WO2016148460A1 - Dual gate thin film transistor - Google Patents
Dual gate thin film transistor Download PDFInfo
- Publication number
- WO2016148460A1 WO2016148460A1 PCT/KR2016/002509 KR2016002509W WO2016148460A1 WO 2016148460 A1 WO2016148460 A1 WO 2016148460A1 KR 2016002509 W KR2016002509 W KR 2016002509W WO 2016148460 A1 WO2016148460 A1 WO 2016148460A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- polymer
- semiconductor layer
- thin film
- ion
- Prior art date
Links
- 230000009977 dual effect Effects 0.000 title claims abstract description 30
- OFIYHXOOOISSDN-UHFFFAOYSA-N tellanylidenegallium Chemical compound [Te]=[Ga] OFIYHXOOOISSDN-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 239000004065 semiconductor Substances 0.000 claims abstract description 86
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 150000002500 ions Chemical class 0.000 claims description 78
- 229920000642 polymer Polymers 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 21
- 239000010409 thin film Substances 0.000 claims description 19
- 239000002608 ionic liquid Substances 0.000 claims description 18
- 239000007784 solid electrolyte Substances 0.000 claims description 17
- 239000004793 Polystyrene Substances 0.000 claims description 9
- NJMWOUFKYKNWDW-UHFFFAOYSA-N 1-ethyl-3-methylimidazolium Chemical compound CCN1C=C[N+](C)=C1 NJMWOUFKYKNWDW-UHFFFAOYSA-N 0.000 claims description 7
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 6
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 6
- 229920000620 organic polymer Polymers 0.000 claims description 4
- 229920000052 poly(p-xylylene) Polymers 0.000 claims description 4
- 229920000058 polyacrylate Polymers 0.000 claims description 4
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- IQQRAVYLUAZUGX-UHFFFAOYSA-N 1-butyl-3-methylimidazolium Chemical compound CCCCN1C=C[N+](C)=C1 IQQRAVYLUAZUGX-UHFFFAOYSA-N 0.000 claims description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 3
- 229910004140 HfO Inorganic materials 0.000 claims description 3
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 150000001408 amides Chemical class 0.000 claims description 3
- 150000008378 aryl ethers Chemical class 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 150000003949 imides Chemical class 0.000 claims description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 3
- 229920000193 polymethacrylate Polymers 0.000 claims description 3
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 claims description 2
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 146
- 239000010408 film Substances 0.000 description 28
- 239000000463 material Substances 0.000 description 25
- 238000004519 manufacturing process Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical group C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 11
- 238000007639 printing Methods 0.000 description 8
- 239000002904 solvent Substances 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229920003026 Acene Polymers 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910001182 Mo alloy Inorganic materials 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- -1 Polyallylate Polymers 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000976 ink Substances 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 239000002042 Silver nanowire Substances 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000007641 inkjet printing Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- SPAHBIMNXMGCMI-UHFFFAOYSA-N [Ga].[In] Chemical compound [Ga].[In] SPAHBIMNXMGCMI-UHFFFAOYSA-N 0.000 description 2
- LRESCJAINPKJTO-UHFFFAOYSA-N bis(trifluoromethylsulfonyl)azanide;1-ethyl-3-methylimidazol-3-ium Chemical compound CCN1C=C[N+](C)=C1.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F LRESCJAINPKJTO-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 125000005259 triarylamine group Chemical group 0.000 description 2
- JEDHEMYZURJGRQ-UHFFFAOYSA-N 3-hexylthiophene Chemical compound CCCCCCC=1C=CSC=1 JEDHEMYZURJGRQ-UHFFFAOYSA-N 0.000 description 1
- NAZODJSYHDYJGP-UHFFFAOYSA-N 7,18-bis[2,6-di(propan-2-yl)phenyl]-7,18-diazaheptacyclo[14.6.2.22,5.03,12.04,9.013,23.020,24]hexacosa-1(23),2,4,9,11,13,15,20(24),21,25-decaene-6,8,17,19-tetrone Chemical compound CC(C)C1=CC=CC(C(C)C)=C1N(C(=O)C=1C2=C3C4=CC=1)C(=O)C2=CC=C3C(C=C1)=C2C4=CC=C3C(=O)N(C=4C(=CC=CC=4C(C)C)C(C)C)C(=O)C1=C23 NAZODJSYHDYJGP-UHFFFAOYSA-N 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- RAABOESOVLLHRU-UHFFFAOYSA-N diazene Chemical compound N=N RAABOESOVLLHRU-UHFFFAOYSA-N 0.000 description 1
- 229910000071 diazene Inorganic materials 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000007647 flexography Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- YTVNOVQHSGMMOV-UHFFFAOYSA-N naphthalenetetracarboxylic dianhydride Chemical compound C1=CC(C(=O)OC2=O)=C3C2=CC=C2C(=O)OC(=O)C1=C32 YTVNOVQHSGMMOV-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- CLYVDMAATCIVBF-UHFFFAOYSA-N pigment red 224 Chemical compound C=12C3=CC=C(C(OC4=O)=O)C2=C4C=CC=1C1=CC=C2C(=O)OC(=O)C4=CC=C3C1=C42 CLYVDMAATCIVBF-UHFFFAOYSA-N 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 125000006158 tetracarboxylic acid group Chemical group 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
Definitions
- the present invention relates to a dual gate thin film transistor, and more particularly, to a dual gate thin film transistor including an electric dipole insulating film as one insulating film and the other insulating film as an ion layer.
- the thin film transistor (TFT) capable of low temperature process in solution state can be applied to various flexible electronic devices implemented on polymer substrates such as driving devices of next-generation flexible displays or ultra low-cost RFID (Radio frequency identification) tag logic circuits. Due to the possibility of active research in recent years.
- TFT thin film transistor
- the semiconductor and insulator materials used in the solution process TFTs include organic semiconductor inks, metal oxide inks, nanomaterial-based semiconductor inks such as CNT and QD. Since they can be processed in solution, they can be manufactured cheaply through various printing processes, and they can be applied to roll-to-roll in the future and can mass-produce them at low processing speeds at low cost. As it is expected to be lowered, it can be said to have great commercial advantages.
- the gate insulating film must exist between the semiconductor layer and the gate electrode in the transistor to have a high insulating property to prevent the current of the gate electrode from flowing directly into the semiconductor layer. At this time, the current flowing from the gate electrode to the semiconductor layer through the insulating film is called a gate leakage current. The higher the gate leakage current, the higher the power consumption of the manufactured electronic circuit and the greater the chance that the circuit will not function properly.
- the organic insulating film has a relatively flexible characteristics compared to the inorganic insulating film has an advantageous property for the implementation of the next-generation flexible display or electronic circuit has been actively studied recently.
- the organic insulating film made of a polymer has a relatively low dielectric constant and thus has a limit in lowering the driving voltage of the transistor due to the low capacitance.
- One way to increase the capacitance is to apply a thin insulating film, but the polymer has a large amount of air voids and pinholes in the thin film and the density is low, so it is not easy to secure the desired insulating properties with a thin thickness. .
- ion gel insulating films containing various ions and polymer insulators which impart the characteristics of the gate insulating film through ion dipoles, have a high dielectric constant and capacitance to drive the driving voltage of the transistor.
- Conventional polymer insulating film has a capacitance of 1 to 100 nF / cm 2 Level or ion gel insulating film 1 ⁇ 100 uF / cm 2 Usually more than 100 times High charges can be induced at the same gate voltage.
- the ion gel insulating film can effectively reduce the driving voltage, but since the formation of a double layer (electrical double layer) through the movement of ions and induces charge through it, the driving speed is significantly low, which is not practically applied commercially. .
- the dual gate transistor refers to a transistor in which two gate electrodes, a top gate and a bottom gate, exist in one device with one semiconductor layer and two insulator layers interposed therebetween.
- a structure is provided in which a conductive electrode and an insulating film are provided to the top gate and the gate insulating film, respectively, and a conductive electrode and a conventional polymer insulating film or an oxide insulating film are provided to the bottom gate and the gate insulating film with the semiconductor layer in the middle.
- ions move by the gate voltage to form an electrical double layer.
- a transistor using an ion gel as an insulating film shows a very low charge transfer rate.
- the disadvantage of such an ion gel is that the ion has a relatively slow moving speed compared to the dipole, and thus the driving speed of the transistor is very slow due to the slow response speed of ions for fast switching to the gate voltage.
- an object of the present invention is to provide a dual gate transistor capable of obtaining a high capacitance and at the same time having a high driving speed.
- Another object of the present invention is to provide a dual gate transistor capable of driving a stable transistor with easy voltage correction.
- the present invention to achieve the above object; A bottom gate electrode on the substrate; A gate insulating layer including the bottom gate electrode over the entire surface of the substrate; Source / drain electrodes spaced apart from each other on the gate insulating layer; A semiconductor layer located over an entire gate insulating layer including the source / drain electrodes; An ion layer located on the front surface of the semiconductor layer; And a top gate electrode positioned on the ion layer.
- the present invention also provides a substrate; A bottom gate electrode on the substrate; An ion layer positioned over the entire surface of the substrate including the bottom gate electrode; A semiconductor layer on the ion layer; A source / drain electrode included in an upper layer of the semiconductor layer and spaced apart from each other; A gate insulating layer disposed over an entire surface of the semiconductor layer on the source / drain electrodes; And a top gate electrode disposed on the gate insulating layer.
- the thickness (h) of the semiconductor layer of the present invention provides a dual gate thin film transistor, characterized in that 1 ⁇ 10nm.
- the ion layer of the present invention provides a dual gate thin film transistor comprising at least one of an ion gel, a solid electrolyte and an ionic liquid.
- the ion gel or the solid electrolyte of the present invention is prepared by mixing an ionic liquid and a polymer, the polymer is poly (styrene-b-methylmethacrylate-b-styrene) [PS-PMMA-PS], poly (vinylidene fluoride It provides a dual gate thin film transistor, characterized in that at least one selected from -hexafluoro propylene), P (VDF-HFP), tetra-arm poly (ethylene glycol) (Tetra-PEG), PVDF-TrFE.
- polymer is poly (styrene-b-methylmethacrylate-b-styrene) [PS-PMMA-PS], poly (vinylidene fluoride It provides a dual gate thin film transistor, characterized in that at least one selected from -hexafluoro propylene), P (VDF-HFP), tetra-arm poly (ethylene glycol) (Tetra-PEG), PVDF-Tr
- the present invention provides a dual gate thin film transistor, characterized in that the mixing ratio of the ionic liquid and the polymer in the ion gel or the solid electrolyte is mixed in a weight ratio of 0.1: 9.9 to 9.9: 0.1.
- the ionic liquid of the present invention is characterized in that at least one selected from the group consisting of [EMI] [TFSA]), [EMIM] [TFSI], [BMIM] [PF 6 ], and [EMIM] [OctSO 4 ].
- a dual gate thin film transistor is provided.
- the gate insulating layer of the present invention is an organic polymer, polystyrene (PS, polystyrene), polymethacrylate (PMMA, polymethylmethacrylate), phenolic polymer, acrylic polymer, imide polymer, arylether polymer, amide polymer, fluorine At least one selected from the group consisting of a polymer, a p-xylene polymer, a vinyl alcohol polymer, and parylene, or as an oxide, SiO 2 , Al 2 O 3 , HfO 2 , ZrO 2 , Y 2 O 3, and Ta.
- a dual gate thin film transistor characterized in that at least one selected from the group consisting of 2 O 5 .
- the present invention forms a high charge in the semiconductor layer due to the ion layer when the voltage is applied, a high charge amount in the channel is moved by diffusion, driving speed is improved on the source / drain electrode, characterized in that to provide.
- the dual gate transistor when the ion layer is formed under the top gate, an ion gel or a solid electrolyte material is applied as the top gate insulating layer, thereby accumulating very high charges on the top of the semiconductor layer. If thin within 10 nm, this large amount of charge diffuses to the lower portion of the relatively low charge semiconductor layer, and a voltage is applied to the bottom gate electrode to move in the lower channel of the dual gate transistor. Since the bottom gate and the high gate speed can be simultaneously acquired due to the charge mobility, there is an effect of providing a transistor with significantly improved charge mobility and the driving speed. In other words, the high charge provided by the ion layer is diffused to the bottom of the semiconductor layer to be driven by the bottom gate.
- the dual gate transistor when the ion layer is formed on the bottom gate, an ion gel or a solid electrolyte material is applied as the bottom gate insulating film to accumulate high charge under the semiconductor layer, and to diffuse it into the upper semiconductor layer. Since the voltage is applied to the top gate electrode to move in the upper channel of the dual gate transistor, it is possible to simultaneously obtain high charge mobility due to the bottom gate electrode and the ion layer and high driving speed due to the top gate. The effect is to provide an improved transistor.
- the semiconductor thin film is thin, the high charge amount formed by the ion layer is moved into the channel to another gate, and the high charge amount is driven to a gate other than the ion layer to improve driving speed on the source / drain electrode. It works.
- the transistor according to the present invention can be corrected by adjusting the voltage of the gate electrode in contact with the ion layer in order to prevent operation instability, thereby enabling stable transistor driving.
- FIG. 1 schematically illustrates a thin film transistor manufacturing process according to an embodiment of the present invention.
- FIG. 2 shows a thin film transistor structure according to an embodiment of the present invention.
- 3 shows the amount of charge according to the height position when the semiconductor layer thickness of the transistor is 100 nm and 10 nm.
- Figure 4 shows the change in voltage applied to the thin film transistor according to an embodiment of the present invention.
- FIG. 5 shows a thin film transistor structure according to another embodiment of the present invention.
- 1 schematically illustrates a thin film transistor manufacturing process according to an embodiment of the present invention.
- 2 shows a thin film transistor structure according to an embodiment of the present invention.
- a substrate is provided, a bottom gate electrode disposed on the substrate is formed, a bottom gate electrode is formed on the bottom gate electrode, and a gate insulating layer is disposed over the entire surface of the substrate.
- a top gate electrode disposed on the ion layer to manufacture a thin film transistor.
- the substrate may be a flexible substrate such as a transparent substrate such as glass, a silicon substrate, a plastic substrate or a metal foil substrate.
- the plastic substrate include polyethersulphone, polyacrylate, polyetherimide, polyethyelenen napthalate, polyethyeleneterepthalate, polyphenylene sulfide , Polyallylate, polyimide, polycarbonate, cellulose triacetate, cellulose acetate propionate and the like can be used.
- a bottom gate electrode may be formed on the substrate.
- the bottom gate electrode may form a gate electrode through thin film deposition or inkjet printing in a high vacuum chamber.
- the gate electrode may include aluminum (Al), aluminum alloy (Al-alloy), molybdenum (Mo), molybdenum alloy (Mo-alloy), silver nanowires, gallium indium eutectic, PEDOT; It may be formed of any one selected from the PSS.
- the bottom gate electrode may use the above materials as an ink to manufacture the gate electrode using a printing process such as inkjet printing or spraying. Through the printing process, the bottom gate electrode can be formed and the vacuum process can be excluded, thereby reducing the manufacturing cost.
- the bottom gate electrode may include the bottom gate electrode to form a gate insulating layer disposed over the entire surface of the substrate.
- the gate insulating layer is preferably made of an organic polymer, but is not limited thereto, and may be formed of an oxide.
- the organic polymer include polystyrene (PS), polymethacrylate (PMMA, polymethylmethacrylate), phenolic polymer, acrylic polymer, imide polymer such as polyimide, arylether polymer, amide polymer, fluorine polymer, p -It is preferable to use at least one selected from the group consisting of a zyrylene-based polymer, a vinyl alcohol-based polymer, parylene (parylene) and the like.
- the gate insulating layer is preferably selected from one or more selected from the group consisting of SiO 2 , Al 2 O 3 , HfO 2 , ZrO 2 , Y 2 O 3, and Ta 2 O 5 .
- the role of the gate insulating layer allows electrons to form inductive dipoles, thereby allowing the accumulation of charge.
- the gate insulating layer has a high driving voltage due to a high dielectric constant, but allows the transistor to be driven at a high driving speed. High drive speeds in transistors of electronic devices such as computers that are currently used are obtained using such gate insulating layers.
- Source / drain electrodes may be formed on the gate insulating layer to be spaced apart from each other.
- the source / drain electrode may be formed of a single layer selected from Au, Al, Ag, Mg, Ca, Yb, Cs-ITO, or an alloy thereof, and may be bonded to Ti, Cr or Ni to improve adhesion. Further comprising a metal layer can be formed into a multi-layer.
- a printing process such as inkjet printing or spraying. Through the printing process, the source / drain electrodes can be formed and the vacuum process can be excluded, thereby reducing the manufacturing cost.
- the semiconductor layer may be formed over the entire gate insulating layer by including the source / drain electrodes on the source / drain electrodes.
- the semiconductor layer may be an N-type organic semiconductor, a P-type organic semiconductor, or an oxide semiconductor.
- the N-type organic semiconductor is an acene-based material, a fully fluorinated acene-based material, a partially fluorinated acene-based material, a partially fluorinated oligothiophene-based material, a fullerene-based material, a fullerene-based material having a substituent, Fully fluorinated phthalocyanine-based materials, partially fluorinated phthalocyanine-based materials, perylene tetracarboxylic diimide-based materials, perylene tetracarboxylic dianhydride-based materials, naphthalene It is preferable to include any one of tetracarboxylic diimide-based material or naphthalene tetracarboxylic dianhydride-based material.
- the acene-based material may be selected from anthracene,
- the P-type organic semiconductor is acene (acene), poly-thienylenevinylene (poly-thienylenevinylene), poly-3-hexylthiophene (poly-3-hexylthiophen), alpha-hexathienylene ( ⁇ -hexathienylene), Naphthalene, alpha-6-thiophene, alpha-4-thiophene, alpha-4-thiophene, rubrene, polythiophene, polyparaphenylene Vinylene (polyparaphenylenevinylene), polyparaphenylene, polyfluorene, polythiophenevinylene, polythiophene-heterocyclicaromatic copolymer, triarylamine ( triarylamine) or derivatives thereof, wherein the acene group is any one of pentacene, perylene, tetratracene or anthracene.
- an oxide semiconductor layer can be formed using IGZO, IZO, ZnO, etc. as an oxide semiconductor layer.
- the semiconductor layer may be formed into a thin film by thermal evaporation or sputtering in a vacuum chamber. Solvent-soluble materials are also formed on source / drain electrodes through spin coating, spray, inkjet, flexography, screen, dip-coating and gravure. .
- the pattern may be formed on the electrode and the local region of the substrate, and heat treatment or optical exposure may be performed to improve device performance such as semiconductor crystallinity and stability after forming the semiconductor layer.
- the thickness h of the semiconductor layer is preferably 1 to 10 nm.
- the thickness of the semiconductor layer refers to the gap between the upper portion of the source and drain electrodes and the lower portion of the ion layer.
- the thickness of the transistor channel formed at the interface between the semiconductor and the insulator through the application of a gate voltage in an organic transistor and an oxide transistor which is usually driven in an accumulation mode is known to be about 1 to 5 nm (2 to 3 molecular layers).
- the channel formed at the upper portion of the dual gate is mixed with the lower portion and the formed channel so that the charge formed at the upper portion or the lower portion can diffuse to the lower portion or the upper portion. This effect is doubled as the thickness of the semiconductor layer is thinner.
- 3 shows the amount of charge according to the height position when the semiconductor layer thickness of the transistor is 100 nm and 10 nm.
- an IGZO oxide semiconductor layer was formed as a semiconductor layer.
- the semiconductor layer is 100 nm, the high charge amount due to the channels formed on the upper and lower portions is not effectively transferred to the middle of the semiconductor layer, and thus the charge amount on the upper and lower portions.
- the amount of charge in the and the intermediate layer is greatly different.
- the semiconductor layer is 10 nm, the charges formed on the upper and lower sides are effectively diffused in the intermediate layer, so that the amount of charge in the semiconductor layer is evenly spread in the semiconductor.
- the semiconductor layer within 10 nm when the semiconductor layer within 10 nm is used, the high charge on the semiconductor layer formed by the ion gel is effectively diffused to the lower part of the semiconductor layer, so that the high driving speed can be obtained by the disappearance of the lower gate. It can be implemented at the same time.
- An ion layer may be formed over the entire surface of the semiconductor layer.
- the ionic layer may be formed of an ionic liquid, and may be formed of an ion gel or a solid electrolyte mixed with an ionic liquid and a polymer.
- the ionic liquid may be formed by appropriately mixing a specific polymer.
- the ion gel may be formed in a gel shape, and the solid electrolyte may be in a solid shape and have a more rigid form or elasticity than the ion gel.
- Ionic liquids include 1-Ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide ([EMI] [TFSA]), [EMIM] [TFSI], [BMIM] [PF 6 ], and [EMIM] [OctSO 4 ]. You can choose one or more from the group you have made up.
- the ion gel or the solid electrolyte is mixed with an ionic liquid and a polymer
- the polymer is poly (styrene-b-methylmethacrylate-b-styrene) [PS-PMMA-PS], poly (vinylidene fluoride-hexafluoro propylene), P (VDF-HFP), tetra-arm poly (ethylene glycol) (Tetra-PEG), PVDF-TrFE, etc.
- PS-PMMA-PS poly (styrene-b-methylmethacrylate-b-styrene) [PS-PMMA-PS], poly (vinylidene fluoride-hexafluoro propylene), P (VDF-HFP), tetra-arm poly (ethylene glycol) (Tetra-PEG), PVDF-TrFE, etc.
- PS-PMMA-PS poly (styrene-b-methylmethacrylate-b-styrene) [PS-
- the mixing ratio of the ionic liquid and the polymer may be mixed in a ratio of 0.1: 9.9 to 9.9: 0.1 by weight.
- a solvent such as methylene chloride is required for mixing.
- the mixing ratio of the ionic liquid, the polymer and the solvent is mixed at a weight ratio of about 10:90.
- a solvent is prepared by mixing a ionic liquid and a polymer in a solvent, and then heating the solution on a hot plate at about 80 ° C. for about 6 hours.
- the material may be completely dissolved and mixed in the ion gel to prepare an ion gel or a solid electrolyte.
- Figure 4 shows the change in voltage applied to the thin film transistor according to an embodiment of the present invention.
- the present invention a large amount of charges are formed in the semiconductor layer due to the ion layer positioned on the semiconductor layer, and the formed charges are easily diffused to the lower portion because the semiconductor layer is thin and driven by controlling the bottom gate electrode.
- ⁇ charge is accumulated on the ion layer due to the + voltage application of the top gate electrode, and ⁇ charge is diffused and accumulated at the bottom due to the thin semiconductor layer, and the driving speed is fast between the source / drain electrodes.
- a top gate electrode may be formed on the ion layer.
- the top gate electrode may be formed in the same manner as the bottom gate electrode, and may be formed of aluminum (Al), aluminum alloy (Al-alloy), molybdenum (Mo), molybdenum alloy (Mo-alloy), It may be formed of any one selected from silver nanowire, gallium indium eutectic, and PEDOT.
- the thin film transistor according to the embodiment of the present invention can be completed.
- FIG. 5 shows a thin film transistor structure according to another embodiment of the present invention.
- an ion layer may be formed on the bottom gate electrode, the substrate; A bottom gate electrode on the substrate; An ion layer positioned over the entire surface of the substrate including the bottom gate electrode; A semiconductor layer on the ion layer; A source / drain electrode included in an upper layer of the semiconductor layer and spaced apart from each other; A gate insulating layer disposed over an entire surface of the semiconductor layer on the source / drain electrodes; And a top gate electrode disposed on the gate insulating layer.
- the dual gate thin film transistor may be provided.
- the thickness h of the semiconductor layer is preferably 1 to 10 nm, and the thickness of the semiconductor layer may be regarded as a gap between the lower portion of the source / drain electrode and the upper portion of the ion layer.
- a glass substrate is prepared and a gate insulating layer is formed on the substrate.
- the insulating layer is melted in n-butyl acetate using polystyrene (PS) and then spin coated. Using to form a gate insulating layer.
- PS polystyrene
- a source / drain electrode was formed on the gate insulating layer, and then P3HT was used to form the semiconductor layer, and the thickness h of the semiconductor layer was 10 nm.
- a top gate electrode was formed in a portion of the upper portion of the ion layer, and aluminum (Al) was formed by evaporation to manufacture a thin film transistor.
- a layer was formed on the gate insulating layer with the same material as that used for the ion layer.
- a layer was formed on the ion layer with the same material as that used for the gate insulating layer.
- Example 1 As a result, in Example 1, a very high charge is accumulated in the semiconductor layer and a voltage is applied to the bottom gate electrode to move in the channel of the transistor, so that the top gate electrode and the ion layer cause the bottom gate electrode with high charge mobility. High driving speed can be obtained at the same time.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Thin Film Transistor (AREA)
Abstract
The present invention relates to a dual gate thin film transistor. More specifically, the present invention provides a dual gate thin film transistor comprising: a substrate; a bottom gate electrode positioned on the substrate; a gate insulating layer positioned across the entire surface of the substrate including the bottom gate electrode; source/drain electrodes positioned on the gate insulating layer so as to be spaced apart from each other; a semiconductor layer positioned across the entire surface of the gate insulating layer including the source/drain electrodes; an ionized layer positioned on the entire surface of the semiconductor layer; and a top gate electrode positioned on the ionized layer.
Description
본 발명은 듀얼게이트 박막트랜지스터에 관한 것으로 보다 상세하게는 한쪽 절연막으로 이온층이 다른 한쪽 절연막으로 전기쌍극자 절연막이 포함된 듀얼게이트 박막트랜지스터에 관한 것이다.The present invention relates to a dual gate thin film transistor, and more particularly, to a dual gate thin film transistor including an electric dipole insulating film as one insulating film and the other insulating film as an ion layer.
용액상태의 저온공정이 가능한 박막 트랜지스터(TFT) 는 차세대 플렉서블 디스플레이의 구동소자나 개별물품단위 인식용 초저가 RFID (Radio frequency identification) 태그의 로직 회로 등 고분자 기판 위에 구현되는 다양한 플렉서블 전자소자에 적용될 수 있는 가능성으로 인해 최근 활발한 연구가 이루어지고 있다. The thin film transistor (TFT) capable of low temperature process in solution state can be applied to various flexible electronic devices implemented on polymer substrates such as driving devices of next-generation flexible displays or ultra low-cost RFID (Radio frequency identification) tag logic circuits. Due to the possibility of active research in recent years.
최근 각종 웨어러블 디바이스들이 시장에 선을 보이면서 플렉서블 전자회로 및 소자에 대한 관심이 폭발적으로 증가하고 있고 이러한 플렉서블 기판위에 신문을 인쇄하듯이 인쇄공정을 통해서 전자소자 및 디스플레이를 제조하면 제조단가를 획기적으로 낮출수 있다. 용액공정 TFT에 사용되는 반도체 및 절연체 재료는 대표적으로 유기반도체 잉크, 금속 산화물 잉크, CNT, QD등 나노물질 기반 반도체 잉크 등이 있다. 이들은 용액 상태로 공정이 가능하기 때문에 다양한 인쇄공정을 통해서 소자를 값싸게 제조할 수 있으며 향후 연속공정 (roll to roll)에 적용하여 저가에 빠른 공정속도로 대량생산이 가능하여 트랜지스터의 제조비용을 획기적으로 낮출 수 있을 것으로 기대되어 상업적으로 큰 장점을 지니고 있다고 할 수 있다.Recently, as various wearable devices have been introduced to the market, interest in flexible electronic circuits and devices has exploded, and manufacturing electronic devices and displays through the printing process will drastically lower manufacturing costs as printing newspapers on such flexible substrates. Can be. The semiconductor and insulator materials used in the solution process TFTs include organic semiconductor inks, metal oxide inks, nanomaterial-based semiconductor inks such as CNT and QD. Since they can be processed in solution, they can be manufactured cheaply through various printing processes, and they can be applied to roll-to-roll in the future and can mass-produce them at low processing speeds at low cost. As it is expected to be lowered, it can be said to have great commercial advantages.
하지만 현재 이러한 인쇄공정을 통해서 제조되는 트랜지스터는 진공공정으로 제조된 실리콘 트랜지스터에 비해서 전하이동도 등에서 성능이 낮고 소자간 균일성이 좋지 않다. 특히 유기반도체를 기반으로 하는 유기박막트랜지스터는 유기물의 특성으로 인해서 이론적으로 가능한 이동도도 100 cm2/Vs로 낮고 실제 이동도도 현재 수준에서 10 cm2/Vs 고성능을 요구하는 소자에 적용되기 어렵다. 또한 산화물 기반 트랜지스터 (예 IGZO)도 이동도가 10-30 cm2/Vs에 불과하여 이에 대한 향상이 요구된다.However, current transistors manufactured through such a printing process have lower performance in charge mobility and poor device uniformity than silicon transistors manufactured by vacuum process. In particular, organic thin film transistors based on organic semiconductors have a low theoretical mobility of 100 cm2 / Vs due to the nature of organic materials, and actual mobility is difficult to be applied to devices requiring high performance of 10 cm2 / Vs at the current level. In addition, oxide-based transistors (eg IGZO) have a mobility of only 10-30 cm2 / Vs, requiring improvement.
한편, 트랜지스터에 있어서, 게이트 절연막으로 요구되는 물성은 높은 절연특성과 높은 유전상수(dielectric constant)이다. 게이트 절연막은 트랜지스터내에서 반도체층과 게이트 전극사이에 존재하여 게이트 전극의 전류가 반도체층으로 직접 흐르지 못하도록 하는 높은 절연특성을 보유해야 한다. 이때 절연막을 통해서 게이트 전극에서 반도체층으로 흐르는 전류를 게이트 누설전류라고 한다. 게이트 누설전류가 많을수록 제조된 전자회로의 소비전력이 높아지며, 회로가 제 기능으로 작동하지 않을 가능성이 높아진다.On the other hand, in the transistor, physical properties required for the gate insulating film are high insulation properties and high dielectric constant. The gate insulating film must exist between the semiconductor layer and the gate electrode in the transistor to have a high insulating property to prevent the current of the gate electrode from flowing directly into the semiconductor layer. At this time, the current flowing from the gate electrode to the semiconductor layer through the insulating film is called a gate leakage current. The higher the gate leakage current, the higher the power consumption of the manufactured electronic circuit and the greater the chance that the circuit will not function properly.
또한 게이트 전극에서 인가된 전압에 대해서 상대적으로 많은 양의 전류가 반도체층에서 유도되도록 높은 유전상수(dielectric constant)가 필요하게 된다. 특히 유기절연막은 무기절연막에 비해서 상대적으로 유연한 특성을 지녀서 차세대 플렉서블 디스플레이나 전자회로의 구현에 유리한 특성을 보유하고 있어서 최근에 활발히 연구되고 있다.In addition, a high dielectric constant is required so that a relatively large amount of current is induced in the semiconductor layer with respect to the voltage applied from the gate electrode. In particular, the organic insulating film has a relatively flexible characteristics compared to the inorganic insulating film has an advantageous property for the implementation of the next-generation flexible display or electronic circuit has been actively studied recently.
다만 고분자로 이루어진 유기절연막은 비교적 낮은 유전상수(dielectric constant)를 보유하고 있어서 이로인한 낮은 축전용량(capacitance)으로 상대적으로 트랜지스터의 구동전압을 낮추는데 한계를 지니게 된다. 축전용량(capacitance)을 높이기 위한 한가지 방안으로 얇은 두께의 절연막을 적용하면 되지만 고분자의 경우 박막에 많은 양의 air void와 pinhole을 보유하고 있고 밀도도 낮아서 얇은 두께로 원하는 절연물성을 확보하기는 쉽지 않다.However, the organic insulating film made of a polymer has a relatively low dielectric constant and thus has a limit in lowering the driving voltage of the transistor due to the low capacitance. One way to increase the capacitance is to apply a thin insulating film, but the polymer has a large amount of air voids and pinholes in the thin film and the density is low, so it is not easy to secure the desired insulating properties with a thin thickness. .
따라서 디스플레이나 전자소자에 적용될 트랜지스터의 구동전압을 효과적으로 낮추기 위해서 높은 유전상수(dielectric constant)와 높은 절연특성을 동시에 보유한 유연한 유기절연막에 대한 소재 및 공정기술에 대한 많은 연구 개발이 필요하다.Therefore, in order to effectively lower the driving voltage of a transistor to be applied to a display or an electronic device, a lot of research and development on materials and process technologies for a flexible organic insulating film having high dielectric constant and high insulating property are required.
최근에 다양한 이온과 고분자 절연체를 함유하여 이온의 이동을 통해서 이온쌍극자를 통해서 게이트 절연막의 특성을 부여한 이온겔 절연막이 매우 높은 유전상수(dielectric constant) 및 축전용량(capacitance)을 통해서 트랜지스터의 구동전압을 효과적으로 낮추어준다는 다수의 보고가 있었다. 기존의 일반적인 고분자 절연막은 축전용량이 1 ~ 100 nF/cm2
수준이나 이온겔 절연막은 1 ~ 100 uF/cm2
으로 통상 100배 이상의 높은 전하를 같은 게이트 전압에서 유도할 수 있다.Recently, ion gel insulating films containing various ions and polymer insulators, which impart the characteristics of the gate insulating film through ion dipoles, have a high dielectric constant and capacitance to drive the driving voltage of the transistor. There have been numerous reports of effective lowering. Conventional polymer insulating film has a capacitance of 1 to 100 nF / cm 2 Level or ion gel insulating film 1 ~ 100 uF / cm 2 Usually more than 100 times High charges can be induced at the same gate voltage.
하지만 이러한 이온겔 절연막은 구동전압은 효과적으로 낮출 수 있으나 이온의 이동을 통해서 쌍극자층(electrical double layer)을 형성하고 이를 통해서 전하를 유도하므로 구동속도가 현저히 낮아서 실제 상용적으로 응용되지는 못하고 있는 실정이다.However, the ion gel insulating film can effectively reduce the driving voltage, but since the formation of a double layer (electrical double layer) through the movement of ions and induces charge through it, the driving speed is significantly low, which is not practically applied commercially. .
한편, 듀얼게이트 트랜지스터는 한 소자내에 탑게이트와 바텀게이트의 두가지 게이트전극이 한 반도체층과 두 개의 절연체층을 사이에 두고 위아래 존재하는 트랜지스터를 지칭한다. 이러한 듀얼게이트 트랜지스터에서 탑게이트와 게이트 절연막에 각각 전도성 전극과 절연막을 제공하고 반도체층을 중간에 두고 바텀게이트와 게이트 절연막에 전도성 전극과 통상적인 고분자 절연막이나 산화물 절연막을 제공하는 구조를 제안한다.Meanwhile, the dual gate transistor refers to a transistor in which two gate electrodes, a top gate and a bottom gate, exist in one device with one semiconductor layer and two insulator layers interposed therebetween. In the dual gate transistor, a structure is provided in which a conductive electrode and an insulating film are provided to the top gate and the gate insulating film, respectively, and a conductive electrode and a conventional polymer insulating film or an oxide insulating film are provided to the bottom gate and the gate insulating film with the semiconductor layer in the middle.
이런 듀얼게이트 트랜지스터에 이온겔 절연막을 적용하는 경우, 즉 이온겔 절연막을 형성하여 게이트 전압을 인가해 주면 쌍극자의 형성대신 이온이 게이트 전압에 의해서 이동하여 electrical double layer를 형성하고 이로 인해서 통상 매우 높은 전하를 축전(high capacitance) 할 수 있으나, 이를 통해서 통상 이온겔을 절연막으로 사용한 트랜지스터는 매우 낮은 전하 이동속도를 보여주게 된다. 이러한 이온겔의 단점은 쌍극자에 비해서 상대적으로 이동속도가 느린 이온을 사용하므로 게이트 전압에 빠른 스위칭에 대한 이온의 대응속도가 느려서 트랜지스터의 구동속도가 매우 느린 문제점이 있었다.In the case of applying an ion gel insulating film to such a dual gate transistor, that is, forming an ion gel insulating film and applying a gate voltage, instead of forming a dipole, ions move by the gate voltage to form an electrical double layer. Although high capacitance can be obtained, through this, a transistor using an ion gel as an insulating film shows a very low charge transfer rate. The disadvantage of such an ion gel is that the ion has a relatively slow moving speed compared to the dipole, and thus the driving speed of the transistor is very slow due to the slow response speed of ions for fast switching to the gate voltage.
이에 따라, 높은 축전용량을 얻을 수 있는 동시에 빠른 구동속도를 가질 수 있는 듀얼게이트 트랜지스터의 개발이 요구되었다.Accordingly, there is a demand for the development of a dual gate transistor capable of obtaining high capacitance and at the same time having a high driving speed.
[선행기술문헌][Preceding technical literature]
미국공개특허 제2008-0191200호, 한국공개특허 제2012-0034349호United States Patent Application Publication No. 2008-0191200, Korea Patent Application Publication No. 2012-0034349
상기 문제점을 극복하기 위해 본 발명의 목적은 높은 축전용량을 얻을 수 있는 동시에 빠른 구동속도를 가질 수 있는 듀얼게이트 트랜지스터를 제공하는 데 있다.SUMMARY OF THE INVENTION In order to overcome the above problems, an object of the present invention is to provide a dual gate transistor capable of obtaining a high capacitance and at the same time having a high driving speed.
본 발명의 다른 목적은 용이한 전압 보정으로 안정적인 트랜지스터 구동이 가능한 듀얼게이트 트랜지스터를 제공하는 데 있다.Another object of the present invention is to provide a dual gate transistor capable of driving a stable transistor with easy voltage correction.
상기 목적을 달성하기 위해 본 발명은 기판; 상기 기판 상에 위치한 바텀게이트 전극; 상기 바텀게이트 전극을 포함하여 기판 전면에 걸쳐 위치한 게이트 절연층; 상기 게이트 절연층 상에 서로 이격되어 위치하는 소스/드레인 전극; 상기 소스/드레인 전극을 포함하는 게이트 절연층 전면에 걸쳐 위치한 반도체층; 상기 반도체층 상의 전면에 위치하는 이온층; 및 상기 이온층 상에 위치한 탑게이트 전극;을 포함하는 것을 특징으로 하는 듀얼게이트 박막트랜지스터를 제공한다.The present invention to achieve the above object; A bottom gate electrode on the substrate; A gate insulating layer including the bottom gate electrode over the entire surface of the substrate; Source / drain electrodes spaced apart from each other on the gate insulating layer; A semiconductor layer located over an entire gate insulating layer including the source / drain electrodes; An ion layer located on the front surface of the semiconductor layer; And a top gate electrode positioned on the ion layer.
또한 본 발명은 기판; 상기 기판 상에 위치한 바텀게이트 전극; 상기 바텀게이트 전극을 포함하여 기판 전면에 걸쳐 위치한 이온층; 상기 이온층 상에 위치한 반도체층; 상기 반도체층의 상층부에 포함되도록 하며, 서로 이격되어 위치하는 소스/드레인 전극; 상기 소스/드레인 전극 상의 반도체층 전면에 걸쳐 위치한 게이트 절연층; 및 상기 게이트 절연층 상에 위치한 탑게이트 전극;을 포함하는 것을 특징으로 하는 듀얼게이트 박막트랜지스터를 제공한다.The present invention also provides a substrate; A bottom gate electrode on the substrate; An ion layer positioned over the entire surface of the substrate including the bottom gate electrode; A semiconductor layer on the ion layer; A source / drain electrode included in an upper layer of the semiconductor layer and spaced apart from each other; A gate insulating layer disposed over an entire surface of the semiconductor layer on the source / drain electrodes; And a top gate electrode disposed on the gate insulating layer.
또한 본 발명의 상기 반도체층의 두께(h)는 1~10nm인 것을 특징으로 하는 듀얼게이트 박막트랜지스터를 제공한다.In addition, the thickness (h) of the semiconductor layer of the present invention provides a dual gate thin film transistor, characterized in that 1 ~ 10nm.
또한 본 발명의 상기 이온층은 이온겔, 고체전해질 및 이온성 액체 중 1 이상 포함한 것을 특징으로 하는 듀얼게이트 박막트랜지스터를 제공한다.In addition, the ion layer of the present invention provides a dual gate thin film transistor comprising at least one of an ion gel, a solid electrolyte and an ionic liquid.
또한 본 발명의 상기 이온겔 또는 상기 고체전해질은 이온성 액체 및 고분자를 혼합하여 제조되되, 상기 고분자는 poly(styrene-b-methylmethacrylate-b-styrene) [PS-PMMA-PS], poly (vinylidene fluoride-hexafluoro propylene), P (VDF-HFP), tetra-arm poly (ethylene glycol) (Tetra-PEG), PVDF-TrFE 중 1이상 선택되는 것을 특징으로 하는 듀얼게이트 박막트랜지스터를 제공한다.In addition, the ion gel or the solid electrolyte of the present invention is prepared by mixing an ionic liquid and a polymer, the polymer is poly (styrene-b-methylmethacrylate-b-styrene) [PS-PMMA-PS], poly (vinylidene fluoride It provides a dual gate thin film transistor, characterized in that at least one selected from -hexafluoro propylene), P (VDF-HFP), tetra-arm poly (ethylene glycol) (Tetra-PEG), PVDF-TrFE.
또한 본 발명은 상기 상기 이온겔 또는 상기 고체전해질에 있어서 이온성 액체 및 고분자의 혼합비율은 0.1 : 9.9 내지 9.9 : 0.1 중량비로 혼합되는 것을 특징으로 하는 듀얼게이트 박막트랜지스터를 제공한다.In another aspect, the present invention provides a dual gate thin film transistor, characterized in that the mixing ratio of the ionic liquid and the polymer in the ion gel or the solid electrolyte is mixed in a weight ratio of 0.1: 9.9 to 9.9: 0.1.
또한 본 발명의 상기 이온성 액체는 [EMI][TFSA]), [EMIM][TFSI], [BMIM][PF6], 및 [EMIM][OctSO4]로 이루어진 군에서 1이상 선택되는 것을 특징으로 하는 듀얼게이트 박막트랜지스터를 제공한다.In addition, the ionic liquid of the present invention is characterized in that at least one selected from the group consisting of [EMI] [TFSA]), [EMIM] [TFSI], [BMIM] [PF 6 ], and [EMIM] [OctSO 4 ]. A dual gate thin film transistor is provided.
또한 본 발명의 상기 게이트 절연층은 유기 고분자로 폴리스타이렌(PS, polystyrene), 폴리메타아크릴레이트 (PMMA, polymethylmethacrylate), 페놀계 고분자, 아크릴계 고분자, 이미드계 고분자, 아릴에테르계 고분자, 아마이드계 고분자, 불소계 고분자, p-자이리렌계 고분자, 비닐알콜계 고분자, 파릴렌(parylene)으로 이루어진 군에서 1이상 선택하거나, 산화물로 SiO2, Al2O3, HfO2, ZrO2, Y2O3 및 Ta2O5로 이루어진 군에서 1이상 선택하는 것을 특징으로 하는 듀얼게이트 박막트랜지스터를 제공한다.In addition, the gate insulating layer of the present invention is an organic polymer, polystyrene (PS, polystyrene), polymethacrylate (PMMA, polymethylmethacrylate), phenolic polymer, acrylic polymer, imide polymer, arylether polymer, amide polymer, fluorine At least one selected from the group consisting of a polymer, a p-xylene polymer, a vinyl alcohol polymer, and parylene, or as an oxide, SiO 2 , Al 2 O 3 , HfO 2 , ZrO 2 , Y 2 O 3, and Ta. Provided is a dual gate thin film transistor, characterized in that at least one selected from the group consisting of 2 O 5 .
또한 본 발명은 전압 인가시 상기 이온층으로 인해 반도체층에 높은 전하를 형성하고, 확산에 의해 채널내에서 높은 전하량이 이동하여 소스/드레인 전극 상에서 구동속도가 향상되는 것을 특징으로 하는 듀얼게이트 박막트랜지스터를 제공한다.In addition, the present invention forms a high charge in the semiconductor layer due to the ion layer when the voltage is applied, a high charge amount in the channel is moved by diffusion, driving speed is improved on the source / drain electrode, characterized in that to provide.
본 발명에 따른 듀얼게이트 트랜지스터에서 탑게이트 하부에 이온층을 형성하는 경우, 탑게이트 절연막으로 이온겔 또는 고체전해질 소재가 적용됨으로 인해 매우 높은 전하를 반도체층의 상부에 축적하게 되고 이때 반도체층의 두께가 10 nm 이내로 얇으면 이러한 많은 전하량이 상대적으로 전하량이 적은 반도체층의 하부로 확산(diffusion) 시켜서 이를 바텀게이트 전극에 전압을 인가하여 듀얼게이트 트랜지스터의 하부채널내에서 이동시키므로 탑게이트 및 이온층으로 인해서 높은 전하이동도와 함께 바텀게이트로 인해서 높은 구동속도를 동시에 획득할 수 있으므로 전하이동도와 구동속도가 획기적으로 향상된 트랜지스터를 제공하는 효과가 있다. 즉 이온층으로 인해 제공된 높은 전하량을 반도체층 하부로 확산시켜서 바텀게이트로 구동하게 하는 것이다.In the dual gate transistor according to the present invention, when the ion layer is formed under the top gate, an ion gel or a solid electrolyte material is applied as the top gate insulating layer, thereby accumulating very high charges on the top of the semiconductor layer. If thin within 10 nm, this large amount of charge diffuses to the lower portion of the relatively low charge semiconductor layer, and a voltage is applied to the bottom gate electrode to move in the lower channel of the dual gate transistor. Since the bottom gate and the high gate speed can be simultaneously acquired due to the charge mobility, there is an effect of providing a transistor with significantly improved charge mobility and the driving speed. In other words, the high charge provided by the ion layer is diffused to the bottom of the semiconductor layer to be driven by the bottom gate.
또한, 본 발명에 따른 듀얼게이트 트랜지스터에서 바텀게이트 상부에 이온층을 형성하는 경우 바텀게이트 절연막으로 이온겔 또는 고체전해질 소재가 적용됨으로 인해 높은 전하를 반도체층 하부에 축적하게 되고 이를 반도체층 상부로 확산시켜서 탑게이트 전극에 전압을 인가하여 듀얼게이트 트랜지스터의 상부채널내에서 이동시키므로 바텀게이트 전극 및 이온층으로 인해서 높은 전하이동도와 함께 탑게이트로 인해서 높은 구동속도를 동시에 획득할 수 있으므로 전하이동도와 구동속도가 획기적으로 향상된 트랜지스터를 제공하는 효과가 있다.In addition, in the dual gate transistor according to the present invention, when the ion layer is formed on the bottom gate, an ion gel or a solid electrolyte material is applied as the bottom gate insulating film to accumulate high charge under the semiconductor layer, and to diffuse it into the upper semiconductor layer. Since the voltage is applied to the top gate electrode to move in the upper channel of the dual gate transistor, it is possible to simultaneously obtain high charge mobility due to the bottom gate electrode and the ion layer and high driving speed due to the top gate. The effect is to provide an improved transistor.
본 발명에 따른 듀얼게이트 트랜지스터는 반도체 박막이 두께가 얇아서 이온층으로 인해 형성된 높은 전하량이 다른 게이트에 채널내로 이동하여 이온층이 아닌 다른 게이트로 이러한 높은 전하량을 구동시켜 소스/드레인 전극 상에서 구동속도가 향상되는 효과가 있다.In the dual gate transistor according to the present invention, since the semiconductor thin film is thin, the high charge amount formed by the ion layer is moved into the channel to another gate, and the high charge amount is driven to a gate other than the ion layer to improve driving speed on the source / drain electrode. It works.
또한, 본 발명에 따른 트랜지스터는 동작 불안정을 방지하기 위해 이온층이 접해 있는 게이트 전극의 전압 조정을 통해서 보정이 가능하므로 안정적인 트랜지스터 구동이 가능하게 된다.In addition, the transistor according to the present invention can be corrected by adjusting the voltage of the gate electrode in contact with the ion layer in order to prevent operation instability, thereby enabling stable transistor driving.
도 1은 본 발명의 일실시예에 따른 박막트랜지스터 제조 공정을 개략적으로 나타낸 것이다.1 schematically illustrates a thin film transistor manufacturing process according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 박막트랜지스터 구조를 나타낸 것이다.2 shows a thin film transistor structure according to an embodiment of the present invention.
도 3은 트랜지스터의 반도체층 두께를 100nm 및 10nm로 하였을 때 높이 위치에 따른 전하량을 나타낸 것이다.3 shows the amount of charge according to the height position when the semiconductor layer thickness of the transistor is 100 nm and 10 nm.
도 4는 본 발명의 일실시예에 따른 박막트랜지스터에 전압인가시 변화를 나타낸 것이다.Figure 4 shows the change in voltage applied to the thin film transistor according to an embodiment of the present invention.
도 5는 본 발명의 다른 실시예에 따른 박막트랜지스터 구조를 나타낸 것이다.5 shows a thin film transistor structure according to another embodiment of the present invention.
이하 본 발명에 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다. 우선, 도면들 중, 동일한 구성요소 또는 부품들은 가능한 한 동일한 참조부호를 나타내고 있음에 유의하여야 한다. 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. First, it should be noted that in the drawings, the same components or parts denote the same reference numerals as much as possible. In describing the present invention, detailed descriptions of related well-known functions or configurations are omitted in order not to obscure the subject matter of the present invention.
본 명세서에서 사용되는 정도의 용어 “약”, “실질적으로” 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.As used herein, the terms “about”, “substantially”, and the like, are used at, or in close proximity to, numerical values when manufacturing and material tolerances inherent in the meanings indicated are intended to aid the understanding of the invention. Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers.
도 1은 본 발명의 일실시예에 따른 박막트랜지스터 제조 공정을 개략적으로 나타낸 것이다. 도 2는 본 발명의 일실시예에 따른 박막트랜지스터 구조를 나타낸 것이다.1 schematically illustrates a thin film transistor manufacturing process according to an embodiment of the present invention. 2 shows a thin film transistor structure according to an embodiment of the present invention.
도 1 및 도 2를 참조하면, 기판을 제공하고, 상기 기판 상에 위치한 바텀게이트 전극을 형성하며, 상기 바텀게이트 전극상에 바텀게이트 전극을 포함하여 기판 전면에 걸쳐 위치한 게이트 절연층을 형성하며, 상기 게이트 절연층 상에 서로 이격되어 위치하는 소스/드레인 전극을 형성하고, 상기 소스/드레인 전극을 포함하는 게이트 절연층 전면에 걸쳐 위치한 반도체층을 형성하고, 상기 반도체층상의 전면에 위치하는 이온층을 형성하며, 그리고, 상기 이온층 상에 위치한 탑게이트 전극을 형성하여 박막트랜지스터를 제조한다.1 and 2, a substrate is provided, a bottom gate electrode disposed on the substrate is formed, a bottom gate electrode is formed on the bottom gate electrode, and a gate insulating layer is disposed over the entire surface of the substrate. Forming a source / drain electrode spaced apart from each other on the gate insulating layer, forming a semiconductor layer located over the entire surface of the gate insulating layer including the source / drain electrode, and forming an ion layer on the front surface of the semiconductor layer And a top gate electrode disposed on the ion layer to manufacture a thin film transistor.
본 발명의 박막트랜지스터 제조시 기판을 제공하는 데, 상기 기판은 유리와 같은 투명 기판, 실리콘 기판, 플라스틱 기판 또는 금속 포일 기판 등 유연한 기판을 사용할 수 있다. 플라스틱 기판의 예로는 폴리에테르술폰(polyethersulphone), 폴리아크릴레이트(polyacrylate), 폴리에테르 이미드(polyetherimide), 폴리에틸렌 나프탈레이트(polyethyelenen napthalate), 폴리에틸렌테레프탈레이드(polyethyeleneterepthalate), 폴리페닐렌 설파이드(polyphenylene sulfide), 폴리아릴레이트(polyallylate), 폴리이미드(polyimide), 폴리카보네이트(polycarbonate), 셀룰로오스 트리 아세테이트(cellulose triacetate) 및 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propinoate)등을 이용할 수 있다.To provide a substrate in the manufacture of the thin film transistor of the present invention, the substrate may be a flexible substrate such as a transparent substrate such as glass, a silicon substrate, a plastic substrate or a metal foil substrate. Examples of the plastic substrate include polyethersulphone, polyacrylate, polyetherimide, polyethyelenen napthalate, polyethyeleneterepthalate, polyphenylene sulfide , Polyallylate, polyimide, polycarbonate, cellulose triacetate, cellulose acetate propionate and the like can be used.
상기 기판 상에는 바텀 게이트 전극을 형성할 수 있다. 상기 바텀 게이트 전극은 고진공챔버에서 박막 증착 혹은 잉크젯 인쇄등을 통해서 게이트 전극을 형성할 수 있다. 상기 게이트 전극은 알루미늄(Al), 알루미늄 합금(Al-alloy), 몰리브덴(Mo), 몰리브덴 합금(Mo-alloy), 실버나노와이어(silver nanowire), 갈륨인듐유태틱(gallium indium eutectic), PEDOT;PSS 중에서 선택되는 어느 하나로 형성할 수 있다. 상기 바텀 게이트 전극은 위 물질들을 잉크로 사용하여 잉크젯 프린팅 또는 스프레이 등의 인쇄공정을 이용하여 게이트 전극을 제조할 수 있다. 이러한 인쇄공정을 통해서 바텀 게이트 전극을 형성하며 진공공정을 배제할 수 있어서 제조비용의 절감효과를 기대할 수 있다.A bottom gate electrode may be formed on the substrate. The bottom gate electrode may form a gate electrode through thin film deposition or inkjet printing in a high vacuum chamber. The gate electrode may include aluminum (Al), aluminum alloy (Al-alloy), molybdenum (Mo), molybdenum alloy (Mo-alloy), silver nanowires, gallium indium eutectic, PEDOT; It may be formed of any one selected from the PSS. The bottom gate electrode may use the above materials as an ink to manufacture the gate electrode using a printing process such as inkjet printing or spraying. Through the printing process, the bottom gate electrode can be formed and the vacuum process can be excluded, thereby reducing the manufacturing cost.
상기 바텀게이트 전극 상에는 상기 바텀게이트 전극을 포함하여 기판 전면에 걸쳐 위치한 게이트 절연층을 형성할 수 있다.The bottom gate electrode may include the bottom gate electrode to form a gate insulating layer disposed over the entire surface of the substrate.
상기 게이트 절연층은 유기 고분자로 이루어지는 것이 바람직하나 이에 한정되는 것은 아니며, 산화물로 형성될 수도 있다. 유기 고분자의 예로는 폴리스타이렌(PS, polystyrene), 폴리메타아크릴레이트 (PMMA, polymethylmethacrylate), 페놀계 고분자, 아크릴계 고분자, 폴리이미드와 같은 이미드계 고분자, 아릴에테르계 고분자, 아마이드계 고분자, 불소계 고분자, p-자이리렌계 고분자, 비닐알콜계 고분자, 파릴렌(parylene) 등으로 이루어진 군에서 1이상 선택하여 사용하는 것이 바람직하다. 또한, 산화물로는 상기 게이트 절연층은 SiO2, Al2O3, HfO2, ZrO2, Y2O3 및 Ta2O5등으로 이루어진 군에서 1이상 선택하여 사용하는 것이 바람직하다.The gate insulating layer is preferably made of an organic polymer, but is not limited thereto, and may be formed of an oxide. Examples of the organic polymer include polystyrene (PS), polymethacrylate (PMMA, polymethylmethacrylate), phenolic polymer, acrylic polymer, imide polymer such as polyimide, arylether polymer, amide polymer, fluorine polymer, p -It is preferable to use at least one selected from the group consisting of a zyrylene-based polymer, a vinyl alcohol-based polymer, parylene (parylene) and the like. In addition, as the oxide, the gate insulating layer is preferably selected from one or more selected from the group consisting of SiO 2 , Al 2 O 3 , HfO 2 , ZrO 2 , Y 2 O 3, and Ta 2 O 5 .
상기 게이트 절연층의 역할은 전자가 유도쌍극자를 형성하여 전하의 축적이 가능하게 한다. 상기 게이트 절연층은 높은 유전상수로 인해서 구동전압이 높으나 높은 구동속도로 트랜지스터 구동이 가능하게 한다. 현재 사용되는 컴퓨터 등의 전자기기의 트랜지스터에서의 높은 구동속도는 이러한 게이트 절연층을 사용하여 얻어지게 된다.The role of the gate insulating layer allows electrons to form inductive dipoles, thereby allowing the accumulation of charge. The gate insulating layer has a high driving voltage due to a high dielectric constant, but allows the transistor to be driven at a high driving speed. High drive speeds in transistors of electronic devices such as computers that are currently used are obtained using such gate insulating layers.
상기 게이트 절연층 상에는 서로 이격되어 위치하는 소스/드레인 전극을 형성할 수 있다.Source / drain electrodes may be formed on the gate insulating layer to be spaced apart from each other.
상기 소스/드레인 전극은 Au, Al, Ag, Mg, Ca, Yb, Cs-ITO 또는 이들의 합금 중에서 선택되는 단일층으로 형성될 수 있으며, 접착성을 향상시키기 위하여 Ti, Cr 또는 Ni과 같은 접착 금속층을 더욱 포함하여 다중층으로 형성될 수 있다. 또한 그라핀(graphene), 카본나노튜브(CNT), PEDOT:PSS 전도성 고분자 실버나노와이어(silver nanowire) 등을 이용하여 기존의 금속보다 탄성에 더욱 유연한 소자를 제조할 수 있으며 위 물질들을 잉크로 사용하여 잉크젯 프린팅 또는 스프레이 등의 인쇄공정을 이용하여 소스/드레인 전극을 제조할 수 있다. 이러한 인쇄공정을 통해서 소스/드레인 전극을 형성하며 진공공정을 배제할 수 있어서 제조비용의 절감효과를 기대할 수 있다.The source / drain electrode may be formed of a single layer selected from Au, Al, Ag, Mg, Ca, Yb, Cs-ITO, or an alloy thereof, and may be bonded to Ti, Cr or Ni to improve adhesion. Further comprising a metal layer can be formed into a multi-layer. In addition, by using graphene, carbon nanotube (CNT) and PEDOT: PSS conductive polymer silver nanowire, devices that are more flexible to elasticity than conventional metals can be manufactured. Thus, the source / drain electrodes may be manufactured using a printing process such as inkjet printing or spraying. Through the printing process, the source / drain electrodes can be formed and the vacuum process can be excluded, thereby reducing the manufacturing cost.
상기 소스/드레인 전극 상에는 상기 소스/드레인 전극을 포함하여 게이트 절연층 전면에 걸쳐 반도체층을 형성할 수 있다.The semiconductor layer may be formed over the entire gate insulating layer by including the source / drain electrodes on the source / drain electrodes.
상기 반도체층은 N형 유기반도체, P형 유기반도체 또는 산화물 반도체를 사용할 수 있다. 상기 N형 유기반도체는 아센계 물질, 완전 불화된 아센계 물질, 부분 불화된 아센계 물질, 부분 불화된 올리고티오펜(oligothiophene)계 물질, 플러렌(fullerene)계 물질, 치환기를 갖는 플러렌계 물질, 완전 불화된 프탈로시아닌(phthalocyanine)계 물질, 부분 불화된 프탈로시아닌계 물질, 페릴렌 테트라카르복실릭 디이미드(perylene tetracarboxylic diimide)계 물질, 페릴렌 테트라카르복실 디안하이드라이드(perylene tetracarboxylic dianhydride)계 물질, 나프탈렌 테트라카르복실릭 디이미드(naphthalene tetracarboxylic diimide)계 물질 또는 나프탈렌 테트라카르복실릭 디안하이드라이드(naphthalene tetracarboxylic dianhydride)계 물질 중에서 어느 하나를 포함하는 것이 바람직하다. 여기서 상기 아센(acene)계 물질은 안트라센, 테트라센, 펜타센, 페릴렌 또는 코노렌 중에서 선택될 수 있다.The semiconductor layer may be an N-type organic semiconductor, a P-type organic semiconductor, or an oxide semiconductor. The N-type organic semiconductor is an acene-based material, a fully fluorinated acene-based material, a partially fluorinated acene-based material, a partially fluorinated oligothiophene-based material, a fullerene-based material, a fullerene-based material having a substituent, Fully fluorinated phthalocyanine-based materials, partially fluorinated phthalocyanine-based materials, perylene tetracarboxylic diimide-based materials, perylene tetracarboxylic dianhydride-based materials, naphthalene It is preferable to include any one of tetracarboxylic diimide-based material or naphthalene tetracarboxylic dianhydride-based material. Here, the acene-based material may be selected from anthracene, tetracene, pentacene, perylene or conorene.
또한 상기 P형 유기반도체는 아센(acene), 폴리-티에닐렌비닐렌(poly-thienylenevinylene), 폴리-3-헥실티오펜(poly-3-hexylthiophen), 알파-헥사티에닐렌(α-hexathienylene), 나프탈렌(naphthalene), 알파-6-티오펜(α-6-thiophene), 알파-4-티오펜 (α-4-thiophene), 루브렌(rubrene), 폴리티오펜(polythiophene), 폴리파라페닐렌비닐렌 (polyparaphenylenevinylene), 폴리파라페닐렌(polyparaphenylene), 폴리플로렌(polyfluorene), 폴리티오펜비닐렌(polythiophenevinylene), 폴리티오펜-헤테로고리방향족 공중합체(polythiophene-heterocyclicaromatic copolymer), 트리아릴아민(triarylamine)을 포함하는 물질 또는 이들의 유도체 중에서 선택될 수 있는 데, 여기서 상기 아센족 물질은 펜타센(pentacene), 페릴렌(perylene), 테트라센(tetracene) 또는 안트라센(anthracene) 중에서 어느 하나이다.In addition, the P-type organic semiconductor is acene (acene), poly-thienylenevinylene (poly-thienylenevinylene), poly-3-hexylthiophene (poly-3-hexylthiophen), alpha-hexathienylene (α-hexathienylene), Naphthalene, alpha-6-thiophene, alpha-4-thiophene, alpha-4-thiophene, rubrene, polythiophene, polyparaphenylene Vinylene (polyparaphenylenevinylene), polyparaphenylene, polyfluorene, polythiophenevinylene, polythiophene-heterocyclicaromatic copolymer, triarylamine ( triarylamine) or derivatives thereof, wherein the acene group is any one of pentacene, perylene, tetratracene or anthracene.
또한 산화물 반도체층으로는 IGZO, IZO, ZnO 등을 이용하여 산화물 반도체층을 형성할 수 있다.In addition, an oxide semiconductor layer can be formed using IGZO, IZO, ZnO, etc. as an oxide semiconductor layer.
상기 반도체층은 진공챔버에서 열증착이나 스퍼터링을 통해서 박막형성이 가능하다. 또한 용매에 녹을수 있는 소재는 스핀코팅, 스프레이(Spray), 잉크젯(Inkjet), 플렉소그라피(Flexography), 스크린(Screen), Dip-Coating 및 Gravure 등의 방법을 통해 소스/드레인 전극위에 형성된다. 이는 전극 상 및 기판의 국부적인 영역에 패턴을 형성할 수 있으며, 반도체층 형성 후 반도체 결정성 및 안정성 등의 소자 성능을 향상시키기 위해 열처리나 광학적 노출(exposure) 등을 시행할 수 있다.The semiconductor layer may be formed into a thin film by thermal evaporation or sputtering in a vacuum chamber. Solvent-soluble materials are also formed on source / drain electrodes through spin coating, spray, inkjet, flexography, screen, dip-coating and gravure. . The pattern may be formed on the electrode and the local region of the substrate, and heat treatment or optical exposure may be performed to improve device performance such as semiconductor crystallinity and stability after forming the semiconductor layer.
본 발명에서 반도체층의 두께(h)가 1 ~ 10nm인 것이 바람직하다. 상기 반도체층의 두께는 소스/드레인 전극의 상부와 이온층 하부의 간격을 말하며, 상기 반도체층의 두께가 얇은 경우 이온층으로 인해 발생한 높은 전하량 축적이 하부에 있는 반도체층에 높은 효율로 확산(diffusion)시켜 하부 채널에 효과적으로 이동할 수 있도록 할 수 있다. 즉, 빠른 구동속도를 획득할 수 있게 된다. In the present invention, the thickness h of the semiconductor layer is preferably 1 to 10 nm. The thickness of the semiconductor layer refers to the gap between the upper portion of the source and drain electrodes and the lower portion of the ion layer. When the thickness of the semiconductor layer is thin, high charge accumulation caused by the ion layer diffuses to the lower semiconductor layer with high efficiency. It can be effectively moved to the lower channel. That is, a fast driving speed can be obtained.
통상 축적 모드(accumulation mode)로 구동하는 유기트랜지스터와 산화물 트랜지스터에서 게이트 전압의 인가를 통해서 반도체와 절연체 계면에 형성되는 트랜지스터 채널의 두께는 1~5nm 정도로(분자층 2-3층) 알려져 있다.(Advanced Materials 25 (31), 4210-4244 (2013))The thickness of the transistor channel formed at the interface between the semiconductor and the insulator through the application of a gate voltage in an organic transistor and an oxide transistor which is usually driven in an accumulation mode is known to be about 1 to 5 nm (2 to 3 molecular layers). Advanced Materials 25 (31), 4210-4244 (2013))
따라서, 반도체 층의 두께가 10 nm 이내이면 듀얼게이트에서 상부에 형성된 채널이 하부와 형성된 채널과 서로 혼합되어서 상부 혹은 하부에서 형성된 전하가 하부 혹은 상부로 확산이 가능하게 된다. 이러한 효과는 반도체층의 두께가 얇을수록 배가 된다.Therefore, when the thickness of the semiconductor layer is less than 10 nm, the channel formed at the upper portion of the dual gate is mixed with the lower portion and the formed channel so that the charge formed at the upper portion or the lower portion can diffuse to the lower portion or the upper portion. This effect is doubled as the thickness of the semiconductor layer is thinner.
도 3은 트랜지스터의 반도체층 두께를 100nm 및 10nm로 하였을 때 높이 위치에 따른 전하량을 나타낸 것이다.3 shows the amount of charge according to the height position when the semiconductor layer thickness of the transistor is 100 nm and 10 nm.
도 3을 참조하면, 반도체층으로 IGZO 산화물 반도체층을 형성하였으며, 상기 반도체층이 100 nm 일 때는 상부와 하부에 형성된 채널에 의한 높은 전하량이 반도체층 중간에 효과적으로 전달되지 못하여서, 상부와 하부의 전하량과 중간층의 전하량이 크게 차이를 보이게 된다.Referring to FIG. 3, an IGZO oxide semiconductor layer was formed as a semiconductor layer. When the semiconductor layer is 100 nm, the high charge amount due to the channels formed on the upper and lower portions is not effectively transferred to the middle of the semiconductor layer, and thus the charge amount on the upper and lower portions. The amount of charge in the and the intermediate layer is greatly different.
이에 반해 반도체층이 10 nm이면 상부와 하부에 형성된 전하가 중간층에 효과적으로 확산되어 반도체층의 전하량이 반도체내에 골고루 퍼지게 된다.On the other hand, if the semiconductor layer is 10 nm, the charges formed on the upper and lower sides are effectively diffused in the intermediate layer, so that the amount of charge in the semiconductor layer is evenly spread in the semiconductor.
따라서 10 nm 이내의 반도체층을 사용하게 되면 이온젤에 의해서 형성된 반도체층 상부의 높은 전하량이 반도체층 하부로 효과적으로 확산되어서 하부 게이트의 전멸에 의해서 높은 구동속도를 얻을 수 있어서 높은 전류이득과 구동속도를 동시에 구현할 수 있게 된다.Therefore, when the semiconductor layer within 10 nm is used, the high charge on the semiconductor layer formed by the ion gel is effectively diffused to the lower part of the semiconductor layer, so that the high driving speed can be obtained by the disappearance of the lower gate. It can be implemented at the same time.
탑게이트 전극 및 바텀게이트 전극에 전압을 인가하는 경우, 이온층에 의한 높은 유전상수(dielectric constant) 및 축전용량(capacitance)을 통해서 많은 양의 전하를 축적시키게 되고, 반도체층을 얇게 함으로써 소스/드레인 전극으로 하여금 반도체층의 채널로 빠르게 이동시킬 수 있는 역할을 한다.When a voltage is applied to the top gate electrode and the bottom gate electrode, a large amount of electric charge is accumulated through a high dielectric constant and capacitance by the ion layer, and the source / drain electrode is made thin by making the semiconductor layer thin. It can be quickly moved to the channel of the semiconductor layer.
상기 반도체층 상에는 전면에 걸쳐서는 이온층을 형성할 수 있다.An ion layer may be formed over the entire surface of the semiconductor layer.
이때 이온층은 이온성 액체로 층 형성이 가능하고, 이온성 액체와 고분자가 혼합된 이온겔 또는 고체전해질로도 층 형성이 가능하다. 이온층을 이온겔 또는 고체전해질로 형성하는 경우 이온성 액체에 특정 고분자를 적절히 혼합하여 형성할 수 있다. 상기 이온겔은 겔형상으로 형성되며, 상기 고체전해질은 고체형상으로 상기 이온겔 보다는 좀더 딱딱한 형태이나 신축성은 어느 정도 있는 형태일 수 있다.In this case, the ionic layer may be formed of an ionic liquid, and may be formed of an ion gel or a solid electrolyte mixed with an ionic liquid and a polymer. When the ionic layer is formed of an ion gel or a solid electrolyte, the ionic liquid may be formed by appropriately mixing a specific polymer. The ion gel may be formed in a gel shape, and the solid electrolyte may be in a solid shape and have a more rigid form or elasticity than the ion gel.
이온성 액체로는 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMI][TFSA]), [EMIM][TFSI], [BMIM][PF6], 및 [EMIM][OctSO4]로 이루어진 군에서 1이상 선택할 수 있다. Ionic liquids include 1-Ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide ([EMI] [TFSA]), [EMIM] [TFSI], [BMIM] [PF 6 ], and [EMIM] [OctSO 4 ]. You can choose one or more from the group you have made up.
상기 이온겔 또는 고체전해질로 형성하는 경우에는 신축성이 좋아 향후 신축성 소자 제조에도 도움이 된다. 상기 이온겔 또는 고체전해질은 이온성 액체와 고분자가 혼합되는 데, 상기 고분자로는 poly(styrene-b-methylmethacrylate-b-styrene) [PS-PMMA-PS], poly (vinylidene fluoride-hexafluoro propylene), P(VDF-HFP), tetra-arm poly (ethylene glycol) (Tetra-PEG), PVDF-TrFE 등으로 이루어진 군에서 1이상 선택할 수 있으며, 상기 이온성 액체와 혼합이 가능한 고분자라면 비제한적으로 사용할 수 있다.In the case of forming the ion gel or the solid electrolyte, the elasticity is good, which will help in the future manufacturing of the stretchable device. The ion gel or the solid electrolyte is mixed with an ionic liquid and a polymer, the polymer is poly (styrene-b-methylmethacrylate-b-styrene) [PS-PMMA-PS], poly (vinylidene fluoride-hexafluoro propylene), P (VDF-HFP), tetra-arm poly (ethylene glycol) (Tetra-PEG), PVDF-TrFE, etc. can be selected from one or more, and can be used without limitation as long as the polymer can be mixed with the ionic liquid. have.
이온겔 또는 고체전해질로 제조시 이온성 액체 및 고분자의 혼합비율은 상기 이온성 액체 및 고분자의 혼합비율은 0.1 : 9.9 내지 9.9 : 0.1 중량비로 혼합되는 것이 바람직하다. 이때 혼합을 위해서는 methylene chloride 등의 용매가 필요한 데, 이온성 액체 및 고분자와 용매의 혼합비율은 약 10 : 90의 중량비율로 혼합한다.When the ion gel or solid electrolyte is prepared, the mixing ratio of the ionic liquid and the polymer may be mixed in a ratio of 0.1: 9.9 to 9.9: 0.1 by weight. At this time, a solvent such as methylene chloride is required for mixing. The mixing ratio of the ionic liquid, the polymer and the solvent is mixed at a weight ratio of about 10:90.
이온층을 이온겔 또는 고체전해질로 하여 제조하는 방법은 이온성 액체 및 고분자를 용매에 혼합한 용액을 형성한 뒤, 이 용액을 약 80℃의 핫플레이트(hot plate) 위에서 약 6시간동안 가열하여 용매에 재료가 완전히 용해되고 혼합되도록 하여 이온겔 또는 고체전해질을 제조할 수 있다.In the method of preparing an ion layer using an ion gel or a solid electrolyte, a solvent is prepared by mixing a ionic liquid and a polymer in a solvent, and then heating the solution on a hot plate at about 80 ° C. for about 6 hours. The material may be completely dissolved and mixed in the ion gel to prepare an ion gel or a solid electrolyte.
바텀 게이트 전극 및 바텀 게이트 절연막이 형성된 상태에서 반도체층과 탑게이트 절연막 사이에 이온층을 형성하는 경우, 탑게이트 절연막으로 이온겔 또는 고체전해질 소재가 적용됨으로 인해 매우 높은 전하를 반도체층에 축적하게 되고 이를 바텀게이트 전극에 전압을 인가하여 트랜지스터의 채널내에서 이동시키므로 탑게이트 전극 및 이온층으로 인해서 높은 전하이동도와 함께 바텀게이트로 인해서 높은 구동속도를 동시에 획득할 수 있게된다.When the ion layer is formed between the semiconductor layer and the top gate insulating film while the bottom gate electrode and the bottom gate insulating film are formed, very high charge is accumulated in the semiconductor layer due to the application of the ion gel or the solid electrolyte material as the top gate insulating film. Since a voltage is applied to the bottom gate electrode to move in the channel of the transistor, a high driving speed can be simultaneously obtained due to the bottom gate along with a high charge mobility due to the top gate electrode and the ion layer.
즉, 탑게이트 전극에 전압인가를 하는 경우에 이온층의 영향으로 반도체층에 높은 전하량이 축적하게 되고, 여기에 바텀게이트 전극에 전압을 인가하게 되면 트랜지스터의 채널내에서 이동이 발생하므로 높은 구동속도가 발생하게 된다.That is, when a voltage is applied to the top gate electrode, a high amount of charge is accumulated in the semiconductor layer due to the influence of the ion layer, and when a voltage is applied to the bottom gate electrode, movement occurs in the channel of the transistor, so that a high driving speed is achieved. Will occur.
도 4는 본 발명의 일실시예에 따른 박막트랜지스터에 전압인가시 변화를 나타낸 것이다.Figure 4 shows the change in voltage applied to the thin film transistor according to an embodiment of the present invention.
본 발명은 반도체층 상부에 위치한 이온층으로 인해 반도체층에 많은 전하가 형성되며, 형성된 많은 전하는 반도체층이 얇으므로 인해 하부로 쉽게 확산되어 하부의 바텀게이트 전극을 조절함에 따라 구동된다.In the present invention, a large amount of charges are formed in the semiconductor layer due to the ion layer positioned on the semiconductor layer, and the formed charges are easily diffused to the lower portion because the semiconductor layer is thin and driven by controlling the bottom gate electrode.
상기 반도체층의 두께가 10nm 이하로 얇은 경우 이온층으로 인해 발생한 높은 전하량 축적이 하부에 있는 반도체층에 높은 효율로 확산(diffusion)시켜 하부 채널에 효과적으로 이동하도록 하여 빠른 구동속도를 얻을 수 있게 된다.When the thickness of the semiconductor layer is thinner than 10 nm, high charge accumulation caused by the ion layer diffuses to the lower semiconductor layer with high efficiency to efficiently move to the lower channel, thereby obtaining a fast driving speed.
도 4를 참조하면, 탑게이트 전극의 +전압 인가로 인해 이온층 상부에 -전하가 축적되고, 두께가 얇은 반도체층으로 인해 -전하가 하부로 확산되어 축적되며 이를 소스/드레인 전극사이에 빠른 구동속도를 갖게 된다.Referring to FIG. 4, −charge is accumulated on the ion layer due to the + voltage application of the top gate electrode, and −charge is diffused and accumulated at the bottom due to the thin semiconductor layer, and the driving speed is fast between the source / drain electrodes. Will have
상기 이온층 상에는 탑게이트 전극을 형성할 수 있다. 상기 탑게이트 전극 상기 바텀게이트 전극의 형성과 동일한 방법으로 형성될 수 있으며, 바텀게이트 전극과 같이 알루미늄(Al), 알루미늄 합금(Al-alloy), 몰리브덴(Mo), 몰리브덴 합금(Mo-alloy), 실버나노와이어(silver nanowire), 갈륨인듐유태틱(gallium indium eutectic), PEDOT;PSS 중에서 선택되는 어느 하나로 형성될 수 있다.A top gate electrode may be formed on the ion layer. The top gate electrode may be formed in the same manner as the bottom gate electrode, and may be formed of aluminum (Al), aluminum alloy (Al-alloy), molybdenum (Mo), molybdenum alloy (Mo-alloy), It may be formed of any one selected from silver nanowire, gallium indium eutectic, and PEDOT.
이로써 본 발명의 일실시예에 따른 박막트랜지스터를 완성할 수 있다.Thus, the thin film transistor according to the embodiment of the present invention can be completed.
도 5는 본 발명의 다른 실시예에 따른 박막트랜지스터 구조를 나타낸 것이다.5 shows a thin film transistor structure according to another embodiment of the present invention.
도 5를 참조하면, 바텀게이트 전극 상부에 이온층의 형성도 가능한 데, 기판; 상기 기판 상에 위치한 바텀게이트 전극; 상기 바텀게이트 전극을 포함하여 기판 전면에 걸쳐 위치한 이온층; 상기 이온층 상에 위치한 반도체층; 상기 반도체층의 상층부에 포함되도록 하며, 서로 이격되어 위치하는 소스/드레인 전극; 상기 소스/드레인 전극 상의 반도체층 전면에 걸쳐 위치한 게이트 절연층; 및 상기 게이트 절연층 상에 위치한 탑게이트 전극;을 포함하는 것을 특징으로 하여 듀얼게이트 박막트랜지스터를 제공할 수 있다.Referring to FIG. 5, an ion layer may be formed on the bottom gate electrode, the substrate; A bottom gate electrode on the substrate; An ion layer positioned over the entire surface of the substrate including the bottom gate electrode; A semiconductor layer on the ion layer; A source / drain electrode included in an upper layer of the semiconductor layer and spaced apart from each other; A gate insulating layer disposed over an entire surface of the semiconductor layer on the source / drain electrodes; And a top gate electrode disposed on the gate insulating layer. The dual gate thin film transistor may be provided.
이 경우 각각의 구조에 대해서는 상기에서 설명한 바와 동일하므로 구체적인 설명은 생략하기로 한다. 다만, 반도체층의 두께(h)는 1 ~ 10nm인 것이 바람직한 데, 상기 반도체층의 두께는 소스/드레인 전극의 하부와 이온층 상부의 간격이라고 볼 수 있다.In this case, each structure is the same as described above, so a detailed description thereof will be omitted. However, the thickness h of the semiconductor layer is preferably 1 to 10 nm, and the thickness of the semiconductor layer may be regarded as a gap between the lower portion of the source / drain electrode and the upper portion of the ion layer.
이하, 본 발명의 구체적인 실시예에 대하여 자세히 설명한다.Hereinafter, specific embodiments of the present invention will be described in detail.
실시예 1Example 1
기판준비 및 게이트 절연층 형성Substrate Preparation and Gate Insulation Layer Formation
박막트랜지스터를 제조하는 데 있어, 유리 기판을 준비하고, 기판 상부에 게이트 절연층을 형성하는 데, 절연층은 폴리스티렌(PS)를 이용하여 n-부틸아세테이트(n-Butyl Acetate)에 녹인 후에 스핀코팅을 이용하여 게이트 절연층을 형성하였다.In manufacturing a thin film transistor, a glass substrate is prepared and a gate insulating layer is formed on the substrate. The insulating layer is melted in n-butyl acetate using polystyrene (PS) and then spin coated. Using to form a gate insulating layer.
소스/드레인 전극 및 반도체층 형성Source / drain electrode and semiconductor layer formation
게이트 절연층 상에 소스/드레인 전극을 형성하였으며, 이 후 반도체층을 형성하는 데 P3HT을 이용하여 제조하였으며, 반도체층의 두께(h)는 10nm로 하여 제조하였다.A source / drain electrode was formed on the gate insulating layer, and then P3HT was used to form the semiconductor layer, and the thickness h of the semiconductor layer was 10 nm.
이온층 형성Ion layer formation
이온성 액체로 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([EMIM][TFSI]) 를 사용하였으며, 고분자로 PVDF-TrFE을 사용하여 methylene chloride 용매에 혼합하였는 데, 이온성액체 : 고분자 : 용매의 중량비율을 0.7 : 9.3 : 90으로 혼합하여 용액을 제조하였다. 이 용액을 80℃의 핫플레이트(hot plate) 위에서 6시간동안 가열하여 용매에 상기 재료가 완전히 용해되고 혼합되도록 하여 이온겔 또는 고체전해질 형태로 제조하였으며, 이를 이용하여 이온층을 형성하였다.1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([EMIM] [TFSI]) was used as the ionic liquid, and PVDF-TrFE was used as the polymer and mixed in the methylene chloride solvent. The solution was prepared by mixing the solvent by weight ratio of 0.7: 9.3: 90. The solution was heated on a hot plate at 80 ° C. for 6 hours to completely dissolve and mix the material in a solvent, thereby preparing an ion gel or a solid electrolyte, thereby forming an ion layer.
탑게이트 전극 형성Topgate electrode formation
이온층 상부의 일부영역에는 탑게이트 전극을 형성을 형성하는 데, 알루미늄(Al)을 증착에 의하여 형성하여 박막트랜지스터를 제조하였다.A top gate electrode was formed in a portion of the upper portion of the ion layer, and aluminum (Al) was formed by evaporation to manufacture a thin film transistor.
비교예 1Comparative Example 1
실시예 1과 동일하게 실시하되,The same as in Example 1,
게이트 절연층을 적용하지 않고, 게이트 절연층에는 이온층에 사용한 물질과 동일한 물질로 층을 형성하였다.Without applying the gate insulating layer, a layer was formed on the gate insulating layer with the same material as that used for the ion layer.
비교예 2Comparative Example 2
실시예 1과 동일하게 실시하되,The same as in Example 1,
이온층을 적용하지 않고, 이온층에는 게이트 절연층에 사용한 물질과 동일한 물질로 층을 형성하였다.Without applying the ion layer, a layer was formed on the ion layer with the same material as that used for the gate insulating layer.
실험 결과 실시예 1의 경우 매우 높은 전하를 반도체층에 축적하게 되고 이를 바텀게이트 전극에 전압을 인가하여 트랜지스터의 채널내에서 이동시키므로 탑게이트 전극 및 이온층으로 인해서 높은 전하이동도와 함께 바텀게이트 전극으로 인해 높은 구동속도를 동시에 획득할 수 있게 된다. As a result, in Example 1, a very high charge is accumulated in the semiconductor layer and a voltage is applied to the bottom gate electrode to move in the channel of the transistor, so that the top gate electrode and the ion layer cause the bottom gate electrode with high charge mobility. High driving speed can be obtained at the same time.
이에 반해 비교예 1의 경우 높은 전하이동도가 발생하지만 구동속도의 성능은 상당히 느리며, 비교예 2의 경우는 구동속도는 빠르나 전하량은 높지 않은 성능을 나타낸다.On the contrary, in the case of Comparative Example 1, high charge mobility occurs, but the performance of the driving speed is considerably slow. In Comparative Example 2, the driving speed is fast but the charge amount is not high.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and various substitutions, modifications, and changes are possible within the scope without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.
Claims (9)
- 기판;Board;상기 기판 상에 위치한 바텀게이트 전극;A bottom gate electrode on the substrate;상기 바텀게이트 전극을 포함하여 기판 전면에 걸쳐 위치한 게이트 절연층;A gate insulating layer including the bottom gate electrode over the entire surface of the substrate;상기 게이트 절연층 상에 서로 이격되어 위치하는 소스/드레인 전극;Source / drain electrodes spaced apart from each other on the gate insulating layer;상기 소스/드레인 전극을 포함하는 게이트 절연층 전면에 걸쳐 위치한 반도체층;A semiconductor layer located over an entire gate insulating layer including the source / drain electrodes;상기 반도체층 상의 전면에 위치하는 이온층; 및An ion layer located on the front surface of the semiconductor layer; And상기 이온층 상에 위치한 탑게이트 전극;을 포함하는 것을 특징으로 하는 듀얼게이트 박막트랜지스터.And a top gate electrode positioned on the ion layer.
- 기판;Board;상기 기판 상에 위치한 바텀게이트 전극;A bottom gate electrode on the substrate;상기 바텀게이트 전극을 포함하여 기판 전면에 걸쳐 위치한 이온층;An ion layer positioned over the entire surface of the substrate including the bottom gate electrode;상기 이온층 상에 위치한 반도체층;A semiconductor layer on the ion layer;상기 반도체층의 상층부에 포함되도록 하며, 서로 이격되어 위치하는 소스/드레인 전극;A source / drain electrode included in an upper layer of the semiconductor layer and spaced apart from each other;상기 소스/드레인 전극 상의 반도체층 전면에 걸쳐 위치한 게이트 절연층; 및A gate insulating layer disposed over an entire surface of the semiconductor layer on the source / drain electrodes; And상기 게이트 절연층 상에 위치한 탑게이트 전극;을 포함하는 것을 특징으로 하는 듀얼게이트 박막트랜지스터.And a top gate electrode disposed on the gate insulating layer.
- 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,상기 반도체층의 두께(h)는 1~10nm인 것을 특징으로 하는 듀얼게이트 박막트랜지스터.The thickness of the semiconductor layer (h) is a dual gate thin film transistor, characterized in that 1 ~ 10nm.
- 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,상기 이온층은 이온겔, 고체전해질 및 이온성 액체 중 1 이상 포함한 것을 특징으로 하는 듀얼게이트 박막트랜지스터.The ion layer is a dual gate thin film transistor, characterized in that it comprises at least one of an ion gel, a solid electrolyte and an ionic liquid.
- 제4항에 있어서,The method of claim 4, wherein상기 이온겔 또는 상기 고체전해질은 이온성 액체 및 고분자를 혼합하여 제조되되,The ion gel or the solid electrolyte is prepared by mixing an ionic liquid and a polymer,상기 고분자는 poly(styrene-b-methylmethacrylate-b-styrene) [PS-PMMA-PS], poly (vinylidene fluoride-hexafluoro propylene), P (VDF-HFP), tetra-arm poly (ethylene glycol) (Tetra-PEG), PVDF-TrFE 중 1이상 선택되는 것을 특징으로 하는 듀얼게이트 박막트랜지스터.The polymer is poly (styrene-b-methylmethacrylate-b-styrene) [PS-PMMA-PS], poly (vinylidene fluoride-hexafluoro propylene), P (VDF-HFP), tetra-arm poly (ethylene glycol) (Tetra- PEG), PVDF-TrFE dual gate thin film transistor, characterized in that at least one selected.
- 제5항에 있어서,The method of claim 5,상기 이온성 액체 및 고분자의 혼합비율은 0.1 : 9.9 내지 9.9 : 0.1 중량비로 혼합되는 것을 특징으로 하는 듀얼게이트 박막트랜지스터.The mixing ratio of the ionic liquid and the polymer is a dual gate thin film transistor, characterized in that mixed in a weight ratio of 0.1: 9.9 to 9.9: 0.1.
- 제4항에 있어서,The method of claim 4, wherein상기 이온성 액체는 [EMI][TFSA]), [EMIM][TFSI], [BMIM][PF6], 및 [EMIM][OctSO4]로 이루어진 군에서 1이상 선택되는 것을 특징으로 하는 듀얼게이트 박막트랜지스터.The ionic liquid is at least one selected from the group consisting of [EMI] [TFSA]), [EMIM] [TFSI], [BMIM] [PF 6 ], and [EMIM] [OctSO 4 ]. Thin film transistor.
- 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,상기 게이트 절연층은 유기 고분자로 폴리스타이렌(PS, polystyrene), 폴리메타아크릴레이트 (PMMA, polymethylmethacrylate), 페놀계 고분자, 아크릴계 고분자, 이미드계 고분자, 아릴에테르계 고분자, 아마이드계 고분자, 불소계 고분자, p-자이리렌계 고분자, 비닐알콜계 고분자, 파릴렌(parylene)으로 이루어진 군에서 1이상 선택하거나,The gate insulating layer is an organic polymer, polystyrene (PS), polymethacrylate (PMMA, polymethylmethacrylate), phenolic polymer, acrylic polymer, imide polymer, arylether polymer, amide polymer, fluorine polymer, p- One or more selected from the group consisting of a zyrylene-based polymer, a vinyl alcohol-based polymer, and parylene,산화물로 SiO2, Al2O3, HfO2, ZrO2, Y2O3 및 Ta2O5로 이루어진 군에서 1이상 선택하는 것을 특징으로 하는 듀얼게이트 박막트랜지스터.A dual gate thin film transistor, characterized in that at least one selected from the group consisting of SiO 2 , Al 2 O 3 , HfO 2 , ZrO 2 , Y 2 O 3 and Ta 2 O 5 as the oxide.
- 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,전압 인가시 상기 이온층으로 인해 반도체층에 높은 전하를 형성하고, 확산에 의해 채널내에서 높은 전하량이 이동하여 소스/드레인 전극 상에서 구동속도가 향상되는 것을 특징으로 하는 듀얼게이트 박막트랜지스터.2. The dual gate thin film transistor of claim 2, wherein the ion layer forms a high charge in the semiconductor layer when the voltage is applied, and a high charge amount is moved in the channel by diffusion, thereby improving driving speed on the source / drain electrode.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0036433 | 2015-03-17 | ||
KR1020150036433A KR20160112030A (en) | 2015-03-17 | 2015-03-17 | Thin-film transistor having dual gate electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016148460A1 true WO2016148460A1 (en) | 2016-09-22 |
Family
ID=56919119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/002509 WO2016148460A1 (en) | 2015-03-17 | 2016-03-14 | Dual gate thin film transistor |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20160112030A (en) |
WO (1) | WO2016148460A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107393965A (en) * | 2017-07-17 | 2017-11-24 | 华南理工大学 | Planar double-gated oxide thin film transistor and preparation method thereof |
CN108847424A (en) * | 2018-04-24 | 2018-11-20 | 京东方科技集团股份有限公司 | Thin film transistor (TFT), sensor, biological monitor and method |
WO2019139577A1 (en) * | 2018-01-10 | 2019-07-18 | Intel Corporation | Thin-film transistors with low contact resistance |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102016157B1 (en) * | 2017-06-14 | 2019-08-30 | 광운대학교 산학협력단 | High Performance Solution-Processed Zinc-Tin-Oxide Thin-Film Transistors Employing Ferroelectric Copolymers Fabricated at Low Temperature for Transparent Flexible Displays and encapsulation process method of ZTO TFT device using fluoroploymer thin film |
KR102251277B1 (en) * | 2019-04-03 | 2021-05-11 | 재단법인대구경북과학기술원 | Transistor module comprising capacitive touch sensor, piezoelectric sensor and dual-gate transistor |
KR102205569B1 (en) * | 2019-04-09 | 2021-01-20 | 중앙대학교 산학협력단 | Electrically stable organic electrolyte-gated transistors and their fabrication method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110061908A (en) * | 2009-12-02 | 2011-06-10 | 삼성전자주식회사 | Transistor and a flat panel display therewith |
KR20110091096A (en) * | 2010-02-05 | 2011-08-11 | 연세대학교 산학협력단 | Organic field effect transistor and method for manufacturing thereof |
KR20140044763A (en) * | 2012-10-05 | 2014-04-15 | 성균관대학교산학협력단 | Graphene field effect transistor with dielectrics and gate electrodes having stable behaviors despite high strains, and manufacturing method of the same |
JP2014229643A (en) * | 2013-05-20 | 2014-12-08 | 富士電機株式会社 | Organic transistor and method for manufacturing the same |
EP2811525A1 (en) * | 2013-03-14 | 2014-12-10 | Karlsruher Institut für Technologie | Electrochemically-gated field-effect transistor, method for its manufacture, its use, and electronics comprising said field- effect transistor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008097300A2 (en) | 2007-02-08 | 2008-08-14 | Regents Of The University Of Minnesota | Ion gels and electronic devices utilizing ion gels |
-
2015
- 2015-03-17 KR KR1020150036433A patent/KR20160112030A/en unknown
-
2016
- 2016-03-14 WO PCT/KR2016/002509 patent/WO2016148460A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110061908A (en) * | 2009-12-02 | 2011-06-10 | 삼성전자주식회사 | Transistor and a flat panel display therewith |
KR20110091096A (en) * | 2010-02-05 | 2011-08-11 | 연세대학교 산학협력단 | Organic field effect transistor and method for manufacturing thereof |
KR20140044763A (en) * | 2012-10-05 | 2014-04-15 | 성균관대학교산학협력단 | Graphene field effect transistor with dielectrics and gate electrodes having stable behaviors despite high strains, and manufacturing method of the same |
EP2811525A1 (en) * | 2013-03-14 | 2014-12-10 | Karlsruher Institut für Technologie | Electrochemically-gated field-effect transistor, method for its manufacture, its use, and electronics comprising said field- effect transistor |
JP2014229643A (en) * | 2013-05-20 | 2014-12-08 | 富士電機株式会社 | Organic transistor and method for manufacturing the same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107393965A (en) * | 2017-07-17 | 2017-11-24 | 华南理工大学 | Planar double-gated oxide thin film transistor and preparation method thereof |
WO2019139577A1 (en) * | 2018-01-10 | 2019-07-18 | Intel Corporation | Thin-film transistors with low contact resistance |
US11189733B2 (en) | 2018-01-10 | 2021-11-30 | Intel Corporation | Thin-film transistors with low contact resistance |
US11742429B2 (en) | 2018-01-10 | 2023-08-29 | Intel Corporation | Thin-film transistors with low contact resistance |
CN108847424A (en) * | 2018-04-24 | 2018-11-20 | 京东方科技集团股份有限公司 | Thin film transistor (TFT), sensor, biological monitor and method |
CN108847424B (en) * | 2018-04-24 | 2021-09-03 | 京东方科技集团股份有限公司 | Thin film transistor, sensor, biological detection device and method |
Also Published As
Publication number | Publication date |
---|---|
KR20160112030A (en) | 2016-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016148460A1 (en) | Dual gate thin film transistor | |
US8735871B2 (en) | Organic thin film transistors | |
CN102144311A (en) | Surface treated substrates for top gate organic thin film transistors | |
JP2009260340A (en) | Thin film transistor | |
WO2015174749A1 (en) | Carbon nanotube layer between layers, manufacturing method thereof and thin film transistor using same | |
CN101253609B (en) | Transistor and method of manufacturing same, and semiconductor device having the same | |
WO2017010674A1 (en) | Ultra-fast method for preparing organic/organic thin film by using self-diffusion effects | |
EP2117059B1 (en) | Organic Thin Film Transistors | |
WO2016010332A1 (en) | Method for manufacturing transistor according to selective printing of dopant | |
Onojima et al. | Flexible organic field-effect transistors based on 6, 13-bis (triisopropylsilylethynyl) pentacene/polystyrene blend film prepared by electrostatic spray deposition | |
JP2007273594A (en) | Field-effect transistor | |
CA2675188C (en) | Semiconducting polymers | |
WO2012043912A1 (en) | Method for manufacturing thin film transistor and electronic circuit using spray method | |
WO2011139006A1 (en) | Organic thin-film transistor having improved charge injectability, and method for manufacturing same | |
CA2537385C (en) | Celluloses and devices thereof | |
WO2017078390A1 (en) | Organic semiconductor layer comprising carbon nanotube, manufacturing method therefor, and thin film transistor using same | |
US20110053314A1 (en) | Method of Fabricating Top Gate Organic Semiconductor Transistors | |
JP5403614B2 (en) | Multi-channel self-aligned transistor by double self-aligned process and method of manufacturing the same | |
KR100719566B1 (en) | An organic thin film transistor, and a flat panel display therewith | |
WO2022092731A1 (en) | Thin film transistor and preparation method thereof | |
JP2004063975A (en) | Field effect transistor | |
KR101204338B1 (en) | Organic thin film transistor and method of forming the same | |
Onojima et al. | Anisotropic etching by electrospray for reduction in parasitic resistance of organic field-effect transistors | |
Ribierre et al. | Patterning by laser annealing of complementary inverters based on a solution-processible ambipolar quinoidal oligothiophene | |
WO2016137165A1 (en) | Gate insulator film including solid electrolyte and thin film transistor including same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16765216 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16765216 Country of ref document: EP Kind code of ref document: A1 |