[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016150263A1 - 一种pn结 - Google Patents

一种pn结 Download PDF

Info

Publication number
WO2016150263A1
WO2016150263A1 PCT/CN2016/074111 CN2016074111W WO2016150263A1 WO 2016150263 A1 WO2016150263 A1 WO 2016150263A1 CN 2016074111 W CN2016074111 W CN 2016074111W WO 2016150263 A1 WO2016150263 A1 WO 2016150263A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
lightly doped
doped
junction
lightly
Prior art date
Application number
PCT/CN2016/074111
Other languages
English (en)
French (fr)
Inventor
周治平
李田甜
钟舫
华锋
王会涛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016150263A1 publication Critical patent/WO2016150263A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect

Definitions

  • This document relates to semiconductor technology, especially a PN junction.
  • Silicon-based optoelectronic integration uses silicon materials in the traditional microelectronics field as optoelectronic functional materials, which have the advantages of small size, low cost, easy integration, compatibility with complementary metal oxide (CMOS) processes, and good stability. It is an ideal solution for optical communication, optical interconnect cost and power consumption bottlenecks. Silicon-based electro-optic modulators are representative devices in silicon-based optoelectronic integration and have become a hot topic in academic research.
  • CMOS complementary metal oxide
  • Silicon-based electro-optic modulation often utilizes the plasma dispersion effect of free carriers in silicon materials, that is, when the free carrier concentration in silicon changes, the refractive index of silicon changes.
  • the carrier concentration modulation methods are injection type, accumulation type, and depletion type. among them,
  • the implanted structure is usually doped P-type and N-type in the waveguide plate region, and the waveguide ridge region is used as the I region.
  • the carriers electrosprays
  • the waveguide ridge region is used as the I region.
  • the carriers electrosprays
  • Injection into the waveguide ridge region causes a change in the effective refractive index of the waveguide plate region.
  • the change region of the carrier of the injection structure has a large overlap with the light field mode in the optical waveguide, and has higher modulation efficiency, but is limited by the slower carrier injection process, and the modulation rate can only be achieved.
  • the accumulation structure usually needs to form an oxide layer in the ridge region, and P-type and N-type doping in the waveguide plate region to form an approximate capacitance structure.
  • a forward voltage is applied, an effect similar to the charge and discharge of the capacitor is generated.
  • the accumulation structure can achieve a higher modulation rate.
  • the carrier concentration change region and the light field overlap portion are less, and the modulation efficiency of the structure is limited.
  • the depletion structure needs to be doped in both the waveguide plate region and the waveguide ridge region, in the waveguide ridge region A PN junction is formed inside.
  • a reverse bias voltage is applied, as the reverse bias voltage of the PN junction increases, the carrier depletion region becomes larger and larger, resulting in a change in the effective refractive index of the waveguide plate region.
  • the depletion rate of the depletion-based structure based on the reverse bias PN junction is fast, so the modulation rate is usually high, and can reach several tens of GHz, and can be applied to high-speed data transmission.
  • this structure also has a problem that the carrier concentration change region and the light field overlap region are small and the modulation efficiency is low.
  • FIG. 1(a) is a three-dimensional schematic diagram of a conventional lateral PN junction structure
  • FIG. 1(b) is a projection diagram of FIG. 1(a).
  • the structure includes a heavily doped P region 1, a lightly doped P region 2, a lightly doped N region 3, and a heavily doped N region 4, with no change along the length of the waveguide ridge region.
  • This structure has a low modulation efficiency because the carrier concentration change region and the light field overlap portion are small. That is to say, the conventional depletion-type silicon-based electro-optical modulator has a low modulation efficiency and a large driving voltage, resulting in a large power consumption. In recent years, researchers have proposed some methods to improve the modulation efficiency of depletion structures.
  • the interdigitated structure overcomes the shortcomings of the above structure, and adopts a method of periodically doping in the longitudinal direction to increase the area of the overlapping portion of the carrier concentration change region and the optical field, thereby improving the modulation efficiency.
  • 2(a) is a three-dimensional view of a conventional interpolated PN junction structure
  • FIG. 2(b) is a projection view of FIG. 2(a).
  • the structure changes periodically along the length of the waveguide ridge region. During each period, the lightly doped P region 1 and the lightly doped N region 3 alternate in the length direction of the waveguide ridge region.
  • the distribution, and the intersection of the lightly doped P region 1 and the lightly doped N region 3 on the waveguide ridge region, is a straight line on the plane perpendicular to the interface.
  • this structure still has a problem of low modulation efficiency and large power consumption.
  • the present invention proposes a PN junction, which can improve modulation efficiency and reduce power consumption.
  • a PN junction that includes:
  • the lightly doped P region and the lightly doped N region are alternately distributed in the length direction of the waveguide ridge region, and the lightly doped P region and the lightly doped N region are on the waveguide ridge region.
  • the projection of the intersection of the regions on a plane perpendicular to the interface is a polyline.
  • the PN junction further comprises: a heavily doped P region connected to the lightly doped P region, and a heavily doped N region connected to the lightly doped N region.
  • a projected shape of the lightly doped N region on the waveguide ridge region on a plane perpendicular to the interface is a planar structure
  • a projected shape of a region of the lightly doped P region on the waveguide ridge region on a plane perpendicular to the interface and a region of the lightly doped N region on the waveguide ridge region corresponds.
  • planar structure is one or more of the following shapes:
  • the interface between the lightly doped P region and the lightly doped N region forms an interdigitated structure, and the interdigitated structure is periodically distributed along the length of the waveguide ridge region.
  • the heavily doped P region and the heavily doped N region are connected to the two metal electrodes above the heavily doped P region and the heavily doped N region.
  • the heavily doped P region and the heavily doped N region are in ohmic contact with the two metal electrodes above the heavily doped P region and the heavily doped N region, respectively.
  • the metal electrode adopts a centralized or traveling wave type.
  • the technical solution of the present invention comprises: a lightly doped P region, a lightly doped N region connected to the lightly doped P region; wherein the lightly doped P region and the lightly doped N region are in the waveguide ridge region
  • the length directions are alternately distributed, and the intersection of the lightly doped P region and the lightly doped N region on the waveguide ridge region on the plane perpendicular to the interface is a fold line.
  • Figure 1 (a) is a three-dimensional schematic view of a conventional lateral PN junction structure
  • Figure 1 (b) is a projection view of Figure 1 (a);
  • 2(a) is a three-dimensional schematic diagram of a conventional interpolated PN junction structure
  • Figure 2 (b) is a projection view of Figure 2 (a);
  • 3(a) is a three-dimensional view showing a PN junction when a projection shape of a lightly doped N region on a waveguide ridge region on a plane perpendicular to the interface is a convex-concave superposition type according to an embodiment of the present invention
  • Figure 3 (b) is a projection view of Figure 3 (a);
  • FIG. 4(a) is a three-dimensional view showing a PN junction when a projection shape of a lightly doped N region on a waveguide ridge region is a king shape on a plane perpendicular to the interface according to an embodiment of the present invention
  • Figure 4 (b) is a projection view of Figure 4 (a);
  • 5(a) is a three-dimensional view showing a PN junction when a projection shape of a lightly doped N region on a waveguide ridge region is S-shaped on a plane perpendicular to the interface according to an embodiment of the present invention
  • Figure 5 (b) is a projection view of Figure 5 (a);
  • FIG. 6(a) is a three-dimensional view showing a PN junction when a projection shape of a lightly doped N region on a waveguide ridge region on a plane perpendicular to the interface is an I-shape according to an embodiment of the present invention
  • Figure 6 (b) is a projection view of Figure 6 (a);
  • FIG. 7 is a diagram showing changes in the effective refractive index of a waveguide according to an embodiment of the present invention as a function of an applied reverse bias voltage
  • FIG. 8 is a schematic structural diagram of a Mach-Zehnder Interferometer (MZI) modulator according to an embodiment of the present invention.
  • MZI Mach-Zehnder Interferometer
  • Embodiments of the present invention provide a PN junction including at least a lightly doped P region and a lightly doped N region connected to a lightly doped P region.
  • the lightly doped P region and the lightly doped N region form a novel interdigitated structure on the waveguide ridge region.
  • the lightly doped P region and the lightly doped N region are alternately distributed in the length direction of the waveguide ridge region, and the projection of the interface between the lightly doped P region and the lightly doped N region on the waveguide ridge region is a polygonal line. .
  • the projected shape of the lightly doped N region on the waveguide ridge region on a plane perpendicular to the interface is a planar structure.
  • the planar structure may be one or more of the following:
  • the shape of the lightly doped P region on the waveguide ridge region and the shape of the lightly doped N region on the waveguide ridge region are correspond.
  • the shape of the lightly doped N region on the waveguide ridge region may be other shapes as long as the projection of the interface of the lightly doped P region and the lightly doped N region on the waveguide ridge region is a fold line. Any alterations and substitutions made by those skilled in the art to the shape of the lightly doped N region on the waveguide ridge region are within the scope of the present invention.
  • FIG. 3( a ) is a three-dimensional schematic diagram of a PN junction when a projection shape of a lightly doped N region on a waveguide ridge region on a plane perpendicular to the interface is a convex-concave superposition type
  • FIG. 3( b ) is a diagram. Projection diagram of 3(a).
  • the PN junction includes a waveguide, which is a ridge waveguide structure, and specific structural parameters are defined by chip size and etching process.
  • a heavily doped P region 1, a lightly doped P region 2, a lightly doped N region 3 and a heavily doped N region 4 are included within the waveguide.
  • the junction of the lightly doped P region 2 and the lightly doped N region 3 forms a novel interdigitated structure. Both sides of the lightly doped P region 2 and the lightly doped N region 3 are waveguide plate regions.
  • the heavily doped P region 1 and the heavily doped N region 4 form an ohmic contact with the two metal electrodes on the heavily doped P region 1 and the heavily doped N region 4.
  • the novel interdigitated structure along the waveguide ridge The length direction of the type zone is periodically distributed.
  • the carrier depletion region of the PN junction becomes wider, and the overlap of the optical field mode of the optical waveguide and the carrier concentration in the waveguide is reduced due to the plasma dispersion. Small, resulting in an increase in the effective refractive index of the waveguide, so that the change in the effective refractive index of the waveguide can be controlled by controlling the change of the applied voltage signal.
  • FIG. 4(a) is a three-dimensional diagram of a PN junction when the projection shape of the lightly doped N region on the waveguide ridge region is a king shape on a plane perpendicular to the interface
  • FIG. 4(b) is FIG. 4 (FIG. 4(b) is FIG. Projection map of a).
  • Fig. 5(a) is a three-dimensional view of the PN junction when the projection shape of the lightly doped N region on the waveguide ridge region is S-shaped on a plane perpendicular to the interface
  • Fig. 5(b) is Fig. 5(a) Projection map.
  • FIG. 6(a) is a three-dimensional view of the PN junction when the projection shape of the lightly doped N region on the waveguide ridge region is I-shaped on a plane perpendicular to the interface
  • Fig. 6(b) is Fig. 6 (Fig. 6(b) Projection map of a).
  • These three structures also use the irregular interface between the P region and the N region, which increases the area of the depletion region. Compared with the conventional structure, the overlap integral of the PN junction depletion region and the optical field is increased, and the modulation efficiency can be improved. the goal of.
  • the PN junction of the embodiment of the present invention may further include: a heavily doped P region connected to the lightly doped P region, and a heavily doped N region connected to the lightly doped N region.
  • the heavily doped P region and the heavily doped N region are respectively connected to the two metal electrodes above the heavily doped P region and the heavily doped N region.
  • the metal electrode structure can be a concentrated or traveling wave type.
  • the PN junction may be made of a material having a plasma dispersion effect, such as silicon, silicon on insulator (SOI, Silicon-On-Insulator), or indium phosphorus (InP), or gallium arsenide (GaAs).
  • a material having a plasma dispersion effect such as silicon, silicon on insulator (SOI, Silicon-On-Insulator), or indium phosphorus (InP), or gallium arsenide (GaAs).
  • a novel interpolated structure is adopted in the length direction of the waveguide ridge region, which increases the overlapping portion of the carrier depletion region in the waveguide and the optical field in the waveguide, and improves the modulation of the depletion electro-optic modulator. Efficiency, reducing power consumption.
  • the manufacturing process based on the novel interpolated structure is compatible with the conventional VLSI CMOS process, and no special process is required, and the ion implantation process can be directly used to form a novel interpolated PN junction structure, which is advantageous for large-scale fabrication and reduction of devices. cost.
  • Fig. 7 is a graph showing changes in the effective refractive index of the waveguide as a function of the applied reverse bias voltage.
  • the width of the waveguide ridge region is selected to be 600 nanometers (nm)
  • the width of the waveguide plate region is 500 nm
  • the length of one cycle is 600 nm.
  • the light doping concentration is 1 ⁇ 10 18 /cm 3
  • the heavy doping concentration is 1 ⁇ 10 20 /cm 3
  • the lateral PN junction structure selects a lightly doped P region and a lightly doped N region symmetric structure.
  • the lightly doped P region and the lightly doped N region are both 300 nm long in a single period of the conventional interdigitated structure.
  • the modulator of the novel interpolating structure doped structure of the embodiment of the present invention has a significantly higher effective refractive index change than the conventional interpolation. It refers to the structure and the lateral PN junction structure, and therefore, the modulation efficiency is high.
  • FIG 8 is a schematic diagram showing the structural composition of a Mach-Zehnder Interferometer (MZI).
  • the MZI modulator is composed of beam splitting combiners 1a, 1b and two PN junctions 10, wherein the beam splitting combiner 1a and the beam splitting combiner 1b can employ a Y-branch or a multi-mode interferometer ( MMI, Multimode Interferometer).
  • MMI multi-mode interferometer
  • the input light is equally distributed into the two PN junctions 10 through the beam splitting combiner 1a, and the two beams are combined into one beam by the beam splitting combiner 1b.
  • the effective refractive index of the PN junction 10 is changed, the phase difference of the two arms is changed, thereby causing a change in the output light intensity, thereby realizing the light emphasis system.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve. Thus, the invention is not limited to any specific combination of hardware and software.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the technical solution of the present invention comprises: a lightly doped P region, a lightly doped N region connected to the lightly doped P region; wherein the lightly doped P region and the lightly doped N region are in the waveguide ridge region
  • the length directions are alternately distributed, and the intersection of the lightly doped P region and the lightly doped N region on the waveguide ridge region on the plane perpendicular to the interface is a fold line.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种PN结,包括轻掺杂P区(2)以及与轻掺杂P区(2)相连的轻掺杂N区(3)。轻掺杂P区(2)和轻掺杂N区(3)在波导脊形区长度方向交替分布,且轻掺杂P区(2)和轻掺杂N区(3)在波导脊形区上的区域的交界面在与交界面垂直的平面上的投影为一条折线。该结构增加了PN结耗尽区与光场的重叠积分,提高了调制效率,降低了功耗。

Description

一种PN结 技术领域
本文涉及半导体技术,尤指一种PN结(P-N junction)。
背景技术
硅基光电子集成采用传统微电子领域的硅材料作为光电子功能材料,具有尺寸小、成本低、易集成、与互补金属氧化物(CMOS,Complementary Metal Oxide Semiconductor)工艺兼容、稳定性好等优点,被视为光通信、光互连成本和功耗瓶颈的理想解决方案。硅基电光调制器是硅基光电子集成中的代表性器件,成为学术界研究的热点。
由于硅是中心反演对称晶体,没有线性电光效应,而高阶电光效应又非常微弱,只能通过其他效应来实现光调制。硅基电光调制往往利用硅材料中的自由载流子的等离子色散效应,即当硅中自由载流子浓度发生变化时,硅的折射率就会随之发生变化。载流子浓度调制方式有注入式、积累式和耗尽式。其中,
注入式结构通常在波导平板区做P型和N型掺杂,波导脊型区作为I区,在外加正偏电压的作用下,载流子(电子和空穴)从两侧的波导平板区注入到波导脊型区,从而引起波导平板区的有效折射率的变化。注入式结构的载流子的改变区与光波导中的光场模式有很大的重叠部分,具有较高的调制效率,但是受限于较缓慢的载流子注入过程,调制速率仅仅能达到几吉赫兹(GHz)。
积累式结构通常需要在脊型区形成一个氧化层,在波导平板区做P型和N型掺杂,形成一种近似电容的结构,外加正向电压时,产生近似于电容充放电的效应,改变氧化层附近的载流子浓度。积累式结构可以实现较高的调制速率,然而由于载流子浓度只在氧化层附近改变,导致载流子浓度改变区与光场重叠部分较少,该结构调制效率受限。
耗尽式结构需要在波导平板区和波导脊型区都进行掺杂,在波导脊型区 内形成PN结。外加反偏电压时,随着PN结反偏电压的升高,载流子耗尽区越来越大,从而导致波导平板区的有效折射率的变化。基于反偏PN结的耗尽型结构的载流子的耗尽速度很快,因此调制速率通常较高,可以达到几十GHz,能应用于高速数据传输。但是该结构同样存在载流子浓度改变区和光场重叠区较小,调制效率较低的问题。
对于传统的耗尽式结构,主要有纵向PN结结构、横向PN结结构。传统的纵向PN结结构,由于需要外延生长,工艺实现存在难度。横向PN结结构可以通过离子注入的方式形成与衬底垂直的PN结结构,图1(a)为传统横向PN结结构的三维示意图,图1(b)为图1(a)的投影图。如图1(a)所示,该结构包括重掺杂P区1、轻掺杂P区2、轻掺杂N区3和重掺杂N区4,沿波导脊型区长度方向没有变化。该结构由于载流子浓度改变区与光场重叠部分较少,因此调制效率较低。也就是说,传统的耗尽型硅基电光调制器存在调制效率较低,所需驱动电压较大,从而导致了功耗较大。近些年来研究者们提出了一些提高耗尽式结构调制效率的方法。
插指型结构克服了上述结构的缺点,采用沿长度方向周期性掺杂的方法,增大了载流子浓度改变区与光场重叠部分的面积,进而提高了调制效率。图2(a)为传统插指型PN结结构的三维示意图,图2(b)为图2(a)的投影图。如图2(a)所示,该结构沿波导脊型区长度方向呈周期性变化,每一个周期内,轻掺杂P区1和轻掺杂N区3在波导脊形区长度方向上交替分布,且轻掺杂P区1和轻掺杂N区3在波导脊形区上的区域的交界面在与交界面垂直的平面上的投影为一条直线。然而,该结构依然存在调制效率较低,功耗较大的问题。
发明内容
为了解决上述问题,本发明提出了一种PN结,能够提高调制效率,降低功耗。
为了达到上述目的,采用如下技术方案:
一种PN结,包括:
轻掺杂P区、及与所述轻掺杂P区相连的轻掺杂N区;
其中,所述轻掺杂P区和所述轻掺杂N区在波导脊形区长度方向交替分布,且所述轻掺杂P区和所述轻掺杂N区在波导脊形区上的区域的交界面在与交界面垂直的平面上的投影为一条折线。
可选地,该PN结还包括:与所述轻掺杂P区相连的重掺杂P区、及与所述轻掺杂N区相连的重掺杂N区。
可选地,所述轻掺杂N区在所述波导脊形区上的区域在与所述交界面垂直的平面上的投影形状为平面型结构;
所述轻掺杂P区在所述波导脊形区上的区域在与所述交界面垂直的平面上的投影形状与所述轻掺杂N区在所述波导脊形区上的区域在与所述交界面垂直的平面上的投影形状相对应。
可选地,所述平面型结构为以下形状的一种或多种:
凸凹叠加型,王字型、S型、I子型。
可选地,所述轻掺杂P区和轻掺杂N区的交界处形成插指型结构,该插指型结构沿波导脊型区长度方向呈周期分布。
可选地,外加偏置电压时,所述重掺杂P区及重掺杂N区与所述重掺杂P区及重掺杂N区上方的两个金属电极相连。
可选地,在外加偏置电压时,所述重掺杂P区及重掺杂N区分别与所述重掺杂P区及重掺杂N区上方的两个金属电极形成欧姆接触。
可选地,所述金属电极采用集中式或行波式。
与相关技术相比,本发明技术方案包括:轻掺杂P区、与轻掺杂P区相连的轻掺杂N区;其中,轻掺杂P区和轻掺杂N区在波导脊形区长度方向交替分布,且轻掺杂P区和轻掺杂N区在波导脊形区上的区域的交界面在与交界面垂直的平面上的投影为一条折线。通过本发明的方案,提高了调制效率,降低了功耗。
附图概述
下面对本发明实施例中的附图进行说明,实施例中的附图是用于对本发明的进一步理解,与说明书一起用于解释本发明,并不构成对本发明保护范围的限制。
图1(a)为传统横向PN结结构的三维示意图;
图1(b)为图1(a)的投影图;
图2(a)为传统插指型PN结结构的三维示意图;
图2(b)为图2(a)的投影图;
图3(a)为本发明实施例轻掺杂N区在波导脊形区上的区域在与交界面垂直的平面上的投影形状为凸凹叠加型时PN结的三维示意图;
图3(b)为图3(a)的投影图;
图4(a)为本发明实施例轻掺杂N区在波导脊形区上的区域在与交界面垂直的平面上的投影形状为王字型时PN结的三维示意图;
图4(b)为图4(a)的投影图;
图5(a)为本发明实施例轻掺杂N区在波导脊形区上的区域在与交界面垂直的平面上的投影形状为S型时PN结的三维示意图;
图5(b)为图5(a)的投影图;
图6(a)为本发明实施例轻掺杂N区在波导脊形区上的区域在与交界面垂直的平面上的投影形状为I字型时PN结的三维示意图;
图6(b)为图6(a)的投影图;
图7为本发明实施例波导有效折射率的改变值随外加反偏电压的变化图;
图8为本发明实施例马赫曾德尔干涉仪(MZI,Mach-Zehnder Interferometer)调制器的结构组成示意图。
本发明的较佳实施方式
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求 的保护范围。
下面结合附图对本发明作进一步的描述,并不能用来限制本发明的保护范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的各种方式可以相互组合。
本发明实施例提出了一种PN结,至少包括:轻掺杂P区、与轻掺杂P区相连的轻掺杂N区。
其中,轻掺杂P区和轻掺杂N区在波导脊形区上形成新颖插指型结构。具体地,轻掺杂P区和轻掺杂N区在波导脊形区长度方向交替分布,且轻掺杂P区和轻掺杂N区在波导脊形区上的交界面的投影为一条折线。
其中,轻掺杂N区在波导脊形区上的区域在与交界面垂直的平面上的投影形状为平面型结构。其中,平面型结构可以是以下的一种或多种:
凸凹叠加型,王字型、S型、I字型等。
由于轻掺杂P区和轻掺杂N区在波导脊形区上紧密相连,因此轻掺杂P区在波导脊形区上的形状与轻掺杂N区在波导脊形区上的形状相对应。
轻掺杂N区在波导脊形区上的形状还可以是其他的形状,只要满足轻掺杂P区和轻掺杂N区在波导脊形区上的交界面的投影为一条折线就可以,本领域技术人员对轻掺杂N区在波导脊形区上的形状所做出的任意改变和替换都在本发明的保护范围内。
例如,图3(a)为轻掺杂N区在波导脊形区上的区域在与交界面垂直的平面上的投影形状为凸凹叠加型时PN结的三维示意图,图3(b)为图3(a)的投影图。
如图3(a)所示,该PN结包括:波导,为脊型波导结构,其具体结构参数由芯片尺寸和刻蚀工艺来定义。在波导内包含重掺杂P区1,轻掺杂P区2,轻掺杂N区3及重掺杂N区4。该轻掺杂P区2和轻掺杂N区3的交界处形成新颖的插指型结构。轻掺杂P区2与轻掺杂N区3的两侧为波导平板区。外加偏置电压时,重掺杂P区1及重掺杂N区4与重掺杂P区1及重掺杂N区4上面的两个金属电极形成欧姆接触。该新颖插指型结构沿波导脊 型区长度方向呈周期分布。在外加反偏电压的情况下,随着电压增大,PN结的载流子耗尽区变宽,由于等离子色散作用,光波导的光场模式与波导中的载流子浓度的重叠积分减小,导致波导有效折射率增大,因此通过控制外加电压信号的变化就可以控制波导有效折射率的变化值。
图4(a)为轻掺杂N区在波导脊形区上的区域在与交界面垂直的平面上的投影形状为王字型时PN结的三维示意图,图4(b)为图4(a)的投影图。图5(a)为轻掺杂N区在波导脊形区上的区域在与交界面垂直的平面上的投影形状为S型时PN结的三维示意图,图5(b)为图5(a)的投影图。图6(a)为轻掺杂N区在波导脊形区上的区域在与交界面垂直的平面上的投影形状为I字型时PN结的三维示意图,图6(b)为图6(a)的投影图。这三种结构同样采用不规则的P区与N区交界面,增大了耗尽区的面积,与传统结构相比增加了PN结耗尽区与光场的重叠积分,可以实现提高调制效率的目的。
本发明实施例的PN结还可以包括:与轻掺杂P区相连的重掺杂P区、及与轻掺杂N区相连的重掺杂N区。
其中,在外加偏置电压时,重掺杂P区和重掺杂N区分别与重掺杂P区和重掺杂N区上方的两个金属电极相连。金属电极结构可以采用集中式或行波式。
其中,PN结可以采用具有等离子色散效应的材料,例如硅、或绝缘衬底上的硅(SOI,Silicon-On-Insulator)、或铟磷(InP)、或砷化镓(GaAs)等。
通过本发明的方案,在波导脊型区长度方向采用新颖插指型结构,增大了波导内载流子耗尽区与波导内光场的重叠部分,提高了耗尽型电光调制器的调制效率,降低了功耗。并且,基于新颖插指型结构的制造工艺与传统的超大规模集成电路CMOS工艺兼容,无需特殊工艺,可以直接使用离子注入工艺形成新颖插指型PN结结构,有利于器件的大规模制造和降低成本。
图7为波导有效折射率的改变值随外加反偏电压的变化图。本实施例中,波导脊型区宽度选择600纳米(nm),波导平板区宽度500nm,一个周期长度600nm。轻掺杂浓度为1×1018/cm3,重掺杂浓度为1×1020/cm3,横向PN结结构选择轻掺杂P区与轻掺杂N区对称的结构。同时传统插指型结构单个 周期内轻掺杂P区与轻掺杂N区均为300nm长。在这里由于是对波导脊型区的长度方向进行分析,我们假设波导脊型区光场均匀。通过计算模拟结果可以看出,在同样的掺杂浓度和驱动信号电压下,采用本发明实施例所涉及新颖插指结构掺杂结构的调制器其波导有效折射率的改变值要明显大于传统插指结构以及横向PN结结构,因此,调制效率较高。
图8为马赫曾德尔干涉仪(MZI,Mach-Zehnder Interferometer)调制器的结构组成示意图。如图8所示,MZI调制器由分束合束器1a、1b和两个PN结10构成,其中分束合束器1a、分束合束器1b可以采用Y分支或者多模干涉仪(MMI,Multimode Interferometer)。输入光通过分束合束器1a平均分配到两个PN结10中,两束光通过分束合束器1b合并成为一束光。在PN结10有效折射率的情况下会带来两臂相位差的改变,因此带来输出光强的变化,从而实现光强调制。
在阅读并理解了附图和详细描述后,可以明白其他方面。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。 上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求所述的保护范围为准。
工业实用性
与相关技术相比,本发明技术方案包括:轻掺杂P区、与轻掺杂P区相连的轻掺杂N区;其中,轻掺杂P区和轻掺杂N区在波导脊形区长度方向交替分布,且轻掺杂P区和轻掺杂N区在波导脊形区上的区域的交界面在与交界面垂直的平面上的投影为一条折线。通过本发明的方案,提高了调制效率,降低了功耗。因此本发明具有很强的工业实用性。

Claims (8)

  1. 一种PN结,包括:
    轻掺杂P区、及与所述轻掺杂P区相连的轻掺杂N区;
    其中,所述轻掺杂P区和所述轻掺杂N区在波导脊形区长度方向交替分布,且所述轻掺杂P区和所述轻掺杂N区在波导脊形区上的区域的交界面在与交界面垂直的平面上的投影为一条折线。
  2. 根据权利要求1所述的PN结,该PN结还包括:与所述轻掺杂P区相连的重掺杂P区、及与所述轻掺杂N区相连的重掺杂N区。
  3. 根据权利要求1或2所述的PN结,其中
    所述轻掺杂N区在所述波导脊形区上的区域在与所述交界面垂直的平面上的投影形状为平面型结构;
    所述轻掺杂P区在所述波导脊形区上的区域在与所述交界面垂直的平面上的投影形状与所述轻掺杂N区在所述波导脊形区上的区域在与所述交界面垂直的平面上的投影形状相对应。
  4. 根据权利要求3所述的PN结,其中,所述平面型结构为以下形状的一种或多种:
    凸凹叠加型,王字型、S型、I子型。
  5. 根据权利要求1所述的PN结,其中,所述轻掺杂P区和轻掺杂N区的交界处形成插指型结构,该插指型结构沿波导脊型区长度方向呈周期分布。
  6. 根据权利要求1所述的PN结,其中,外加偏置电压时,所述重掺杂P区及重掺杂N区与所述重掺杂P区及重掺杂N区上方的两个金属电极相连。
  7. 根据权利要求6所述的PN结,其中,在外加偏置电压时,所述重掺杂P区及重掺杂N区分别与所述重掺杂P区及重掺杂N区上方的两个金属电极形成欧姆接触。
  8. 根据权利要求6或7所述的PN结,其中,所述金属电极采用集中式或行波式。
PCT/CN2016/074111 2015-03-23 2016-02-19 一种pn结 WO2016150263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510130676.7 2015-03-23
CN201510130676.7A CN106154591A (zh) 2015-03-23 2015-03-23 一种pn结

Publications (1)

Publication Number Publication Date
WO2016150263A1 true WO2016150263A1 (zh) 2016-09-29

Family

ID=56977726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074111 WO2016150263A1 (zh) 2015-03-23 2016-02-19 一种pn结

Country Status (2)

Country Link
CN (1) CN106154591A (zh)
WO (1) WO2016150263A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110837188A (zh) * 2018-08-17 2020-02-25 台湾积体电路制造股份有限公司 移相器、调制器以及光束调制方法
CN110989213A (zh) * 2019-12-30 2020-04-10 武汉光谷信息光电子创新中心有限公司 一种超小型光子晶体调制器及其制作方法
CN114114722A (zh) * 2021-11-29 2022-03-01 烽火通信科技股份有限公司 一种高速硅光调制器相移臂及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031706A (zh) * 2018-08-21 2018-12-18 南通赛勒光电科技有限公司 一种硅基电光调制器的掺杂结构
CN109116589A (zh) * 2018-10-11 2019-01-01 西安工程大学 一种新型pin电光调制器结构
CN111367131B (zh) * 2018-12-26 2022-12-02 中兴光电子技术有限公司 一种硅基调制器和调制装置
CN111665645B (zh) * 2019-03-05 2023-01-03 苏州旭创科技有限公司 一种电光调制器
CN110989212B (zh) * 2019-12-12 2022-09-02 武汉邮电科学研究院有限公司 一种垂直分层的脊形光波导器件的有源区结构及制造方法
CN113900279B (zh) * 2020-06-22 2024-09-03 浙江大学 硅基电光调制器掺杂结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7136544B1 (en) * 2003-08-15 2006-11-14 Luxtera, Inc. PN diode optical modulators fabricated in strip loaded waveguides
US7251408B1 (en) * 2003-08-15 2007-07-31 Luxtera, Inc. Doping profiles in PN diode optical modulators
CN102782544A (zh) * 2010-03-10 2012-11-14 光导束有限责任公司 高速的基于硅的光调制器的掺杂剂分布控制
CN103226252A (zh) * 2013-05-06 2013-07-31 中国科学院半导体研究所 一种提高耗尽型硅基电光调制器调制效率的掺杂结构
CN204155033U (zh) * 2014-11-06 2015-02-11 江苏尚飞光电科技有限公司 硅基光调制器
CN204155032U (zh) * 2014-11-06 2015-02-11 江苏尚飞光电科技有限公司 硅基光调制器
CN104393133A (zh) * 2014-12-05 2015-03-04 武汉邮电科学研究院 一种提高硅基电光调谐器件的效率和带宽的掺杂结构

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8889447B2 (en) * 2012-06-21 2014-11-18 International Business Machines Corporation Double layer interleaved p-n diode modulator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7136544B1 (en) * 2003-08-15 2006-11-14 Luxtera, Inc. PN diode optical modulators fabricated in strip loaded waveguides
US7251408B1 (en) * 2003-08-15 2007-07-31 Luxtera, Inc. Doping profiles in PN diode optical modulators
CN102782544A (zh) * 2010-03-10 2012-11-14 光导束有限责任公司 高速的基于硅的光调制器的掺杂剂分布控制
CN103226252A (zh) * 2013-05-06 2013-07-31 中国科学院半导体研究所 一种提高耗尽型硅基电光调制器调制效率的掺杂结构
CN204155033U (zh) * 2014-11-06 2015-02-11 江苏尚飞光电科技有限公司 硅基光调制器
CN204155032U (zh) * 2014-11-06 2015-02-11 江苏尚飞光电科技有限公司 硅基光调制器
CN104393133A (zh) * 2014-12-05 2015-03-04 武汉邮电科学研究院 一种提高硅基电光调谐器件的效率和带宽的掺杂结构

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110837188A (zh) * 2018-08-17 2020-02-25 台湾积体电路制造股份有限公司 移相器、调制器以及光束调制方法
US11454857B2 (en) * 2018-08-17 2022-09-27 Taiwan Semiconductor Manufacturing Co., Ltd. Folded waveguide phase shifters
US20220373854A1 (en) * 2018-08-17 2022-11-24 Taiwan Semiconductor Manufacturing Co., Ltd. Folded waveguide phase shifters
US11914265B2 (en) * 2018-08-17 2024-02-27 Taiwan Semiconductor Manufacturing Co., Ltd. Folded waveguide phase shifters
CN110837188B (zh) * 2018-08-17 2024-04-12 台湾积体电路制造股份有限公司 移相器、调制器以及光束调制方法
CN110989213A (zh) * 2019-12-30 2020-04-10 武汉光谷信息光电子创新中心有限公司 一种超小型光子晶体调制器及其制作方法
CN110989213B (zh) * 2019-12-30 2022-05-27 武汉光谷信息光电子创新中心有限公司 一种超小型光子晶体调制器及其制作方法
CN114114722A (zh) * 2021-11-29 2022-03-01 烽火通信科技股份有限公司 一种高速硅光调制器相移臂及其制备方法

Also Published As

Publication number Publication date
CN106154591A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2016150263A1 (zh) 一种pn结
CN103226252B (zh) 一种提高耗尽型硅基电光调制器调制效率的掺杂结构
US10191350B2 (en) Waveguide modulators structures
US11150494B2 (en) Waveguide modulator structures
US10678115B2 (en) Waveguide modulator structures
US9880405B2 (en) Slow-light silicon optical modulator
US8548281B2 (en) Electro-optic modulating device
JP6622228B2 (ja) 光変調器及びその製造方法
US9733498B2 (en) Disk resonator based on a composite structure
US9535308B2 (en) Enhanced optical modulation using slow light
CN111665645B (zh) 一种电光调制器
CN105629519A (zh) 硅基光调制器
CN112068335B (zh) 一种掺杂结构阵列及光调制器
Kim et al. Numerical analysis of carrier-depletion strained SiGe optical modulators with vertical pn junction
Irace et al. Fast silicon-on-silicon optoelectronic router based on a BMFET device
Saito et al. Si photonic waveguides with broken symmetries: Applications from modulators to quantum simulations
CN105629522B (zh) 硅基光调制器
KR20170071074A (ko) 마흐-젠더 전기 광학 변조기 및 이의 제조 방법
CN103207464A (zh) 一种电光开关或光衰减器
CN105378548B (zh) 一种掺杂结构及其制作方法、电光调制器
CN202433633U (zh) 一种电光开关或光衰减器
CN108508635B (zh) 基于SiGe材料的电调谐有源波导结构以及应用其的MZI结构
JP6649194B2 (ja) 光位相・強度シフタ
CN115755442A (zh) 一种基于波导上硫化锑的o波段多模干涉型硅基光开关
CN211454149U (zh) 一种掺杂结构及光调制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16767640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16767640

Country of ref document: EP

Kind code of ref document: A1