[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016152228A1 - 太陽電池用結晶シリコン基板の製造方法、結晶シリコン系太陽電池の製造方法および結晶シリコン系太陽電池モジュールの製造方法 - Google Patents

太陽電池用結晶シリコン基板の製造方法、結晶シリコン系太陽電池の製造方法および結晶シリコン系太陽電池モジュールの製造方法 Download PDF

Info

Publication number
WO2016152228A1
WO2016152228A1 PCT/JP2016/051852 JP2016051852W WO2016152228A1 WO 2016152228 A1 WO2016152228 A1 WO 2016152228A1 JP 2016051852 W JP2016051852 W JP 2016051852W WO 2016152228 A1 WO2016152228 A1 WO 2016152228A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon substrate
single crystal
ozone
solar cell
crystal silicon
Prior art date
Application number
PCT/JP2016/051852
Other languages
English (en)
French (fr)
Inventor
俊彦 宇都
末崎 恭
航 吉田
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2017507542A priority Critical patent/JP6513788B2/ja
Priority to CN201680015204.XA priority patent/CN107431099B/zh
Priority to US15/560,596 priority patent/US10333012B2/en
Publication of WO2016152228A1 publication Critical patent/WO2016152228A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a crystalline silicon substrate for a solar cell, a method for manufacturing a solar cell, and a method for manufacturing a solar cell module.
  • a crystalline silicon solar cell using a crystalline silicon substrate has high photoelectric conversion efficiency and is put into practical use as a photovoltaic power generation system.
  • a heterojunction solar cell in which a pn junction is formed by forming a non-single-crystal silicon-based semiconductor thin film such as amorphous silicon on the surface of a single-crystal silicon substrate has excellent conversion efficiency.
  • a heterojunction solar cell including an intrinsic amorphous silicon thin film between a single crystal silicon substrate and an amorphous silicon thin film has attracted attention as one of the solar cells having the highest conversion efficiency.
  • the surface of the silicon substrate is anisotropically etched to form a quadrangular pyramidal uneven structure called texture,
  • the photocurrent is increased to achieve high efficiency (so-called optical confinement).
  • the single crystal silicon substrate after the texture formation is subjected to further processing for the purpose of adjusting the shape of the texture, cleaning the surface, etc. before forming the semiconductor thin film or the diffusion layer.
  • Patent Document 1 a texture is formed on the surface of a single crystal silicon substrate by anisotropic etching, and then isotropic etching is performed using an oxidizing aqueous solution such as HF / HNO 3 to round the texture recess. A method is disclosed. Patent Document 1 describes that by rounding the concave portion of the texture, the thickness of the amorphous silicon thin film formed thereon becomes uniform, and the open-circuit voltage and the fill factor of the solar cell are improved.
  • Patent Document 2 discloses a method of forming an oxide film by immersing a single crystal silicon substrate in ozone water after the texture is formed and then performing a process of rounding the concave portion of the texture as necessary. If the silicon substrate after the oxide film is formed is immersed in an HF aqueous solution, the metal and organic matter mixed during texture formation by anisotropic etching are removed together with the oxide film, and the surface of the silicon substrate is cleaned.
  • Patent Document 3 since a layer of a high-concentration silicon dissolved product (gel) is formed on the surface of a silicon substrate after anisotropic etching with alkali, it may be difficult to clean the surface by ozone treatment. It has been pointed out. In Patent Document 3, it is proposed to improve the surface cleanliness by ozone treatment by supplying ozone water continuously and keeping the ozone concentration of ozone water constant, thereby complementing the decrease in efficiency due to self-decomposition of ozone. Has been. Further, Patent Document 3 (see FIG. 12) describes a method of increasing the treatment efficiency by supplying ozone gas into an ozone water bath and keeping the ozone concentration of ozone water constant.
  • Using a crystalline silicon substrate with isotropic etching after anisotropic etching and rounded textured recesses is effective in improving the open circuit voltage and fill factor, but rounding the recesses reduces the antireflection effect.
  • the short circuit current of the solar cell tends to decrease.
  • the texture size is small and the density of the recesses on the substrate surface is high (when the number of irregularities is large)
  • the effect of reducing the short-circuit current is greater than the improvement of the fill factor and open circuit voltage by rounding the recesses.
  • the conversion efficiency of solar cells tends to decrease.
  • the present invention has a single-crystal silicon substrate for solar cells, which has an excellent light confinement property and a high cleanliness, as well as a textured recess having a rounded recess (that is, having a small radius of curvature of the textured recess), and the same.
  • An object is to provide a crystalline silicon solar cell and a crystalline silicon solar cell module.
  • the present inventors have found that the cleaning effect by the ozone treatment can be enhanced without rounding the bottom of the texture by washing with hydrochloric acid between the texture formation by the anisotropic etching and the ozone treatment.
  • the present invention has been reached.
  • the present invention relates to a method for manufacturing a crystalline silicon substrate for a solar cell, and includes forming a texture on the surface of a single crystal silicon substrate by anisotropic etching, then bringing hydrochloric acid into contact with the surface, and bringing ozone water into contact with the surface. Are performed in this order.
  • the ozone treatment is performed by immersing the single crystal silicon substrate in an ozone water bath.
  • the concentration of ozone water during ozone treatment is adjusted by supplying ozone gas to the ozone water bath.
  • the surface texture size of the single crystal silicon substrate after the ozone treatment is 0.1 ⁇ m or more and less than 5 ⁇ m.
  • the curvature radius of the concave portion of the texture is preferably less than 5 nm.
  • the concentration of hydrochloric acid in the acid treatment is preferably 1 to 15% by weight.
  • the temperature of hydrochloric acid is preferably 30 ° C to 80 ° C.
  • the surface of the single crystal silicon substrate is treated with hydrofluoric acid after the ozone treatment.
  • the present invention relates to a method for manufacturing a crystalline silicon solar cell using the above single crystal silicon substrate.
  • a conductive non-single crystal silicon thin film is formed on the textured surface of the single crystal silicon substrate.
  • a transparent conductive layer is preferably formed on the conductive non-single crystal silicon thin film.
  • the intrinsic non-single crystal silicon thin film is formed on the single crystal silicon substrate before the conductive non-single crystal silicon thin film is formed.
  • the crystalline silicon-based solar cell thus obtained includes an intrinsic non-single-crystal silicon thin film between the single-crystal silicon substrate and the conductive non-single-crystal silicon thin film.
  • hydrogen plasma treatment is performed after depositing at least part of an intrinsic non-single crystal silicon thin film on single crystal silicon and before depositing a conductive non-single crystal silicon thin film.
  • a solar cell module is obtained by connecting a plurality of the crystalline silicon solar cells and sealing with a sealing material.
  • the surface of the textured single crystal silicon substrate is subjected to the ozone treatment after the acid treatment, impurities such as alkali metals are not brought into the ozone water, and the efficiency of the ozone treatment is improved. Therefore, a crystalline silicon substrate for solar cells that is excellent in cleanliness can be obtained. Further, since the acid treatment is performed using hydrochloric acid, the bottom of the texture is not excessively rounded. Therefore, the solar cell using the single crystal silicon substrate obtained by the present invention is excellent in the light confinement effect and exhibits high conversion efficiency.
  • the crystalline silicon substrate for solar cells of the present invention is a conductive type (p-type or n-type) single crystal silicon substrate.
  • the single crystal silicon substrate is produced by slicing a silicon ingot produced by, for example, the Czochralski method or the like to a predetermined thickness using a wire saw or the like.
  • the single crystal silicon substrate is preferably cut out so that the light receiving surface is a (100) plane. This is because when a single crystal silicon substrate is etched, a texture structure is easily formed by anisotropic etching using the difference in etching rate between the (100) plane and the (111) plane.
  • the thickness of the single crystal silicon substrate is not particularly limited, but is generally about 50 to 500 ⁇ m.
  • the thickness D of the single crystal silicon substrate after the texture formation is defined as a straight line connecting the convex side apexes of the texture of one main surface of the single crystal silicon substrate and the convex side apex of the texture of the other main surface. It is calculated by the distance from the connected straight line (see FIG. 4).
  • the thickness of the single crystal silicon substrate in the present invention is preferably 250 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 170 ⁇ m or less. By reducing the thickness, the carrier recombination probability in the single crystal silicon substrate is reduced, and thus the open-circuit voltage and the fill factor of the solar cell tend to be improved.
  • Preprocessing A silicon substrate (as-sliced substrate) sliced from an ingot is subjected to pretreatment as necessary before texture formation by anisotropic etching.
  • the pretreatment is performed for the purpose of removing metal deposits derived from saw wires or the like during slicing, damage layers due to slicing, and the like.
  • the pretreatment is performed by isotropic etching of the surface of the single crystal silicon substrate 1 using an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide, a mixed solution of hydrofluoric acid and nitric acid, or the like.
  • anisotropic etching By bringing an alkaline solution (anisotropic etching solution) containing an additive for anisotropic etching into contact with the surface of the single crystal silicon substrate, anisotropic etching is performed and a texture is formed on the surface.
  • anisotropic etching solution A commercially available anisotropic etching solution may be used as the anisotropic etching solution.
  • the alkali examples include sodium hydroxide and potassium hydroxide. Of these, potassium hydroxide is preferred.
  • the anisotropic etching liquid may contain two or more kinds of alkalis.
  • the pH of the anisotropic etching solution is preferably about 12 to 16, more preferably about 13 to 15.
  • the concentration of potassium hydroxide is preferably 2 to 10% by weight, more preferably 2.5 to 8% by weight, and further preferably 3 to 6% by weight.
  • the additive for anisotropic etching has the effect of decreasing the etching rate of the (110) plane of crystalline silicon and relatively increasing the etching rate of the (100) plane.
  • the additive for anisotropic etching those having a function of reducing the surface tension such as lower alcohols such as isopropyl alcohol and various surfactants are preferably used.
  • the anisotropic etching solution may contain two or more additives for anisotropic etching.
  • the concentration of isopropyl alcohol is preferably 0.5 to 20% by weight, more preferably 0.8 to 18% by weight, and even more preferably 1 to 15% by weight. .
  • a method of immersing the single crystal silicon substrate in the etching solution As a method of bringing the etching solution into contact with the surface of the single crystal silicon substrate, a method of immersing the single crystal silicon substrate in the etching solution, a method of applying the etching solution to the surface of the single crystal silicon substrate (for example, a method of spraying the etching solution) ) And the like.
  • a method of immersing a single crystal silicon substrate in an etching solution is preferable. The immersion in the etching solution is performed by immersing the substrate in an etching bath containing the etching solution.
  • the processing temperature for anisotropic etching (the temperature of the anisotropic etching solution) is preferably 70 to 95 ° C., more preferably 80 to 90 ° C.
  • the treatment time for anisotropic etching (immersion time in the anisotropic etching solution) may be appropriately determined in consideration of the alkali concentration, temperature, etc. For example, it is preferably about 10 to 30 minutes.
  • the texture size formed on the surface of the single crystal silicon substrate tends to increase as etching progresses.
  • the texture size can be adjusted by changing the type of additive for anisotropic etching. Further, when the etching time is increased, the alkali concentration is increased, or the processing temperature is increased, the texture size tends to increase.
  • Acid treatment is performed by bringing an acidic solution into contact with the surface of the single crystal silicon substrate on which the texture is formed by anisotropic etching.
  • a high-concentration silicon dissolution product (water glass) adheres to the surface of the single crystal silicon substrate immediately after anisotropic etching is performed with an alkaline solution.
  • This dissolved product forms a high-viscosity gel layer and cannot be easily removed even after washing with water.
  • This gel layer contains metal adhering to the surface of the silicon substrate during slicing, metal in the silicon substrate dissolved during etching, alkali metal (such as potassium) and additives (organic matter) during anisotropic etching, etc. Yes.
  • the surface of the silicon substrate that is alkaline can be neutralized, and the gelled water glass can be dissolved and removed. Therefore, in the subsequent ozone treatment, the amount of impurities such as metals and organic substances brought into the ozone water can be reduced, and the efficiency of the ozone treatment is increased. Also, ozone hydroxide ion - since there is a tendency to easily self-decomposed by reaction with, and neutralize the substrate surface in advance by acid treatment OH (OH) - if caused to reduce the concentration of ozone cleaning In addition to improving the ozone treatment efficiency, the thickness of the oxide film can be made uniform.
  • Inorganic acids such as sulfuric acid (H 2 SO 4 ) and nitric acid (HNO 3 ) are highly oxidizable. When such an oxidizing acid is brought into contact with the textured surface of the silicon substrate, isotropic etching proceeds and the texture recess tends to be rounded (the radius of curvature of the recess increases).
  • hydrochloric acid is a less oxidizable acid than sulfuric acid, nitric acid and the like. Therefore, if acid treatment is performed with hydrochloric acid, isotropic etching of the single crystal silicon substrate is difficult to proceed.
  • the chlorine atom (chloride ion) of hydrochloric acid is less effective as a carrier recombination center impurity than the sulfur atom of sulfuric acid or the nitrogen atom of nitric acid. Therefore, acid cleaning with hydrochloric acid is preferable from the viewpoint of improving the open circuit voltage and the fill factor by cleaning the silicon substrate.
  • the acidic solution used for the acid treatment may contain an acid other than hydrogen chloride for the purpose of pH adjustment and the like.
  • inorganic acids other than hydrogen chloride are highly oxidizable and have the effect of isotropic etching of the silicon substrate, and organic acids tend to act as carrier recombination impurities when incorporated into the silicon substrate. Therefore, the concentration of the acid other than hydrogen chloride in the acidic solution is preferably 1% by weight or less, more preferably 0.5% by weight or less, further preferably 0.1% by weight or less, and 0.05% by weight or less. Particularly preferred.
  • the acidic solution may contain an additive such as a surfactant for the purpose of improving the cleaning efficiency.
  • an additive such as a surfactant for the purpose of improving the cleaning efficiency.
  • organic acids tend to act as carrier recombination impurities when incorporated into the silicon substrate. Therefore, the content of the additive in the acidic solution is preferably 1% by weight or less, more preferably 0.5% by weight or less, further preferably 0.1% by weight or less, and particularly preferably 0.05% by weight or less.
  • the acidic solution used for the acid cleaning must be hydrochloric acid (HCl aqueous solution) that does not contain other acids or additives in addition to industrially produced hydrochloric acid and unavoidable impurities contained in the water used for dilution thereof. preferable.
  • the concentration of hydrochloric acid (HCl concentration) in the acidic solution used for the acid treatment is preferably 1% by weight or more.
  • the hydrochloric acid concentration is preferably 15% by weight or less.
  • the concentration of hydrochloric acid is more preferably 2 to 12% by weight, and further preferably 3 to 10% by weight.
  • a method of immersing the single crystal silicon substrate in the acidic solution is preferable.
  • the immersion in the acidic solution is performed by immersing the substrate in an acidic bath containing an acidic aqueous solution.
  • the acid treatment temperature (temperature of the acidic aqueous solution) is preferably 30 to 80 ° C., and preferably 35 to 75. ° C is more preferable, and 40 to 70 ° C is more preferable.
  • the efficiency of acid cleaning tends to increase, and the conversion efficiency of the solar cell tends to increase.
  • conversion efficiency tends to be increased by increasing the acid cleaning temperature of the silicon substrate.
  • the conversion characteristics by hydrogen plasma treatment are significantly improved by increasing the acid cleaning temperature of the silicon substrate.
  • the acid treatment time may be appropriately determined in consideration of the hydrochloric acid concentration, temperature, etc., and is preferably about 5 to 20 minutes, for example.
  • ozone treatment After acid treatment with hydrochloric acid, ozone treatment is performed by bringing ozone water into contact with the surface of the single crystal silicon substrate. By performing the ozone treatment, silicon on the surface of the substrate is oxidized, an oxide film having a thickness of about 0.2 to 5 nm is formed, and impurities attached to the surface of the substrate are taken into the oxide film. After the ozone treatment, the surface of the silicon substrate is cleaned by removing the oxide film by etching with hydrofluoric acid or the like.
  • a method of immersing the single crystal silicon substrate in ozone water is preferable. Immersion in ozone water is performed by immersing the substrate in an ozone water bath containing ozone water.
  • the ozone concentration of ozone water is preferably 5 ppm or more, more preferably 10 ppm, and further preferably 15 ppm or more. Since ozone has low solubility in water and is likely to self-decompose in water, the ozone concentration of ozone water tends to decrease in a short time. In order to keep the ozone concentration of the ozone water within the above range, it is preferable that the ozone treatment is performed while supplying ozone to the ozone water bath. Examples of the method for supplying ozone to the ozone water bath include a method for supplying high-concentration ozone water to the ozone water bath and a method for bubbling ozone gas into the ozone water bath.
  • the temperature of ozone treatment (the temperature of ozone water in the ozone water bath) is not particularly limited, but is preferably about 15 to 40 ° C., and more preferably 20 to 30 ° C.
  • the ozone treatment time (immersion time of the substrate in ozone water) may be appropriately determined in consideration of the ozone concentration, the treatment temperature, and the like, and is, for example, about 5 to 30 minutes.
  • FIG. 2 is a conceptual diagram showing an embodiment of an ozone treatment apparatus for performing ozone treatment of a silicon substrate.
  • the ozone treatment apparatus 100 includes an ozone water bath 110, and the ozone water bath 110 contains ozone water 112. Ozone treatment is performed by immersing a cassette 114 in which a plurality of silicon substrates 116 are set in ozone water 112.
  • An ozone water supply pipe 146 is connected to the ozone water bath 110, and high-concentration ozone water is supplied from the ozone water generation unit 144.
  • Discharge pipes 121 and 122 for overflowing the ozone water 112 are connected to the upper part of the ozone water bath 110.
  • the ozone concentration of the ozone water 112 can be kept high by supplying and discharging the ozone water.
  • the ozone water discharged from the discharge pipe may be treated as ozone water waste liquid as it is, but it is preferable to reuse it by increasing the ozone concentration from the viewpoint of reducing the ozone water waste liquid.
  • ozone water discharged from the discharge pipes 121 and 122 is supplied to the ozone water generation unit 144 to increase the ozone concentration, and then supplied to the ozone water bath 110 from the ozone water supply pipe 146, thereby regenerating the ozone water. Available.
  • ozone drainage discharged from the ozone water bath 110 is supplied to the drainage tank 130 from the drainage supply pipes 126 and 127.
  • the ozone drainage 132 in the drainage tank 130 is supplied to the ozone water generation unit 144 via the pump 145 and is supplied to the ozone water bath 110 from the ozone water supply pipe 146 after the ozone concentration is increased.
  • the silicon substrate 116 is subjected to acid treatment with hydrochloric acid after anisotropic etching with alkali to remove water glass on the surface. Therefore, even after the silicon substrate is immersed and the ozone treatment is started, an increase in the concentration of impurities such as silicon oxide, metal ions, and organic substances in the ozone water 112 in the ozone water bath 110 can be suppressed. Since the ozone drainage 132 has a low impurity concentration, even if the ozone water is reused, the impurity concentration of the ozone water 112 can be kept low, the ozone treatment can be made highly efficient, and impurities in the ozone water can be applied to the oxide film. Uptake is suppressed and a high cleaning effect can be maintained.
  • the treatment for increasing the ozone concentration of the ozone drainage 132 may be performed in the ozone drainage tank 130 for resupply to the ozone water bath 110.
  • the ozone concentration can be increased by bubbling ozone gas into the drain tank 130.
  • the ozone drainage 132 in the drainage tank 130 may be subjected to a process different from the process of increasing the ozone concentration before being resupplied to the ozone water bath 110.
  • the impurity concentration in the ozone water can be reduced by performing a process such as deionization or filtration in the impurity removing unit 149.
  • the silicon substrate 116 from which the surface water glass or the like has been removed by acid treatment is subjected to ozone treatment, the concentration of impurities such as silicon oxide in ozone wastewater is low, and impurities due to deionization, filtration, etc. Removal can be done easily.
  • Various controls may be performed in order to adjust the ozone concentration of the ozone water 112 in the ozone water bath 110.
  • an ozone concentration detector (not shown) is provided in the ozone water bath 110, the discharge pipes 121 and 122 (or the drain supply pipes 126 and 127), the drain tank 130, etc., and the ozone concentration is monitored, and the detected ozone concentration is obtained.
  • the ozone concentration of the ozone water 112 is adjusted by adjusting the production amount or ozone concentration of the ozone water in the ozone water generation unit 144 or the supply amount (circulation speed) of the ozone water by the pump 145 by PID control or the like. It can be maintained within a certain range.
  • FIG. 3 is a conceptual diagram showing another embodiment of an ozone treatment apparatus for performing ozone treatment of a silicon substrate.
  • the ozone concentration of the ozone water is increased by supplying ozone gas to the ozone water bath and bubbling instead of supplying the ozone water to the ozone water bath.
  • the ozone treatment apparatus 200 includes an ozone water bath 210, and the ozone water bath 210 includes ozone water 212.
  • Ozone treatment is performed by immersing a cassette 114 in which a plurality of silicon substrates 116 are set in ozone water 212.
  • An ozone gas supply pipe 246 is installed in the ozone water bath 210. By bubbling the ozone gas generated by the ozone gas generation unit 244 into the ozone water bath 210 via the ozone gas supply pipe 246, the ozone concentration of the ozone water 212 can be increased.
  • various controls may be performed in order to adjust the ozone concentration of the ozone water 212 in the ozone water bath 210.
  • the ozone water bath 110 is provided with an ozone concentration detection unit (attached illustration) to monitor the ozone concentration, and based on the detected ozone concentration, the amount of ozone gas generated by the ozone gas generation unit 244 is adjusted by PID control or the like.
  • the ozone concentration of the ozone water 212 can be maintained within a certain range.
  • the method of bubbling ozone gas into the ozone water bath 210 is capable of suppressing the self-decomposition of ozone before being supplied to the water bath, as compared with the method of supplying ozone water, since ozone is supplied to the ozone water bath in a gaseous state. Moreover, since the ozone water 212 can be kept in an ozone saturated state, the efficiency of ozone treatment is increased. Furthermore, the method of bubbling ozone gas can contribute to simplification of the process and cost reduction because the configuration of the ozone treatment apparatus 200 is simpler than the case of circulating and reusing ozone water.
  • the silicon substrate is subjected to acid treatment with hydrochloric acid after anisotropic etching with alkali and before ozone treatment to remove water glass on the surface. Therefore, even when bubbling ozone gas without performing replacement due to overflow of ozone water, the increase in the impurity concentration of ozone water 212 in the ozone water bath 210 can be suppressed, the ozone treatment can be made highly efficient, and impurities in ozone water can be increased. Incorporation into the oxide film is suppressed, and a high cleaning effect can be maintained.
  • FIGS. 2 and 3 show a batch-type process in which a cassette in which a silicon substrate is set is immersed in ozone water. However, even if the silicon substrate is continuously conveyed by a horizontal conveyance method or the like, ozone treatment may be performed. Good.
  • the oxide film formed on the surface of the silicon substrate is removed after the ozone treatment.
  • impurities on the silicon substrate surface can be removed together with the oxide film, and the cleanliness of the silicon substrate surface is improved.
  • the removal of the oxide film is preferably performed by bringing an acid into contact with the surface of the single crystal silicon substrate after the ozone treatment, and among these, hydrofluoric acid is preferably used.
  • the concentration of hydrofluoric acid is preferably 1 to 10% by weight from the viewpoint of reliably removing the oxide film and suppressing excessive etching. 1.5 to 5% by weight is more preferable, and 2 to 5% by weight is more preferable.
  • the treatment temperature is not particularly limited and is, for example, about 20 to 30 ° C.
  • the treatment time may be appropriately determined in consideration of the thickness of the oxide film, the acid concentration, the temperature, etc., and is set to about 1 to 10 minutes, for example.
  • the etching proceeds even after the oxide film is removed, so that the surface of the single crystal silicon substrate after the oxide film is removed may be etched. Since the etching of the single crystal silicon substrate with hydrofluoric acid is isotropic, when the etching of the substrate proceeds, the concave portion of the texture becomes round and the short-circuit current density of the solar cell tends to decrease. For this reason, the treatment with hydrofluoric acid ensures that the oxide film formed by the ozone treatment is removed and the etching conditions of the single crystal silicon substrate are not excessively advanced depending on the film thickness of the oxide film. Is preferably set.
  • the thickness of the oxide film can be controlled. Since the thickness of the oxide film can be controlled within a predetermined range, the conditions of hydrofluoric acid treatment that prevents the isotropic etching of the single crystal silicon substrate from proceeding excessively while removing the oxide film reliably can be easily performed. Can be set. Therefore, a single crystal silicon substrate with high cleanliness and suppressed isotropic etching of the textured recess is obtained.
  • treatments other than the anisotropic etching, acid treatment, ozone treatment, and oxide film removal described above may be performed.
  • rinsing with pure water or the like may be performed before a single crystal silicon substrate taken out from a liquid such as an etchant, hydrochloric acid, ozone water, or hydrofluoric acid is immersed in another liquid.
  • FIG. 1 is a schematic cross-sectional view showing an example of the surface shape of a single crystal silicon substrate 1 on which a texture is formed.
  • the texture is preferably formed continuously.
  • continuous means that the structure has substantially flat portions and the texture convex portions are adjacent to each other. If the texture is a continuous shape, a high antireflection effect is obtained, and the short-circuit current density of the solar cell is improved.
  • the range of the texture size is not particularly limited, but is generally about 1 to 10 ⁇ m.
  • the texture size is preferably less than 5 ⁇ m, more preferably 4 ⁇ m or less, and even more preferably 3.5 ⁇ m or less. If the texture size is less than 5 ⁇ m, the difference in film thickness between the textured convex portion and the concave portion of the intrinsic silicon-based thin film is small, and a solar cell having a high open-circuit voltage and a high fill factor can be obtained.
  • the texture size is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and further preferably 1.5 ⁇ m or more.
  • the texture size of the surface of the single crystal silicon substrate is obtained from the difference in height between the peak of the convex part and the valley of the concave part.
  • the height difference H is defined by the distance between the line connecting the vertices T1 and T2 of the convex portions of the adjacent concavo-convex structure and the valley V1 of the concave portion between the vertices.
  • the texture size can be specified by measuring the surface shape of the substrate using an atomic force microscope. Specifically, the height difference H is obtained by scanning the surface of a single crystal silicon substrate with an area of about 40 ⁇ 40 ⁇ m 2 with an atomic force microscope (AFM) and measuring the surface shape. From the measured planar shape (AFM image), the vertex T1 of the convex portion of the texture is selected at random, the vertex of the convex portion of one texture adjacent to the vertex T1 is T2, and the concave portion between T1 and T2
  • the height difference H may be calculated from the distance between the straight line T1-T2 and V1, with the valley as V1. If the texture size is distributed in the substrate plane, the height difference is calculated at 20 locations to obtain the average value, and this average value may be used as the texture size H.
  • the curvature radius of the concave portion of the texture of the single crystal silicon substrate after the ozone treatment is preferably less than 5 nm.
  • the curvature radius of the texture recess is more preferably less than 3 nm, and even more preferably less than 2.5 nm.
  • the lower limit of the radius of curvature of the concave portion of the texture is not particularly limited, but the radius of curvature of the concave portion is generally 0.1 nm or more even when the treatment for rounding the concave portion by isotropic etching is not performed.
  • the curvature radius of the concave portion of the texture of the single crystal silicon substrate after the removal of the oxide film is preferably within the above range.
  • the radius of curvature of the texture recess can be specified by observing the cross-sectional shape of the substrate using a transmission electron microscope (TEM). From the observed image (TEM image) of the concave portion of the texture, the shape near the concave portion is approximated by an arc of a virtual circle. The radius of the virtual circle at that time is the curvature radius r (see FIG. 1).
  • the virtual circle can be determined by a method in which the boundary is defined by binarization processing of the cross-sectional observation image, and the center coordinates and the radius are calculated by the least square method based on the coordinates of the boundary near the valley V2 of the recess. When there is a distribution in the radius of curvature of the texture recesses, the radius of curvature is calculated at 20 locations to obtain an average value, and this average value may be used as the radius of curvature of the texture recesses.
  • the texture size can be adjusted by adjusting the anisotropic etching conditions (type of additive, alkali concentration, temperature, time, etc.).
  • the curvature radius of the concave portion of the texture can be adjusted by the presence or absence of isotropic etching, and if the isotropic etching is performed after the texture is formed, the curvature radius tends to increase.
  • isotropic etching since hydrochloric acid is used in the acid treatment after anisotropic etching, isotropic etching is difficult to proceed and the radius of curvature of the texture recess can be reduced.
  • the ozone treatment with ozone water is performed while adjusting the ozone concentration, and the film thickness of the ozone oxide film can be controlled, so that the isotropic etching of the single crystal silicon substrate does not proceed excessively. Easy to set conditions for hydroacid treatment.
  • the single crystal silicon substrate obtained by the method of the present invention has high cleanliness. Moreover, since the texture size is small, the thickness of the intrinsic silicon-based thin film formed on the texture becomes uniform when a solar cell is manufactured, and a high passivation effect is easily obtained. Furthermore, since isotropic etching is suppressed and the radius of curvature of the texture recess is small (the recess is not excessively round), a solar cell having a high light confinement effect and a high short-circuit current density can be produced.
  • a crystalline silicon solar cell can be produced, for example, by forming an n layer as a diffusion layer on one main surface of a p-type crystalline silicon substrate and forming a p + layer on the other main surface. Further, by forming a non-single-crystal silicon semiconductor thin film on the surface of the silicon substrate, a heterojunction crystalline silicon solar cell can be manufactured.
  • a conductive non-single-crystal silicon thin film is provided on the textured surface of a single-crystal silicon substrate manufactured by the method of the present invention, and the single crystal silicon substrate and the conductive non-single-crystal silicon thin film are between A heterojunction solar cell including an intrinsic non-single-crystal silicon-based thin film can achieve high conversion efficiency.
  • the material for the non-single crystal silicon thin film include amorphous silicon and microcrystalline silicon.
  • the silicon substrate obtained by the present invention has high surface cleanliness and few defects, when used in a heterojunction solar cell, the characteristics of the interface between the silicon substrate and the silicon-based thin film are improved, and the intrinsic silicon-based thin film is used. The passivation effect and the like can be improved. Therefore, a heterojunction solar cell having a high open-circuit voltage and a high fill factor can be obtained.
  • FIG. 4 is a schematic cross-sectional view showing an example of a heterojunction solar cell.
  • the heterojunction solar cell shown in FIG. 4 includes a first intrinsic silicon thin film 2 on one surface of an n-type single crystal silicon substrate 1 and a second intrinsic silicon thin film 4 on the other surface.
  • a p-type silicon thin film 3 and an n-type silicon thin film 5 are formed on the first intrinsic silicon thin film 2 and the second intrinsic silicon thin film 4, respectively.
  • a p-type single crystal silicon substrate can be used in place of the n-type single crystal silicon substrate 1.
  • the intrinsic silicon thin films 2 and 4 are substantially intrinsic non-doped silicon thin films, and are preferably intrinsic hydrogenated amorphous silicon substantially composed of silicon and hydrogen. By forming the intrinsic silicon thin films 2 and 4 on the surface of the single crystal silicon substrate 1, impurity diffusion into the single crystal silicon substrate 1 during the formation of the conductive silicon thin films 3 and 5 is suppressed, and The passivation of the crystalline silicon substrate surface can be performed effectively.
  • the film thickness of the intrinsic silicon-based thin films 2 and 4 is preferably 3 to 16 nm, more preferably 4 to 14 nm, and even more preferably 5 to 12 nm. If the thickness of the intrinsic silicon thin film is within the above range, the coverage of the single crystal silicon substrate surface is good, and the diffusion of impurity atoms in the conductive silicon thin films 3 and 5 to the single crystal silicon substrate surface is suppressed. In addition, electrical loss due to series resistance and optical loss due to light absorption can be reduced.
  • a silicon-containing gas such as SiH 4 or Si 2 H 6 or a mixed gas of silicon-containing gas and H 2 is used as a source gas.
  • a silicon alloy such as silicon carbide, silicon oxide, silicon nitride, or silicon germanium can be formed by adding a gas containing a different element such as CH 4 , CO 2 , NH 3 , or GeH 4 to the gas.
  • B 2 H 6 , PH 3, or the like is preferably used as a dopant gas for forming a conductive type (p-type or n-type) silicon-based thin film.
  • a mixed gas in which the dopant gas is previously diluted with a raw material gas, H 2 or the like As conditions for forming a silicon-based thin film by plasma CVD, for example, a substrate temperature of 100 to 300 ° C., a pressure of 20 to 2600 Pa, and a high frequency power density of 0.003 to 0.5 W / cm 2 are preferably used.
  • the intrinsic silicon thin films 2 and 4 are subjected to plasma treatment (hydrogen plasma treatment) in a gas atmosphere mainly containing hydrogen.
  • plasma treatment hydrogen plasma treatment
  • a method is preferred in which the intrinsic silicon-based thin film is temporarily stopped during the course, hydrogen plasma treatment is performed, and then the deposition is resumed.
  • the total film thickness of the intrinsic silicon-based thin film formed before and after the hydrogen plasma treatment is within the above film thickness range.
  • the epitaxial growth of the intrinsic silicon thin film is suppressed and the amorphous state can be maintained, so that a high passivation effect can be maintained. Further, by performing hydrogen plasma treatment after forming a part of the intrinsic silicon-based thin film, plasma damage to the single crystal silicon substrate 1 is reduced, and the surface of the single crystal silicon substrate 1 and the single crystal silicon are reduced. A passivation effect by hydrogen plasma can also be exerted on the interface between the substrate 1 and the intrinsic silicon thin films 2 and 4.
  • a substrate temperature of 100 to 300 ° C. and a pressure of 20 to 2600 Pa are preferable.
  • the high-frequency power density and the hydrogen plasma processing time in the hydrogen plasma processing step can be appropriately set within the range where the above effects can be obtained.
  • the “gas atmosphere containing hydrogen as a main component” in the hydrogen plasma treatment step may contain an inert gas such as nitrogen, helium, or argon as long as the hydrogen concentration in the atmosphere is 70% by volume or more.
  • a source gas such as SiH 4 is not introduced into the chamber and that the source gas used for forming the intrinsic silicon thin film does not remain in the chamber.
  • the silicon-based thin film is not substantially formed during the plasma discharge.
  • the allowable range of the amount of raw material gas during the hydrogen plasma treatment depends on other film forming parameters, but is preferably 1/100 or less, more preferably 1/500 or less, and 1/2000 or less of hydrogen gas in volume ratio. Is more preferable.
  • the intrinsic silicon-based thin film is preferably amorphous silicon, but may be partially crystallized by hydrogen plasma treatment. It is preferable that the formation of the intrinsic silicon-based thin film and the hydrogen plasma treatment are continuously performed in the same film forming chamber. After the intrinsic silicon-based thin film is formed, the plasma discharge is preferably stopped once before the hydrogen plasma treatment is started. That is, it is preferable that the supply of the source gas is stopped in a state where the plasma discharge is stopped, the discharge is restarted after the inside of the chamber becomes a gas atmosphere mainly containing hydrogen, and the hydrogen plasma treatment is started. According to this method, the formation of an intrinsic silicon-based thin film during the hydrogen plasma treatment can be suppressed.
  • the hydrogen plasma treatment may be performed on one of the first intrinsic silicon-based thin film 2 and the second intrinsic silicon-based thin film 4 or on both. By performing hydrogen plasma treatment on both the first intrinsic silicon thin film 2 and the second intrinsic silicon thin film 4, further improvement in conversion efficiency can be expected.
  • a p-type silicon thin film 3 is formed on the first intrinsic silicon thin film 2.
  • an n-type silicon-based thin film 5 is formed on the second intrinsic silicon-based thin film 4.
  • These conductive silicon thin films are non-single crystal silicon thin films, and the material thereof is amorphous such as amorphous silicon, amorphous silicon carbide, amorphous silicon oxide, and amorphous silicon nitride.
  • microcrystalline silicon materials such as microcrystalline silicon, microcrystalline silicon carbide, microcrystalline silicon oxide, and microcrystalline silicon nitride.
  • the thickness of the conductive silicon thin films 3 and 5 is preferably 3 to 50 nm, and more preferably 5 to 30 nm.
  • the first transparent conductive layer 6 and the second transparent conductive layer 8 are formed on the conductive silicon thin films 3 and 5.
  • the thickness of the transparent conductive layers 6 and 8 is preferably 10 to 140 nm.
  • transparent conductive metal oxides such as indium oxide, tin oxide, zinc oxide, titanium oxide, and complex oxides thereof are preferably used.
  • indium composite oxides mainly composed of indium oxide are preferable, and indium tin oxide (ITO) is particularly preferable from the viewpoint of achieving both high electrical conductivity and transparency.
  • a sputtering method is preferable as a method for forming an indium oxide such as ITO.
  • collector electrodes 7 and 9 for taking out current are preferably formed on the transparent conductive layers 6 and 8.
  • the collector electrode can be produced by a known technique such as inkjet, screen printing, conducting wire bonding, spraying, plating, or the like.
  • the collector electrode on the light receiving surface side is preferably patterned in a shape such as a comb pattern in order to increase the light receiving area of the solar cell.
  • the collector electrode opposite to the light receiving side may be patterned or may not be patterned.
  • the crystalline silicon solar cell manufactured as described above is preferably modularized for practical use.
  • the modularization of the solar cell is performed by an appropriate method.
  • a bus bar is connected to the collector electrode via an interconnector such as a tab electrode, so that a plurality of solar cells are connected in series or in parallel and sealed with a sealing material and a glass plate, A silicon-based solar cell module is obtained.
  • KOH / isopropyl alcohol 3/1 (kept at 80 ° C.)
  • the textured single crystal silicon substrate was immersed in 5 wt% hydrochloric acid maintained at 20 ° C. for 10 minutes. Thereafter, rinsing with ultrapure water was performed twice.
  • ozone treatment In order to maintain the ozone concentration by immersing the acid-treated single crystal silicon substrate in ozone water (initial concentration: 15 ppm) maintained at 25 ° C., ozone water (ozone concentration at the outlet of the ozone water production apparatus) : 15 ppm) was continuously supplied and overflowed for 10 minutes.
  • ozone water concentration in the ozone water bath was monitored with an ultraviolet ozone water concentration meter (OZM-5000L manufactured by Okitrotech Co., Ltd.), the ozone concentration dropped to 4 ppm immediately after immersion of the silicon substrate, and then became constant at 6 ppm. .
  • Example 2 In Example 2, the ozone concentration was maintained by bubbling ozone gas in an ozone water bath instead of continuously supplying ozone water. Immediately after the immersion of the silicon substrate, the ozone concentration dropped to 13 ppm, and then became constant at 15 ppm. The single crystal silicon substrate was subjected to anisotropic etching, acid treatment, ozone treatment and oxide film removal in the same manner as in Example 1 except that the ozone treatment method was changed.
  • Example 3 The single crystal silicon substrate was subjected to anisotropic etching, acid treatment, ozone treatment and oxide film removal in the same manner as in Example 2 except that the temperature during acid treatment with hydrochloric acid was changed to 60 ° C.
  • Table 1 shows the acid treatment conditions and the ozone treatment conditions and the texture shapes (texture height and concave curvature radius) after the ozone treatment and after the HF treatment in the above-described production examples of the single crystal silicon substrate.
  • Heterojunction solar cells were fabricated by the following method using the single crystal silicon substrates of the above Examples and Comparative Examples.
  • Example 1A (without hydrogen plasma treatment)
  • the single crystal silicon substrate produced in Example 1 was introduced into a CVD apparatus, and a light-receiving surface-side intrinsic amorphous silicon thin film was formed on one surface (light-receiving surface side) with a thickness of 8 nm.
  • the film forming conditions were a substrate temperature of 150 ° C., a pressure of 120 Pa, a SiH 4 / H 2 flow rate ratio of 3/10, and a high frequency power density of 0.011 W / cm 2 .
  • a p-type amorphous silicon thin film having a thickness of 10 nm was formed on the light-receiving surface side intrinsic amorphous silicon thin film.
  • the deposition conditions of the p-type amorphous silicon thin film were as follows: the substrate temperature was 150 ° C., the pressure was 60 Pa, the SiH 4 / dilution B 2 H 6 flow rate ratio was 1/3, and the high-frequency power density was 0.011 W / cm 2 . .
  • As the diluted B 2 H 6 gas a gas diluted with H 2 to a B 2 H 6 concentration of 5000 ppm was used.
  • a back-side intrinsic amorphous silicon thin film having a thickness of 8 nm was formed on the other surface (back side) of the single crystal silicon substrate.
  • the conditions for forming the back-side intrinsic amorphous silicon thin film were the same as those for the light-receiving surface intrinsic amorphous silicon thin film.
  • An n-type amorphous silicon thin film having a thickness of 10 nm was formed on the back side intrinsic amorphous silicon thin film.
  • the deposition conditions for the n-type amorphous silicon thin film were a substrate temperature of 150 ° C., a pressure of 60 Pa, a SiH 4 / dilution PH 3 flow rate ratio of 1/2, and a high frequency power density of 0.011 W / cm 2 .
  • As the diluted PH 3 gas a gas diluted with H 2 to a PH 3 concentration of 5000 ppm was used.
  • ITO Indium tin composite oxide
  • a sintered body of indium oxide and tin oxide (with a tin oxide content of 5% by weight) was used as a target.
  • Argon was introduced as a carrier gas at 100 sccm, and film formation was performed under conditions of a substrate temperature of room temperature, a pressure of 0.2 Pa, and a high frequency power density of 0.5 W / cm 2 .
  • a silver paste was screen-printed as a collecting electrode on each surface of the transparent conductive layer. Thereafter, in order to solidify the silver paste, heating was performed in an atmosphere at 150 ° C. for 60 minutes to form a comb-shaped collector electrode. The interval between the collector electrodes was 10 mm.
  • Example 1B (with hydrogen plasma treatment)
  • Example 1B in the formation of an intrinsic amorphous silicon thin film on a single crystal silicon substrate, after a part of the film thickness is formed, the film formation is temporarily stopped and hydrogen plasma treatment is performed. The remainder of the thickness of the porous silicon thin film was formed.
  • An amorphous silicon thin film having a thickness of 4 nm was formed on one surface (light-receiving surface side) of the single crystal silicon substrate manufactured in Example 1. After the film formation, the plasma discharge was stopped once, and the supply of SiH 4 was stopped. Only hydrogen gas was supplied to the CVD apparatus for about 30 seconds, and the gas in the apparatus was replaced. Thereafter, plasma discharge was resumed and hydrogen plasma treatment was performed.
  • the conditions for the hydrogen plasma treatment were a substrate temperature of 150 ° C., a pressure of 120 Pa, a high frequency power density of 0.026 W / cm 2 , and a treatment time of 60 seconds.
  • an intrinsic amorphous silicon thin film having a thickness of 4 nm is formed in the same manner as described above, and after hydrogen plasma treatment is performed, film formation is resumed. An amorphous silicon thin film having a thickness of 4 nm was formed.
  • the conditions of the hydrogen plasma treatment were the same as those on the light receiving surface side.
  • a crystalline silicon solar cell was fabricated in the same manner as in Example 1A, except that hydrogen plasma treatment was performed during the deposition of the intrinsic amorphous silicon thin film.
  • Examples 2A, 3A and Comparative Examples 1A, 2A, 3A, 4A (without hydrogen plasma treatment)] A crystalline silicon solar cell was produced in the same manner as in Example 1A, except that the single crystal silicon substrates produced in Examples 2 and 3 and Comparative Examples 1, 2, 3 and 4 were used.
  • Example 2B, 3B and Comparative Examples 1B, 2B, 3B, 4B (with hydrogen plasma treatment)]
  • a crystalline silicon-based solar cell was produced in the same manner as in Example 1B except that the single crystal silicon substrates produced in Examples 2 and 3 and Comparative Examples 1, 2, 3 and 4 were used.
  • the solar cells using the substrates of Examples 1 to 3 have improved Voc and FF compared to the solar cells using the substrates of Comparative Examples 1 and 2 where acid cleaning was not performed before the ozone treatment. It can be seen that it has a high conversion efficiency.
  • the impurity concentration on the surface of the silicon substrate of Example 3 was 1/10 or less than that of Comparative Example 2, the impurity concentration was reduced by performing the acid cleaning before the ozone treatment. It turns out that it has decreased. From these results, since acid cleaning is performed before the ozone treatment, the amount of impurities brought into the ozone water bath is reduced, so that impurities on the silicon substrate surface are reduced, contributing to improvement in Voc and FF. it is conceivable that.
  • Example 2 From the comparison between Example 1 and Example 2, in the method of bubbling ozone gas compared to the case of supplying ozone water, the ozone concentration of ozone water can be increased and the ozone cleaning effect is high, so Voc and FF It is considered that a high solar cell can be obtained. Further, in the present invention, since the acid cleaning is performed before the ozone treatment and the amount of impurities brought into the ozone water bath is small, the impurity concentration can be kept low without replacing the ozone water due to overflow. Therefore, by bubbling ozone gas, ozone treatment can be performed while maintaining a high ozone concentration, and in addition to obtaining a solar cell with excellent conversion efficiency, there is also an advantage that ozone waste water can be reduced.
  • Example 3 it is considered that a higher efficiency solar cell was obtained because the acid cleaning effect was further increased by increasing the acid cleaning temperature and the introduction of impurities into the ozone water bath was reduced.
  • Example 1A Focusing on the difference in conversion characteristics depending on the presence or absence of plasma treatment on the amorphous silicon thin film during the production of the solar cell, in Examples 1 to 3, the conversion efficiency by hydrogen plasma treatment is higher than in Comparative Examples 1 to 4. It can be seen that the rate of increase is high. Comparing Example 1A and Comparative Example 3A, where no hydrogen plasma treatment was performed, it can be seen that Comparative Example 3A has higher Voc and FF. On the other hand, when Example 1B and Comparative Example 3B were both subjected to plasma treatment, Voc and FF of Example 1B were equal to or higher than those of Comparative Example 3B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明は、太陽電池用の単結晶シリコン基板の提供を目的とする。本発明の方法では、単結晶シリコン基板の表面にアルカリ溶液を接触させて、単結晶シリコン基板の表面にテクスチャを形成し、単結晶シリコン基板の表面に酸性溶液を接触させて酸処理を実施し、その後に、単結晶シリコン基板の表面にオゾン水を接触させてオゾン処理を実施する。酸処理に用いられる酸性溶液は塩酸である。単結晶シリコン基板をオゾン水浴に浸漬することによりオゾン処理が実施されることが好ましい。

Description

太陽電池用結晶シリコン基板の製造方法、結晶シリコン系太陽電池の製造方法および結晶シリコン系太陽電池モジュールの製造方法
 本発明は、太陽電池用結晶シリコン基板の製造方法、太陽電池の製造方法および太陽電池モジュールの製造方法に関する。
 結晶シリコン基板を用いた結晶シリコン系太陽電池は、光電変換効率が高く、太陽光発電システムとして実用化されている。単結晶シリコン基板の表面に非晶質シリコン等の非単結晶シリコン系半導体薄膜を製膜することによりpn接合が形成されたヘテロ接合太陽電池は、変換効率に優れている。中でも、単結晶シリコン基板と非晶質シリコン薄膜との間に真性非晶質シリコン薄膜を備えるヘテロ接合太陽電池は、変換効率が最も高い太陽電池の1つとして注目されている。
 ヘテロ接合太陽電池等の単結晶シリコン基板を用いた結晶シリコン系太陽電池では、シリコン基板の表面を異方性エッチングすることにより、テクスチャと呼ばれる四角錘状(ピラミッド状)の凹凸構造を形成し、表面反射率の低減および結晶シリコン基板に入射する光の光路長増大により、光電流を増大させて、高効率化を図っている(いわゆる光閉じ込め)。テクスチャ形成後の単結晶シリコン基板は、半導体薄膜や拡散層の形成前に、テクスチャの形状調整や表面の清浄化等を目的として、さらに他の処理に供される。
 例えば、特許文献1には、異方性エッチングにより単結晶シリコン基板の表面にテクスチャを形成後、HF/HNO等の酸化性の水溶液を用いて等方性エッチングを行い、テクスチャの凹部を丸くする方法が開示されている。特許文献1では、テクスチャの凹部を丸くすることにより、その上に形成される非晶質シリコン薄膜の膜厚が均一となり、太陽電池の開放電圧および曲線因子が向上することが記載されている。
 特許文献2では、テクスチャ形成後、必要に応じてテクスチャの凹部を丸くする処理を行い、その後に、単結晶シリコン基板をオゾン水に浸漬して酸化膜を形成する方法が開示されている。酸化膜形成後のシリコン基板をHF水溶液に浸漬すれば、異方性エッチングによるテクスチャ形成時に混入した金属や有機物が酸化膜とともに除去され、シリコン基板の表面が清浄化される。
 特許文献3では、アルカリによる異方性エッチング後のシリコン基板の表面に高濃度のシリコン溶解生成物(ゲル)の層が形成されるため、オゾン処理による表面の清浄化が困難となる場合があることが指摘されている。特許文献3では、連続的にオゾン水を供給し、オゾン水のオゾン濃度を一定とすることにより、オゾンの自己分解による効率低下を補完して、オゾン処理による表面清浄性を向上することが提案されている。また、特許文献3(図12参照)には、オゾン水浴中にオゾンガスを供給することにより、オゾン水のオゾン濃度を一定として、処理効率を高める方法が記載されている。
特開平10-545421号公報 WO2009/120631号国際公開パンフレット 特開2014-90087号公報
 異方性エッチング後に等方性エッチングを行いテクスチャの凹部を丸くした結晶シリコン基板を用いた場合、開放電圧および曲線因子の向上に効果がある反面、凹部が丸くなることにより反射防止効果が低減し、太陽電池の短絡電流が減少する傾向がある。特にテクスチャサイズが小さく、基板表面の凹部の密度が高い場合(凹凸の数が多い場合)、凹部を丸くすることによる曲線因子および開放電圧の向上よりも、短絡電流減少の影響の方が大きくなり、太陽電池の変換効率が低下する傾向がある。
 本発明者らの検討によると、異方性エッチング後に等方性エッチングを行うことなく、オゾン洗浄を行う場合は、特許文献3に記載されているように、オゾン水を連続供給してオーバーフローさせオゾン濃度を高く維持しなければ、シリコン基板の表面の清浄化が不十分となる傾向がみられた。しかし、オゾン水をオーバーフローさせる方法は、大量のオゾン水廃液が生じ、廃液処理のコストや環境負荷が大きく、実用性が高いとは言い難い。
 一方、異方性エッチング後に等方性エッチングを行わず、オゾン水浴中にオゾンガスをバブリングしながらオゾン洗浄を行った場合は、オゾン水をオーバーフローさせる方法に比べてオゾン水による洗浄効果が低く、シリコン基板表面への金属イオンや有機物の残留がみられた。
 これらに鑑み、本発明は、テクスチャの凹部が丸くなく(すなわち、テクスチャ凹部の曲率半径が小さく)光閉じ込め性に優れ、かつ清浄性の高い太陽電池用の単結晶シリコン基板、ならびにそれを用いた結晶シリコン系太陽電池および結晶シリコン系太陽電池モジュールの提供を目的とする。
 本発明者らは、異方性エッチングによるテクスチャ形成とオゾン処理との間に、塩酸による洗浄を行うことにより、テクスチャの底部を丸くすることなく、オゾン処理による清浄化効果が高められることを見出し、本発明に至った。本発明は、太陽電池用結晶シリコン基板の製造方法に関し、異方性エッチングにより単結晶シリコン基板の表面にテクスチャを形成後、表面に塩酸を接触させる処理、および表面にオゾン水を接触させる処理が、この順に行われることを特徴とする。
 単結晶シリコン基板をオゾン水浴に浸漬することにより、上記オゾン処理が行われることが好ましい。一形態では、オゾン水浴にオゾンガスを供給することにより、オゾン処理中のオゾン水の濃度が調整される。
 オゾン処理後の単結晶シリコン基板は、表面のテクスチャサイズが0.1μm以上5μm未満であることが好ましい。テクスチャの凹部の曲率半径は、5nm未満が好ましい。
 酸処理における塩酸の濃度は、1重量%~15重量%が好ましい。塩酸の温度は、30℃~80℃が好ましい。
 本発明の一形態では、オゾン処理後に、単結晶シリコン基板の表面がフッ化水素酸で処理される。
 さらに、本発明は、上記の単結晶シリコン基板を用いた結晶シリコン系太陽電池の製造方法に関する。一形態では、単結晶シリコン基板のテクスチャ形成面上に、導電型非単結晶シリコン系薄膜が製膜される。導電型非単結晶シリコン系薄膜上には、透明導電層が製膜されることが好ましい。
 好ましくは、単結晶シリコン基板上に、導電型非単結晶シリコン系薄膜が製膜される前に、真性非単結晶シリコン薄膜が製膜される。このようにして得られる結晶シリコン系太陽電池は、単結晶シリコン基板と導電型非単結晶シリコン系薄膜との間に、真性非単結晶シリコン薄膜を備える。
 一形態では、単結晶シリコン上に、真性非単結晶シリコン薄膜の少なくとも一部を製膜後、導電型非単結晶シリコン系薄膜を製膜する前に、水素プラズマ処理が実施される。
 上記の結晶シリコン系太陽電池の複数を接続し、封止材により封止を行うことにより、太陽電池モジュールが得られる。
 本発明によれば、テクスチャ形成後の単結晶シリコン基板の表面を酸処理後にオゾン処理が行われるため、オゾン水へのアルカリ金属等の不純物の持ち込みが少なく、オゾン処理の効率が高められる。そのため、清浄性に優れる太陽電池用結晶シリコン基板が得られる。また、塩酸を用いて酸処理が行われるため、テクスチャの底部が過度に丸くならない。そのため、本発明により得られる単結晶シリコン基板を用いた太陽電池は、光閉じ込め効果に優れ、高い変換効率を示す。
テクスチャが形成された単結晶シリコン基板の表面形状の一例を示す模式的断面図である。 オゾン処理装置の一形態を示す概念図である。 オゾン処理装置の一形態を示す概念図である。 一実施形態に係る結晶シリコン系太陽電池を示す模式的断面図である。
[テクスチャ基板の作製]
 本発明の太陽電池用結晶シリコン基板は、導電型(p型またはn型)の単結晶シリコン基板である。単結晶シリコン基板は、例えばチョクラルスキー法等によって作製されたシリコンインゴットを、ワイヤーソー等を用いて所定の厚みにスライスすることにより作製される。表面にテクスチャを形成するために、単結晶シリコン基板は、受光面が(100)面であるように切り出されていることが好ましい。これは、単結晶シリコン基板がエッチングされる場合に、(100)面と(111)面のエッチングレートが異なることを応用した異方性エッチングによって、容易にテクスチャ構造が形成されるためである。
 単結晶シリコン基板の厚みは特に限定されないが、一般に50~500μm程度である。なお、テクスチャ形成後の単結晶シリコン基板の厚みDは、単結晶シリコン基板の一方の主面のテクスチャの凸部側頂点を結んだ直線と、他方の主面のテクスチャの凸部側頂点とを結んだ直線との距離で算出される(図4参照)。本発明における単結晶シリコン基板の厚みは、250μm以下が好ましく、200μm以下がより好ましく、170μm以下がさらに好ましい。厚みを小さくすることにより、単結晶シリコン基板内でのキャリア再結合確率が低減するため、太陽電池の開放電圧および曲線因子が向上する傾向がある。
(前処理)
 インゴットからスライスされたシリコン基板(アズスライス基板)は、異方性エッチングによるテクスチャ形成前に、必要に応じて前処理に供される。前処理は、スライスの際のソーワイヤー等に由来する金属の付着物や、スライスによるダメージ層の除去等を目的として実施される。例えば、水酸化ナトリウムや水酸化カリウム等のアルカリ水溶液や、フッ化水素酸と硝酸の混合液等を用いて、単結晶シリコン基板1表面を等方性エッチングすることにより、前処理が行われる。また、スライス時の切り粉や研磨剤等を除去する目的で洗浄を行ってもよい。
(異方性エッチング)
 単結晶シリコン基板の表面に、異方性エッチング用添加剤を含むアルカリ溶液(異方性エッチング液)を接触させることにより、異方性エッチングが行われ、表面にテクスチャが形成される。異方性エッチング液として、市販の異方性エッチング液を使用してもよい。
 アルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム等が挙げられる。中でも、水酸化カリウムが好ましい。異方性エッチング液には、2種以上のアルカリが含まれていてもよい。異方性エッチング液のpHは、12~16程度が好ましく、13~15程度がより好ましい。アルカリとして水酸化カリウムが用いられる場合、水酸化カリウムの濃度は、2~10重量%が好ましく、2.5~8重量%がより好ましく、3~6重量%がさらに好ましい。
 異方性エッチング用添加剤は、結晶シリコンの(110)面のエッチング速度を低下させ、(100)面のエッチング速度を相対的に大きくする作用を有する。異方性エッチング用添加剤としては、イソプロピルアルコール等の低級アルコール類や各種の界面活性剤等、表面張力を低下させる働きを有するものが好ましく用いられる。異方性エッチング液には、2種以上の異方性エッチング用添加剤が含まれていてもよい。異方性エッチング用添加剤としてイソプロピルアルコールが用いられる場合、イソプロピルアルコールの濃度は、0.5~20重量%が好ましく、0.8~18重量%がより好ましく、1~15重量%がさらに好ましい。
 単結晶シリコン基板の表面にエッチング液を接触させる方法としては、エッチング液に単結晶シリコン基板を浸漬する方法、単結晶シリコン基板の表面にエッチング液を塗布する方法(例えば、エッチング液をスプレーする方法)等が挙げられる。これらの中で、エッチング液に単結晶シリコン基板を浸漬する方法が好ましい。エッチング液への浸漬は、エッチング液を含むエッチング浴中に、基板を浸漬することにより行われる。
 エッチング速度や、エッチング深さ等を適切に調整する観点から、異方性エッチングの処理温度(異方性エッチング液の温度)は、70~95℃が好ましく、80~90℃がより好ましい。異方性エッチングの処理時間(異方性エッチング液への浸漬時間)は、アルカリ濃度や温度等を考慮して適宜決定すればよく、例えば、10~30分間程度が好ましい。
 単結晶シリコン基板の表面に形成されるテクスチャサイズは、エッチングが進行するほど大きくなる傾向がある。例えば、異方性エッチング用添加剤の種類を変更することにより、テクスチャサイズを調整できる。また、エッチング時間を長くする、アルカリ濃度を高くする、あるいは処理温度を高くすると、テクスチャサイズが大きくなる傾向がある。
(酸処理)
 異方性エッチングによりテクスチャが形成された単結晶シリコン基板の表面に、酸性溶液を接触させることにより酸処理が行われる。アルカリ溶液により異方性エッチングが行われた直後の単結晶シリコン基板の表面には、高濃度のシリコン溶解生成物(水ガラス)が付着している。この溶解生成物は、高粘度のゲル層を形成しており、水洗を行っても容易には除去できない。このゲル層には、スライス時にシリコン基板の表面に付着した金属、エッチング時に溶解したシリコン基板中の金属、異方性エッチング中のアルカリ金属(カリウム等)や添加剤(有機物)等が含まれている。
 酸処理を行うことにより、アルカリ性となっているシリコン基板の表面を中和し、ゲル化した水ガラスを溶解除去できる。そのため、その後のオゾン処理の際に、オゾン水中に持ち込まれる金属や有機物等の不純物量を低減でき、オゾン処理の効率が高められる。また、オゾンは水酸化物イオン(OH)との反応により自己分解しやすくなる傾向があるため、事前の酸処理により基板表面を中和してOH濃度を減少させれば、オゾン洗浄の際のオゾン濃度の低下を抑制でき、オゾン処理効率の向上に加えて、酸化膜の膜厚を均一化できる。
 硫酸(HSO)、硝酸(HNO)等の無機酸は、酸化性が強い。シリコン基板のテクスチャ形成表面に、このような酸化性の酸を接触させると、等方性エッチングが進行し、テクスチャの凹部が丸くなる(凹部の曲率半径が大きくなる)傾向がある。一方、塩酸は、硫酸、硝酸等に比べると、酸化性の弱い酸である。そのため、塩酸で酸処理を行えば、単結晶シリコン基板の等方性エッチングが進行し難い。
 アルカリによる異方性エッチング後に、酸性溶液として塩酸を用いて酸処理が行われることにより、テクスチャの凹部を丸くすることなくシリコン基板の表面を中和し、水ガラスを除去して清浄性を高めることができる。そのため、清浄性が高く、反射防止効果に優れる単結晶シリコン基板が得られる。特に、テクスチャサイズが小さく、ピラミッド状の凹凸の凹部の数密度が大きい場合に、反射防止効果の向上が顕著であり、太陽電池の短絡電流密度が高くなる傾向がある。また、塩酸(塩化水素)の塩素原子(塩化物イオン)は、硫酸の硫黄原子や硝酸の窒素原子に比べて、キャリア再結合中心不純物としての作用が小さい。そのため、塩酸による酸洗浄は、シリコン基板の清浄化による開放電圧や曲線因子向上の観点からも好ましい。
 酸処理に用いられる酸性溶液は、pH調整等の目的で、塩化水素以外の酸を含んでいてもよい。ただし、塩化水素以外の無機酸は酸化性が強くシリコン基板を等方性エッチングする作用があり、有機酸はシリコン基板に取り込まれるとキャリア再結合不純物として作用する傾向がある。そのため、酸性溶液中の、塩化水素以外の酸の濃度は、1重量%以下が好ましく、0.5重量%以下がより好ましく、0.1重量%以下がさらに好ましく、0.05重量%以下が特に好ましい。
 酸性溶液には、洗浄効率向上等を目的として、界面活性剤等の添加剤が含まれていてもよい。ただし、有機物や金属塩等の添加剤は、シリコン基板に不純物として取り込まれると、有機酸はシリコン基板に取り込まれるとキャリア再結合不純物として作用する傾向がある。そのため、酸性溶液中の添加剤の含有量は、1重量%以下が好ましく、0.5重量%以下がより好ましく、0.1重量%以下がさらに好ましく、0.05重量%以下が特に好ましい。酸洗浄に用いられる酸性溶液は、工業的に生産される塩酸およびその希釈に用いられる水に含まれる不可避的不純物以外に、他の酸や添加剤を含まない塩酸(HCl水溶液)であることが好ましい。
 シリコン基板表面のシリコン溶解生成物の除去性を高める観点から、酸処理に用いられる酸性溶液中の塩酸の濃度(HCl濃度)は、1重量%以上が好ましい。シリコン基板のエッチングの抑制や、作業環境の悪化を抑制する観点から、塩酸濃度は、15重量%以下が好ましい。塩酸の濃度は、2~12重量%がより好ましく、3~10重量%がさらに好ましい。
 単結晶シリコン基板の表面に酸性溶液(塩酸)を接触させる方法としては、酸性溶液に単結晶シリコン基板を浸漬する方法が好ましい。酸性溶液への浸漬は、酸性水溶液を含む酸性浴中に、基板を浸漬することにより行われる。
 シリコン溶解生成物の除去性を高め、かつ塩酸の揮発による作業環境の悪化や濃度低下を抑制する観点から、酸処理の温度(酸性水溶液の温度)は、30~80℃が好ましく、35~75℃がより好ましく、40~70℃がさらに好ましい。酸処理の温度を高くすることにより、酸洗浄の効率が高められ、太陽電池の変換効率が高められる傾向がある。特に、単結晶シリコン基板上に真性のシリコン薄膜を備えるヘテロ接合太陽電池の製造においては、シリコン基板の酸洗浄温度を高くすることにより、変換効率が高められる傾向がある。中でも、ヘテロ接合太陽電池の製造において、シリコン薄膜の少なくとも一部を製膜後に水素プラズマ処理を行う場合、シリコン基板の酸洗浄温度を高くすることにより、水素プラズマ処理による変換特性の向上が顕著となる傾向がある。酸処理の時間(酸性水溶液への浸漬時間)は、塩酸濃度や温度等を考慮して適宜決定すればよく、例えば、5~20分間程度が好ましい。
(オゾン処理)
 塩酸による酸処理後、単結晶シリコン基板の表面に、オゾン水を接触させることによりオゾン処理が行われる。オゾン処理を行うことで、基板表面のシリコンが酸化され、厚みが0.2~5nm程度の酸化膜が形成され、基板の表面に付着した不純物等が酸化膜に取り込まれる。オゾン処理後に、フッ化水素酸によるエッチング等で、この酸化膜を除去することにより、シリコン基板の表面が清浄化される。
 単結晶シリコン基板の表面にオゾン水を接触させる方法としては、オゾン水に単結晶シリコン基板を浸漬する方法が好ましい。オゾン水への浸漬は、オゾン水を含むオゾン水浴中に、基板を浸漬することにより行われる。
 オゾン処理による酸化膜形成効率を高める観点から、オゾン水のオゾン濃度は、5ppm以上が好ましく、10ppmがより好ましく、15ppm以上がさらに好ましい。オゾンは水への溶解性が低く、かつ水中で自己分解しやすいため、オゾン水のオゾン濃度は短時間で減少する傾向がある。オゾン水のオゾン濃度を上記範囲に保つためには、オゾン水浴にオゾンを供給しながらオゾン処理が行われることが好ましい。オゾン水浴にオゾンを供給する方法としては、オゾン水浴に高濃度のオゾン水を供給する方法や、オゾン水浴へのオゾンガスのバブリング等の方法が挙げられる。
 オゾン処理の温度(オゾン水浴中のオゾン水の温度)は特に限定されないが、例えば、15~40℃程度が好ましく、20~30℃がより好ましい。オゾン処理の時間(オゾン水への基板の浸漬時間)は、オゾン濃度や処理温度等を考慮して適宜決定すればよく、例えば、5~30分間程度である。
 図2は、シリコン基板のオゾン処理を実施するためのオゾン処理装置の一形態を示す概念図である。オゾン処理装置100はオゾン水浴110を備え、オゾン水浴110にはオゾン水112が含まれている。複数のシリコン基板116がセットされたカセット114をオゾン水112に浸漬することによりオゾン処理が行われる。オゾン水浴110には、オゾン水供給管146が接続されており、オゾン水生成部144から高濃度のオゾン水が供給される。オゾン水浴110の上部には、オゾン水112をオーバーフローさせるための排出管121,122が接続されている。このように、オゾン水の供給と排出を行うことにより、オゾン水112のオゾン濃度を高く維持できる。
 排出管から排出されたオゾン水は、そのままオゾン水廃液として処理してもよいが、オゾン水廃液を低減させる観点からは、オゾン濃度を高めて再利用することが好ましい。例えば、排出管121,122から排出されたオゾン水を、オゾン水生成部144に供給してオゾン濃度を高めた後、オゾン水供給管146からオゾン水浴110に供給することにより、オゾン水を再利用できる。図2に示す装置100では、オゾン水浴110から排出されたオゾン排水は、排水供給管126,127から排水タンク130に供給される。排水タンク130のオゾン排水132は、ポンプ145を介してオゾン水生成部144に供給され、オゾン濃度が高められた後、オゾン水供給管146からオゾン水浴110に供給される。
 前述のように、シリコン基板116は、アルカリによる異方性エッチング後に塩酸による酸処理が行われ、表面の水ガラスが除去されている。そのため、シリコン基板を浸漬してオゾン処理を開始した後も、オゾン水浴110中のオゾン水112の、シリコン酸化物、金属イオン、有機物等の不純物濃度の上昇を抑制できる。オゾン排水132の不純物濃度が低いため、オゾン水を再利用しても、オゾン水112の不純物濃度を低く保つことができ、オゾン処理を高効率化できるとともに、オゾン水中の不純物の酸化膜への取り込みが抑制され、高い清浄化効果を維持できる。
 なお、オゾン水浴110への再供給のために、オゾン排水132のオゾン濃度を高める処理は、オゾン排水タンク130内で行ってもよい。例えば、排水タンク130内にオゾンガスをバブリングすることにより、オゾン濃度を高めることができる。また、排水タンク130のオゾン排水132は、オゾン水浴110に再供給される前に、オゾン濃度を高める処理とは別の処理が行われてもよい。例えば、不純物除去部149において、脱イオンやろ過等の処理を行うことにより、オゾン水中の不純物濃度を低減できる。本発明においては、酸処理により表面の水ガラス等が除去されたシリコン基板116がオゾン処理に供されるため、オゾン排水中のシリコン酸化物等の不純物濃度が低く、脱イオンやろ過等による不純物除去を容易になし得る。
 オゾン水浴110中のオゾン水112のオゾン濃度を調整するために、各種の制御が行われてもよい。例えば、オゾン水浴110,排出管121,122(あるいは排水供給管126,127)、排水タンク130等に、オゾン濃度検出部(不図示)を設けてオゾン濃度をモニタし、検出されたオゾン濃度に基づいて、オゾン水生成部144でのオゾン水の作製量やオゾン濃度、あるいはポンプ145によるオゾン水の供給量(循環速度)等をPID制御等により調整することにより、オゾン水112のオゾン濃度を一定範囲内に維持できる。
 図3は、シリコン基板のオゾン処理を実施するためのオゾン処理装置の他の形態を示す概念図である。この形態では、オゾン水浴にオゾン水を供給する構成に代えて、オゾン水浴にオゾンガスを供給してバブリングすることにより、オゾン水のオゾン濃度が高められる。
 オゾン処理装置200はオゾン水浴210を備え、オゾン水浴210にはオゾン水212が含まれている。複数のシリコン基板116がセットされたカセット114をオゾン水212に浸漬することによりオゾン処理が行われる。オゾン水浴210には、オゾンガス供給管246が設置されている。オゾンガス発生部244で生成したオゾンガスを、オゾンガス供給管246を介してオゾン水浴210内にバブリングすることにより、オゾン水212のオゾン濃度を高めることができる。
 本形態においても、オゾン水浴210中のオゾン水212のオゾン濃度を調整するために、各種の制御が行われてもよい。例えば、オゾン水浴110に、オゾン濃度検出部(付図示)を設けてオゾン濃度をモニタし、検出されたオゾン濃度に基づいて、オゾンガス発生部244で生成させるオゾンガス量をPID制御等により調整することにより、オゾン水212のオゾン濃度を一定範囲内に維持できる。
 オゾン水浴210にオゾンガスをバブリングする方法は、気体の状態でオゾン水浴にオゾンが供給されるため、オゾン水を供給する方法に比べて、水浴への供給前のオゾンの自己分解を抑制できる。また、オゾン水212をオゾン飽和状態に保つことができるため、オゾン処理の効率が高められる。さらに、オゾンガスをバブリングする方法は、オゾン水を循環再利用する場合に比べて、オゾン処理装置200の構成が簡便であるため、プロセスの簡素化やコストダウンにも寄与し得る。
 本発明の方法において、シリコン基板は、アルカリによる異方性エッチング後、オゾン処理の前に、塩酸による酸処理が行われ表面の水ガラスが除去されている。そのため、オゾン水のオーバーフローによる入れ替えを行わずにオゾンガスをバブリングする場合でも、オゾン水浴210中のオゾン水212の不純物濃度の上昇を抑制でき、オゾン処理を高効率化できるとともに、オゾン水中の不純物の酸化膜への取り込みが抑制され、高い清浄化効果を維持できる。
 図2および図3では、シリコン基板がセットされたカセットをオゾン水に浸漬するバッチ式処理の形態を示したが、水平搬送法等によりシリコン基板を連続的搬送しながら、オゾン処理を行ってもよい。
(酸化膜除去)
 オゾン処理後には、シリコン基板の表面に形成された酸化膜の除去が行われることが好ましい。酸化膜を除去することにより、シリコン基板表面の不純物を酸化膜ごと除去することができ、シリコン基板表面の清浄性が高められる。酸化膜の除去は、オゾン処理後の単結晶シリコン基板の表面に、酸を接触させることにより行われることが好ましく、中でもフッ化水素酸が好ましく用いられる。
 単結晶シリコン基板の表面に酸を接触させる方法としては、フッ化水素酸等の酸を含む水浴中に単結晶シリコン基板を浸漬する方法が好ましい。フッ化水素酸への浸漬により酸化膜の除去を行う場合、酸化膜の除去を確実に行い、かつ過度のエッチングを抑制する観点から、フッ化水素酸の濃度は、1~10重量%が好ましく、1.5~5重量%がより好ましく、2~5重量%がさらに好ましい。処理温度は特に限定されず、例えば、20~30℃程度である。処理時間は、酸化膜の膜厚や、酸濃度、温度等を考慮して適宜決定すればよく、例えば、1~10分間程度に設定される。
 フッ化水素酸処理における酸濃度が高い場合や、処理時間が長い場合、酸化膜除去後もエッチングが進行するため、酸化膜除去後の単結晶シリコン基板の表面がエッチングされる場合がある。フッ化水素酸による単結晶シリコン基板のエッチングは等方性であるため、基板のエッチングが進むと、テクスチャの凹部が丸くなり、太陽電池の短絡電流密度が低下する傾向がある。そのため、フッ化水素酸による処理は、オゾン処理により形成された酸化膜を確実に除去し、かつ単結晶シリコン基板のエッチングが過度に進行しないように、酸化膜の膜厚等に応じて処理条件が設定されることが好ましい。
 本発明においては、オゾン濃度を制御しながら、オゾン水によるオゾン処理を行うことができるため、酸化膜の膜厚を制御できる。酸化膜の膜厚を所定の範囲内に制御できるため、酸化膜を確実に除去しつつ、単結晶シリコン基板の等方性エッチングが過度に進行しないようなフッ化水素酸処理の条件を容易に設定できる。そのため、清浄性が高く、かつテクスチャの凹部の等方性エッチングが抑制された単結晶シリコン基板が得られる。
(基板のリンス)
 本発明においては、上記の異方性エッチング、酸処理、オゾン処理および酸化膜除去以外の処理が行われてもよい。例えば、エッチング液、塩酸、オゾン水、フッ化水素酸等の液体から取り出された単結晶シリコン基板を、他の液体に浸漬する前に、純水等によるリンスが行われてもよい。シリコン基板の表面をリンスすることにより、他の工程への液体の持ち込み量を低減し、処理の高効率化が図られるとともに、液交換の頻度を低減して、各工程の効率を高めることができる。
[単結晶シリコン基板のテクスチャ形状]
 図1は、テクスチャが形成された単結晶シリコン基板1の表面形状の一例を示す模式的断面図である。テクスチャは、連続的に形成されていることが好ましい。連続とは、構造が実質的に平坦部を有することなく、テクスチャの凸部が隣接している状態を意味する。テクスチャが連続形状であれば、高い反射防止効果が得られ、太陽電池の短絡電流密度が向上する。
 テクスチャサイズの範囲は特に限定されないが、一般には1~10μm程度である。単結晶シリコン基板の表面に真性シリコン系薄膜を製膜してヘテロ接合太陽電池を形成する場合、テクスチャサイズは5μm未満が好ましく、4μm以下がより好ましく、3.5μm以下がさらに好ましい。テクスチャサイズが5μm未満であれば、テクスチャの凸部上と凹部上の真性シリコン系薄膜の膜厚の差が小さく、開放電圧および曲線因子の高い太陽電池が得られる。十分な光閉じ込め効果を得るために、テクスチャサイズは0.1μm以上が好ましく、1μm以上がより好ましく、1.5μm以上がさらに好ましい。
 単結晶シリコン基板表面のテクスチャサイズは、凸部の頂点と凹部の谷の高低差から求められる。高低差Hは、隣接する凹凸構造のそれぞれの凸部の頂点T1とT2とを結んだ線と、両頂点間の凹部の谷V1との距離で定義される。
 テクスチャサイズは、原子間力顕微鏡を用いて基板の表面形状を測定することにより特定できる。具体的には、高低差Hは、原子間力顕微鏡(AFM)により単結晶シリコン基板の表面を40×40μm程度の面積で走査して、表面形状を測定することにより求められる。測定された平面形状(AFM像)から、無作為にテクスチャの凸部の頂点T1を選択し、頂点T1と隣接する1つのテクスチャの凸部の頂点をT2、T1とT2との間の凹部の谷をV1として、直線T1-T2とV1との距離により高低差Hを算出すればよい。基板面内でテクスチャサイズに分布がある場合、20箇所で高低差を算出してその平均値を求め、この平均値をテクスチャサイズHとすればよい。
 オゾン処理後の単結晶シリコン基板のテクスチャの凹部の曲率半径は、5nm未満が好ましい。テクスチャの凹部の曲率半径は、3nm未満がより好ましく、2.5nm未満がさらに好ましい。テクスチャの凹部の曲率半径の下限は特に限定されないが、等方性エッチングにより凹部を丸くする処理を行わない場合でも、凹部の曲率半径は一般に0.1nm以上である。オゾン処理後に、フッ化水素酸等による酸化膜除去が行われる場合、酸化膜除去後の単結晶シリコン基板のテクスチャの凹部の曲率半径も上記範囲内であることが好ましい。
 テクスチャの凹部の曲率半径は、透過型電子顕微鏡(TEM)を用いて基板の断面形状を観察することにより特定できる。テクスチャの凹部の観察像(TEM像)から、凹部近傍の形状を仮想円の弧で近似する。そのときの仮想円の半径が曲率半径rである(図1参照)。仮想円は、断面観察像の2値化処理により境界を定め、凹部の谷V2近傍の境界の座標に基づいて最小二乗法により中心座標および半径を算出する方法により、決定できる。テクスチャの凹部の曲率半径に分布がある場合、20箇所で曲率半径を算出してその平均値を求め、この平均値をテクスチャの凹部の曲率半径とすればよい。
 前述のように、異方性エッチングの条件(添加剤の種類、アルカリの濃度、温度、時間等)を調整することにより、テクスチャサイズを調整できる。テクスチャの凹部の曲率半径は、等方性エッチングの有無等により調整でき、テクスチャ形成後に等方性エッチングを行えば、曲率半径が大きくなる傾向がある。本発明においては、異方性エッチング後の酸処理において塩酸が用いられるため、等方性エッチングが進行し難く、テクスチャ凹部の曲率半径を小さくできる。
 基板の等方性エッチングが進行すると、凹部の曲率半径が大きくなる。一方、オゾン処理により形成される酸化膜の厚みは0.2~5nm程度(通常は1~2nm程度)であるため、フッ化水素酸等を用いたエッチングにより酸化膜除去を行った場合でも、テクスチャの凹部が過度に丸くなることはない。また、本発明においては、オゾン濃度を調整しながらオゾン水によるオゾン処理を行い、オゾン酸化膜の膜厚を制御できるため、単結晶シリコン基板の等方性エッチングが過度に進行しないようなフッ化水素酸処理の条件設定が容易である。そのため、フッ化水素酸等によるテクスチャの凹部の等方性エッチングを抑制して、テクスチャの凹部が過度に丸くなることを防止し、酸化膜除去後も凹部の曲率半径を5nm未満とすることができる。
 塩酸による酸処理後にオゾン水処理が行われるため、本発明の方法により得られる単結晶シリコン基板は、高い清浄性を有する。また、テクスチャサイズが小さいことにより、太陽電池の作製時に、テクスチャ上に製膜される真性シリコン系薄膜の膜厚が均一となり、高いパッシベーション効果が得られやすい。さらに、等方性エッチングが抑制され、テクスチャの凹部の曲率半径が小さい(凹部が過度に丸くない)ため、高い光閉じ込め効果を有し、短絡電流密度の高い太陽電池を作製できる。
[太陽電池]
 上述の方法により作製されたシリコン基板は、結晶シリコン系太陽電池の製造に用いられる。結晶シリコン系太陽電池は、例えば、p型結晶シリコン基板の一方の主面に拡散層としてn層を形成し、他方の主面にp+層を形成することにより作製できる。また、シリコン基板の表面に非単結晶シリコン半導体薄膜を製膜することにより、ヘテロ接合型の結晶シリコン系太陽電池を作製できる。
 中でも、本発明の方法により作製された単結晶シリコン基板のテクスチャ形成面上に、導電型非単結晶シリコン系薄膜を備え、かつ単結晶シリコン基板と導電型非単結晶シリコン系薄膜との間に真性非単結晶シリコン系薄膜を備えるヘテロ接合太陽電池は、高い変換効率を実現可能である。非単結晶シリコン系薄膜の材料としては、非晶質シリコンや微結晶シリコン等が挙げられる。
 本発明により得られるシリコン基板は、表面の清浄性が高く欠陥が少ないため、ヘテロ接合太陽電池に用いた場合は、シリコン基板とシリコン系薄膜との界面の特性が改善され、真性シリコン系薄膜によるパッシベーション効果等を向上できる。そのため、開放電圧および曲線因子の高いヘテロ接合太陽電池が得られる。
 図4は、ヘテロ接合太陽電池の一例を示す模式的断面図である。図4に示すヘテロ接合太陽電池は、n型単結晶シリコン基板1の一方の面に第一真性シリコン系薄膜2を備え、他方の面に第二真性シリコン系薄膜4を備える。第一真性シリコン系薄膜2上および第二真性シリコン系薄膜4上のそれぞれには、p型シリコン系薄膜3およびn型シリコン系薄膜5が形成されている。n型単結晶シリコン基板1に代えてp型単結晶シリコン基板を用いることもできる。
 真性シリコン系薄膜2,4は、実質的に真性なノンドープシリコン系薄膜であり、実質的にシリコンおよび水素からなる真性水素化非晶質シリコンであることが好ましい。単結晶シリコン基板1の表面に真性シリコン系薄膜2,4が形成されることにより、導電型シリコン系薄膜3,5製膜時の単結晶シリコン基板1への不純物拡散が抑制されるとともに、単結晶シリコン基板表面のパッシベーションを有効に行うことができる。
 真性シリコン系薄膜2,4の膜厚は、3~16nmが好ましく、4~14nmがより好ましく、5~12nmがさらに好ましい。真性シリコン系薄膜の膜厚が上記範囲であれば、単結晶シリコン基板表面のカバレッジが良好であり、導電型シリコン系薄膜3,5中の不純物原子の単結晶シリコン基板面への拡散が抑制されるとともに、直列抵抗による電気的ロスや光吸収による光学ロスを低減できる。
 シリコン系薄膜の製膜方法としては、プラズマCVDが好ましい。プラズマCVDによるシリコン系薄膜の製膜には、原料ガスとして、SiH、Si等のシリコン含有ガス、またはシリコン含有ガスとHの混合ガスが用いられる。CH、CO、NH、GeH等の異種元素を含むガスを上記ガスに添加することにより、シリコンカーバイド、シリコンオキサイド、シリコンナイトライド、シリコンゲルマニウム等のシリコン合金を形成することもできる。導電型(p型またはn型)のシリコン系薄膜を形成するためのドーパントガスとしては、BやPH等が好ましく用いられる。PやB等の不純物の添加量は微量でよいため、ドーパントガスが予め原料ガスやH等で希釈された混合ガスを用いることもできる。プラズマCVD法によるシリコン系薄膜の製膜条件としては、例えば、基板温度100~300℃、圧力20~2600Pa、高周波パワー密度0.003~0.5W/cmが好ましく用いられる。
 一実施形態では、真性シリコン系薄膜2,4に対して、水素を主成分とするガス雰囲気中でプラズマ処理(水素プラズマ処理)が行われる。具体的には、真性シリコン系薄膜2,4を製膜後、導電型シリコン系薄膜3,5の製膜前に、水素プラズマ処理を行う方法;真性シリコン系薄膜2,4の製膜を途中で一旦停止した後、水素プラズマ処理を行い、その後に真性シリコン系薄膜の製膜を再開する方法(導電側シリコン系薄膜の製膜前にさらに水素プラズマ処理を行ってもよい)等が挙げられる。中でも、真性シリコン系薄膜の製膜を途中一旦停止して、水素プラズマ処理を行い、その後に製膜を再開する方法が好ましい。この場合、水素プラズマ処理の前後に製膜される真性シリコン系薄膜の合計膜厚を上記の膜厚範囲とすることが好ましい。例えば、合計膜厚の40~60%の膜厚を製膜後、水素プラズマ処理を行い、その後に残りの膜厚部分を製膜することが好ましい。
 真性シリコン系薄膜2,4に対して水素プラズマ処理を行うことにより、真性シリコン系薄膜のエピタキシャル成長が抑制され、非晶質状態を維持できるため、高いパッシベーション効果を維持できる。また、真性シリコン系薄膜の一部の膜厚部分を製膜後に水素プラズマ処理を行うことにより、単結晶シリコン基板1へのプラズマダメージを低減しつつ、単結晶シリコン基板1の表面および単結晶シリコン基板1と真性シリコン系薄膜2,4との界面にも水素プラズマによるパッシベーション効果を及ぼすことができる。
 水素プラズマ処理の条件としては、例えば、基板温度100~300℃、圧力20~2600Paが好ましい。水素プラズマ処理工程における高周波パワー密度や水素プラズマ処理時間は、上記効果が得られる範囲で適宜に設定し得る。水素プラズマ処理工程における「水素を主成分とするガス雰囲気」とは、雰囲気中の水素濃度が70体積%以上であれば、窒素やヘリウム、アルゴン等の不活性ガスが含まれていてもよい。一方、水素プラズマ処理の際には、SiH等の原料ガスがチャンバー内に導入されず、かつ真性シリコン系薄膜の製膜に用いられた原料ガスがチャンバー内に残留していないことが好ましい。水素プラズマ処理のガス雰囲気に原料ガスが含まれている場合であっても、プラズマ放電中に、シリコン系薄膜が実質的に製膜されないことが好ましい。水素プラズマ処理時の原料ガス量の許容範囲は、他の製膜パラメータにも依存するが、体積比で、水素ガスの1/100以下が好ましく、1/500以下がより好ましく、1/2000以下がさらに好ましい。
 前述のように、真性シリコン系薄膜は非晶質シリコンであることが好ましいが、水素プラズマ処理により、一部が結晶化されてもよい。真性シリコン系薄膜の製膜と、水素プラズマ処理とは、同一の製膜チャンバー内で続けて行われることが好ましい。真性シリコン系薄膜を形成後、水素プラズマ処理を開始する前には、一旦プラズマ放電が停止されることが好ましい。すなわち、プラズマ放電が停止された状態で原料ガスの供給が停止され、チャンバー内が水素を主成分とするガス雰囲気となった後に放電が再開されて、水素プラズマ処理が開始されることが好ましい。この方法によれば、水素プラズマ処理の際の真性シリコン系薄膜の製膜を抑制できる。
 水素プラズマ処理は、第一真性シリコン系薄膜2および第二真性シリコン系薄膜4のいずれか一方に対して行ってもよく、両方に対して行ってもよい。第一真性シリコン系薄膜2および第二真性シリコン系薄膜4の両方に対して水素プラズマ処理を行うことにより、さらなる変換効率の向上が期待できる。
 本発明による結晶シリコン基板を用いた太陽電池の製造では、真性シリコン系薄膜に対する水素プラズマ処理を行うことによる変換特性(主に開放電圧および曲線因子)の向上効果が顕著となる傾向がある。これは、シリコン基板の表面が清浄であるために水素プラズマによる界面のパッシベーション効果が得られ易いためと推定される。また、テクスチャの凹部の曲率半径が小さい(凹部が丸くない)ことに起因する開放電圧や曲線因子の低下(真性シリコン系薄膜の膜厚の不均一や、テクスチャの凹部分での欠陥等に起因する特性低下)が、水素プラズマ処理により修復されることも、変換特性の向上に寄与していると考えられる。
 第一真性シリコン系薄膜2上には、p型シリコン系薄膜3が製膜される。第二真性シリコン系薄膜4上には、n型シリコン系薄膜5が製膜される。これらの導電型シリコン系薄膜は、非単結晶シリコン系薄膜であり、その材料としては、非晶質シリコン、非晶質シリコンカーバイド、非晶質シリコンオキサイド、非晶質シリコンナイトライド等の非晶質シリコン系材料や、微結晶シリコン、微結晶シリコンカーバイド、微結晶シリコンオキサイド、微結晶シリコンナイトライド等の微結晶シリコン系材料が挙げられる。導電型シリコン系薄膜3,5の膜厚は、3~50nmが好ましく、5~30nmがより好ましい。
 導電型シリコン系薄膜3,5上には、第一透明導電層6および第二透明導電層8が形成される。透明性と導電性を両立する観点から、透明導電層6,8の膜厚は、10~140nmが好ましい。透明導電層の材料としては、酸化インジウムや酸化錫、酸化亜鉛、酸化チタンや、これらの複合酸化物等の透明導電性金属酸化物が好ましく用いられる。中でも、酸化インジウムを主成分とするインジウム系複合酸化物が好ましく、高い導電率と透明性を両立する観点から、酸化インジウム錫(ITO)が特に好ましい。透明導電層の製膜方法としては、スパッタリング法、イオンプレーティング法、有機金属化学気相堆積(MOCVD)法、熱CVD法、プラズマCVD法、分子線ビームエピタキシー(MBE)法やパルスレーザー堆積(PLD)法等が挙げられる。ITO等のインジウム系酸化物の製膜方法は、スパッタリング法が好ましい。
 透明導電層6,8上には、電流取り出しのための集電極7,9が形成されることが好ましい。集電極は、インクジェット、スクリーン印刷、導線接着、スプレー、めっき等の公知技術によって作製できる。受光面側の集電極は、太陽電池の受光面積を大きくするために、櫛形パターン等の形状にパターン化されていることが好ましい。受光側と反対側の集電極は、パターン化されていてもよく、パターン化されていなくともよい。
[太陽電池モジュール]
 上記のように製造された結晶シリコン系太陽電池は、実用に供するに際して、モジュール化されることが好ましい。太陽電池のモジュール化は、適宜の方法により行われる。例えば、集電極にタブ電極等のインターコネクタを介してバスバーが接続されることによって、複数の太陽電池セルが直列または並列に接続され、封止材およびガラス板により封止されることにより、結晶シリコン系太陽電池モジュールが得られる。
 以下、実施例を示して本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[単結晶シリコン基板の作製例]
[実施例1]
(異方性エッチング)
 受光面の面方位が(100)で、厚みが200μmのn型単結晶シリコン基板の表面をアルカリ洗浄した後、80℃に保持された異方性エッチング液(KOH/イソプロピルアルコール=3/1(重量%比)水溶液)に30分間浸漬して、表面にテクスチャを形成した。その後、超純水によるリンスが2回行われた。
(酸処理)
 テクスチャ形成後の単結晶シリコン基板を、20℃に保持された5重量%塩酸に10分間浸漬した。その後、超純水によるリンスが2回行われた。
(オゾン処理)
 酸処理後の単結晶シリコン基板を、25℃に保持されたオゾン水(初期濃度:15ppm)に浸漬し、オゾン濃度を維持するために、オゾン水浴にオゾン水(オゾン水製造装置出口のオゾン濃度:15ppm)を連続供給してオーバーフローさせながら、10分間の浸漬処理を行った。オゾン水浴中のオゾン水の濃度を、紫外線式オゾン水濃度計(オキトロテック社製 OZM-5000L)によりモニタリングしたところ、シリコン基板の浸漬直後にオゾン濃度が4ppmまで低下し、その後6ppmで一定となった。
 オゾン水浴からシリコン基板を取り出した後、超純水によるリンスが2回行われた。オゾン処理後のシリコン基板の表面を、原子間力顕微鏡(パシフィックナノテクノロジー社製)により観察したところ、ピラミッド型のテクスチャが均一に形成されていた。シリコン基板のテクスチャの高低差H(テクスチャサイズ)は、2μmであった。透過型電子顕微鏡(TEM)観察によりテクスチャの凹部の曲率半径rを求めたところ、1nmであった。
(酸化膜除去)
 オゾン処理後の結晶シリコン基板を、25℃に保持された2重量%のHF水溶液に2分間浸漬した。その後、超純水によるリンスが2回行われた。HF水溶液による酸化膜除去後のシリコン基板の表面を、原子間力顕微鏡により観察したところ、シリコン基板のテクスチャの高低差Hは、酸化膜除去前から変化していなかった。テクスチャ凹部の曲率半径は2nmであった。
[実施例2]
 実施例2では、オゾン水の連続供給に代えて、オゾン水浴中にオゾンガスをバブリングすることにより、オゾン濃度の維持を図った。シリコン基板の浸漬直後にオゾン濃度が13ppmまで低下し、その後15ppmで一定となった。オゾン処理方法が変更されたこと以外は、上記実施例1と同様にして、単結晶シリコン基板の異方性エッチング、酸処理、オゾン処理および酸化膜除去が行われた。
[実施例3]
 塩酸による酸処理時の温度を60℃に変更したこと以外は、上記実施例2と同様にして、単結晶シリコン基板の異方性エッチング、酸処理、オゾン処理および酸化膜除去が行われた。
[比較例1,2]
 異方性エッチング後、塩酸による酸処理を行わずに、オゾン処理が行われた。それ以外は上記実施例1,2と同様にして、単結晶シリコン基板の異方性エッチング、オゾン処理および酸化膜除去が行われた。
[比較例3,4]
 酸処理において、塩酸に代えてHF/HNO(5重量%/60重量%)水溶液が用いられた。それ以外は上記実施例1,2と同様にして、単結晶シリコン基板の異方性エッチング、酸処理、オゾン処理および酸化膜除去が行われた。
 上記の単結晶シリコン基板の作製例における酸処理の条件およびオゾン処理の条件、ならびにオゾン処理後およびHF処理後のテクスチャの形状(テクスチャ高さおよび凹部曲率半径)を表1に示す。
<オゾン処理後のシリコン基板表面のアルカリ金属濃度の測定>
 フッ化水素酸と硝酸の混合液(2mL/cm)で、オゾン処理後のシリコン基板の表面を溶解処理し、処理後の溶液を誘導結合プラズマ質量分析(ICP-MS)で分析した。実施例3のシリコン基板表面を処理後の溶液のアルカリ金属濃度は、検出限界(0.02ppm)以下であった。一方、比較例2のシリコン基板表面を処理後の溶液のアルカリ金属濃度は、0.18ppmであった。
[ヘテロ接合太陽電池の作製例]
 上記各実施例および比較例の単結晶シリコン基板を用い、以下の方法によりヘテロ接合太陽電池を作製した。
[実施例1A(水素プラズマ処理なし)]
 実施例1で作製された単結晶シリコン基板がCVD装置へ導入され、一方の面(受光面側)に、受光面側真性非晶質シリコン薄膜が8nmの膜厚で製膜された。製膜条件は、基板温度が150℃、圧力120Pa、SiH/H流量比が3/10、高周波パワー密度が0.011W/cmであった。受光面側真性非晶質シリコン薄膜上にp型非晶質シリコン薄膜が10nmの膜厚で製膜された。p型非晶質シリコン薄膜の製膜条件は、基板温度が150℃、圧力60Pa、SiH/希釈B流量比が1/3、高周波パワー密度が0.011W/cmであった。なお、上記希釈Bガスとしては、HによりB濃度が5000ppmまで希釈されたガスが用いられた。
 単結晶シリコン基板の他方の面(裏面側)に、裏面側真性非晶質シリコン薄膜が8nmの膜厚で製膜された。裏面側真性非晶質シリコン薄膜の製膜条件は、受光面真性非晶質シリコン薄膜の製膜条件と同一であった。裏面側真性非晶質シリコン薄膜上にn型非晶質シリコン薄膜が10nmの膜厚で製膜された。n型非晶質シリコン薄膜の製膜条件は、基板温度が150℃、圧力60Pa、SiH/希釈PH流量比が1/2、高周波パワー密度が0.011W/cmであった。なお、上記希釈PHガスとしては、HによりPH濃度が5000ppmまで希釈されたガスが用いられた。
 p型非晶質シリコン薄膜上およびn型非晶質シリコン薄膜上のそれぞれに、透明導電層として、インジウム錫複合酸化物(ITO)が100nmの膜厚で製膜された。ITOの製膜には、ターゲットとして酸化インジウムと酸化スズの焼結体(酸化錫含有量が5重量%)が用いられた。キャリアガスとしてアルゴンが100sccmで導入され、基板温度は室温、圧力0.2Pa、高周波パワー密度0.5W/cmの条件で製膜が行われた。
 上記の透明導電層のそれぞれの表面に、集電極として、銀ペーストがスクリーン印刷された。その後、銀ペーストを固化するために、150℃の大気下にて60分間加熱が行われて、櫛形の集電極が形成された。集電極の間隔は10mmとした。
[実施例1B(水素プラズマ処理あり)]
 実施例1Bでは、単結晶シリコン基板上への真性非晶質シリコン薄膜の形成において、膜厚の一部を製膜後に一旦成膜が中止され、水素プラズマ処理が行われた後、真性非晶質シリコン薄膜の膜厚の残部が形成された。
 実施例1で作製された単結晶シリコン基板の一方の面(受光面側)に、非晶質シリコン薄膜が4nmの膜厚で製膜された。製膜後、一旦プラズマ放電が停止され、SiHの供給が停止された。約30秒間、水素ガスのみがCVD装置へ供給されて、装置内のガス置換が行われた。その後、プラズマ放電が再開され、水素プラズマ処理が行われた。水素プラズマ処理の条件は、基板温度150℃、圧力120Pa、高周波パワー密度0.026W/cmであり、処理時間は60秒であった。その後、SiHの供給が再開され、真性非晶質シリコン薄膜の残部が4nmの膜厚で製膜され、合計膜厚が8nmの受光面側非晶質シリコン薄膜が形成された。これらの真性非晶質シリコン薄膜の製膜条件(基板温度、圧力、ガス流量、および高周波パワー密度)は、実施例1と同一であった。
 単結晶シリコン基板の他方の面(裏面側)にも、上記と同様に真性非晶質シリコン薄膜が4nmの膜厚で製膜され、水素プラズマ処理が行われた後、製膜が再開され、膜厚4nmの非晶質シリコン薄膜が製膜された。水素プラズマ処理の条件は、受光面側と同一であった。
 真性非晶質シリコン薄膜の製膜途中に水素プラズマ処理が行われたこと以外は、上記の実施例1Aと同様にして、結晶シリコン系太陽電池を作製した。
[実施例2A,3Aおよび比較例1A,2A,3A,4A(水素プラズマ処理なし)]
 実施例2,3および比較例1,2,3,4で作製された単結晶シリコン基板が用いられたこと以外は、上記実施例1Aと同様にして、結晶シリコン系太陽電池を作製した。
[実施例2B,3Bおよび比較例1B,2B,3B,4B(水素プラズマ処理あり)]
 実施例2,3および比較例1,2,3,4で作製された単結晶シリコン基板が用いられたこと以外は、上記実施例1Bと同様にして、結晶シリコン系太陽電池を作製した。
 ソーラーシミュレータを用いて、上記各実施例および比較例の結晶シリコン系太陽電池の変換特性(短絡電流密度(Jsc)、開放端電圧(Voc)、曲線因子(FF)および変換効率(Eff)を測定した。結果を表1に示す。なお、表1の各光電変換特性は、比較例1に対する相対値として示されている。また、同一の実施例で得られたシリコン基板を用いた実施例および比較例の、非晶質真性シリコン薄膜形成時の水素プラズマ処理の有無による変換効率(Eff)の上昇率を、表1にあわせて示す。
  上昇率(%)=100×{(水素プラズマ処理有のEff/水素プラズマ処理無のEff)-1}
Figure JPOXMLDOC01-appb-T000001
 実施例1~3の基板を用いた太陽電池は、オゾン処理前に酸洗浄が行われなかった比較例1、比較例2の基板を用いた太陽電池に比べて、VocおよびFFが向上し、高い変換効率を有することが分かる。
 上述のように、実施例3のシリコン基板は表面のアルカリ金属濃度が、比較例2の1/10あるいはそれ以下であったことから、オゾン処理前に酸洗浄を実施することにより、不純物濃度が低減していることが分かる。これらの結果から、オゾン処理前に酸洗浄が行われることにより、オゾン水浴中への不純物の持ち込み量が低減したために、シリコン基板表面の不純物が低減し、VocおよびFFの向上に寄与していると考えられる。
 フッ化水素酸と硝酸による酸処理後にオゾン処理が行われた比較例3,4では、実施例に比べて、テクスチャの凹部の曲率半径が大きくなっている。これは、酸化性の酸を用いた酸処理により、等方性エッチングが進行したためである。比較例3、比較例4の基板を用いた太陽電池は、VocおよびFFは実施例1~3の基板を用いた太陽電池と同等であるが、Jscが低いことが分かる。これは、上記の酸処理により、テクスチャの凹部が丸くなり、基板の反射率が高くなったためと推定される。
 これに対し、実施例1~3では、塩酸により酸処理が行われたため、テクスチャの凹部の曲率半径が、酸処理を行わない場合(比較例1,2)と同等であり、テクスチャの凹部の曲率半径が大きい比較例3,4に比べて、Jscが向上し、変換効率の高い太陽電池が得られることが分かる。
 実施例1と実施例2の対比から、オゾン水を供給する場合に比べて、オゾンガスをバブリングする方法では、オゾン水のオゾン濃度を高めることができ、オゾン洗浄効果が高いために、VocおよびFFの高い太陽電池が得られると考えられる。また、本発明では、オゾン処理の前に酸洗浄が行われ、オゾン水浴への不純物の持ち込み量が小さいため、オーバーフローによりオゾン水の入れ替えを行わなくとも、不純物濃度を低く維持できる。そのため、オゾンガスのバブリングにより、高オゾン濃度を維持しながら、オゾン処理を行うことができ、変換効率に優れる太陽電池が得られることに加えて、オゾン廃水を低減できるとの利点も有する。
 実施例3では、酸洗浄の温度を高くすることにより、酸洗浄の効果がさらに高められ、オゾン水浴への不純物の持ち込みが低減するために、より高効率の太陽電池が得られたと考えられる。
 太陽電池の作製の際の、非晶質シリコン薄膜へのプラズマ処理の有無による変換特性の差異に着目すると、実施例1~3では、比較例1~4に比べて、水素プラズマ処理による変換効率の上昇率が高いことが分かる。いずれも水素プラズマ処理が行われなかった、実施例1Aと比較例3Aを対比すると、比較例3Aの方がVocおよびFFが高いことが分かる。これに対して、いずれもプラズマ処理が行われた実施例1Bと比較例3Bを対比すると、実施例1BのVocおよびFFは、比較例3Bと同等あるいはそれ以上であった。
 実施例2の基板を用いた太陽電池と比較例4の基板用いた太陽電池との対比でも、水素プラズマ処理の有無に関して、同様の傾向がみられた。これらの結果から、塩酸を用いた酸処理ではテクスチャの凹部が丸くならないために、太陽電池のJscが高められるとともに、非晶質シリコン薄膜に水素プラズマ処理を行うことにより、VocおよびFFが大幅に向上して、変換効率の高い太陽電池が得られることが分かる。また、高温で酸処理が行われた実施例3では、水素プラズマ処理によるVocおよびFFの向上効果がより顕著であることが分かる。
  1  単結晶シリコン基板
  2,4  真性シリコン系薄膜
  3,5  導電型シリコン系薄膜
  6,8  透明導電層
  7,9  集電極
  100,200  オゾン処理装置
  110,210  オゾン水浴
  112,212  オゾン水
  116  シリコン基板
  121,122  排出管
  126,127  排水供給管
  130  排水タンク
  144  オゾン水生成部
  244  オゾンガス発生部
  146  オゾン水供給管
  246  オゾンガス供給管
  149  不純物除去部

Claims (12)

  1.  単結晶シリコン基板の表面にアルカリ溶液を接触させて、前記単結晶シリコン基板の表面にテクスチャを形成する異方性エッチング工程;
     前記単結晶シリコン基板の表面に、塩酸を接触させる酸処理工程;および
     前記単結晶シリコン基板の表面に、オゾン水を接触させるオゾン処理工程、
     をこの順に有する、太陽電池用結晶シリコン基板の製造方法。
  2.  前記オゾン処理工程において、前記単結晶シリコン基板を、オゾン水浴に浸漬することを特徴とする、請求項1に記載の太陽電池用結晶シリコン基板の製造方法。
  3.  前記オゾン処理工程において、オゾン水浴にオゾンガスを供給することにより、前記オゾン水の濃度が調整される、請求項2に記載の太陽電池用結晶シリコン基板の製造方法。
  4.  前記酸処理工程における塩酸の濃度が1重量%~15重量%である、請求項1~3のいずれか1項に記載の太陽電池用結晶シリコン基板の製造方法。
  5.  前記酸処理工程における塩酸の温度が、30℃~80℃である、請求項1~4のいずれか1項に記載の太陽電池用結晶シリコン基板の製造方法。
  6.  前記オゾン処理工程後に、前記単結晶シリコン基板の表面にフッ化水素酸を接触させる、酸化膜除去工程をさらに有する、請求項1~5のいずれか1項に記載の太陽電池用結晶シリコン基板の製造方法。
  7.  前記オゾン処理工程後の前記単結晶シリコン基板は、表面のテクスチャサイズが0.1μm以上5μm未満であり、前記テクスチャの凹部の曲率半径が5nm未満である、請求項1~6のいずれか1項に記載の太陽電池用結晶シリコン基板の製造方法。
  8.  請求項1~7のいずれか1項に記載の方法により表面にテクスチャを有する単結晶シリコン基板を得るステップ;および
     前記単結晶シリコン基板のテクスチャ形成面上に、導電型非単結晶シリコン系薄膜を製膜するステップ、
    を有する、結晶シリコン系太陽電池の製造方法。
  9.  前記導電型非単結晶シリコン系薄膜上に、透明導電層を製膜するステップをさらに有する、請求項8に記載の結晶シリコン系太陽電池の製造方法。
  10.  前記単結晶シリコン基板と前記導電型非単結晶シリコン系薄膜との間に、真性非単結晶シリコン薄膜を製膜するステップをさらに有する、請求項8または9に記載の結晶シリコン系太陽電池の製造方法。
  11.  前記真性非単結晶シリコン薄膜の少なくとも一部を製膜後、前記導電型非単結晶シリコン系薄膜を製膜する前に、
     水素を主成分とするガス雰囲気中で、前記真性非単結晶シリコン薄膜に対してプラズマ処理が実施される、請求項10に記載の結晶シリコン系太陽電池の製造方法。
  12.  請求項8~11のいずれか1項に記載の方法により太陽電池を製造するステップ;および
     前記太陽電池の複数を接続し、封止材により封止するステップ、
    を有する、結晶シリコン系太陽電池モジュールの製造方法。
PCT/JP2016/051852 2015-03-24 2016-01-22 太陽電池用結晶シリコン基板の製造方法、結晶シリコン系太陽電池の製造方法および結晶シリコン系太陽電池モジュールの製造方法 WO2016152228A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017507542A JP6513788B2 (ja) 2015-03-24 2016-01-22 結晶シリコン系太陽電池の製造方法および結晶シリコン系太陽電池モジュールの製造方法
CN201680015204.XA CN107431099B (zh) 2015-03-24 2016-01-22 太阳能电池用结晶硅基板的制造方法、结晶硅系太阳能电池的制造方法及结晶硅系太阳能电池模块的制造方法
US15/560,596 US10333012B2 (en) 2015-03-24 2016-01-22 Method for manufacturing crystalline silicon substrate for solar cell, method for manufacturing crystalline silicon solar cell, and method for manufacturing crystalline silicon solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015061768 2015-03-24
JP2015-061768 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016152228A1 true WO2016152228A1 (ja) 2016-09-29

Family

ID=56977145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051852 WO2016152228A1 (ja) 2015-03-24 2016-01-22 太陽電池用結晶シリコン基板の製造方法、結晶シリコン系太陽電池の製造方法および結晶シリコン系太陽電池モジュールの製造方法

Country Status (4)

Country Link
US (1) US10333012B2 (ja)
JP (2) JP6513788B2 (ja)
CN (1) CN107431099B (ja)
WO (1) WO2016152228A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004126A1 (ja) * 2017-06-28 2019-01-03 株式会社カネカ 光電変換装置の製造方法
CN110416369A (zh) * 2019-08-21 2019-11-05 青海黄河上游水电开发有限责任公司光伏产业技术分公司 Perc电池清洗制绒工艺及系统
WO2020184261A1 (ja) * 2019-03-11 2020-09-17 株式会社カネカ 太陽電池およびその製造方法、太陽電池の検査方法、ならびに太陽電池モジュールおよびその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879363B1 (ko) * 2017-01-17 2018-08-16 엘지전자 주식회사 태양 전지 제조 방법
KR102584087B1 (ko) * 2018-03-19 2023-10-04 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 텐덤 태양전지의 제조 방법
CN109686651A (zh) * 2018-12-10 2019-04-26 江苏林洋光伏科技有限公司 太阳能电池的臭氧清洗方法
CN111883618A (zh) * 2020-08-03 2020-11-03 山西潞安太阳能科技有限责任公司 一种臭氧化碱抛光se—perc太阳能电池制备方法
CN112599618A (zh) * 2020-12-15 2021-04-02 泰州隆基乐叶光伏科技有限公司 一种太阳能电池及其制作方法
CN113707765A (zh) * 2021-08-30 2021-11-26 上海谦阳科技有限公司 表面处理设备的控制方法
CN114628252B (zh) * 2022-03-09 2024-10-25 通威太阳能(安徽)有限公司 硅片的碱抛光方法、perc电池及其制备方法
CN115985991B (zh) * 2022-12-22 2024-08-20 通威太阳能(成都)有限公司 太阳电池及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034583A (ja) * 2006-07-28 2008-02-14 Kyocera Corp 太陽電池素子の製造方法
WO2011002086A1 (ja) * 2009-07-03 2011-01-06 株式会社カネカ 結晶シリコン系太陽電池およびその製造方法
JP2011515872A (ja) * 2008-03-25 2011-05-19 アプライド マテリアルズ インコーポレイテッド 結晶太陽電池の表面クリーニング及び凹凸形成プロセス
JP2012033856A (ja) * 2010-07-07 2012-02-16 Namics Corp 太陽電池及びその電極形成用導電性ペースト
WO2012036002A1 (ja) * 2010-09-14 2012-03-22 信越化学工業株式会社 太陽電池及びその製造方法
JP2014096459A (ja) * 2012-11-08 2014-05-22 Mitsubishi Electric Corp 太陽電池用半導体基板の表面処理方法、太陽電池用半導体基板の製造方法、太陽電池の製造方法及び太陽電池製造装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69708463T2 (de) * 1996-02-27 2002-05-16 Canon K.K., Tokio/Tokyo Photovoltaische Vorrichtung, die ein undurchsichtiges Substrat mit einer spezifischen unregelmässigen Oberflächenstruktur aufweist
US6207890B1 (en) 1997-03-21 2001-03-27 Sanyo Electric Co., Ltd. Photovoltaic element and method for manufacture thereof
EP1969873B1 (en) * 2005-12-22 2018-02-28 Telecom Italia S.p.A. Method and system for simulating a communication network, related network and computer program product therefor
FR2955707B1 (fr) * 2010-01-27 2012-03-23 Commissariat Energie Atomique Procede de realisation d'une cellule photovoltaique avec preparation de surface d'un substrat en silicium cristallin
CN102214726B (zh) * 2010-04-01 2013-03-06 索日新能源股份有限公司 太阳能硅片表面制绒处理方法
US20120295447A1 (en) * 2010-11-24 2012-11-22 Air Products And Chemicals, Inc. Compositions and Methods for Texturing of Silicon Wafers
DE102010054370A1 (de) * 2010-12-13 2012-06-14 Centrotherm Photovoltaics Ag Verfahren zur Herstellung von Siliziumsolarzellen mit vorderseitiger Textur und glatter Rückseitenoberfläche
JP5919559B2 (ja) * 2011-06-30 2016-05-18 パナソニックIpマネジメント株式会社 光起電力装置
WO2013013216A1 (en) * 2011-07-20 2013-01-24 Fauklner Adrienne System and method for designing accessible and usable spaces having built-in furnishings in a multi-unit environment
GB2495537B (en) * 2011-10-14 2017-02-15 Solentim Ltd Method of and apparatus for analysis of a sample of biological tissue cells
JP2013131723A (ja) * 2011-12-22 2013-07-04 Mitsubishi Electric Corp 半導体基板の改質方法
CN103184523B (zh) * 2011-12-27 2016-01-27 中建材浚鑫科技股份有限公司 一种单晶硅制绒剂及绒面单晶硅的制备方法
US8826605B2 (en) * 2012-10-05 2014-09-09 Oldcastle Precast, Inc. Lifting and bracing system for a wall panel
JP6062712B2 (ja) * 2012-10-30 2017-01-18 三菱電機株式会社 太陽電池の製造方法およびこれに用いられる太陽電池製造装置
JP2014090086A (ja) * 2012-10-30 2014-05-15 Mitsubishi Electric Corp シリコン基板のエッチング方法、シリコン基板のエッチング液および太陽電池の製造方法
JP6185304B2 (ja) * 2013-06-28 2017-08-23 株式会社カネカ 結晶シリコン系光電変換装置およびその製造方法
CN103337560B (zh) * 2013-07-08 2015-10-28 苏州大学 用于太阳能电池的三维硅纳米结构的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034583A (ja) * 2006-07-28 2008-02-14 Kyocera Corp 太陽電池素子の製造方法
JP2011515872A (ja) * 2008-03-25 2011-05-19 アプライド マテリアルズ インコーポレイテッド 結晶太陽電池の表面クリーニング及び凹凸形成プロセス
WO2011002086A1 (ja) * 2009-07-03 2011-01-06 株式会社カネカ 結晶シリコン系太陽電池およびその製造方法
JP2012033856A (ja) * 2010-07-07 2012-02-16 Namics Corp 太陽電池及びその電極形成用導電性ペースト
WO2012036002A1 (ja) * 2010-09-14 2012-03-22 信越化学工業株式会社 太陽電池及びその製造方法
JP2014096459A (ja) * 2012-11-08 2014-05-22 Mitsubishi Electric Corp 太陽電池用半導体基板の表面処理方法、太陽電池用半導体基板の製造方法、太陽電池の製造方法及び太陽電池製造装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004126A1 (ja) * 2017-06-28 2019-01-03 株式会社カネカ 光電変換装置の製造方法
JPWO2019004126A1 (ja) * 2017-06-28 2020-04-23 株式会社カネカ 光電変換装置の製造方法
US11069828B2 (en) 2017-06-28 2021-07-20 Kaneka Corporation Method for manufacturing photoelectric conversion device
WO2020184261A1 (ja) * 2019-03-11 2020-09-17 株式会社カネカ 太陽電池およびその製造方法、太陽電池の検査方法、ならびに太陽電池モジュールおよびその製造方法
JPWO2020184261A1 (ja) * 2019-03-11 2021-12-09 株式会社カネカ 太陽電池およびその製造方法、太陽電池の検査方法、ならびに太陽電池モジュールおよびその製造方法
JP7137271B2 (ja) 2019-03-11 2022-09-14 株式会社カネカ 太陽電池の製造方法、および太陽電池モジュールの製造方法
CN110416369A (zh) * 2019-08-21 2019-11-05 青海黄河上游水电开发有限责任公司光伏产业技术分公司 Perc电池清洗制绒工艺及系统

Also Published As

Publication number Publication date
CN107431099A (zh) 2017-12-01
JP6513788B2 (ja) 2019-05-15
US10333012B2 (en) 2019-06-25
CN107431099B (zh) 2019-09-03
JPWO2016152228A1 (ja) 2017-12-21
US20180062005A1 (en) 2018-03-01
JP2019110348A (ja) 2019-07-04

Similar Documents

Publication Publication Date Title
WO2016152228A1 (ja) 太陽電池用結晶シリコン基板の製造方法、結晶シリコン系太陽電池の製造方法および結晶シリコン系太陽電池モジュールの製造方法
JP6435340B2 (ja) 結晶シリコン系太陽電池の製造方法、及び太陽電池モジュールの製造方法
TWI494416B (zh) 用於蝕紋單晶及多晶矽基板表面之酸性蝕刻溶液及方法
US8329046B2 (en) Methods for damage etch and texturing of silicon single crystal substrates
US20100029034A1 (en) Method of manufacturing solar cell
US20080216893A1 (en) Process for Manufacturing Photovoltaic Cells
WO2012150627A1 (ja) シリコン基板の洗浄方法および太陽電池の製造方法
JP6909267B2 (ja) 光電変換装置の製造方法
JP2014096459A (ja) 太陽電池用半導体基板の表面処理方法、太陽電池用半導体基板の製造方法、太陽電池の製造方法及び太陽電池製造装置
JP6062712B2 (ja) 太陽電池の製造方法およびこれに用いられる太陽電池製造装置
JP6857231B2 (ja) 結晶シリコン系太陽電池およびその製造方法
JP6609324B2 (ja) 光電変換装置の製造方法
WO2011094127A2 (en) Texturing and damage etch of silicon single crystal (100) substrates
JP3602323B2 (ja) 太陽電池の製造方法
JP6426961B2 (ja) 太陽電池の製造方法及び太陽電池モジュールの製造方法
JP2009290013A (ja) 太陽電池の製造方法および太陽電池
JP2016032073A (ja) 太陽電池セルの製造方法および太陽電池セルの製造装置
JP2011066213A (ja) 光電変換装置及びその製造方法
WO2014208353A1 (ja) 太陽光発電装置用基板の製造方法および太陽光発電装置用基板の製造装置
JP2014072292A (ja) 太陽電池の製造方法及び太陽電池
Ebong et al. Effect of surface cleaning on pyramid size of randomly textured mono crystalline silicon and the impact on solar cell efficiency
JP4247964B2 (ja) 太陽電池素子の形成方法
JP2016181629A (ja) 太陽電池用シリコン基板の製造装置および製造方法
JP2019047128A (ja) 太陽電池の製造方法及び太陽電池モジュールの製造方法
JP2014007198A (ja) 結晶シリコン系光電変換装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507542

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15560596

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768131

Country of ref document: EP

Kind code of ref document: A1