[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016143686A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2016143686A1
WO2016143686A1 PCT/JP2016/056726 JP2016056726W WO2016143686A1 WO 2016143686 A1 WO2016143686 A1 WO 2016143686A1 JP 2016056726 W JP2016056726 W JP 2016056726W WO 2016143686 A1 WO2016143686 A1 WO 2016143686A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
liquid crystal
display device
crystal display
crystal molecules
Prior art date
Application number
PCT/JP2016/056726
Other languages
English (en)
French (fr)
Inventor
聡 松村
洋典 岩田
村田 充弘
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/557,711 priority Critical patent/US10185188B2/en
Publication of WO2016143686A1 publication Critical patent/WO2016143686A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13706Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having positive dielectric anisotropy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/122Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode having a particular pattern
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/124Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode interdigital
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor

Definitions

  • the present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device that performs display by applying an electric field using a plurality of electrodes.
  • a liquid crystal display device is configured by sandwiching a liquid crystal display element between a pair of glass substrates or the like, and makes use of the features such as thinness, light weight, and low power consumption to provide car navigation, electronic books, photo frames, industrial equipment, televisions, personal computers. Smartphones, tablet devices, etc. are indispensable for daily life and business. In these applications, liquid crystal display devices of various modes related to electrode arrangement and substrate design for changing the optical characteristics of the liquid crystal layer have been studied.
  • a display method of a liquid crystal display device As a display method of a liquid crystal display device in recent years, vertical such as a multi-domain vertical alignment (MVA) mode in which liquid crystal molecules having negative dielectric anisotropy are vertically aligned with respect to a substrate surface.
  • MVA multi-domain vertical alignment
  • IPS In-plane switching
  • VA liquid crystal molecules with alignment
  • FFS fringe field switching
  • the FFS mode is a liquid crystal mode that is frequently used for smartphones and tablet terminals in recent years.
  • the FFS mode liquid crystal display device for example, formed on the first transparent substrate, the first and second transparent insulating substrates that are arranged to face each other with a predetermined distance through a liquid crystal layer containing a plurality of liquid crystal molecules, A plurality of gate bus lines and data bus lines arranged in a matrix form so as to limit unit pixels, thin film transistors provided at intersections of the gate bus lines and data bus lines, and arranged in each unit pixel And a counter electrode made of a transparent conductor and a unit electrode that is insulated from the counter electrode so as to form a fringe field together with the counter electrode, and is symmetrical about the long side of the pixel.
  • FFS having a plurality of upper and lower slits arranged at a predetermined inclination and a pixel electrode made of a transparent conductor
  • the liquid crystal display device over de is disclosed (for example, see Patent Document 1.).
  • the FFS mode liquid crystal display device described in Patent Document 1 is disclosed to have a wide viewing angle characteristic and to improve the low aperture ratio and transmittance of the IPS mode liquid crystal display device (for example, Patent Document 1). 6 shown in Fig. 1.
  • Fig. 6 described in Patent Document 1 shows a planar pixel structure of an FFS mode liquid crystal display device.
  • the FFS mode liquid crystal display device described in Patent Document 1 forcibly responds to liquid crystal by applying an electric field at the time of rising (while the display state changes from a dark state [black display] to a bright state [white display]).
  • the vertical alignment is applied to stop the application of the electric field and allow the liquid crystal to respond to viscoelasticity. Compared with the mode, the response is slow and there is room for improving the response characteristics.
  • FIG. 13 is a schematic cross-sectional view of a liquid crystal display device having a conventional FFS mode electrode structure.
  • FIG. 13 shows a structure of a liquid crystal display device.
  • An upper electrode (iv) provided with a slit in a lower substrate 1010 and a planar lower electrode through the upper electrode (iv) and an insulating layer 1013 (V) is arranged.
  • the upper layer electrode (iv) is applied to a constant voltage at the time of rising (for example, the voltage difference between the upper layer electrode (iv) and the lower layer electrode (v) is equal to or higher than a threshold voltage)
  • the threshold voltage means a voltage value that gives a transmittance of 5% when the transmittance in the bright state is set to 100%.
  • the potential difference between the upper layer electrode (iv) and the lower layer electrode (v) is set to be less than the threshold value, and the fringe electric field is stopped (weakened) to respond.
  • the conventional FFS mode liquid crystal display device As described above, a fringe electric field is generated by the FFS electrode of the lower substrate, and the liquid crystal molecules in the vicinity of the lower substrate are rotated in the same direction in the horizontal plane to perform switching at the time of rising. Yes. Further, switching at the time of falling is performed by returning the liquid crystal molecules to the original alignment state by viscoelasticity by extinguishing the fringe electric field.
  • the conventional FFS mode liquid crystal display device has a region where the electric field for rotating the liquid crystal molecules is weak in the liquid crystal layer, and it takes time to rotate the liquid crystal molecules in the region. At this time, since the liquid crystal molecules rotate in the same direction, distortion due to elastic deformation of the liquid crystal in the horizontal plane is small.
  • the response time is slow for both the switching at the rise and the switching at the fall.
  • a conventional FFS mode liquid crystal display device has a lower substrate composed of two layers and can be applied with two different voltages, but the lower substrate is composed of two layers and can be applied with three different voltages. And a pair of comb-like electrodes.
  • the present inventors have found that in such a liquid crystal display device, a high-speed response can be realized in addition to a wide viewing angle (for example, the response is faster than the FFS mode in Comparative Example 2 described later).
  • Drive first drive method
  • the black floating caused by the fact that the voltage is always applied to the lower layer electrode of the lower substrate.
  • the transmittance from being sufficiently lowered during black display and to improve the contrast ratio.
  • it is conceivable to reduce the voltage value of the lower layer electrode to prevent black floating if the voltage value of the lower layer electrode is decreased, the alignment of liquid crystal molecules may become unstable, and the target alignment is realized. There was room for ingenuity.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a liquid crystal display device capable of realizing a high contrast ratio and a wide viewing angle and also realizing a high-speed response.
  • the present inventors further decided to provide a protrusion on a part of the electrode in the liquid crystal display device in which the lower substrate is composed of two layers and can be applied with three different voltages.
  • the inventors of the present invention have arrived at the present invention by conceiving that the above problems can be solved with this electrode structure.
  • one embodiment of the present invention is a liquid crystal display device including an upper substrate and a liquid crystal layer sandwiched between the upper and lower substrates, the lower substrate including an electrode, and the electrode includes the first electrode and the first electrode.
  • a second electrode in a layer different from one electrode, and a third electrode in a layer different from the first electrode, wherein the first electrode has a plurality of linear portions, and the second electrode
  • the third electrode is a pair of comb-like electrodes, and each of the comb-like electrodes includes a trunk portion and a plurality of branch portions branched from the trunk portion, and the plurality of branch portions of the third electrode.
  • At least one of the first and second electrodes has a protruding portion in which a part of the branch portion is wide between two portions intersecting the plurality of linear portions of the first electrode when the lower substrate is viewed in plan view.
  • the liquid crystal layer is a liquid crystal display device including liquid crystal molecules aligned horizontally with respect to the main surfaces of the upper and lower substrates when no voltage is applied. It may be.
  • the liquid crystal display device of the present invention is an invention described in Patent Document 1 in that the lower substrate has a configuration having electrodes that can apply three different voltages in at least two layers, and that some of the electrodes have protrusions. And different.
  • the protruding portion is a portion that is wider than a portion of the branch portion of the third electrode in the plan view of the lower substrate (the shorter direction of the branch portion of the third electrode). Part that protrudes into at least one of the above.
  • the first What is necessary is just to have the projection part in which a part of this branch part became wide between two parts which cross
  • the protrusion protrudes from both sides of the branch portion of the third electrode in the short direction.
  • the protrusion is symmetrical with respect to the branch portion of the third electrode.
  • the protrusions may be rectangular, triangular, trapezoidal, semicircular, or other shapes.
  • the said projection part is rectangular shape or triangular shape.
  • the protrusion preferably forms an angle of 20 ° to 90 ° with respect to the extending direction of the branch portion of the third electrode, and more preferably extends in a substantially perpendicular direction.
  • the extending direction of the linear portion of the first electrode and the extending direction of the protrusion of the third electrode are preferably at an angle of 0 ° to 70 °.
  • the branch portion of the third electrode preferably includes a cross-shaped portion.
  • the cross-shaped portion refers to two linear portions that intersect each other. The two linear portions preferably intersect at right angles.
  • the first electrode has a plurality of linear portions.
  • the first electrode is provided with a slit or is a comb-like electrode, and the intersection of the cross-shaped portion of the branch portion of the third electrode is the first electrode when the lower substrate is viewed in plan view.
  • it is preferably arranged at the center of the region.
  • the crossing portion of the cross-shaped portion refers to a portion where two linear portions constituting the cross shape cross each other.
  • the region surrounded by the first electrode and the second electrode is a region surrounded by the contour line of the first electrode and / or the contour line of the second electrode that does not overlap with the first electrode and does not overlap with the second electrode.
  • the fact that the intersection is arranged at the center of the region means that the intersection overlaps the center of the region (for example, the center of gravity when the mass is uniformly distributed in the region).
  • the intersection of the cross-shaped portion of the branch portion of the third electrode is “disposed in the center of the region within the region surrounded by the first electrode and the second electrode”
  • the crossing portion of the cross-shaped portion of the branch portion of the third electrode may be arranged at the center of the region.
  • it is preferable that the crossing portion of the cross-shaped portion of the branch portion of the third electrode is disposed at the center of the region.
  • a part of the liquid crystal molecules is rotated in a horizontal plane with respect to the main surface of the upper and lower substrates, and the other part of the liquid crystal molecules is in a horizontal plane with respect to the main surface. It is preferable that a driving operation for generating an electric field that rotates in a direction opposite to a part of the liquid crystal molecules is generated by an electrode included in the lower substrate.
  • the generation of the electric field by the electrode provided in the lower substrate may be any means as long as the electric field is generated by at least one electrode selected from the first electrode, the second electrode, and the third electrode.
  • an electric field is always generated between the second electrode and the third electrode, the voltage of the first electrode is increased during white display to rotate the liquid crystal molecules, and the first electrode during black display is rotated. It is preferable to rotate the liquid crystal molecules in the reverse direction by reducing the voltage.
  • the driving operation may include a first region that rotates a part of the liquid crystal molecules in a horizontal plane with respect to the main surface in the picture element, and another part of the liquid crystal molecules.
  • An electrode provided on the lower substrate has an electric field for rotating the liquid crystal molecules such that two or more second regions that rotate in a direction opposite to a part of the liquid crystal molecules in a horizontal plane with respect to the main surface are arranged alternately. Preferably it is generated.
  • the part of the liquid crystal molecules means a part of the liquid crystal molecules included in the liquid crystal layer.
  • a first driving method for performing the driving operation and a driving operation for generating an electric field by the electrodes for rotating the liquid crystal molecules in one direction within a horizontal plane with respect to the main surface of the upper and lower substrates It is preferable that the second drive system for executing the above is switched and executed.
  • the first electrode, the second electrode, and the third electrode are usually electrically separated, and these voltages can be individually controlled.
  • the first electrode, the second electrode, and the third electrode can each be set to a voltage different from the threshold voltage.
  • the first electrode may be arranged in a layer different from each of the second electrode and the third electrode, but the liquid crystal layer is more than the second electrode and the third electrode. It is preferable to arrange on the side.
  • the second electrode and the third electrode may be arranged in different layers, but are preferably arranged in the same layer.
  • the second electrode and the third electrode provided in the same layer of the lower substrate are a pair of comb-like electrodes. It is preferable that a slit electrode or a comb-like electrode is disposed as a first electrode on the second electrode and the third electrode via an insulating layer or the like.
  • a pair of comb-like electrodes are provided in the same layer means that each comb-like electrode has a common member (for example, an insulating layer) on the liquid crystal layer side and / or on the side opposite to the liquid crystal layer side. , Liquid crystal layer, etc.).
  • a common member for example, an insulating layer
  • a transverse electric field is always applied between the lower comb-like electrodes (opposite to the liquid crystal layer side) of the two layers of electrodes, and the upper-layer slit electrode or comb-like electrode is applied. It is preferable to drive by applying a voltage.
  • a preferred embodiment of the present invention is a liquid crystal mode in which the initial alignment is a horizontal liquid crystal mode, the lower substrate has a two-layer electrode configuration, the lower electrode is a pair of comb-like electrodes, and the upper electrode is a slit electrode It is a display device.
  • the first electrode is preferably provided with slits or has a comb shape.
  • the extending direction of the linear portion of the electrode refers to the longitudinal direction of the linear electrode that constitutes the electrode, and the extending direction of the branch portion of the electrode refers to the longitudinal direction of the linear electrode that constitutes the branch portion of the electrode.
  • a fringe electric field is generated at the FFS electrode of the lower substrate at the time of start-up, and the liquid crystal molecules are rotated in one direction by the fringe electric field. Consists of electrodes (first electrode, second electrode, and third electrode described above) that can apply three different voltages in two layers.
  • an electric field is generated between the first electrode and the second electrode at the time of rising
  • the liquid crystal molecules in a certain region and the liquid crystal molecules in other regions are rotated in opposite directions within a horizontal plane.
  • an electric field is generated between the second electrode and the third electrode at the time of falling, and the liquid crystal molecules in a certain region and the liquid crystal molecules in other regions are respectively rotated in a direction opposite to that at the time of rising in a horizontal plane.
  • Two or more first regions and two or more second regions are alternately arranged, even if two or more first regions and two or more second regions are alternately arranged in stripes. It may be well arranged alternately in a staggered pattern.
  • the first electrode is provided with a slit
  • the liquid crystal display device has a part of the liquid crystal molecules with respect to the main surface in a region overlapping the slit when the lower substrate is viewed in plan.
  • a driving operation that causes the electrode to generate an electric field that rotates in a horizontal plane and rotates the other part of the liquid crystal molecules in the direction opposite to the part of the liquid crystal molecules in the horizontal plane with respect to the main surface. It is preferably configured to execute.
  • the first electrode is provided with a slit
  • the liquid crystal display device includes the liquid crystal molecule in a region overlapping with the slit provided in the first electrode when the lower substrate is viewed in plan.
  • a part of the liquid crystal molecule is rotated in a horizontal plane with respect to the main surface, and the other part of the liquid crystal molecule is rotated in a direction opposite to the part of the liquid crystal molecule in the horizontal plane with respect to the main surface.
  • a part of the liquid crystal molecule is rotated in a horizontal plane with respect to the main surface in a region overlapping with the inter-comb region of the second electrode and the third electrode, and the other one of the liquid crystal molecules It is preferable that a driving operation for generating an electric field for rotating the portion in a horizontal plane with respect to the main surface in a direction opposite to a part of the liquid crystal molecules is generated by the electrode.
  • the electrode for driving the liquid crystal may or may not be disposed on the upper substrate.
  • the electrode is not disposed. That is, it is one of the preferable forms in the liquid crystal display device of the present invention that the electrodes for driving the liquid crystal are disposed only on the lower substrate.
  • the shape of the first electrode is not particularly limited. For example, it is one of the preferred embodiments of the present invention that the first electrode is provided with a slit. Moreover, it is also one of the preferable forms of this invention that the said 1st electrode is comb-tooth shape.
  • an electrode having a comb-like shape is not called an electrode provided with a slit, but is called a comb-like electrode.
  • the electrode generates a first driving method for performing the driving operation and an electric field for rotating the liquid crystal molecules in one direction within a horizontal plane with respect to the main surface of the upper and lower substrates. It is preferable that the second driving method for executing the driving operation is switched and executed. Rotating in one direction means that it is substantially rotated in one direction.
  • the generation of the electric field by the electrode is not limited as long as the electric field is generated by at least one electrode selected from the first electrode, the second electrode, and the third electrode.
  • a voltage is applied to the first electrode, an electric field is generated to rotate the liquid crystal molecules, the voltage applied to the first electrode is reduced during black display, the electric field is weakened or zeroed, and the liquid crystal molecules are rotated in the reverse direction. It is preferable to make it.
  • the configuration of the liquid crystal display device of the present invention is not particularly limited by other components, and other configurations that are usually used in liquid crystal display devices can be applied as appropriate.
  • liquid crystal display device of the present invention a high contrast ratio and a wide viewing angle can be realized, and a high-speed response can be realized.
  • FIG. 2 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in the liquid crystal display device of Embodiment 1. It is a cross-sectional schematic diagram which shows the cross section of the part corresponding to the line segment shown with the dashed-dotted line in FIG. It is a schematic diagram which shows the lower layer electrode (ii) and lower layer electrode (iii) of Embodiment 1.
  • FIG. 3 is a schematic plan view showing applied voltages to each electrode and alignment of liquid crystal molecules during white display in the first drive method of Embodiment 1. It is a simulation result which shows the director distribution and transmittance
  • FIG. 6 is a voltage relationship diagram showing applied voltages to each electrode during white display in the first drive method of the first embodiment.
  • FIG. 6 is a schematic plan view showing applied voltages to each electrode and alignment of liquid crystal molecules during white display in the second drive method of Embodiment 1. It is a simulation result which shows the director distribution and the transmittance
  • FIG. 6 is a schematic plan view showing applied voltages to each electrode and alignment of liquid crystal molecules during black display in the second drive method of Embodiment 1.
  • FIG. 3 is a schematic plan view illustrating an example of a pixel layout when the liquid crystal display device of Embodiment 1 is TFT-driven.
  • FIG. 4 is a graph showing voltage-transmittance (VT) characteristics of the upper layer electrode (i) in each of the first driving method and the second driving method of Embodiment 1.
  • 6 is a schematic cross-sectional view showing an electrode structure of a liquid crystal display device of Comparative Example 1 and initial alignment of liquid crystal molecules.
  • FIG. It is a plane schematic diagram which shows the applied voltage to each electrode at the time of the white display of the liquid crystal display device of the comparative example 1, and the orientation of a liquid crystal molecule.
  • FIG. 10 is a voltage relationship diagram showing applied voltages to each electrode during white display in the first drive method of Comparative Example 2. It is a plane schematic diagram which shows the applied voltage to each electrode at the time of the white display of the 2nd drive system of the comparative example 2, and the orientation of a liquid crystal molecule. It is a simulation result which shows the director distribution and transmittance
  • FIG. 7 is a simulation result showing a director distribution and a transmittance distribution during black display in the first drive method of the first embodiment. It is a simulation result which shows the director distribution and transmittance
  • FIG. 3 is a schematic diagram showing an electric field generated in the first embodiment.
  • FIG. 10 is a schematic diagram showing an electric field generated in Comparative Example 2.
  • FIG. 6 is a schematic diagram showing an upper layer electrode (i), a lower layer electrode (ii), and a lower layer electrode (iii) of Embodiments 2-1 to 2-5.
  • FIG. 3 is a schematic diagram showing an upper layer electrode (i), a lower layer electrode (ii), and a lower layer electrode (iii) of Embodiments 3-1, 3-2.
  • FIG. 6 is a schematic diagram showing an upper layer electrode (i), a lower layer electrode (ii), and a lower layer electrode (iii) of Embodiments 4-1 to 4-7.
  • a pixel may be a picture element (sub-pixel) unless otherwise specified.
  • a picture element (sub pixel) refers to a region showing any single color, such as R (red), G (green), B (blue), or yellow (Y).
  • a pair of substrates sandwiching the liquid crystal layer is also referred to as an upper substrate and a lower substrate.
  • a substrate on the display surface side is also referred to as an upper substrate
  • a substrate on the opposite side to the display surface is also referred to as a lower substrate.
  • the electrode on the display surface side is also referred to as an upper layer electrode
  • the electrode on the opposite side to the display surface side is also referred to as a lower layer electrode.
  • the member and part which exhibit the same function are attached
  • (i) shows a slit electrode on the upper layer (liquid crystal layer side) of the lower substrate, and (ii) shows a comb on the lower layer (opposite side of the liquid crystal layer) of the lower substrate. A tooth-like electrode is shown, and (iii) shows another comb-like electrode on the lower layer of the lower substrate.
  • the comb-like electrode indicated by (iii) has a protruding portion in which a part of the branch portion branched from the trunk portion is wide.
  • (I) may be disposed on the lower layer of the lower substrate (the side opposite to the liquid crystal layer side), and (ii) and (iii) may be disposed on the upper layer of the lower substrate.
  • (i) is an upper layer electrode disposed on the upper layer of the lower substrate
  • (ii) and (iii) are lower layer electrodes disposed on the lower layer of the lower substrate.
  • (iv) shows the upper layer electrode in the electrode layer having the FFS structure
  • (v) shows the lower layer electrode in the electrode layer having the FFS structure.
  • layers not related to the electric field control of the liquid crystal such as a color filter and a black matrix are omitted.
  • voltage refers to a potential difference from the ground potential.
  • the electrode of the lower substrate means at least one of the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii). Further, when the lower substrate is viewed in plan, it means when the main surface of the lower substrate is viewed in plan.
  • the slit electrode refers to an electrode provided with a slit, and has a plurality of linear electrode portions.
  • a slit the area
  • the time of rising means a period during which the display state changes from a dark state (black display) to a light state (white display).
  • the time of falling means a period during which the display state changes from a bright state (white display) to a dark state (black display).
  • the initial alignment of the liquid crystal refers to the alignment of liquid crystal molecules when no voltage is applied to the liquid crystal layer (when black is displayed).
  • the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii) can usually be set to different voltages above the threshold voltage.
  • the voltage that can be different from the threshold voltage can be any voltage as long as it can realize a driving operation with a voltage that is higher than the threshold voltage.
  • the electric field applied to the liquid crystal layer can be suitably controlled.
  • the upper layer electrode (i) is a pixel electrode, and the lower layer electrode (ii) and the lower layer electrode (iii) are common electrodes, the upper layer electrode (i) may have a different voltage.
  • a TFT thin film transistor element
  • an AC voltage AC voltage
  • AC driving AC driving
  • the lower layer electrode (ii) and the lower layer electrode that are alternately connected to each other by applying an alternating voltage to the liquid crystal by another TFT, or are commonly connected for each line, or commonly connected in all pixels.
  • the AC voltage is applied to the liquid crystal by applying the AC voltage with the TFT corresponding to the line or all pixels, or the DC voltage without using the TFT for the lower electrode (ii) and the lower electrode (iii).
  • DC The liquid crystal by applying pressure) may or DC drive (DC drive).
  • FIG. 1 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in the liquid crystal display device according to the first embodiment.
  • two linearly polarizing plates having the polarization axis shown in FIG. 1 are used.
  • one linear polarizing plate is disposed on the outer side of the upper and lower substrates (on the opposite side to the liquid crystal layer side).
  • the linear polarizing plate is arranged in a crossed Nicols arrangement in which the polarization axis of the linear polarizing plate on the upper and lower substrates is perpendicular or parallel to the major axis of liquid crystal molecules (initial orientation orientation of liquid crystal molecules) when no voltage is applied.
  • a Marie Black mode liquid crystal display device was obtained.
  • the upper and lower substrates each have a linearly polarizing plate.
  • the upper layer electrode (i) includes a plurality of linear portions when the lower substrate is viewed in plan.
  • the plurality of linear portions are substantially parallel to each other, and slits substantially parallel to each other are provided between the linear portions and the linear portions.
  • the upper layer electrode (i) is provided with a slit (is a slit electrode), which is one of the preferred embodiments of the present invention.
  • the upper electrode (i) may be a comb-like electrode instead of the slit electrode. It is also one of the preferred embodiments of the present invention that the upper electrode (i) has a comb shape.
  • the lower layer electrode (ii) and the lower layer electrode (iii) are each composed of a trunk portion and branch portions extending from the trunk portion when the lower substrate is viewed in plan.
  • the branch portions are a plurality of linear electrode portions that are substantially parallel to each other.
  • each of the lower layer electrode (ii) and the lower layer electrode (iii) has a comb shape.
  • the upper electrode (i), the lower electrode (ii), and the lower electrode (iii) each have a linear portion.
  • the structures of the upper layer electrode (i), the lower layer electrode (ii), and the lower electrode (iii) shown in FIG. 1 are examples, and the shape is not limited to this, and electrodes having various structures can be used.
  • the extending direction of the branch part of the lower electrode (ii) and the branch part of the lower electrode (iii) was 90 ° with respect to the extending direction of the linear part of the upper electrode (i).
  • the two comb-like electrodes of the lower substrate are 90 ° apart from the extension direction of the linear portion of the upper layer electrode (i) when the extension direction of the linear portion which is a branch portion of the lower substrate is viewed in plan view. It is arranged to intersect at an angle of.
  • the angle is preferably 30 ° or more and 90 ° or less, more preferably 45 ° or more, further preferably 60 ° or more, and particularly preferably 75 ° or more.
  • substrate in FIG. 1 arrange
  • the electrodes (upper layer electrode (i), lower layer electrode (ii), and lower layer electrode (iii)) of each layer are arranged in a positional relationship as shown in FIG.
  • the upper layer electrode (i) of the lower substrate is provided with a slit
  • the lower layer electrode (ii) and the lower layer electrode (iii) of the lower substrate are each in a comb-like shape.
  • the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii) are each comb-like.
  • the upper layer electrode (i) is electrically connected to the drain electrode extending from the thin film transistor element TFT through the contact hole CH. At a timing selected by the gate bus line GL, a voltage supplied from the source driver through the source bus line SL is applied to the upper layer electrode (i) that drives the liquid crystal through the thin film transistor element TFT.
  • the electrode width L of the linear portion is 3 ⁇ m, and the electrode interval S1 between the adjacent linear portions is 6 ⁇ m.
  • the electrode width L is preferably 2 ⁇ m or more and 7 ⁇ m or less, for example.
  • interval S1 is 2 micrometers or more and 14 micrometers or less, for example.
  • the ratio (L / S1) between the electrode width L and the electrode interval S1 is preferably 0.1 to 1.5.
  • a more preferable lower limit value of the ratio L / S1 is 0.2, and a more preferable upper limit value is 0.8.
  • FIG. 3 is a schematic diagram illustrating the lower layer electrode (ii) and the lower layer electrode (iii) of the first embodiment.
  • the widths of the branches of the lower layer electrode (ii) and the lower layer electrode (iii) (excluding the portion where the projections are formed) and the widths of the projections are all 3 ⁇ m, and other lengths such as the electrode spacing are values as shown in FIG. That is, in the branches of the pair of comb-like electrodes composed of the lower layer electrode (ii) and the lower layer electrode (iii), the electrode width of the linear portion is 3 ⁇ m, and the linear portion and the lower layer electrode in the lower layer electrode (ii) The electrode interval between the linear portions in (iii) is 7 ⁇ m.
  • the electrode width is preferably 2 ⁇ m or more and 7 ⁇ m or less.
  • the electrode interval is preferably 2 ⁇ m or more, and preferably 15 ⁇ m or less.
  • the length (ratio) of the electrode width with respect to the electrode interval is preferably 0.1 to 5.
  • the branch part of the lower layer electrode (iii) has a protrusion part of which is wide.
  • the projecting portion (the projecting portion refers to a portion of the branch portion of the lower layer electrode (iii) that is formed so as to be wider) has a rectangular shape (rectangular shape), and is formed of the lower layer electrode (iii). It protrudes from both sides of the branch.
  • the length of the protrusion is 4 ⁇ m.
  • the distance between the tip of the protrusion and the lower layer electrode (ii) is 3 ⁇ m. Moreover, the space
  • the branch part of the lower layer electrode (iii) includes a cross-shaped part configured together with the protruding part. Note that the electrode width and the electrode spacing S1 and S2 in each of the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii) are usually substantially the same in the pixel. Are different from each other, it is preferable that either is within the above range, and it is more preferable that all are within the above range.
  • FIG. 2 is a schematic cross-sectional view showing a cross section of a portion corresponding to a line segment indicated by a one-dot chain line in FIG.
  • the liquid crystal display device of Embodiment 1 is configured by laminating a lower substrate 10, a liquid crystal layer 30, and an upper substrate 20 in this order from the back surface side to the observation surface side of the liquid crystal display device. ing.
  • the liquid crystal display device of Embodiment 1 horizontally aligns liquid crystal molecules LC (aligned parallel to the main surface of the upper and lower substrates) when the potential difference between the electrodes of the upper and lower substrates is less than the threshold voltage. .
  • the liquid crystal molecules LC are generally aligned from the back to the front of the drawing.
  • the lower layer electrode (ii) (not shown in FIG. 2) and the lower layer electrode (iii) of the lower substrate 10 are comb-like electrodes, respectively, as described above, and the lower layer electrode (ii) and the lower layer electrode (iii).
  • the upper electrode (i), which is a slit electrode, is disposed on the insulating layer 13.
  • the upper substrate 20 is not provided with a liquid crystal driving electrode, and the lower substrate 10 is provided with a liquid crystal driving electrode. However, the upper substrate 20 may be provided with a liquid crystal driving electrode. .
  • the insulating layer 13 has a dielectric constant of 6.9 and an average thickness of 0.3 ⁇ m.
  • the insulating layers 13 are each composed of a nitride film SiN, but instead, an oxide film SiO 2 , an acrylic resin, or a combination of these materials can be used.
  • a horizontal alignment film (not shown) is provided on each of the upper and lower substrates on the liquid crystal layer side, and the major axis of the liquid crystal molecules when no voltage is applied is oriented 3 ° with the extending direction of the linear portion of the upper electrode (i). The horizontal alignment was performed.
  • the liquid crystal layer and the upper electrode (i) are adjacent to each other through a horizontal alignment film.
  • the alignment film may be an alignment film that has not been subjected to an alignment process such as a rubbing process.
  • the liquid crystal includes liquid crystal molecules that are aligned in a horizontal direction with respect to the main surface of the substrate when no voltage is applied.
  • the orientation in the horizontal direction with respect to the main surface of the substrate means that the liquid crystal molecules are aligned substantially in the horizontal direction with respect to the main surface of the substrate in the technical field of the present invention and can exhibit optical effects. I just need it.
  • the liquid crystal is substantially composed of liquid crystal molecules aligned in a horizontal direction with respect to the main surface of the substrate when no voltage is applied.
  • the “when no voltage is applied” may be any voltage that can be said to be substantially not applied in the technical field of the present invention (for example, less than the threshold voltage of the liquid crystal layer).
  • Such a horizontal alignment type liquid crystal is an advantageous system for obtaining a wide viewing angle characteristic and the like.
  • the liquid crystal molecules preferably have positive dielectric anisotropy.
  • the liquid crystal molecules having positive dielectric anisotropy are aligned in a certain direction when an electric field is applied, and the alignment control is easy, and a faster response can be achieved.
  • the dielectric anisotropy ⁇ of the liquid crystal is preferably 3 or more, more preferably 4 or more, and still more preferably 5 or more. Further, the dielectric anisotropy ⁇ of the liquid crystal is preferably 30 or less, more preferably 20 or less, and still more preferably 10 or less. In the present specification, the dielectric anisotropy ⁇ of liquid crystal means that measured by an LCR meter.
  • the average thickness (cell gap) d LC of the liquid crystal layer 30 is 3.2 ⁇ m.
  • the average thickness d LC of the liquid crystal layer means a value calculated by averaging the thickness of the entire liquid crystal layer in the liquid crystal display device.
  • d LC ⁇ ⁇ n is preferably 100 nm or more, more preferably 150 nm or more, and further preferably 200 nm or more.
  • d LC ⁇ ⁇ n is preferably 550 nm or less, more preferably 500 nm or less, and further preferably 450 nm or less.
  • the lower substrate is a two-layer electrode.
  • the electrode included in the lower substrate is composed of an electrode provided with an upper slit and a pair of lower comb-like electrodes, respectively, according to a preferred embodiment of the liquid crystal display device of the present invention.
  • a pair of comb-like electrodes may be used instead of the slit electrodes in the upper electrode (i) of the lower substrate.
  • a liquid crystal molecule is rotated in a horizontal plane by generating a transverse electric field between the pair of comb-like electrodes.
  • the relationship between the alignment direction of the liquid crystal molecules and the electrode arrangement may be considered by replacing the extending direction of the linear portion of the slit electrode included in the FFS electrode with the extending direction of the branch portions of the pair of comb-like electrodes.
  • the upper and lower substrates provided in the liquid crystal display device of Embodiment 1 are usually a pair of substrates for sandwiching liquid crystal.
  • an insulating substrate such as glass or resin is used as a base, and wiring, electrodes, and color filters are provided on the insulating substrate. Etc. are formed as necessary.
  • the liquid crystal display device of Embodiment 1 can be appropriately provided with a member (for example, a light source or the like) included in a normal liquid crystal display device.
  • the liquid crystal display device of Embodiment 1 is preferably one that drives liquid crystal by an active matrix driving method. The same applies to the embodiments described later.
  • driving capable of high-speed response can be realized.
  • two types of driving that is, driving capable of high-speed response and driving realizing higher transmittance than that driving can be realized with the same configuration.
  • driving capable of realizing high-speed response is referred to as a first driving method
  • driving realizing higher transmittance is referred to as a second driving method.
  • gradation display is performed by changing the voltage of the upper electrode (i).
  • the lower electrode (ii) and the lower electrode (iii) are applied with the amplitude center being 0 V and the polarity reversed so that the polarities of the lower electrode (iii) and the lower electrode (iii) are opposite to each other.
  • the upper electrode (i) is driven by applying a voltage corresponding to the gradation with the polarity reversed.
  • the lower layer electrode (ii) and the lower layer electrode (iii) are both set to 0 V, and the voltage corresponding to the gradation is inverted and applied to the upper layer electrode (i), whereby the upper layer electrode (i) A liquid crystal is driven by generating a fringe electric field between the lower electrode (ii) and the lower electrode (iii).
  • FIG. 4 is a schematic plan view illustrating the voltage applied to each electrode and the orientation of liquid crystal molecules during white display in the first drive method of the first embodiment.
  • FIG. 5 is a simulation result showing the director distribution and transmittance distribution corresponding to FIG.
  • FIG. 6 is a schematic plan view illustrating the voltage applied to each electrode and the alignment of liquid crystal molecules during black display in the first drive method of the first embodiment.
  • FIG. 7 is a voltage relationship diagram illustrating voltages applied to the electrodes during white display in the first drive method of the first embodiment. 4 to 6 each show a portion corresponding to a portion surrounded by a broken line in FIG.
  • the lower layer electrode (ii) and the lower layer electrode (iii) are always applied by reversing the voltage with the amplitude center being 0 V so that the polarities are opposite to each other. Let it always occur.
  • the absolute value of the voltage applied to the lower layer electrode (ii) and the lower layer electrode (iii) is always constant. Then, by applying a voltage to the upper electrode (i) with the polarity reversed, an electric field is generated that alternately rotates the liquid crystal molecules in different directions in the horizontal plane, and the liquid crystal molecules bend in the horizontal plane by the electric field.
  • the absolute value of the voltage applied to each of the lower layer electrode (ii) and the lower layer electrode (iii) is preferably 2 V or less, and more preferably 1.5 V or less.
  • the potential difference between the upper layer electrode (i) and the lower layer electrode (ii) is 5 V, but is preferably 8 V or less, more preferably 7 V or less, and even more preferably 6 V or less.
  • the potential difference is preferably 1 V or more, more preferably 2 V or more, and still more preferably 4 V or more.
  • the potential difference between the upper layer electrode (i) and the lower layer electrode (iii) is 7V, preferably 2 to 12V, more preferably 3 to 11V, still more preferably 3 to 10V.
  • the liquid crystal molecules rotate in different directions in the region 1 and the region 2, and the region 1 and the region 2 exist alternately. Recognize. In other words, in the first driving method, the liquid crystal molecules rotate alternately in different directions in the horizontal plane. In the region 1 (first region) shown in FIG. 5, the liquid crystal molecules rotate clockwise in the horizontal plane, and in the region 2 (second region), liquid crystal molecules rotate counterclockwise in the horizontal plane. To do.
  • the upper layer electrode (i) is 0 V during black gradation display, 1 V / ⁇ 1 V is applied to the lower layer electrode (ii), and ⁇ 1 V / 1 V is applied to the lower layer electrode (iii). Is applied.
  • the first driving method voltages (1V / -1V, -1V / 1V in FIG. 6) are always applied to the lower layer electrode (ii) and the lower layer electrode (iii) even at the time of falling response.
  • the voltage of i) is weakened or zero, the liquid crystal molecules are forcibly rotated in the direction of returning to the initial alignment by the electric field generated between the lower layer electrode (ii) and the lower layer electrode (iii).
  • bend alignment and splay alignment occur in the horizontal plane, and a large restoring force also acts due to the elastic strain induced thereby. Therefore, the falling response is also speeded up.
  • the first driving method there are at least two consecutive regions where the liquid crystal molecules rotate alternately in different directions in the plane. Thus, it is preferable that two or more regions where the liquid crystal molecules rotate in different directions exist continuously in a plane.
  • the potential of the upper electrode (i) is set to 0V.
  • other electrodes lower layer electrode (ii), lower layer in the first embodiment
  • the potential of the electrode (iii)) can be the same as that during white display in the first drive method, and the preferred range thereof is the same as that during white display in the first drive method.
  • the lower layer electrode (ii) of the lower substrate is 1V / -1V and the lower layer electrode (iii) is -1V / 1V in both white display and black display.
  • the lower layer electrode (ii) and the lower layer electrode (iii) of the lower substrate have an absolute value of a constant voltage both during white display and black display.
  • the upper layer electrode (i) is a pixel electrode, and the voltage applied to the upper layer electrode (i) is changed to change the lower layer electrode (ii) and the lower layer electrode (ii).
  • the electrode (iii) is applied to a voltage having a constant magnitude, and such a voltage application method is one of the preferred embodiments in the liquid crystal display device of the present invention.
  • the upper and lower arrangement relationship of each electrode may be appropriately changed.
  • the voltage is applied to both the lower electrode (ii) and the lower electrode (iii) as described above. It is not necessary that the voltage be applied to at least one of the lower layer electrode (ii) and the lower layer electrode (iii).
  • FIG. 8 is a schematic plan view showing the voltage applied to each electrode and the orientation of liquid crystal molecules during white display in the second drive method of the first embodiment.
  • FIG. 9 is a simulation result showing the director distribution and transmittance distribution corresponding to FIG.
  • FIG. 10 is a schematic plan view showing the voltage applied to each electrode and the alignment of liquid crystal molecules during black display in the second drive method of the first embodiment. 8 to 10 each show a portion corresponding to a portion surrounded by a broken line in FIG.
  • the lower layer electrode (ii) and the lower layer electrode (iii) are both set to 0 V, and then the polarity is inverted to the upper layer electrode (i) and a voltage is applied to the upper layer electrode (i).
  • a fringe electric field is generated between the lower electrode (ii) and the lower electrode (iii), and liquid crystal molecules rotate in the same direction in response to the electric field.
  • 5 V / ⁇ 5 V is applied to the upper layer electrode (i) during white gradation display.
  • the liquid crystal molecules rotate in the same direction, so that a high transmittance is obtained as a whole as compared with the first driving method.
  • the voltage of the upper layer electrode (i) varies depending on the display, but the upper limit is preferably 10V, more preferably 8V, and 7V. More preferably it is.
  • the operation of liquid crystal molecules at the time of falling will be described.
  • the liquid crystal molecules are rotated so as to return toward the alignment treatment direction (anchoring) by the restoring force of the liquid crystal molecules.
  • 0 V is applied to the upper layer electrode (i) during black display.
  • the voltages applied to the other electrodes are the same as in the second drive method for white display, and 0 V is applied. It should be noted that the voltage applied to the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii) may be less than the threshold voltage during black display in the second driving method.
  • FIG. 11 is a schematic plan view illustrating an example of a pixel layout when the liquid crystal display device of Embodiment 1 is TFT-driven. Note that FIG. 11 is an example, and the electrode structure, wiring, and the like are not limited to this shape.
  • the lower electrode (ii) and the lower electrode (iii) are scan-driven for each line (gate bus line or the like), for example, because the applied voltage differs between the first driving method and the second driving method.
  • a thin film transistor element including an oxide semiconductor is preferably used as the thin film transistor element in the liquid crystal display device of Embodiment 1 from the viewpoint of the transmittance improvement effect.
  • An oxide semiconductor shows higher carrier mobility than amorphous silicon. As a result, the area of the transistor occupying one pixel can be reduced, so that the aperture ratio increases and the light transmittance per pixel can be increased. Therefore, by using a thin film transistor element containing an oxide semiconductor, the effect of improving the contrast ratio, which is an effect of the present invention, can be obtained more remarkably.
  • the lower substrate preferably includes a thin film transistor element, and the thin film transistor element preferably includes an oxide semiconductor.
  • Embodiment 1 can be applied to any of a transmissive, reflective, and transflective liquid crystal display device. The same applies to the embodiments described later.
  • FIG. 12 is a graph showing voltage-transmittance (VT) characteristics of the upper layer electrode (i) of the first driving method and the second driving method of the first embodiment. This figure also shows that the transmittance of the second drive method is higher than the transmittance of the first drive method.
  • VT voltage-transmittance
  • FIG. 13 is a schematic cross-sectional view showing the electrode structure of the liquid crystal display device of Comparative Example 1 and the initial alignment of the liquid crystal molecules.
  • FIG. 13 is also a schematic cross-sectional view showing an example of an electrode structure of a conventional FFS mode liquid crystal display device.
  • the lower layer electrode (v) of the lower substrate 1010 is a planar electrode
  • the upper layer electrode (iv) that is a slit electrode is disposed through the insulating layer 1013.
  • a pair of comb-like electrodes may be used instead of the slit electrodes in the upper layer electrode (iv) of the lower substrate.
  • the upper substrate 1020 is not provided with an electrode for liquid crystal control.
  • a horizontal alignment film (not shown) is provided on each of the upper and lower substrates on the liquid crystal layer side, and the liquid crystal molecules when no voltage is applied have an azimuth of 7 ° with respect to the extending direction of the linear portion of the upper electrode (iv). It was horizontally aligned so that A polarizing plate (not shown) was provided on the opposite side of the upper and lower substrates to the liquid crystal layer side.
  • a linearly polarizing plate is used as the polarizing plate, and the polarizing axis of the polarizing plate is vertically or parallel to the long axis of the liquid crystal molecules when no voltage is applied between the upper and lower substrates, and a normally black mode liquid crystal display device did.
  • the liquid crystal material and its thickness were the same as those in the first embodiment.
  • the electrode width of the linear portion is 3 ⁇ m, and the electrode interval between the adjacent linear portions is 6 ⁇ m.
  • the dielectric constant ⁇ of the insulating layer 1013 is 6.9.
  • the liquid crystal display device of Comparative Example 1 is the same as the corresponding members of the liquid crystal display device of Embodiment 1 described above, for example, the alignment film material, the alignment film processing method, and the insulating film material.
  • Comparative Example 1 performs switching at the time of rising by generating a fringe electric field between the upper layer electrode (iv) and the lower layer electrode (v) of the lower substrate and rotating the liquid crystal molecules near the lower substrate in the same direction in the horizontal plane. ing. Further, switching at the time of falling is performed by weakening or setting the fringe electric field to zero and returning the liquid crystal molecules to the original alignment state by viscoelasticity. However, in the liquid crystal layer, there is a region where the electric field for rotating the liquid crystal molecules is weak, and it takes time to rotate the liquid crystal molecules in the region. At this time, since the liquid crystal molecules rotate in the same direction, distortion due to elastic deformation of the liquid crystal in the horizontal plane is small.
  • the response time is slow for both the switching at the rise and the switching at the fall.
  • FIG. 14 is a schematic plan view showing the voltage applied to each electrode and the orientation of liquid crystal molecules during white display of the liquid crystal display device of Comparative Example 1.
  • FIG. 15 is a schematic plan view showing the voltage applied to each electrode and the orientation of liquid crystal molecules during black display of the liquid crystal display device of Comparative Example 1.
  • FIG. 14 and FIG. 15 show the principle of voltage application in Comparative Example 1.
  • the liquid crystal molecules are determined in a direction that forms an angle of 7 ° with the extending direction of the linear portion of the upper electrode (iv) that is the pixel electrode, as described above.
  • the response time in the first embodiment is a value in the first driving method.
  • the transmittance of the first embodiment is a value in the second driving method.
  • FIG. 16 is a graph showing the normalized transmittance with respect to time at the time of rising of the first embodiment and the comparative example 1.
  • FIG. 17 is a graph showing the normalized transmittance with respect to time at the time of falling of the first embodiment and the first comparative example.
  • FIGS. 16 and 17 show the results of the response simulations of the first embodiment and the first comparative example. It can be seen that the first embodiment is faster than the first comparative example in both the rising response and the falling response.
  • an electric field for alternately rotating liquid crystal molecules in different directions in a horizontal plane can be formed, and the speed can be increased at the time of rising and falling, and a wide viewing angle and a high speed response can be achieved.
  • an electric field that rotates liquid crystal molecules in the same direction in the entire region can be formed, and both a wide viewing angle and high transmittance can be achieved.
  • the upper layer electrode (i) includes a plurality of linear electrode portions when the lower substrate is viewed in plan.
  • the plurality of linear electrode portions are substantially parallel to each other, and slits substantially parallel to each other are provided between the linear electrode portions and the linear electrode portions.
  • the lower layer electrode (ii) and the lower layer electrode (iii) are each composed of a trunk portion and branch portions extending from the trunk portion when the lower substrate is viewed in plan.
  • the branch portions are a plurality of linear electrode portions that are substantially parallel to each other. Note that, unlike the first embodiment, a part of the branch part of the lower layer electrode (iii) is not wide and has the same width.
  • each branch portion of the lower layer electrode (ii) and the lower layer electrode (iii) was set to a direction that formed 87 ° with respect to the extending direction of the linear portion of the upper layer electrode (i).
  • the electrode width of the linear portion is 3 ⁇ m, and the electrode interval between the adjacent linear portions is 6 ⁇ m.
  • the electrode width of the linear part is 3 ⁇ m, and the electrode interval between the adjacent linear part and the linear part Is 3 ⁇ m.
  • FIG. 18 is a schematic plan view showing the voltage applied to each electrode and the orientation of liquid crystal molecules during white display in the first drive method of Comparative Example 2.
  • FIG. 19 is a simulation result showing the director distribution and transmittance distribution corresponding to FIG.
  • FIG. 20 is a schematic plan view illustrating the voltage applied to each electrode and the orientation of liquid crystal molecules during black display in the first drive method of Comparative Example 2.
  • FIG. 21 is a voltage relationship diagram illustrating voltages applied to the electrodes during white display in the first drive method of Comparative Example 2.
  • the major axis of the liquid crystal molecules when no voltage is applied is an orientation that forms 3 ° with the extending direction of the linear portion of the upper electrode (i).
  • the lower layer electrode (ii) and the lower layer electrode (iii) are always applied by reversing the polarity with the amplitude center being 0 V so that the polarities are opposite to each other. Let it always occur.
  • the absolute value of the voltage applied to the lower layer electrode (ii) and the lower layer electrode (iii) is always constant. Then, by applying a voltage to the upper electrode (i) with the polarity reversed, an electric field is generated that alternately rotates the liquid crystal molecules in different directions in the horizontal plane, and the liquid crystal molecules bend in the horizontal plane by the electric field.
  • the liquid crystal molecules are rotated in different directions in the region 1 and the region 2, and the region 1 and the region 2 exist alternately. Recognize. In other words, in the first driving method, the liquid crystal molecules rotate alternately in different directions in the horizontal plane. In region 1 (first region) shown in FIG. 19, the liquid crystal molecules rotate in the clockwise direction in the horizontal plane, and in region 2 (second region), the liquid crystal molecules rotate in the counterclockwise direction in the horizontal plane. To do.
  • the operation of liquid crystal molecules at the time of falling will be described.
  • the liquid crystal molecules react to the lateral electric field generated by the lower electrode (ii) and the lower electrode (iii), and the initial orientation direction is changed by the electric field. Force to rotate.
  • the restoring force of the liquid crystal molecules that have been bend-aligned and splay-aligned in the horizontal plane at the time of white display works simultaneously to further accelerate the response.
  • the upper layer electrode (i) is 0 V during black display, 2.0 V / ⁇ 2.0 V is applied to the lower layer electrode (ii), and ⁇ 2 is applied to the lower layer electrode (iii). 0.0V / 2.0V is applied.
  • FIG. 22 is a schematic plan view showing the voltage applied to each electrode and the orientation of liquid crystal molecules during white display in the second drive method of Comparative Example 2.
  • FIG. 23 is a simulation result showing the director distribution and transmittance distribution corresponding to FIG.
  • FIG. 24 is a schematic plan view showing the voltage applied to each electrode and the orientation of liquid crystal molecules during black display in the second drive method of Comparative Example 2.
  • the lower layer electrode (ii) and the lower layer electrode (iii) are both set to 0 V, and then the polarity is inverted to the upper layer electrode (i) and a voltage is applied to the upper layer electrode (i).
  • a fringe electric field is generated between the lower electrode (ii) and the lower electrode (iii), and liquid crystal molecules rotate in the same direction in response to the electric field.
  • 5 V / -5 V is applied to the upper layer electrode (i) during white gradation display.
  • the liquid crystal molecules rotate in the same direction, so that a high transmittance is obtained as a whole as compared with the first driving method of Comparative Example 2.
  • Table 3 shows the contrast ratio of the first drive method of the first embodiment and the comparative example 2.
  • CR means the contrast ratio.
  • FIG. 25 is a simulation result showing the director distribution and the transmittance distribution during black display in the first drive method of the first embodiment.
  • FIG. 26 is a simulation result showing the director distribution and transmittance distribution during black display in the first drive method of Comparative Example 2. Note that FIG. 25 and FIG. 26 are comparisons based on the same standard as shown in the “Transmittance (Bulk)” barometer on the upper right of each figure. As shown in FIG. 25 and FIG. 26, it is possible to prevent the black floating in the black display of the first drive method of the first embodiment than in the black display of the first drive method of the comparative example 2. .
  • FIG. 27 is a schematic diagram illustrating an electric field generated in the first embodiment.
  • FIG. 28 is a schematic diagram showing an electric field generated in Comparative Example 2.
  • the voltage applied to the lower layer electrodes (ii) and (iii) it is desirable to set the voltage applied to the lower layer electrodes (ii) and (iii) to 2.5 V, but Embodiment 1 Then, even when the voltage applied to the lower layer electrodes (ii) and (iii) is 1V, the orientation is stable. The reason will be described below.
  • Embodiment 1 is different from Comparative Example 2 in that the shape of the electrode that applies a voltage having a polarity opposite to the voltage applied to the upper electrode (i) is changed among the lower electrodes.
  • the electrode has a protrusion as shown in FIG. In FIG. 27 (Embodiment 1), with this electrode structure, when a voltage is applied to the upper layer electrode (i), liquid crystal molecules are targeted even in a wide region other than the vicinity of the intersection of the upper layer electrode (i) and the lower layer electrode (iii).
  • the liquid crystal display device of the present embodiment described above is further resistant to liquid crystal molecules in the entire horizontal plane by applying a lateral electric field between a pair of lower comb-like electrodes at the time of rising in the first driving method. Since the electric field works, the response speed is increased, and at the time of falling, in addition to the strong restoring force that the in-plane bend and splay orientation are returned to the original state as shown in FIG. 4, the lower layer electrodes (ii) and (iii) A liquid crystal molecule reacts with the electric field to be generated, thereby realizing a high-speed response that cannot be realized in the conventional FFS mode.
  • the driving achieves a higher transmittance than the driving that realizes the high-speed response that is driven as described above.
  • the liquid crystal display device of the present invention only needs to be capable of executing at least the first driving method.
  • FIG. 29 is a schematic diagram showing an upper layer electrode (i), a lower layer electrode (ii), and a lower layer electrode (iii) of Embodiments 2-1 to 2-5.
  • the length of the electrode width shown in FIG. 29 is A, the length of the electrode protrusion is B, and the length of the electrode interval is S (each unit is ⁇ m).
  • Embodiments 2-1 to 2-5 A, B, and S shown in FIG. 29 in the electrode structure of Embodiment 1 are changed as shown in Table 4 below.
  • the voltage value of the lower layer electrode in the first driving method is set to the smallest possible voltage value among the voltage values that can obtain the orientation of the first driving method.
  • Other configurations of the liquid crystal display devices of Embodiments 2-1 to 2-5 are the same as the configuration of the liquid crystal display device of Embodiment 1.
  • the orientation is 3 ° with the extending direction of the linear portion of the upper electrode (i).
  • A, B, and S of Embodiment 1 are also shown.
  • Embodiments 2-1 to 2-5 are values in the first driving method.
  • the transmittance in the embodiments 2-1 to 2-5 is a value in the second driving method.
  • Table 7 shows the contrast ratio of the first drive method of Embodiments 2-1 to 2-5 and Comparative Example 2.
  • CR means contrast ratio.
  • A is in the range of 2.5-4 ⁇ m
  • B is in the range of 2.5-7 ⁇ m
  • S is in the range of 3 to 5 ⁇ m
  • the effects of the present invention can be obtained more remarkably.
  • B is in the range of 3 to 5 ⁇ m
  • S is in the range of 3 to 4 ⁇ m.
  • FIG. 30 is a schematic diagram showing the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii) of Embodiments 3-1, 3-2.
  • the shape of the protruding portion of the electrode structure of Embodiment 1 is changed. Specifically, as shown in FIG. 30, the protrusion has a thin tip. Thereby, the contrast ratio can be further improved.
  • the width of the base portion of the projection of the electrode is A
  • the width of the tip is A1
  • the length of the electrode projection is B
  • the length of the electrode interval is S. (The unit is ⁇ m, respectively).
  • Embodiments 3-1 and 3-2 A, A1, B, and S shown in FIG. 30 in the electrode structure of Embodiment 1 are changed as shown in Table 8 below.
  • the voltage value of the lower layer electrode in the first driving method is set to the smallest possible voltage value among the voltage values that can obtain the orientation of the first driving method.
  • Other configurations of the liquid crystal display device of Embodiments 3-1 and 3-2 are the same as the configuration of the liquid crystal display device of Embodiment 1.
  • A, A1, B, and S of Embodiment 2-1 are also shown.
  • VT voltage-transmittance
  • Table 9 shows the transmittance during white display in the first drive method and the second drive method of Embodiments 3-1 and 3-2.
  • the second drive method has a higher maximum transmittance than the first drive method, and it has been found that the transmittance can be improved by switching from the first drive method to the second drive method.
  • Embodiments 3-1 and 3-2 are values in the first driving method.
  • the transmittance in the embodiments 3-1 and 3-2 is a value in the second driving method.
  • Table 11 shows the contrast ratio of the first drive method of Embodiments 3-1 and 3-2 and Comparative Example 2.
  • CR means contrast ratio.
  • the width A1 of the tip is the same as the width A of the root, or It is preferable that the length is shorter. It is one of the preferable embodiments in the present invention that the protrusion is tilted obliquely with respect to the extending direction of the linear portion of the upper electrode (i).
  • the direction in which the protrusion is tilted is preferably the same as the initial liquid crystal orientation. In other words, it is preferable that the extending direction of the protrusion is inclined with respect to the extending direction of the linear portion of the upper electrode (i) so as to be parallel to the initial liquid crystal orientation.
  • FIG. 31 is a schematic diagram showing the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii) of Embodiments 4-1 to 4-7.
  • the shape of the protruding portion of the electrode structure of Embodiment 1 is changed. Specifically, as shown in FIG. 31, the protrusion has a mountain structure (triangular shape).
  • the length of the width of the base portion of the electrode is A
  • the length (height) of the electrode protrusion is B
  • the length of the electrode interval is S (the unit is ⁇ m, respectively).
  • Embodiments 4-1 to 4-7 A, B, and S shown in FIG. 31 are set as shown in Table 12 below.
  • the voltage value of the lower layer electrode in the first driving method is set to the smallest possible voltage value among the voltage values that can obtain the orientation of the first driving method.
  • Other configurations of the liquid crystal display devices of Embodiments 4-1 to 4-7 are the same as the configuration of the liquid crystal display device of Embodiment 1.
  • the orientation is 3 ° with the extending direction of the linear portion of the upper electrode (i).
  • Embodiments 4-1 to 4-7 are values in the first driving method.
  • the transmittance in the embodiments 4-1 to 4-7 is a value in the second driving method.
  • Table 15 shows the contrast ratio of the first drive method of Embodiments 4-1 to 4-7 and Comparative Example 2.
  • CR means contrast ratio.
  • A is in the range of 2 to 9 ⁇ m from Embodiment 4-1 to Embodiment 4-3 and the like, and B is in the range of 1 to 4.5 ⁇ m from Embodiment 4-4 and Embodiment 4-5.
  • S is in the range of 1.5 to 4.5 ⁇ m, and the effects of the present invention can be obtained more remarkably.
  • A is more preferably 5 ⁇ m or less.
  • B is more preferably 2 ⁇ m or less.
  • S is more preferably 3 ⁇ m or less.
  • the liquid crystal display device of the present embodiment described above can perform display by appropriately switching between the first drive method and the second drive method.
  • display can be performed by appropriately combining white display and black display according to a desired display.
  • the liquid crystal display device of the present invention preferably includes a control device that executes the above-described first driving method, and includes a control device that performs switching between the first driving method and the second driving method described above. It is more preferable that As a result, it is possible to realize a high-speed response with a wide viewing angle and a high transmittance while making the contrast ratio sufficiently excellent. Therefore, it is possible to realize a liquid crystal display device that satisfies all of the characteristics of high-speed response, wide viewing angle, high contrast ratio, and high transmittance with one type of electrode configuration.
  • the liquid crystal display device of the present invention preferably includes a control device that automatically switches between the first drive method and the second drive method described above according to a predetermined condition.
  • the control device includes, for example, a temperature sensor and automatically switches between the first drive method and the second drive method according to the temperature.
  • the control device employs a second drive method that can achieve high transmittance in an environment where the response speed is not a problem (for example, a temperature range where the lower limit is any one of ⁇ 20 ° C. to 20 ° C.).
  • a control device that executes and controls to execute the first drive method that can realize a high-speed response in a low temperature environment (for example, a temperature range in which the upper limit is any one of ⁇ 20 ° C. to 20 ° C.) in which the response speed becomes slow. It is preferable. Thereby, a desired effect can be obtained more appropriately.
  • the liquid crystal display device of the present invention may include a control device that switches between the first drive method and the second drive method described above in accordance with a user instruction.
  • the present invention may also be a method for driving a liquid crystal display device using the above-described liquid crystal display device.
  • the liquid crystal display device of the present invention when it is sufficient to perform AC driving of the liquid crystal that applies an AC voltage only to the electrode of the lower substrate, a circuit and driver for AC driving are applied only to the electrode of the lower substrate as in the past. As long as the wiring is arranged. Therefore, for example, an AC drive circuit, driver, and wiring are arranged on the upper substrate together with the lower substrate in order to apply AC voltage to the electrode included in the upper substrate together with the electrode included in the lower substrate to perform AC driving of the liquid crystal. Compared with the liquid crystal display device, the degree of freedom of driving of the liquid crystal display device of the present invention is remarkably high.
  • liquid crystal display device of the present invention examples include in-vehicle devices such as car navigation, electronic books, photo frames, industrial equipment, televisions, personal computers, smartphones, and tablet terminals.
  • the present invention is preferably applied to a device that can be used in both a high temperature environment and a low temperature environment, such as an in-vehicle device such as a car navigation system.
  • the electrode structure and the like according to the liquid crystal display device of the present invention can be confirmed by microscopic observation such as SEM (Scanning Electron Microscope).

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

本発明は、高コントラスト比及び広視野角を実現するとともに、高速応答を実現することができる液晶表示装置を提供する。本発明の液晶表示装置は、下基板は、電極を備え、電極は、第1電極(i)、該第1電極(i)とは異なる層にある第2電極(ii)、及び、該第1電極(i)とは異なる層にある第3電極(iii)から構成され、該第1電極(i)は、複数の線状部分を有し、該第2電極及(ii)び該第3電極(iii)は、一対の櫛歯状電極であり、該櫛歯状電極は、それぞれ、幹部と、該幹部から分岐した複数の枝部とを備え、該第3電極(iii)の複数の枝部の少なくとも1つは、該下基板を平面視したときに該第1電極(i)の複数の線状部分と交差する2つの部分の間に、該枝部の一部が幅広となった突起部を有し、液晶層は、電圧無印加時に上下基板の主面に対して水平に配向する液晶分子を含むものである。

Description

液晶表示装置
本発明は、液晶表示装置に関する。より詳しくは、複数の電極により電界を印加して表示をおこなう液晶表示装置に関する。
液晶表示装置は、一対のガラス基板等に液晶表示素子を挟持して構成され、薄型で軽量かつ低消費電力といった特長を活かして、カーナビゲーション、電子ブック、フォトフレーム、産業機器、テレビ、パーソナルコンピュータ、スマートフォン、タブレット端末等、日常生活やビジネスに欠かすことのできないものとなっている。これらの用途において、液晶層の光学特性を変化させるための電極配置や基板の設計に係る各種モードの液晶表示装置が検討されている。
近年の液晶表示装置の表示方式としては、負の誘電率異方性を有する液晶分子を基板面に対して垂直配向させた、マルチドメイン垂直配向(MVA:Multi-domain Vertical Alignment)モード等の垂直配向(VA)モードや、正又は負の誘電率異方性を有する液晶分子を基板面に対して水平配向させて液晶層に対し横電界を印加する面内スイッチング(IPS:In-Plane Switching)モード、縞状電界スイッチング(FFS:Fringe Field Switching)モード等が挙げられる。
中でも、FFSモードは、近年スマートフォン、タブレット端末に多く使用されている液晶モードである。FFSモードの液晶表示装置として、例えば、複数個の液晶分子を含む液晶層を介して所定の距離をもって対向配置される第1及び第2透明絶縁基板と、前記第1透明基板上に形成され、かつ単位画素を限定するようにマトリクス形態で配置される複数個のゲートバスライン及びデータバスラインと、前記ゲートバスラインとデータバスラインとの交叉部に設けられる薄膜トランジスタと、前記各単位画素に配置され、かつ透明導電体からなるカウンタ電極と、前記カウンタ電極と一緒にフリンジフィールドを形成するように、各単位画素に前記カウンタ電極と絶縁して配置され、画素の長辺を中心に対称をなすように所定の傾きで配列された複数個の上部スリット及び下部スリットを有し、かつ透明導電体からなる画素電極とを含むFFSモードの液晶表示装置が開示されている(例えば、特許文献1参照。)。
特開2002-182230号公報
特許文献1に記載のFFSモードの液晶表示装置は、広視野角特性を有し、かつIPSモードの液晶表示装置の低い開口率及び透過率を改善する旨が開示されている(例えば、特許文献1に記載の図6参照。特許文献1に記載の図6は、FFSモードの液晶表示装置の平面画素構造を示す。)。しかし、特許文献1に記載のFFSモードの液晶表示装置は、立上がり時(暗状態〔黒表示〕から明状態〔白表示〕に表示状態が変化する間)では電界印加で液晶を強制的に応答させることができるが、立下がり時(明状態〔白表示〕から暗状態〔黒表示〕に表示状態が変化する間)では電界印加を止めて液晶の粘弾性にまかせて応答させるため、垂直配向モードに比べて応答が遅く、応答特性を改善する余地があった。
特許文献1に記載のFFSモードの液晶表示装置の一例を、図13を用いて説明する。図13は、従来のFFSモードの電極構造を有する液晶表示装置の断面模式図である。図13は、液晶表示装置の構造を示しており、下基板1010に、スリットが設けられた上層電極(iv)、及び、該上層電極(iv)と絶縁層1013を介して面状の下層電極(v)が配置されている。該液晶表示装置は、立上がり時では上層電極(iv)が一定の電圧に印加され(一定の電圧は、例えば、上層電極(iv)と下層電極(v)との電圧差が閾値電圧以上となり、フリンジ電界で応答できるものであればよい。本明細書中、閾値電圧とは、明状態の透過率を100%に設定したとき、5%の透過率を与える電圧値を意味する。)、立下がり時では上層電極(iv)と下層電極(v)との間の電位差を閾値未満とし、フリンジ電界を止める(弱める)ことで応答する。
従来のFFSモードの液晶表示装置は、上述したように下基板のFFS電極でフリンジ電界を発生させ、下基板付近の液晶分子を水平面内で同じ方向に回転させることで立上がり時のスイッチングを行っている。また、立下がり時のスイッチングは、フリンジ電界を消滅させることで、液晶分子を粘弾性により元の配向状態に戻すことにより行っている。
しかし、従来のFFSモードの液晶表示装置は、液晶層中、液晶分子を回転させるための電界が弱い領域があり、当該領域における液晶分子の回転に時間を要する。また、この際、液晶分子は同じ方向に回転するため、水平面内における液晶の弾性変形によるひずみは小さい。そのため、電界を止めて立下がり時のスイッチングを行う際に、元の配向状態に戻るために働く弾性ひずみ起因の復元力が小さく、応答が遅い。したがって、立上がり時のスイッチング、立下がり時のスイッチングともに応答時間が遅い。
ここで、本発明者らは、複数の電極により電界を印加して表示をおこなう液晶表示装置を種々検討し、下基板の電極構造に着目した。そして、従来のFFSモードの液晶表示装置は下基板が2層で2つの異なる電圧を印加できる電極から構成されるが、下基板が2層で3つの異なる電圧を印加できる電極から構成されるものとし、一対の櫛歯状電極を備えるものとした。そして、本発明者らは、このような液晶表示装置において、広視野角に加えて、高速応答も実現できることを見出した(例えば、後述する比較例2の、FFSモードよりも応答が高速化する駆動〔第1駆動方式〕)。ここで、このような液晶表示装置の、FFSモードよりも応答が高速化する駆動(第1駆動方式)において、下基板の下層電極に常に電圧を印加していることが原因で発生する黒浮き(黒表示時において透過率が充分に低下しないこと)を防いでコントラスト比を向上するための工夫の余地があった。黒浮きを防ぐために下層電極の電圧値を小さくすることが考えられるが、下層電極の電圧値を小さくした場合は、液晶分子の配向が不安定になるおそれがあり、目的とする配向を実現するための工夫の余地があった。
本発明は、上記現状に鑑みてなされたものであり、高コントラスト比及び広視野角を実現するとともに、高速応答を実現することができる液晶表示装置を提供することを目的とするものである。
本発明者らは、更に、下基板が2層で3つの異なる電圧を印加できる電極から構成される液晶表示装置において、電極の一部に突起を設けることとした。本発明者らは、この電極構造により、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明の一態様は、上下基板、及び、上下基板に挟持された液晶層をもつ液晶表示装置であって、上記下基板は、電極を備え、上記電極は、第1電極、該第1電極とは異なる層にある第2電極、及び、該第1電極とは異なる層にある第3電極から構成され、上記第1電極は、複数の線状部分を有し、上記第2電極及び上記第3電極は、一対の櫛歯状電極であり、上記櫛歯状電極は、それぞれ、幹部と、該幹部から分岐した複数の枝部とを備え、上記第3電極の複数の枝部の少なくとも1つは、該下基板を平面視したときに該第1電極の複数の線状部分と交差する2つの部分の間に、該枝部の一部が幅広となった突起部を有し、上記液晶層は、電圧無印加時に上下基板の主面に対して水平に配向する液晶分子を含む液晶表示装置であってもよい。
なお、本発明の液晶表示装置は、下基板が少なくとも2層で3つの異なる電圧を印加できる電極をもつ構成である点や、電極の一部が突起を有する点で特許文献1に記載の発明と異なる。
上記突起部とは、下基板を平面視した場合に、第3電極の枝部の一部において、他の枝部と比べて幅広となっている部分(第3電極の枝部の短手方向の少なくとも一方に突き出ている部分)を言う。
本発明の液晶表示装置においては、上記第3電極の複数の枝部の少なくとも1つ(好ましくは、上記第3電極の複数の枝部のそれぞれ)が、下基板を平面視したときに上記第1電極の複数の線状部分と交差する2つの部分の間に、該枝部の一部が幅広となった突起部を有すればよい。
下基板を平面視したときの、第3電極の好ましい形状を以下に説明する。
上記突起部は、第3電極の枝部の短手方向の両側に突き出ていることが好ましい。例えば、上記突起部は、第3電極の枝部を軸として対称形状であることが好ましい。
上記突起部は、矩形状であってもよく、三角形状であってもよく、台形状であってもよく、半円形であってもよく、その他の形状であってもよい。中でも、上記突起部は、矩形状又は三角形状であることが好ましい。
上記突起部は、上記第3電極の枝部の延伸方向に対して、20°~90°の角度をなしていることが好ましく、略直角の方向に延びていることがより好ましい。
また第1電極の線状部分の延伸方向と第3電極の突起部の延伸方向は、0°~70°の角度をなしていることが好ましい。
上記第3電極の枝部は、十字形状部分を含むことが好ましい。十字形状部分とは、互いに交差する2つの線状部分を言う。該2つの線状部分は、直角に交差していることが好ましい。
上記第1電極は、複数の線状部分を有する。上記第1電極は、スリットが設けられているか、又は、櫛歯状電極であり、上記第3電極の枝部の十字形状部分の交差部は、上記下基板を平面視したときに、上記第1電極と上記第2電極とで囲われる領域内で、該領域の中央に配置されていることが好ましい。十字形状部分の交差部とは、十字形状を構成する2つの線状部分が交差している部分を言う。第1電極と第2電極とで囲われる領域とは、第1電極の輪郭線及び/又は第2電極の輪郭線で囲われる、第1電極と重畳せず、第2電極とも重畳しない領域を言う。該交差部が、該領域の中央に配置されているとは、該交差部が該領域の中央(例えば、該領域に質量が均一に分布するとしたときの重心)と重畳することを言う。
なお、本明細書中、上記第3電極の枝部の十字形状部分の交差部が「第1電極と第2電極とで囲われる領域内で、該領域の中央に配置されている」は、第1電極と第2電極とで囲われる領域の少なくとも1つにおいて第3電極の枝部の十字形状部分の交差部が該領域の中央に配置されていればよいが、第1電極と上記第2電極とで囲われる領域のそれぞれにおいて第3電極の枝部の十字形状部分の交差部が該領域の中央に配置されていることが好ましい。
本発明の液晶表示装置は、上記液晶分子の一部を上記上下基板の主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる電界を上記下基板が備える電極によって発生させる駆動操作を実行するように構成されたものであることが好ましい。
上記電界を上記下基板が備える電極によって発生させるとは、第1電極、第2電極、及び、第3電極から選ばれる少なくとも1つの電極によって上記電界を発生させるものであればよく、例えば、液晶表示装置の電源オン時に、第2電極と第3電極との間で常に電界を発生させるとともに、白表示時に第1電極の電圧を大きくして液晶分子を回転させ、黒表示時に第1電極の電圧を小さくして液晶分子を逆方向に回転させることが好ましい。
本発明の液晶表示装置において、上記駆動操作は、絵素内で、上記液晶分子の一部を該主面に対して水平面内で回転させる第1領域と、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる第2領域とがそれぞれ2つ以上交互に並ぶように液晶分子を回転させる電界を上記下基板が備える電極によって発生させることが好ましい。
上記液晶分子の一部とは、液晶層中に含まれる液晶分子のうちの一部の液晶分子を意味する。上記液晶分子の他の一部も同様であり、液晶層中に含まれる液晶分子のうちの上記液晶分子の一部以外の他の一部の液晶分子を意味する。
本発明の液晶表示装置において、上記駆動操作を実行する第1駆動方式と、上記液晶分子を上記上下基板の主面に対して水平面内で1方向に回転させる電界を上記電極によって発生させる駆動操作を実行する第2駆動方式とを切り換えて実行するように構成されたものであることが好ましい。
本発明の液晶表示装置においては、通常、第1電極、第2電極及び第3電極のそれぞれが電気的に分離されており、これらの電圧を個別に制御することができる。言い換えれば、通常、第1電極、第2電極、及び、第3電極は、それぞれ、閾値電圧以上で異なる電圧とすることができるものである。
本発明の液晶表示装置において、上記第1電極は、上記第2電極及び上記第3電極のそれぞれと異なる層に配置されていれば良いが、上記第2電極及び上記第3電極よりも液晶層側に配置されていることが好ましい。また、上記第2電極及び上記第3電極は、異なる層に配置されていてもよいが、同一の層に配置されていることが好ましい。例えば、本発明の液晶表示装置(より好ましくは、横電界で駆動する液晶表示装置)において、下基板の同一の層に設けられている第2電極及び第3電極が、一対の櫛歯状電極を構成し、該第2電極及び該第3電極の上に絶縁層等を介して第1電極としてスリット電極又は櫛歯状電極が配置されている構成とすることが好ましい。一対の櫛歯状電極が同一の層に設けられているとは、それぞれの櫛歯電極が、その液晶層側、及び/又は、液晶層側と反対側において、共通する部材(例えば、絶縁層、液晶層等)と接していることを言う。
本発明の液晶表示装置において、2層の電極の下層側(液晶層側と反対側)の櫛歯状電極間に常に横電界を印加しておき、上層側のスリット電極又は櫛歯状電極に電圧を印加して駆動することが好ましい。
本発明における好ましい一形態は、初期配向が水平型の液晶モードにおいて、下基板が2層電極構成になっており、下層電極は一対の櫛歯状電極であり、上層電極はスリット電極である液晶表示装置である。
上記第1電極は、スリットが設けられているか、又は、櫛歯状であることが好ましい。
なお、電極の線状部分の延伸方向とは、電極を構成する線状電極の長手方向を言い、電極の枝部の延伸方向とは、電極の枝部を構成する線状電極の長手方向を言う。従来のFFSモードの液晶表示装置では、立上がり時に下基板のFFS電極でフリンジ電界を発生させ、該フリンジ電界で液晶分子を1方向に回転させるだけだが、本発明の液晶表示装置では、下基板が2層で3つの異なる電圧を印加できる電極(上述した第1電極、第2電極、及び、第3電極)から構成され、例えば、立上がり時に第1電極と第2電極との間で電界を発生させ、ある領域の液晶分子とその他の領域の液晶分子とを水平面内で互いに逆方向に回転させる。また、立下がり時に第2電極と第3電極との間で電界を発生させ、ある領域の液晶分子とその他の領域の液晶分子とをそれぞれ水平面内で立上がり時とは逆方向に回転させる。
第1領域と、第2領域とがそれぞれ2つ以上交互に並ぶとは、2つ以上の第1領域と、2つ以上の第2領域とが、交互に縞状に並ぶものであってもよく、交互に千鳥格子状に並ぶものであってもよい。
上記第1電極は、スリットが設けられており、上記液晶表示装置は、上記下基板を平面視したときに、該スリットと重畳する領域内で、上記液晶分子の一部を該主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる電界を上記電極によって発生させる駆動操作を実行するように構成されたものであることが好ましい。
なお、本明細書中、「スリットと重畳する領域内で、上記液晶分子の一部を該主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる」とは、下基板を平面視したときに、1つのスリットと重畳し、1つのスリットに対応する領域の少なくとも1つにおいて液晶分子の一部を水平面内で回転させ、かつ、該液晶分子の他の一部を水平面内で該液晶分子の一部とは逆方向に回転させるものであればよいが、下基板を平面視したときに、1つのスリットと重畳し、1つのスリットに対応する領域のそれぞれにおいて液晶分子の一部を水平面内で回転させ、かつ、該液晶分子の他の一部を水平面内で該液晶分子の一部とは逆方向に回転させるものであることが好ましい。
中でも、上記第1電極は、スリットが設けられており、上記液晶表示装置は、上記下基板を平面視したときに、該第1電極に設けられたスリットと重畳する領域内で、上記液晶分子の一部を該主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させるとともに、該第2電極及び該第3電極の櫛歯間領域と重畳する領域内で、該液晶分子の一部を該主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる電界を上記電極によって発生させる駆動操作を実行するように構成されたものであることが好ましい。
本発明の液晶表示装置においては、上基板に液晶駆動用の電極は配置されていてもよく、配置されていなくてもよいが、例えば、配置されていないものとすることが好ましい。すなわち、下基板のみに液晶駆動用の電極が配置されていることが本発明の液晶表示装置における好ましい形態の1つである。
更に、上記第1電極の形状は特に限定されないが、例えば、上記第1電極は、スリットが設けられていることが本発明の好ましい形態の1つである。また、上記第1電極は、櫛歯状であることもまた本発明の好ましい形態の1つである。本明細書中、その形状が櫛歯状である電極は、スリットが設けられている電極とは言わず、櫛歯状電極と言う。
そして、本発明の液晶表示装置は、上記駆動操作を実行する第1駆動方式と、上記液晶分子を上記上下基板の主面に対して水平面内で1方向に回転させる電界を上記電極によって発生させる駆動操作を実行する第2駆動方式とを切り換えて実行するように構成されたものであることが好ましい。1方向に回転させるとは、実質的に1方向に回転させるものであればよい。また、上記電界を上記電極によって発生させるとは、第1電極、第2電極、及び、第3電極から選ばれる少なくとも1つの電極によって上記電界を発生させるものであればよく、例えば、白表示時に第1電極に電圧を印加し、電界を発生させて液晶分子を回転させ、黒表示時に第1電極に印加する電圧を小さくし、該電界を弱めて又はゼロにして液晶分子を逆方向に回転させることが好ましい。
本発明の液晶表示装置の構成としては、その他の構成要素により特に限定されるものではなく、液晶表示装置に通常用いられるその他の構成を適宜適用することができる。
本発明の液晶表示装置によれば、高コントラスト比及び広視野角を実現するとともに、高速応答を実現することができる。
実施形態1の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。 図1中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。 実施形態1の下層電極(ii)及び下層電極(iii)を示す模式図である。 実施形態1の第1駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 図4に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。 実施形態1の第1駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 実施形態1の第1駆動方式の白表示時における各電極への印加電圧を示す電圧関係図である。 実施形態1の第2駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 図8に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。 実施形態1の第2駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 実施形態1の液晶表示装置をTFT駆動する場合の画素レイアウトの一例を示す平面模式図である。 実施形態1の第1駆動方式及び第2駆動方式それぞれの上層電極(i)の電圧-透過率(V-T)特性を示すグラフである。 比較例1の液晶表示装置の電極構造及び液晶分子の初期配向を示す断面模式図である。 比較例1の液晶表示装置の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 比較例1の液晶表示装置の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 実施形態1及び比較例1の立上がり時における時間に対する規格化透過率を示すグラフである。 実施形態1及び比較例1の立下がり時における時間に対する規格化透過率を示すグラフである。 比較例2の第1駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 図18に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。 比較例2の第1駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 比較例2の第1駆動方式の白表示時における各電極への印加電圧を示す電圧関係図である。 比較例2の第2駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 図22に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。 比較例2の第2駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 実施形態1の第1駆動方式の黒表示時におけるダイレクタ分布及び透過率分布を示すシミュレーション結果である。 比較例2の第1駆動方式の黒表示時におけるダイレクタ分布及び透過率分布を示すシミュレーション結果である。 実施形態1において発生する電界を示す模式図である。 比較例2において発生する電界を示す模式図である。 実施形態2-1~2-5の上層電極(i)、下層電極(ii)及び下層電極(iii)を示す模式図である。 実施形態3-1、3-2の上層電極(i)、下層電極(ii)及び下層電極(iii)を示す模式図である。 実施形態4-1~4-7の上層電極(i)、下層電極(ii)及び下層電極(iii)を示す模式図である。
以下に実施形態を掲げ、本発明を図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。本明細書中、画素とは、特に明示しない限り、絵素(サブ画素)であってもよい。絵素(サブ画素)とは、例えばR(赤)、G(緑)、B(青)、又は、黄(Y)等の、いずれかの単色を示す領域をいう。また、液晶層を挟持する一対の基板を上下基板ともいい、これらのうち、表示面側の基板を上基板ともいい、表示面と反対側の基板を下基板ともいう。更に、基板に配置される電極のうち、表示面側の電極を上層電極ともいい、表示面側と反対側の電極を下層電極ともいう。
なお、各実施形態において、同様の機能を発揮する部材及び部分は同じ符号を付している。また、図中、特に断らない限り、(i)は、下基板の上層(液晶層側)にあるスリット電極を示し、(ii)は、下基板の下層(液晶層側と反対側)の櫛歯状電極を示し、(iii)は、下基板の下層のもう1つの櫛歯状電極を示す。本発明の液晶表示装置においては、(iii)で示される櫛歯状電極は、幹部から分岐した枝部の一部が幅広となった突起部を有する。(i)が下基板の下層(液晶層側と反対側)に配置され、(ii)、(iii)が下基板の上層に配置されていても良く、本発明の効果を発揮できるが、各実施形態において示すように、(i)が下基板の上層に配置される上層電極であり、(ii)、(iii)が、下基板の下層に配置される下層電極であることが好ましい。また、(iv)は、FFS構造を持つ電極層における上層電極を示し、(v)は、FFS構造を持つ電極層における下層電極を示す。また、図中、カラーフィルタ、ブラックマトリクスなど、液晶の電界制御に関わらない層は省略している。本明細書中、電圧とは、接地電位との電位差を言う。
本明細書中、下基板の電極とは、上層電極(i)、下層電極(ii)、及び、下層電極(iii)の少なくとも1つを意味する。また、下基板を平面視したときとは、下基板の主面を平面視したときを意味する。
本明細書中、スリット電極とは、スリットが設けられている電極を言い、複数の線状電極部分を有する。スリットとしては、例えば、線状電極が形成されていない領域が挙げられる。
本明細書中、立上がり時とは、暗状態(黒表示)から明状態(白表示)に表示状態が変化する間を意味する。また、立下がり時とは、明状態(白表示)から暗状態(黒表示)に表示状態が変化する間を意味する。また、液晶の初期配向とは、液晶層への電圧無印加時(黒表示時)での液晶分子の配向を言う。
上記上層電極(i)、下層電極(ii)、及び、下層電極(iii)は、通常、閾値電圧以上で異なる電圧とすることができるものである。閾値電圧以上で異なる電圧とすることができるとは、閾値電圧以上で異なる電圧とする駆動操作を実現できるものであればよく、これにより液晶層に印加する電界を好適に制御することが可能となる。異なる電圧とすることができる構成としては、例えば、上層電極(i)が画素電極であり、下層電極(ii)及び下層電極(iii)が共通電極である場合は、該上層電極(i)にTFT(薄膜トランジスタ素子)を接続して、電圧の値を変化させて交流電圧(AC電圧)を印加して液晶を交流駆動(AC駆動)すると共に、該下層電極(ii)及び該下層電極(iii)に別のTFTで交流電圧を印加して液晶を交流駆動したり、ラインごとに共通接続されているか、又は、すべての画素内で共通接続されている該下層電極(ii)及び該下層電極(iii)に、該ライン又はすべての画素に対応するTFTで交流電圧を印加して液晶を交流駆動したり、該下層電極(ii)及び該下層電極(iii)にTFTを用いないで直流電圧(DC電圧)を印加して液晶を直流駆動(DC駆動)したりしてもよい。
(実施形態1)
図1は、実施形態1の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。
実施形態1では図1に示す偏光軸をもつ2枚の直線偏光板を使用する。実施形態1では、直線偏光板が、上下基板の外側(液晶層側と反対側)に1枚ずつ配置されている。直線偏光板の配置としては、上下基板で直線偏光板の偏光軸が、電圧無印加時における液晶分子の長軸(液晶分子の初期配向方位)に対して垂直又は平行のクロスニコル配置とし、ノーマリーブラックモードの液晶表示装置とした。このように、上下基板がそれぞれ直線偏光板を有することが好ましい。
上層電極(i)は、下基板を平面視したときに、複数の線状部分を含む。該複数の線状部分はそれぞれ略平行であり、該線状部分と該線状部分との間には、それぞれ、互いに略平行なスリットが設けられている。このように、上層電極(i)は、スリットが設けられていること(スリット電極であること)が本発明の好ましい形態の1つである。なお、上層電極(i)はスリット電極である代わりに櫛歯状電極であってもよい。上層電極(i)が櫛歯状であることもまた本発明の好ましい形態の1つである。
下層電極(ii)、下層電極(iii)は、それぞれ、下基板を平面視したときに、幹部及び幹部から延びる枝部から構成される。枝部は、それぞれ略平行な複数の線状電極部分である。このように、下層電極(ii)及び下層電極(iii)は、それぞれ、櫛歯状であることが本発明の好ましい形態の1つである。
上記のように、上層電極(i)、下層電極(ii)、及び、下電電極(iii)が、それぞれ、線状部分を有することが好ましい。
なお、図1に示した上層電極(i)、下層電極(ii)、及び、下電電極(iii)の構造は一例であり、この形状には限られず、種々の構造の電極を使用できる。
上記下層電極(ii)の枝部、上記下層電極(iii)それぞれの枝部の延伸方向は、上層電極(i)の線状部分の延伸方向に対して90°をなす方向とした。言い換えれば、下基板が有する2つの櫛歯状電極は、その枝部である線状部分の延伸方向が下基板を平面視したときに上層電極(i)の線状部分の延伸方向と90°の角度で交わるように配置されている。該角度は、30°以上、90°以下であることが好ましく、45°以上であることがより好ましく、60°以上であることが更に好ましく、75°以上であることが特に好ましい。このような電極構造により、立上がり時及び立下がり時における応答時間をより短くすることができる。
また図1における、下基板の下層電極(ii)が有する枝部の線状部分は、下層電極(iii)が有する枝部の線状部分と線状部分との間に配置されている。
各層の電極(上層電極(i)、下層電極(ii)、及び、下層電極(iii))は、図1に示すような位置関係で配置されている。このように、下基板の上層電極(i)は、スリットが設けられており、下基板の下層電極(ii)、下層電極(iii)はそれぞれ櫛歯状であることが本発明の好ましい形態の1つである。また、上層電極(i)、下層電極(ii)、及び、下層電極(iii)がそれぞれ櫛歯状であることもまた本発明の好ましい形態の1つである。
上層電極(i)は、コンタクトホールCHを介して薄膜トランジスタ素子TFTから延びているドレイン電極と電気的に接続される。ゲートバスラインGLで選択されたタイミングで、ソースドライバからソースバスラインSLを介して供給された電圧を、薄膜トランジスタ素子TFTを通じて液晶を駆動する上層電極(i)に印加する。
上記上層電極(i)において、線状部分の電極幅Lは3μm、隣り合う線状部分と線状部分との間の電極間隔S1は6μmである。上記電極幅Lは、例えば2μm以上、7μm以下が好ましい。また、上記電極間隔S1は、例えば2μm以上、14μm以下であることが好ましい。電極幅Lと電極間隔S1との比(L/S1)は、0.1~1.5が好ましい。該比L/S1のより好ましい下限値は、0.2であり、より好ましい上限値は、0.8である。
図3は、実施形態1の下層電極(ii)及び下層電極(iii)を示す模式図である。
図3中、下層電極(ii)及び下層電極(iii)の枝部の幅(突起部が形成された部分を除く)、突起部の幅はすべて3μmであり、電極間隔等のその他の長さは図3に示すような値である。
すなわち、上記下層電極(ii)及び下層電極(iii)から構成される一対の櫛歯状電極の枝部において、線状部分の電極幅は3μm、下層電極(ii)における線状部分と下層電極(iii)における線状部分との間の電極間隔は7μmである。
上記電極幅は、2μm以上、7μm以下が好ましい。また、上記電極間隔は、2μm以上であることが好ましく、15μm以下であることが好ましい。電極間隔に対する電極幅の長さ(比)は、0.1~5が好ましい。
また下層電極(iii)の枝部は、その一部が幅広となった突起部を有する。突起部(突起部とは、下層電極(iii)の枝部のうち、幅広となった分だけ形成された部分を言う。)は、矩形状(長方形状)であり、下層電極(iii)の枝部の両側から突き出ている。突起部の長さは、4μmである。突起部の先端と下層電極(ii)との間隔は、3μmである。また、隣り合う突起部間の間隔は、6μmである。
下層電極(iii)の枝部は、突起部とともに構成される十字形状部分を含む。
なお、上層電極(i)、下層電極(ii)、及び、下層電極(iii)それぞれにおける電極幅、及び、電極間隔S1、S2は、それぞれ、通常は画素内で略同一であるが、画素内で異なる場合は、いずれかが上記範囲内であれば好ましく、すべてが上記範囲内であればより好ましい。
図2は、図1中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。
実施形態1の液晶表示装置は、図2に示されるように、下基板10、液晶層30及び上基板20が、液晶表示装置の背面側から観察面側に向かってこの順に積層されて構成されている。
実施形態1の液晶表示装置は、図2に示されるように、上下基板が有する各電極間の電位差が閾値電圧未満では液晶分子LCを水平配向(上下基板主面に対して平行に配向)させる。図2では、液晶分子LCは概ね図面の奥から手前に向かって配向している。
下基板10の下層電極(ii)(図2では示されていない。)、下層電極(iii)は、それぞれ、上述したように櫛歯状電極であり、下層電極(ii)、下層電極(iii)の上に、絶縁層13を介してスリット電極である上層電極(i)が配置されている。上基板20には液晶駆動用の電極は設けられておらず、下基板10のみに液晶駆動用の電極が設けられているが、上基板20に液晶駆動用の電極が設けられていてもよい。
絶縁層13の誘電率は6.9、平均厚みは0.3μmである。絶縁層13は、それぞれ、窒化膜SiNで構成されるものであるが、その代わりに、酸化膜SiOや、アクリル系樹脂等、又は、それらの材料の組み合わせも使用可能である。
上下基板の液晶層側にはそれぞれ水平配向膜(図示せず)を設け、電圧無印加時における液晶分子の長軸が上層電極(i)の線状部分の延伸方向と3°をなす方位となるように水平配向させた。なお、液晶層と上層電極(i)は水平配向膜を介して隣接する。水平配向膜としては、膜面に対して液晶分子を水平に沿わせるものである限り、有機材料から形成された配向膜(例えば、誘電率ε=3~4の配向膜)、無機材料から形成された配向膜(例えば、誘電率ε=5~7の配向膜)、光活性材料から形成された光配向膜、ラビング等によって配向処理がなされた配向膜等が挙げられる。なお、上記配向膜は、ラビング処理等による配向処理がなされていない配向膜であってもよい。有機材料から形成された配向膜、無機材料から形成された配向膜、光配向膜等の、ラビング処理等による配向処理が必要ない配向膜を用いることによって、プロセスの簡略化によりコストを削減するとともに、信頼性及び歩留まりを向上することができる。また、ラビング処理をおこなった場合、ラビング布などからの不純物混入による液晶汚染、異物による点欠陥不良、液晶パネル内でラビングが不均一であるために表示ムラが発生するなどのおそれがあるが、上述したラビング処理等による配向処理が必要ない配向膜を用いることにより、これら不利点も無くすことができる。
上記液晶は、電圧無印加時に基板主面に対して水平方向に配向する液晶分子を含む。なお、基板主面に対して水平方向に配向するとは、本発明の技術分野において液晶分子が基板主面に対して実質的に水平方向に配向すると言え、光学的な作用効果を発揮できるものであればよい。上記液晶は、電圧無印加時に基板主面に対して水平方向に配向する液晶分子から実質的に構成されるものであることが好適である。上記「電圧無印加時に」は、本発明の技術分野において実質的に電圧が印加されていないといえるもの(例えば、液晶層の閾値電圧未満)であればよい。このような水平配向型の液晶は、広視野角の特性等を得るのに有利な方式である。
実施形態1の液晶表示装置における液晶層30中の液晶材料の誘電率異方性は正である(誘電率異方性Δε=5.9、粘度(回転粘性度)γ1=89cps、屈折率異方性Δn=0.109、パネルのRe=350nm)。このように、本発明の液晶表示装置において、液晶分子は、正の誘電率異方性を有することが好ましい。正の誘電率異方性を有する液晶分子は、電界を印加した場合に一定方向に配向されるものであり、配向制御が容易であり、より高速応答化することができる。液晶の誘電率異方性Δεは、3以上であることが好ましく、4以上であることがより好ましく、5以上であることが更に好ましい。また、該液晶の誘電率異方性Δεは、30以下であることが好ましく、20以下であることがより好ましく、10以下であることが更に好ましい。本明細書中、液晶の誘電率異方性Δεは、LCRメーターにより測定されるものを意味する。
実施形態1では、液晶層30の平均厚み(セルギャップ)dLCは3.2μmである。
本明細書中、液晶層の平均厚みdLCは、液晶表示装置における液晶層全体の厚みを平均して算出されるものを意味する。
LC×Δnは100nm以上であることが好ましく、150nm以上であることがより好ましく、200nm以上であることが更に好ましい。また、dLC×Δnは550nm以下であることが好ましく、500nm以下であることがより好ましく、450nm以下であることが更に好ましい。
実施形態1では下基板を2層電極とした。このように、下基板が有する電極は、それぞれ、上層のスリットが設けられている電極、及び、下層の一対の櫛歯状電極から構成されることが本発明の液晶表示装置における好ましい形態の1つである。しかしながら、例えば、下基板の上層電極(i)においてスリット電極の代わりに一対の櫛歯状電極を用いてもよい。一対の櫛歯状電極を用いる場合、一対の櫛歯状電極間で横電界を発生させることにより液晶分子を水平面内で回転させる。液晶分子の配向方向と電極配置との関係は、FFS電極に含まれるスリット電極の線状部分の延伸方向を一対の櫛歯状電極の枝部の延伸方向に置き換えて考えればよい。
実施形態1の液晶表示装置が備える上下基板は、通常は液晶を挟持するための一対の基板であり、例えば、ガラス、樹脂等の絶縁基板を母体とし、絶縁基板上に配線、電極、カラーフィルタ等を必要に応じて作り込むことで形成される。
なお、実施形態1の液晶表示装置は、通常の液晶表示装置が備える部材(例えば、光源等)を適宜備えることができる。また、実施形態1の液晶表示装置は、アクティブマトリクス駆動方式によって液晶を駆動するものであることが好ましい。後述する実施形態においても同様である。
以下では、本実施形態の液晶表示装置を用いた液晶の駆動方法について説明する。
本実施形態では、高速応答可能な駆動を実現することができる。また、電圧の印加方法を切り替えることで、高速応答可能な駆動と、その駆動よりも高い透過率を実現する駆動の2種類の駆動を同じ構成で実現することができる。 
本明細書中、高速応答を実現できる駆動を第1駆動方式、それより高い透過率を実現する駆動は第2駆動方式と、それぞれ呼ぶことにする。
第1駆動方式、第2駆動方式ともに上層電極(i)の電圧を変化させて階調表示を行う。
第1駆動方式は、下層電極(ii)及び下層電極(iii)は互いに極性が逆になるように振幅センターを0Vとして電圧を極性反転させて印加することで、横電界を常に発生させておき、上層電極(i)に階調に応じた電圧を極性反転させて印加することで駆動する。
第2駆動方式は、下層電極(ii)、下層電極(iii)はともに0Vとしておき、上層電極(i)に階調に応じた電圧を極性反転させて印加することで、上層電極(i)と、下層電極(ii)及び下層電極(iii)との間にフリンジ電界を発生させて液晶を駆動する。
図4は、実施形態1の第1駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図5は、図4に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。図6は、実施形態1の第1駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図7は、実施形態1の第1駆動方式の白表示時における各電極への印加電圧を示す電圧関係図である。図4~図6は、それぞれ、図1中の破線で囲んだ部分に対応する部分を示す。
先ず、立上がり時の液晶分子の動作について詳しく説明する。
下層電極(ii)及び下層電極(iii)は、図4及び図7に示すように、互いに極性が逆になるように、振幅センターを0Vとして電圧を極性反転させて常に印加し、横電界を常に発生させておく。なお、下層電極(ii)及び下層電極(iii)に印加する電圧の絶対値は常に一定である。その上で上層電極(i)に電圧を極性反転させて印加することで、水平面内で液晶分子を異なる方位に互い違いに回転させる電界が発生し、その電界によって液晶分子が当該水平面内でベンド配向及びスプレイ配向をするような形で配向する。本実施形態の第1駆動方式では白階調表示時に上層電極(i)に6V/-6Vを印加し、下層電極(ii)に1V/-1Vを印加し、下層電極(iii)に-1V/1Vを印加している。実施形態1の液晶表示装置では、後述する理由により、下層電極(ii)、下層電極(iii)への印加電圧を小さくしても液晶分子の配向の安定性を維持できるため、黒浮きを小さくするために下層電極(ii)、下層電極(iii)への印加電圧を小さくすることが可能である。したがって、黒浮きを小さくする観点から、例えば、下層電極(ii)、下層電極(iii)それぞれへの印加電圧の絶対値を2V以下とすることが好ましく、1.5V以下とすることがより好ましい。
また上層電極(i)-下層電極(ii)間の電位差は、5Vであるが、例えば8V以下が好ましく、7V以下がより好ましく、6V以下が更に好ましい。該電位差は、1V以上が好ましく、2V以上がより好ましく、4V以上が更に好ましい。
上層電極(i)-下層電極(iii)間の電位差は、7Vであるが、2~12Vであることが好ましく、3~11Vであることがより好ましく、3~10Vであることが更に好ましい。
シミュレーションによる透過率分布図(図5)を見て分かるように、領域1と領域2とで液晶分子は異なる方位に回転しており、領域1と領域2とは互い違いに存在していることがわかる。すなわち、第1駆動方式では、液晶分子が水平面内で異なる方位に互い違いに回転する。図5に示した領域1(第1領域)では、液晶分子は水平面内で時計回りの向きに回転し、領域2(第2領域)では、液晶分子は水平面内で反時計回りの向きに回転する。言い換えれば、下基板を平面視したときに、上層電極(i)の線状電極間(上層電極(i)のスリットと重畳する領域内)、下層電極(ii)の枝部である線状電極間、下層電極(iii)の枝部である線状電極間で、それぞれ液晶分子が水平面内で1方向に回転するのではなく、異なる2方向に回転する。
また下層電極(ii)及び下層電極(iii)間に横電界が発生するように、下層電極(ii)及び下層電極(iii)に常に電圧が印加されていることにより、立上がり応答時には、水平面内の全領域に強い電界が印加される。そのため、立上がり応答が高速化される。
次いで、立下がり時の液晶分子の動作について説明する。
図6に示すように、上層電極(i)に印加していた電圧を弱めることによって、下層電極(ii)及び下層電極(iii)による横電界に液晶分子が反応し、初期配向方位へ電界により強制的に回転する。また、白表示時に水平面内でベンド配向及びスプレイ配向していた液晶分子の復元力も同時に働き、応答をさらに加速させる。本実施形態の第1駆動方式では黒階調表示時に上層電極(i)は0Vであり、下層電極(ii)には1V/-1Vを印加し、下層電極(iii)には-1V/1Vを印加している。
第1駆動方式では、立下がり応答時にも下層電極(ii)及び下層電極(iii)には常に電圧(図6では1V/-1V、-1V/1V)が印加されているため、上層電極(i)の電圧を弱めるか又はゼロにした際に、下層電極(ii)-下層電極(iii)間で発生する電界によって液晶分子が初期配向に戻る方向へ強制的に回転する。さらに、第1駆動方式の場合には、水平面内でベンド配向及びスプレイ配向が発生し、それによって誘起される弾性ひずみにより大きな復元力も働く。よって、立下がり応答も高速化する。なお、上記第1駆動方式においては、液晶分子が平面内で異なる方位に回転する領域が交互に少なくとも2領域連続して存在する。このように、液晶分子が異なる方位に回転する領域が平面内で2領域以上連続で存在することが好ましい。
上述したように、図6では、上層電極(i)の電位を0Vとした。このように画素電極(実施形態1では上層電極(i))の電圧を最大透過率時の電圧から弱めたりゼロにしたりする以外は、その他の電極(実施形態1では下層電極(ii)、下層電極(iii))の電位等は第1駆動方式の白表示時と同じものとすることができ、その好ましい範囲等も第1駆動方式の白表示時におけるものと同様である。例えば、実施形態1においては、白表示時及び黒表示時のいずれも下基板の下層電極(ii)が1V/-1Vであり、下層電極(iii)が-1V/1Vである。このように、本発明の液晶表示装置は、下基板の下層電極(ii)及び下層電極(iii)が、白表示時及び黒表示時のいずれも一定の電圧の絶対値であることが好ましい。
上述した第1駆動方式における各電極への電圧印加方法としては、上層電極(i)が画素電極であり、この上層電極(i)に印加される電圧を変化させ、下層電極(ii)及び下層電極(iii)が一定の大きさの電圧に印加しており、このような電圧印加方法は本発明の液晶表示装置における好ましい形態の1つである。しかしながら、本発明の作用効果が発揮される限り、各電極の上下の配置関係は適宜変更されていてもよい。また、下層電極(ii)及び下層電極(iii)間に電位差を生じさせて横電界が発生する限り、下層電極(ii)及び下層電極(iii)の両方に上記のように電圧が印加されていなくてもよく、下層電極(ii)及び下層電極(iii)の少なくとも一方に電圧が印加されていればよい。
図8は、実施形態1の第2駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図9は、図8に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。図10は、実施形態1の第2駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。
図8~図10は、それぞれ、図1中の破線で囲んだ部分に対応する部分を示す。
先ず、立上がり時の液晶分子の動作について詳しく説明する。 
図8に示すように、下層電極(ii)、下層電極(iii)をともに0Vにしておき、その上で上層電極(i)に極性反転させて電圧を印加することで、上層電極(i)と、下層電極(ii)及び下層電極(iii)との間でフリンジ電界が発生し、その電界に反応して液晶分子が同方位に回転する。本実施形態の第2駆動方式では白階調表示時に上層電極(i)に5V/-5Vを印加している。
シミュレーションによる透過率分布図(図9)を見て分かるように、液晶分子が同方位に回転することで、第1駆動方式と比べて全体として高透過率が得られている。
第2駆動方式の白表示時では、上層電極(i)の電圧は、表示に応じて変化するものであるが、その上限が10Vであることが好ましく、8Vであることがより好ましく、7Vであることが更に好ましい。
次いで、立下がり時の液晶分子の動作について説明する。
図10に示すように、上層電極(i)に印加していた電圧をオフすることによって、液晶分子の復元力によって配向処理方位(アンカリング)に向かって戻るように回転する。本実施形態の第2駆動方式では黒表示時に上層電極(i)に0Vを印加している。その他の各電極(下層電極(ii)、下層電極(iii))への印加電圧は、第2駆動方式の白表示時と同様であり、0Vを印加している。なお、第2駆動方式の黒表示時では、上層電極(i)、下層電極(ii)及び下層電極(iii)への印加電圧は、閾値電圧未満とすればよい。
図11は、実施形態1の液晶表示装置をTFT駆動する場合の画素レイアウトの一例を示す平面模式図である。なお、図11は一例であり、電極構造、配線等はこの形状に限られるものではない。
実施形態1では、下層電極(ii)及び下層電極(iii)は、印加する電圧が第1駆動方式と第2駆動方式で異なるため、例えばライン(ゲートバスライン等)ごとにスキャン駆動する。
なお、実施形態1の液晶表示装置における薄膜トランジスタ素子には、透過率改善効果の観点から酸化物半導体を含む薄膜トランジスタ素子を用いることが好ましい。酸化物半導体は、アモルファスシリコンよりも高いキャリア移動度を示す。これにより、1画素に占めるトランジスタの面積を小さくすることができるため開口率が増加し、1画素あたりの光の透過率を高めることが可能となる。したがって、酸化物半導体を含む薄膜トランジスタ素子を用いることで、本発明の効果であるコントラスト比向上効果をより顕著に得ることができる。すなわち、本発明の液晶表示装置において、下基板は、薄膜トランジスタ素子を備え、該薄膜トランジスタ素子は、酸化物半導体を含むことが好ましい。
実施形態1の液晶表示装置は、透過型、反射型、半透過型のいずれの液晶表示装置にも適用することができる。後述する実施形態においても同様である。
<実施形態1における第1駆動方式及び第2駆動方式の透過率の比較>
LCD Master3Dを用いて実施形態1の第1駆動方式及び第2駆動方式の電圧-透過率(V-T)特性を計算することで、第1駆動方式から第2駆動方式に切り替えることによる高透過率化に対する効果の有無を検証した。表1に実施形態1の第1駆動方式及び第2駆動方式の白表示時の透過率を示す。第2駆動方式(最大透過率34.9%)は第1駆動方式(最大透過率23.4%)と比較して最大透過率が高く、第1駆動方式から第2駆動方式への切り替えで透過率が改善できていることがわかった。
Figure JPOXMLDOC01-appb-T000001
図12は、実施形態1の第1駆動方式及び第2駆動方式それぞれの上層電極(i)の電圧-透過率(V-T)特性を示すグラフである。この図からも、第1駆動方式の透過率に比べて第2駆動方式の透過率が高くなっていることが分かる。
(比較例1)
図13は、比較例1の液晶表示装置の電極構造及び液晶分子の初期配向を示す断面模式図である。図13は、従来のFFSモードの液晶表示装置の電極構造の1例を示す断面模式図でもある。
比較例1では、下基板1010の下層電極(v)は面状電極であり、絶縁層1013を介してスリット電極である上層電極(iv)が配置されている。なお、下基板の上層電極(iv)においてスリット電極の代わりに一対の櫛歯状電極を用いてもよい。上基板1020には、液晶制御用の電極は配置されていない。
上下基板の液晶層側にはそれぞれ水平配向膜(図示せず)を設け、電圧無印加時における液晶分子を、その方位角が上層電極(iv)の線状部分の延伸方向に対して7°となるように水平配向させた。また、上下基板の液晶層側と反対側にはそれぞれ偏光板(図示せず)を設けた。偏光板としては直線偏光板を用い、上下基板で偏光板の偏光軸が電圧無印加時における液晶分子の長軸に対して垂直又は平行のクロスニコル配置とし、ノーマリーブラックモードの液晶表示装置とした。また、液晶材料及びその厚みは実施形態1と同じとした。上層電極(iv)において、線状部分の電極幅は3μm、隣り合う線状部分と線状部分との間の電極間隔は6μmである。絶縁層1013の誘電率εは6.9である。なお、比較例1の液晶表示装置は、その他の構成、例えば配向膜材料、配向膜処理方法、絶縁膜材料等は、それぞれ上述した実施形態1の液晶表示装置の対応する部材と同様である。
比較例1は、下基板の上層電極(iv)-下層電極(v)間でフリンジ電界を発生させ、下基板付近の液晶分子を水平面内で同じ方向に回転させることで立上がり時のスイッチングを行っている。また、立下がり時のスイッチングは、フリンジ電界を弱めて又はゼロにして、液晶分子を粘弾性により元の配向状態に戻すことにより行っている。
しかし、液晶層中、液晶分子を回転させるための電界が弱い領域があり、当該領域における液晶分子の回転に時間を要する。また、この際、液晶分子は同じ方向に回転するため、水平面内における液晶の弾性変形によるひずみは小さい。そのため、電界を弱めて又はゼロにして立下がり時のスイッチングを行う際に、元の配向状態に戻るために働く弾性ひずみ起因の復元力が小さく、応答が遅い。したがって、立上がり時のスイッチング、立下がり時のスイッチングともに応答時間が遅い。
図14は、比較例1の液晶表示装置の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図15は、比較例1の液晶表示装置の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図14及び図15に比較例1の電圧印加時の原理を示す。 
液晶分子は、初期配向では、上述したように、画素電極である上層電極(iv)の線状部分の延伸方向と7°の角度をなす方向に決定する。
先ず、立上がり時の液晶分子の動作について詳しく説明する。 
上層電極(iv)に電圧を印加すると、上層電極(iv)と下層電極(v)にはフリンジ電界が発生する。このとき液晶は配向方位軸から遠ざかるように回転し黒表示から白表示へ光学変調する。本比較例では白階調表示時に上層電極(iv)に5Vを極性反転させて印加している。
次いで、立下がり時の液晶分子の動作について説明する。 
電圧オフによってフリンジ電界が消滅し、初期配向方位(アンカリング)に向かって弾性体である液晶分子の復元力によって回転する。液晶を配向制御するために必要な配向膜、配向方法、絶縁膜は実施形態1で上述したものと同様である。
<実施形態1と比較例1との応答特性及び透過率の比較>
LCD Master3Dを用いて実施形態1と比較例1の応答時間、透過率を計算することで、実施形態1と比較例1との応答特性及び透過率を比較した。液晶の物性は常温時の値を用いた。表2に実施形態1と比較例1の応答時間、透過率を示す。
Tr+Tdの項目には、透過率が10%から90%まで変化する応答時間をTr、透過率が90%から10%まで変化する応答時間をTdとしたときのTr+Tdの値を記載している。また、高速応答と高透過率の両立の程度を確認する指標として応答時間/透過率を計算した。この値が小さいほど高速応答と高透過率を両立できていることになる。 
Figure JPOXMLDOC01-appb-T000002
(※1)実施形態1の応答時間は、第1駆動方式での値である。
(※2)実施形態1の透過率は、第2駆動方式での値である。
表2に示したように、実施形態1は比較例1よりも応答時間/透過率が小さな値になっているため、高速応答と高透過率を両立できる駆動として、比較例1よりも優れていると言える。
図16は、実施形態1及び比較例1の立上がり時における時間に対する規格化透過率を示すグラフである。図17は、実施形態1及び比較例1の立下がり時における時間に対する規格化透過率を示すグラフである。これら図16及び図17は、実施形態1と比較例1の応答シミュレーションの結果を示すものである。立上がり応答、立下がり応答ともに比較例1に対して実施形態1の方が速いことが分かる。
したがって、実施形態1の第1駆動方式では、液晶分子を水平面内で異なる方位に互い違いに回転させる電界が形成でき、立上がり時、立下がり時ともに高速化が可能となり、広視野角と高速応答を両立できる。実施形態1の第2駆動方式では、FFSモードと同様に、液晶分子を領域全体で同じ方向に回転させる電界を形成でき、広視野角と高透過率とを両立することができる。
(比較例2)
比較例2の液晶表示装置は、後述する図に示すように、下基板に上層電極(i)、下層電極(ii)、下層電極(ii)と同層に設けられた下層電極(iii)を備える。
上層電極(i)は、下基板を平面視したときに、複数の線状電極部分を含む。該複数の線状電極部分はそれぞれ略平行であり、該線状電極部分と該線状電極部分との間には、それぞれ、互いに略平行なスリットが設けられている。
下層電極(ii)、下層電極(iii)は、それぞれ、下基板を平面視したときに、幹部及び幹部から延びる枝部から構成される。枝部は、それぞれ略平行な複数の線状電極部分である。なお、実施形態1とは異なり、下層電極(iii)の枝部は、その一部が幅広となっておらず、幅の長さが等しい。
上記下層電極(ii)、上記下層電極(iii)それぞれの枝部の延伸方向は、上層電極(i)の線状部分の延伸方向に対して87°をなす方向とした。また、上記上層電極(i)において、線状部分の電極幅は3μm、隣り合う線状部分と線状部分との間の電極間隔は6μmである。上記下層電極(ii)及び下層電極(iii)から構成される一対の櫛歯電極の枝部において、線状部分の電極幅は3μm、隣り合う線状部分と線状部分との間の電極間隔は3μmである。
以下では、比較例2の液晶表示装置を用いた液晶の駆動方法について説明する。
比較例2では、高速応答可能な駆動を実現する。また、電圧の印加方法を切り替えることで、高速応答可能な駆動と、その駆動よりも高い透過率を実現する駆動の2種類の駆動を同じ構成で実現する。実施形態1と同様に、高速応答を実現する駆動を第1駆動方式、それより高い透過率を実現する駆動は第2駆動方式と、それぞれ呼ぶことにする。
図18は、比較例2の第1駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図19は、図18に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。図20は、比較例2の第1駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図21は、比較例2の第1駆動方式の白表示時における各電極への印加電圧を示す電圧関係図である。なお、実施形態1と同様に、電圧無印加時における液晶分子の長軸が上層電極(i)の線状部分の延伸方向と3°をなす方位となる。
先ず、立上がり時の液晶分子の動作について詳しく説明する。
下層電極(ii)及び下層電極(iii)は、図18及び図21に示すように、互いに極性が逆になるように、振幅センターを0Vとして電圧を極性反転させて常に印加し、横電界を常に発生させておく。なお、下層電極(ii)及び下層電極(iii)に印加する電圧の絶対値は常に一定である。その上で上層電極(i)に電圧を極性反転させて印加することで、水平面内で液晶分子を異なる方位に互い違いに回転させる電界が発生し、その電界によって液晶分子が当該水平面内でベンド配向及びスプレイ配向をするような形で配向する。比較例2の第1駆動方式では白階調表示時に上層電極(i)に6V/-6Vを印加し、下層電極(ii)に2.0V/-2.0Vを印加し、下層電極(iii)に-2.0V/2.0Vを印加している。
シミュレーションによる透過率分布図(図19)を見て分かるように、領域1と領域2とで液晶分子は異なる方位に回転しており、領域1と領域2とは互い違いに存在していることがわかる。すなわち、第1駆動方式では、液晶分子が水平面内で異なる方位に互い違いに回転する。図19に示した領域1(第1領域)では、液晶分子は水平面内で時計回りの向きに回転し、領域2(第2領域)では、液晶分子は水平面内で反時計回りの向きに回転する。
次いで、立下がり時の液晶分子の動作について説明する。
図20に示すように、上層電極(i)に印加していた電圧を弱めることによって、下層電極(ii)及び下層電極(iii)による横電界に液晶分子が反応し、初期配向方位へ電界により強制的に回転する。また、白表示時に水平面内でベンド配向及びスプレイ配向していた液晶分子の復元力も同時に働き、応答をさらに加速させる。比較例2の第1駆動方式では黒表示時に上層電極(i)は0Vであり、下層電極(ii)には2.0V/-2.0Vを印加し、下層電極(iii)には-2.0V/2.0Vを印加している。
図22は、比較例2の第2駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図23は、図22に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。図24は、比較例2の第2駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。
先ず、立上がり時の液晶分子の動作について詳しく説明する。
図22に示すように、下層電極(ii)、下層電極(iii)をともに0Vにしておき、その上で上層電極(i)に極性反転させて電圧を印加することで、上層電極(i)と、下層電極(ii)及び下層電極(iii)との間でフリンジ電界が発生し、その電界に反応して液晶分子が同方位に回転する。比較例2の第2駆動方式では白階調表示時に上層電極(i)に5V/-5Vを印加している。
シミュレーションによる透過率分布図(図23)を見て分かるように、液晶分子が同方位に回転することで、比較例2の第1駆動方式と比べて全体として高透過率が得られている。
次いで、立下がり時の液晶分子の動作について説明する。
図24に示すように、上層電極(i)に印加していた電圧をオフすることによって、液晶分子の復元力によって配向処理方位(アンカリング)に向かって戻るように回転する。比較例2の第2駆動方式では黒表示時に上層電極(i)に0Vを印加している。その他の各電極(下層電極(ii)、下層電極(iii))への印加電圧は、第2駆動方式の白表示時と同様であり、0Vを印加している。
比較例2の液晶表示装置の上述した以外のその他の構成は、上述した実施形態1の液晶表示装置の構成と同様である。
<実施形態1と比較例2との応答特性の比較>
表3に実施形態1と比較例2の第1駆動方式のコントラスト比を示す。なお、表3中、CRとは、コントラスト比を意味する。
Figure JPOXMLDOC01-appb-T000003
表3の結果から、比較例2に対して、実施形態1のコントラスト比が大きく改善していることが分かる。理由については後述する。
図25は、実施形態1の第1駆動方式の黒表示時におけるダイレクタ分布及び透過率分布を示すシミュレーション結果である。図26は、比較例2の第1駆動方式の黒表示時におけるダイレクタ分布及び透過率分布を示すシミュレーション結果である。
なお、図25と図26とは、各図右上の「Transmittance(Bulk)」のバロメータに示されるように、同じ基準で比較したものである。
図25及び図26に示されるように、実施形態1の第1駆動方式の黒表示時の方が、比較例2の第1駆動方式の黒表示時よりも黒浮きを防ぐことが可能となる。
<実施形態1が比較例2に対して配向安定性が向上する理由>
図27は、実施形態1において発生する電界を示す模式図である。図28は、比較例2において発生する電界を示す模式図である。比較例2の液晶表示装置の第1駆動方式を配向安定させるためには、下層電極(ii)、(iii)に印加する電圧の大きさを2.5Vとすることが望ましいが、実施形態1では下層電極(ii)、(iii)に印加する電圧の大きさが1Vでも配向が安定する。その理由を以下に説明する。
図28(比較例2)では、上層電極(i)と下層電極(iii)との交差点近傍のみ、液晶分子を狙いの方向に回転させる電界が発生する。
一方、実施形態1は、比較例2と比較して、下層電極のうち、上層電極(i)に印加する電圧に対して極性が逆の電圧を印加する電極の形状を変化させており、図27に示したような突起をもった電極形状としている。
図27(実施形態1)では、この電極構造により、上層電極(i)に電圧を印加した時に、上層電極(i)-下層電極(iii)の交差点近傍以外の広い領域でも、液晶分子を狙いの方向に回転させる電界が発生する。これにより、実施形態1の液晶表示装置では、比較例2の液晶表示装置と第1駆動方式どうしで比べて、下層電極(ii)、(iii)に印加する電圧の大きさが小さい値(例えば、1V)でも配向が安定する。この結果、黒浮きを防ぐことが可能となり、比較例2の液晶表示装置に比べて、応答が高速化する駆動(第1駆動方式)におけるコントラスト比を顕著に改善することができる。
上述した本実施形態の液晶表示装置は、更に、第1駆動方式において、立上がり時には、下層の一対の櫛歯状電極間に横電界が印加されていることにより、水平面内全域の液晶分子に強い電界が働くため応答が高速化し、立ち下がり時には、図4に示すような面内ベンド及びスプレイ配向が元に戻ろうとする強い復元力が働くことに加え、下層電極(ii)、(iii)が作り出す電界に液晶分子が反応することで従来のFFSモードでは実現できない高速応答を実現できる。
また第2駆動方式において、一対の櫛歯電極である、下基板の下層電極(ii)、(iii)をともに同電位とすることで、上層電極(i)との間にフリンジ電界を発生させることができ、上記のように駆動する高速応答を実現する駆動に比べて高い透過率を実現する駆動となる。
これら2種類の駆動を目的や状況に応じて切り替えることができ、結果として広視野角、高速応答、及び、高透過率(又は高コントラスト比)を実現できるのが上述した実施形態の特長の1つである。なお、本発明の液晶表示装置は、少なくとも第1駆動方式を実行できるものであればよい。
(実施形態2-1~2-5)
図29は、実施形態2-1~2-5の上層電極(i)、下層電極(ii)及び下層電極(iii)を示す模式図である。図29に示す電極幅の長さをAとし、電極突起部の長さをBとし、電極間隔の長さをSとする(それぞれ、単位はμm)。
実施形態2-1~2-5は、実施形態1の電極構造のうち、図29に示すA、B、Sを、下記表4に示すように変更したものである。また、第1駆動方式における下層電極の電圧値は、第1駆動方式の配向が得られる電圧値の中で、なるべく小さな電圧値とした。実施形態2-1~2-5の液晶表示装置のその他の構成は、実施形態1の液晶表示装置の構成と同様である。例えば、上層電極(i)は、全ての実施形態2-1~2-5で実施形態1と同様にL/S=3/6としており、液晶初期方位も全ての実施形態2-1~2-5で上層電極(i)の線状部分の延伸方向と3°をなす方位としている。なお、参考として実施形態1のA、B、Sも示す。
Figure JPOXMLDOC01-appb-T000004
<実施形態2-1~2-5における第1駆動方式及び第2駆動方式の透過率の比較>
LCD Master3Dを用いて実施形態2-1~2-5の第1駆動方式及び第2駆動方式の電圧-透過率(V-T)特性を計算することで、第1駆動方式から第2駆動方式に切り替えることによる高透過率化に対する効果の有無を検証した。表5に実施形態2-1~2-5の第1駆動方式及び第2駆動方式の白表示時の透過率を示す。第2駆動方式は第1駆動方式と比較して最大透過率が高く、第1駆動方式から第2駆動方式への切り替えで透過率が改善できていることが分かった。
Figure JPOXMLDOC01-appb-T000005
<実施形態2-1~2-5と比較例1との応答特性及び透過率の比較>
LCD Master3Dを用いて実施形態2-1~2-5と比較例1の応答時間、透過率を計算することで、実施形態2-1~2-5と比較例1との応答特性及び透過率を比較した。液晶の物性は常温時の値を用いた。表6に実施形態2-1~2-5と比較例1の応答時間、透過率を示す。
表6の各項目は、実施形態1において上述したものと同様である。
Figure JPOXMLDOC01-appb-T000006
(※1)実施形態2-1~2-5の応答時間は、第1駆動方式での値である。
(※2)実施形態2-1~2-5の透過率は、第2駆動方式での値である。
表6に示したように、実施形態2-1~2-5は比較例1よりも応答時間/透過率が小さな値になっているため、高速応答と高透過率を両立できる駆動として、比較例1よりも優れていると言える。
<実施形態2-1~2-5と比較例2との応答特性の比較>
表7に実施形態2-1~2-5と比較例2の第1駆動方式のコントラスト比を示す。なお、表7中、CRとは、コントラスト比を意味する。
Figure JPOXMLDOC01-appb-T000007
表7の結果から、比較例2に対して、実施形態2-1~2-5のコントラスト比が改善していることが分かる。
実施形態2-1と実施形態2-2等からAは2.5~4μmの範囲で、実施形態2-1と実施形態2-3、2-4等からBは2.5~7μmの範囲で、実施形態2-1と実施形態2-5等からSは3~5μmの範囲で、それぞれ本発明の効果がより顕著に得られる。コントラスト比を向上する観点からは、Aは2.5~3μmの範囲で、Bは3~5μmの範囲で、Sは3~4μmの範囲であることが特に好ましい。
(実施形態3-1、3-2)
図30は、実施形態3-1、3-2の上層電極(i)、下層電極(ii)及び下層電極(iii)を示す模式図である。実施形態3-1、3-2は、実施形態1の電極構造のうち、突起部分の形状を変えたものである。具体的には、図30に示すように、突起部の先端部が細くなった形状である。これにより、コントラスト比をより向上することができる。図30に示すように電極の突起部における付け根部の幅の長さをAとし、先端部の幅の長さをA1とし、電極突起部の長さをBとし、電極間隔の長さをSとする(それぞれ、単位はμm)。
実施形態3-1、3-2は、実施形態1の電極構造のうち、図30に示すA、A1、B、Sを、下記表8に示すように変更したものである。また、第1駆動方式における下層電極の電圧値は、第1駆動方式の配向が得られる電圧値の中で、なるべく小さな電圧値とした。実施形態3-1、3-2の液晶表示装置のその他の構成は、実施形態1の液晶表示装置の構成と同様である。例えば、上層電極(i)は、全ての実施形態3-1、3-2で実施形態1と同様にL/S=3/6としており、液晶初期方位も全ての実施形態3-1、3-2で上層電極(i)の線状部分の延伸方向と3°をなす方位としている。なお、参考として実施形態2-1のA、A1、B、Sも示す。
Figure JPOXMLDOC01-appb-T000008
<実施形態3-1、3-2における第1駆動方式及び第2駆動方式の透過率の比較>
LCD Master3Dを用いて実施形態3-1、3-2の第1駆動方式及び第2駆動方式の電圧-透過率(V-T)特性を計算することで、第1駆動方式から第2駆動方式に切り替えることによる高透過率化に対する効果の有無を検証した。表9に実施形態3-1、3-2の第1駆動方式及び第2駆動方式の白表示時の透過率を示す。第2駆動方式は第1駆動方式と比較して最大透過率が高く、第1駆動方式から第2駆動方式への切り替えで透過率が改善できていることが分かった。
Figure JPOXMLDOC01-appb-T000009
<実施形態3-1、3-2と比較例1との応答特性及び透過率の比較>
LCD Master3Dを用いて実施形態3-1、3-2と比較例1の応答時間、透過率を計算することで、実施形態3-1、3-2と比較例1との応答特性及び透過率を比較した。液晶の物性は常温時の値を用いた。表10に実施形態3-1、3-2と比較例1の応答時間、透過率を示す。
表10の各項目は、実施形態1において上述したものと同様である。
Figure JPOXMLDOC01-appb-T000010
(※1)実施形態3-1、3-2の応答時間は、第1駆動方式での値である。
(※2)実施形態3-1、3-2の透過率は、第2駆動方式での値である。
表10に示したように、実施形態3-1、3-2は比較例1よりも応答時間/透過率が小さな値になっているため、高速応答と高透過率を両立できる駆動として、比較例1よりも優れていると言える。
<実施形態3-1、3-2と比較例2との応答特性の比較>
表11に実施形態3-1、3-2と比較例2の第1駆動方式のコントラスト比を示す。なお、表11中、CRとは、コントラスト比を意味する。
Figure JPOXMLDOC01-appb-T000011
表11の結果から、比較例2に対して、実施形態3-1、3-2のコントラスト比が大きく改善していることが分かる。
実施形態1と実施形態3-1、3-2から、下層電極(iii)の突起部において、先端部の幅の長さA1が、付け根部の幅の長さAと同じであるか、又は、より短くなっていることが好ましい。
上層電極(i)の線状部分の延伸方向に対して突起部を斜めに倒すことが本発明における好ましい形態の1つである。突起部を斜めに倒す場合、突起部を斜めに倒す方向は、液晶初期方位と同じ方向にすることが好ましい。言い換えれば、突起部の延伸方向は、液晶初期方位と平行となるように、上層電極(i)の線状部分の延伸方向に対して傾いていることが好ましい。
(実施形態4-1~4-7)
図31は、実施形態4-1~4-7の上層電極(i)、下層電極(ii)及び下層電極(iii)を示す模式図である。実施形態4-1~4-7は、実施形態1の電極構造のうち、突起部分の形状を変えたものである。具体的には、図31に示すように、突起部が山型構造(三角形状)になっている。
図31に示すように電極における付け根部の幅の長さをAとし、電極突起部の長さ(高さ)をBとし、電極間隔の長さをSとする(それぞれ、単位はμm)。
実施形態4-1~4-7は、図31に示すA、B、Sを、下記表12に示すように設定したものである。また、第1駆動方式における下層電極の電圧値は、第1駆動方式の配向が得られる電圧値の中で、なるべく小さな電圧値とした。実施形態4-1~4-7の液晶表示装置のその他の構成は、実施形態1の液晶表示装置の構成と同様である。例えば、上層電極(i)は、全ての実施形態4-1~4-7で実施形態1と同様にL/S=3/6としており、液晶初期方位も全ての実施形態4-1~4-7で上層電極(i)の線状部分の延伸方向と3°をなす方位としている。
Figure JPOXMLDOC01-appb-T000012
<実施形態4-1~4-7における第1駆動方式及び第2駆動方式の透過率の比較>
LCD Master3Dを用いて実施形態4-1~4-7の第1駆動方式及び第2駆動方式の電圧-透過率(V-T)特性を計算することで、第1駆動方式から第2駆動方式に切り替えることによる高透過率化に対する効果の有無を検証した。表13に実施形態4-1~4-7の第1駆動方式及び第2駆動方式の白表示時の透過率を示す。第2駆動方式は第1駆動方式と比較して最大透過率が高く、第1駆動方式から第2駆動方式への切り替えで透過率が改善できていることが分かった。
Figure JPOXMLDOC01-appb-T000013
<実施形態4-1~4-7と比較例1との応答特性及び透過率の比較>
LCD Master3Dを用いて実施形態4-1~4-7と比較例1の応答時間、透過率を計算することで、実施形態4-1~4-7と比較例1との応答特性及び透過率を比較した。液晶の物性は常温時の値を用いた。表14に実施形態4-1~4-7と比較例1の応答時間、透過率を示す。
表14の各項目は、実施形態1において上述したものと同様である。
Figure JPOXMLDOC01-appb-T000014
(※1)実施形態4-1~4-7の応答時間は、第1駆動方式での値である。
(※2)実施形態4-1~4-7の透過率は、第2駆動方式での値である。
表14に示したように、実施形態4-1~4-7は比較例1よりも応答時間/透過率が小さな値になっているため、高速応答と高透過率を両立できる駆動として、比較例1よりも優れていると言える。
<実施形態4-1~4-7と比較例2との応答特性の比較>
表15に実施形態4-1~4-7と比較例2の第1駆動方式のコントラスト比を示す。なお、表15中、CRとは、コントラスト比を意味する。
Figure JPOXMLDOC01-appb-T000015
表15の結果から、比較例2に対して、実施形態4-1~4-7のコントラスト比が改善していることが分かる。
この山型構造の場合、実施形態4-1~実施形態4-3等よりAは2~9μmの範囲で、実施形態4-4、実施形態4-5よりBは1~4.5μmの範囲で、実施形態4-6、実施形態4-7よりSは1.5~4.5μmの範囲で、本発明の効果がより顕著に得られる。コントラスト比を向上する観点からは、Aは5μm以下とすることがより好ましい。また、Bは2μm以下とすることがより好ましい。更に、Sは3μm以下とすることがより好ましい。
上述した本実施形態の液晶表示装置は、第1駆動方式と第2駆動方式とを適宜切り換えて表示を行うことができる。また、それぞれの駆動方式において、所望の表示に応じて、白表示と黒表示を適宜組み合わせて表示を行うことができる。
本発明の液晶表示装置は、上述した第1駆動方式を実行する制御装置を備えるものであることが好ましく、上述した第1駆動方式と第2駆動方式とを切り換えて実行する制御装置を備えるものであることがより好ましい。これによって、コントラスト比を充分に優れたものとしながら、広視野角とともに高速応答を実現したり、高透過率を実現したりすることができる。したがって、1種類の電極構成で、高速応答、広視野角、高コントラスト比、高透過率の特性を全て満足する液晶表示装置を実現できる。
また、本発明の液晶表示装置は、所定の条件に応じて、上述した第1駆動方式と第2駆動方式とを自動的に切り換える制御装置を備えることが好ましい。該制御装置は、例えば、温度センサを搭載し、温度に応じて第1駆動方式と第2駆動方式とを自動的に切り換えるものであることが好ましい。例えば、該制御装置は、応答速度の遅延が問題とならない温度(例えば、下限が-20℃~20℃のいずれかである温度範囲)の環境下では高透過率を実現できる第2駆動方式を実行し、応答速度が遅くなる低温(例えば、上限が-20℃~20℃のいずれかである温度範囲)環境下では高速応答を実現できる第1駆動方式を実行するよう制御する制御装置であることが好ましい。これによって、所望の効果をより適切に得ることができる。
更に、本発明の液晶表示装置は、ユーザーの指示に応じて、上述した第1駆動方式と第2駆動方式とを切り換える制御装置を備えるものであってもよい。
また、本発明は、上述した液晶表示装置を用いた液晶表示装置の駆動方法であってもよい。
また本発明の液晶表示装置のように下基板が有する電極のみに交流電圧を印加する液晶の交流駆動を行えばよい場合には、従来通り下基板の当該電極のみに交流駆動用の回路、ドライバ、配線が配置されていればよい。したがって、例えば下基板が有する電極と共に上基板が有する電極にも交流電圧を印加して液晶の交流駆動を行うために下基板と共に上基板にも交流駆動用の回路、ドライバ、配線が配置されている液晶表示装置と比較して、本発明の液晶表示装置の駆動の自由度は格段に高いものである。
本発明の液晶表示装置としては、カーナビゲーション等の車載用の機器、電子ブック、フォトフレーム、産業機器、テレビ、パーソナルコンピュータ、スマートフォン、タブレット端末等が挙げられる。本発明は、例えば、カーナビゲーション等の車載用の機器等の高温環境下、低温環境下の両方で用いられ得る機器に適用されることが好ましい。
なお、下基板において、SEM(Scanning Electron Microscope:走査型電子顕微鏡)等の顕微鏡観察により、本発明の液晶表示装置に係る電極構造等を確認することができる。
(i):上層電極
(ii):下層電極
(iii):下層電極
(iv):上層電極
(v):下層電極
CH:コンタクトホール
TFT:薄膜トランジスタ素子
SL:ソースバスライン
GL:ゲートバスライン
LC:液晶分子
10、1010:下基板
11、21、1011、1021:ガラス基板
13、1013:絶縁層
20、1020:上基板
30、1030:液晶層

Claims (10)

  1. 上下基板、及び、上下基板に挟持された液晶層をもつ液晶表示装置であって、
    該下基板は、電極を備え、
    該電極は、第1電極、該第1電極とは異なる層にある第2電極、及び、該第1電極とは異なる層にある第3電極から構成され、
    該第1電極は、複数の線状部分を有し、
    該第2電極及び該第3電極は、一対の櫛歯状電極であり、
    該櫛歯状電極は、それぞれ、幹部と、該幹部から分岐した複数の枝部とを備え、
    該第3電極の複数の枝部の少なくとも1つは、該下基板を平面視したときに該第1電極の複数の線状部分と交差する2つの部分の間に、該枝部の一部が幅広となった突起部を有し、
    該液晶層は、電圧無印加時に上下基板の主面に対して水平に配向する液晶分子を含む
    ことを特徴とする液晶表示装置。
  2. 前記突起部は、前記第3電極の枝部の延伸方向に対して、20°~90°の角度をなしている
    ことを特徴とする請求項1に記載の液晶表示装置。
  3. 前記第3電極の枝部は、十字形状部分を含む
    ことを特徴とする請求項1又は2に記載の液晶表示装置。
  4. 前記第1電極は、スリットが設けられているか、又は、櫛歯状電極であり、
    前記第3電極の枝部の十字形状部分の交差部は、前記下基板を平面視したときに、該第1電極と前記第2電極とで囲われる領域内で、該領域の中央に配置されている
    ことを特徴とする請求項3に記載の液晶表示装置。
  5. 前記液晶表示装置は、前記液晶分子の一部を前記上下基板の主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる電界を前記下基板が備える電極によって発生させる駆動操作を実行するように構成されたものである
    ことを特徴とする請求項1~4のいずれかに記載の液晶表示装置。
  6. 前記駆動操作は、絵素内で、前記液晶分子の一部を前記主面に対して水平面内で回転させる第1領域と、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる第2領域とがそれぞれ2つ以上交互に並ぶように液晶分子を回転させる電界を前記下基板が備える電極によって発生させる
    ことを特徴とする請求項5に記載の液晶表示装置。
  7. 前記駆動操作を実行する第1駆動方式と、
    前記液晶分子を前記上下基板の主面に対して水平面内で1方向に回転させる電界を前記電極によって発生させる駆動操作を実行する第2駆動方式とを切り換えて実行するように構成されたものである
    ことを特徴とする請求項5又は6に記載の液晶表示装置。
  8. 前記第1電極は、前記第2電極及び前記第3電極よりも液晶層側に配置されている
    ことを特徴とする請求項1~7のいずれかに記載の液晶表示装置。
  9. 前記液晶分子は、正の誘電率異方性を有する
    ことを特徴とする請求項1~8のいずれかに記載の液晶表示装置。
  10. 前記下基板は、薄膜トランジスタ素子を備え、
    該薄膜トランジスタ素子は、酸化物半導体を含む
    ことを特徴とする請求項1~9のいずれかに記載の液晶表示装置。
PCT/JP2016/056726 2015-03-12 2016-03-04 液晶表示装置 WO2016143686A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/557,711 US10185188B2 (en) 2015-03-12 2016-03-04 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-049712 2015-03-12
JP2015049712 2015-03-12

Publications (1)

Publication Number Publication Date
WO2016143686A1 true WO2016143686A1 (ja) 2016-09-15

Family

ID=56880522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056726 WO2016143686A1 (ja) 2015-03-12 2016-03-04 液晶表示装置

Country Status (2)

Country Link
US (1) US10185188B2 (ja)
WO (1) WO2016143686A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI607268B (zh) * 2017-02-20 2017-12-01 友達光電股份有限公司 畫素結構
JP2019207397A (ja) * 2018-05-28 2019-12-05 Tianma Japan株式会社 液晶表示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088658A1 (ja) * 2014-12-04 2016-06-09 シャープ株式会社 液晶表示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001716A1 (ja) * 2009-06-30 2011-01-06 シャープ株式会社 液晶表示装置
US20130033666A1 (en) * 2011-08-01 2013-02-07 Te-Chen Chung Liquid crystal display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636289B2 (en) * 2000-04-19 2003-10-21 Lg.Philips Lcd Co., Ltd. In-plane switching LCD panel with multiple domains and rubbing directions symetric about a line
KR100482468B1 (ko) 2000-10-10 2005-04-14 비오이 하이디스 테크놀로지 주식회사 프린지 필드 구동 액정 표시 장치
US6952252B2 (en) * 2001-10-02 2005-10-04 Fujitsu Display Technologies Corporation Substrate for liquid crystal display and liquid crystal display utilizing the same
JP5116277B2 (ja) * 2006-09-29 2013-01-09 株式会社半導体エネルギー研究所 半導体装置、表示装置、液晶表示装置、表示モジュール及び電子機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001716A1 (ja) * 2009-06-30 2011-01-06 シャープ株式会社 液晶表示装置
US20130033666A1 (en) * 2011-08-01 2013-02-07 Te-Chen Chung Liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI607268B (zh) * 2017-02-20 2017-12-01 友達光電股份有限公司 畫素結構
JP2019207397A (ja) * 2018-05-28 2019-12-05 Tianma Japan株式会社 液晶表示装置
JP7441007B2 (ja) 2018-05-28 2024-02-29 武漢天馬微電子有限公司 液晶表示装置

Also Published As

Publication number Publication date
US20180046039A1 (en) 2018-02-15
US10185188B2 (en) 2019-01-22

Similar Documents

Publication Publication Date Title
WO2013146635A1 (ja) 液晶駆動方法及び液晶表示装置
WO2016088658A1 (ja) 液晶表示装置
WO2013161636A1 (ja) 液晶表示パネル、液晶表示装置及び薄膜トランジスタアレイ基板
JP5728587B2 (ja) 液晶駆動方法及び液晶表示装置
JP5898307B2 (ja) 液晶駆動方法及び液晶表示装置
WO2013001983A1 (ja) 液晶表示パネル及び液晶表示装置
EP2579093A1 (en) Active matrix substrate and liquid crystal display device
WO2016143686A1 (ja) 液晶表示装置
JP6816943B2 (ja) 液晶表示装置
WO2016080271A1 (ja) 液晶表示装置
WO2016013500A1 (ja) 液晶表示装置
CN106125441B (zh) 一种窄视角模式的低驱动电压蓝相液晶显示器
WO2017159434A1 (ja) 液晶表示装置
US10558085B2 (en) Liquid crystal display device
WO2015012092A1 (ja) 液晶表示装置
WO2017169994A1 (ja) 液晶表示装置
JP2014132293A (ja) 液晶表示パネル
US10754207B2 (en) Liquid crystal display device
US10634960B2 (en) Liquid crystal display device
WO2017006789A1 (ja) 液晶表示装置
TWI572962B (zh) 其中畫素具有控制電極以用於放大邊緣電場的液晶顯示器
WO2016013499A1 (ja) 液晶表示装置
WO2016006506A1 (ja) 液晶表示装置
WO2016021527A1 (ja) 液晶表示装置
TW201626079A (zh) 具有間隙距離大的畫素及間隙距離小的畫素之液晶顯示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15557711

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16761656

Country of ref document: EP

Kind code of ref document: A1