WO2016152147A1 - 直流遮断装置 - Google Patents
直流遮断装置 Download PDFInfo
- Publication number
- WO2016152147A1 WO2016152147A1 PCT/JP2016/001649 JP2016001649W WO2016152147A1 WO 2016152147 A1 WO2016152147 A1 WO 2016152147A1 JP 2016001649 W JP2016001649 W JP 2016001649W WO 2016152147 A1 WO2016152147 A1 WO 2016152147A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switch
- current
- circuit breaker
- circuit
- direct current
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/02—Details
- H01H33/59—Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
- H01H33/596—Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/02—Details
- H01H33/59—Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/54—Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
- H01H9/541—Contacts shunted by semiconductor devices
- H01H9/542—Contacts shunted by static switch means
- H01H2009/546—Contacts shunted by static switch means the static switching means being triggered by the voltage over the mechanical switch contacts
Definitions
- Embodiments of the present invention relate to a DC interrupting device that interrupts a DC current.
- a power transmission system that transmits electric power is required to have a function of interrupting a transmission current in order to cope with an accident or the like.
- a circuit breaker is used for this purpose. Since there is a time (current zero point) when the current becomes zero in the alternating current, the current can be cut off relatively easily at the current zero point. On the other hand, unlike an alternating current, since there is no current zero point in a direct current, an arc is likely to occur at the time of interruption. For this reason, the DC breaker generally has a mechanism for reducing arcs.
- the DC circuit breaker includes, for example, an energization path having a switch (switch) and a current interrupt path that is connected in parallel with the energization path and that can gradually reduce the current.
- a switch (switch) on the energization path is closed and a current flows through the energization path.
- the current interrupting path is temporarily turned on and the switch (switch) is opened to switch the current path from the energizing path to the current interrupting path and to pass current through the current interrupting path (commutation). . Thereafter, the current in the current interrupt path is quickly reduced to interrupt the current.
- the current switching from the energization path to the current cutoff path is fast.
- the switching is delayed, the current at the time of the accident increases, and the current that should be interrupted by the current interrupt path increases.
- a large-capacity current interrupting path is required, and the circuit breaker may be enlarged.
- the problem to be solved by the present invention is to provide a DC cutoff device that is miniaturized.
- the DC circuit breaker includes an energization path, a commutation circuit, a semiconductor circuit breaker, and a nonlinear resistor.
- the energizing path carries a direct current and has first and second switches.
- the second switch is connected in series with the first switch, and has a lower withstand voltage than the first switch.
- the semiconductor breaker and the non-linear resistor are connected in parallel with the current path.
- FIG. 1 shows the configuration of the DC interrupter of the first embodiment.
- the direct current interrupt device of the first embodiment includes an energization path 10, a current interrupt path 30, a current detector 21, and a controller 50.
- the current interruption path 30 is connected in parallel to the energization path 10.
- the current detector 21 detects the current of the energization path 10 and the current cutoff path 30 as a whole.
- the controller 50 controls the flow of current in the energization path 10 and the current cutoff path 30 based on the value of the current detected by the current detector 21.
- the energization path 10 has a switch 11 as a first switch, a switch 12 as a second switch, a resistor 13, a commutation circuit 14, and a transient voltage suppression circuit 15.
- Switch 11 and switch 12 are connected in series.
- the switch 11 has a first withstand voltage.
- the switch 11 is controlled to be closed or opened by the controller 50 and switches between passing and not passing the current regardless of the semiconductor breaker 31 (regardless of the semiconductor breaker 31).
- a switch (gas switch) using an insulating gas such as SF 6 gas can be used.
- the insulating gas is filled in the container that houses the electrode of the switch 11.
- the switch 12 has a second withstand voltage (for example, about several kV) lower than the first withstand voltage.
- the switch 12 is controlled to be closed or opened by the controller 50, and switches between passing and not passing the current regardless of the semiconductor breaker 31 (regardless of the semiconductor breaker 31).
- a vacuum switch can be used as the switch 12.
- a vacuum valve 120 (see FIGS. 3 and 4 to be described later) can be used for the switch portion of the vacuum switch.
- the commutation circuit 14 is connected in parallel with the switch 12.
- the commutation circuit 14 is a current source that outputs a current in a direction opposite to the direction of the current to be interrupted (the direct current flowing through the energization path 10). Details of this will be described later.
- the transient voltage suppression circuit 15 is connected in parallel with the switch 12.
- the transient voltage suppression circuit 15 includes, for example, a capacitor 15 a and protects the switch 12 from a transient voltage applied to the switch 12.
- the transient voltage suppression circuit 15 is installed only in the switch 12.
- the transient voltage suppression circuit 15 may be installed in both the switches 11 and 12.
- the current breaking path 30 includes a semiconductor breaker 31 as a semiconductor switch and a non-linear resistor 32 connected in parallel with the semiconductor breaker 31.
- the controller 50 starts open control (breaking control) for opening the electrodes of the switches 11 and 12.
- the controller 50 controls the commutation circuit 14 after the start of the open control (breaking control), and promotes switching (commutation) of the current path from the energization path 10 to the semiconductor circuit breaker 31. Specifically, the controller 50 controls the commutation circuit 14 to inject a current in a direction opposite to the current direction of the switch 12 into the switch 12, thereby causing the switch 12 (the current path 10) to flow. The current is 0. As a result, the current flowing through the energization path 10 flows through the semiconductor circuit breaker 31.
- the controller 50 controls the semiconductor breaker 31 in the on state after the start of the opening control of the electrodes of the switches 11 and 12, and switches it to the off state.
- the switches 11 and 12 of the energization path 10 are closed, and a current flows through the energization path 10.
- the semiconductor circuit breaker 31 is turned on, while the switches 11 and 12 are cut off.
- a current in the direction opposite to the current flowing through the switch 12 is injected from the commutation circuit 14 into the switch 12, and the current flowing through the switch 12 (conduction path 10) becomes zero.
- the current path is quickly switched from the energization path 10 to the current cutoff path 30 (commutation). Thereafter, the current in the current interrupt path 30 is quickly reduced, and the current is interrupted.
- the direct current during normal operation is generally considered to be from left to right and from right to left in the figure.
- This DC circuit breaker can handle both.
- the direct current during normal operation flows from the left to the right in the figure.
- the switches 11 and 12 can switch between passing and not passing through the semiconductor circuit breaker 31.
- the switch 11 has a predetermined large pressure resistance (described later).
- the pressure resistance of the switch 12 is lower than the pressure resistance of the switch 11.
- the instantaneous interruption performance (opening / closing speed) of the switch 12 is higher than the instantaneous interruption performance (opening / closing speed) of the switch 11. The details of the switch 12 will be described later with reference to FIGS.
- the switches 11 and 12 thus have different characteristics (pressure resistance, high speed) and thus their roles.
- the switches 11 and 12 are connected in series and controlled by the controller 50 to open and close the respective electrodes.
- the resistor 13 is connected in parallel with the switch 12.
- the resistance of the resistor 13 is larger than the ON resistance of the semiconductor circuit breaker 31 at the time of current interruption, and smaller than the resistance of the nonlinear resistor 32 connected in parallel with the semiconductor circuit breaker 31.
- the open switch 11 is in an insulated state, and its resistance is sufficiently larger than the resistance of the resistor 13 connected in parallel to the switch 12. For this reason, when the switch 11 is opened, most of the voltage across the switches 11 and 12 is applied to the switch 11. As a result, dielectric breakdown of the switch 12 is prevented.
- the current detector 21 detects the current flowing through the energization path 10 and the current cutoff path 30 and transmits the detected current value to the controller 50. For this reason, the current detector 21 is disposed before the joining position of the energizing path 10 and the current interrupting path 30 on the circuit through which the current flows.
- the following configurations (a) and (b) can be adopted as the current detector 21.
- a resistor having a very small resistance value is inserted into the energizing path 10. The voltage across this resistor is detected and converted to a current.
- the semiconductor circuit breaker 31 is a switch that is controlled by the controller 50 to switch between current passing and not passing.
- a combination of an IGBT (Insulated Gate Bipolar Transistor) and a diode can be used.
- the IGBT and diode pair are connected in antiparallel (in parallel with the forward directions being opposite to each other). These two pairs are connected in series in opposite directions (facing each other) to form unit elements.
- the semiconductor breaker 31 can be configured by connecting a large number of unit elements in series and adding terminals to both ends thereof.
- the semiconductor circuit breaker 31 generally has a resistance (on-resistance) in the on state, and a voltage drop occurs due to energization. In the case of the semiconductor circuit breaker 31 shown in FIG. 1, this voltage drop increases depending on the number of unit elements in series. That is, the on-resistance of the entire semiconductor circuit breaker 31 also increases depending on the number of series.
- the series number of unit elements is determined so that the semiconductor circuit breaker 31 that has been turned off due to current interruption can withstand the applied high voltage.
- the number of series required when the DC voltage is several hundred kV is a somewhat large number (for example, several hundreds).
- Standard control of the semiconductor circuit breaker 31 by the controller 50 is as follows. At normal time, the semiconductor circuit breaker 31 is turned off. At the time of interruption, the semiconductor circuit breaker 31 is once switched on and then quickly returned to the off state.
- the semiconductor circuit breaker 31 can be controlled by means other than this standard method.
- the semiconductor circuit breaker 31 may be turned on at normal times. Even in this case, due to the on-resistance of the semiconductor circuit breaker 31, almost no current flows in the current interrupting path 30, and virtually all current flows in the energizing path 10.
- the commutation circuit 14 is connected in parallel with the switch 12.
- the current injection operation of the commutation circuit 14 is controlled by the controller 50.
- the commutation circuit 14 is controlled by the controller 50 to inject a current (hereinafter also referred to as “reverse current”) in the reverse direction to the interrupted current into the switch 12.
- the commutation circuit 14 can use a series circuit in which a capacitor 14a, a reactor 14b, and a semiconductor switch 14c are connected in series.
- the capacitor 14a is charged to a predetermined voltage by a charging device (not shown).
- the semiconductor switch 14c is controlled by the controller 50 to be in an open (shutoff) state or a closed (injection) state.
- Reactor 14b relaxes the flow of current during injection.
- the reactor 14b can be omitted as in a second embodiment and a second modification described later. The details of the operation of the commutation circuit 14 when the current is interrupted and the waveform of the current at this time will be described later.
- the controller 50 controls the commutation circuit 14 to forcibly generate current and inject it into the switch 12.
- the direction of this current is opposite to the direction of the current flowing through the switch 12 (the current to be cut off).
- the current flowing through the entire energization path 10 becomes 0, and the current path is quickly switched from the energization path 10 to the current interrupt path 30 (semiconductor circuit breaker 31) (commutation).
- the non-linear resistor 32 is connected in parallel with the semiconductor circuit breaker 31.
- the non-linear resistor 32 functions at the final stage of the breaking operation of the DC breaking device. Specifically, when both the energization path 10 and the semiconductor circuit breaker 31 are not current-carrying, the non-linear resistor 32 allows current to flow temporarily.
- the controller 50 controls the opening and closing of the electrodes of the switches 11 and 12 and the switching of the semiconductor circuit breaker 31 on and off.
- the controller 50 controls on / off of the commutation circuit 14 that is a source of reverse current and its output current.
- controller 50 there are subordinate controllers corresponding to these controls. These lower level controllers are connected to each other, and information necessary for control is transmitted and shared.
- the transient voltage suppression circuit 15 When the transient voltage suppression circuit 15 is not installed, a steep voltage is generated in the switches 11 and 12 instantly when the current of the switch 12 is zero. However, by installing the transient voltage suppression circuit 15, it is possible to suppress a transient voltage generated at the moment when the current is zero (near time E in FIG. 3).
- FIG. 3 shows a hardware configuration of the vacuum valve 120 which is a switch part of the switch 12 of the DC circuit breaker.
- FIG. 4 shows the configuration of the longitudinal magnetic field electrode portion of the vacuum valve 120 of FIG.
- the vacuum valve 120 includes, as main components, a cylindrical soot tube 121, a fixed side electrode 122, a movable side electrode 123, a fixed side energizing shaft 124, a movable side energizing shaft 125, and a bellows 126.
- the main configuration of the vacuum valve 120 is illustrated.
- the vacuum valve 120 also includes a drive mechanism (not shown) for moving the movable side energizing shaft 125 in the axial direction.
- the cylindrical soot tube 121 is a cylindrical container in which the opening portions at both ends are sealed.
- This container is a vacuum container in which the inside is maintained in a vacuum.
- a bellows 126 is disposed at a sliding portion between the soot tube 121 and the movable side energizing shaft 125.
- the bellows 126 can drive the movable energizing shaft 125 in the direction of the arrow while maintaining the vacuum state of the vacuum container (blocking from the outside).
- vacuum switches are not very high withstand voltage, but have excellent insulation recovery characteristics. For this reason, the vacuum switch can be suitably used as the switch 12. After the current in the current path 10 becomes zero, a relatively low voltage is applied to the switch 12 due to the voltage drop of the semiconductor breaker 31 in the on state. The vacuum switch can withstand this low applied voltage and has excellent insulation recovery characteristics as a direct current circuit breaker.
- the fixed side electrode 122 and the movable side electrode 123 of the vacuum valve 120 constitute a longitudinal magnetic field electrode.
- slits 127 and 128 are arranged obliquely on the peripheral portions (outer peripheral surfaces) of the fixed side electrode 122 and the movable side electrode 123 so as to draw a spiral with respect to the central axis. Since the spiral direction (here, the right-handed screw direction) is the same for the fixed electrode 122 and the movable electrode 123, the currents 129 and 130 rotate in the same direction. As a result, the vertical magnetic field 132 is applied to the arc 131 in the vacuum valve 120 by the rotating currents 129 and 130.
- the longitudinal magnetic field 132 is generated by the currents 129 and 130 caused by the arc 131.
- the longitudinal magnetic field 132 stabilizes the arc 131 so that it is uniformly distributed throughout the electrode. As a result, partial damage of the electrode due to the arc 131 is suppressed. In this way, excellent insulation recovery characteristics can be maintained by suppressing electrode damage.
- FIG. 5 shows a time-series change in current of each part of the DC interrupter.
- FIG. 5 shows the total current 41, which is the sum of the current flowing in the energizing path 10 and the current flowing in the current breaking path 30, the current 42 of the semiconductor breaker 31, the current 43 of the switch 12, and the application to the DC breaker.
- the time series change of each voltage 45 is shown.
- the controller 50 starts the breaking control (electrode opening control) for opening and closing each electrode to the switches 11 and 12 (time opening C) (time C).
- the shutoff control (electrode opening control) of the switches 11 and 12 is started, the pair of electrodes of the switches 11 and 12 are physically separated from each other. An arc occurs and current continues to flow.
- the controller 50 controls the commutation circuit 14, and a reverse current is injected from the commutation circuit 14 to the switch 12 (time D).
- a reverse current is injected into the switch 12
- the current 43 of the switch 12 decreases and reaches zero (time E).
- the controller 50 controls the semiconductor circuit breaker 31 and turns off (cuts off the current flow) after the time point (considered) when the open state of the electrodes of the switches 11 and 12 is established (considered). State).
- the current in the energization path 10 has already been cut off, and at time F, the semiconductor circuit breaker 31 is controlled to be turned off and switched to a current cut-off state. For this reason, after time F, a current temporarily flows through the nonlinear resistor 32.
- a DC voltage 44 (for example, 300 kV) corresponding to the DC power transmission system is applied to the DC circuit breaker.
- the effect of the transient voltage suppression circuit 15 will be described with reference to FIG. As shown in FIG. 6, when the transient voltage suppression circuit 15 is not installed (without the transient voltage suppression circuit 15), when the commutation is completed (time E), a high transient voltage 51 is suddenly generated. . However, when the transient voltage suppression circuit 15 is installed, the transient voltage is absorbed by the capacitor 15a, and the transient voltage 52 becomes low.
- the DC circuit breaker since a switch using a semiconductor (semiconductor circuit breaker 31) is not used in the energization path 10, it is possible to greatly reduce power loss during energization. Further, since the commutation circuit 14 is arranged in parallel with the switch 12, the current in the energization path 10 can be forcibly and quickly commutated to the current interrupt path 30 (in a few ms as an example).
- the capacitor 15a is used for the transient voltage suppression circuit 15, but other circuits such as those shown in FIGS.
- FIG. 7 shows a series circuit of a capacitor 15a and a reactor 15b.
- FIG. 8 shows a series circuit of a capacitor 15a and a resistor 15c.
- FIG. 9 shows a series circuit of a capacitor 15a, a reactor 15b, and a resistor 15c.
- the transient voltage suppression circuit 15 can be a series circuit of a capacitor 15a and a reactor 15b, a series circuit of a capacitor 15a and a resistor 15c, or a series circuit of a capacitor 15a, a reactor 15b, and a resistor 15c.
- the reactor 15b or the resistor 15c can suppress the current flowing between the electrodes of the switch 12, and consequently the damage of the electrodes due to the discharge.
- a resistor having a fixed resistance value is used as the resistor 13.
- a nonlinear resistor may be used.
- a lightning arrester element can be used as the non-linear resistor.
- the voltage of the non-linear resistor used as the resistor 13 is preferably higher than the voltage due to the on-resistance of the semiconductor breaker 31 and lower than the non-linear resistor 32 connected in parallel to the semiconductor breaker 31.
- the resistance of the nonlinear resistor used as the resistor 13 is preferably lowered at a voltage lower than the limit of the withstand voltage of the switch 12.
- FIG. 10 shows a configuration of the direct current cut-off device of the first modification.
- the transient voltage suppression circuit 15 is excluded from the current interrupt device of the first embodiment.
- this operation can be represented by FIG. 5 like the current interrupt device of the first embodiment, the description thereof is omitted.
- the second embodiment is an example in which the circuit in the vicinity of the switch 12 of the DC circuit breaker of the first embodiment shown in FIG. 1 is modified, and the same components as those in the first embodiment are denoted by the same reference numerals and the description thereof is made. Is omitted.
- a saturable reactor 16 is connected in series with the switch 12.
- the commutation circuit 14 is constituted by a series circuit of a capacitor 14a and a semiconductor switch 14c. That is, in the second embodiment, a series circuit of the switch 12 and the saturable reactor 16, a commutation circuit 14 in which a capacitor and a semiconductor switch are connected in series, and a resistor 13 are connected in parallel.
- the commutation circuit 14 does not have the reactor 14b, but may have the reactor 14b as shown in FIG.
- the commutation circuit 14, the saturable reactor 16, and the switch 12 constitute a closed circuit.
- the saturable reactor 16 has a change point between a saturated state and a non-saturated state at a current value equal to or lower than the current to be interrupted by the switch 12. This current value is about a direct current in a normal state.
- the controller 50 controls the commutation circuit 14 at time D after opening control (breaking) of the switch 12 at time C, and causes the switch 12 to inject a reverse current. Thereby, a current having the same value as that of the switch 12 flows through the saturable reactor 16. When this current decreases and transitions from a saturated state to a non-saturated state, the inductance of the saturable reactor 16 increases. As a result, among the time-series changes of the current 42 flowing through the semiconductor circuit breaker 31 shown in FIG. For this reason, the change of the current 43 flowing through the switch 12 becomes gentle at the time 63 immediately before the current zero point.
- the same effect as that of the first embodiment can be obtained, and the current can be reliably commutated to the current cutoff path 30 at the current zero point.
- the saturable reactor 15 connected in series with the switch 12 makes the rate of change of the current flowing through the switch 12 gentle when the current is interrupted, just before the current zero point, and causes a period of a small current state.
- FIG. 13 shows a configuration of a direct current cut-off device according to the second modification.
- the transient voltage suppression circuit 15 is excluded from the current interrupter of the second embodiment.
- this operation can be represented by FIG. 12 as in the case of the current interrupt device of the second embodiment, description thereof is omitted.
- the third embodiment is a modification of the DC interrupter of the first embodiment shown in FIG. 1, and the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
- an interelectrode distance detector 22 is installed in the switch 12 of the first embodiment.
- the interelectrode distance detector 22 detects the interelectrode distance of the switch 12 and notifies the controller 50.
- the controller 50 controls the switch 12 and the commutation circuit 14 based on the interelectrode distance of the switch 12 notified from the interelectrode distance detector 22.
- the switch 12 is controlled in consideration of the time C1.
- the time C1 is the time when the electrode distance of the switch 12 reaches a predetermined distance, and is predicted from the start time C of the electrode opening control to the switch 12.
- the controller 50 sets the timing to turn on the semiconductor switch 14c of the commutation circuit 14 so that commutation from the energization path 10 to the current cutoff path 30 is completed at a time later than the time C1 (commutation completion is time E). Determine and control the commutation circuit 14.
- the interelectrode distance of the switch 12 detected by the interelectrode distance detector 22 is continuously transmitted to the controller 50.
- the controller 50 predicts and calculates a time C1 at which the electrode distance of the switch 12 detected by the interelectrode distance detector 22 reaches a predetermined distance (threshold).
- the controller 50 controls the electrode opening of the switch 12 at the start timing (time C) of the electrode opening control to the switch 12 before the time C1.
- the subsequent operation is the same as that of the first embodiment.
- the interelectrode distance detector 22 is installed in the switch 12, and the control timing of the switch 12 is acquired. For this reason, voltage application to the switch 12 corresponding to the voltage drop by the semiconductor circuit breaker 31 occurs after the pressure resistance of the switch 12 is sufficiently secured (the period is from time E to time F). . As a result, a very favorable result is obtained in the operation of the switch 12.
- an inter-electrode distance detector 22 is installed in the switch 12, and the inter-electrode distance of the switch 12 is detected and controlled for interruption.
- the time for the distance between the electrodes to reach a predetermined distance is known in advance.
- the inter-electrode distance detector 22 is not installed, and the time C1 when the electrode distance of the switch 12 reaches a predetermined distance is predicted from the time C of the electrode opening control start to the switch 12, and the breaking operation starts. You may control according to the later elapsed time.
- FIG. 16 shows the configuration of a DC interrupter of Modification 3.
- the transient voltage suppression circuit 15 is excluded from the current interrupter of the third embodiment. Thus, even if it does not have the transient voltage suppression circuit 15, it can operate as a DC interrupting device. Since this operation can be represented by FIG. 15 as in the case of the current interrupt device of the second embodiment, description thereof is omitted.
- the fourth embodiment is a modification of the DC interrupter of the first and third embodiments shown in FIGS. 1 and 14, and the same components as those in the first and third embodiments are denoted by the same reference numerals. Description is omitted.
- an inter-electrode distance detector 23 is added to the switch 11 of the first embodiment.
- the interelectrode distance detector 23 detects the interelectrode distance of the switch 11 and notifies the controller 50 of it.
- the controller 50 controls the switch 11 and the semiconductor circuit breaker 31 based on the distance between the electrodes of the switch 11 notified from the interelectrode distance detector 23 or the elapsed time after the electrode opening control.
- the switch 12 is controlled in consideration of the time C2.
- the time C2 is the time when the electrode distance of the switch 11 reaches a predetermined distance, which is expected from the time C when the electrode opening control to the switch 11 is started.
- the controller 50 controls the semiconductor breaker 31 in the on state to be switched off (a state in which the power is cut off) at a time later than the time C2 (for example, time F).
- the interelectrode distance of the switch 11 detected by the interelectrode distance detector 22 is always transmitted to the controller 50.
- the controller 50 predicts and calculates a time C2 when the electrode distance of the switch 11 detected by the interelectrode distance detector 23 reaches a predetermined distance (threshold value) set in advance.
- the controller 50 determines the start timing (time C) of the electrode opening control to the switch 11 before the time C2, and controls the switch 11 and the semiconductor circuit breaker 31 to be cut off.
- the subsequent operation is the same as in the first and third modifications.
- the interelectrode distance detector 23 is arranged in the switch 11 and the control timing of the switch 11 is acquired. For this reason, after the switch 11 is in a state in which the pressure resistance is sufficiently secured, a high applied voltage to the DC circuit breaker is generated (the period is after time F). As a result, a very favorable result can be obtained in the operation of the switch 11.
- the inter-electrode distance detector 23 is disposed in the switch 11 and the inter-electrode distance of the switch 11 is detected and controlled for interruption.
- the time for the distance between the electrodes to reach a predetermined distance is known in advance. For this reason, the time C2 until the electrode distance of the switch 11 reaches a predetermined distance without using the inter-electrode distance detector 23 is predicted from the time C of the electrode opening control start to the switch 11, You may control according to the elapsed time after the interruption
- FIG. 19 shows a configuration of a DC cutoff device of Modification 4.
- the transient voltage suppression circuit 15 is excluded from the current interrupt device of the fourth embodiment.
- this operation can be represented by FIG. 18 like the current interrupt device of the second embodiment, the description thereof is omitted.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
Abstract
実施形態の直流遮断装置は、通電路、転流回路、半導体遮断器、および非線形抵抗器を有する。通電路は、直流電流を流し、第1、第2の開閉器を有する。第2の開閉器は、前記第1の開閉器と直列に接続され、前記第1の開閉器より低い絶縁耐圧を有する。半導体遮断器および非線形抵抗器は、通電路と並列に接続される。
Description
本発明の実施形態は、直流電流を遮断する直流遮断装置に関する。
電力を送る送電系統は、一般に、事故等に対応するために、送電電流を遮断する機能を有することが求められる。このために遮断器が用いられる。
交流には電流が0になる時間(電流零点)が存在するため、この電流零点において、電流を比較的容易に遮断できる。一方、交流と異なり、直流には電流零点が存在しないため、遮断時にアークが生じ易い。このため、直流遮断器は、一般に、アークを低減する仕組みを備える。
交流には電流が0になる時間(電流零点)が存在するため、この電流零点において、電流を比較的容易に遮断できる。一方、交流と異なり、直流には電流零点が存在しないため、遮断時にアークが生じ易い。このため、直流遮断器は、一般に、アークを低減する仕組みを備える。
直流遮断器は、例えば、開閉器(スイッチ)を有する通電路と、通電路と並列に接続され、電流を漸減できる電流遮断路と、を有する。
通常時には、通電路上の開閉器(スイッチ)を閉じて、通電路に電流を流す。一方、事故時には、電流遮断路を一時的に導通させ、かつ開閉器(スイッチ)を開くことによって、電流の経路を通電路から電流遮断路に切り替え、電流遮断路に電流を流す(転流)。その後、電流遮断路の電流を速やかに減らして、電流を遮断する。
通常時には、通電路上の開閉器(スイッチ)を閉じて、通電路に電流を流す。一方、事故時には、電流遮断路を一時的に導通させ、かつ開閉器(スイッチ)を開くことによって、電流の経路を通電路から電流遮断路に切り替え、電流遮断路に電流を流す(転流)。その後、電流遮断路の電流を速やかに減らして、電流を遮断する。
ここで、通電路から電流遮断路への電流の切り替えは速いことが好ましい。切り替えが遅くなると、事故時の電流が増加して、電流遮断路が遮断すべき電流が大きくなる。この結果、大容量の電流遮断路が必要になり、遮断器が大型化する可能性がある。
Juergen Haefner, Bjoern Jacobson,"Proactive Hybrid HVDC Breakers - A key innovation for reliable HVDC grids", Cigre, The electric power system of the future - Integrating supergrids and microgrids International Symposium in Bologna, Italy 13-15 September, 2011
Per Skarby, Ueli Steiger"An Ultra-fast Disconnecting Switch for a Hybrid HVDC Breaker - a technical breakthrough", Cigre, Canada conference, Calgary ,Canada 9-11 September, 2013
本発明が解決しようとする課題は、小型化を図った直流遮断装置を提供することにある。
実施形態の直流遮断装置は、通電路、転流回路、半導体遮断器、および非線形抵抗器を有する。通電路は、直流電流を流し、第1、第2の開閉器を有する。第2の開閉器は、前記第1の開閉器と直列に接続され、前記第1の開閉器より低い絶縁耐圧を有する。半導体遮断器および非線形抵抗器は、通電路と並列に接続される。
(第1実施形態)
以下、図面を参照して実施形態を詳細に説明する。図1は第1実施形態の直流遮断装置の構成を示す。
以下、図面を参照して実施形態を詳細に説明する。図1は第1実施形態の直流遮断装置の構成を示す。
図1に示すように、第1実施形態の直流遮断装置は、通電路10、電流遮断路30、電流検出器21、および制御器50を有する。電流遮断路30は、通電路10に並列に接続される。電流検出器21は、通電路10および電流遮断路30全体の電流を検出する。制御器50は、電流検出器21により検出された電流の値に基づいて、通電路10および電流遮断路30の電流の流れを制御する。
通電路10は、第1の開閉器としての開閉器11、第2の開閉器としての開閉器12、抵抗器13、転流回路14、および過渡電圧抑制回路15を有する。
開閉器11と開閉器12は直列に接続される。開閉器11は、第1の絶縁耐圧を有する。開閉器11は、制御器50によって閉制御または開制御されて、半導体遮断器31によらずに(半導体遮断器31とは無関係に)、電流の通、不通を切り替える。
開閉器11には、SF6ガスなどの絶縁性のガスを用いた開閉器(ガス開閉器)を利用できる。この場合、開閉器11の電極を収納した容器内に、絶縁性ガスが充填される。絶縁性に優れたSF6ガスなどを用いることによって、開閉器11の絶縁耐圧が向上し、その小型化が図れる。
開閉器12は、第1の絶縁耐圧より低い第2の絶縁耐圧(例えば、数kV程度)を有する。開閉器12は、制御器50によって閉制御または開制御されて、半導体遮断器31によらずに(半導体遮断器31とは無関係に)、電流の通、不通を切り替える。
開閉器12には、例えば、真空開閉器を利用できる。真空開閉器のスイッチ部分に真空バルブ120(後述の図3、図4参照)を利用できる。
開閉器12には、例えば、真空開閉器を利用できる。真空開閉器のスイッチ部分に真空バルブ120(後述の図3、図4参照)を利用できる。
転流回路14は、開閉器12と並列に接続される。転流回路14は、遮断する電流(通電路10を流れる直流電流)の向きと逆向きの電流を出力する電流源である。なお、この詳細は後述する。
過渡電圧抑制回路15は、開閉器12と並列に接続される。過渡電圧抑制回路15は、例えば、コンデンサ15aを有し、開閉器12に印加される過渡電圧から開閉器12を保護する。
ここでは、過渡電圧抑制回路15を開閉器12のみに設置している。しかし、過渡電圧抑制回路15を開閉器11、12双方に設置してもよい。
ここでは、過渡電圧抑制回路15を開閉器12のみに設置している。しかし、過渡電圧抑制回路15を開閉器11、12双方に設置してもよい。
電流遮断路30は、半導体スイッチとしての半導体遮断器31と、この半導体遮断器31と並列に接続された非線形抵抗器32と、を有する。
制御器50は、電流検出器21により検出された電流の値が予め設定された閾値を超えた場合、開閉器11、12の電極を開動作させる開制御(遮断制御)を開始する。
また制御器50は、開制御(遮断制御)の開始後に、転流回路14を制御して、通電路10から半導体遮断器31への電流経路の切り替え(転流)を促進する。具体的には、制御器50は、転流回路14を制御して、開閉器12の電流方向とは逆向きの電流を開閉器12に注入することによって、開閉器12(通電路10)の電流を0とする。この結果、通電路10を流れていた電流が、半導体遮断器31を流れるようになる。
制御器50は、開閉器11、12の電極の開制御の開始後、オン状態の半導体遮断器31を制御し、オフ状態へと切り替える。
以下、この直流遮断装置の動作を説明する。
通常時の直流遮断装置では、通電路10の開閉器11、12が閉じられ、通電路10を通して、電流が流れる。
電流遮断時(事故等で電流遮断を要するとき)には、半導体遮断器31がオン状態とされる一方、開閉器11、12が遮断される。さらに、開閉器12に流れる電流とは逆向きの電流が転流回路14から開閉器12に注入され、開閉器12(通電路10)に流れる電流がゼロとなる。この結果、通電路10から電流遮断路30へと電流の経路が速やかに切り替わる(転流)。その後、電流遮断路30の電流が速やかに減じられ、電流が遮断される。
通常時の直流遮断装置では、通電路10の開閉器11、12が閉じられ、通電路10を通して、電流が流れる。
電流遮断時(事故等で電流遮断を要するとき)には、半導体遮断器31がオン状態とされる一方、開閉器11、12が遮断される。さらに、開閉器12に流れる電流とは逆向きの電流が転流回路14から開閉器12に注入され、開閉器12(通電路10)に流れる電流がゼロとなる。この結果、通電路10から電流遮断路30へと電流の経路が速やかに切り替わる(転流)。その後、電流遮断路30の電流が速やかに減じられ、電流が遮断される。
図1において、通常時の直流電流は、一般的には、図の左から右、右から左の双方が考えられる。この直流遮断装置は、この双方に対応できる。
以下、説明を分かりやすくするため、通常時の直流電流は、図の左から右に流れるとする。
以下、説明を分かりやすくするため、通常時の直流電流は、図の左から右に流れるとする。
開閉器11、12は、半導体遮断器31によらずに電流の通、不通を切り替えることができる。開閉器11は、所定の大きな耐圧性(後述)を有する。開閉器12の耐圧性は、開閉器11の耐圧性よりも低い。一方、開閉器12の瞬断性能(開閉の高速性)は、開閉器11の瞬断性能(開閉の高速性)よりも、高い。なお開閉器12の詳細については後述の図3、図4で説明する。
開閉器11、12は、このように特性(耐圧性、高速性)、ひいては、その役割が異なる。開閉器11、12は直列に接続され、制御器50によって制御されて、それぞれの電極を開閉する。
抵抗器13は、開閉器12と並列に接続される。この抵抗器13の抵抗は、電流遮断時の半導体遮断器31のオン抵抗より大きく、半導体遮断器31と並列に接続される非線形抵抗器32の抵抗より小さい。
開状態の開閉器11は、絶縁状態であり、その抵抗は、開閉器12に並列接続した抵抗器13の抵抗より十分大きい。このため、開閉器11が開状態となったとき、開閉器11および12の両端間の電圧の大部分は開閉器11に印加される。この結果、開閉器12の絶縁破壊が防止される。
電流検出器21は、通電路10および電流遮断路30全体に流れる電流を検出し、検出した電流の値を制御器50に伝える。このため、電流検出器21は、電流が流れる回路上の通電路10と電流遮断路30との合流位置の手前に配置されている。
電流検出器21としては、例えば、次の(a),(b)のような構成を採用できる。
(a)ごく小さい抵抗値の抵抗器を通電路10に挿入する。この抵抗器両端の電圧を検出し、電流に換算する。
(b)ホール素子等によって、通電路10から発生する磁界を検出し、電流に換算する。この場合、非接触で、通電路10に流れる電流を検出できる。
(a)ごく小さい抵抗値の抵抗器を通電路10に挿入する。この抵抗器両端の電圧を検出し、電流に換算する。
(b)ホール素子等によって、通電路10から発生する磁界を検出し、電流に換算する。この場合、非接触で、通電路10に流れる電流を検出できる。
半導体遮断器31は、制御器50に制御されて、電流の通、不通を切り替えるスイッチである。半導体遮断器31の具体例としては、図示するように、ここでは、IGBT(Insulated Gate Bipolar Transistor)とダイオードの組み合わせを用いることができる。IGBTとダイオードの対を逆並列に(順方向が互いに逆の並列)接続する。この2対を逆方向(向かい合わせ)に直列に接続して、単位要素とする。多数の単位要素を直列に接続し、その両端に端子を付加することで、半導体遮断器31を構成できる。
単位要素中の2つのIGBTのゲート双方に電圧(制御器50からの制御信号に起因する)が印加されると、単位要素はオン状態(いずれの方向にも電流が流れる状態)となる。単位要素中の2つのゲートへの電圧印加の有無の組み合わせによって、電流の遮断、右方向の電流の通過、左方向の電流の通過、双方向の電流の通過(オン状態)を切り替えられる。
半導体遮断器31の具体的構成は、図2の構成以外にも、種々採用できる。半導体遮断器31は、一般に、オン状態において、抵抗(オン抵抗)を有し、通電により電圧降下が生じる。
図1に示した半導体遮断器31の場合、この電圧降下は、上記の単位要素の直列数に依存して大きくなる。すなわち、半導体遮断器31全体のオン抵抗もこの直列数に依存して大きくなる。
図1に示した半導体遮断器31の場合、この電圧降下は、上記の単位要素の直列数に依存して大きくなる。すなわち、半導体遮断器31全体のオン抵抗もこの直列数に依存して大きくなる。
電流遮断のためにオフ状態となった半導体遮断器31が、印加される高電圧に耐えられるように、単位要素の直列数は決定される。直流電圧が数100kVの場合に必要な直列数は、一般に、ある程度大きな数(例えば、数百)となる。
制御器50による半導体遮断器31の標準的な制御は次の通りである。通常時は、半導体遮断器31をオフ状態とする。遮断時には、半導体遮断器31を一度オン状態に切り替えた後、速やかにオフ状態に戻す。
但し、半導体遮断器31は、この標準的な手法以外でも、制御可能である。例えば、通常時に、半導体遮断器31をオン状態としてもよい。この場合でも、半導体遮断器31のオン抵抗のために、電流遮断路30には電流はほとんど流れず、通電路10に事実上全電流が流れる。
転流回路14は、開閉器12と並列に接続される。転流回路14の電流注入動作は、制御器50によって、制御される。転流回路14は、制御器50によって制御されて、遮断する電流とは逆方向の電流(以下、「逆電流」ともいう)を開閉器12に注入する。
転流回路14は、図2に示すように、コンデンサ14a、リアクトル14b、および半導体スイッチ14cを直列に接続した直列回路を利用できる。
コンデンサ14aは、図示しない充電装置によって、所定の電圧に充電される。半導体スイッチ14cは、制御器50によって、開(遮断)、閉(注入)状態が制御される。リアクトル14bは、注入時の電流の流れを緩和する。後述の第2実施形態および第2変形例のように、リアクトル14bを省略することも可能である。なお、電流遮断時の転流回路14の動作、およびこのときの電流の波形の詳細は、後述する。
コンデンサ14aは、図示しない充電装置によって、所定の電圧に充電される。半導体スイッチ14cは、制御器50によって、開(遮断)、閉(注入)状態が制御される。リアクトル14bは、注入時の電流の流れを緩和する。後述の第2実施形態および第2変形例のように、リアクトル14bを省略することも可能である。なお、電流遮断時の転流回路14の動作、およびこのときの電流の波形の詳細は、後述する。
事故等により電流遮断が必要な場合、制御器50は、転流回路14を制御して、電流を強制的に発生させ、開閉器12に注入する。この電流の方向は、開閉器12に流れている電流(遮断される電流)の方向と逆である。この結果、通電路10全体を流れる電流が0となり、電流の経路が通電路10から電流遮断路30(半導体遮断器31)へと速やかに切り替わる(転流)。
すなわち、転流回路14を用いることによって、事故時の電流がまだ小さいうちに、通電路10から半導体遮断器31への転流を実現できる。これにより、半導体遮断器31に流れる電流を抑制し、その許容電流の増大化を避けることができる(半導体遮断器31の小型化容易)。
非線形抵抗器32は、半導体遮断器31と並列に接続される。非線形抵抗器32は、この直流遮断装置の遮断動作の最終段階で機能する。具体的には、通電路10および半導体遮断器31の双方が電流不通のときに、非線形抵抗器32は電流を一時的に流す。
非線形抵抗器32に一時的に流れる最初の段階では、その直前に半導体遮断器31に流れていた電流と同じ値の電流が流れる。この電流によって、非線形抵抗器32に比較的大きな電圧降下が生じるため、電流は減少する。電流が減少すると、抵抗の非線形性により抵抗値が増大する。増大した抵抗値によって、実質的に電流ゼロに至って、電流の遮断が完了する。
なお、制御器50には、電流検出器21で検出した電流が伝えられる。そして、制御器50は、開閉器11、12の電極の開閉、および半導体遮断器31のオン/オフの切り替えを制御する。また、制御器50は、逆電流の発生源である転流回路14のオン/オフおよびその出力電流を制御する。
制御器50の内部には、これらの各制御に対応してそれぞれ下位の制御器が存在する。これらの下位の制御器は互いに接続され、制御に必要な情報が伝達、共有される。
過渡電圧抑制回路15を設置しない場合、開閉器12の電流を0とした瞬時に、開閉器11、12に急峻な電圧が生じる。しかし、過渡電圧抑制回路15を設置することで、電流を0とした瞬時(図3の時刻Eの付近)に生じる過渡的な電圧を抑制できる。
ここで、図3、図4を参照して直流遮断装置の開閉器12の具体例(ハードウェア構成)を説明する。
図3は、直流遮断装置の開閉器12のスイッチ部分である真空バルブ120のハードウェア構成を示す。図4は、図3の真空バルブ120の縦磁界電極部分の構成を示す。
図3は、直流遮断装置の開閉器12のスイッチ部分である真空バルブ120のハードウェア構成を示す。図4は、図3の真空バルブ120の縦磁界電極部分の構成を示す。
開閉器12には、開閉器の一種の真空バルブ(真空開閉器)120が用いられている。
図3に示すように、真空バルブ120は、主たる構成要素として、円筒状の碍管121、固定側電極122、可動側電極123、固定側通電軸124、可動側通電軸125、およびベローズ126を有する。
ここでは真空バルブ120の主要構成を例示した。この他、真空バルブ120は、可動側通電軸125をその軸方向に移動させるための駆動機構(不図示)も備える。
図3に示すように、真空バルブ120は、主たる構成要素として、円筒状の碍管121、固定側電極122、可動側電極123、固定側通電軸124、可動側通電軸125、およびベローズ126を有する。
ここでは真空バルブ120の主要構成を例示した。この他、真空バルブ120は、可動側通電軸125をその軸方向に移動させるための駆動機構(不図示)も備える。
円筒状の碍管121は、両端の開口部分が封止される、筒形状の容器である。この容器は、その内部がほぼ真空に保持される、真空容器である。
碍管121と可動側通電軸125との摺動部分にベローズ126が配置される。ベローズ126によって、この真空容器の真空状態を保持しつつ(外部と遮断しつつ)、可動側通電軸125を矢印方向に駆動できる。
一般に、真空開閉器は、絶縁耐圧性はそれほど高くないが、絶縁回復特性に優れる。このため、真空開閉器は、開閉器12として好適に使用できる。通電路10の電流がゼロとなった後、オン状態の半導体遮断器31の電圧降下による、比較的低い電圧が、開閉器12に印加される。真空開閉器は、この低印加電圧に耐え、直流遮断装置として優れた絶縁回復特性を有する。
この真空バルブ120の固定側電極122と可動側電極123は、縦磁界電極を構成する。
図4に示すように、固定側電極122と可動側電極123の周縁部(外周面)には、中心軸に対して螺旋を描くように、スリット127、128が斜め方向に配置される。この螺旋の方向(ここでは、右ネジ方向)は、固定側電極122と可動側電極123で同一であるため、電流129、130は同一方向に回転する。この結果、回転する電流129、130によって、真空バルブ120内のアーク131に縦磁界132が印加される。
図4に示すように、固定側電極122と可動側電極123の周縁部(外周面)には、中心軸に対して螺旋を描くように、スリット127、128が斜め方向に配置される。この螺旋の方向(ここでは、右ネジ方向)は、固定側電極122と可動側電極123で同一であるため、電流129、130は同一方向に回転する。この結果、回転する電流129、130によって、真空バルブ120内のアーク131に縦磁界132が印加される。
通電中の開閉器12の可動側通電軸125を駆動し、可動側電極123と固定側電極122とを開くと(開制御、遮断制御ともいう)、固定側電極122と可動側電極123間にアーク131が生じる。
このとき、アーク131に起因する電流129,130によって、縦磁界132が発生する。縦磁界132によって、アーク131が安定化し、電極全体に均一に分布されるようになる。この結果、アーク131による電極の部分的な損傷が抑制される。このように、電極の損傷を抑制することで、優れた絶縁回復特性を保持できる。
次に、図5を参照して第1実施形態の直流遮断装置の時系列的な動作を説明する。図5は、直流遮断装置の各部の電流の時系列的な変化を示す。
図5は、通電路10に流れる電流と電流遮断路30に流れる電流との和の電流である全電流41、半導体遮断器31の電流42、開閉器12の電流43、直流遮断器への印加電圧45それぞれの時系列的な変化を示す。
事故が発生する時刻A以前の最初の段階では、通常時の電流が流れているとする。
このとき、電流は、開閉器12にのみ(通電路10にのみ)流れる。すなわち、この段階では、半導体遮断器31(電流遮断路30)には電流42は流れていない。
このとき、電流は、開閉器12にのみ(通電路10にのみ)流れる。すなわち、この段階では、半導体遮断器31(電流遮断路30)には電流42は流れていない。
時刻Aにおいて、直流送電系統に事故が発生したとする。時刻A以降、全電流41は増加していく。そして、電流検出器21によって検出された電流(通電路10を流れる電流)の値が、設定閾値を超えると、制御器50は、異常と判定する(事故発生の検出、時刻B)。
事故が検出された場合、制御器50は、開閉器11、12に対して、それぞれの電極を開動作(遮断動作)させるための遮断制御(電極開制御)を開始する(時刻C)。
開閉器11、12の遮断制御(電極開制御)が開始されると、これらの開閉器11、12それぞれの一対の電極は物理的に離間してゆくが、離間の当初は一対の電極間にアークが生じ電流が流れ続ける。
開閉器11、12の遮断制御(電極開制御)が開始されると、これらの開閉器11、12それぞれの一対の電極は物理的に離間してゆくが、離間の当初は一対の電極間にアークが生じ電流が流れ続ける。
遮断制御(電極開制御)の開始後、制御器50が転流回路14を制御して、転流回路14から開閉器12に逆電流が注入される(時刻D)。開閉器12に逆電流が注入されると、開閉器12の電流43は減少し、ゼロに至る(時刻E)。これにより、通電路10を流れる電流の電流遮断路30への転流が完了する。
時刻EからFまでの間、半導体遮断器31のみに電流が流れる。このとき、半導体遮断器31に流れる電流42およびそのオン抵抗のため、ある程度の電圧降下44が生じる。このとき、この電圧降下44(例えば、数kV)が直流遮断装置への印加電圧45となり得る(半導体遮断器31の両端間の電圧(電圧降下44)が、ほぼそのまま開閉器12に印加される)。開閉器11の電極の開状態が確立していない可能性があるためである。
開閉器12は、この電圧降下44に耐えるように、既述のように、例えば、数kV程度の絶縁耐圧を有する。
開閉器12は、この電圧降下44に耐えるように、既述のように、例えば、数kV程度の絶縁耐圧を有する。
時刻Eの後、開閉器11、12の電極の開状態が確立した(と考えられる)時点(時刻F)以後に、制御器50は半導体遮断器31を制御し、オフ(電流の流れを遮断した状態)とする。
時刻Eの時点で、既に通電路10の電流は不通とされており、時刻Fで半導体遮断器31はオフ制御されて電流不通の状態に切り換えられる。このため、時刻F以降、非線形抵抗器32に電流が一時的に流れる。
時刻Eの時点で、既に通電路10の電流は不通とされており、時刻Fで半導体遮断器31はオフ制御されて電流不通の状態に切り換えられる。このため、時刻F以降、非線形抵抗器32に電流が一時的に流れる。
非線形抵抗器32に一時的に電流が流れる最初の段階では、その直前に半導体遮断器31に流れていた電流と同じ値の電流が流れる。これにより、非線形抵抗器32に比較的大きな電圧降下(例えば、500kV)が生じ、電流は減少する。
電流が減少すると、非線形抵抗器32の抵抗の非線形性により抵抗値が増大する。増大した抵抗値によって、全電流41が実質的にゼロに至り、電流遮断が完了する(時刻G)。
電流が減少すると、非線形抵抗器32の抵抗の非線形性により抵抗値が増大する。増大した抵抗値によって、全電流41が実質的にゼロに至り、電流遮断が完了する(時刻G)。
時刻G以降、この直流送電系統に応じた直流電圧44(例えば、300kV)が、この直流遮断装置に印加された状態になる。
図5に示したような標準的なタイミングで直流遮断装置を動作させることで、開閉器11または12において、その電極の開制御後に電極間にアークによる電流が流れて、電気抵抗が増加する。この結果、より素早く、通電路10から電流遮断路30に電流を転流できる。すなわち、直流遮断装置の動作がより高速となる。
ここで、図6を参照して過渡電圧抑制回路15の効果について説明する。
図6に示すように、過渡電圧抑制回路15を設置していない場合(過渡電圧抑制回路15なしの場合)、転流が完了したとき(時刻E)、高い過渡電圧51が突発的に発生する。しかし、過渡電圧抑制回路15を設置すると、コンデンサ15aによって、過渡的な電圧が吸収され、過渡電圧52は低くなる。
図6に示すように、過渡電圧抑制回路15を設置していない場合(過渡電圧抑制回路15なしの場合)、転流が完了したとき(時刻E)、高い過渡電圧51が突発的に発生する。しかし、過渡電圧抑制回路15を設置すると、コンデンサ15aによって、過渡的な電圧が吸収され、過渡電圧52は低くなる。
このように、この第1実施形態の直流遮断装置では、通電路10には半導体を用いた開閉器(半導体遮断器31)を使わないことから、通電時の電力損失を大きく減じることができる。また、開閉器12と並列に転流回路14を配置しため、通電路10の電流を、強制的に素早く(一例として、数ms程度で)電流遮断路30に転流できる。
したがって、電流遮断路30で遮断する電流の値を小さくすることが可能になり、遮断器の大型化を回避できる。より具体的には、半導体遮断器31の電流定格を小さく抑えることにより大型化を回避できる。
すなわち、通電路10を通過する直流電流の値が大きい場合であっても、小型で通常時の通電損失を低く抑えることができる。
すなわち、通電路10を通過する直流電流の値が大きい場合であっても、小型で通常時の通電損失を低く抑えることができる。
第1実施形態では、過渡電圧抑制回路15に、コンデンサ15aを用いたが、この他、例えば、図7~図9に示すような回路を採用できる。図7は、コンデンサ15aとリアクトル15bの直列回路を示す。図8は、コンデンサ15aと抵抗器15cの直列回路を示す。図9は、コンデンサ15aとリアクトル15bと抵抗器15cの直列回路を示す。
これらの例のように、過渡電圧抑制回路15を、コンデンサ15aとリアクトル15bの直列回路、コンデンサ15aと抵抗器15cの直列回路、コンデンサ15aとリアクトル15bと抵抗器15cの直列回路とすることができる。この結果、リアクトル15bまたは抵抗器15cにより、開閉器12の電極間に流れる電流、ひいては放電による電極の損傷を抑制できる。
これらの例の場合、開閉器12を開状態から閉状態とする過程で、開閉器12の電極間距離が狭まると、過渡電圧抑制回路15のコンデンサ15aに蓄えられた電荷が放電され、開閉器12の電極間に電流が流れる。このため、電流遮断時の時刻Eでの電圧抑制効果はコンデンサ15aを単独で用いた場合と同様である。
また上記第1実施形態では、抵抗器13として抵抗値が固定の抵抗器を用いたが、これ以外に例えば非線形抵抗器を用いてもよい。非線形抵抗器として、例えば、避雷器素子を利用できる。
抵抗器13として用いる非線形抵抗器の電圧は、半導体遮断器31のオン抵抗による電圧より高く、半導体遮断器31に並列接続された非線形抵抗器32より低いことが好ましい。この抵抗器13として用いる非線形抵抗器の抵抗は、開閉器12の絶縁耐圧の限界より低い電圧で低下することが好ましい。
開閉器12に、絶縁耐圧より高い電圧が印加されると、抵抗器13として用いた非線形抵抗器の抵抗値が低くなる。その結果、開閉器12に印加される電圧が低減され、開閉器12の絶縁破壊を防止できる。
(変形例1)
図10は変形例1の直流遮断装置の構成を示す。変形例1の直流遮断装置では、第1実施形態の電流遮断装置から過渡電圧抑制回路15を除外している。このように、過渡電圧抑制回路15を有しなくても、直流遮断装置として動作可能である。この動作は、第1実施形態の電流遮断装置と同様、図5によって表せるので、説明を省略する。
図10は変形例1の直流遮断装置の構成を示す。変形例1の直流遮断装置では、第1実施形態の電流遮断装置から過渡電圧抑制回路15を除外している。このように、過渡電圧抑制回路15を有しなくても、直流遮断装置として動作可能である。この動作は、第1実施形態の電流遮断装置と同様、図5によって表せるので、説明を省略する。
(第2実施形態)
次に、図11を参照して第2実施形態の電流遮断装置を説明する。この第2実施形態は図1に示した第1実施形態の直流遮断装置の開閉器12近傍の回路を変形した例であり、第1実施形態と同じ構成には同一の符号を付しその説明は省略する。
次に、図11を参照して第2実施形態の電流遮断装置を説明する。この第2実施形態は図1に示した第1実施形態の直流遮断装置の開閉器12近傍の回路を変形した例であり、第1実施形態と同じ構成には同一の符号を付しその説明は省略する。
この第2実施形態では、開閉器12と直列に可飽和リアクトル16を接続している。転流回路14はコンデンサ14aと半導体スイッチ14cとの直列回路で構成している。
すなわちこの第2実施形態では、開閉器12と可飽和リアクトル16の直列回路、コンデンサと半導体スイッチが直列に接続された転流回路14、および抵抗器13が並列に接続されている。
この例では、転流回路14はリアクトル14bを有しないが、図2のように、リアクトル14bを有してもよい。
すなわちこの第2実施形態では、開閉器12と可飽和リアクトル16の直列回路、コンデンサと半導体スイッチが直列に接続された転流回路14、および抵抗器13が並列に接続されている。
この例では、転流回路14はリアクトル14bを有しないが、図2のように、リアクトル14bを有してもよい。
この第2実施形態では、転流回路14、可飽和リアクトル16、開閉器12が閉回路を構成する。可飽和リアクトル16は、開閉器12で遮断すべき電流以下の電流値において、飽和状態と非飽和状態の変化点を持つ。この電流値は、通常の状態での直流電流程度である。
以下、図12を参照してこの第2実施形態の直流遮断装置の電流遮断時の動作のうち第1実施形態と電流の変化が異なる部分を説明する。
制御器50は、時刻Cにおいて開閉器12を開制御(遮断)した後、時刻Dの時点で転流回路14を制御して、開閉器12に逆電流を注入させる。
これにより、可飽和リアクトル16には、開閉器12と同値の電流が流れる。この電流が減少し、飽和状態から非飽和状態に遷移すると、可飽和リアクトル16のインダクタンスが増加する。その結果、図12に示す半導体遮断器31に流れる電流42の時系列的な変化のうち、時刻DからEの間、例えば、時刻62で電流の変化が緩やかになる。このため、開閉器12を流れる電流43の変化が、電流零点直前の時刻63で、緩やかになる。
これにより、可飽和リアクトル16には、開閉器12と同値の電流が流れる。この電流が減少し、飽和状態から非飽和状態に遷移すると、可飽和リアクトル16のインダクタンスが増加する。その結果、図12に示す半導体遮断器31に流れる電流42の時系列的な変化のうち、時刻DからEの間、例えば、時刻62で電流の変化が緩やかになる。このため、開閉器12を流れる電流43の変化が、電流零点直前の時刻63で、緩やかになる。
このように、この第2実施形態によれば、第1実施形態と同様の効果が得られると共に、電流零点で確実に電流を電流遮断路30に転流させることができる。開閉器12と直列に接続された可飽和リアクトル15によって、電流遮断時に開閉器12を流れる電流の変化率が電流零点直前で緩やかになり、小電流状態の期間が生じるためである。
(変形例2)
図13は変形例2の直流遮断装置の構成を示す。変形例2の直流遮断装置では、第2実施形態の電流遮断装置から過渡電圧抑制回路15を除外している。このように、過渡電圧抑制回路15を有しなくても、直流遮断装置として動作可能である。この動作は、第2実施形態の電流遮断装置と同様、図12によって表せるので、説明を省略する。
図13は変形例2の直流遮断装置の構成を示す。変形例2の直流遮断装置では、第2実施形態の電流遮断装置から過渡電圧抑制回路15を除外している。このように、過渡電圧抑制回路15を有しなくても、直流遮断装置として動作可能である。この動作は、第2実施形態の電流遮断装置と同様、図12によって表せるので、説明を省略する。
(第3の実施形態)
次に、図14、図15を参照して第3の実施形態の電流遮断装置を説明する。この第3の実施形態は図1に示した第1実施形態の直流遮断装置の変形例であり、第1実施形態と同じ構成には同一の符号を付しその説明は省略する。
次に、図14、図15を参照して第3の実施形態の電流遮断装置を説明する。この第3の実施形態は図1に示した第1実施形態の直流遮断装置の変形例であり、第1実施形態と同じ構成には同一の符号を付しその説明は省略する。
図14に示すように、この第3の実施形態では、第1実施形態の開閉器12に電極間距離検出器22が設置される。電極間距離検出器22は、開閉器12の電極間距離を検出して制御器50に通知する。制御器50は電極間距離検出器22から通知された開閉器12の電極間距離に基づいて開閉器12および転流回路14を制御する。
この第3の実施形態の場合、図15に示すように、時刻C1を考慮に入れて開閉器12を制御する。時刻C1は、開閉器12の電極距離が所定の距離に到達する時刻であり、開閉器12への電極開制御の開始時刻Cから予想される。
制御器50は、この時刻C1より遅い時点で通電路10から電流遮断路30への転流が完了するように(転流完了は時刻E)転流回路14の半導体スイッチ14cをオンするタイミングを決定し、転流回路14を制御する。
すなわち、この第3の実施形態では、電極間距離検出器22により検出された開閉器12の電極間距離が連続的に制御器50に伝えられる。制御器50は、電極間距離検出器22により検出された開閉器12の電極距離が所定の距離(閾値)に到達する時刻C1を予測演算する。制御器50は、時刻C1の前の、開閉器12への電極開制御の開始タイミング(時刻C)で、開閉器12の電極開を制御する。その後の動作は第1の実施形態と同様である。
このように、この第3の実施形態によれば、開閉器12に電極間距離検出器22が設置され、開閉器12の制御タイミングを取得される。このため、開閉器12の耐圧性が十分に確保される状態になってから、半導体遮断器31による電圧降下分の開閉器12への電圧印加が生じる(その期間は時刻E以降時刻Fまで)。この結果、開閉器12の運用上、非常に好ましい結果が得られる。
なお、第3の実施形態では、開閉器12に電極間距離検出器22を設置し、開閉器12の電極間距離を検出して遮断制御している。但し、電極間の距離が所定の距離に到達する時間は予め判っている。このため、電極間距離検出器22を設置せず、開閉器12の電極距離が所定の距離に到達する時刻C1を開閉器12への電極開制御の開始の時刻Cから予測し、遮断動作開始後の経過時刻に従って制御してもよい。
(変形例3)
図16は変形例3の直流遮断装置の構成を示す。変形例3の直流遮断装置では、第3実施形態の電流遮断装置から過渡電圧抑制回路15を除外している。このように、過渡電圧抑制回路15を有しなくても、直流遮断装置として動作可能である。この動作は、第2実施形態の電流遮断装置と同様、図15によって表せるので、説明を省略する。
図16は変形例3の直流遮断装置の構成を示す。変形例3の直流遮断装置では、第3実施形態の電流遮断装置から過渡電圧抑制回路15を除外している。このように、過渡電圧抑制回路15を有しなくても、直流遮断装置として動作可能である。この動作は、第2実施形態の電流遮断装置と同様、図15によって表せるので、説明を省略する。
(第4実施形態)
次に、図17、図18を参照して第4実施形態の電流遮断装置を説明する。この第4実施形態は図1、図14に示した第1,第3実施形態の直流遮断装置の変形例であり、第1、第3実施形態と同じ構成には同一の符号を付しその説明は省略する。
次に、図17、図18を参照して第4実施形態の電流遮断装置を説明する。この第4実施形態は図1、図14に示した第1,第3実施形態の直流遮断装置の変形例であり、第1、第3実施形態と同じ構成には同一の符号を付しその説明は省略する。
図17に示すように、この第4実施形態では、第1実施形態の開閉器11に電極間距離検出器23を増設している。電極間距離検出器23は、開閉器11の電極間距離を検出して制御器50に通知する。制御器50は、電極間距離検出器23から通知された開閉器11の電極間距離または電極開制御後の経過時間に基づいて、開閉器11および半導体遮断器31を制御する。
この第4実施形態の場合、図18に示すように、時刻C2を考慮に入れて開閉器12の制御を行う。時刻C2は、開閉器11への電極開制御の開始の時刻Cから予想される、開閉器11の電極距離が所定の距離に到達する時刻である。制御器50はこの時刻C2より遅い時点(例えば時刻F)で、オン状態の半導体遮断器31をオフ(通電を切る状態)に切り替えるよう制御する。
すなわち、この第4実施形態のでは、電極間距離検出器22により検出された開閉器11の電極間距離が常に制御器50に伝えられる。制御器50は、電極間距離検出器23によって検出された開閉器11の電極距離が予め設定された所定の距離(閾値)に到達する時刻C2を予測演算する。制御器50は、時刻C2より前の、開閉器11への電極開制御の開始タイミング(時刻C)を決定し、開閉器11および半導体遮断器31を遮断制御する。その後の動作は変形例1,3と同様である。
このようにこの第4実施形態によれば、開閉器11に電極間距離検出器23を配置し、開閉器11の制御タイミングを取得する。このため、開閉器11の耐圧性が十分に確保されるような状態になってから、直流遮断装置への高印加電圧が生じることになる(その期間は時刻F以降)。この結果、開閉器11の運用上、非常に好ましい結果を得ることができる。
なお、第4実施形態では、開閉器11に電極間距離検出器23を配置し、開閉器11の電極間距離を検出して遮断制御している。但し、電極間の距離が所定の距離に到達する時間は予め判っている。このため、電極間距離検出器23を配置せず、開閉器11の電極距離が所定の距離に到達するまでの時刻C2を、開閉器11への電極開制御の開始の時刻Cから予測し、遮断動作開始後(開閉器11の電極開制御開始後)の経過時刻に従って制御してもよい。
(変形例4)
図19は変形例4の直流遮断装置の構成を示す。変形例4の直流遮断装置では、第4実施形態の電流遮断装置から過渡電圧抑制回路15を除外している。このように、過渡電圧抑制回路15を有しなくても、直流遮断装置として動作可能である。この動作は、第2実施形態の電流遮断装置と同様、図18によって表せるので、説明を省略する。
図19は変形例4の直流遮断装置の構成を示す。変形例4の直流遮断装置では、第4実施形態の電流遮断装置から過渡電圧抑制回路15を除外している。このように、過渡電圧抑制回路15を有しなくても、直流遮断装置として動作可能である。この動作は、第2実施形態の電流遮断装置と同様、図18によって表せるので、説明を省略する。
以上説明した少なくとも一つの実施形態および変形例によれば、通常時の通電損失を低く抑えかつ装置構成の大型化を回避することができる。換言すると、遮断すべき電流が大きい場合であっても小型で通常時の通電損失を低く抑えることができる直流遮断装置を提供できる。
本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
Claims (17)
- 第1の開閉器と、
前記第1の開閉器と直列に接続され、前記第1の開閉器より低い絶縁耐圧を有する第2の開閉器と、
を有し、直流電流を流すための通電路と、
前記第2の開閉器と並列に接続され、前記直流電流の向きと逆向きの電流を前記第2の開閉器に注入する転流回路と、
前記通電路と並列に接続される半導体遮断器と、
前記通電路と並列に接続される非線形抵抗器と、
を具備する直流遮断装置。 - 前記転流回路が、互いに直列に接続される、コンデンサおよびスイッチを有する
請求項1の直流遮断装置。 - 前記転流回路が、前記コンデンサおよび前記スイッチと直列に接続される、リアクトルをさらに有する
請求項2の直流遮断装置。 - 前記第2の開閉器と並列に接続され、第2のコンデンサを含む電圧抑制回路
をさらに具備する請求項1記載の直流遮断装置。 - 前記電圧抑制回路が、
前記第2のコンデンサと直列に接続される第2のリアクトル、
前記第2のコンデンサと直列に接続される第2の抵抗器、または
前記第2のコンデンサと直列に接続される第2のリアクトルおよび第2の抵抗器
をさらに有する、
請求項4の直流遮断装置。 - 前記第2の開閉器と並列に接続される第3の抵抗器
をさらに具備する請求項1記載の直流遮断装置。 - 前記第3の抵抗器が、非線形抵抗器である
請求項6記載の直流遮断装置。 - 前記第1、第2の開閉器と直列に接続される可飽和リアクトルをさらに具備し、
前記直列に接続された前記第2の開閉器および前記可飽和リアクトルが、前記転流回路と並列に接続される、
請求項1の直流遮断装置。 - 前記第2の開閉器が、真空開閉器である
請求項1記載の直流遮断装置。 - 前記第2の開閉器が、縦磁界電極を有する真空開閉器である
請求項9記載の直流遮断装置。 - 前記第1の開閉器が、ガス開閉器である
請求項1記載の直流遮断装置。 - 前記通電路を流れる前記直流電流に異常が検出された場合、前記第1および第2の開閉器を遮断する遮断制御を開始し、
前記遮断制御の開始後に、前記転流回路を制御して、前記逆向きの電流を前記第2の開閉器に注入させることによって、前記直流電流の経路を前記通電路から前記半導体遮断器に切り替え、
前記切替後に、前記半導体遮断器を制御して、オンからオフに切り替える
制御器をさらに具備する
請求項1記載の直流遮断装置。 - 前記制御器は、
前記第2の開閉器が開となってから所定の時間後に、前記転流回路の制御を開始する、
請求項12記載の直流遮断装置。 - 前記第2の開閉器の電極間距離を検出する検出器をさらに具備し、
前記制御器は、
前記検出された電極間距離に基づいて、前記転流回路の制御を開始する、
請求項12項に記載の直流遮断装置。 - 前記制御器は、
前記第1の開閉器が開となってから所定の時間後に、前記半導体遮断器を制御して、オンからオフに切り替える、
請求項12項に記載の直流遮断装置。 - 前記第1の開閉器の電極間距離を検出する検出器をさらに具備し、
前記制御器は、
前記検出された電極間距離に基づいて、前記半導体遮断器をオンからオフに切り替える、
請求項12項に記載の直流遮断装置。 - 前記制御器は、
前記転流回路が前記逆向きの電流を前記第2の開閉器に注入した後、前記電極間距離が所定の距離に到達した場合に、前記半導体遮断器をオンからオフに切り替える、
請求項16記載の直流遮断装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16768053.7A EP3276648B1 (en) | 2015-03-24 | 2016-03-22 | Direct current interruption device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015060683A JP6386955B2 (ja) | 2015-03-24 | 2015-03-24 | 直流遮断装置および直流遮断方法 |
JP2015-060683 | 2015-03-24 | ||
JP2015060684A JP6448431B2 (ja) | 2015-03-24 | 2015-03-24 | 直流遮断装置 |
JP2015-060684 | 2015-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016152147A1 true WO2016152147A1 (ja) | 2016-09-29 |
Family
ID=56979074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/001649 WO2016152147A1 (ja) | 2015-03-24 | 2016-03-22 | 直流遮断装置 |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3276648B1 (ja) |
WO (1) | WO2016152147A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11694864B2 (en) | 2020-09-30 | 2023-07-04 | Eaton Intelligent Power Limited | Vacuum interrupter with trap for running cathode tracks |
DE102020134773A1 (de) * | 2020-12-22 | 2022-06-23 | Elpro Gmbh | Leistungsschalter für gleichströme |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55126923A (en) * | 1979-03-22 | 1980-10-01 | Tokyo Shibaura Electric Co | Dc breaker |
JPS627738U (ja) * | 1985-06-29 | 1987-01-17 | ||
JPH04259719A (ja) * | 1991-02-12 | 1992-09-16 | Hitachi Ltd | 電流遮断装置 |
JPH0917294A (ja) * | 1995-06-28 | 1997-01-17 | Mitsubishi Electric Corp | 両方向直流遮断器 |
WO2016047209A1 (ja) * | 2014-09-26 | 2016-03-31 | 三菱電機株式会社 | 直流遮断器 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57151121A (en) * | 1981-03-14 | 1982-09-18 | Tokyo Shibaura Electric Co | Hybrid switching device |
EP2780923B1 (en) * | 2011-11-18 | 2015-04-22 | ABB Technology AG | Hvdc hybrid circuit breaker with snubber circuit |
WO2013182231A1 (en) * | 2012-06-05 | 2013-12-12 | Abb Technology Ltd | A method and an arrangement for limiting the current in an electrical power transmission system |
-
2016
- 2016-03-22 WO PCT/JP2016/001649 patent/WO2016152147A1/ja unknown
- 2016-03-22 EP EP16768053.7A patent/EP3276648B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55126923A (en) * | 1979-03-22 | 1980-10-01 | Tokyo Shibaura Electric Co | Dc breaker |
JPS627738U (ja) * | 1985-06-29 | 1987-01-17 | ||
JPH04259719A (ja) * | 1991-02-12 | 1992-09-16 | Hitachi Ltd | 電流遮断装置 |
JPH0917294A (ja) * | 1995-06-28 | 1997-01-17 | Mitsubishi Electric Corp | 両方向直流遮断器 |
WO2016047209A1 (ja) * | 2014-09-26 | 2016-03-31 | 三菱電機株式会社 | 直流遮断器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3276648A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3276648B1 (en) | 2020-01-29 |
EP3276648A1 (en) | 2018-01-31 |
EP3276648A4 (en) | 2018-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6223887B2 (ja) | 直流遮断装置、直流遮断方法 | |
JP6134778B2 (ja) | 直流遮断器およびその遮断方法 | |
US9948089B2 (en) | DC circuit breaker device | |
JP6049957B2 (ja) | 直流遮断器 | |
KR101521545B1 (ko) | 고압 직류 전류 차단 장치 및 방법 | |
US10476255B2 (en) | DC circuit breaker | |
EP3413330B1 (en) | Direct current circuit breaker | |
US10395866B2 (en) | High voltage DC circuit breaker | |
KR101641511B1 (ko) | 직류전류 차단을 위한 장치 및 방법 | |
JP6448431B2 (ja) | 直流遮断装置 | |
JP6591210B2 (ja) | 直流遮断装置、直流遮断方法 | |
WO2016152147A1 (ja) | 直流遮断装置 | |
JP6386955B2 (ja) | 直流遮断装置および直流遮断方法 | |
JP2009181908A (ja) | 直流高速真空遮断装置 | |
JP2018533835A (ja) | 電流の強制振動を用いた、高電圧dcネットワーク用の回路遮断器 | |
KR102033678B1 (ko) | 직류전원 차단 제어장치 | |
WO2016199407A1 (ja) | 直流遮断装置、直流遮断方法 | |
JP2020502767A (ja) | 真空ギャップスイッチを用いた逆電流注入型直流遮断装置及び方法 | |
JP7134375B1 (ja) | 直流遮断器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16768053 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |