連続培養装置及びその方法
JP2007082438A (ja) * 2005-09-21 2007-04-05 Ebara Corp 微生物による有価物生産方法および有価物生産装置
US8658415B2 (en) * 2009-02-26 2014-02-25 Lanza Tech New Zealand Limited Methods of sustaining culture viability
JP2011142888A (ja) * 2010-01-18 2011-07-28 Ihi Corp バイオリアクター及びその運転方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7544390B2 (ja) 2019-03-20 2024-09-03 シーエヌ バイオ イノベーションズ リミテッド 二重循環マイクロ生理学的システム

Also Published As

Publication number Publication date
JPWO2016152697A1 (ja) 2018-01-18
CA2979789A1 (en) 2016-09-29
EP3272853B1 (en) 2020-10-07
EP3272853A1 (en) 2018-01-24
JP6706612B2 (ja) 2020-06-10
US20180072978A1 (en) 2018-03-15
EP3656845A1 (en) 2020-05-27
EP3272853A4 (en) 2018-11-07
CN107406819A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
WO2016152697A1 (ja) 微生物の培養方法及び培養装置
CN102498200B (zh) 光生物反应器、太阳能收集系统、以及热控制方法
CN101389746B (zh) 用于甲烷化具有高固态组分的生物质的生物反应器
JP4663640B2 (ja) 固体発酵槽
CN111836898B (zh) 用于在连续有氧发酵中控制溶解氧浓度的方法
CN102015997B (zh) 细胞容器
JP3328287B2 (ja) 細胞培養に使用される粒子沈降タンク
US4599167A (en) Apparatus for treatment of waste water
AU2011272771B2 (en) Method for injecting a feed gas stream into a vertically extended column of liquid
HU198160B (en) Process and apparatus for the anaerobic treatment of organic substrates
AU2010332568A1 (en) Anaerobic reactor
CN102296022A (zh) 光生物反应器
US20130236952A1 (en) System for processing biomass
KR101836383B1 (ko) 압력밀도식 수위 계측모듈
US6982035B1 (en) Biphase orbicular biodigester
AU2010359024A1 (en) Aerobic and anaerobic system for treating wastewater
US4599168A (en) Apparatus for treatment of waste water having selective recycle control
JP2011142888A (ja) バイオリアクター及びその運転方法
RU2446205C1 (ru) Биореактор вытеснения с мембранным устройством подвода газового питания
KR20200106389A (ko) 미생물 배양시 발생하는 폼을 제거하기 위한 장치 및 이를 사용하여 폼을 제거하는 방법
JP6696776B2 (ja) 発酵装置及び方法
RU2585666C1 (ru) Аппарат для культивирования метанокисляющих микроорганизмов
CN111073794B (zh) 一种气体驱动的微藻培养藻液循环装置及使用方法
DE102017001041A1 (de) Photobioreaktor und Verfahren zur Kultivierung von phototrophen Mikroalgen
WO1991016268A1 (en) System for treating organic wastes and waste water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768600

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15554529

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017508276

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2979789

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2016768600

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE