WO2016140217A1 - Rubber composition for tyres, and tyre - Google Patents
Rubber composition for tyres, and tyre Download PDFInfo
- Publication number
- WO2016140217A1 WO2016140217A1 PCT/JP2016/056231 JP2016056231W WO2016140217A1 WO 2016140217 A1 WO2016140217 A1 WO 2016140217A1 JP 2016056231 W JP2016056231 W JP 2016056231W WO 2016140217 A1 WO2016140217 A1 WO 2016140217A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rubber composition
- diene polymer
- fatty acid
- mass
- rubber
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/74—Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
- B29B7/7476—Systems, i.e. flow charts or diagrams; Plants
- B29B7/7495—Systems, i.e. flow charts or diagrams; Plants for mixing rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/002—Methods
- B29B7/005—Methods for mixing in batches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/02—Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
- B29B7/22—Component parts, details or accessories; Auxiliary operations
- B29B7/28—Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control
- B29B7/286—Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control measuring properties of the mixture, e.g. temperature, density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
- B29B7/90—Fillers or reinforcements, e.g. fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L15/00—Compositions of rubber derivatives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/02—Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
- B29B7/06—Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
- B29B7/10—Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
- B29B7/18—Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
- B29B7/183—Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Definitions
- the present invention relates to a tire rubber composition, and more particularly to a tire rubber composition and a tire suitable for tires used for passenger cars, trucks, buses and the like.
- an inorganic filler such as silica As a method for obtaining such a rubber composition having low exothermicity, a method using an inorganic filler such as silica as a filler is known.
- an inorganic filler such as silica is blended in an inorganic filler-containing rubber composition, the inorganic filler, particularly silica, aggregates in the rubber composition (aggregation due to hydroxyl groups on the silica surface).
- silane coupling agents are used. Therefore, various attempts have been made for the purpose of further enhancing the activity of the coupling function of the silane coupling agent in order to suitably solve the above problems by blending the silane coupling agent.
- a rubber component (A) containing a modified conjugated diene polymer obtained by using a modifier containing a functional group having an affinity for silica, a filler containing an inorganic filler (B), and silane coupling Rubber composition comprising agent (C) and at least one accelerator (D) selected from guanidines, sulfenamides, thiazoles, thiurams, glycerin fatty acid ester compositions, thioureas, dithiocarbamic acids and xanthogenic acids
- the rubber composition is kneaded in a plurality of stages, and in the first stage of kneading, all or part of the rubber component (A), the inorganic filler (B), the silane coupling agent (
- a method for producing a rubber composition characterized in that all or part of C) and the accelerator (D) are added and kneaded is known (for example, see Patent Document 1 by the present applicant). .
- Patent Document 1 A method for
- a method for obtaining a rubber composition having low exothermicity as a method of further dispersing silica using a modified polymer, for example, as a modified polymer, a conjugated diene monomer is polymerized or copolymerized using an initiator.
- a modified polymer obtained by modifying the active end of the polymer with a modifier for the polymer but if these modified polymers are used, the viscosity of the unvulcanized rubber increases. There is a problem.
- a filler that is 40% by weight or more of white rubber with respect to 100 parts by weight of a rubber containing 90 parts by weight or more of a diene rubber, and 0.2 to 8 nonionic surfactants 2 parts by weight of a rubber composition with improved chargeability (see, for example, Patent Document 2), 2) at least one polymer selected from the group of diene rubbers, and 100 parts by weight of rubber in the rubber composition
- a rubber composition for a tire tread comprising 5 to 100 parts by weight of finely powdered precipitated silicic acid, 0 to 80 parts by weight of carbon black, and 0.5 to 20 parts by weight of at least one non-aromatic viscosity reducing substance.
- non-aromatic viscosity-reducing substance is glycerin-monostearate, sorbitan-monostearate, sorbitan-monooleate and trimethylolpropane (2-ethyl-2-hydride).
- a rubber composition for tire treads characterized in that it is at least one substance selected from the group consisting of (roxymethyl-1,3-propanediol) (for example, see Patent Document 3), 3) natural rubber and / or
- a rubber composition comprising a specific amount of silica and a glycerol fatty acid monoester having 8 to 28 carbon atoms in combination with at least one rubber component selected from diene-based synthetic rubber (see, for example, Patent Document 4) It has been known.
- Patent Document 2 contains a description of the effect of preventing charging that is different from the present invention, which may occur at the time of silica compounding, by blending glycerin fatty acid monoester in one of the Examples. There is no description or suggestion about the viscosity reducing effect.
- the said patent document 3 is disclosing the proximity
- the present invention intends to solve the above-described problems of the prior art, and even if a modified polymer is used for the rubber component, the filler containing silica is highly advanced without deteriorating the viscosity of the unvulcanized rubber.
- An object of the present invention is to provide a rubber composition for tires which is excellent in wear resistance and low loss properties, and has improved workability and workability, and a tire using this rubber composition.
- the present inventor has, as a diene polymer, a rubber component (A) containing a diene polymer having specific properties, and an inorganic filler (B) having silica.
- an activator (D) comprising at least one selected from a filler, a silane coupling agent (C), a vulcanization accelerator, a thiourea, and a thiadiazole, and a carbon number of 8 to
- a first composition comprising a glycerin fatty acid ester composition (E) having a glycerin fatty acid monoester content of 28 exceeding a specific value is prepared, and a first composition is prepared by kneading the first mixture.
- Manufacturing method With tire rubber composition produced by, it found that the rubber composition for a tire of the above objects and tire is obtained, it was accomplished the present invention.
- the diene polymer has at least one modified functional group having at least three modified functional groups capable of interacting with silica only in the range of 1 ⁇ 4 of the total chain length from the terminal.
- Rubber component (A) containing a diene polymer having a monomer structure of a diene polymer in between, a filler containing an inorganic filler (B) having silica, a silane coupling agent (C), and vulcanization Glycerol having a glycerin fatty acid monoester content of more than 85% by mass of an activating agent (D) consisting of at least one selected from accelerators, thioureas and thiadiazoles, and a glycerol fatty acid monoester having 8 to 28 carbon atoms
- Preparing a first mixture comprising a fatty acid ester composition (E) and preparing a preliminary composition by kneading the first mixture;
- Preparing a second mixture Preparing a first mixture comprising
- the diene polymer is a molecular chain comprising a step of forming a molecular chain of a diene polymer having no modified functional group, and a monomer structure of the modified functional group and the diene polymer. And having at least one modified functional group capable of interacting with the silica only in the range of 1 ⁇ 4 of the total chain length from the terminal.
- the rubber according to any one of (1) to (6) above, wherein the content of the diene polymer in the rubber component (A) is 10% by mass or more. Composition.
- the activator (D) is a guanidine.
- the glycerin fatty acid ester composition (E) described above is characterized in that the content of glycerin fatty acid monoester having 8 to 28 carbon atoms is more than 95% by mass.
- the amount of the glycerin fatty acid ester composition (E) is 0.2 to 7 parts by mass with respect to 100 parts by mass of the rubber component (A).
- a tire comprising the tire rubber composition according to any one of (1) to (12) above as a tread member.
- the filler containing silica is highly dispersed without deteriorating the viscosity of the unvulcanized rubber, and it is excellent in wear resistance and low loss, and greatly improves workability and workability.
- a tire rubber composition and a tire using the tire rubber composition for a tread member are provided.
- the rubber composition for tires of the present invention as a diene polymer, has three or more modified functional groups capable of interacting with silica only in the range of 1 ⁇ 4 of the total chain length from the end, Rubber component (A) containing a diene polymer having a monomer structure of a diene polymer between at least one of the modified functional groups, a filler containing an inorganic filler (B) having silica, and a silane coupling agent (C), and all or part of an activator (D) consisting of at least one selected from vulcanization accelerators, thioureas, and thiadiazoles, and a glycerol fatty acid monoester content of 8 to 28 carbon atoms.
- Rubber component (A) containing a diene polymer having a monomer structure of a diene polymer between at least one of the modified functional groups, a filler containing an inorganic filler (B) having silica, and a silane coupling agent (C
- a first mixture containing a glycerin fatty acid ester composition (E) in excess of 85% by mass is prepared, and a preliminary composition is prepared by kneading the first mixture, and a first step is added to the preliminary composition.
- Sulfur agent (F) A second step of preparing a rubber composition by preparing an added second mixture and kneading the second mixture, wherein the rubber composition is produced by a method for producing a rubber composition. .
- the rubber component contained in the rubber composition of the present invention has a diene polymer.
- the diene polymer has at least one modified functional group capable of interacting with the silica only in a range of 1 ⁇ 4 of the total chain length from the terminal, and at least one of the modified polymer. It has a monomer structure of a diene polymer between functional groups. In this diene polymer, the reason why the modified functional group is arranged only in the range of 1 ⁇ 4 of the total chain length from the end is that an effect of dispersing silica more efficiently can be obtained.
- the aggregate of silica can be efficiently broken by having three or more modified functional groups and having a monomer structure of a diene polymer between at least one modified functional group. .
- a more remarkable effect can be obtained as compared with a diene polymer having only individual characteristics.
- the diene polymer may be a modified diene copolymer or a modified diene homopolymer.
- a copolymer of a diene monomer and an aromatic vinyl compound or a homopolymer of a diene monomer is preferable, and 60 to 100% by weight of a diene monomer and 0 to 40% by weight of a diene monomer are preferable.
- a polymer (homopolymer) or copolymer obtained by polymerizing an aromatic vinyl compound is more preferable. This is because the rubber composition can be further improved in low loss, fracture characteristics, and wear resistance.
- examples of the aromatic vinyl compound as a monomer include styrene, ⁇ -methylstyrene, 1-vinylnaphthalene, 3-vinyltoluene, ethylvinylbenzene, divinylbenzene, 4-cyclohexylstyrene, and 2,4,6- Examples thereof include trimethylstyrene, and among these, styrene is particularly preferable.
- aromatic vinyl compounds may be used alone or in combination of two or more.
- the modified functional group capable of interacting with the silica forms a covalent bond between the functional group and the silica surface or an intermolecular force weaker than the covalent bond (ion-dipolar).
- This is a functional group capable of forming an electromagnetic force acting between molecules such as dipole interaction, dipole-dipole interaction, hydrogen bond, van der Waals force and the like.
- a nitrogen-containing functional group, a silicon-containing functional group, an oxygen-containing functional group, etc. are mentioned.
- the state having three or more modified functional groups only in the range of 1/4 of the total chain length from the end means that the diene polymer has a range of 1/4 from the end (range of 25% from the end).
- the end of the diene polymer means at least one of the ends, and the range having the modified functional group is 1 of the total chain length from one end (tip) of the diene polymer. / 4 range, or may be in the range of 1/4 of the total chain length from both ends.
- only one of the ends is It is preferable that it exists in.
- the state having a monomer structure of a diene polymer between at least one of the modified functional groups is only in a range of 1 ⁇ 4 of the total chain length from the end of the diene polymer.
- the monomer structure of the diene polymer between the modified functional group and the modified functional group eg, 1,3-butadiene when the diene polymer is polybutadiene
- a styrene-butadiene copolymer it means styrene and / or 1,3-butadiene
- the modified functional groups are not bonded to each other.
- the monomer structure of the diene polymer is present between all the modified functional groups (that is, all the modified functional groups in the diene polymer are directly bonded to each other). More preferred).
- the polymerization method for obtaining the diene polymer may be any of anionic polymerization, coordination polymerization, and emulsion polymerization.
- the modifying agent may be a modifying agent that reacts with the polymerization active terminal of anionic polymerization or coordination polymerization, or may be an amide portion of a lithium amide compound used as a polymerization initiator.
- a modifier may be copolymerized as a monomer.
- the molecular weight of the diene polymer is not particularly limited, but good fracture resistance and wear resistance can be obtained by setting the peak molecular weight to 50,000 or more, and good processing by setting the molecular weight to 700,000 or less. From the viewpoint of obtaining the properties, it is preferably 50,000 to 700,000. Further, in order to obtain good fracture resistance and wear resistance while obtaining good workability, 100,000 to 350,000 is desirable.
- the content of the diene polymer in the rubber component is preferably 10% by mass or more.
- the content of the diene polymer in the rubber component is less than 10% by mass, the effect of improving the dispersibility of the filler is small, and the effect of improving the low loss property, fracture characteristics, and wear resistance of the rubber composition. Because it is small.
- the modifier is a modifier containing a functional group having an interaction property with silica, and is preferably a modifier having at least one atom selected from a silicon atom, a nitrogen atom and an oxygen atom.
- the modifier is preferably an alkoxysilane compound.
- the alkoxysilane compound is not particularly limited, but is more preferably an alkoxysilane compound represented by the following general formula (I).
- R 1 and R 2 each independently represents a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- a is an integer of 0 to 2
- the OR 2 there is a plurality the plurality of OR 2 may be the same or different from each other, also in the molecule active proton is not included.
- alkoxysilane compound represented by the general formula (I) include, for example, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane.
- the modifier may be a hydrocarbyloxysilane compound.
- the hydrocarbyloxysilane compound is preferably a hydrocarbyloxysilane compound represented by the following general formula (II).
- a 1 is a divalent group that forms a cyclic structure by bonding to Si.
- R 21 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and n1 is 2 In these cases, they may be the same or different, and R 23 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- R 22 is a monovalent aliphatic or alicyclic group having 1 to 20 carbon atoms A hydrocarbon group or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, both of which are nitrogen atoms and / Or may contain a silicon atom, in the case of n2 is 2 or more, which may be the same or different from each other, or forms a ring together, R 24 is C 1 -C A divalent aliphatic or alicyclic hydrocarbon group of ⁇ 20 or a divalent aromatic hydrocarbon group of 6 to 18 carbon atoms, and when n4 is 2 or more, they may be the same or different.
- a trimethylsilyl group or a tert-butyldimethylsilyl group is preferable, and a trimethylsilyl group is particularly preferable.
- a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms means “a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms or 3 to 20 carbon atoms”.
- the hydrocarbyloxysilane compound represented by the general formula (II) is more preferably a hydrocarbyloxysilane compound represented by the following general formula (III).
- a 2 is NRa (Ra is 1 A trivalent silyl group or a tert-butyldimethylsilyl group, particularly preferably a trimethylsilyl group), or a sulfur group, a valent hydrocarbon group, a hydrolyzable group or a nitrogen-containing organic group.
- R 25 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms
- R 27 is a group having 1 to 20 carbon atoms.
- R 26 represents 1 to 20 monovalent aliphatic or alicyclic hydrocarbons
- R 28 is the same or different from each other, or together forms a ring
- R 28 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a divalent hydrocarbon
- the hydrocarbyloxysilane compound represented by the general formula (III) is more preferably a hydrocarbyloxysilane compound represented by the following general formula (IV) or (V).
- R 35 is a monovalent aliphatic or alicyclic carbon atom having 1 to 20 carbon atoms.
- R 36 is a divalent fat having 1 to 20 carbon atoms.
- R 37 represents a dimethylaminomethyl group, a dimethylaminoethyl group, a diethylaminomethyl group, a diethylaminoethyl group, a methylsilyl (methyl ) Aminomethyl group, methylsilyl (methyl) aminoethyl group, methylsilyl (ethyl) aminomethyl group, methylsilyl (ethyl) aminoethyl group, dimethylsilylaminomethyl group, dimethylsilylaminoethyl group, monovalent monovalent C 1-20 An aliphatic or alicyclic hydrocarbon group or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and when r1 is 2 or more, they are the same or different.
- R 38 is a hydrocarbyloxy group, monovalent 1-20 carbon atoms aliphatic or alicyclic hydrocarbon group or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms having 1 to 20 carbon atoms Yes, when r2 is 2, they may be the same or different.
- the modifier is preferably a hydrocarbyloxysilane compound having two or more nitrogen atoms represented by the following general formula (VI) or (VII).
- TMS is a trimethylsilyl group
- R 40 is a trimethylsilyl group, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic group having 6 to 18 carbon atoms.
- R 41 is a hydrocarbyloxy group having 1 to 20 carbon atoms, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic group having 6 to 18 carbon atoms.
- R 42 is a hydrocarbon group
- R 42 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- TMS is a trimethylsilyl group
- R 43 and R 44 are each independently a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a group having 6 to 18 carbon atoms.
- a divalent aromatic hydrocarbon group, R 45 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms;
- the plurality of R 45 may be the same or different.
- the hydrocarbyloxysilane compound represented by the general formula (II) is a hydrocarbyloxysilane compound represented by the following general formula (VIII).
- r1 + r2 3 (where r1 is an integer of 0 to 2, r2 is an integer of 1 to 3), TMS is a trimethylsilyl group, and R 46 is a carbon number.
- a plurality of R 47 or R 48 may be the same or different.
- the modifier is preferably a hydrocarbyloxysilane compound represented by the following general formula (IX).
- X is a halogen atom
- R 49 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a divalent aromatic hydrocarbon having 6 to 18 carbon atoms.
- R 50 and R 51 are each independently a hydrolyzable group, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic carbon group having 6 to 18 carbon atoms.
- R 50 and R 51 are bonded to form a divalent organic group, and R 52 and R 53 are each independently a halogen atom, a hydrocarbyloxy group, or a carbon number of 1 to 20 A monovalent aliphatic or alicyclic hydrocarbon group or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- R 50 and R 51 are preferably hydrolyzable groups, and the hydrolyzable group is preferably a trimethylsilyl group or a tert-butyldimethylsilyl group, and particularly preferably a trimethylsilyl group.
- hydrocarbyloxysilane compounds represented by the general formulas (II) to (IX) are preferably used as a modifier when the modified conjugated diene polymer is produced by anionic polymerization.
- the hydrocarbyloxysilane compounds represented by the general formulas (II) to (IX) are preferably alkoxysilane compounds.
- a suitable modifier for modifying the diene polymer by anionic polymerization specifically, 3,4-bis (trimethylsilyloxy) -1-vinylbenzene, 3,4-bis (trimethylsilyloxy) ) At least one compound selected from benzaldehyde, 3,4-bis (tert-butyldimethylsilyloxy) benzaldehyde, 2-cyanopyridine, 1,3-dimethyl-2-imidazolidinone and 1-methyl-2-pyrrolidone Is mentioned.
- the modifier is preferably an amide portion of a lithium amide compound used as a polymerization initiator in anionic polymerization.
- lithium amide compound examples include lithium hexamethylene imide, lithium pyrrolidide, lithium piperide, lithium heptamethylene imide, lithium dodecamethylene imide, lithium dimethylamide, lithium diethylamide, lithium dibutylamide, lithium dipropylamide, lithium diheptylamide. , Lithium dihexylamide, lithium dioctylamide, lithium di-2-ethylhexylamide, lithium didecylamide, lithium-N-methylpiverazide, lithium ethylpropylamide, lithium ethylbutyramide, lithium ethylbenzylamide and lithium methylphenethylamide A preferred example is at least one compound.
- the modifying agent that becomes the amide portion of lithium hexamethylene imide is hexamethyleneimine
- the modifying agent that becomes the amide portion of lithium pyrrolidide is pyrrolidine
- the modifying agent that becomes the amide portion of lithium piperide is piperidine.
- At least one compound selected from 2-cyanopyridine and 3,4-ditrimethylsilyloxybenzaldehyde is preferably exemplified.
- at least one compound selected from 3,4-ditrimethylsilyloxybenzaldehyde and 4-hexamethyleneiminoalkylstyrene is preferably exemplified.
- the modifier preferably used in these emulsion polymerizations is preferably copolymerized as a monomer containing nitrogen atoms and / or silicon atoms during emulsion polymerization.
- the diene polymer preferably has a peak molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC) of 50,000 to 700,000.
- GPC gel permeation chromatography
- the diene polymer preferably has a glass transition point (Tg) measured by a differential scanning calorimeter (DSC) of 0 ° C. or less.
- the rubber component may be a natural rubber (NR), a styrene-butadiene copolymer (SBR), a polybutadiene rubber (BR), a poly, in addition to the diene polymer described above.
- IR isoprene rubber
- IIR butyl rubber
- ethylene-propylene copolymer etc.
- these rubber components may be used alone or as a blend of two or more.
- the content of the diene polymer in the rubber component is preferably 10% by mass or more.
- the content of the diene polymer in the rubber component is less than 10% by mass, the effect of improving the dispersibility of the filler is small, and the effect of improving the low loss property, fracture characteristics, and wear resistance of the rubber composition. Because it is small.
- a step of forming a molecular chain of a diene polymer having no modified functional group (a range of 3/4 of the total chain length from the end of the diene polymer), and
- the above-mentioned modified diene system is obtained by passing through a step of forming a molecular chain comprising the functional group and the monomer structure of the diene polymer (in the range of 1/4 of the total chain length from the end of the diene polymer).
- a polymer can be produced. Which is the step of forming the molecular chain of the diene polymer not having the modified functional group and the step of forming the molecular chain composed of the functional group and the monomer structure of the diene polymer? You may go first.
- examples of the formation of a molecular chain composed of the functional group and the monomer structure of the diene polymer include the following methods (1) to (4).
- a method of alternately charging a compound having (4) A monomer component of the diene polymer and a site that can be copolymerized with the monomer component and can be introduced with a modified functional group by chemically reacting with the modified functional group-containing compound. And a compound having the same at the same time.
- all the modified functional groups have a monomer structure of the diene polymer (that is, all the modified functional groups in the diene polymer are directly
- the above-described method 1 or 3 is preferable from the viewpoint that a structure that is not bonded) can be more reliably formed, and the above-described method 2 or 4 is preferable in order to shorten the time required for production and increase productivity.
- Examples of the compound having a site which can be copolymerized with the monomer component of the diene polymer and can introduce a modified functional group by chemically reacting with the modified functional group-containing compound include p -Methylstyrene and the like.
- silica and inorganic compounds represented by the following general formula (X) can be used as the filler containing the inorganic filler (B) having silica used in the rubber composition for tires of the present invention.
- M 1 is a metal selected from the group consisting of aluminum, magnesium, titanium, calcium, and zirconium, oxides or hydroxides of these metals, and hydrates thereof, Or at least one selected from carbonates of these metals, and a, x, y and z are each an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10 is there.
- the inorganic compound when both x and z are 0, is at least one metal selected from aluminum, magnesium, titanium, calcium and zirconium, these metal oxides or metal water. Oxides as well as hydrates or carbonates of these metals.
- silica is preferable from the viewpoint of achieving both low rolling properties and wear resistance.
- Any commercially available silica can be used, among which wet silica, dry silica, and colloidal silica are preferably used, and wet silica is particularly preferably used.
- the BET specific surface area (measured according to ISO 5794/1) of silica is preferably 40 to 350 m 2 / g. Silica having a BET surface area within this range has an advantage that both rubber reinforcement and dispersibility in a rubber component can be achieved.
- silica having a BET surface area in the range of 80 to 350 m 2 / g is more preferable, and silica having a BET surface area in the range of 120 to 350 m 2 / g is particularly preferable.
- Examples of the inorganic compound represented by the general formula (X) include alumina (Al 2 O 3 ) such as ⁇ -alumina and ⁇ -alumina, and alumina monohydrate (Al 2 O 3 .H) such as boehmite and diaspore. 2 O), Gibbsite, Bayerite, etc.
- alumina Al 2 O 3
- Al 2 O 3 .H alumina monohydrate
- boehmite and diaspore. 2 O Gibbsite, Bayerite, etc.
- M 1 in the general formula (X) is at least one selected from aluminum metal, aluminum oxide or hydroxide, hydrates thereof, and aluminum carbonate.
- These inorganic compounds represented by the general formula (X) may be used alone or in combination of two or more.
- the average particle size of these inorganic compounds is preferably in the range of 0.01 to 10 ⁇ m, more preferably in the range of 0.05 to 5 ⁇ m, from the viewpoint of kneading workability, wear resistance, and wet grip performance.
- the inorganic filler (B) in the present invention may be used alone or in combination with silica and one or more inorganic compounds represented by the general formula (X).
- the content of the silica is preferably 60 to 250 parts by mass, more preferably 70 to 150 parts by mass, and 75 to 120 parts by mass with respect to 100 parts by mass of the rubber component. Is particularly preferred.
- the content of the silica is less than 60 parts by mass, since the amount of silica is small, there is a possibility that the effect of improving the fracture characteristics and wear resistance may not be sufficiently obtained, and when the content exceeds 250 parts by mass. Further, since the amount of silica is too large, the elongation and processability of the rubber composition may be deteriorated.
- the filler of the tire rubber composition according to the present invention may contain carbon black in addition to the inorganic filler (B) described above, if desired.
- carbon black is not particularly limited.
- the nitrogen adsorption specific surface area (N 2 SA, measured according to JIS K 6217-2: 2001) is preferably 30 to 250 m 2 / g.
- This carbon black may be used individually by 1 type, and may be used in combination of 2 or more type. In the present invention, carbon black is not included in the inorganic filler (B).
- the inorganic filler (B) of the tire rubber composition according to the present invention is preferably used in an amount of 20 to 120 parts by mass with respect to 100 parts by mass of the rubber component (A). If it is 20 parts by mass or more, it is preferable from the viewpoint of securing wet performance, and if it is 120 parts by mass or less, it is preferable from the viewpoint of improving low heat generation. Further, it is more preferable to use 30 to 100 parts by mass.
- the filler of the tire rubber composition according to the present invention is preferably used in an amount of 20 to 150 parts by mass with respect to 100 parts by mass of the rubber component (A).
- the inorganic filler (B) is preferably 40% by mass or more from the viewpoint of achieving both wet performance and low heat build-up, and more preferably 70% by mass or more.
- the silane coupling agent (C) used in the tire rubber composition of the present invention is not particularly limited, and various general-purpose silane coupling agents can be used.
- the following general formulas (XI) and (XII) are used.
- the compound is one or more selected from the group consisting of the compounds represented.
- the tire rubber composition according to the present invention is further excellent in workability at the time of rubber processing, and the tire rubber composition having better wear resistance. Will be obtained.
- the following general formulas (XI) and (XII) will be described in order.
- R 1 s may be the same or different and each is a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms or a linear or branched alkoxyalkyl group having 2 to 8 carbon atoms.
- the groups R 2 may be the same or different, each of which is a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms, and R 3 may be the same or different, each having a straight chain of 1 to 8 carbon atoms.
- silane coupling agent (C) represented by the general formula (XI) include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, and bis (3-methyl Dimethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, bis (3-methyldimethoxysilylpropyl) Disulfide, bis (2-triethoxysilylethyl) disulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-trimethoxysilylpropyl) trisulfide, bis (3-methyldimethoxysilylpropyl) trisulfide Bis (2-trie
- R 4 s may be the same or different and are each a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms or a linear or branched alkoxy group having 2 to 8 carbon atoms.
- An alkyl group, R 5 may be the same or different, each is a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms, and R 6 may be the same or different and each has 1 to 8 linear or branched alkylene groups,
- R 7 is represented by the general formulas (—S—R 8 —S—), (—R 9 —S m1 —R 10 —) and (—R 11 —S m2 —R 12).
- R 8 ⁇ R 13 may be the same or different, each a divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms), 3 carbon atoms
- a divalent alicyclic hydrocarbon group of ⁇ 20, a divalent aromatic group or a divalent organic group containing a hetero element other than sulfur and oxygen, m1, m , M3 may be the same or different and each is an average value of 1 or more and less than 4.
- k may be the same or different, and each is an average value of 1 to 6
- s and t are They may be the same or different and each has an average value of 0 to 3, provided that both s and t are not 3. ]
- silane coupling agent (C) represented by the general formula (XII), Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 2 — (CH 2 ) 6 —S 2 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 2 — (CH 2 ) 10 —S 2 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 3 — (CH 2 ) 6 —S 3 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 4 — (CH 2 ) 6 —S 4 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , Average composition formula (
- the silane coupling agent (C) used in the present invention is particularly preferably a compound represented by the general formula (XI) among the compounds represented by the general formulas (XI) and (XII). This is because the activator (D) such as a vulcanization accelerator tends to activate the polysulfide bond site that reacts with the rubber component (A).
- a silane coupling agent (C) may be used individually by 1 type, and may be used in combination of 2 or more type.
- the amount of the silane coupling agent (C) used in the present invention is preferably 1 to 20% by mass of the inorganic filler (B). If the amount is less than 1% by mass, the effect of improving the low heat build-up of the tire rubber composition is difficult to be exhibited. On the other hand, if the amount exceeds 20% by mass, the cost of the tire rubber composition becomes excessive and the economic efficiency is lowered. is there. Further, it is more preferably 3 to 20% by mass of the inorganic filler (B), and particularly preferably 4 to 10% by mass of the inorganic filler (B).
- Activators (D) such as vulcanization accelerators
- guanidines examples include 1,3-diphenylguanidine (DPG), 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, dicatechol borate di-o-tolylguanidine salt, 1,3 -Di-o-cumenyl guanidine, 1,3-di-o-biphenyl guanidine, 1,3-di-o-cumenyl-2-propionyl guanidine, and the like can be mentioned.
- DPG 1,3-diphenylguanidine
- 1,3-di-o-tolylguanidine 1-o-tolylbiguanide
- dicatechol borate di-o-tolylguanidine salt 1,3 -Di-o-cumenyl guanidine
- 1,3-di-o-biphenyl guanidine 1,3-di-o-cumenyl-2-propionyl guanidine
- 1,3-diphenyl guanidine, 1,3- Di-o-tolylguanidine and 1-o-tolylbiguanide are preferred because of their high reactivity, and 1,3-diphenylguanidine (DPG) is particularly preferred because of its higher reactivity.
- sulfenamides examples include N-cyclohexyl-2-benzothiazolylsulfenamide, N, N-dicyclohexyl-2-benzothiazolylsulfenamide, N-tert-butyl-2-benzo Thiazolylsulfenamide, N-oxydiethylene-2-benzothiazolylsulfenamide, N-methyl-2-benzothiazolylsulfenamide, N-ethyl-2-benzothiazolylsulfenamide, N-propyl- 2-benzothiazolylsulfenamide, N-butyl-2-benzothiazolylsulfenamide, N-pentyl-2-benzothiazolylsulfenamide, N-hexyl-2-benzothiazolylsulfenamide, N- Pentyl-2-benzothiazolylsulfenamide, N-octyl- -Benzothiazolyls
- thiazoles examples include 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, zinc salt of 2-mercaptobenzothiazole, cyclohexylamine salt of 2-mercaptobenzothiazole, 2- (N , N-diethylthiocarbamoylthio) benzothiazole, 2- (4′-morpholinodithio) benzothiazole, 4-methyl-2-mercaptobenzothiazole, di- (4-methyl-2-benzothiazolyl) disulfide, 5-chloro- 2-mercaptobenzothiazole, 2-mercaptobenzothiazole sodium, 2-mercapto-6-nitrobenzothiazole, 2-mercapto-naphtho [1,2-d] thiazole, 2-mercapto-5-methoxybenzothiazole, 6-amino -2-Merka DOO benzothiazole and the like. Of these, 2-mercaptobenzothiazole (
- thiurams examples include tetramethyl thiuram disulfide, tetraethyl thiuram disulfide, tetrapropyl thiuram disulfide, tetraisopropyl thiuram disulfide, tetrabutyl thiuram disulfide, tetrapentyl thiuram disulfide, tetrahexyl thiuram disulfide, tetraheptyl thiuram disulfide, Tetraoctyl thiuram disulfide, tetranonyl thiuram disulfide, tetradecyl thiuram disulfide, tetradodecyl thiuram disulfide, tetrastearyl thiuram disulfide, tetrabenzyl thiuram disulfide, tetrakis (2-ethylhex
- dithiocarbamates examples include zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, zinc dipropyldithiocarbamate, zinc diisopropyldithiocarbamate, zinc dibutyldithiocarbamate, zinc dipentyldithiocarbamate, zinc dihexyldithiocarbamate, and diheptyl.
- Zinc dithiocarbamate zinc dioctyldithiocarbamate, zinc di (2-ethylhexyl) dithiocarbamate, zinc didecyldithiocarbamate, zinc diddecyldithiocarbamate, zinc N-pentamethylenedithiocarbamate, zinc N-ethyl-N-phenyldithiocarbamate, Zinc dibenzyldithiocarbamate, copper dimethyldithiocarbamate, copper diethyldithiocarbamate, dip Copper pyrdithiocarbamate, copper diisopropyldithiocarbamate, copper dibutyldithiocarbamate, copper dipentyldithiocarbamate, copper dihexyldithiocarbamate, copper diheptyldithiocarbamate, copper dioctyldithiocarbamate, copper di (2-ethylhexyl)
- zinc dibenzyldithiocarbamate zinc N-ethyl-N-phenyldithiocarbamate, zinc dimethyldithiocarbamate and copper dimethyldithiocarbamate are preferred because of their high reactivity.
- xanthates examples include zinc methylxanthate, zinc ethylxanthate, zinc propylxanthate, zinc isopropylxanthate, zinc butylxanthate, zinc pentylxanthate, zinc hexylxanthate, heptylxanthate Zinc, zinc octylxanthate, zinc 2-ethylhexylxanthate, zinc decylxanthate, zinc dodecylxanthate, potassium methylxanthate, potassium ethylxanthate, potassium propylxanthate, potassium isopropylxanthate, potassium butylxanthate, pentyl Potassium xanthate, potassium hexylxanthate, potassium heptylxanthate, octylxan Potassium genate, potassium 2-ethylhexylxanthate,
- thiourea examples include thiourea, N, N′-diphenylthiourea, trimethylthiourea, N, N′-diethylthiourea, N, N′-dimethylthiourea, and N, N ′.
- -Dibutylthiourea ethylenethiourea, N, N'-diisopropylthiourea, N, N'-dicyclohexylthiourea, 1,3-di (o-tolyl) thiourea, 1,3-di (p-tolyl) thiourea 1,1-diphenyl-2-thiourea, 2,5-dithiobiurea, guanylthiourea, 1- (1-naphthyl) -2-thiourea, 1-phenyl-2-thiourea, p-tolylthiourea, o -Tolylthiourea and the like.
- thiourea N, N′-diethylthiourea, trimethylthiourea, N, N′-diphenylthiourea and N, N′-dimethylthiourea are preferable because of their high reactivity.
- the thiadiazole to be used include thiadiazole, dimercaptothiadiazole, and monosubstituted products thereof.
- dimercaptothiadiazole include 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-1,3,4-thiadiazole 5-thiobenzoate, and monosubstituted compounds include sodium salts. , Potassium, lithium, ammonium and zinc salts.
- activators (D) such as vulcanization accelerators are guanidines, thioureas and thiadiazoles having higher reactivity, and particularly preferred are 1,3-diphenylguanidine (DPG), thiourea, N , N′-diethylthiourea, 2,5-dimercapto-1,3,4-thiadiazole.
- DPG 1,3-diphenylguanidine
- the molar amount of the activator (D) such as a vulcanization accelerator in the rubber composition in the first step of kneading is 0.1 to 1.0 times the molar amount of the silane coupling agent (C).
- the number of molecules (number of moles) of the activator (D) such as the vulcanization accelerator is 0.3 to 1.0 times the number of molecules (number of moles) of the silane coupling agent (C).
- the total content of the activator (D) is 0.3 to 6 parts by weight, more preferably 0.3 to 2.5 parts by weight, particularly preferably 100 parts by weight of the rubber component. Is preferably 0.5 to 1.5 parts by mass. If the total content of this activator (D) is less than 0.3 parts by mass, the low-loss effect is low. On the other hand, if it exceeds 6 parts by mass, the effect on the viscosity and shrinkage is large and the uniformity is deteriorated. I will let you. Since the activator (D) such as a vulcanization accelerator is also used as a sulfur vulcanization accelerator, it is not necessary to add all of it in the first first step, and it becomes the final stage of the first step kneading. In the second step, an appropriate amount (part) may be blended as desired.
- the activator (D) such as a vulcanization accelerator is also used as a sulfur vulcanization accelerator, it is not necessary to add all of it in the first first step, and it becomes the
- the glycerin fatty acid ester in the glycerin fatty acid ester composition used in the present invention is one in which a fatty acid (carbon number of 8 to 28) is ester-bonded to at least one of the three OH groups possessed by glycerin. Depending on the number, glycerin fatty acid monoester, glycerin fatty acid diester, and glycerin fatty acid triester are separated.
- the glycerin fatty acid ester composition (E) used in the present invention has a glycerin fatty acid monoester content of 8 to 28 carbon atoms that exceeds 85% by mass. For example, glycerin fatty acid diester or glycerin fatty acid triester or glycerin may be included.
- the fatty acid constituting the glycerin fatty acid ester activates the silane coupling agent (C) with the vulcanization accelerator (D), and the unvulcanized rubber by the activator (D) such as the vulcanization accelerator.
- fatty acid having 8 to 28 carbon atoms, preferably 8 to 22 carbon atoms, more preferably 10 to 18 carbon atoms, and still more preferably 12 to 18 carbon atoms.
- the fatty acid may be saturated, unsaturated, linear or branched, but is particularly preferably a linear saturated fatty acid.
- fatty acid examples include capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, oleic acid, linoleic acid and the like. Lauric acid, palmitic acid and stearic acid are preferred, and palmitic acid and stearic acid are particularly preferred. Note that fatty acids having less than 8 carbon atoms have a low affinity with the polymer, and bloom tends to occur. On the other hand, in the case of fatty acids having more than 28 carbon atoms, the improvement in workability improvement effect is not different from that of 28 or less carbon atoms, and the cost increases, which is not preferable.
- the glycerin fatty acid ester composition (E) used in the present invention has 8 to 28 carbon atoms in the fatty acid, and the glycerin fatty acid monoester content in the composition exceeds 85% by mass.
- the processability is prevented from deteriorating, the vulcanization speed is also delayed, and the processability is improved by reducing the viscosity of the silica-blended unvulcanized rubber, High performance such as heat resistance can be achieved.
- the monoester content in the glycerin fatty acid ester composition is 85% by mass or less, the filler containing silica cannot be highly dispersed, and the effects of the present invention are wear resistance and low loss. Therefore, it is impossible to achieve a high balance between workability and workability. Therefore, in the glycerin fatty acid ester composition, the monoester content is preferably 90% by mass or more, and more preferably 95% by mass from the viewpoint of reducing the unvulcanized rubber viscosity. Further, from the viewpoint of rubber physical properties and production of the glycerin fatty acid ester composition, the monoester content is preferably 99% by mass or less. That is, the most preferable numerical range is 95 to 99% by mass.
- the total content of the glycerin fatty acid diester and the glycerin fatty acid triester is preferably less than 10% by mass from the viewpoint of preventing an excessive decrease in rubber physical properties (such as a decrease in storage elastic modulus) after vulcanization. Yes, more preferably 5% by mass or less, still more preferably 3% by mass or less, and may be 0.3% by mass or more from the viewpoint of productivity.
- glycerin may remain as an unreacted raw material.
- the content of glycerin is preferably less than 5% by mass, more preferably 3% by mass or less, from the viewpoint of suppressing deterioration in heat resistance, and 0.3% by mass from the viewpoint of productivity. % Or more.
- the glycerin fatty acid ester composition may be used in two or more different glycerin fatty acid monoester and diester contents.
- the glycerin fatty acid ester composition to be used can be produced by an esterification method produced from glycerin obtained by decomposing fats and oils and a fatty acid, a transesterification method using fats and oils and glycerin as raw materials, and the like.
- Examples of the method for producing a controlled amount of monoester in the ester composition include the following methods 1) to 3). 1) A method for controlling the equilibrium composition of esterification by changing the charging ratio of the fatty acid component and the glycerin component in the esterification method or transesterification method. Glycerin can be further removed by distillation.
- Glycerin fatty acid esters with reduced environmental impact can be used by using the above-mentioned raw oils and fatty acids derived from natural products. Furthermore, as the glycerin fatty acid ester composition used in the present invention, a commercially available product with a controlled monoester amount can be used. Examples of commercially available products include stearic acid monoglyceride (Excel manufactured by Kao Corporation). S-95, monoester amount exceeding 95% by mass).
- the monoglyceride content in the glycerin fatty acid ester composition refers to that obtained by GPC analysis (gel permeation chromatography) according to the following formula (XIII): It means the area ratio in GPC analysis of monoglyceride with respect to the total of glycerin, monoglyceride, diglyceride (glycerin fatty acid diester) and triglyceride (glycerin fatty acid triester).
- G is the glycerin area of GPC
- MG is the monoglyceride area of GPC
- DG is the diglyceride area of GPC
- TG is the triglyceride area of GPC.
- the measurement conditions for GPC are as follows. [GPC measurement conditions] GPC measurement was performed using the following measuring apparatus, and THF (tetrahydrofuran) as an eluent was flowed at a flow rate of 0.6 ml / min, and the column was stabilized in a constant temperature bath at 40 ° C. The measurement was performed by injecting 10 ⁇ L of a 1% by mass sample solution dissolved in THF.
- the diglyceride content in the glycerin fatty acid ester composition means an area ratio in the GPC analysis of diglyceride with respect to the total of glycerin, monoglyceride, diglyceride and triglyceride.
- the glycerol fatty acid ester composition which controlled the amount of monoester which can be used is given, for example, the fatty acid C8 glyceryl caprylate containing composition, the fatty acid C10 glyceryl decanoate containing composition, fatty acid, for example Glyceryl laurate-containing composition with 12 carbon atoms, glyceryl myristate-containing composition with 14 carbon atoms of fatty acid, glyceryl palmitate with 16 carbon atoms of fatty acid, glyceryl stearate-containing composition with 18 carbon atoms of fatty acid , Glyceryl behenate-containing compositions with fatty acid 22 carbon atoms, glyceryl montanate-containing compositions with 28 carbon atoms of fatty acids, among them, glyceryl laurate-containing compositions, glyceryl palmitate-containing compositions, Glyceryl stearate containing compositions are preferred.
- the blending amount of the glycerin fatty acid ester composition used in the present invention is preferably 0.2 parts by mass or more, more preferably 0.3 parts, from the viewpoint of reducing the viscosity of the unvulcanized rubber with respect to 100 parts by mass of the rubber component. From the viewpoint of suppressing an excessive decrease in physical properties of rubber after vulcanization (such as a decrease in storage elastic modulus), preferably 0.5 parts by mass or more, more preferably 0.5 parts by mass or more, and particularly preferably 1 part by mass or more.
- Vulcanizing agent (F) examples of the vulcanizing agent used in the present invention include sulfur and sulfur such as insoluble sulfur, and the blending amount thereof is preferably 0.1 to 10.0 parts by mass with respect to 100 parts by mass of the rubber component. More preferably, it is 1.0 to 5.0 parts by mass.
- the rubber composition for tires of the present invention has three or more modified functional groups capable of interacting with silica only in the range of 1 ⁇ 4 of the total chain length from the end, Rubber component (A) containing a diene polymer having a monomer structure of a diene polymer between at least one of the modified functional groups, a filler containing an inorganic filler (B) having silica, and a silane coupling agent (C), and all or part of an activator (D) consisting of at least one selected from vulcanization accelerators, thioureas, and thiadiazoles, and a glycerol fatty acid monoester content of 8 to 28 carbon atoms.
- Rubber component (A) containing a diene polymer having a monomer structure of a diene polymer between at least one of the modified functional groups, a filler containing an inorganic filler (B) having silica, and a silane coupling agent (C), and all or part of an activator
- a first mixture containing a glycerin fatty acid ester composition (E) in excess of 85% by mass is prepared, and a preliminary composition is prepared by kneading the first mixture, and a first step is added to the preliminary composition.
- the activator (D) consisting of at least one selected from vulcanization accelerators, thioureas, and thiadiazoles, a glycerol fatty acid monoester having 8 to 28 carbon atoms
- a glycerol fatty acid monoester having 8 to 28 carbon atoms
- Adding and kneading the glycerin fatty acid ester composition (E) whose content exceeds 85% by mass enhances the activity of the coupling function of the silane coupling agent (C) and disperses the inorganic filler (B).
- the activator (D) such as a vulcanization accelerator, the content of glycerol fatty acid monoester having 8 to 28 carbon atoms is 85% by mass
- the activator (D) such as a vulcanization accelerator
- the content of glycerol fatty acid monoester having 8 to 28 carbon atoms is 85% by mass
- the rubber component (A) containing the silane coupling agent (C) and the diene polymer having the above characteristics is because the reaction with) can proceed.
- the lower limit value of this time is more preferably 30 seconds or more, and the upper limit value is more preferably 150 seconds or less, and particularly preferably 120 seconds or less. If this time is 10 seconds or more, the reaction of (B) and (C) can be sufficiently advanced. Even if this time exceeds 180 seconds, the reaction of (B) and (C) has already proceeded sufficiently, so that it is difficult to enjoy further effects, and the upper limit is preferably set to 180 seconds.
- the maximum temperature of the rubber composition in the rubber composition in the first step of kneading is preferably 120 to 190 ° C. This is because the reaction between the inorganic filler (B) containing silica and the silane coupling agent (C) sufficiently proceeds. From this viewpoint, the maximum temperature of the rubber composition in the first stage of kneading is more preferably 130 to 190 ° C, and further preferably 140 to 180 ° C.
- the kneading step of the tire rubber composition in the present invention includes a rubber component (A) containing the above-mentioned diene polymer, a filler containing an inorganic filler (B) having silica, a silane coupling agent (C), And all or part of the activator (D) consisting of at least one selected from vulcanization accelerators, thioureas and thiadiazoles, and the content of glycerol fatty acid monoester having 8 to 28 carbon atoms exceeds 85% by mass
- a first mixture containing a glycerin fatty acid ester composition (E) is prepared, and a preliminary composition is prepared by kneading the first mixture, and a vulcanizing agent (F) is added to the preliminary composition.
- a second step of preparing a rubber composition by kneading the second mixture, and a rubber composition for a tire manufactured by a method for manufacturing a rubber composition comprising: And includes at least two steps of a first kneading step that does not include the vulcanizing agent (F) and a second step of kneading that includes the vulcanizing agent. ) May not be included.
- compounding agents usually used in the rubber industry such as anti-aging agents, softeners, stearic acid, zinc white, vulcanization accelerators, etc.
- various compounding agents are kneaded in the first step or the second step of kneading, or in the intermediate stage between the first step and the second step, if necessary.
- a Banbury mixer, a roll, an intensive mixer, or the like is used as the kneading apparatus in the present invention.
- the tire rubber composition of the present invention is obtained by kneading, heating, extruding, etc. in the above process, and after molding, vulcanization is performed, and tire tread, under tread, carcass, sidewall, bead It can use suitably for the use of the tire member of tires, such as a part.
- the tire rubber composition configured as described above exhibits the effect of reducing wear resistance and rolling resistance by highly dispersing the filler containing silica without deteriorating the viscosity of the unvulcanized rubber.
- the tire rubber composition has greatly improved workability and workability. That is, the rubber composition for tires of the present invention has three or more modified functional groups capable of interacting with silica as a diene polymer only in a range of 1 ⁇ 4 of the total chain length from the end.
- a rubber component (A) containing a diene polymer having a monomer structure of a diene polymer between at least one of the modified functional groups, a filler containing an inorganic filler (B) having silica, and a silane cup Contains a ring agent (C) and all or part of an activator (D) consisting of at least one selected from vulcanization accelerators, thioureas and thiadiazoles, and a glycerol fatty acid monoester having 8 to 28 carbon atoms
- a first step of preparing a first mixture containing a glycerin fatty acid ester composition (E) in an amount exceeding 85% by mass and preparing the preliminary composition by kneading the first mixture; and the preliminary composition In addition Preparing a second mixture to which the agent (F) has been added, and preparing a rubber composition by kneading the second mixture, which is produced by a method for producing a rubber composition comprising a second
- silica is used.
- Hydrophobic surface of inorganic filler (B) by adding at least one glycerin fatty acid ester composition having a fatty acid number of 8 to 28 which is controlled to exceed 85% by mass of the monoester that also acts as a lubricant, the activity of a vulcanization accelerator or the like
- the silane coupling agent (C) is activated by the agent (D), and the viscosity of the unvulcanized rubber is deteriorated by the activator (D) consisting of at least one selected from vulcanization accelerators, thioureas, and thiadiazoles.
- an inorganic filler (B) such as silica as a monoester alone, and also has a lubricant action, so that the viscosity is further reduced, and the hydrophobic action and the lubricant action of silica etc. Due to the plasticizing action, the deterioration of viscosity is largely suppressed, and the dispersion of the filler containing the inorganic filler (B) containing silica can be maintained at a high level. It is presumed that the workability and workability are improved by reducing the viscosity, the wear resistance and rolling resistance (RR) are improved, and the low heat build-up is also improved.
- RR wear resistance and rolling resistance
- the tire of the present invention is characterized by using the tire rubber composition for a tread member.
- a tire using the rubber composition as a tread member, particularly a tread rubber, is excellent in low loss property, fracture characteristics, and wear resistance.
- the tire of the present invention is not particularly limited except that the tire rubber composition described above is used for any of the tread members, and can be produced according to a conventional method.
- inert gas such as nitrogen, argon, helium other than normal or the air which adjusted oxygen partial pressure, can be used.
- Modified polymers A to M were produced according to the following procedure.
- the polymerization conversion at this time was almost 100%. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer B.
- BHT 2,6-di-t-butyl-p-cresol
- the polymerization reaction system was charged with a cyclohexane solution of 1,3-butadiene containing 12 g of 1,3-butadiene, a cyclohexane solution of styrene containing 3 g of styrene, and 2.85 mmol of 3,4-bis (trimethylsilyl) as a modifier.
- a mixed solution of (oxy) -1-vinylbenzene was added at once, and the polymerization reaction was further carried out for 1 hour. The polymerization conversion at this time was almost 100%.
- a cyclohexane solution of 1,3-butadiene containing 15 g of 1,3-butadiene and a cyclohexane solution of styrene containing 3.48 g of styrene and 0.27 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion rate reached 99%, 0.57 mmol of tetraethyl orthosilicate was added as a terminal modifier and reacted for 15 minutes.
- the polymer molecular properties of the modified polymers A to M are the bound styrene content (wt%), vinyl viscosity (wt%), Mooney viscosity (ML 1 + 4/100 ° C.), peak average molecular weight, and glass transition temperature as follows: went.
- the styrene unit content in the modified polymer was calculated from the integral ratio of the 1 H-NMR spectrum.
- the vinyl viscosity (wt%) was calculated from the integral ratio of the 1 H-NMR spectrum.
- the Mooney viscosity of the modified polymer was measured at 100 ° C. using an RLM-01 type tester manufactured by Toyo Seiki Co., Ltd.
- glycerin fatty acid ester composition A As the glycerin fatty acid ester composition to be used, the following two glycerin fatty acid ester compositions A and B were used.
- Glycerin fatty acid ester composition A According to the method described in Production Example 1 of International Publication No. 2014/098155, a fatty acid was synthesized by changing from octanoic acid to an equivalent molar amount of a palm-derived hardened fatty acid, and further prepared by molecular distillation. The glycerin fatty acid monoester content of the obtained glycerin fatty acid ester composition A was 97% by mass.
- glycerin fatty acid ester composition B (glycerin fatty acid ester having 16 fatty acid carbon atoms) was produced.
- the resulting product was subjected to adsorption filtration under pressure to obtain a monoglyceride-containing composition.
- the composition obtained was measured by GPC and calculated by the method described above to determine the composition of each component.
- the content of glycerin fatty acid monoester is 64% by mass
- the content of glycerin fatty acid diester is 34% by mass
- the content of glycerin fatty acid triester is 1% by mass
- the content was 1% by mass.
- Examples 1 to 18 and Comparative Examples 1 to 11 A rubber composition for a tire was prepared by the following methods with the formulation shown in Table 2 below. (Method for preparing rubber compositions for tires of Examples 1 to 18 and Comparative Examples 3 and 6 to 11) In Examples 1 to 18 and Comparative Examples 3 and 6 to 11, each component in the column of the first step of kneading in Table 3 below so that the maximum temperature of the rubber composition in the first step of kneading is 150 ° C. Were adjusted and kneaded with a Banbury mixer to prepare a rubber composition for each tire.
- a rubber composition for a tire was prepared by kneading a second mixture obtained by adding sulfur or the like as a vulcanizing agent (F).
- * 1 to * 15 are as follows.
- the present invention If the kneading of the present invention is not used even if the coalescence or diene polymer outside the scope of the present invention, the glycerin fatty acid ester composition of the present invention or the glycerin fatty acid ester composition outside the scope of the present invention is used, the present invention It can be seen that the effects of the invention, such as kneaded skin (workability), wear resistance, and low loss, cannot be achieved at a high level.
- Examples 1 to 18 that are within the scope of the present invention, that is, the diene polymer and glycerin fatty acid ester that are kneaded through the first and second processes of the present invention and are within the scope of the present invention. It has been found that when the composition is used, the effects of the present invention, such as kneaded skin (workability), wear resistance, and low loss, can be achieved at a high level.
- the rubber composition for tires of the present invention can be suitably used for tire members such as tire treads, undertreads, carcass, sidewalls, bead portions, and the like, particularly for tread members.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Tires In General (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Provided is a rubber composition for tyres, with excellent dispersion of a silica-containing filler, wear resistance, reduced rolling resistance, and dramatically improved workability, without detriment to unvulcanized rubber viscosity. Also provided is a tyre using said rubber composition in the tread member thereof. A rubber composition for tyres produced using a method for producing a rubber composition for tyres that comprises: a first step in which a first mixture is prepared so as to contain a rubber component (A) that includes, as a diene polymer, a diene polymer having a monomer structure of a diene polymer between at least one modified functional group, and which has at least three modified functional groups that can interact with silica, only within the range of 1/4 of the chain length from the terminal, a filler containing an inorganic filler (B) having silica, a silane coupling agent (C), all or part of at least one activator (D) selected from among a vulcanization promoter, a thiourea and a thiadiazole, and a glycerine fatty acid ester composition (E) containing more than 85% by mass of a C8-28 glycerine fatty acid monoester, said mixture subsequently being mixed to prepare a preliminary composition; and a second step in which a second mixture obtained by adding a vulcanizing agent (F) to the preparatory composition is prepared and kneaded to prepare a rubber composition.
Description
本発明は、タイヤ用ゴム組成物に関し、更に詳しくは、乗用車、トラック、バスなどに使用するタイヤ用に好適なタイヤ用ゴム組成物及びタイヤに関する。
The present invention relates to a tire rubber composition, and more particularly to a tire rubber composition and a tire suitable for tires used for passenger cars, trucks, buses and the like.
近年、環境問題への関心の高まりに伴う世界的な二酸化炭素排出規制の動きに関連して、自動車の低燃費化に対する要求が強まりつつある。このような要求に対応するため、タイヤ性能についても転がり抵抗の低減が求められている。従来、タイヤの転がり抵抗を減少させる手法として、タイヤ構造を最適化する手法も検討されてきたが、タイヤに適用するゴム組成物について、tanδが低く(以下、「低ロス性」という)、低発熱性の優れたものを用いることが、現在一般的な手法として行われている。
In recent years, there has been an increasing demand for lower fuel consumption of automobiles in connection with the movement of global carbon dioxide emission regulations due to increasing interest in environmental issues. In order to meet such demands, reduction of rolling resistance is also demanded for tire performance. Conventionally, as a technique for reducing the rolling resistance of the tire, a technique for optimizing the tire structure has been studied. However, the rubber composition applied to the tire has a low tan δ (hereinafter referred to as “low loss”) and a low The use of a material having excellent heat generation is currently performed as a general method.
このような発熱性の低いゴム組成物を得る方法として、充填材としてシリカ等の無機充填材を使用する方法が知られている。
しかしながら、無機充填材配合ゴム組成物において、シリカ等の無機充填材を配合する際には、無機充填材、特にシリカはゴム組成物中で凝集してしまうため(シリカ表面の水酸基が原因で凝集してしまうため)、凝集を防止するためにシランカップリング剤が用いられている。
従って、シランカップリング剤を配合して上記問題を好適に解決するために、シランカップリング剤のカップリング機能の活性を更に高める目的で種々の試みがなされている。 As a method for obtaining such a rubber composition having low exothermicity, a method using an inorganic filler such as silica as a filler is known.
However, when an inorganic filler such as silica is blended in an inorganic filler-containing rubber composition, the inorganic filler, particularly silica, aggregates in the rubber composition (aggregation due to hydroxyl groups on the silica surface). In order to prevent aggregation, silane coupling agents are used.
Therefore, various attempts have been made for the purpose of further enhancing the activity of the coupling function of the silane coupling agent in order to suitably solve the above problems by blending the silane coupling agent.
しかしながら、無機充填材配合ゴム組成物において、シリカ等の無機充填材を配合する際には、無機充填材、特にシリカはゴム組成物中で凝集してしまうため(シリカ表面の水酸基が原因で凝集してしまうため)、凝集を防止するためにシランカップリング剤が用いられている。
従って、シランカップリング剤を配合して上記問題を好適に解決するために、シランカップリング剤のカップリング機能の活性を更に高める目的で種々の試みがなされている。 As a method for obtaining such a rubber composition having low exothermicity, a method using an inorganic filler such as silica as a filler is known.
However, when an inorganic filler such as silica is blended in an inorganic filler-containing rubber composition, the inorganic filler, particularly silica, aggregates in the rubber composition (aggregation due to hydroxyl groups on the silica surface). In order to prevent aggregation, silane coupling agents are used.
Therefore, various attempts have been made for the purpose of further enhancing the activity of the coupling function of the silane coupling agent in order to suitably solve the above problems by blending the silane coupling agent.
例えば、シリカに対して親和性を有する官能基を含む変性剤を使用して得られる変性共役ジエン系重合体を含むゴム成分(A)、無機充填剤(B)を含む充填剤、シランカップリング剤(C)及びグアニジン類、スルフェンアミド類、チアゾール類、チウラム類、グリセリン脂肪酸エステル組成物、チオウレア類、ジチオカルバミン酸類及びキサントゲン酸類から選択される少なくとも一種の促進剤(D)を含むゴム組成物の製造方法であって、該ゴム組成物を複数段階で混練し、混練の第一段階で該ゴム成分(A)、該無機充填材(B)の全部又は一部、該シランカップリング剤(C)の全部又は一部、及び該促進剤(D)を加えて混練することを特徴とするゴム組成物の製造方法(例えば、本出願人による特許文献1参照)が知られている。
しかしながら、上記特許文献1の技術は、転がり抵抗の低減効果を発揮するものであるが、加工性の改善が求められている。 For example, a rubber component (A) containing a modified conjugated diene polymer obtained by using a modifier containing a functional group having an affinity for silica, a filler containing an inorganic filler (B), and silane coupling Rubber composition comprising agent (C) and at least one accelerator (D) selected from guanidines, sulfenamides, thiazoles, thiurams, glycerin fatty acid ester compositions, thioureas, dithiocarbamic acids and xanthogenic acids The rubber composition is kneaded in a plurality of stages, and in the first stage of kneading, all or part of the rubber component (A), the inorganic filler (B), the silane coupling agent ( A method for producing a rubber composition characterized in that all or part of C) and the accelerator (D) are added and kneaded is known (for example, see Patent Document 1 by the present applicant). .
However, although the technique of Patent Document 1 exhibits an effect of reducing rolling resistance, improvement of workability is required.
しかしながら、上記特許文献1の技術は、転がり抵抗の低減効果を発揮するものであるが、加工性の改善が求められている。 For example, a rubber component (A) containing a modified conjugated diene polymer obtained by using a modifier containing a functional group having an affinity for silica, a filler containing an inorganic filler (B), and silane coupling Rubber composition comprising agent (C) and at least one accelerator (D) selected from guanidines, sulfenamides, thiazoles, thiurams, glycerin fatty acid ester compositions, thioureas, dithiocarbamic acids and xanthogenic acids The rubber composition is kneaded in a plurality of stages, and in the first stage of kneading, all or part of the rubber component (A), the inorganic filler (B), the silane coupling agent ( A method for producing a rubber composition characterized in that all or part of C) and the accelerator (D) are added and kneaded is known (for example, see Patent Document 1 by the present applicant). .
However, although the technique of Patent Document 1 exhibits an effect of reducing rolling resistance, improvement of workability is required.
一方、発熱性の低いゴム組成物を得る方法として、変性ポリマーを用いてシリカを更に分散させる手法として、例えば、変性ポリマーとして、開始剤を用いて共役ジエン単量体を重合または共重合させた後、その重合体に変性剤を用いて重合体の活性末端等を変性した変性ポリマーを用いることが知られているが、これらの変性ポリマーを用いると、未加硫ゴム粘度が増大してしまうという課題がある。
On the other hand, as a method for obtaining a rubber composition having low exothermicity, as a method of further dispersing silica using a modified polymer, for example, as a modified polymer, a conjugated diene monomer is polymerized or copolymerized using an initiator. After that, it is known to use a modified polymer obtained by modifying the active end of the polymer with a modifier for the polymer, but if these modified polymers are used, the viscosity of the unvulcanized rubber increases. There is a problem.
他方、従来からシリカなどの充填材配合ゴム組成物における加工性等の改良技術としては、グリセリン脂肪酸エステルなどを用いてシリカなどの充填材配合ゴム組成物における加工性等を改良することが知られている。
例えば、1)ジエン系ゴム90重量部以上含むゴム100重量部に対して、40重量%以上が白色充填剤である充填剤30~120重量部と、非イオン系界面活性剤0.2~8重量部とを配合した帯電性を改良したゴム組成物(例えば、特許文献2参照)や、2)ジエンゴムの群から選択される少なくとも1種のポリマー、ゴム組成物中のゴム100重量部に対して、5~100重量部の微粉末沈降ケイ酸、0~80重量部のカーボンブラック、および0.5~20重量部の少なくとも1種の非芳香族粘度低下物質を含むタイヤトレッド用ゴム組成物において、前記非芳香族粘度低下物質が、グリセリン-モノステアレート、ソルビタン-モノステアレート、ソルビタン-モノオレエートおよびトリメチロールプロパン(2-エチル-2-ヒドロキシメチル-1,3-プロパンジオール)からなる群から選択される少なくとも1種の物質であることを特徴とするタイヤトレッド用ゴム組成物(例えば、特許文献3参照)、3)天然ゴム及び/又はジエン系合成ゴムから選択される少なくとも一種のゴム成分に対して、シリカと、炭素数8~28のグリセリン脂肪酸モノエステルを特定量以下配合してなるゴム組成物(例えば、特許文献4参照)などが知られている。 On the other hand, conventionally, as a technique for improving the processability in a filler-containing rubber composition such as silica, it is known to improve the processability etc. in a filler-containing rubber composition such as silica using glycerin fatty acid ester or the like. ing.
For example, 1) 30 to 120 parts by weight of a filler that is 40% by weight or more of white rubber with respect to 100 parts by weight of a rubber containing 90 parts by weight or more of a diene rubber, and 0.2 to 8 nonionic surfactants 2 parts by weight of a rubber composition with improved chargeability (see, for example, Patent Document 2), 2) at least one polymer selected from the group of diene rubbers, and 100 parts by weight of rubber in the rubber composition A rubber composition for a tire tread comprising 5 to 100 parts by weight of finely powdered precipitated silicic acid, 0 to 80 parts by weight of carbon black, and 0.5 to 20 parts by weight of at least one non-aromatic viscosity reducing substance. Wherein the non-aromatic viscosity-reducing substance is glycerin-monostearate, sorbitan-monostearate, sorbitan-monooleate and trimethylolpropane (2-ethyl-2-hydride). A rubber composition for tire treads characterized in that it is at least one substance selected from the group consisting of (roxymethyl-1,3-propanediol) (for example, see Patent Document 3), 3) natural rubber and / or A rubber composition comprising a specific amount of silica and a glycerol fatty acid monoester having 8 to 28 carbon atoms in combination with at least one rubber component selected from diene-based synthetic rubber (see, for example, Patent Document 4) It has been known.
例えば、1)ジエン系ゴム90重量部以上含むゴム100重量部に対して、40重量%以上が白色充填剤である充填剤30~120重量部と、非イオン系界面活性剤0.2~8重量部とを配合した帯電性を改良したゴム組成物(例えば、特許文献2参照)や、2)ジエンゴムの群から選択される少なくとも1種のポリマー、ゴム組成物中のゴム100重量部に対して、5~100重量部の微粉末沈降ケイ酸、0~80重量部のカーボンブラック、および0.5~20重量部の少なくとも1種の非芳香族粘度低下物質を含むタイヤトレッド用ゴム組成物において、前記非芳香族粘度低下物質が、グリセリン-モノステアレート、ソルビタン-モノステアレート、ソルビタン-モノオレエートおよびトリメチロールプロパン(2-エチル-2-ヒドロキシメチル-1,3-プロパンジオール)からなる群から選択される少なくとも1種の物質であることを特徴とするタイヤトレッド用ゴム組成物(例えば、特許文献3参照)、3)天然ゴム及び/又はジエン系合成ゴムから選択される少なくとも一種のゴム成分に対して、シリカと、炭素数8~28のグリセリン脂肪酸モノエステルを特定量以下配合してなるゴム組成物(例えば、特許文献4参照)などが知られている。 On the other hand, conventionally, as a technique for improving the processability in a filler-containing rubber composition such as silica, it is known to improve the processability etc. in a filler-containing rubber composition such as silica using glycerin fatty acid ester or the like. ing.
For example, 1) 30 to 120 parts by weight of a filler that is 40% by weight or more of white rubber with respect to 100 parts by weight of a rubber containing 90 parts by weight or more of a diene rubber, and 0.2 to 8 nonionic surfactants 2 parts by weight of a rubber composition with improved chargeability (see, for example, Patent Document 2), 2) at least one polymer selected from the group of diene rubbers, and 100 parts by weight of rubber in the rubber composition A rubber composition for a tire tread comprising 5 to 100 parts by weight of finely powdered precipitated silicic acid, 0 to 80 parts by weight of carbon black, and 0.5 to 20 parts by weight of at least one non-aromatic viscosity reducing substance. Wherein the non-aromatic viscosity-reducing substance is glycerin-monostearate, sorbitan-monostearate, sorbitan-monooleate and trimethylolpropane (2-ethyl-2-hydride). A rubber composition for tire treads characterized in that it is at least one substance selected from the group consisting of (roxymethyl-1,3-propanediol) (for example, see Patent Document 3), 3) natural rubber and / or A rubber composition comprising a specific amount of silica and a glycerol fatty acid monoester having 8 to 28 carbon atoms in combination with at least one rubber component selected from diene-based synthetic rubber (see, for example, Patent Document 4) It has been known.
上記特許文献2及び3のうち、特許文献2には、実施例の一つにグリセリン脂肪酸モノエステルを配合し、シリカ配合時に起こりうる本発明と異なる帯電を防止する効果についての記載があるものの、粘度低減効果について記載や示唆などはないものである。
また、上記特許文献3は、本発明の近接技術を開示するものであるが、グリセリン脂肪酸モノエステルを配合し、シリカ配合時の粘度低減効果について記載はあるが、シリカ配合ゴム組成物にグリセリン脂肪酸モノエステルを配合したときに起こりうる加工性の悪化については全く記載や示唆などはないものである。
更に、上記特許文献4は、炭素数8~28のグリセリン脂肪酸モノエステルを特定量以下配合することで、未加硫ゴム粘度を低減しつつシリカ分散性を向上させることができるが、シリカ分散効果は変性ポリマー対比低いという課題がある。 Among the above Patent Documents 2 and 3, Patent Document 2 contains a description of the effect of preventing charging that is different from the present invention, which may occur at the time of silica compounding, by blending glycerin fatty acid monoester in one of the Examples. There is no description or suggestion about the viscosity reducing effect.
Moreover, although the said patent document 3 is disclosing the proximity | contact technique of this invention, although glycerin fatty acid monoester is mix | blended and there exists description about the viscosity reduction effect at the time of silica compounding, glycerin fatty acid is included in a silica compounding rubber composition. There is no description or suggestion about deterioration of processability that may occur when a monoester is blended.
Furthermore, Patent Document 4 described above can improve the silica dispersibility while reducing the viscosity of the unvulcanized rubber by blending the glycerin fatty acid monoester having 8 to 28 carbon atoms with a specific amount or less. Has a problem that it is low compared to the modified polymer.
また、上記特許文献3は、本発明の近接技術を開示するものであるが、グリセリン脂肪酸モノエステルを配合し、シリカ配合時の粘度低減効果について記載はあるが、シリカ配合ゴム組成物にグリセリン脂肪酸モノエステルを配合したときに起こりうる加工性の悪化については全く記載や示唆などはないものである。
更に、上記特許文献4は、炭素数8~28のグリセリン脂肪酸モノエステルを特定量以下配合することで、未加硫ゴム粘度を低減しつつシリカ分散性を向上させることができるが、シリカ分散効果は変性ポリマー対比低いという課題がある。 Among the above Patent Documents 2 and 3, Patent Document 2 contains a description of the effect of preventing charging that is different from the present invention, which may occur at the time of silica compounding, by blending glycerin fatty acid monoester in one of the Examples. There is no description or suggestion about the viscosity reducing effect.
Moreover, although the said patent document 3 is disclosing the proximity | contact technique of this invention, although glycerin fatty acid monoester is mix | blended and there exists description about the viscosity reduction effect at the time of silica compounding, glycerin fatty acid is included in a silica compounding rubber composition. There is no description or suggestion about deterioration of processability that may occur when a monoester is blended.
Furthermore, Patent Document 4 described above can improve the silica dispersibility while reducing the viscosity of the unvulcanized rubber by blending the glycerin fatty acid monoester having 8 to 28 carbon atoms with a specific amount or less. Has a problem that it is low compared to the modified polymer.
本発明は、上記従来技術の課題等について、これを解消しようとするものであり、ゴム成分に変性ポリマーを用いても、未加硫ゴム粘度を悪化させることなく、シリカを含む充填材を高度に分散せしめて、耐摩耗性、低ロス性に優れると共に、作業性、加工性を大幅に向上させたタイヤ用ゴム組成物及びこのゴム組成物を用いたタイヤを提供することを目的とする。
The present invention intends to solve the above-described problems of the prior art, and even if a modified polymer is used for the rubber component, the filler containing silica is highly advanced without deteriorating the viscosity of the unvulcanized rubber. An object of the present invention is to provide a rubber composition for tires which is excellent in wear resistance and low loss properties, and has improved workability and workability, and a tire using this rubber composition.
本発明者は、上記従来技術の課題等に鑑み、鋭意検討した結果、ジエン系重合体として、特定物性となるジエン系重合体を含むゴム成分(A)、シリカを有する無機充填材(B)を含む充填材、シランカップリング剤(C)、及び加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)の全部又は一部、並びに、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が特定値超過であるグリセリン脂肪酸エステル組成物(E)を含む第一混合物を調製し、該第一混合物を混練することによって予備組成物を調製する、第一工程と、前記予備組成物に加硫剤(F)を加えた第二混合物を調製し、該第二混合物を混練することによってゴム組成物を調製する、第二工程と、を含むゴム組成物の製造方法により製造されるタイヤ用ゴム組成物とすることにより、上記目的のタイヤ用ゴム組成物及びタイヤが得られることを見出し、本発明を完成するに至ったのである。
As a result of diligent investigations in view of the above-described problems of the prior art, the present inventor has, as a diene polymer, a rubber component (A) containing a diene polymer having specific properties, and an inorganic filler (B) having silica. And all or part of an activator (D) comprising at least one selected from a filler, a silane coupling agent (C), a vulcanization accelerator, a thiourea, and a thiadiazole, and a carbon number of 8 to A first composition comprising a glycerin fatty acid ester composition (E) having a glycerin fatty acid monoester content of 28 exceeding a specific value is prepared, and a first composition is prepared by kneading the first mixture. And a second step of preparing a rubber composition by kneading the second mixture by preparing a second mixture in which the vulcanizing agent (F) is added to the preliminary composition. Manufacturing method With tire rubber composition produced by, it found that the rubber composition for a tire of the above objects and tire is obtained, it was accomplished the present invention.
すなわち、本発明は、次の(1)~(13)に存する。
(1) ジエン系重合体として、末端から全鎖長の1/4の範囲のみに、シリカとの間で相互作用が可能な変性官能基を3つ以上有し、少なくとも一つの前記変性官能基間にジエン系重合体の単量体構造を有するジエン系重合体を含むゴム成分(A)、シリカを有する無機充填材(B)を含む充填材、シランカップリング剤(C)、及び加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)の全部又は一部、並びに、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が85質量%超過であるグリセリン脂肪酸エステル組成物(E)を含む第一混合物を調製し、該第一混合物を混練することによって予備組成物を調製する、第一工程と、
前記予備組成物に加硫剤(F)を加えた第二混合物を調製し、該第二混合物を混練することによってゴム組成物を調製する、第二工程と、
を含むゴム組成物の製造方法により製造されることを特徴とするタイヤ用ゴム組成物。
(2) 全ての前記変性官能基間に、前記ジエン系重合体の単量体構造を有することを特徴とする、上記(1)に記載のタイヤ用ゴム組成物。
(3) 前記変性官能基が、含窒素官能基、含ケイ素官能基又は含酸素官能基であることを特徴とする、上記(1)又は(2)に記載のゴム組成物。
(4) 前記ジエン系重合体のピーク分子量が5万~70万であることを特徴とする、上記(1)~(3)のいずれか1項に記載のゴム組成物。
(5) 前記ジエン系重合体は、変性官能基を有さないジエン系重合体の分子鎖を形成する工程と、前記変性官能基と前記ジエン系重合体の単量体構造とからなる分子鎖を形成する工程とを経ることにより、末端から全鎖長の1/4の範囲のみに、前記シリカとの間で相互作用が可能な変性官能基を3つ以上有し、少なくとも一つの前記変性官能基間にジエン系重合体の単量体構造を有するジエン系重合体を得ることを特徴とする、上記(1)~(4)のいずれか1つに記載のタイヤ用ゴム組成物。
(6) 前記変性官能基と前記ジエン系重合体の単量体構造とからなる分子鎖の形成は、前記ジエン系重合体の単量体成分と変性剤とを交互又は同時に投入することで行うことを特徴とする、上記(5)に記載のタイヤ用ゴム組成物。
(7) 前記ゴム成分(A)中の前記ジエン系重合体の含有率が、10質量%以上であることを特徴とする、上記(1)~(6)のいずれか1項に記載のゴム組成物。
(8) 前記活性剤(D)がグアニジン類であることを特徴とする、上記(1)~(7)のいずれか1項に記載のタイヤ用ゴム組成物。
(9) 前記活性剤(D)がチオウレア、ジエチルチオウレアであることを特徴とする、上記(1)~(7)のいずれか1項に記載のタイヤ用ゴム組成物。
(10) 前記活性剤(D)がジメルカプトチアジアゾールであることを特徴とする、上記(1)~(7)のいずれか1項に記載のタイヤ用ゴム組成物。
(11) 前記グリセリン脂肪酸エステル組成物(E)は、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が95質量%超過であることを特徴とする、上記(1)~(10)のいずれか1項に記載のタイヤ用ゴム組成物。
(12) 前記グリセリン脂肪酸エステル組成物(E)の配合量が、ゴム成分(A)100質量部に対して、0.2~7質量部であることを特徴とする、上記(1)~(11)のいずれか1項に記載のタイヤ用ゴム組成物。
(13) 上記(1)~(12)のいずれか1項に記載のタイヤ用ゴム組成物をトレッド部材に用いたことを特徴とする、タイヤ。 That is, the present invention resides in the following (1) to (13).
(1) The diene polymer has at least one modified functional group having at least three modified functional groups capable of interacting with silica only in the range of ¼ of the total chain length from the terminal. Rubber component (A) containing a diene polymer having a monomer structure of a diene polymer in between, a filler containing an inorganic filler (B) having silica, a silane coupling agent (C), and vulcanization Glycerol having a glycerin fatty acid monoester content of more than 85% by mass of an activating agent (D) consisting of at least one selected from accelerators, thioureas and thiadiazoles, and a glycerol fatty acid monoester having 8 to 28 carbon atoms Preparing a first mixture comprising a fatty acid ester composition (E) and preparing a preliminary composition by kneading the first mixture;
Preparing a second mixture obtained by adding a vulcanizing agent (F) to the preliminary composition, and preparing a rubber composition by kneading the second mixture; a second step;
A rubber composition for tires produced by a method for producing a rubber composition comprising
(2) The tire rubber composition as described in (1) above, which has a monomer structure of the diene polymer between all the modified functional groups.
(3) The rubber composition as described in (1) or (2) above, wherein the modified functional group is a nitrogen-containing functional group, a silicon-containing functional group, or an oxygen-containing functional group.
(4) The rubber composition as described in any one of (1) to (3) above, wherein the diene polymer has a peak molecular weight of 50,000 to 700,000.
(5) The diene polymer is a molecular chain comprising a step of forming a molecular chain of a diene polymer having no modified functional group, and a monomer structure of the modified functional group and the diene polymer. And having at least one modified functional group capable of interacting with the silica only in the range of ¼ of the total chain length from the terminal. The tire rubber composition as described in any one of (1) to (4) above, wherein a diene polymer having a monomer structure of a diene polymer between functional groups is obtained.
(6) Formation of a molecular chain composed of the modified functional group and the monomer structure of the diene polymer is performed by alternately or simultaneously adding the monomer component and the modifier of the diene polymer. The tire rubber composition as described in (5) above, which is characterized in that
(7) The rubber according to any one of (1) to (6) above, wherein the content of the diene polymer in the rubber component (A) is 10% by mass or more. Composition.
(8) The tire rubber composition according to any one of (1) to (7) above, wherein the activator (D) is a guanidine.
(9) The tire rubber composition as described in any one of (1) to (7) above, wherein the activator (D) is thiourea or diethylthiourea.
(10) The tire rubber composition as described in any one of (1) to (7) above, wherein the active agent (D) is dimercaptothiadiazole.
(11) The glycerin fatty acid ester composition (E) described above is characterized in that the content of glycerin fatty acid monoester having 8 to 28 carbon atoms is more than 95% by mass. The rubber composition for tires according to claim 1.
(12) The amount of the glycerin fatty acid ester composition (E) is 0.2 to 7 parts by mass with respect to 100 parts by mass of the rubber component (A). The rubber composition for tires according to any one of 11).
(13) A tire comprising the tire rubber composition according to any one of (1) to (12) above as a tread member.
(1) ジエン系重合体として、末端から全鎖長の1/4の範囲のみに、シリカとの間で相互作用が可能な変性官能基を3つ以上有し、少なくとも一つの前記変性官能基間にジエン系重合体の単量体構造を有するジエン系重合体を含むゴム成分(A)、シリカを有する無機充填材(B)を含む充填材、シランカップリング剤(C)、及び加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)の全部又は一部、並びに、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が85質量%超過であるグリセリン脂肪酸エステル組成物(E)を含む第一混合物を調製し、該第一混合物を混練することによって予備組成物を調製する、第一工程と、
前記予備組成物に加硫剤(F)を加えた第二混合物を調製し、該第二混合物を混練することによってゴム組成物を調製する、第二工程と、
を含むゴム組成物の製造方法により製造されることを特徴とするタイヤ用ゴム組成物。
(2) 全ての前記変性官能基間に、前記ジエン系重合体の単量体構造を有することを特徴とする、上記(1)に記載のタイヤ用ゴム組成物。
(3) 前記変性官能基が、含窒素官能基、含ケイ素官能基又は含酸素官能基であることを特徴とする、上記(1)又は(2)に記載のゴム組成物。
(4) 前記ジエン系重合体のピーク分子量が5万~70万であることを特徴とする、上記(1)~(3)のいずれか1項に記載のゴム組成物。
(5) 前記ジエン系重合体は、変性官能基を有さないジエン系重合体の分子鎖を形成する工程と、前記変性官能基と前記ジエン系重合体の単量体構造とからなる分子鎖を形成する工程とを経ることにより、末端から全鎖長の1/4の範囲のみに、前記シリカとの間で相互作用が可能な変性官能基を3つ以上有し、少なくとも一つの前記変性官能基間にジエン系重合体の単量体構造を有するジエン系重合体を得ることを特徴とする、上記(1)~(4)のいずれか1つに記載のタイヤ用ゴム組成物。
(6) 前記変性官能基と前記ジエン系重合体の単量体構造とからなる分子鎖の形成は、前記ジエン系重合体の単量体成分と変性剤とを交互又は同時に投入することで行うことを特徴とする、上記(5)に記載のタイヤ用ゴム組成物。
(7) 前記ゴム成分(A)中の前記ジエン系重合体の含有率が、10質量%以上であることを特徴とする、上記(1)~(6)のいずれか1項に記載のゴム組成物。
(8) 前記活性剤(D)がグアニジン類であることを特徴とする、上記(1)~(7)のいずれか1項に記載のタイヤ用ゴム組成物。
(9) 前記活性剤(D)がチオウレア、ジエチルチオウレアであることを特徴とする、上記(1)~(7)のいずれか1項に記載のタイヤ用ゴム組成物。
(10) 前記活性剤(D)がジメルカプトチアジアゾールであることを特徴とする、上記(1)~(7)のいずれか1項に記載のタイヤ用ゴム組成物。
(11) 前記グリセリン脂肪酸エステル組成物(E)は、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が95質量%超過であることを特徴とする、上記(1)~(10)のいずれか1項に記載のタイヤ用ゴム組成物。
(12) 前記グリセリン脂肪酸エステル組成物(E)の配合量が、ゴム成分(A)100質量部に対して、0.2~7質量部であることを特徴とする、上記(1)~(11)のいずれか1項に記載のタイヤ用ゴム組成物。
(13) 上記(1)~(12)のいずれか1項に記載のタイヤ用ゴム組成物をトレッド部材に用いたことを特徴とする、タイヤ。 That is, the present invention resides in the following (1) to (13).
(1) The diene polymer has at least one modified functional group having at least three modified functional groups capable of interacting with silica only in the range of ¼ of the total chain length from the terminal. Rubber component (A) containing a diene polymer having a monomer structure of a diene polymer in between, a filler containing an inorganic filler (B) having silica, a silane coupling agent (C), and vulcanization Glycerol having a glycerin fatty acid monoester content of more than 85% by mass of an activating agent (D) consisting of at least one selected from accelerators, thioureas and thiadiazoles, and a glycerol fatty acid monoester having 8 to 28 carbon atoms Preparing a first mixture comprising a fatty acid ester composition (E) and preparing a preliminary composition by kneading the first mixture;
Preparing a second mixture obtained by adding a vulcanizing agent (F) to the preliminary composition, and preparing a rubber composition by kneading the second mixture; a second step;
A rubber composition for tires produced by a method for producing a rubber composition comprising
(2) The tire rubber composition as described in (1) above, which has a monomer structure of the diene polymer between all the modified functional groups.
(3) The rubber composition as described in (1) or (2) above, wherein the modified functional group is a nitrogen-containing functional group, a silicon-containing functional group, or an oxygen-containing functional group.
(4) The rubber composition as described in any one of (1) to (3) above, wherein the diene polymer has a peak molecular weight of 50,000 to 700,000.
(5) The diene polymer is a molecular chain comprising a step of forming a molecular chain of a diene polymer having no modified functional group, and a monomer structure of the modified functional group and the diene polymer. And having at least one modified functional group capable of interacting with the silica only in the range of ¼ of the total chain length from the terminal. The tire rubber composition as described in any one of (1) to (4) above, wherein a diene polymer having a monomer structure of a diene polymer between functional groups is obtained.
(6) Formation of a molecular chain composed of the modified functional group and the monomer structure of the diene polymer is performed by alternately or simultaneously adding the monomer component and the modifier of the diene polymer. The tire rubber composition as described in (5) above, which is characterized in that
(7) The rubber according to any one of (1) to (6) above, wherein the content of the diene polymer in the rubber component (A) is 10% by mass or more. Composition.
(8) The tire rubber composition according to any one of (1) to (7) above, wherein the activator (D) is a guanidine.
(9) The tire rubber composition as described in any one of (1) to (7) above, wherein the activator (D) is thiourea or diethylthiourea.
(10) The tire rubber composition as described in any one of (1) to (7) above, wherein the active agent (D) is dimercaptothiadiazole.
(11) The glycerin fatty acid ester composition (E) described above is characterized in that the content of glycerin fatty acid monoester having 8 to 28 carbon atoms is more than 95% by mass. The rubber composition for tires according to claim 1.
(12) The amount of the glycerin fatty acid ester composition (E) is 0.2 to 7 parts by mass with respect to 100 parts by mass of the rubber component (A). The rubber composition for tires according to any one of 11).
(13) A tire comprising the tire rubber composition according to any one of (1) to (12) above as a tread member.
本発明によれば、未加硫ゴム粘度を悪化させることなく、シリカを含む充填材を高度に分散せしめて、耐摩耗性、低ロス性に優れると共に、作業性、加工性を大幅に向上させたタイヤ用ゴム組成物及びこのタイヤ用ゴム組成物をトレッド部材に用いたタイヤが提供される。
According to the present invention, the filler containing silica is highly dispersed without deteriorating the viscosity of the unvulcanized rubber, and it is excellent in wear resistance and low loss, and greatly improves workability and workability. A tire rubber composition and a tire using the tire rubber composition for a tread member are provided.
以下に、本発明の実施形態を詳述する。
本発明のタイヤ用ゴム組成物は、ジエン系重合体として、末端から全鎖長の1/4の範囲のみに、シリカとの間で相互作用が可能な変性官能基を3つ以上有し、少なくとも一つの前記変性官能基間にジエン系重合体の単量体構造を有するジエン系重合体を含むゴム成分(A)、シリカを有する無機充填材(B)を含む充填材、シランカップリング剤(C)、及び加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)の全部又は一部、並びに、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が85質量%超過であるグリセリン脂肪酸エステル組成物(E)を含む第一混合物を調製し、該第一混合物を混練することによって予備組成物を調製する、第一工程と、前記予備組成物に加硫剤(F)を加えた第二混合物を調製し、該第二混合物を混練することによってゴム組成物を調製する、第二工程と、を含むゴム組成物の製造方法により製造されることを特徴とするものである。 Hereinafter, embodiments of the present invention will be described in detail.
The rubber composition for tires of the present invention, as a diene polymer, has three or more modified functional groups capable of interacting with silica only in the range of ¼ of the total chain length from the end, Rubber component (A) containing a diene polymer having a monomer structure of a diene polymer between at least one of the modified functional groups, a filler containing an inorganic filler (B) having silica, and a silane coupling agent (C), and all or part of an activator (D) consisting of at least one selected from vulcanization accelerators, thioureas, and thiadiazoles, and a glycerol fatty acid monoester content of 8 to 28 carbon atoms. A first mixture containing a glycerin fatty acid ester composition (E) in excess of 85% by mass is prepared, and a preliminary composition is prepared by kneading the first mixture, and a first step is added to the preliminary composition. Sulfur agent (F) A second step of preparing a rubber composition by preparing an added second mixture and kneading the second mixture, wherein the rubber composition is produced by a method for producing a rubber composition. .
本発明のタイヤ用ゴム組成物は、ジエン系重合体として、末端から全鎖長の1/4の範囲のみに、シリカとの間で相互作用が可能な変性官能基を3つ以上有し、少なくとも一つの前記変性官能基間にジエン系重合体の単量体構造を有するジエン系重合体を含むゴム成分(A)、シリカを有する無機充填材(B)を含む充填材、シランカップリング剤(C)、及び加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)の全部又は一部、並びに、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が85質量%超過であるグリセリン脂肪酸エステル組成物(E)を含む第一混合物を調製し、該第一混合物を混練することによって予備組成物を調製する、第一工程と、前記予備組成物に加硫剤(F)を加えた第二混合物を調製し、該第二混合物を混練することによってゴム組成物を調製する、第二工程と、を含むゴム組成物の製造方法により製造されることを特徴とするものである。 Hereinafter, embodiments of the present invention will be described in detail.
The rubber composition for tires of the present invention, as a diene polymer, has three or more modified functional groups capable of interacting with silica only in the range of ¼ of the total chain length from the end, Rubber component (A) containing a diene polymer having a monomer structure of a diene polymer between at least one of the modified functional groups, a filler containing an inorganic filler (B) having silica, and a silane coupling agent (C), and all or part of an activator (D) consisting of at least one selected from vulcanization accelerators, thioureas, and thiadiazoles, and a glycerol fatty acid monoester content of 8 to 28 carbon atoms. A first mixture containing a glycerin fatty acid ester composition (E) in excess of 85% by mass is prepared, and a preliminary composition is prepared by kneading the first mixture, and a first step is added to the preliminary composition. Sulfur agent (F) A second step of preparing a rubber composition by preparing an added second mixture and kneading the second mixture, wherein the rubber composition is produced by a method for producing a rubber composition. .
(ゴム成分)
本発明のゴム組成物に含まれるゴム成分は、ジエン系重合体を有する。そして、該ジエン系重合体は、その末端から全鎖長の1/4の範囲のみに、前記シリカとの間で相互作用が可能な変性官能基を3つ以上有し、少なくとも1つの前記変性官能基間にジエン系重合体の単量体構造を有する。このジエン系重合体において、末端から全鎖長の1/4の範囲のみに前記変性官能基を配する理由は、より効率的にシリカを分散させる効果が得られると考えられるためである。また、変性官能基を3つ以上有し、少なくとも1つの前記変性官能基間にジエン系重合体の単量体構造を有することによって、シリカの凝集体を効率的に崩すことが出来ると考えられる。前記の特徴を全て有することで、個別の特徴のみを有するジエン系重合体と比較して、より顕著な効果が得られると考えられる。 (Rubber component)
The rubber component contained in the rubber composition of the present invention has a diene polymer. The diene polymer has at least one modified functional group capable of interacting with the silica only in a range of ¼ of the total chain length from the terminal, and at least one of the modified polymer. It has a monomer structure of a diene polymer between functional groups. In this diene polymer, the reason why the modified functional group is arranged only in the range of ¼ of the total chain length from the end is that an effect of dispersing silica more efficiently can be obtained. Further, it is considered that the aggregate of silica can be efficiently broken by having three or more modified functional groups and having a monomer structure of a diene polymer between at least one modified functional group. . By having all the above-mentioned characteristics, it is considered that a more remarkable effect can be obtained as compared with a diene polymer having only individual characteristics.
本発明のゴム組成物に含まれるゴム成分は、ジエン系重合体を有する。そして、該ジエン系重合体は、その末端から全鎖長の1/4の範囲のみに、前記シリカとの間で相互作用が可能な変性官能基を3つ以上有し、少なくとも1つの前記変性官能基間にジエン系重合体の単量体構造を有する。このジエン系重合体において、末端から全鎖長の1/4の範囲のみに前記変性官能基を配する理由は、より効率的にシリカを分散させる効果が得られると考えられるためである。また、変性官能基を3つ以上有し、少なくとも1つの前記変性官能基間にジエン系重合体の単量体構造を有することによって、シリカの凝集体を効率的に崩すことが出来ると考えられる。前記の特徴を全て有することで、個別の特徴のみを有するジエン系重合体と比較して、より顕著な効果が得られると考えられる。 (Rubber component)
The rubber component contained in the rubber composition of the present invention has a diene polymer. The diene polymer has at least one modified functional group capable of interacting with the silica only in a range of ¼ of the total chain length from the terminal, and at least one of the modified polymer. It has a monomer structure of a diene polymer between functional groups. In this diene polymer, the reason why the modified functional group is arranged only in the range of ¼ of the total chain length from the end is that an effect of dispersing silica more efficiently can be obtained. Further, it is considered that the aggregate of silica can be efficiently broken by having three or more modified functional groups and having a monomer structure of a diene polymer between at least one modified functional group. . By having all the above-mentioned characteristics, it is considered that a more remarkable effect can be obtained as compared with a diene polymer having only individual characteristics.
ここで、前記ジエン系重合体は、変性ジエン共重合体であっても良いし、変性ジエン単独重合体であっても良い。その中でも、ジエン系単量体と芳香族ビニル化合物との共重合体又はジエン系単量体の単独重合体が好ましく、60~100質量%のジエン系単量体と、0~40質量%の芳香族ビニル化合物とを重合してなる、重合体(単独重合体)又は共重合体であることがより好ましい。前記ゴム組成物の低ロス性、破壊特性及び耐摩耗性をより向上できるためである。
Here, the diene polymer may be a modified diene copolymer or a modified diene homopolymer. Among them, a copolymer of a diene monomer and an aromatic vinyl compound or a homopolymer of a diene monomer is preferable, and 60 to 100% by weight of a diene monomer and 0 to 40% by weight of a diene monomer are preferable. A polymer (homopolymer) or copolymer obtained by polymerizing an aromatic vinyl compound is more preferable. This is because the rubber composition can be further improved in low loss, fracture characteristics, and wear resistance.
また、前記ジエン系単量体としては、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン、2-フェニル-1,3-ブタジエン、1,3-ヘキサジエン等の共役ジエン化合物が挙げられ、これらの中でも、1,3-ブタジエンが特に好ましい。これら共役ジエン化合物は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。
一方、単量体としての前記芳香族ビニル化合物としては、スチレン、α-メチルスチレン、1-ビニルナフタレン、3-ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン、4-シクロヘキシルスチレン及び2,4,6-トリメチルスチレン等が挙げられ、これらの中でも、スチレンが特に好ましい。これら芳香族ビニル化合物は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Examples of the diene monomer include conjugates such as 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 2-phenyl-1,3-butadiene, and 1,3-hexadiene. Examples thereof include diene compounds, and among these, 1,3-butadiene is particularly preferable. These conjugated diene compounds may be used alone or in combination of two or more.
On the other hand, examples of the aromatic vinyl compound as a monomer include styrene, α-methylstyrene, 1-vinylnaphthalene, 3-vinyltoluene, ethylvinylbenzene, divinylbenzene, 4-cyclohexylstyrene, and 2,4,6- Examples thereof include trimethylstyrene, and among these, styrene is particularly preferable. These aromatic vinyl compounds may be used alone or in combination of two or more.
一方、単量体としての前記芳香族ビニル化合物としては、スチレン、α-メチルスチレン、1-ビニルナフタレン、3-ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン、4-シクロヘキシルスチレン及び2,4,6-トリメチルスチレン等が挙げられ、これらの中でも、スチレンが特に好ましい。これら芳香族ビニル化合物は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Examples of the diene monomer include conjugates such as 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 2-phenyl-1,3-butadiene, and 1,3-hexadiene. Examples thereof include diene compounds, and among these, 1,3-butadiene is particularly preferable. These conjugated diene compounds may be used alone or in combination of two or more.
On the other hand, examples of the aromatic vinyl compound as a monomer include styrene, α-methylstyrene, 1-vinylnaphthalene, 3-vinyltoluene, ethylvinylbenzene, divinylbenzene, 4-cyclohexylstyrene, and 2,4,6- Examples thereof include trimethylstyrene, and among these, styrene is particularly preferable. These aromatic vinyl compounds may be used alone or in combination of two or more.
ここで、前記シリカとの間で相互作用が可能な変性官能基とは、該官能基とシリカ表面の間で共有結合を形成するか、又は、共有結合よりも弱い分子間力(イオン-双極子相互作用、双極子-双極子相互作用、水素結合、ファンデルワールス力等といった分子間に働く電磁気学的な力)を形成することが可能な官能基のことである。前記シリカとの親和性の高い官能基であれば特に限定はされないが、好ましくは、含窒素官能基、含ケイ素官能基又は含酸素官能基等が挙げられる。
Here, the modified functional group capable of interacting with the silica forms a covalent bond between the functional group and the silica surface or an intermolecular force weaker than the covalent bond (ion-dipolar). This is a functional group capable of forming an electromagnetic force acting between molecules such as dipole interaction, dipole-dipole interaction, hydrogen bond, van der Waals force and the like. Although it will not specifically limit if it is a functional group with high affinity with the said silica, Preferably, a nitrogen-containing functional group, a silicon-containing functional group, an oxygen-containing functional group, etc. are mentioned.
また、前記変性官能基を末端から全鎖長の1/4の範囲のみに3つ以上有する状態とは、前記ジエン系重合体のうち末端から1/4の範囲(末端から25%の範囲)に前記変性官能基が3つ以上存在し、末端から1/4以外の部分については、前記変性官能基が存在しない状態のことである。
なお、前記ジエン系重合体の末端は、少なくともいずれか一方の末端のことを意味し、前記変性官能基を有する範囲は、前記ジエン系重合体の一方の末端(先端)から全鎖長の1/4の範囲でも良く、両端から全鎖長の1/4の範囲ずつでも良いが、ジエン系重合体自体の性能と、変性による性能を効率よく得られる点からは、いずれか一方の末端のみに存在することが好ましい。 In addition, the state having three or more modified functional groups only in the range of 1/4 of the total chain length from the end means that the diene polymer has a range of 1/4 from the end (range of 25% from the end). There are three or more modified functional groups, and the portion other than ¼ from the terminal is in a state where the modified functional groups are not present.
The end of the diene polymer means at least one of the ends, and the range having the modified functional group is 1 of the total chain length from one end (tip) of the diene polymer. / 4 range, or may be in the range of 1/4 of the total chain length from both ends. However, from the viewpoint of efficiently obtaining the performance of the diene polymer itself and the performance by modification, only one of the ends is It is preferable that it exists in.
なお、前記ジエン系重合体の末端は、少なくともいずれか一方の末端のことを意味し、前記変性官能基を有する範囲は、前記ジエン系重合体の一方の末端(先端)から全鎖長の1/4の範囲でも良く、両端から全鎖長の1/4の範囲ずつでも良いが、ジエン系重合体自体の性能と、変性による性能を効率よく得られる点からは、いずれか一方の末端のみに存在することが好ましい。 In addition, the state having three or more modified functional groups only in the range of 1/4 of the total chain length from the end means that the diene polymer has a range of 1/4 from the end (range of 25% from the end). There are three or more modified functional groups, and the portion other than ¼ from the terminal is in a state where the modified functional groups are not present.
The end of the diene polymer means at least one of the ends, and the range having the modified functional group is 1 of the total chain length from one end (tip) of the diene polymer. / 4 range, or may be in the range of 1/4 of the total chain length from both ends. However, from the viewpoint of efficiently obtaining the performance of the diene polymer itself and the performance by modification, only one of the ends is It is preferable that it exists in.
さらに、少なくとも一つの前記変性官能基間にジエン系重合体の単量体構造を有する状態とは、上述したように、前記ジエン系重合体の末端から全鎖長の1/4の範囲のみに存在する各官能基について、変性官能基と変性官能基との間にジエン系重合体の単量体構造(例えば、ジエン系重合体がポリブタジエンの場合には、1,3-ブタジエンのことであり、スチレン-ブタジエン共重合体の場合には、スチレン及び/又は1,3-ブタジエンのことである。)を介しており、変性官能基同士が結合していない状態のことをいう。
前記ジエン系重合体の末端から全鎖長の1/4の範囲において、前記変性官能基が互いに直接結合しない構造をとることで、シリカとの親和性をさらに向上できるため、より優れた低ロス性、破壊特性及び耐摩耗性を実現できる。
さらにまた、同様の観点から、全ての前記変性官能基間に、前記ジエン系重合体の単量体構造を有する(つまり、前記ジエン系重合体中の全ての変性官能基は互いに直接結合していない)ことがより好ましい。 Furthermore, as described above, the state having a monomer structure of a diene polymer between at least one of the modified functional groups is only in a range of ¼ of the total chain length from the end of the diene polymer. For each functional group present, the monomer structure of the diene polymer between the modified functional group and the modified functional group (eg, 1,3-butadiene when the diene polymer is polybutadiene) In the case of a styrene-butadiene copolymer, it means styrene and / or 1,3-butadiene), and the modified functional groups are not bonded to each other.
In the range of 1/4 of the total chain length from the end of the diene polymer, by taking a structure in which the modified functional groups are not directly bonded to each other, it is possible to further improve the affinity with silica, and thus more excellent low loss , Fracture characteristics and wear resistance can be realized.
Furthermore, from the same viewpoint, the monomer structure of the diene polymer is present between all the modified functional groups (that is, all the modified functional groups in the diene polymer are directly bonded to each other). More preferred).
前記ジエン系重合体の末端から全鎖長の1/4の範囲において、前記変性官能基が互いに直接結合しない構造をとることで、シリカとの親和性をさらに向上できるため、より優れた低ロス性、破壊特性及び耐摩耗性を実現できる。
さらにまた、同様の観点から、全ての前記変性官能基間に、前記ジエン系重合体の単量体構造を有する(つまり、前記ジエン系重合体中の全ての変性官能基は互いに直接結合していない)ことがより好ましい。 Furthermore, as described above, the state having a monomer structure of a diene polymer between at least one of the modified functional groups is only in a range of ¼ of the total chain length from the end of the diene polymer. For each functional group present, the monomer structure of the diene polymer between the modified functional group and the modified functional group (eg, 1,3-butadiene when the diene polymer is polybutadiene) In the case of a styrene-butadiene copolymer, it means styrene and / or 1,3-butadiene), and the modified functional groups are not bonded to each other.
In the range of 1/4 of the total chain length from the end of the diene polymer, by taking a structure in which the modified functional groups are not directly bonded to each other, it is possible to further improve the affinity with silica, and thus more excellent low loss , Fracture characteristics and wear resistance can be realized.
Furthermore, from the same viewpoint, the monomer structure of the diene polymer is present between all the modified functional groups (that is, all the modified functional groups in the diene polymer are directly bonded to each other). More preferred).
なお、前記ジエン系重合体を得るための重合方法としては、アニオン重合、配位重合及び乳化重合のいずれでも良い。変性剤は、アニオン重合又は配位重合の重合活性末端と反応する変性剤であっても良いし、重合開始剤として用いられるリチウムアミド化合物のアミド部分であっても良い。また、乳化重合において、変性剤がモノマーとして共重合されても良い。
The polymerization method for obtaining the diene polymer may be any of anionic polymerization, coordination polymerization, and emulsion polymerization. The modifying agent may be a modifying agent that reacts with the polymerization active terminal of anionic polymerization or coordination polymerization, or may be an amide portion of a lithium amide compound used as a polymerization initiator. In the emulsion polymerization, a modifier may be copolymerized as a monomer.
なお、前記ジエン系重合体の分子量は、特に限定はされないが、ピーク分子量を5万以上とすることで良好な耐破壊特性及び耐摩耗性が得られ、70万以下とすることで良好な加工性が得られることから、5万~70万であることが好ましい。また、さらに加工性良好な加工性を得ながらも良好な耐破壊特性及び耐摩耗性を得るためには、10万~35万であることが望ましい。
The molecular weight of the diene polymer is not particularly limited, but good fracture resistance and wear resistance can be obtained by setting the peak molecular weight to 50,000 or more, and good processing by setting the molecular weight to 700,000 or less. From the viewpoint of obtaining the properties, it is preferably 50,000 to 700,000. Further, in order to obtain good fracture resistance and wear resistance while obtaining good workability, 100,000 to 350,000 is desirable.
さらに、前記ゴム成分中の前記前記ジエン系重合体の含有率は、10質量%以上であることが好ましい。ゴム成分中の前記ジエン系重合体の含有率が10質量%未満では、充填剤の分散性を改良する効果が小さく、ゴム組成物の低ロス性、破壊特性及び耐摩耗性を改善する効果が小さいためである。
Furthermore, the content of the diene polymer in the rubber component is preferably 10% by mass or more. When the content of the diene polymer in the rubber component is less than 10% by mass, the effect of improving the dispersibility of the filler is small, and the effect of improving the low loss property, fracture characteristics, and wear resistance of the rubber composition. Because it is small.
ここで、前記ジエン系重合体を得る際の変性に用いられる変性剤について説明する。
前記変性剤は、シリカに対して相互作用性を有する官能基を含む変性剤であり、ケイ素原子、窒素原子及び酸素原子から選ばれる少なくとも1つの原子を有する変性剤であることが好ましい。 Here, the modifier used for modification in obtaining the diene polymer will be described.
The modifier is a modifier containing a functional group having an interaction property with silica, and is preferably a modifier having at least one atom selected from a silicon atom, a nitrogen atom and an oxygen atom.
前記変性剤は、シリカに対して相互作用性を有する官能基を含む変性剤であり、ケイ素原子、窒素原子及び酸素原子から選ばれる少なくとも1つの原子を有する変性剤であることが好ましい。 Here, the modifier used for modification in obtaining the diene polymer will be described.
The modifier is a modifier containing a functional group having an interaction property with silica, and is preferably a modifier having at least one atom selected from a silicon atom, a nitrogen atom and an oxygen atom.
前記シリカに対して高い親和性を有する観点から前記変性剤は、アルコキシシラン化合物であることが好ましい。
そして、当該アルコキシシラン化合物については、特に限定はされないものの、下記一般式(I)で表されるアルコキシシラン化合物であることがより好ましい。
(前記一般式(I)中、R1及びR2は、それぞれ独立に炭素数1~20の一価の脂肪族炭化水素基又は炭素数6~18の一価の芳香族炭化水素基を示し、aは0~2の整数であり、OR2が複数ある場合、複数のOR2は互いに同一でも異なっていてもよく、また分子中には活性プロトンは含まれない。)
From the viewpoint of high affinity for silica, the modifier is preferably an alkoxysilane compound.
The alkoxysilane compound is not particularly limited, but is more preferably an alkoxysilane compound represented by the following general formula (I).
(In the general formula (I), R 1 and R 2 each independently represents a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms. , a is an integer of 0 to 2, if the OR 2 there is a plurality, the plurality of OR 2 may be the same or different from each other, also in the molecule active proton is not included.)
そして、当該アルコキシシラン化合物については、特に限定はされないものの、下記一般式(I)で表されるアルコキシシラン化合物であることがより好ましい。
The alkoxysilane compound is not particularly limited, but is more preferably an alkoxysilane compound represented by the following general formula (I).
ここで、前記一般式(I)で表されるアルコキシシラン化合物の具体例としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン、テトラ-n-ブトキシシラン、テトライソブトキシシラン、テトラ-sec-ブトキシシラン、テトラーtert-ブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、エチルトリイソプロポキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリプロポキシシラン、プロピルトリイソプロポキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメトリジメトキシシラン、メチルフェニルジメトキシシラン、ジメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジビニルジエトキシシラン等が挙げることができるが、これらの中で、テトラエトキシシラン、メチルトリエトキシシラン及びジメチルジエトキシシランが好適である。これらは一種を単独で用いてもよく、二種以上を組み合わせても用いてもよい。
Here, specific examples of the alkoxysilane compound represented by the general formula (I) include, for example, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane. Tetraisobutoxysilane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, Ethyltripropoxysilane, ethyltriisopropoxysilane, propyltrimethoxysilane, propyltriethoxysilane, propyltripropoxysilane, propyltriisopropoxysilane, butyltrimethoxy Silane, butyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, methylphenyldimethoxysilane, dimethyldiethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, divinyldiethoxysilane, etc. Of these, tetraethoxysilane, methyltriethoxysilane, and dimethyldiethoxysilane are preferred. These may be used alone or in combination of two or more.
また、前記シリカに対して高い親和性を有する観点から、前記変性剤は、ヒドロカルビルオキシシラン化合物であっても良い。
そして、当該ヒドロカルビルオキシシラン化合物は、下記一般式(II)で表されるヒドロカルビルオキシシラン化合物であることが好ましい。 Further, from the viewpoint of having a high affinity for the silica, the modifier may be a hydrocarbyloxysilane compound.
The hydrocarbyloxysilane compound is preferably a hydrocarbyloxysilane compound represented by the following general formula (II).
そして、当該ヒドロカルビルオキシシラン化合物は、下記一般式(II)で表されるヒドロカルビルオキシシラン化合物であることが好ましい。 Further, from the viewpoint of having a high affinity for the silica, the modifier may be a hydrocarbyloxysilane compound.
The hydrocarbyloxysilane compound is preferably a hydrocarbyloxysilane compound represented by the following general formula (II).
前記加水分解性基を有する第一もしくは第二アミノ基又は前記加水分解性基を有するメルカプト基における加水分解性基として、トリメチルシリル基又はtert-ブチルジメチルシリル基が好ましく、トリメチルシリル基が特に好ましい。
なお、本発明において、「炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基」とは、「炭素数1~20の一価の脂肪族炭化水素基もしくは炭素数3~20の一価の脂環式炭化水素基」をいう。二価の炭化水素基の場合も同様である。
As the hydrolyzable group in the primary or secondary amino group having the hydrolyzable group or the mercapto group having the hydrolyzable group, a trimethylsilyl group or a tert-butyldimethylsilyl group is preferable, and a trimethylsilyl group is particularly preferable.
In the present invention, “a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms” means “a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms or 3 to 20 carbon atoms”. A monovalent alicyclic hydrocarbon group. The same applies to a divalent hydrocarbon group.
さらに、前記一般式(II)で表されるヒドロカルビルオキシシラン化合物は、下記一般式(III)で表されるヒドロカルビルオキシシラン化合物であることがより好ましい。
前記一般式(III)中、p1+p2+p3=2(但し、p1及びp2、p3は0~2の整数であり、かつ、p1+p2=1以上の整数)であり、A2は、NRa(Raは、一価の炭化水素基、加水分解性基又は含窒素有機基である。加水分解性基として、トリメチルシリル基又はtert-ブチルジメチルシリル基が好ましく、トリメチルシリル基が特に好ましい。)、或いは、硫黄であり、R25は、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、R27は、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基、炭素数6~18の一価の芳香族炭化水素基又はハロゲン原子(フッ素、塩素、臭素、ヨウ素)であり、R26は、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基、炭素数6~18の一価の芳香族炭化水素基又は含窒素有機基であり、いずれも窒素原子及び/又はケイ素原子を含有していても良く、p2が2の場合には、互いに同一もしくは異なり、或いは、一緒になって環を形成しており、R28は、炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基である。
Furthermore, the hydrocarbyloxysilane compound represented by the general formula (II) is more preferably a hydrocarbyloxysilane compound represented by the following general formula (III).
In the general formula (III), p1 + p2 + p3 = 2 (where p1 and p2, p3 are integers of 0 to 2, and p1 + p2 = 1 or more), and A 2 is NRa (Ra is 1 A trivalent silyl group or a tert-butyldimethylsilyl group, particularly preferably a trimethylsilyl group), or a sulfur group, a valent hydrocarbon group, a hydrolyzable group or a nitrogen-containing organic group. R 25 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and R 27 is a group having 1 to 20 carbon atoms. A monovalent aliphatic or alicyclic hydrocarbon group, a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, or a halogen atom (fluorine, chlorine, bromine, iodine), and R 26 represents 1 to 20 monovalent aliphatic or alicyclic hydrocarbons A basic group, a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms or a nitrogen-containing organic group, each of which may contain a nitrogen atom and / or a silicon atom, and when p2 is 2, R 28 is the same or different from each other, or together forms a ring, and R 28 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a divalent hydrocarbon having 6 to 18 carbon atoms. It is an aromatic hydrocarbon group.
さらに、前記一般式(III)で表されるヒドロカルビルオキシシラン化合物は、下記一般式(IV)又は(V)で表されるヒドロカルビルオキシシラン化合物であることがより好ましい。
前記一般式(IV)中、q1+q2=3(但し、q1は0~2の整数であり、q2は1~3の整数である)であり、R31は炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基であり、R32及びR33はそれぞれ独立して加水分解性基、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、R34は炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、q1が2の場合には同一でも異なっていても良く、R35は炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、q2が2以上の場合には同一でも異なっても良い。
Furthermore, the hydrocarbyloxysilane compound represented by the general formula (III) is more preferably a hydrocarbyloxysilane compound represented by the following general formula (IV) or (V).
In the general formula (IV), q1 + q2 = 3 (where q1 is an integer of 0 to 2, q2 is an integer of 1 to 3), and R 31 is a divalent fat having 1 to 20 carbon atoms. An aromatic or alicyclic hydrocarbon group or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms, wherein R 32 and R 33 are each independently a hydrolyzable group, a monovalent monovalent hydrocarbon having 1 to 20 carbon atoms. An aliphatic or alicyclic hydrocarbon group or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and R 34 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or carbon A monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, which may be the same or different when q1 is 2, and R 35 is a monovalent aliphatic or alicyclic carbon atom having 1 to 20 carbon atoms. A hydrogen group or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and when q2 is 2 or more, they may be the same or different.
また、前記変性剤が、下記一般式(VI)又は(VII)で表される2つ以上の窒素原子を有するヒドロカルビルオキシシラン化合物であることが好ましい。
前記一般式(VI)中、TMSはトリメチルシリル基であり、R40はトリメチルシリル基、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、R41は炭素数1~20のヒドロカルビルオキシ基、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、R42は炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基である。
The modifier is preferably a hydrocarbyloxysilane compound having two or more nitrogen atoms represented by the following general formula (VI) or (VII).
In the general formula (VI), TMS is a trimethylsilyl group, R 40 is a trimethylsilyl group, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic group having 6 to 18 carbon atoms. R 41 is a hydrocarbyloxy group having 1 to 20 carbon atoms, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic group having 6 to 18 carbon atoms. R 42 is a hydrocarbon group, and R 42 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
また、前記一般式(II)で表されるヒドロカルビルオキシシラン化合物が、下記一般式(VIII)で表されるヒドロカルビルオキシシラン化合物であることが好ましい。
前記一般式(VIII)中、r1+r2=3(但し、r1は0~2の整数であり、r2は1~3の整数である。)であり、TMSはトリメチルシリル基であり、R46は炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基であり、R47及びR48はそれぞれ独立して炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基である。複数のR47又はR48は、同一でも異なっていても良い。
Moreover, it is preferable that the hydrocarbyloxysilane compound represented by the general formula (II) is a hydrocarbyloxysilane compound represented by the following general formula (VIII).
In the general formula (VIII), r1 + r2 = 3 (where r1 is an integer of 0 to 2, r2 is an integer of 1 to 3), TMS is a trimethylsilyl group, and R 46 is a carbon number. A divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms, wherein R 47 and R 48 are each independently a group having 1 to 20 carbon atoms. A monovalent aliphatic or alicyclic hydrocarbon group or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms. A plurality of R 47 or R 48 may be the same or different.
さらに、前記変性剤が、下記一般式(IX)で表されるヒドロカルビルオキシシラン化合物であることが好ましい。
前記一般式(IX)中、Xはハロゲン原子であり、R49は炭素数1~20の二価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基であり、R50及びR51はそれぞれ独立して加水分解性基又は炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であるか、或いは、R50及びR51は結合して二価の有機基を形成しており、R52及びR53はそれぞれ独立してハロゲン原子、ヒドロカルビルオキシ基、炭素数1~20の一価の脂肪族もしくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基である。R50及びR51としては、加水分解性基であることが好ましく、加水分解性基として、トリメチルシリル基又はtert-ブチルジメチルシリル基が好ましく、トリメチルシリル基が特に好ましい。
Furthermore, the modifier is preferably a hydrocarbyloxysilane compound represented by the following general formula (IX).
In the general formula (IX), X is a halogen atom, and R 49 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a divalent aromatic hydrocarbon having 6 to 18 carbon atoms. R 50 and R 51 are each independently a hydrolyzable group, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic carbon group having 6 to 18 carbon atoms. R 50 and R 51 are bonded to form a divalent organic group, and R 52 and R 53 are each independently a halogen atom, a hydrocarbyloxy group, or a carbon number of 1 to 20 A monovalent aliphatic or alicyclic hydrocarbon group or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms. R 50 and R 51 are preferably hydrolyzable groups, and the hydrolyzable group is preferably a trimethylsilyl group or a tert-butyldimethylsilyl group, and particularly preferably a trimethylsilyl group.
以上の一般式(II)~(IX)で表されるヒドロカルビルオキシシラン化合物は、前記変性共役ジエン系重合体がアニオン重合により製造される場合の変性剤として用いられることが好ましい。
また、一般式(II)~(IX)で表されるヒドロカルビルオキシシラン化合物は、アルコキシシラン化合物であることが好ましい。 The hydrocarbyloxysilane compounds represented by the general formulas (II) to (IX) are preferably used as a modifier when the modified conjugated diene polymer is produced by anionic polymerization.
The hydrocarbyloxysilane compounds represented by the general formulas (II) to (IX) are preferably alkoxysilane compounds.
また、一般式(II)~(IX)で表されるヒドロカルビルオキシシラン化合物は、アルコキシシラン化合物であることが好ましい。 The hydrocarbyloxysilane compounds represented by the general formulas (II) to (IX) are preferably used as a modifier when the modified conjugated diene polymer is produced by anionic polymerization.
The hydrocarbyloxysilane compounds represented by the general formulas (II) to (IX) are preferably alkoxysilane compounds.
また、アニオン重合によって前記ジエン系重合体を変性する場合に好適な変性剤としては、具体的には、3,4-ビス(トリメチルシリルオキシ)-1-ビニルベンゼン、3,4-ビス(トリメチルシリルオキシ)ベンズアルデヒド、3,4-ビス(tert-ブチルジメチルシリルオキシ)ベンズアルデヒド、2-シアノピリジン、1,3-ジメチル-2-イミダゾリジノン及び1―メチル-2-ピロリドンから選ばれる少なくとも1種の化合物が挙げられる。
さらに、前記変性剤は、アニオン重合における重合開始剤として用いられるリチウムアミド化合物のアミド部分であることが好ましい。
このリチウムアミド化合物としては、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミド、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジブチルアミド、リチウムジプロピルアミド、リチウムジへプチルアミド、リチウムジへキシルアミド、リチウムジオクチルアミド、リチウムジ-2-エチルへキシルアミド、リチウムジデシルアミド、リチウム-N-メチルピベラジド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムエチルベンジルアミド及びリチウムメチルフェネチルアミドから選ばれる少なくとも一種の化合物であることが好適に例示される。例えば、リチウムヘキサメチレンイミドのアミド部分となる変性剤はヘキサメチレンイミンであり、リチウムピロリジドのアミド部分となる変性剤はピロリジンであり、リチウムピぺリジドのアミド部分となる変性剤はピぺリジンである。 Further, as a suitable modifier for modifying the diene polymer by anionic polymerization, specifically, 3,4-bis (trimethylsilyloxy) -1-vinylbenzene, 3,4-bis (trimethylsilyloxy) ) At least one compound selected from benzaldehyde, 3,4-bis (tert-butyldimethylsilyloxy) benzaldehyde, 2-cyanopyridine, 1,3-dimethyl-2-imidazolidinone and 1-methyl-2-pyrrolidone Is mentioned.
Further, the modifier is preferably an amide portion of a lithium amide compound used as a polymerization initiator in anionic polymerization.
Examples of the lithium amide compound include lithium hexamethylene imide, lithium pyrrolidide, lithium piperide, lithium heptamethylene imide, lithium dodecamethylene imide, lithium dimethylamide, lithium diethylamide, lithium dibutylamide, lithium dipropylamide, lithium diheptylamide. , Lithium dihexylamide, lithium dioctylamide, lithium di-2-ethylhexylamide, lithium didecylamide, lithium-N-methylpiverazide, lithium ethylpropylamide, lithium ethylbutyramide, lithium ethylbenzylamide and lithium methylphenethylamide A preferred example is at least one compound. For example, the modifying agent that becomes the amide portion of lithium hexamethylene imide is hexamethyleneimine, the modifying agent that becomes the amide portion of lithium pyrrolidide is pyrrolidine, and the modifying agent that becomes the amide portion of lithium piperide is piperidine. is there.
さらに、前記変性剤は、アニオン重合における重合開始剤として用いられるリチウムアミド化合物のアミド部分であることが好ましい。
このリチウムアミド化合物としては、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミド、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジブチルアミド、リチウムジプロピルアミド、リチウムジへプチルアミド、リチウムジへキシルアミド、リチウムジオクチルアミド、リチウムジ-2-エチルへキシルアミド、リチウムジデシルアミド、リチウム-N-メチルピベラジド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムエチルベンジルアミド及びリチウムメチルフェネチルアミドから選ばれる少なくとも一種の化合物であることが好適に例示される。例えば、リチウムヘキサメチレンイミドのアミド部分となる変性剤はヘキサメチレンイミンであり、リチウムピロリジドのアミド部分となる変性剤はピロリジンであり、リチウムピぺリジドのアミド部分となる変性剤はピぺリジンである。 Further, as a suitable modifier for modifying the diene polymer by anionic polymerization, specifically, 3,4-bis (trimethylsilyloxy) -1-vinylbenzene, 3,4-bis (trimethylsilyloxy) ) At least one compound selected from benzaldehyde, 3,4-bis (tert-butyldimethylsilyloxy) benzaldehyde, 2-cyanopyridine, 1,3-dimethyl-2-imidazolidinone and 1-methyl-2-pyrrolidone Is mentioned.
Further, the modifier is preferably an amide portion of a lithium amide compound used as a polymerization initiator in anionic polymerization.
Examples of the lithium amide compound include lithium hexamethylene imide, lithium pyrrolidide, lithium piperide, lithium heptamethylene imide, lithium dodecamethylene imide, lithium dimethylamide, lithium diethylamide, lithium dibutylamide, lithium dipropylamide, lithium diheptylamide. , Lithium dihexylamide, lithium dioctylamide, lithium di-2-ethylhexylamide, lithium didecylamide, lithium-N-methylpiverazide, lithium ethylpropylamide, lithium ethylbutyramide, lithium ethylbenzylamide and lithium methylphenethylamide A preferred example is at least one compound. For example, the modifying agent that becomes the amide portion of lithium hexamethylene imide is hexamethyleneimine, the modifying agent that becomes the amide portion of lithium pyrrolidide is pyrrolidine, and the modifying agent that becomes the amide portion of lithium piperide is piperidine. is there.
また、配位重合によって前記ジエン系重合体を変性する場合に好適な変性剤としては、2-シアノピリジン及び3,4-ジトリメチルシリルオキシベンズアルデヒドから選ばれる少なくとも1種の化合物が好ましく挙げられる。
さらに、乳化重合によって前記ジエン系重合体を変性する場合に好適な変性剤としては、3,4-ジトリメチルシリルオキシベンズアルデヒド及び4-ヘキサメチレンイミノアルキルスチレンから選ばれる少なくとも1種の化合物が好ましく挙げられる。これらの乳化重合において好ましく用いられる変性剤は、窒素原子及び/又はケイ素原子を含むモノマーとして、乳化重合時に共重合されることが好ましい。 In addition, as a suitable modifier when modifying the diene polymer by coordination polymerization, at least one compound selected from 2-cyanopyridine and 3,4-ditrimethylsilyloxybenzaldehyde is preferably exemplified.
Further, as a suitable modifier when modifying the diene polymer by emulsion polymerization, at least one compound selected from 3,4-ditrimethylsilyloxybenzaldehyde and 4-hexamethyleneiminoalkylstyrene is preferably exemplified. . The modifier preferably used in these emulsion polymerizations is preferably copolymerized as a monomer containing nitrogen atoms and / or silicon atoms during emulsion polymerization.
さらに、乳化重合によって前記ジエン系重合体を変性する場合に好適な変性剤としては、3,4-ジトリメチルシリルオキシベンズアルデヒド及び4-ヘキサメチレンイミノアルキルスチレンから選ばれる少なくとも1種の化合物が好ましく挙げられる。これらの乳化重合において好ましく用いられる変性剤は、窒素原子及び/又はケイ素原子を含むモノマーとして、乳化重合時に共重合されることが好ましい。 In addition, as a suitable modifier when modifying the diene polymer by coordination polymerization, at least one compound selected from 2-cyanopyridine and 3,4-ditrimethylsilyloxybenzaldehyde is preferably exemplified.
Further, as a suitable modifier when modifying the diene polymer by emulsion polymerization, at least one compound selected from 3,4-ditrimethylsilyloxybenzaldehyde and 4-hexamethyleneiminoalkylstyrene is preferably exemplified. . The modifier preferably used in these emulsion polymerizations is preferably copolymerized as a monomer containing nitrogen atoms and / or silicon atoms during emulsion polymerization.
なお、前記ジエン系重合体は、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算のピーク分子量が5万以上70万以下であるのが好ましい。ジエン系重合体のピーク分子量が5万以上とすることで、良好な耐破壊特性及び耐摩耗性が得られ、70万以下とすることで、良好な加工性が得られる。さらに、高度に耐破壊特性及び耐摩耗性と加工性を両立するためには、10~35万の分子量であることが望ましい。
また、前記ジエン系重合体は、示差走査熱量分析計(DSC)で測定したガラス転移点(Tg)が0℃以下であるのが好ましい。前記ジエン系重合体のガラス転移点が0℃を超えると、低温でのゴム特性が著しく悪化する。 The diene polymer preferably has a peak molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC) of 50,000 to 700,000. When the peak molecular weight of the diene polymer is 50,000 or more, good fracture resistance and wear resistance are obtained, and when it is 700,000 or less, good workability is obtained. Furthermore, in order to achieve both high fracture resistance and wear resistance and workability, a molecular weight of 100,000 to 350,000 is desirable.
The diene polymer preferably has a glass transition point (Tg) measured by a differential scanning calorimeter (DSC) of 0 ° C. or less. When the glass transition point of the diene polymer exceeds 0 ° C., rubber properties at low temperatures are remarkably deteriorated.
また、前記ジエン系重合体は、示差走査熱量分析計(DSC)で測定したガラス転移点(Tg)が0℃以下であるのが好ましい。前記ジエン系重合体のガラス転移点が0℃を超えると、低温でのゴム特性が著しく悪化する。 The diene polymer preferably has a peak molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC) of 50,000 to 700,000. When the peak molecular weight of the diene polymer is 50,000 or more, good fracture resistance and wear resistance are obtained, and when it is 700,000 or less, good workability is obtained. Furthermore, in order to achieve both high fracture resistance and wear resistance and workability, a molecular weight of 100,000 to 350,000 is desirable.
The diene polymer preferably has a glass transition point (Tg) measured by a differential scanning calorimeter (DSC) of 0 ° C. or less. When the glass transition point of the diene polymer exceeds 0 ° C., rubber properties at low temperatures are remarkably deteriorated.
本発明のタイヤ用ゴム組成物において、前記ゴム成分は、上述した前記ジエン系重合体以外に、さらに、天然ゴム(NR)、スチレン-ブタジエン共重合体(SBR)、ポリブタジエンゴム(BR)、ポリイソプレンゴム(IR)、ブチルゴム(IIR)、エチレン-プロピレン共重合体等を含有することができ、これらの中でも、天然ゴム、ポリイソプレンゴム、ポリブタジエンゴム及びスチレン-ブタジエンゴムのうちの少なくとも一種を含有することが好ましい。これらゴム成分は、1種単独でも、2種以上のブレンドとして用いてもよい。
さらに、前記ゴム成分中の前記前記ジエン系重合体の含有率は、10質量%以上であることが好ましい。ゴム成分中の前記ジエン系重合体の含有率が10質量%未満では、充填剤の分散性を改良する効果が小さく、ゴム組成物の低ロス性、破壊特性及び耐摩耗性を改善する効果が小さいためである。 In the rubber composition for a tire according to the present invention, the rubber component may be a natural rubber (NR), a styrene-butadiene copolymer (SBR), a polybutadiene rubber (BR), a poly, in addition to the diene polymer described above. Can contain isoprene rubber (IR), butyl rubber (IIR), ethylene-propylene copolymer, etc. Among them, contains at least one of natural rubber, polyisoprene rubber, polybutadiene rubber and styrene-butadiene rubber It is preferable to do. These rubber components may be used alone or as a blend of two or more.
Furthermore, the content of the diene polymer in the rubber component is preferably 10% by mass or more. When the content of the diene polymer in the rubber component is less than 10% by mass, the effect of improving the dispersibility of the filler is small, and the effect of improving the low loss property, fracture characteristics, and wear resistance of the rubber composition. Because it is small.
さらに、前記ゴム成分中の前記前記ジエン系重合体の含有率は、10質量%以上であることが好ましい。ゴム成分中の前記ジエン系重合体の含有率が10質量%未満では、充填剤の分散性を改良する効果が小さく、ゴム組成物の低ロス性、破壊特性及び耐摩耗性を改善する効果が小さいためである。 In the rubber composition for a tire according to the present invention, the rubber component may be a natural rubber (NR), a styrene-butadiene copolymer (SBR), a polybutadiene rubber (BR), a poly, in addition to the diene polymer described above. Can contain isoprene rubber (IR), butyl rubber (IIR), ethylene-propylene copolymer, etc. Among them, contains at least one of natural rubber, polyisoprene rubber, polybutadiene rubber and styrene-butadiene rubber It is preferable to do. These rubber components may be used alone or as a blend of two or more.
Furthermore, the content of the diene polymer in the rubber component is preferably 10% by mass or more. When the content of the diene polymer in the rubber component is less than 10% by mass, the effect of improving the dispersibility of the filler is small, and the effect of improving the low loss property, fracture characteristics, and wear resistance of the rubber composition. Because it is small.
(ジエン系重合体の製造方法)
なお、上述した本発明のジエン系重合体を製造する方法については、その末端から全鎖長の1/4の範囲のみに変性官能基を3つ以上有し、少なくとも1つの前記変性官能基間にジエン系重合体の単量体構造を形成することができれば特に限定はされない。
製造方法の一つとして、例えば、前記変性官能基を有さないジエン系重合体の分子鎖(ジエン系重合体の末端から全鎖長の3/4の範囲)を形成する工程、並びに、前記官能基と前記ジエン系重合体の単量体構造とからなる分子鎖(ジエン系重合体の末端から全鎖長の1/4の範囲)を形成する工程を経ることによって、上述した変性ジエン系重合体を製造することができる。なお、前記変性官能基を有さないジエン系重合体の分子鎖を形成する工程と、前記官能基と前記ジエン系重合体の単量体構造とからなる分子鎖を形成する工程とは、どちらを先に行っても構わない。 (Method for producing diene polymer)
In addition, about the method to manufacture the diene polymer of this invention mentioned above, it has three or more modified functional groups only in the range of 1/4 of the total chain length from the terminal, and between at least 1 said modified functional group There is no particular limitation as long as the monomer structure of the diene polymer can be formed.
As one of the production methods, for example, a step of forming a molecular chain of a diene polymer having no modified functional group (a range of 3/4 of the total chain length from the end of the diene polymer), and The above-mentioned modified diene system is obtained by passing through a step of forming a molecular chain comprising the functional group and the monomer structure of the diene polymer (in the range of 1/4 of the total chain length from the end of the diene polymer). A polymer can be produced. Which is the step of forming the molecular chain of the diene polymer not having the modified functional group and the step of forming the molecular chain composed of the functional group and the monomer structure of the diene polymer? You may go first.
なお、上述した本発明のジエン系重合体を製造する方法については、その末端から全鎖長の1/4の範囲のみに変性官能基を3つ以上有し、少なくとも1つの前記変性官能基間にジエン系重合体の単量体構造を形成することができれば特に限定はされない。
製造方法の一つとして、例えば、前記変性官能基を有さないジエン系重合体の分子鎖(ジエン系重合体の末端から全鎖長の3/4の範囲)を形成する工程、並びに、前記官能基と前記ジエン系重合体の単量体構造とからなる分子鎖(ジエン系重合体の末端から全鎖長の1/4の範囲)を形成する工程を経ることによって、上述した変性ジエン系重合体を製造することができる。なお、前記変性官能基を有さないジエン系重合体の分子鎖を形成する工程と、前記官能基と前記ジエン系重合体の単量体構造とからなる分子鎖を形成する工程とは、どちらを先に行っても構わない。 (Method for producing diene polymer)
In addition, about the method to manufacture the diene polymer of this invention mentioned above, it has three or more modified functional groups only in the range of 1/4 of the total chain length from the terminal, and between at least 1 said modified functional group There is no particular limitation as long as the monomer structure of the diene polymer can be formed.
As one of the production methods, for example, a step of forming a molecular chain of a diene polymer having no modified functional group (a range of 3/4 of the total chain length from the end of the diene polymer), and The above-mentioned modified diene system is obtained by passing through a step of forming a molecular chain comprising the functional group and the monomer structure of the diene polymer (in the range of 1/4 of the total chain length from the end of the diene polymer). A polymer can be produced. Which is the step of forming the molecular chain of the diene polymer not having the modified functional group and the step of forming the molecular chain composed of the functional group and the monomer structure of the diene polymer? You may go first.
ここで、前記官能基と前記ジエン系重合体の単量体構造とからなる分子鎖の形成については、例えば、以下の(1)~(4)のような方法が挙げられる。
(1)前記ジエン系重合体の単量体成分と、該単量体成分と共重合可能であり且つ変性官能基を有する変性剤とを、交互に投入する方法。
(2)前記ジエン系重合体の単量体成分と、該単量体成分と共重合可能であり且つ変性官能基を有する変性剤とを、同時に投入する方法。
(3)前記ジエン系重合体の単量体成分と、該単量体成分と共重合可能であり且つ変性官能基含有化合物と化学的に反応することで変性官能基の導入が可能となる部位を有する化合物とを、交互に投入する方法。
(4)前記ジエン系重合体の単量体成分と、該単量体成分と共重合可能であり且つ変性官能基含有化合物と化学的に反応することで変性官能基の導入が可能となる部位を有する化合物とを、同時に投入する方法。
上記(1)~(4)の中でも、全ての前記変性官能基間に、前記ジエン系重合体の単量体構造を有する(つまり、前記ジエン系重合体中の全ての変性官能基は互いに直接結合していない)構造をより確実に形成できる点からは、前述の1若しくは3の方法が好ましく、生産に掛かる時間を短縮し生産性を高めるためには前述の2若しくは4の方法が好ましい 。なお、前述の前記ジエン系重合体の単量体成分と共重合可能であり変性官能基含有化合物と化学的に反応することで変性官能基の導入が可能な部位を有する化合物としては例えば、p-メチルスチレン等が挙げられる。 Here, examples of the formation of a molecular chain composed of the functional group and the monomer structure of the diene polymer include the following methods (1) to (4).
(1) A method in which a monomer component of the diene polymer and a modifying agent copolymerizable with the monomer component and having a modified functional group are alternately added.
(2) A method in which a monomer component of the diene polymer and a modifying agent copolymerizable with the monomer component and having a modified functional group are simultaneously added.
(3) The monomer component of the diene polymer, and a site that can be copolymerized with the monomer component and can be introduced with a modified functional group by chemically reacting with the modified functional group-containing compound. A method of alternately charging a compound having
(4) A monomer component of the diene polymer and a site that can be copolymerized with the monomer component and can be introduced with a modified functional group by chemically reacting with the modified functional group-containing compound. And a compound having the same at the same time.
Among the above (1) to (4), all the modified functional groups have a monomer structure of the diene polymer (that is, all the modified functional groups in the diene polymer are directly The above-described method 1 or 3 is preferable from the viewpoint that a structure that is not bonded) can be more reliably formed, and the above-described method 2 or 4 is preferable in order to shorten the time required for production and increase productivity. Examples of the compound having a site which can be copolymerized with the monomer component of the diene polymer and can introduce a modified functional group by chemically reacting with the modified functional group-containing compound include p -Methylstyrene and the like.
(1)前記ジエン系重合体の単量体成分と、該単量体成分と共重合可能であり且つ変性官能基を有する変性剤とを、交互に投入する方法。
(2)前記ジエン系重合体の単量体成分と、該単量体成分と共重合可能であり且つ変性官能基を有する変性剤とを、同時に投入する方法。
(3)前記ジエン系重合体の単量体成分と、該単量体成分と共重合可能であり且つ変性官能基含有化合物と化学的に反応することで変性官能基の導入が可能となる部位を有する化合物とを、交互に投入する方法。
(4)前記ジエン系重合体の単量体成分と、該単量体成分と共重合可能であり且つ変性官能基含有化合物と化学的に反応することで変性官能基の導入が可能となる部位を有する化合物とを、同時に投入する方法。
上記(1)~(4)の中でも、全ての前記変性官能基間に、前記ジエン系重合体の単量体構造を有する(つまり、前記ジエン系重合体中の全ての変性官能基は互いに直接結合していない)構造をより確実に形成できる点からは、前述の1若しくは3の方法が好ましく、生産に掛かる時間を短縮し生産性を高めるためには前述の2若しくは4の方法が好ましい 。なお、前述の前記ジエン系重合体の単量体成分と共重合可能であり変性官能基含有化合物と化学的に反応することで変性官能基の導入が可能な部位を有する化合物としては例えば、p-メチルスチレン等が挙げられる。 Here, examples of the formation of a molecular chain composed of the functional group and the monomer structure of the diene polymer include the following methods (1) to (4).
(1) A method in which a monomer component of the diene polymer and a modifying agent copolymerizable with the monomer component and having a modified functional group are alternately added.
(2) A method in which a monomer component of the diene polymer and a modifying agent copolymerizable with the monomer component and having a modified functional group are simultaneously added.
(3) The monomer component of the diene polymer, and a site that can be copolymerized with the monomer component and can be introduced with a modified functional group by chemically reacting with the modified functional group-containing compound. A method of alternately charging a compound having
(4) A monomer component of the diene polymer and a site that can be copolymerized with the monomer component and can be introduced with a modified functional group by chemically reacting with the modified functional group-containing compound. And a compound having the same at the same time.
Among the above (1) to (4), all the modified functional groups have a monomer structure of the diene polymer (that is, all the modified functional groups in the diene polymer are directly The above-described method 1 or 3 is preferable from the viewpoint that a structure that is not bonded) can be more reliably formed, and the above-described method 2 or 4 is preferable in order to shorten the time required for production and increase productivity. Examples of the compound having a site which can be copolymerized with the monomer component of the diene polymer and can introduce a modified functional group by chemically reacting with the modified functional group-containing compound include p -Methylstyrene and the like.
〔シリカを有する無機充填材(B)を含む充填材〕
本発明のタイヤ用ゴム組成物に用いられるシリカを有する無機充填材(B)を含む充填材は、シリカ及び下記一般式(X)で表される無機化合物などを用いることができる。
aM1・xSiOy・zH2O ………(X)
ここで、一般式(X)中、M1は、アルミニウム、マグネシウム、チタン、カルシウム、及びジルコニウムからなる群から選ばれる金属、これらの金属の酸化物又は水酸化物、及びそれらの水和物、又はこれらの金属の炭酸塩から選ばれる少なくとも一種であり、a、x、y及びzは、それぞれ1~5の整数、0~10の整数、2~5の整数、及び0~10の整数である。
なお、一般式(X)において、x、zがともに0である場合には、該無機化合物はアルミニウム、マグネシウム、チタン、カルシウム及びジルコニウムから選ばれる少なくとも1つの金属、これらの金属酸化物又は金属水酸化物並びに、これらの金属の水和物又は炭酸塩となる。 [Filler containing inorganic filler (B) having silica]
As the filler containing the inorganic filler (B) having silica used in the rubber composition for tires of the present invention, silica and inorganic compounds represented by the following general formula (X) can be used.
aM 1 · xSiO y · zH 2 O (X)
Here, in the general formula (X), M 1 is a metal selected from the group consisting of aluminum, magnesium, titanium, calcium, and zirconium, oxides or hydroxides of these metals, and hydrates thereof, Or at least one selected from carbonates of these metals, and a, x, y and z are each an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10 is there.
In the general formula (X), when both x and z are 0, the inorganic compound is at least one metal selected from aluminum, magnesium, titanium, calcium and zirconium, these metal oxides or metal water. Oxides as well as hydrates or carbonates of these metals.
本発明のタイヤ用ゴム組成物に用いられるシリカを有する無機充填材(B)を含む充填材は、シリカ及び下記一般式(X)で表される無機化合物などを用いることができる。
aM1・xSiOy・zH2O ………(X)
ここで、一般式(X)中、M1は、アルミニウム、マグネシウム、チタン、カルシウム、及びジルコニウムからなる群から選ばれる金属、これらの金属の酸化物又は水酸化物、及びそれらの水和物、又はこれらの金属の炭酸塩から選ばれる少なくとも一種であり、a、x、y及びzは、それぞれ1~5の整数、0~10の整数、2~5の整数、及び0~10の整数である。
なお、一般式(X)において、x、zがともに0である場合には、該無機化合物はアルミニウム、マグネシウム、チタン、カルシウム及びジルコニウムから選ばれる少なくとも1つの金属、これらの金属酸化物又は金属水酸化物並びに、これらの金属の水和物又は炭酸塩となる。 [Filler containing inorganic filler (B) having silica]
As the filler containing the inorganic filler (B) having silica used in the rubber composition for tires of the present invention, silica and inorganic compounds represented by the following general formula (X) can be used.
aM 1 · xSiO y · zH 2 O (X)
Here, in the general formula (X), M 1 is a metal selected from the group consisting of aluminum, magnesium, titanium, calcium, and zirconium, oxides or hydroxides of these metals, and hydrates thereof, Or at least one selected from carbonates of these metals, and a, x, y and z are each an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10 is there.
In the general formula (X), when both x and z are 0, the inorganic compound is at least one metal selected from aluminum, magnesium, titanium, calcium and zirconium, these metal oxides or metal water. Oxides as well as hydrates or carbonates of these metals.
本発明においては、上述の無機充填材(B)の内、低転がり性と耐摩耗性の両立の観点からシリカが好ましい。シリカとしては市販のあらゆるものが使用でき、なかでも湿式シリカ、乾式シリカ、コロイダルシリカを用いるのが好ましく、湿式シリカを用いるのが特に好ましい。シリカのBET比表面積(ISO 5794/1に準拠して測定する)は40~350m2/gであるのが好ましい。BET表面積がこの範囲であるシリカは、ゴム補強性とゴム成分中への分散性とを両立できるという利点がある。この観点から、BET表面積が80~350m2/gの範囲にあるシリカが更に好ましく、BET表面積が120~350m2/gの範囲にあるシリカが特に好ましい。このようなシリカとしては東ソーシリカ社製、商品名「ニプシルAQ」(BET比表面積 =220m2/g)、「ニプシルKQ」、デグッサ社製商品名「ウルトラジルVN3」(BET比表面積 =175m2/g)等の市販品を用いることができる。
In the present invention, among the inorganic fillers (B), silica is preferable from the viewpoint of achieving both low rolling properties and wear resistance. Any commercially available silica can be used, among which wet silica, dry silica, and colloidal silica are preferably used, and wet silica is particularly preferably used. The BET specific surface area (measured according to ISO 5794/1) of silica is preferably 40 to 350 m 2 / g. Silica having a BET surface area within this range has an advantage that both rubber reinforcement and dispersibility in a rubber component can be achieved. From this viewpoint, silica having a BET surface area in the range of 80 to 350 m 2 / g is more preferable, and silica having a BET surface area in the range of 120 to 350 m 2 / g is particularly preferable. Examples of such silicas are those manufactured by Tosoh Silica Co., Ltd., trade names “Nipsil AQ” (BET specific surface area = 220 m 2 / g), “Nipsil KQ”, and Degussa's trade name “Ultra Gil VN3” (BET specific surface area = 175 m 2. / G) and other commercial products can be used.
前記一般式(X)で表わされる無機化合物としては、例えば、γ-アルミナ、α-アルミナ等のアルミナ(Al2O3)、ベーマイト、ダイアスポア等のアルミナ一水和物(Al2O3・H2O)、ギブサイト、バイヤライト等の水酸化アルミニウム[Al(OH)3]、炭酸アルミニウム[Al2(CO3)3]、水酸化マグネシウム[Mg(OH)2]、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO3)、タルク(3MgO・4SiO2・H2O)、アタパルジャイト(5MgO・8SiO2・9H2O)、チタン白(TiO2)、チタン黒(TiO2n-1)、酸化カルシウム(CaO)、水酸化カルシウム[Ca(OH)2]、酸化アルミニウムマグネシウム(MgO・Al2O3)、クレー(Al2O3・2SiO2)、カオリン(Al2O3・2SiO2・2H2O)、パイロフィライト(Al2O3・4SiO2・H2O)、ベントナイト(Al2O3・4SiO2・2H2O)、ケイ酸アルミニウム(Al2SiO5 、Al4・3SiO4・5H2O等)、ケイ酸マグネシウム(Mg2SiO4、MgSiO3等)、ケイ酸カルシウム(Ca2・SiO4等)、ケイ酸アルミニウムカルシウム(Al2O3・CaO・2SiO2等)、ケイ酸マグネシウムカルシウム(CaMgSiO4)、炭酸カルシウム(CaCO3)、酸化ジルコニウム(ZrO2)、水酸化ジルコニウム[ZrO(OH)2・nH2O]、炭酸ジルコニウム[Zr(CO3)2]、各種ゼオライトのように電荷を補正する水素、アルカリ金属又はアルカリ土類金属を含む結晶性アルミノケイ酸塩などが使用できる。また、前記一般式(X)中のM1がアルミニウム金属、アルミニウムの酸化物又は水酸化物、及びそれらの水和物、又はアルミニウムの炭酸塩から選ばれる少なくとも一つである場合が好ましい。
一般式(X)で表されるこれらの無機化合物は、単独で使用しても良いし、2種以上を混合して使用しても良い。これらの無機化合物の平均粒径は、混練作業性、耐摩耗性及びウェットグリップ性能のバランスなどの観点から、0.01~10μmの範囲が好ましく、0.05~5μmの範囲がより好ましい。
本発明における無機充填材(B)は、シリカ単独で使用しても良いし、シリカと一般式(X)で表される無機化合物の1種以上とを併用しても良い。
ここで、前記シリカの含有量は、前記ゴム成分100質量部に対して60~250質量部であることが好ましく、70~150質量部であることがより好ましく、75~120質量部であることが特に好ましい。前記シリカの含有量が60質量部未満の場合には、シリカの量が少ないため、破壊特性及び耐摩耗性の向上効果を充分に得られないおそれがあり、含有量が250質量部を超えると、シリカの量が多すぎるため、ゴム組成物の伸びや加工性が悪化するおそれがある。 Examples of the inorganic compound represented by the general formula (X) include alumina (Al 2 O 3 ) such as γ-alumina and α-alumina, and alumina monohydrate (Al 2 O 3 .H) such as boehmite and diaspore. 2 O), Gibbsite, Bayerite, etc. Aluminum hydroxide [Al (OH) 3 ], Aluminum carbonate [Al 2 (CO 3 ) 3 ], Magnesium hydroxide [Mg (OH) 2 ], Magnesium oxide (MgO), Magnesium carbonate (MgCO 3 ), talc (3MgO · 4SiO 2 · H 2 O), attapulgite (5MgO · 8SiO 2 · 9H 2 O), titanium white (TiO 2 ), titanium black (TiO 2n-1 ), calcium oxide ( CaO), calcium hydroxide [Ca (OH) 2], magnesium aluminum oxide (MgO · Al 2 O 3) , clay (Al 2 O 3 · 2SiO 2 ), mosquitoes Phosphorus (Al 2 O 3 · 2SiO 2 · 2H 2 O), pyrophyllite (Al 2 O 3 · 4SiO 2 · H 2 O), bentonite (Al 2 O 3 · 4SiO 2 · 2H 2 O), aluminum silicate (Al 2 SiO 5 , Al 4 · 3SiO 4 · 5H 2 O, etc.), magnesium silicate (Mg 2 SiO 4 , MgSiO 3 etc.), calcium silicate (Ca 2 · SiO 4 etc.), aluminum calcium silicate (Al 2 O 3 · CaO · 2SiO 2 etc.), magnesium calcium silicate (CaMgSiO 4 ), calcium carbonate (CaCO 3 ), zirconium oxide (ZrO 2 ), zirconium hydroxide [ZrO (OH) 2 · nH 2 O], carbonic acid zirconium [Zr (CO 3) 2] , crystalline aluminosilicate containing hydrogen to correct, an alkali metal or alkaline earth metal charge as various zeolites Etc. can be used. Further, it is preferable that M 1 in the general formula (X) is at least one selected from aluminum metal, aluminum oxide or hydroxide, hydrates thereof, and aluminum carbonate.
These inorganic compounds represented by the general formula (X) may be used alone or in combination of two or more. The average particle size of these inorganic compounds is preferably in the range of 0.01 to 10 μm, more preferably in the range of 0.05 to 5 μm, from the viewpoint of kneading workability, wear resistance, and wet grip performance.
The inorganic filler (B) in the present invention may be used alone or in combination with silica and one or more inorganic compounds represented by the general formula (X).
Here, the content of the silica is preferably 60 to 250 parts by mass, more preferably 70 to 150 parts by mass, and 75 to 120 parts by mass with respect to 100 parts by mass of the rubber component. Is particularly preferred. When the content of the silica is less than 60 parts by mass, since the amount of silica is small, there is a possibility that the effect of improving the fracture characteristics and wear resistance may not be sufficiently obtained, and when the content exceeds 250 parts by mass. Further, since the amount of silica is too large, the elongation and processability of the rubber composition may be deteriorated.
一般式(X)で表されるこれらの無機化合物は、単独で使用しても良いし、2種以上を混合して使用しても良い。これらの無機化合物の平均粒径は、混練作業性、耐摩耗性及びウェットグリップ性能のバランスなどの観点から、0.01~10μmの範囲が好ましく、0.05~5μmの範囲がより好ましい。
本発明における無機充填材(B)は、シリカ単独で使用しても良いし、シリカと一般式(X)で表される無機化合物の1種以上とを併用しても良い。
ここで、前記シリカの含有量は、前記ゴム成分100質量部に対して60~250質量部であることが好ましく、70~150質量部であることがより好ましく、75~120質量部であることが特に好ましい。前記シリカの含有量が60質量部未満の場合には、シリカの量が少ないため、破壊特性及び耐摩耗性の向上効果を充分に得られないおそれがあり、含有量が250質量部を超えると、シリカの量が多すぎるため、ゴム組成物の伸びや加工性が悪化するおそれがある。 Examples of the inorganic compound represented by the general formula (X) include alumina (Al 2 O 3 ) such as γ-alumina and α-alumina, and alumina monohydrate (Al 2 O 3 .H) such as boehmite and diaspore. 2 O), Gibbsite, Bayerite, etc. Aluminum hydroxide [Al (OH) 3 ], Aluminum carbonate [Al 2 (CO 3 ) 3 ], Magnesium hydroxide [Mg (OH) 2 ], Magnesium oxide (MgO), Magnesium carbonate (MgCO 3 ), talc (3MgO · 4SiO 2 · H 2 O), attapulgite (5MgO · 8SiO 2 · 9H 2 O), titanium white (TiO 2 ), titanium black (TiO 2n-1 ), calcium oxide ( CaO), calcium hydroxide [Ca (OH) 2], magnesium aluminum oxide (MgO · Al 2 O 3) , clay (Al 2 O 3 · 2SiO 2 ), mosquitoes Phosphorus (Al 2 O 3 · 2SiO 2 · 2H 2 O), pyrophyllite (Al 2 O 3 · 4SiO 2 · H 2 O), bentonite (Al 2 O 3 · 4SiO 2 · 2H 2 O), aluminum silicate (Al 2 SiO 5 , Al 4 · 3SiO 4 · 5H 2 O, etc.), magnesium silicate (Mg 2 SiO 4 , MgSiO 3 etc.), calcium silicate (Ca 2 · SiO 4 etc.), aluminum calcium silicate (Al 2 O 3 · CaO · 2SiO 2 etc.), magnesium calcium silicate (CaMgSiO 4 ), calcium carbonate (CaCO 3 ), zirconium oxide (ZrO 2 ), zirconium hydroxide [ZrO (OH) 2 · nH 2 O], carbonic acid zirconium [Zr (CO 3) 2] , crystalline aluminosilicate containing hydrogen to correct, an alkali metal or alkaline earth metal charge as various zeolites Etc. can be used. Further, it is preferable that M 1 in the general formula (X) is at least one selected from aluminum metal, aluminum oxide or hydroxide, hydrates thereof, and aluminum carbonate.
These inorganic compounds represented by the general formula (X) may be used alone or in combination of two or more. The average particle size of these inorganic compounds is preferably in the range of 0.01 to 10 μm, more preferably in the range of 0.05 to 5 μm, from the viewpoint of kneading workability, wear resistance, and wet grip performance.
The inorganic filler (B) in the present invention may be used alone or in combination with silica and one or more inorganic compounds represented by the general formula (X).
Here, the content of the silica is preferably 60 to 250 parts by mass, more preferably 70 to 150 parts by mass, and 75 to 120 parts by mass with respect to 100 parts by mass of the rubber component. Is particularly preferred. When the content of the silica is less than 60 parts by mass, since the amount of silica is small, there is a possibility that the effect of improving the fracture characteristics and wear resistance may not be sufficiently obtained, and when the content exceeds 250 parts by mass. Further, since the amount of silica is too large, the elongation and processability of the rubber composition may be deteriorated.
本発明に係るタイヤ用ゴム組成物の充填材は、所望により、上述の無機充填材(B)に加えてカーボンブラックを含有しても良い。カーボンブラックを含有することにより、電気抵抗を下げて帯電を抑止する効果を享受できる。
このカーボンブラックとしては、特に制限はなく、例えば高、中又は低ストラクチャーのSAF、ISAF、ISAF-HS、IISAF、N339、HAF、FEF、GPF、SRFグレードのカーボンブラック、特にSAF、ISAF、IISAF、N339、HAF、FEFグレードのカーボンブラックを用いるのが好ましい。窒素吸着比表面積(N2SA、JIS K 6217-2:2001に準拠して測定する)が30~250m2/gであることが好ましい。このカーボンブラックは1種を単独で用いても良く、2種以上を組み合わせて用いても良い。本発明において、カーボンブラックは無機充填材(B)に含まれない。 The filler of the tire rubber composition according to the present invention may contain carbon black in addition to the inorganic filler (B) described above, if desired. By containing carbon black, it is possible to enjoy the effect of reducing electrical resistance and suppressing charging.
The carbon black is not particularly limited. For example, high, medium or low structure SAF, ISAF, ISAF-HS, IISAF, N339, HAF, FEF, GPF, SRF grade carbon black, particularly SAF, ISAF, IISAF, It is preferable to use N339, HAF, or FEF grade carbon black. The nitrogen adsorption specific surface area (N 2 SA, measured according to JIS K 6217-2: 2001) is preferably 30 to 250 m 2 / g. This carbon black may be used individually by 1 type, and may be used in combination of 2 or more type. In the present invention, carbon black is not included in the inorganic filler (B).
このカーボンブラックとしては、特に制限はなく、例えば高、中又は低ストラクチャーのSAF、ISAF、ISAF-HS、IISAF、N339、HAF、FEF、GPF、SRFグレードのカーボンブラック、特にSAF、ISAF、IISAF、N339、HAF、FEFグレードのカーボンブラックを用いるのが好ましい。窒素吸着比表面積(N2SA、JIS K 6217-2:2001に準拠して測定する)が30~250m2/gであることが好ましい。このカーボンブラックは1種を単独で用いても良く、2種以上を組み合わせて用いても良い。本発明において、カーボンブラックは無機充填材(B)に含まれない。 The filler of the tire rubber composition according to the present invention may contain carbon black in addition to the inorganic filler (B) described above, if desired. By containing carbon black, it is possible to enjoy the effect of reducing electrical resistance and suppressing charging.
The carbon black is not particularly limited. For example, high, medium or low structure SAF, ISAF, ISAF-HS, IISAF, N339, HAF, FEF, GPF, SRF grade carbon black, particularly SAF, ISAF, IISAF, It is preferable to use N339, HAF, or FEF grade carbon black. The nitrogen adsorption specific surface area (N 2 SA, measured according to JIS K 6217-2: 2001) is preferably 30 to 250 m 2 / g. This carbon black may be used individually by 1 type, and may be used in combination of 2 or more type. In the present invention, carbon black is not included in the inorganic filler (B).
本発明に係るタイヤ用ゴム組成物の無機充填材(B)は、ゴム成分(A)100質量部に対して、20~120質量部使用することが好ましい。20質量部以上であれば、ウエット性能を確保する観点から好ましく、120質量部以下であれば、低発熱性向上の観点から好ましい。更には、30~100質量部使用することがより好ましい。
また、本発明に係るタイヤ用ゴム組成物の充填材は、ゴム成分(A)100質量部に対して、20~150質量部使用することが好ましい。20質量部以上であれば、ゴム組成物の補強性向上の観点から好ましく、150質量部以下であれば、低発熱性向上の観点から好ましい。
前記充填材中、無機充填材(B)が40質量%以上であることがウェット性能と低発熱性の両立の観点から好ましく、70質量%以上であることがさらに好ましい。 The inorganic filler (B) of the tire rubber composition according to the present invention is preferably used in an amount of 20 to 120 parts by mass with respect to 100 parts by mass of the rubber component (A). If it is 20 parts by mass or more, it is preferable from the viewpoint of securing wet performance, and if it is 120 parts by mass or less, it is preferable from the viewpoint of improving low heat generation. Further, it is more preferable to use 30 to 100 parts by mass.
In addition, the filler of the tire rubber composition according to the present invention is preferably used in an amount of 20 to 150 parts by mass with respect to 100 parts by mass of the rubber component (A). If it is 20 parts by mass or more, it is preferable from the viewpoint of improving the reinforcing property of the rubber composition, and if it is 150 parts by mass or less, it is preferable from the viewpoint of improving low heat generation.
In the filler, the inorganic filler (B) is preferably 40% by mass or more from the viewpoint of achieving both wet performance and low heat build-up, and more preferably 70% by mass or more.
また、本発明に係るタイヤ用ゴム組成物の充填材は、ゴム成分(A)100質量部に対して、20~150質量部使用することが好ましい。20質量部以上であれば、ゴム組成物の補強性向上の観点から好ましく、150質量部以下であれば、低発熱性向上の観点から好ましい。
前記充填材中、無機充填材(B)が40質量%以上であることがウェット性能と低発熱性の両立の観点から好ましく、70質量%以上であることがさらに好ましい。 The inorganic filler (B) of the tire rubber composition according to the present invention is preferably used in an amount of 20 to 120 parts by mass with respect to 100 parts by mass of the rubber component (A). If it is 20 parts by mass or more, it is preferable from the viewpoint of securing wet performance, and if it is 120 parts by mass or less, it is preferable from the viewpoint of improving low heat generation. Further, it is more preferable to use 30 to 100 parts by mass.
In addition, the filler of the tire rubber composition according to the present invention is preferably used in an amount of 20 to 150 parts by mass with respect to 100 parts by mass of the rubber component (A). If it is 20 parts by mass or more, it is preferable from the viewpoint of improving the reinforcing property of the rubber composition, and if it is 150 parts by mass or less, it is preferable from the viewpoint of improving low heat generation.
In the filler, the inorganic filler (B) is preferably 40% by mass or more from the viewpoint of achieving both wet performance and low heat build-up, and more preferably 70% by mass or more.
〔シランカップリング剤(C)〕
本発明のタイヤ用ゴム組成物に用いられるシランカップリング剤(C)は、特に制限はなく、汎用の各種シランカップリング剤が使用でき、好ましくは、下記一般式(XI)及び(XII)で表わされる化合物からなる群から1種以上選択される化合物であることが望ましい。
本発明に係るタイヤ用ゴム組成物は、このようなシランカップリング剤(C)を用いることにより、ゴム加工時の作業性に更に優れると共に、より耐摩耗性の良好なタイヤ用ゴム組成物が得られることとなる。
以下、下記一般式(XI)及び(XII)を順に説明する。
〔式(XI)中、R1は同一でも異なっていても良く、各々炭素数1~8の直鎖、環状もしくは分枝のアルキル基又は炭素数2~8の直鎖もしくは分枝のアルコキシアルキル基、R2は同一でも異なっていても良く、各々炭素数1~8の直鎖、環状もしくは分枝のアルキル基、R3は同一でも異なっていても良く、各々炭素数1~8の直鎖もしくは分枝のアルキレン基、aは平均値として2~6であり、p及びrは同一でも異なっていても良く、各々平均値として0~3、但し、p及びrの双方が3であることはない。〕
[Silane coupling agent (C)]
The silane coupling agent (C) used in the tire rubber composition of the present invention is not particularly limited, and various general-purpose silane coupling agents can be used. Preferably, the following general formulas (XI) and (XII) are used. Desirably, the compound is one or more selected from the group consisting of the compounds represented.
By using such a silane coupling agent (C), the tire rubber composition according to the present invention is further excellent in workability at the time of rubber processing, and the tire rubber composition having better wear resistance. Will be obtained.
Hereinafter, the following general formulas (XI) and (XII) will be described in order.
[In formula (XI), R 1 s may be the same or different and each is a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms or a linear or branched alkoxyalkyl group having 2 to 8 carbon atoms. The groups R 2 may be the same or different, each of which is a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms, and R 3 may be the same or different, each having a straight chain of 1 to 8 carbon atoms. A chain or branched alkylene group, a has an average value of 2 to 6, p and r may be the same or different, and each has an average value of 0 to 3, provided that both p and r are 3 There is nothing. ]
本発明のタイヤ用ゴム組成物に用いられるシランカップリング剤(C)は、特に制限はなく、汎用の各種シランカップリング剤が使用でき、好ましくは、下記一般式(XI)及び(XII)で表わされる化合物からなる群から1種以上選択される化合物であることが望ましい。
本発明に係るタイヤ用ゴム組成物は、このようなシランカップリング剤(C)を用いることにより、ゴム加工時の作業性に更に優れると共に、より耐摩耗性の良好なタイヤ用ゴム組成物が得られることとなる。
以下、下記一般式(XI)及び(XII)を順に説明する。
The silane coupling agent (C) used in the tire rubber composition of the present invention is not particularly limited, and various general-purpose silane coupling agents can be used. Preferably, the following general formulas (XI) and (XII) are used. Desirably, the compound is one or more selected from the group consisting of the compounds represented.
By using such a silane coupling agent (C), the tire rubber composition according to the present invention is further excellent in workability at the time of rubber processing, and the tire rubber composition having better wear resistance. Will be obtained.
Hereinafter, the following general formulas (XI) and (XII) will be described in order.
上記一般式(XI)で表わされるシランカップリング剤(C)の具体例として、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(3-メチルジメトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(3-メチルジメトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリメトキシシリルプロピル)トリスルフィド、ビス(3-メチルジメトキシシリルプロピル)トリスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(3-モノエトキシジメチルシリルプロピル)テトラスルフィド、ビス(3-モノエトキシジメチルシリルプロピル)トリスルフィド、ビス(3-モノエトキシジメチルシリルプロピル)ジスルフィド、ビス(3-モノメトキシジメチルシリルプロピル)テトラスルフィド、ビス(3-モノメトキシジメチルシリルプロピル)トリスルフィド、ビス(3-モノメトキシジメチルシリルプロピル)ジスルフィド、ビス(2-モノエトキシジメチルシリルエチル)テトラスルフィド、ビス(2-モノエトキシジメチルシリルエチル)トリスルフィド、ビス(2-モノエトキシジメチルシリルエチル)ジスルフィド等が挙げられる。
Specific examples of the silane coupling agent (C) represented by the general formula (XI) include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, and bis (3-methyl Dimethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, bis (3-methyldimethoxysilylpropyl) Disulfide, bis (2-triethoxysilylethyl) disulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-trimethoxysilylpropyl) trisulfide, bis (3-methyldimethoxysilylpropyl) trisulfide Bis (2-triethoxysilylethyl) trisulfide, bis (3-monoethoxydimethylsilylpropyl) tetrasulfide, bis (3-monoethoxydimethylsilylpropyl) trisulfide, bis (3-monoethoxydimethylsilylpropyl) ) Disulfide, bis (3-monomethoxydimethylsilylpropyl) tetrasulfide, bis (3-monomethoxydimethylsilylpropyl) trisulfide, bis (3-monomethoxydimethylsilylpropyl) disulfide, bis (2-monoethoxydimethylsilylethyl) ) Tetrasulfide, bis (2-monoethoxydimethylsilylethyl) trisulfide, bis (2-monoethoxydimethylsilylethyl) disulfide and the like.
上記一般式(XII)で表わされるシランカップリング剤(C)の具体例として、
平均組成式(CH3CH2O)3Si-(CH2)3-S2-(CH2)6-S2-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S2-(CH2)10-S2-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S3-(CH2)6-S3-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S4-(CH2)6-S4-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S-(CH2)6-S2-(CH2)6-S-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S-(CH2)6-S2.5-(CH2)6-S-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S-(CH2)6-S3-(CH2)6-S-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S-(CH2)6-S4-(CH2)6-S-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S-(CH2)10-S2-(CH2)10-S-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S4-(CH2)6-S4-(CH2)6-S4-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S2-(CH2)6-S2-(CH2)6-S2-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S-(CH2)6-S2-(CH2)6-S2-(CH2)6-S-(CH2)3-Si(OCH2CH3)3等で表される化合物が好適に挙げられる。 As a specific example of the silane coupling agent (C) represented by the general formula (XII),
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 2 — (CH 2 ) 6 —S 2 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 ,
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 2 — (CH 2 ) 10 —S 2 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 ,
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 3 — (CH 2 ) 6 —S 3 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 ,
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 4 — (CH 2 ) 6 —S 4 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 ,
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S— (CH 2 ) 6 —S 2 — (CH 2 ) 6 —S— (CH 2 ) 3 —Si (OCH 2 CH 3 3
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S— (CH 2 ) 6 —S 2.5 — (CH 2 ) 6 —S— (CH 2 ) 3 —Si (OCH 2 CH 3 3
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S— (CH 2 ) 6 —S 3 — (CH 2 ) 6 —S— (CH 2 ) 3 —Si (OCH 2 CH 3 3
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S— (CH 2 ) 6 —S 4 — (CH 2 ) 6 —S— (CH 2 ) 3 —Si (OCH 2 CH 3 3
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S— (CH 2 ) 10 —S 2 — (CH 2 ) 10 —S— (CH 2 ) 3 —Si (OCH 2 CH 3 3
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 4 — (CH 2 ) 6 —S 4 — (CH 2 ) 6 —S 4 — (CH 2 ) 3 —Si (OCH 2 ) CH 3) 3,
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 2 — (CH 2 ) 6 —S 2 — (CH 2 ) 6 —S 2 — (CH 2 ) 3 —Si (OCH 2 ) CH 3) 3,
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S— (CH 2 ) 6 —S 2 — (CH 2 ) 6 —S 2 — (CH 2 ) 6 —S— (CH 2 ) 3 -Si (OCH 2 CH 3 ) 3 and the like are preferred.
平均組成式(CH3CH2O)3Si-(CH2)3-S2-(CH2)6-S2-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S2-(CH2)10-S2-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S3-(CH2)6-S3-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S4-(CH2)6-S4-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S-(CH2)6-S2-(CH2)6-S-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S-(CH2)6-S2.5-(CH2)6-S-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S-(CH2)6-S3-(CH2)6-S-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S-(CH2)6-S4-(CH2)6-S-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S-(CH2)10-S2-(CH2)10-S-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S4-(CH2)6-S4-(CH2)6-S4-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S2-(CH2)6-S2-(CH2)6-S2-(CH2)3-Si(OCH2CH3)3、
平均組成式(CH3CH2O)3Si-(CH2)3-S-(CH2)6-S2-(CH2)6-S2-(CH2)6-S-(CH2)3-Si(OCH2CH3)3等で表される化合物が好適に挙げられる。 As a specific example of the silane coupling agent (C) represented by the general formula (XII),
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 2 — (CH 2 ) 6 —S 2 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 ,
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 2 — (CH 2 ) 10 —S 2 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 ,
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 3 — (CH 2 ) 6 —S 3 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 ,
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 4 — (CH 2 ) 6 —S 4 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 ,
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S— (CH 2 ) 6 —S 2 — (CH 2 ) 6 —S— (CH 2 ) 3 —Si (OCH 2 CH 3 3
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S— (CH 2 ) 6 —S 2.5 — (CH 2 ) 6 —S— (CH 2 ) 3 —Si (OCH 2 CH 3 3
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S— (CH 2 ) 6 —S 3 — (CH 2 ) 6 —S— (CH 2 ) 3 —Si (OCH 2 CH 3 3
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S— (CH 2 ) 6 —S 4 — (CH 2 ) 6 —S— (CH 2 ) 3 —Si (OCH 2 CH 3 3
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S— (CH 2 ) 10 —S 2 — (CH 2 ) 10 —S— (CH 2 ) 3 —Si (OCH 2 CH 3 3
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 4 — (CH 2 ) 6 —S 4 — (CH 2 ) 6 —S 4 — (CH 2 ) 3 —Si (OCH 2 ) CH 3) 3,
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 2 — (CH 2 ) 6 —S 2 — (CH 2 ) 6 —S 2 — (CH 2 ) 3 —Si (OCH 2 ) CH 3) 3,
Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S— (CH 2 ) 6 —S 2 — (CH 2 ) 6 —S 2 — (CH 2 ) 6 —S— (CH 2 ) 3 -Si (OCH 2 CH 3 ) 3 and the like are preferred.
本発明に用いるシランカップリング剤(C)は、上記一般式(XI)及び(XII)で表わされる化合物の中で、上記一般式(XI)で表わされる化合物が特に好ましい。加硫促進剤などの活性剤(D)はゴム成分(A)と反応するポリスルフィド結合部位の活性化を起こし易いからである。
本発明においては、シランカップリング剤(C)は一種を単独で用いても良く、二種以上を組み合わせて用いても良い。 The silane coupling agent (C) used in the present invention is particularly preferably a compound represented by the general formula (XI) among the compounds represented by the general formulas (XI) and (XII). This is because the activator (D) such as a vulcanization accelerator tends to activate the polysulfide bond site that reacts with the rubber component (A).
In this invention, a silane coupling agent (C) may be used individually by 1 type, and may be used in combination of 2 or more type.
本発明においては、シランカップリング剤(C)は一種を単独で用いても良く、二種以上を組み合わせて用いても良い。 The silane coupling agent (C) used in the present invention is particularly preferably a compound represented by the general formula (XI) among the compounds represented by the general formulas (XI) and (XII). This is because the activator (D) such as a vulcanization accelerator tends to activate the polysulfide bond site that reacts with the rubber component (A).
In this invention, a silane coupling agent (C) may be used individually by 1 type, and may be used in combination of 2 or more type.
本発明に用いるシランカップリング剤(C)の配合量は、無機充填材(B)の1~20質量%であることが好ましい。1質量%未満ではタイヤ用ゴム組成物の低発熱性向上の効果が発揮しにくくなり、一方、20質量%を超えると、タイヤ用ゴム組成物のコストが過大となり、経済性が低下するからである。更には、無機充填材(B)の3~20質量%であることがより好ましく、無機充填材(B)の4~10質量%であることが特に好ましい。
The amount of the silane coupling agent (C) used in the present invention is preferably 1 to 20% by mass of the inorganic filler (B). If the amount is less than 1% by mass, the effect of improving the low heat build-up of the tire rubber composition is difficult to be exhibited. On the other hand, if the amount exceeds 20% by mass, the cost of the tire rubber composition becomes excessive and the economic efficiency is lowered. is there. Further, it is more preferably 3 to 20% by mass of the inorganic filler (B), and particularly preferably 4 to 10% by mass of the inorganic filler (B).
〔加硫促進剤などの活性剤(D)〕
本発明のタイヤ用ゴム組成物に用いられる加硫促進剤などの活性剤(D)としては、グアニジン類、スルフェンアミド類、チアゾール類、チウラム類、ジチオカルバミン酸類、キサントゲン酸類などの加硫促進剤、並びに、チオ尿素類、チアジアゾール類から選ばれる少なくとも1種が挙げられる。
グアニジン類としては、例えば、1,3-ジフェニルグアニジン(DPG)、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-ビフェニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジン等が挙げられ、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン及び1-o-トリルビグアニドは反応性が高いので好ましく、1,3-ジフェニルグアニジン(DPG)は反応性がより高いので特に好ましい。 [Activators (D) such as vulcanization accelerators]
Examples of the activator (D) such as a vulcanization accelerator used in the tire rubber composition of the present invention include vulcanization accelerators such as guanidines, sulfenamides, thiazoles, thiurams, dithiocarbamic acids, and xanthogenic acids. And at least one selected from thioureas and thiadiazoles.
Examples of guanidines include 1,3-diphenylguanidine (DPG), 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, dicatechol borate di-o-tolylguanidine salt, 1,3 -Di-o-cumenyl guanidine, 1,3-di-o-biphenyl guanidine, 1,3-di-o-cumenyl-2-propionyl guanidine, and the like can be mentioned. 1,3-diphenyl guanidine, 1,3- Di-o-tolylguanidine and 1-o-tolylbiguanide are preferred because of their high reactivity, and 1,3-diphenylguanidine (DPG) is particularly preferred because of its higher reactivity.
本発明のタイヤ用ゴム組成物に用いられる加硫促進剤などの活性剤(D)としては、グアニジン類、スルフェンアミド類、チアゾール類、チウラム類、ジチオカルバミン酸類、キサントゲン酸類などの加硫促進剤、並びに、チオ尿素類、チアジアゾール類から選ばれる少なくとも1種が挙げられる。
グアニジン類としては、例えば、1,3-ジフェニルグアニジン(DPG)、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-ビフェニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジン等が挙げられ、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン及び1-o-トリルビグアニドは反応性が高いので好ましく、1,3-ジフェニルグアニジン(DPG)は反応性がより高いので特に好ましい。 [Activators (D) such as vulcanization accelerators]
Examples of the activator (D) such as a vulcanization accelerator used in the tire rubber composition of the present invention include vulcanization accelerators such as guanidines, sulfenamides, thiazoles, thiurams, dithiocarbamic acids, and xanthogenic acids. And at least one selected from thioureas and thiadiazoles.
Examples of guanidines include 1,3-diphenylguanidine (DPG), 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, dicatechol borate di-o-tolylguanidine salt, 1,3 -Di-o-cumenyl guanidine, 1,3-di-o-biphenyl guanidine, 1,3-di-o-cumenyl-2-propionyl guanidine, and the like can be mentioned. 1,3-diphenyl guanidine, 1,3- Di-o-tolylguanidine and 1-o-tolylbiguanide are preferred because of their high reactivity, and 1,3-diphenylguanidine (DPG) is particularly preferred because of its higher reactivity.
用いることができるスルフェンアミド類としては、例えば、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミド、N-メチル-2-ベンゾチアゾリルスルフェンアミド、N-エチル-2-ベンゾチアゾリルスルフェンアミド、N-プロピル-2-ベンゾチアゾリルスルフェンアミド、N-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-ペンチル-2-ベンゾチアゾリルスルフェンアミド、N-ヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-ペンチル-2-ベンゾチアゾリルスルフェンアミド、N-オクチル-2-ベンゾチアゾリルスルフェンアミド、N-2-エチルヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-デシル-2-ベンゾチアゾリルスルフェンアミド、N-ドデシル-2-ベンゾチアゾリルスルフェンアミド、N-ステアリル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジメチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジエチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジプロピル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジブチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジペンチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジヘキシル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジペンチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジオクチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジ-2-エチルヘキシルベンゾチアゾリルスルフェンアミド、N-デシル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジドデシル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジステアリル-2-ベンゾチアゾリルスルフェンアミド等が挙げられる。これらの中で、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド及びN-tert-ブチル-2-ベンゾチアゾリルスルフェンアミドは、反応性が高いので好ましい。
Examples of sulfenamides that can be used include N-cyclohexyl-2-benzothiazolylsulfenamide, N, N-dicyclohexyl-2-benzothiazolylsulfenamide, N-tert-butyl-2-benzo Thiazolylsulfenamide, N-oxydiethylene-2-benzothiazolylsulfenamide, N-methyl-2-benzothiazolylsulfenamide, N-ethyl-2-benzothiazolylsulfenamide, N-propyl- 2-benzothiazolylsulfenamide, N-butyl-2-benzothiazolylsulfenamide, N-pentyl-2-benzothiazolylsulfenamide, N-hexyl-2-benzothiazolylsulfenamide, N- Pentyl-2-benzothiazolylsulfenamide, N-octyl- -Benzothiazolylsulfenamide, N-2-ethylhexyl-2-benzothiazolylsulfenamide, N-decyl-2-benzothiazolylsulfenamide, N-dodecyl-2-benzothiazolylsulfenamide, N -Stearyl-2-benzothiazolylsulfenamide, N, N-dimethyl-2-benzothiazolylsulfenamide, N, N-diethyl-2-benzothiazolylsulfenamide, N, N-dipropyl-2- Benzothiazolylsulfenamide, N, N-dibutyl-2-benzothiazolylsulfenamide, N, N-dipentyl-2-benzothiazolylsulfenamide, N, N-dihexyl-2-benzothiazolylsulfen Amides, N, N-dipentyl-2-benzothiazolylsulfenamide, N, N-di Cutyl-2-benzothiazolylsulfenamide, N, N-di-2-ethylhexylbenzothiazolylsulfenamide, N-decyl-2-benzothiazolylsulfenamide, N, N-didodecyl-2-benzothia Examples include zolylsulfenamide, N, N-distearyl-2-benzothiazolylsulfenamide, and the like. Of these, N-cyclohexyl-2-benzothiazolylsulfenamide and N-tert-butyl-2-benzothiazolylsulfenamide are preferable because of their high reactivity.
用いることができるチアゾール類としては、例えば、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、2-メルカプトベンゾチアゾールの亜鉛塩、2-メルカプトベンゾチアゾールのシクロヘキシルアミン塩、2-(N,N-ジエチルチオカルバモイルチオ)ベンゾチアゾール、2-(4’-モルホリノジチオ)ベンゾチアゾール、4-メチル-2-メルカプトベンゾチアゾール、ジ-(4-メチル-2-ベンゾチアゾリル)ジスルフィド、5-クロロ-2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾールナトリウム、2-メルカプト-6-ニトロベンゾチアゾール、2-メルカプト-ナフト[1,2-d]チアゾール、2-メルカプト-5-メトキシベンゾチアゾール、6-アミノ-2-メルカプトベンゾチアゾール等が挙げられる。これらの中で、2-メルカプトベンゾチアゾール(M)及びジ-2-ベンゾチアゾリルジスルフィド(DM)は、反応性が高く好ましい。
Examples of thiazoles that can be used include 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, zinc salt of 2-mercaptobenzothiazole, cyclohexylamine salt of 2-mercaptobenzothiazole, 2- (N , N-diethylthiocarbamoylthio) benzothiazole, 2- (4′-morpholinodithio) benzothiazole, 4-methyl-2-mercaptobenzothiazole, di- (4-methyl-2-benzothiazolyl) disulfide, 5-chloro- 2-mercaptobenzothiazole, 2-mercaptobenzothiazole sodium, 2-mercapto-6-nitrobenzothiazole, 2-mercapto-naphtho [1,2-d] thiazole, 2-mercapto-5-methoxybenzothiazole, 6-amino -2-Merka DOO benzothiazole and the like. Of these, 2-mercaptobenzothiazole (M) and di-2-benzothiazolyl disulfide (DM) are preferred because of their high reactivity.
用いることができるチウラム類としては、例えば、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラプロピルチウラムジスルフィド、テトライソプロピルチウラムジスルフィド、テトラブチルチウラムジスルフィド、テトラペンチルチウラムジスルフィド、テトラヘキシルチウラムジスルフィド、テトラヘプチルチウラムジスルフィド、テトラオクチルチウラムジスルフィド、テトラノニルチウラムジスルフィド、テトラデシルチウラムジスルフィド、テトラドデシルチウラムジスルフィド、テトラステアリルチウラムジスルフィド、テトラベンジルチウラムジスルフィド、テトラキス(2-エチルヘキシル)チウラムジスルフィド、テトラメチルチウラムモノスルフィド、テトラエチルチウラムモノスルフィド、テトラプロピルチウラムモノスルフィド、テトライソプロピルチウラムモノスルフィド、テトラブチルチウラムモノスルフィド、テトラペンチルチウラムモノスルフィド、テトラヘキシルチウラムモノスルフィド、テトラヘプチルチウラムモノスルフィド、テトラオクチルチウラムモノスルフィド、テトラノニルチウラムモノスルフィド、テトラデシルチウラムモノスルフィド、テトラドデシルチウラムモノスルフィド、テトラステアリルチウラムモノスルフィド、テトラベンジルチウラムモノスルフィド、ジペンタメチレンチウラムテトラスルフィド等が挙げられる。これらの中で、テトラキス(2-エチルヘキシル)チウラムジスルフィド及びテトラベンジルチウラムジスルフィドは、反応性が高いので好ましい。
Examples of thiurams that can be used include tetramethyl thiuram disulfide, tetraethyl thiuram disulfide, tetrapropyl thiuram disulfide, tetraisopropyl thiuram disulfide, tetrabutyl thiuram disulfide, tetrapentyl thiuram disulfide, tetrahexyl thiuram disulfide, tetraheptyl thiuram disulfide, Tetraoctyl thiuram disulfide, tetranonyl thiuram disulfide, tetradecyl thiuram disulfide, tetradodecyl thiuram disulfide, tetrastearyl thiuram disulfide, tetrabenzyl thiuram disulfide, tetrakis (2-ethylhexyl) thiuram disulfide, tetramethyl thiuram monosulfide, tetraethyl thiuram monosulfide , Tetrapropyl thiuram monosulfide, tetraisopropyl thiuram monosulfide, tetrabutyl thiuram monosulfide, tetrapentyl thiuram monosulfide, tetrahexyl thiuram monosulfide, tetraheptyl thiuram monosulfide, tetraoctyl thiuram monosulfide, tetranonyl thiuram monosulfide Tetradecyl thiuram monosulfide, tetradodecyl thiuram monosulfide, tetrastearyl thiuram monosulfide, tetrabenzyl thiuram monosulfide, dipentamethylene thiuram tetrasulfide and the like. Of these, tetrakis (2-ethylhexyl) thiuram disulfide and tetrabenzylthiuram disulfide are preferred because of their high reactivity.
用いることができるジチオカルバミン酸塩類としては、例えば、ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジプロピルジチオカルバミン酸亜鉛、ジイソプロピルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛、ジペンチルジチオカルバミン酸亜鉛、ジヘキシルジチオカルバミン酸亜鉛、ジヘプチルジチオカルバミン酸亜鉛、ジオクチルジチオカルバミン酸亜鉛、ジ(2-エチルヘキシル)ジチオカルバミン酸亜鉛、ジデシルジチオカルバミン酸亜鉛、ジドデシルジチオカルバミン酸亜鉛、N-ペンタメチレンジチオカルバミン酸亜鉛、N-エチル-N-フェニルジチオカルバミン酸亜鉛、ジベンジルジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸銅、ジエチルジチオカルバミン酸銅、ジプロピルジチオカルバミン酸銅、ジイソプロピルジチオカルバミン酸銅、ジブチルジチオカルバミン酸銅、ジペンチルジチオカルバミン酸銅、ジヘキシルジチオカルバミン酸銅、ジヘプチルジチオカルバミン酸銅、ジオクチルジチオカルバミン酸銅、ジ(2-エチルヘキシル)ジチオカルバミン酸銅、ジデシルジチオカルバミン酸銅、ジドデシルジチオカルバミン酸銅、N-ペンタメチレンジチオカルバミン酸銅、ジベンジルジチオカルバミン酸銅、ジメチルジチオカルバミン酸ナトリウム、ジエチルジチオカルバミン酸ナトリウム、ジプロピルジチオカルバミン酸ナトリウム、ジイソプロピルジチオカルバミン酸ナトリウム、ジブチルジチオカルバミン酸ナトリウム、ジペンチルジチオカルバミン酸ナトリウム、ジヘキシルジチオカルバミン酸ナトリウム、ジヘプチルジチオカルバミン酸ナトリウム、ジオクチルジチオカルバミン酸ナトリウム、ジ(2-エチルヘキシル)ジチオカルバミン酸ナトリウム、ジデシルジチオカルバミン酸ナトリウム、ジドデシルジチオカルバミン酸ナトリウム、N-ペンタメチレンジチオカルバミン酸ナトリウム、ジベンジルジチオカルバミン酸ナトリウム、ジメチルジチオカルバミン酸第二鉄、ジエチルジチオカルバミン酸第二鉄、ジプロピルジチオカルバミン酸第二鉄、ジイソプロピルジチオカルバミン酸第二鉄、ジブチルジチオカルバミン酸第二鉄、ジペンチルジチオカルバミン酸第二鉄、ジヘキシルジチオカルバミン酸第二鉄、ジヘプチルジチオカルバミン酸第二鉄、ジオクチルジチオカルバミン酸第二鉄、ジ(2-エチルヘキシル)ジチオカルバミン酸第二鉄、ジデシルジチオカルバミン酸第二鉄、ジドデシルジチオカルバミン酸第二鉄、N-ペンタメチレンジチオカルバミン酸第二鉄、ジベンジルジチオカルバミン酸第二鉄等が挙げられる。これらの中で、ジベンジルジチオカルバミン酸亜鉛、N-エチル-N-フェニルジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸亜鉛及びジメチルジチオカルバミン酸銅は、反応性が高いため好ましい。
Examples of dithiocarbamates that can be used include zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, zinc dipropyldithiocarbamate, zinc diisopropyldithiocarbamate, zinc dibutyldithiocarbamate, zinc dipentyldithiocarbamate, zinc dihexyldithiocarbamate, and diheptyl. Zinc dithiocarbamate, zinc dioctyldithiocarbamate, zinc di (2-ethylhexyl) dithiocarbamate, zinc didecyldithiocarbamate, zinc diddecyldithiocarbamate, zinc N-pentamethylenedithiocarbamate, zinc N-ethyl-N-phenyldithiocarbamate, Zinc dibenzyldithiocarbamate, copper dimethyldithiocarbamate, copper diethyldithiocarbamate, dip Copper pyrdithiocarbamate, copper diisopropyldithiocarbamate, copper dibutyldithiocarbamate, copper dipentyldithiocarbamate, copper dihexyldithiocarbamate, copper diheptyldithiocarbamate, copper dioctyldithiocarbamate, copper di (2-ethylhexyl) dithiocarbamate, didecyldithiocarbamate Copper, copper didodecyl dithiocarbamate, copper N-pentamethylenedithiocarbamate, copper dibenzyldithiocarbamate, sodium dimethyldithiocarbamate, sodium diethyldithiocarbamate, sodium dipropyldithiocarbamate, sodium diisopropyldithiocarbamate, sodium dibutyldithiocarbamate, dipentyldithiocarbamine Sodium salt, dihexyl dithiocarbamate Thorium, sodium diheptyldithiocarbamate, sodium dioctyldithiocarbamate, sodium di (2-ethylhexyl) dithiocarbamate, sodium didecyldithiocarbamate, sodium didodecyldithiocarbamate, sodium N-pentamethylenedithiocarbamate, sodium dibenzyldithiocarbamate, dimethyl Ferric dithiocarbamate, ferric diethyldithiocarbamate, ferric dipropyldithiocarbamate, ferric diisopropyldithiocarbamate, ferric dibutyldithiocarbamate, ferric dipentyldithiocarbamate, ferric dihexyldithiocarbamate, di Ferric heptyl dithiocarbamate, ferric dioctyl dithiocarbamate, di (2-ethylhexyl) dithiocarb Min ferric, ferric didecyl dithiocarbamate, ferric didodecyl dithiocarbamate, N- ferric pentamethylene dithiocarbamate, ferric dibenzyldithiocarbamate acid. Of these, zinc dibenzyldithiocarbamate, zinc N-ethyl-N-phenyldithiocarbamate, zinc dimethyldithiocarbamate and copper dimethyldithiocarbamate are preferred because of their high reactivity.
用いることができるキサントゲン酸塩類としては、例えば、メチルキサントゲン酸亜鉛、エチルキサントゲン酸亜鉛、プロピルキサントゲン酸亜鉛、イソプロピルキサントゲン酸亜鉛、ブチルキサントゲン酸亜鉛、ペンチルキサントゲン酸亜鉛、ヘキシルキサントゲン酸亜鉛、ヘプチルキサントゲン酸亜鉛、オクチルキサントゲン酸亜鉛、2-エチルヘキシルキサントゲン酸亜鉛、デシルキサントゲン酸亜鉛、ドデシルキサントゲン酸亜鉛、メチルキサントゲン酸カリウム、エチルキサントゲン酸カリウム、プロピルキサントゲン酸カリウム、イソプロピルキサントゲン酸カリウム、ブチルキサントゲン酸カリウム、ペンチルキサントゲン酸カリウム、ヘキシルキサントゲン酸カリウム、ヘプチルキサントゲン酸カリウム、オクチルキサントゲン酸カリウム、2-エチルヘキシルキサントゲン酸カリウム、デシルキサントゲン酸カリウム、ドデシルキサントゲン酸カリウム、メチルキサントゲン酸ナトリウム、エチルキサントゲン酸ナトリウム、プロピルキサントゲン酸ナトリウム、イソプロピルキサントゲン酸ナトリウム、ブチルキサントゲン酸ナトリウム、ペンチルキサントゲン酸ナトリウム、ヘキシルキサントゲン酸ナトリウム、ヘプチルキサントゲン酸ナトリウム、オクチルキサントゲン酸ナトリウム、2-エチルヘキシルキサントゲン酸ナトリウム、デシルキサントゲン酸ナトリウム、ドデシルキサントゲン酸ナトリウム等が挙げられる。これらの中で、イソプロピルキサントゲン酸亜鉛は、反応性が高いので好ましい。
Examples of xanthates that can be used include zinc methylxanthate, zinc ethylxanthate, zinc propylxanthate, zinc isopropylxanthate, zinc butylxanthate, zinc pentylxanthate, zinc hexylxanthate, heptylxanthate Zinc, zinc octylxanthate, zinc 2-ethylhexylxanthate, zinc decylxanthate, zinc dodecylxanthate, potassium methylxanthate, potassium ethylxanthate, potassium propylxanthate, potassium isopropylxanthate, potassium butylxanthate, pentyl Potassium xanthate, potassium hexylxanthate, potassium heptylxanthate, octylxan Potassium genate, potassium 2-ethylhexylxanthate, potassium decylxanthate, potassium dodecylxanthate, sodium methylxanthate, sodium ethylxanthate, sodium propylxanthate, sodium isopropylxanthate, sodium butylxanthate, sodium pentylxanthate Sodium hexyl xanthate, sodium heptyl xanthate, sodium octyl xanthate, sodium 2-ethylhexyl xanthate, sodium decyl xanthate, sodium dodecyl xanthate, and the like. Among these, zinc isopropylxanthate is preferable because of its high reactivity.
用いることができるチオ尿素(チオウレア)類としては、例えば、チオウレア、N,N’-ジフェニルチオ尿素、トリメチルチオ尿素、N,N’-ジエチルチオ尿素、N,N’-ジメチルチオ尿素、N,N’-ジブチルチオ尿素、エチレンチオ尿素、N,N’-ジイソプロピルチオ尿素、N,N’-ジシクロヘキシルチオ尿素、1,3-ジ(o-トリル)チオ尿素、1,3-ジ(p-トリル)チオ尿素、1,1-ジフェニル-2-チオ尿素、2,5-ジチオビ尿素、グアニルチオ尿素、1-(1-ナフチル)-2-チオ尿素、1-フェニル-2-チオ尿素、p-トリルチオ尿素、o-トリルチオ尿素等が挙げられる。これらの中で、チオウレア、N,N’-ジエチルチオ尿素、トリメチルチオ尿素、N,N’-ジフェニルチオ尿素及びN,N’-ジメチルチオ尿素は、反応性が高いので好ましい。
用いるチアジアゾール類としては、例えば、チアジアゾール、ジメルカプトチアジアゾール類およびその一置換体などが挙げられる。ジメルカプトチアジアゾールとしては、2,5-ジメルカプト-1,3,4-チアジアゾール、2-メルカプト-1,3,4-チアジアゾール5-チオベンゾエート等が挙げられ、また、一置換体としては、ナトリウム塩、カリウム塩、リチウム塩、アンモニウム塩および亜鉛塩がある。
特に好ましい加硫促進剤などの活性剤(D)としては、反応性がより高いグアニジン類、チオ尿素類、チアジアゾール類であり、特に好ましくは、1,3-ジフェニルグアニジン(DPG)、チオウレア、N,N’-ジエチルチオ尿素、2,5-ジメルカプト-1,3,4-チアジアゾールである。 Examples of thiourea (thiourea) that can be used include thiourea, N, N′-diphenylthiourea, trimethylthiourea, N, N′-diethylthiourea, N, N′-dimethylthiourea, and N, N ′. -Dibutylthiourea, ethylenethiourea, N, N'-diisopropylthiourea, N, N'-dicyclohexylthiourea, 1,3-di (o-tolyl) thiourea, 1,3-di (p-tolyl) thiourea 1,1-diphenyl-2-thiourea, 2,5-dithiobiurea, guanylthiourea, 1- (1-naphthyl) -2-thiourea, 1-phenyl-2-thiourea, p-tolylthiourea, o -Tolylthiourea and the like. Of these, thiourea, N, N′-diethylthiourea, trimethylthiourea, N, N′-diphenylthiourea and N, N′-dimethylthiourea are preferable because of their high reactivity.
Examples of the thiadiazole to be used include thiadiazole, dimercaptothiadiazole, and monosubstituted products thereof. Examples of dimercaptothiadiazole include 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-1,3,4-thiadiazole 5-thiobenzoate, and monosubstituted compounds include sodium salts. , Potassium, lithium, ammonium and zinc salts.
Particularly preferred activators (D) such as vulcanization accelerators are guanidines, thioureas and thiadiazoles having higher reactivity, and particularly preferred are 1,3-diphenylguanidine (DPG), thiourea, N , N′-diethylthiourea, 2,5-dimercapto-1,3,4-thiadiazole.
用いるチアジアゾール類としては、例えば、チアジアゾール、ジメルカプトチアジアゾール類およびその一置換体などが挙げられる。ジメルカプトチアジアゾールとしては、2,5-ジメルカプト-1,3,4-チアジアゾール、2-メルカプト-1,3,4-チアジアゾール5-チオベンゾエート等が挙げられ、また、一置換体としては、ナトリウム塩、カリウム塩、リチウム塩、アンモニウム塩および亜鉛塩がある。
特に好ましい加硫促進剤などの活性剤(D)としては、反応性がより高いグアニジン類、チオ尿素類、チアジアゾール類であり、特に好ましくは、1,3-ジフェニルグアニジン(DPG)、チオウレア、N,N’-ジエチルチオ尿素、2,5-ジメルカプト-1,3,4-チアジアゾールである。 Examples of thiourea (thiourea) that can be used include thiourea, N, N′-diphenylthiourea, trimethylthiourea, N, N′-diethylthiourea, N, N′-dimethylthiourea, and N, N ′. -Dibutylthiourea, ethylenethiourea, N, N'-diisopropylthiourea, N, N'-dicyclohexylthiourea, 1,3-di (o-tolyl) thiourea, 1,3-di (p-tolyl) thiourea 1,1-diphenyl-2-thiourea, 2,5-dithiobiurea, guanylthiourea, 1- (1-naphthyl) -2-thiourea, 1-phenyl-2-thiourea, p-tolylthiourea, o -Tolylthiourea and the like. Of these, thiourea, N, N′-diethylthiourea, trimethylthiourea, N, N′-diphenylthiourea and N, N′-dimethylthiourea are preferable because of their high reactivity.
Examples of the thiadiazole to be used include thiadiazole, dimercaptothiadiazole, and monosubstituted products thereof. Examples of dimercaptothiadiazole include 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-1,3,4-thiadiazole 5-thiobenzoate, and monosubstituted compounds include sodium salts. , Potassium, lithium, ammonium and zinc salts.
Particularly preferred activators (D) such as vulcanization accelerators are guanidines, thioureas and thiadiazoles having higher reactivity, and particularly preferred are 1,3-diphenylguanidine (DPG), thiourea, N , N′-diethylthiourea, 2,5-dimercapto-1,3,4-thiadiazole.
本発明において、混練の第一工程におけるゴム組成物中の加硫促進剤などの活性剤(D)のモル量がシランカップリング剤(C)のモル量の0.1~1.0倍であることが好ましい。0.1倍以上であればシランカップリング剤(C)の活性化が十分に起こり、1.0倍以下であれば加硫速度に大きな影響は与えないからである。更に好ましくは、該加硫促進剤などの活性剤(D)の分子数(モル数)はシランカップリング剤(C)の分子数(モル数)の0.3~1.0倍である。
好ましくは、上記活性剤(D)の合計含有量は、ゴム成分100質量部に対して、0.3~6質量部、更に好ましくは、0.3~2.5質量部であり、特に好ましくは、0.5~1.5質量部であることが望ましい。この活性剤(D)の合計含有量が0.3質量部未満であると、低ロス効果は低く、一方、6質量部超過であると、粘度や収縮に与える影響が大きく、ユニフォミティーを悪化させてしまうこととなる。
なお、加硫促進剤などの活性剤(D)は、硫黄加硫の促進剤としても用いられるので、最初の第1工程で全部を配合しなくともよく、第1工程混練の最終段階となる第二工程においても所望により適量(一部)を配合しても良い。 In the present invention, the molar amount of the activator (D) such as a vulcanization accelerator in the rubber composition in the first step of kneading is 0.1 to 1.0 times the molar amount of the silane coupling agent (C). Preferably there is. This is because the activation of the silane coupling agent (C) occurs sufficiently when the ratio is 0.1 times or more, and the vulcanization speed is not greatly affected when the ratio is 1.0 times or less. More preferably, the number of molecules (number of moles) of the activator (D) such as the vulcanization accelerator is 0.3 to 1.0 times the number of molecules (number of moles) of the silane coupling agent (C).
Preferably, the total content of the activator (D) is 0.3 to 6 parts by weight, more preferably 0.3 to 2.5 parts by weight, particularly preferably 100 parts by weight of the rubber component. Is preferably 0.5 to 1.5 parts by mass. If the total content of this activator (D) is less than 0.3 parts by mass, the low-loss effect is low. On the other hand, if it exceeds 6 parts by mass, the effect on the viscosity and shrinkage is large and the uniformity is deteriorated. I will let you.
Since the activator (D) such as a vulcanization accelerator is also used as a sulfur vulcanization accelerator, it is not necessary to add all of it in the first first step, and it becomes the final stage of the first step kneading. In the second step, an appropriate amount (part) may be blended as desired.
好ましくは、上記活性剤(D)の合計含有量は、ゴム成分100質量部に対して、0.3~6質量部、更に好ましくは、0.3~2.5質量部であり、特に好ましくは、0.5~1.5質量部であることが望ましい。この活性剤(D)の合計含有量が0.3質量部未満であると、低ロス効果は低く、一方、6質量部超過であると、粘度や収縮に与える影響が大きく、ユニフォミティーを悪化させてしまうこととなる。
なお、加硫促進剤などの活性剤(D)は、硫黄加硫の促進剤としても用いられるので、最初の第1工程で全部を配合しなくともよく、第1工程混練の最終段階となる第二工程においても所望により適量(一部)を配合しても良い。 In the present invention, the molar amount of the activator (D) such as a vulcanization accelerator in the rubber composition in the first step of kneading is 0.1 to 1.0 times the molar amount of the silane coupling agent (C). Preferably there is. This is because the activation of the silane coupling agent (C) occurs sufficiently when the ratio is 0.1 times or more, and the vulcanization speed is not greatly affected when the ratio is 1.0 times or less. More preferably, the number of molecules (number of moles) of the activator (D) such as the vulcanization accelerator is 0.3 to 1.0 times the number of molecules (number of moles) of the silane coupling agent (C).
Preferably, the total content of the activator (D) is 0.3 to 6 parts by weight, more preferably 0.3 to 2.5 parts by weight, particularly preferably 100 parts by weight of the rubber component. Is preferably 0.5 to 1.5 parts by mass. If the total content of this activator (D) is less than 0.3 parts by mass, the low-loss effect is low. On the other hand, if it exceeds 6 parts by mass, the effect on the viscosity and shrinkage is large and the uniformity is deteriorated. I will let you.
Since the activator (D) such as a vulcanization accelerator is also used as a sulfur vulcanization accelerator, it is not necessary to add all of it in the first first step, and it becomes the final stage of the first step kneading. In the second step, an appropriate amount (part) may be blended as desired.
〔グリセリン脂肪酸エステル組成物(E)〕
本発明に用いるグリセリン脂肪酸エステル組成物中のグリセリン脂肪酸エステルは、グリセリンの持つ3つのOH基のうちの少なくとも1つに脂肪酸(炭素数が8~28)がエステル結合したものであり、脂肪酸のつく数によって、グリセリン脂肪酸モノエステル、グリセリン脂肪酸ジエステル、グリセリン脂肪酸トリエステルに分かれるものである。
本発明に用いるグリセリン脂肪酸エステル組成物(E)は、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が85質量%超過となるものであり、このグリセリン脂肪酸モノエステル85質量%超過以上であれば、グリセリン脂肪酸ジエステルや、それ以外にグリセリン脂肪酸トリエステルやグリセリンを含んでいてもよい。 [Glycerin fatty acid ester composition (E)]
The glycerin fatty acid ester in the glycerin fatty acid ester composition used in the present invention is one in which a fatty acid (carbon number of 8 to 28) is ester-bonded to at least one of the three OH groups possessed by glycerin. Depending on the number, glycerin fatty acid monoester, glycerin fatty acid diester, and glycerin fatty acid triester are separated.
The glycerin fatty acid ester composition (E) used in the present invention has a glycerin fatty acid monoester content of 8 to 28 carbon atoms that exceeds 85% by mass. For example, glycerin fatty acid diester or glycerin fatty acid triester or glycerin may be included.
本発明に用いるグリセリン脂肪酸エステル組成物中のグリセリン脂肪酸エステルは、グリセリンの持つ3つのOH基のうちの少なくとも1つに脂肪酸(炭素数が8~28)がエステル結合したものであり、脂肪酸のつく数によって、グリセリン脂肪酸モノエステル、グリセリン脂肪酸ジエステル、グリセリン脂肪酸トリエステルに分かれるものである。
本発明に用いるグリセリン脂肪酸エステル組成物(E)は、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が85質量%超過となるものであり、このグリセリン脂肪酸モノエステル85質量%超過以上であれば、グリセリン脂肪酸ジエステルや、それ以外にグリセリン脂肪酸トリエステルやグリセリンを含んでいてもよい。 [Glycerin fatty acid ester composition (E)]
The glycerin fatty acid ester in the glycerin fatty acid ester composition used in the present invention is one in which a fatty acid (carbon number of 8 to 28) is ester-bonded to at least one of the three OH groups possessed by glycerin. Depending on the number, glycerin fatty acid monoester, glycerin fatty acid diester, and glycerin fatty acid triester are separated.
The glycerin fatty acid ester composition (E) used in the present invention has a glycerin fatty acid monoester content of 8 to 28 carbon atoms that exceeds 85% by mass. For example, glycerin fatty acid diester or glycerin fatty acid triester or glycerin may be included.
本発明において、グリセリン脂肪酸エステルを構成する脂肪酸は、加硫促進剤(D)によりシランカップリング剤(C)を活性化せしめ、加硫促進剤などの活性剤(D)による未加硫ゴムの粘度の悪化を抑制して、シリカを有する無機充填材(B)を含む充填材の分散姓を改良し、未加硫ゴムの粘度低減による加工性の向上と、転がり抵抗(RR)を良好にして低発熱性の向上等の観点から、炭素数8~28、好ましくは炭素数8~22、更に好ましくは炭素数10~18の脂肪酸、より更に好ましくは炭素数12~18の脂肪酸である。また、脂肪酸は飽和、不飽和、直鎖、分岐鎖いずれでもよいが、特に、直鎖状飽和脂肪酸が好ましい。脂肪酸の具体例としては、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸等が挙げられる。好ましくは、ラウリル酸、パルミチン酸、ステアリン酸であり、特に、パルミチン酸、ステアリン酸が好ましい。
なお、炭素数8未満の脂肪酸では、ポリマーとの親和性が低く、ブルームが起こりやすい。一方、炭素数28を超える脂肪酸では、加工性改良効果の向上は炭素数28以下と変わらず、コストが上昇し、好ましくない。 In the present invention, the fatty acid constituting the glycerin fatty acid ester activates the silane coupling agent (C) with the vulcanization accelerator (D), and the unvulcanized rubber by the activator (D) such as the vulcanization accelerator. Suppressing the deterioration of the viscosity, improving the dispersion of the filler containing the inorganic filler (B) having silica, improving the workability by reducing the viscosity of the unvulcanized rubber, and improving the rolling resistance (RR) From the viewpoint of improving low exothermic properties, it is a fatty acid having 8 to 28 carbon atoms, preferably 8 to 22 carbon atoms, more preferably 10 to 18 carbon atoms, and still more preferably 12 to 18 carbon atoms. The fatty acid may be saturated, unsaturated, linear or branched, but is particularly preferably a linear saturated fatty acid. Specific examples of the fatty acid include capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, oleic acid, linoleic acid and the like. Lauric acid, palmitic acid and stearic acid are preferred, and palmitic acid and stearic acid are particularly preferred.
Note that fatty acids having less than 8 carbon atoms have a low affinity with the polymer, and bloom tends to occur. On the other hand, in the case of fatty acids having more than 28 carbon atoms, the improvement in workability improvement effect is not different from that of 28 or less carbon atoms, and the cost increases, which is not preferable.
なお、炭素数8未満の脂肪酸では、ポリマーとの親和性が低く、ブルームが起こりやすい。一方、炭素数28を超える脂肪酸では、加工性改良効果の向上は炭素数28以下と変わらず、コストが上昇し、好ましくない。 In the present invention, the fatty acid constituting the glycerin fatty acid ester activates the silane coupling agent (C) with the vulcanization accelerator (D), and the unvulcanized rubber by the activator (D) such as the vulcanization accelerator. Suppressing the deterioration of the viscosity, improving the dispersion of the filler containing the inorganic filler (B) having silica, improving the workability by reducing the viscosity of the unvulcanized rubber, and improving the rolling resistance (RR) From the viewpoint of improving low exothermic properties, it is a fatty acid having 8 to 28 carbon atoms, preferably 8 to 22 carbon atoms, more preferably 10 to 18 carbon atoms, and still more preferably 12 to 18 carbon atoms. The fatty acid may be saturated, unsaturated, linear or branched, but is particularly preferably a linear saturated fatty acid. Specific examples of the fatty acid include capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, oleic acid, linoleic acid and the like. Lauric acid, palmitic acid and stearic acid are preferred, and palmitic acid and stearic acid are particularly preferred.
Note that fatty acids having less than 8 carbon atoms have a low affinity with the polymer, and bloom tends to occur. On the other hand, in the case of fatty acids having more than 28 carbon atoms, the improvement in workability improvement effect is not different from that of 28 or less carbon atoms, and the cost increases, which is not preferable.
本発明に用いるグリセリン脂肪酸エステル組成物(E)は、脂肪酸の炭素数が8~28であり、組成物中、グリセリン脂肪酸モノエステル含有量が85質量%超過となるものである。この含有量となるグリセリン脂肪酸エステル組成物を配合することにより、加工性の悪化を抑制し、加硫速度も遅延させることなく、シリカ配合未加硫ゴムの粘度の低減による加工性の向上と、耐熱性などの諸性能を高度に達成することができる。
The glycerin fatty acid ester composition (E) used in the present invention has 8 to 28 carbon atoms in the fatty acid, and the glycerin fatty acid monoester content in the composition exceeds 85% by mass. By blending the glycerin fatty acid ester composition with this content, the processability is prevented from deteriorating, the vulcanization speed is also delayed, and the processability is improved by reducing the viscosity of the silica-blended unvulcanized rubber, High performance such as heat resistance can be achieved.
本発明において、グリセリン脂肪酸エステル組成物中のモノエステル含有量が85質量%以下ものでは、シリカを含む充填材を高度に分散せしめることができず、本発明の効果である耐摩耗性、低ロス性、作業性を高度に両立することができないこととなる。
そのため、グリセリン脂肪酸エステル組成物中、モノエステル含有量は、未加硫ゴム粘度を低減する観点から、好ましくは90質量%以上、より好ましくは95質量%超過である。また、ゴム物性およびグリセリン脂肪酸エステル組成物の製造上の観点からは、モノエステル含有量は99質量%以下であることが好ましい。つまり、最も好ましい数値範囲は95~99質量%となる。
また、グリセリン脂肪酸エステル組成物中、モノエステル含有量が85質量%超過であれば、グリセリン脂肪酸ジエステルや、それ以外にグリセリン脂肪酸トリエステルやグリセリンを生産性の観点から含んでいてもよい。
グリセリン脂肪酸エステル組成物中、グリセリン脂肪酸ジエステル及びグリセリン脂肪酸トリエステルの合計含有量は、加硫後ゴム物性の過度の低下(貯蔵弾性率の低下等)を防ぐ観点から、好ましくは10質量%未満であり、より好ましくは5質量%以下であり、更に好ましくは3質量%以下であり、生産性の観点から、0.3質量%以上であってもよい。
本発明に用いるグリセリン脂肪酸エステル組成物の製造の際に、未反応原料としてグリセリンが残る場合がある。グリセリン脂肪酸エステル組成物中、グリセリンの含有量は、耐熱性低下抑制の観点から、好ましくは5質量%未満であり、更に好ましくは3質量%以下であり、生産性の観点から、0.3質量%以上であってもよい。
グリセリン脂肪酸エステル組成物は、グリセリン脂肪酸モノエステルの合計含有量が85質量%超過となるものであれば、グリセリン脂肪酸モノエステルやジエステル含有量等が異なる2種以上用いてもよい。 In the present invention, when the monoester content in the glycerin fatty acid ester composition is 85% by mass or less, the filler containing silica cannot be highly dispersed, and the effects of the present invention are wear resistance and low loss. Therefore, it is impossible to achieve a high balance between workability and workability.
Therefore, in the glycerin fatty acid ester composition, the monoester content is preferably 90% by mass or more, and more preferably 95% by mass from the viewpoint of reducing the unvulcanized rubber viscosity. Further, from the viewpoint of rubber physical properties and production of the glycerin fatty acid ester composition, the monoester content is preferably 99% by mass or less. That is, the most preferable numerical range is 95 to 99% by mass.
Moreover, if monoester content exceeds 85 mass% in a glycerin fatty acid ester composition, you may contain glycerin fatty acid diester, glycerin fatty acid triester, and glycerin other than that from a productivity viewpoint.
In the glycerin fatty acid ester composition, the total content of the glycerin fatty acid diester and the glycerin fatty acid triester is preferably less than 10% by mass from the viewpoint of preventing an excessive decrease in rubber physical properties (such as a decrease in storage elastic modulus) after vulcanization. Yes, more preferably 5% by mass or less, still more preferably 3% by mass or less, and may be 0.3% by mass or more from the viewpoint of productivity.
In the production of the glycerin fatty acid ester composition used in the present invention, glycerin may remain as an unreacted raw material. In the glycerin fatty acid ester composition, the content of glycerin is preferably less than 5% by mass, more preferably 3% by mass or less, from the viewpoint of suppressing deterioration in heat resistance, and 0.3% by mass from the viewpoint of productivity. % Or more.
As long as the total content of glycerin fatty acid monoester exceeds 85% by mass, the glycerin fatty acid ester composition may be used in two or more different glycerin fatty acid monoester and diester contents.
そのため、グリセリン脂肪酸エステル組成物中、モノエステル含有量は、未加硫ゴム粘度を低減する観点から、好ましくは90質量%以上、より好ましくは95質量%超過である。また、ゴム物性およびグリセリン脂肪酸エステル組成物の製造上の観点からは、モノエステル含有量は99質量%以下であることが好ましい。つまり、最も好ましい数値範囲は95~99質量%となる。
また、グリセリン脂肪酸エステル組成物中、モノエステル含有量が85質量%超過であれば、グリセリン脂肪酸ジエステルや、それ以外にグリセリン脂肪酸トリエステルやグリセリンを生産性の観点から含んでいてもよい。
グリセリン脂肪酸エステル組成物中、グリセリン脂肪酸ジエステル及びグリセリン脂肪酸トリエステルの合計含有量は、加硫後ゴム物性の過度の低下(貯蔵弾性率の低下等)を防ぐ観点から、好ましくは10質量%未満であり、より好ましくは5質量%以下であり、更に好ましくは3質量%以下であり、生産性の観点から、0.3質量%以上であってもよい。
本発明に用いるグリセリン脂肪酸エステル組成物の製造の際に、未反応原料としてグリセリンが残る場合がある。グリセリン脂肪酸エステル組成物中、グリセリンの含有量は、耐熱性低下抑制の観点から、好ましくは5質量%未満であり、更に好ましくは3質量%以下であり、生産性の観点から、0.3質量%以上であってもよい。
グリセリン脂肪酸エステル組成物は、グリセリン脂肪酸モノエステルの合計含有量が85質量%超過となるものであれば、グリセリン脂肪酸モノエステルやジエステル含有量等が異なる2種以上用いてもよい。 In the present invention, when the monoester content in the glycerin fatty acid ester composition is 85% by mass or less, the filler containing silica cannot be highly dispersed, and the effects of the present invention are wear resistance and low loss. Therefore, it is impossible to achieve a high balance between workability and workability.
Therefore, in the glycerin fatty acid ester composition, the monoester content is preferably 90% by mass or more, and more preferably 95% by mass from the viewpoint of reducing the unvulcanized rubber viscosity. Further, from the viewpoint of rubber physical properties and production of the glycerin fatty acid ester composition, the monoester content is preferably 99% by mass or less. That is, the most preferable numerical range is 95 to 99% by mass.
Moreover, if monoester content exceeds 85 mass% in a glycerin fatty acid ester composition, you may contain glycerin fatty acid diester, glycerin fatty acid triester, and glycerin other than that from a productivity viewpoint.
In the glycerin fatty acid ester composition, the total content of the glycerin fatty acid diester and the glycerin fatty acid triester is preferably less than 10% by mass from the viewpoint of preventing an excessive decrease in rubber physical properties (such as a decrease in storage elastic modulus) after vulcanization. Yes, more preferably 5% by mass or less, still more preferably 3% by mass or less, and may be 0.3% by mass or more from the viewpoint of productivity.
In the production of the glycerin fatty acid ester composition used in the present invention, glycerin may remain as an unreacted raw material. In the glycerin fatty acid ester composition, the content of glycerin is preferably less than 5% by mass, more preferably 3% by mass or less, from the viewpoint of suppressing deterioration in heat resistance, and 0.3% by mass from the viewpoint of productivity. % Or more.
As long as the total content of glycerin fatty acid monoester exceeds 85% by mass, the glycerin fatty acid ester composition may be used in two or more different glycerin fatty acid monoester and diester contents.
本発明において、用いるグリセリン脂肪酸エステル組成物は、油脂等を分解したグリセリンと脂肪酸から製造するエステル化法と、油脂等とグリセリンとを原料としたエステル交換法などにより製造することができ、グリセリン脂肪酸エステル組成物中のモノエステル量をコントロールしたものを製造する方法等としては、下記1)~3)の各方法などが挙げられる。
1)上記エステル化法やエステル交換法などにおいて、脂肪酸成分とグリセリン成分の仕込み比率を変えることで、エステル化の平衡組成を制御する方法。グリセリンについては、さらに蒸留により取り除くことが出来る。
2)エステル化法やエステル交換法で得られた反応生成物をさらに分子蒸留などにより分別留去し、高純度(通常95質量%以上)のグリセリン脂肪酸モノエステルを取り出す方法。
3)上記2)の手法で得た高純度グリセリン脂肪酸モノエステルを1)の手法で得られる中純度グリセリン脂肪酸モノエステルと任意の割合で混合することにより、高純度領域(85質量%超過程度)のグリセリン脂肪酸モノエステルを得る方法。
上記原料の油脂や脂肪酸などを天然物から由来のものを用いることにより、環境負荷等も低減したグリセリン脂肪酸エステルを用いることができる。
更に、本発明に用いられるグリセリン脂肪酸エステル組成物は、モノエステル量がコントロールされた市販品を用いることが可能であり、市販品の例としては、例えば、ステアリン酸モノグリセライド(花王株式会社製のエキセルS-95、モノエステル量95質量%超過)等が挙げられる。 In the present invention, the glycerin fatty acid ester composition to be used can be produced by an esterification method produced from glycerin obtained by decomposing fats and oils and a fatty acid, a transesterification method using fats and oils and glycerin as raw materials, and the like. Examples of the method for producing a controlled amount of monoester in the ester composition include the following methods 1) to 3).
1) A method for controlling the equilibrium composition of esterification by changing the charging ratio of the fatty acid component and the glycerin component in the esterification method or transesterification method. Glycerin can be further removed by distillation.
2) A method in which a reaction product obtained by an esterification method or a transesterification method is further subjected to fractional distillation by molecular distillation or the like to take out a glycerol fatty acid monoester having a high purity (usually 95% by mass or more).
3) By mixing the high-purity glycerin fatty acid monoester obtained by the method of 2) above with the medium-purity glycerin fatty acid monoester obtained by the method of 1) at an arbitrary ratio, a high-purity region (about 85% by mass or more) To obtain a glycerol fatty acid monoester.
Glycerin fatty acid esters with reduced environmental impact can be used by using the above-mentioned raw oils and fatty acids derived from natural products.
Furthermore, as the glycerin fatty acid ester composition used in the present invention, a commercially available product with a controlled monoester amount can be used. Examples of commercially available products include stearic acid monoglyceride (Excel manufactured by Kao Corporation). S-95, monoester amount exceeding 95% by mass).
1)上記エステル化法やエステル交換法などにおいて、脂肪酸成分とグリセリン成分の仕込み比率を変えることで、エステル化の平衡組成を制御する方法。グリセリンについては、さらに蒸留により取り除くことが出来る。
2)エステル化法やエステル交換法で得られた反応生成物をさらに分子蒸留などにより分別留去し、高純度(通常95質量%以上)のグリセリン脂肪酸モノエステルを取り出す方法。
3)上記2)の手法で得た高純度グリセリン脂肪酸モノエステルを1)の手法で得られる中純度グリセリン脂肪酸モノエステルと任意の割合で混合することにより、高純度領域(85質量%超過程度)のグリセリン脂肪酸モノエステルを得る方法。
上記原料の油脂や脂肪酸などを天然物から由来のものを用いることにより、環境負荷等も低減したグリセリン脂肪酸エステルを用いることができる。
更に、本発明に用いられるグリセリン脂肪酸エステル組成物は、モノエステル量がコントロールされた市販品を用いることが可能であり、市販品の例としては、例えば、ステアリン酸モノグリセライド(花王株式会社製のエキセルS-95、モノエステル量95質量%超過)等が挙げられる。 In the present invention, the glycerin fatty acid ester composition to be used can be produced by an esterification method produced from glycerin obtained by decomposing fats and oils and a fatty acid, a transesterification method using fats and oils and glycerin as raw materials, and the like. Examples of the method for producing a controlled amount of monoester in the ester composition include the following methods 1) to 3).
1) A method for controlling the equilibrium composition of esterification by changing the charging ratio of the fatty acid component and the glycerin component in the esterification method or transesterification method. Glycerin can be further removed by distillation.
2) A method in which a reaction product obtained by an esterification method or a transesterification method is further subjected to fractional distillation by molecular distillation or the like to take out a glycerol fatty acid monoester having a high purity (usually 95% by mass or more).
3) By mixing the high-purity glycerin fatty acid monoester obtained by the method of 2) above with the medium-purity glycerin fatty acid monoester obtained by the method of 1) at an arbitrary ratio, a high-purity region (about 85% by mass or more) To obtain a glycerol fatty acid monoester.
Glycerin fatty acid esters with reduced environmental impact can be used by using the above-mentioned raw oils and fatty acids derived from natural products.
Furthermore, as the glycerin fatty acid ester composition used in the present invention, a commercially available product with a controlled monoester amount can be used. Examples of commercially available products include stearic acid monoglyceride (Excel manufactured by Kao Corporation). S-95, monoester amount exceeding 95% by mass).
なお、本発明において、グリセリン脂肪酸エステル組成物中のモノグリセライド含有量(グリセリン脂肪酸モノエステル含有量)とは、GPC分析(ゲルパーミエーションクロマトグラフィー)により、下式(XIII)に従って求めたものをいい、グリセリン、モノグリセライド、ジグリセライド(グリセリン脂肪酸ジエステル)及びトリグリセライド(グリセリン脂肪酸トリエステル)の合計に対するモノグリセライドのGPC分析における面積割合を意味する。
〔上記式中、GはGPCのグリセリン面積、MGはGPCのモノグリセライド面積、DGはGPCのジグリセライド面積、TGはGPCのトリグリセライド面積である。〕
尚、GPCの測定条件は、下記の通りである。
〔GPCの測定条件〕
GPCの測定は下記測定装置を用い、溶離液としてTHF(テトラヒドロフラン)を毎分0.6ml/分の流速で流し、40℃の恒温槽中でカラムを安定させた。そこにTHFに溶解した1質量%の試料溶液10μLを注入して測定を行った。
標準物質:単分散ポリスチレン
検出器:RI-8022(東ソー(株)製)
測定装置:HPLC-8220 GPC(東ソー(株)製)
分析カラム:TSK-GEL SUPER H1000 2本及びTSK-GEL SUPER H2000 2本を直列に連結(東ソー(株)製)
同様に、グリセリン脂肪酸エステル組成物中のジグリセライド含有量は、グリセリン、モノグリセライド、ジグリセライド及びトリグリセライドの合計に対するジグリセライドのGPC分析における面積割合を意味する。 In the present invention, the monoglyceride content in the glycerin fatty acid ester composition (glycerin fatty acid monoester content) refers to that obtained by GPC analysis (gel permeation chromatography) according to the following formula (XIII): It means the area ratio in GPC analysis of monoglyceride with respect to the total of glycerin, monoglyceride, diglyceride (glycerin fatty acid diester) and triglyceride (glycerin fatty acid triester).
[In the above formula, G is the glycerin area of GPC, MG is the monoglyceride area of GPC, DG is the diglyceride area of GPC, and TG is the triglyceride area of GPC. ]
The measurement conditions for GPC are as follows.
[GPC measurement conditions]
GPC measurement was performed using the following measuring apparatus, and THF (tetrahydrofuran) as an eluent was flowed at a flow rate of 0.6 ml / min, and the column was stabilized in a constant temperature bath at 40 ° C. The measurement was performed by injecting 10 μL of a 1% by mass sample solution dissolved in THF.
Standard material: Monodispersed polystyrene Detector: RI-8022 (manufactured by Tosoh Corporation)
Measuring device: HPLC-8220 GPC (manufactured by Tosoh Corporation)
Analytical column: 2 TSK-GEL SUPER H1000 and 2 TSK-GEL SUPER H2000 connected in series (manufactured by Tosoh Corporation)
Similarly, the diglyceride content in the glycerin fatty acid ester composition means an area ratio in the GPC analysis of diglyceride with respect to the total of glycerin, monoglyceride, diglyceride and triglyceride.
尚、GPCの測定条件は、下記の通りである。
〔GPCの測定条件〕
GPCの測定は下記測定装置を用い、溶離液としてTHF(テトラヒドロフラン)を毎分0.6ml/分の流速で流し、40℃の恒温槽中でカラムを安定させた。そこにTHFに溶解した1質量%の試料溶液10μLを注入して測定を行った。
標準物質:単分散ポリスチレン
検出器:RI-8022(東ソー(株)製)
測定装置:HPLC-8220 GPC(東ソー(株)製)
分析カラム:TSK-GEL SUPER H1000 2本及びTSK-GEL SUPER H2000 2本を直列に連結(東ソー(株)製)
同様に、グリセリン脂肪酸エステル組成物中のジグリセライド含有量は、グリセリン、モノグリセライド、ジグリセライド及びトリグリセライドの合計に対するジグリセライドのGPC分析における面積割合を意味する。 In the present invention, the monoglyceride content in the glycerin fatty acid ester composition (glycerin fatty acid monoester content) refers to that obtained by GPC analysis (gel permeation chromatography) according to the following formula (XIII): It means the area ratio in GPC analysis of monoglyceride with respect to the total of glycerin, monoglyceride, diglyceride (glycerin fatty acid diester) and triglyceride (glycerin fatty acid triester).
The measurement conditions for GPC are as follows.
[GPC measurement conditions]
GPC measurement was performed using the following measuring apparatus, and THF (tetrahydrofuran) as an eluent was flowed at a flow rate of 0.6 ml / min, and the column was stabilized in a constant temperature bath at 40 ° C. The measurement was performed by injecting 10 μL of a 1% by mass sample solution dissolved in THF.
Standard material: Monodispersed polystyrene Detector: RI-8022 (manufactured by Tosoh Corporation)
Measuring device: HPLC-8220 GPC (manufactured by Tosoh Corporation)
Analytical column: 2 TSK-GEL SUPER H1000 and 2 TSK-GEL SUPER H2000 connected in series (manufactured by Tosoh Corporation)
Similarly, the diglyceride content in the glycerin fatty acid ester composition means an area ratio in the GPC analysis of diglyceride with respect to the total of glycerin, monoglyceride, diglyceride and triglyceride.
用いることができるモノエステル量をコントロールしたグリセリン脂肪酸エステル組成物の例を挙げれば、例えば、脂肪酸の炭素数8のカプリル酸グリセリル含有組成物、脂肪酸の炭素数10のデカン酸グリセリル含有組成物、脂肪酸の炭素数12のラウリン酸グリセリル含有組成物、脂肪酸の炭素数14のミリスチン酸グリセリル含有組成物、脂肪酸の炭素数16のパルミチン酸グリセリル含有組成物、脂肪酸の炭素数18のステアリン酸グリセリル含有組成物、脂肪酸の炭素数22のベヘン酸グリセリル含有組成物、脂肪酸の炭素数28のモンタン酸グリセリル含有組成物等が挙げられ、これらの中で、ラウリル酸グリセリル含有組成物、パルミチン酸グリセリル含有組成物、ステアリン酸グリセリル含有組成物が好ましい。これらのモノエステル量をコントロールしたグリセリン脂肪酸エステル含有組成物は、1種または2種以上が任意に選択されて配合される。
If the example of the glycerol fatty acid ester composition which controlled the amount of monoester which can be used is given, for example, the fatty acid C8 glyceryl caprylate containing composition, the fatty acid C10 glyceryl decanoate containing composition, fatty acid, for example Glyceryl laurate-containing composition with 12 carbon atoms, glyceryl myristate-containing composition with 14 carbon atoms of fatty acid, glyceryl palmitate with 16 carbon atoms of fatty acid, glyceryl stearate-containing composition with 18 carbon atoms of fatty acid , Glyceryl behenate-containing compositions with fatty acid 22 carbon atoms, glyceryl montanate-containing compositions with 28 carbon atoms of fatty acids, among them, glyceryl laurate-containing compositions, glyceryl palmitate-containing compositions, Glyceryl stearate containing compositions are preferred. One or two or more glycerin fatty acid ester-containing compositions in which the amount of these monoesters is controlled are arbitrarily selected and blended.
本発明に用いられるグリセリン脂肪酸エステル組成物の配合量は、ゴム成分100質量部に対して、未加硫ゴムの粘度低減の観点から、好ましくは0.2質量部以上、より好ましくは0.3質量部以上、更に好ましくは0.5質量部以上、特に好ましくは1質量部以上であり、加硫後ゴム物性の過度の低下(貯蔵弾性率の低下等)を抑制する観点から、好ましくは、7質量部以下、より好ましくは4質量部以下、更に好ましくは、2.5質量部以下であり、好ましくは、0.2~7質量部、より好ましくは、0.3~7質量部、更に好ましくは、0.3~4質量部、特に好ましくは0.3~2.5質量部、特により好ましくは、1~2質量部である。
The blending amount of the glycerin fatty acid ester composition used in the present invention is preferably 0.2 parts by mass or more, more preferably 0.3 parts, from the viewpoint of reducing the viscosity of the unvulcanized rubber with respect to 100 parts by mass of the rubber component. From the viewpoint of suppressing an excessive decrease in physical properties of rubber after vulcanization (such as a decrease in storage elastic modulus), preferably 0.5 parts by mass or more, more preferably 0.5 parts by mass or more, and particularly preferably 1 part by mass or more. 7 parts by mass or less, more preferably 4 parts by mass or less, still more preferably 2.5 parts by mass or less, preferably 0.2 to 7 parts by mass, more preferably 0.3 to 7 parts by mass, The amount is preferably 0.3 to 4 parts by mass, particularly preferably 0.3 to 2.5 parts by mass, and particularly preferably 1 to 2 parts by mass.
〔加硫剤(F)〕
本発明に用いる加硫剤としては、硫黄、不溶性硫黄などの硫黄等が挙げられ、その配合量は、ゴム成分100質量部に対し、硫黄分として0.1~10.0質量部が好ましく、更に好ましくは1.0~5.0質量部である。 [Vulcanizing agent (F)]
Examples of the vulcanizing agent used in the present invention include sulfur and sulfur such as insoluble sulfur, and the blending amount thereof is preferably 0.1 to 10.0 parts by mass with respect to 100 parts by mass of the rubber component. More preferably, it is 1.0 to 5.0 parts by mass.
本発明に用いる加硫剤としては、硫黄、不溶性硫黄などの硫黄等が挙げられ、その配合量は、ゴム成分100質量部に対し、硫黄分として0.1~10.0質量部が好ましく、更に好ましくは1.0~5.0質量部である。 [Vulcanizing agent (F)]
Examples of the vulcanizing agent used in the present invention include sulfur and sulfur such as insoluble sulfur, and the blending amount thereof is preferably 0.1 to 10.0 parts by mass with respect to 100 parts by mass of the rubber component. More preferably, it is 1.0 to 5.0 parts by mass.
〔タイヤ用ゴム組成物〕
本発明のタイヤ用ゴム組成物は、ジエン系重合体として、末端から全鎖長の1/4の範囲のみに、シリカとの間で相互作用が可能な変性官能基を3つ以上有し、少なくとも一つの前記変性官能基間にジエン系重合体の単量体構造を有するジエン系重合体を含むゴム成分(A)、シリカを有する無機充填材(B)を含む充填材、シランカップリング剤(C)、及び加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)の全部又は一部、並びに、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が85質量%超過であるグリセリン脂肪酸エステル組成物(E)を含む第一混合物を調製し、該第一混合物を混練することによって予備組成物を調製する、第一工程と、前記予備組成物に加硫剤(F)を加えた第二混合物を調製し、該第二混合物を混練することによってゴム組成物を調製する、第二工程とを含むゴム組成物の製造方法により製造されるものである。
本発明において、混練の第一工程で加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)の全部又は一部、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が85質量%超過であるグリセリン脂肪酸エステル組成物(E)を加えて混練するのは、シランカップリング剤(C)のカップリング機能の活性を高め、無機充填材(B)の分散姓を改良して、未加硫ゴムの粘度の悪化を抑制し、未加硫ゴムの粘度低減による加工性の向上と、転がり抵抗(RR)を良好にして低発熱性を向上させるためである。 [Rubber composition for tire]
The rubber composition for tires of the present invention, as a diene polymer, has three or more modified functional groups capable of interacting with silica only in the range of ¼ of the total chain length from the end, Rubber component (A) containing a diene polymer having a monomer structure of a diene polymer between at least one of the modified functional groups, a filler containing an inorganic filler (B) having silica, and a silane coupling agent (C), and all or part of an activator (D) consisting of at least one selected from vulcanization accelerators, thioureas, and thiadiazoles, and a glycerol fatty acid monoester content of 8 to 28 carbon atoms. A first mixture containing a glycerin fatty acid ester composition (E) in excess of 85% by mass is prepared, and a preliminary composition is prepared by kneading the first mixture, and a first step is added to the preliminary composition. Sulfur agent (F) Added to prepare a second mixture, to prepare a rubber composition by kneading said second mixture, which is produced by the production method of the rubber composition and a second step.
In the present invention, in the first step of kneading, all or part of the activator (D) consisting of at least one selected from vulcanization accelerators, thioureas, and thiadiazoles, a glycerol fatty acid monoester having 8 to 28 carbon atoms Adding and kneading the glycerin fatty acid ester composition (E) whose content exceeds 85% by mass enhances the activity of the coupling function of the silane coupling agent (C) and disperses the inorganic filler (B). This is because the deterioration of the viscosity of the unvulcanized rubber is suppressed, the processability is improved by reducing the viscosity of the unvulcanized rubber, the rolling resistance (RR) is improved, and the low heat build-up is improved.
本発明のタイヤ用ゴム組成物は、ジエン系重合体として、末端から全鎖長の1/4の範囲のみに、シリカとの間で相互作用が可能な変性官能基を3つ以上有し、少なくとも一つの前記変性官能基間にジエン系重合体の単量体構造を有するジエン系重合体を含むゴム成分(A)、シリカを有する無機充填材(B)を含む充填材、シランカップリング剤(C)、及び加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)の全部又は一部、並びに、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が85質量%超過であるグリセリン脂肪酸エステル組成物(E)を含む第一混合物を調製し、該第一混合物を混練することによって予備組成物を調製する、第一工程と、前記予備組成物に加硫剤(F)を加えた第二混合物を調製し、該第二混合物を混練することによってゴム組成物を調製する、第二工程とを含むゴム組成物の製造方法により製造されるものである。
本発明において、混練の第一工程で加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)の全部又は一部、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が85質量%超過であるグリセリン脂肪酸エステル組成物(E)を加えて混練するのは、シランカップリング剤(C)のカップリング機能の活性を高め、無機充填材(B)の分散姓を改良して、未加硫ゴムの粘度の悪化を抑制し、未加硫ゴムの粘度低減による加工性の向上と、転がり抵抗(RR)を良好にして低発熱性を向上させるためである。 [Rubber composition for tire]
The rubber composition for tires of the present invention, as a diene polymer, has three or more modified functional groups capable of interacting with silica only in the range of ¼ of the total chain length from the end, Rubber component (A) containing a diene polymer having a monomer structure of a diene polymer between at least one of the modified functional groups, a filler containing an inorganic filler (B) having silica, and a silane coupling agent (C), and all or part of an activator (D) consisting of at least one selected from vulcanization accelerators, thioureas, and thiadiazoles, and a glycerol fatty acid monoester content of 8 to 28 carbon atoms. A first mixture containing a glycerin fatty acid ester composition (E) in excess of 85% by mass is prepared, and a preliminary composition is prepared by kneading the first mixture, and a first step is added to the preliminary composition. Sulfur agent (F) Added to prepare a second mixture, to prepare a rubber composition by kneading said second mixture, which is produced by the production method of the rubber composition and a second step.
In the present invention, in the first step of kneading, all or part of the activator (D) consisting of at least one selected from vulcanization accelerators, thioureas, and thiadiazoles, a glycerol fatty acid monoester having 8 to 28 carbon atoms Adding and kneading the glycerin fatty acid ester composition (E) whose content exceeds 85% by mass enhances the activity of the coupling function of the silane coupling agent (C) and disperses the inorganic filler (B). This is because the deterioration of the viscosity of the unvulcanized rubber is suppressed, the processability is improved by reducing the viscosity of the unvulcanized rubber, the rolling resistance (RR) is improved, and the low heat build-up is improved.
本発明の混練の第一工程において、前記特性のジエン系重合体を含むゴム成分(A)、前記シリカを有する無機充填材(B)を含む充填材及び前記シランカップリング剤(C)、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が85質量%超過であるグリセリン脂肪酸エステル組成成物(E)を混練した後に前記加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)の全部又は一部を加えて、さらに混練することが、加硫促進剤などの活性剤(D)、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が85質量%超過であるグリセリン脂肪酸エステル組成物(E)の配合によるカップリング機能の活性向上効果が低減するのを更に好適に抑制するために好ましい。即ち、シリカを含む無機充填材(B)とシランカップリング剤(C)との反応が十分に進行した後に、シランカップリング剤(C)と前記特性のジエン系重合体を含むゴム成分(A)との反応を進行させることができるからである。
混練の第一工程で、前記特性のジエン系重合体を含むゴム成分(A)、シリカを含む無機充填材(B)を含む充填材、及びシランカップリング剤(C)、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が85質量%超過であるグリセリン脂肪酸エステル組成物(E)を加えた後、該第一工程の途中で加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)を加えるまでの時間を10~180秒とすることがより好ましい。この時間の下限値は、30秒以上であることが更に好ましく、上限値は、150秒以下であることが更に好ましく、120秒以下であることが特に好ましい。この時間が10秒以上であれば(B)と(C)の反応を十分に進行させることができる。この時間が180秒を超えても(B)と(C)の反応は既に十分に進行しているので、更なる効果は享受しにくく、上限値を180秒とすることが好ましい。 In the first step of kneading of the present invention, the rubber component (A) containing the diene polymer having the above characteristics, the filler containing the inorganic filler (B) having the silica, the silane coupling agent (C), carbon After kneading the glycerin fatty acid ester composition composition (E) having a glycerin fatty acid monoester content of 8 to 28 in excess of 85% by mass, at least one selected from the vulcanization accelerators, thioureas, and thiadiazoles It is possible to add all or a part of the activator (D) to be further kneaded, so that the activator (D) such as a vulcanization accelerator, the content of glycerol fatty acid monoester having 8 to 28 carbon atoms is 85% by mass It is preferable in order to further suitably suppress a reduction in the activity improving effect of the coupling function due to the blending of the excess glycerin fatty acid ester composition (E). That is, after the reaction between the inorganic filler (B) containing silica and the silane coupling agent (C) has sufficiently progressed, the rubber component (A) containing the silane coupling agent (C) and the diene polymer having the above characteristics. This is because the reaction with) can proceed.
In the first kneading step, the rubber component (A) containing the diene polymer having the above characteristics, the filler containing the inorganic filler (B) containing silica, and the silane coupling agent (C), having 8 to 8 carbon atoms After adding the glycerin fatty acid ester composition (E) whose 28 glycerin fatty acid monoester content is more than 85% by mass, at least selected from vulcanization accelerators, thioureas, and thiadiazoles during the first step More preferably, the time until the activator (D) consisting of one kind is added is 10 to 180 seconds. The lower limit value of this time is more preferably 30 seconds or more, and the upper limit value is more preferably 150 seconds or less, and particularly preferably 120 seconds or less. If this time is 10 seconds or more, the reaction of (B) and (C) can be sufficiently advanced. Even if this time exceeds 180 seconds, the reaction of (B) and (C) has already proceeded sufficiently, so that it is difficult to enjoy further effects, and the upper limit is preferably set to 180 seconds.
混練の第一工程で、前記特性のジエン系重合体を含むゴム成分(A)、シリカを含む無機充填材(B)を含む充填材、及びシランカップリング剤(C)、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が85質量%超過であるグリセリン脂肪酸エステル組成物(E)を加えた後、該第一工程の途中で加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)を加えるまでの時間を10~180秒とすることがより好ましい。この時間の下限値は、30秒以上であることが更に好ましく、上限値は、150秒以下であることが更に好ましく、120秒以下であることが特に好ましい。この時間が10秒以上であれば(B)と(C)の反応を十分に進行させることができる。この時間が180秒を超えても(B)と(C)の反応は既に十分に進行しているので、更なる効果は享受しにくく、上限値を180秒とすることが好ましい。 In the first step of kneading of the present invention, the rubber component (A) containing the diene polymer having the above characteristics, the filler containing the inorganic filler (B) having the silica, the silane coupling agent (C), carbon After kneading the glycerin fatty acid ester composition composition (E) having a glycerin fatty acid monoester content of 8 to 28 in excess of 85% by mass, at least one selected from the vulcanization accelerators, thioureas, and thiadiazoles It is possible to add all or a part of the activator (D) to be further kneaded, so that the activator (D) such as a vulcanization accelerator, the content of glycerol fatty acid monoester having 8 to 28 carbon atoms is 85% by mass It is preferable in order to further suitably suppress a reduction in the activity improving effect of the coupling function due to the blending of the excess glycerin fatty acid ester composition (E). That is, after the reaction between the inorganic filler (B) containing silica and the silane coupling agent (C) has sufficiently progressed, the rubber component (A) containing the silane coupling agent (C) and the diene polymer having the above characteristics. This is because the reaction with) can proceed.
In the first kneading step, the rubber component (A) containing the diene polymer having the above characteristics, the filler containing the inorganic filler (B) containing silica, and the silane coupling agent (C), having 8 to 8 carbon atoms After adding the glycerin fatty acid ester composition (E) whose 28 glycerin fatty acid monoester content is more than 85% by mass, at least selected from vulcanization accelerators, thioureas, and thiadiazoles during the first step More preferably, the time until the activator (D) consisting of one kind is added is 10 to 180 seconds. The lower limit value of this time is more preferably 30 seconds or more, and the upper limit value is more preferably 150 seconds or less, and particularly preferably 120 seconds or less. If this time is 10 seconds or more, the reaction of (B) and (C) can be sufficiently advanced. Even if this time exceeds 180 seconds, the reaction of (B) and (C) has already proceeded sufficiently, so that it is difficult to enjoy further effects, and the upper limit is preferably set to 180 seconds.
本発明において、混練の第一工程におけるゴム組成物におけるゴム組成物の最高温度が、120~190℃であることが好ましい。シリカを含む無機充填材(B)とシランカップリング剤(C)との反応を十分に進行させるためである。この観点から、混練の第一段階におけるゴム組成物の最高温度が、130~190℃であることがより好ましく、140~180℃であることがさらに好ましい。
In the present invention, the maximum temperature of the rubber composition in the rubber composition in the first step of kneading is preferably 120 to 190 ° C. This is because the reaction between the inorganic filler (B) containing silica and the silane coupling agent (C) sufficiently proceeds. From this viewpoint, the maximum temperature of the rubber composition in the first stage of kneading is more preferably 130 to 190 ° C, and further preferably 140 to 180 ° C.
本発明におけるタイヤ用ゴム組成物の混練工程は、前記特性のジエン系重合体を含むゴム成分(A)、シリカを有する無機充填材(B)を含む充填材、シランカップリング剤(C)、及び加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)の全部又は一部、並びに、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が85質量%超過であるグリセリン脂肪酸エステル組成物(E)を含む第一混合物を調製し、該第一混合物を混練することによって予備組成物を調製する、第一工程と、前記予備組成物に加硫剤(F)を加えた第二混合物を調製し、該第二混合物を混練することによってゴム組成物を調製する、第二工程と、を含むゴム組成物の製造方法により製造されるタイヤ用ゴム組成物であり、上記加硫剤(F)を含まない混練の第一工程と、加硫剤を含む混練の第二工程の少なくとも2つの工程を含むものであり、必要に応じ、加硫剤(F)を含まない混練の中間段階を含んでも良い。
The kneading step of the tire rubber composition in the present invention includes a rubber component (A) containing the above-mentioned diene polymer, a filler containing an inorganic filler (B) having silica, a silane coupling agent (C), And all or part of the activator (D) consisting of at least one selected from vulcanization accelerators, thioureas and thiadiazoles, and the content of glycerol fatty acid monoester having 8 to 28 carbon atoms exceeds 85% by mass A first mixture containing a glycerin fatty acid ester composition (E) is prepared, and a preliminary composition is prepared by kneading the first mixture, and a vulcanizing agent (F) is added to the preliminary composition. And a second step of preparing a rubber composition by kneading the second mixture, and a rubber composition for a tire manufactured by a method for manufacturing a rubber composition, comprising: And includes at least two steps of a first kneading step that does not include the vulcanizing agent (F) and a second step of kneading that includes the vulcanizing agent. ) May not be included.
本発明のタイヤ用ゴム組成物では、通常、ゴム工業界で通常使用される配合剤、例えば、老化防止剤、軟化剤、ステアリン酸、亜鉛華、加硫促進助剤等を、本発明の目的を阻害しない範囲内で、各種配合剤を、必要に応じ、混練の第一工程又は第二工程、あるいは第一工程と第二工程の中間段階において混練りされる。
本発明における混練装置として、バンバリーミキサー、ロール、インテンシブミキサー等が用いられる。
また、本発明のタイヤ用ゴム組成物は、上記工程で混練し、熱入れ、押出等することにより得られ、成形加工後、加硫を行い、タイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部分等のタイヤのタイヤ部材の用途に好適に用いることができる。 In the rubber composition for tires of the present invention, compounding agents usually used in the rubber industry, such as anti-aging agents, softeners, stearic acid, zinc white, vulcanization accelerators, etc. As long as it does not inhibit, various compounding agents are kneaded in the first step or the second step of kneading, or in the intermediate stage between the first step and the second step, if necessary.
As the kneading apparatus in the present invention, a Banbury mixer, a roll, an intensive mixer, or the like is used.
Further, the tire rubber composition of the present invention is obtained by kneading, heating, extruding, etc. in the above process, and after molding, vulcanization is performed, and tire tread, under tread, carcass, sidewall, bead It can use suitably for the use of the tire member of tires, such as a part.
本発明における混練装置として、バンバリーミキサー、ロール、インテンシブミキサー等が用いられる。
また、本発明のタイヤ用ゴム組成物は、上記工程で混練し、熱入れ、押出等することにより得られ、成形加工後、加硫を行い、タイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部分等のタイヤのタイヤ部材の用途に好適に用いることができる。 In the rubber composition for tires of the present invention, compounding agents usually used in the rubber industry, such as anti-aging agents, softeners, stearic acid, zinc white, vulcanization accelerators, etc. As long as it does not inhibit, various compounding agents are kneaded in the first step or the second step of kneading, or in the intermediate stage between the first step and the second step, if necessary.
As the kneading apparatus in the present invention, a Banbury mixer, a roll, an intensive mixer, or the like is used.
Further, the tire rubber composition of the present invention is obtained by kneading, heating, extruding, etc. in the above process, and after molding, vulcanization is performed, and tire tread, under tread, carcass, sidewall, bead It can use suitably for the use of the tire member of tires, such as a part.
このように構成されるタイヤ用ゴム組成物が、何故、未加硫ゴム粘度を悪化させることなく、シリカを含む充填材を高度に分散せしめて、耐摩耗性、転がり抵抗の低減効果を発揮すると共に、作業性、加工性を大幅に向上させたタイヤ用ゴム組成物となるかは以下のように推察される。
すなわち、本発明のタイヤ用ゴム組成物は、ジエン系重合体として、末端から全鎖長の1/4の範囲のみに、シリカとの間で相互作用が可能な変性官能基を3つ以上有し、少なくとも一つの前記変性官能基間にジエン系重合体の単量体構造を有するジエン系重合体を含むゴム成分(A)、シリカを有する無機充填材(B)を含む充填材、シランカップリング剤(C)、及び加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)の全部又は一部、並びに、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が85質量%超過であるグリセリン脂肪酸エステル組成物(E)を含む第一混合物を調製し、該第一混合物を混練することによって予備組成物を調製する、第一工程と、前記予備組成物に加硫剤(F)を加えた第二混合物を調製し、該第二混合物を混練することによってゴム組成物を調製する、第二工程とを含むゴム組成物の製造方法により製造されるものであり、第1工程で、末端から全鎖長の1/4の範囲のみに、シリカとの間で相互作用が可能な変性官能基を3つ以上有するジエン系重合体を含むゴム成分(A)に対して、シリカを有する無機充填材(B)を含む充填材を配合するものであるので、シリカと変性官能基との反応が効率的に行われる結果、より高い分散性が発揮されると共に、この配合系に、シランカップリング剤(C)、及び加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)の全部又は一部が配合されているので、シリカを含む無機充填材(B)の表面を疎水化し、かつ滑剤としても作用するモノエステル量を85質量%超過にコントロールした脂肪酸の炭素数が8~28となるグリセリン脂肪酸エステル組成物の少なくとも一種を配合することにより、加硫促進剤などの活性剤(D)によりシランカップリング剤(C)を活性化せしめ、加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)による未加硫ゴムの粘度の悪化をモノエステル単体と同様にフィラーであるシリカなどの無機充填材(B)と反応することができ、また、滑剤作用もあるため、さらに低粘度化し、また、シリカ等の疎水化作用と滑剤作用と可塑化作用とにより、粘度の悪化を大幅に抑制して、シリカを含む無機充填材(B)を含む充填材の分散姓を高度に維持できるため、未加硫ゴムの粘度低減による作業性、加工性の向上と、耐摩耗性と転がり抵抗(RR)を良好にして低発熱性も向上されるものと推察される。 The tire rubber composition configured as described above exhibits the effect of reducing wear resistance and rolling resistance by highly dispersing the filler containing silica without deteriorating the viscosity of the unvulcanized rubber. In addition, it is presumed as follows whether the tire rubber composition has greatly improved workability and workability.
That is, the rubber composition for tires of the present invention has three or more modified functional groups capable of interacting with silica as a diene polymer only in a range of ¼ of the total chain length from the end. A rubber component (A) containing a diene polymer having a monomer structure of a diene polymer between at least one of the modified functional groups, a filler containing an inorganic filler (B) having silica, and a silane cup Contains a ring agent (C) and all or part of an activator (D) consisting of at least one selected from vulcanization accelerators, thioureas and thiadiazoles, and a glycerol fatty acid monoester having 8 to 28 carbon atoms A first step of preparing a first mixture containing a glycerin fatty acid ester composition (E) in an amount exceeding 85% by mass and preparing the preliminary composition by kneading the first mixture; and the preliminary composition In addition Preparing a second mixture to which the agent (F) has been added, and preparing a rubber composition by kneading the second mixture, which is produced by a method for producing a rubber composition comprising a second step, In the first step, for the rubber component (A) containing a diene polymer having three or more modified functional groups capable of interacting with silica only in the range of ¼ of the total chain length from the terminal. In addition, since the filler containing the inorganic filler (B) having silica is blended, the reaction between the silica and the modified functional group is efficiently performed. As a result, higher dispersibility is exhibited. Since all or part of the silane coupling agent (C) and the activating agent (D) consisting of at least one selected from vulcanization accelerators, thioureas, and thiadiazoles are blended in the blending system, silica is used. Hydrophobic surface of inorganic filler (B) In addition, by adding at least one glycerin fatty acid ester composition having a fatty acid number of 8 to 28 which is controlled to exceed 85% by mass of the monoester that also acts as a lubricant, the activity of a vulcanization accelerator or the like The silane coupling agent (C) is activated by the agent (D), and the viscosity of the unvulcanized rubber is deteriorated by the activator (D) consisting of at least one selected from vulcanization accelerators, thioureas, and thiadiazoles. It can react with an inorganic filler (B) such as silica as a monoester alone, and also has a lubricant action, so that the viscosity is further reduced, and the hydrophobic action and the lubricant action of silica etc. Due to the plasticizing action, the deterioration of viscosity is largely suppressed, and the dispersion of the filler containing the inorganic filler (B) containing silica can be maintained at a high level. It is presumed that the workability and workability are improved by reducing the viscosity, the wear resistance and rolling resistance (RR) are improved, and the low heat build-up is also improved.
すなわち、本発明のタイヤ用ゴム組成物は、ジエン系重合体として、末端から全鎖長の1/4の範囲のみに、シリカとの間で相互作用が可能な変性官能基を3つ以上有し、少なくとも一つの前記変性官能基間にジエン系重合体の単量体構造を有するジエン系重合体を含むゴム成分(A)、シリカを有する無機充填材(B)を含む充填材、シランカップリング剤(C)、及び加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)の全部又は一部、並びに、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が85質量%超過であるグリセリン脂肪酸エステル組成物(E)を含む第一混合物を調製し、該第一混合物を混練することによって予備組成物を調製する、第一工程と、前記予備組成物に加硫剤(F)を加えた第二混合物を調製し、該第二混合物を混練することによってゴム組成物を調製する、第二工程とを含むゴム組成物の製造方法により製造されるものであり、第1工程で、末端から全鎖長の1/4の範囲のみに、シリカとの間で相互作用が可能な変性官能基を3つ以上有するジエン系重合体を含むゴム成分(A)に対して、シリカを有する無機充填材(B)を含む充填材を配合するものであるので、シリカと変性官能基との反応が効率的に行われる結果、より高い分散性が発揮されると共に、この配合系に、シランカップリング剤(C)、及び加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)の全部又は一部が配合されているので、シリカを含む無機充填材(B)の表面を疎水化し、かつ滑剤としても作用するモノエステル量を85質量%超過にコントロールした脂肪酸の炭素数が8~28となるグリセリン脂肪酸エステル組成物の少なくとも一種を配合することにより、加硫促進剤などの活性剤(D)によりシランカップリング剤(C)を活性化せしめ、加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)による未加硫ゴムの粘度の悪化をモノエステル単体と同様にフィラーであるシリカなどの無機充填材(B)と反応することができ、また、滑剤作用もあるため、さらに低粘度化し、また、シリカ等の疎水化作用と滑剤作用と可塑化作用とにより、粘度の悪化を大幅に抑制して、シリカを含む無機充填材(B)を含む充填材の分散姓を高度に維持できるため、未加硫ゴムの粘度低減による作業性、加工性の向上と、耐摩耗性と転がり抵抗(RR)を良好にして低発熱性も向上されるものと推察される。 The tire rubber composition configured as described above exhibits the effect of reducing wear resistance and rolling resistance by highly dispersing the filler containing silica without deteriorating the viscosity of the unvulcanized rubber. In addition, it is presumed as follows whether the tire rubber composition has greatly improved workability and workability.
That is, the rubber composition for tires of the present invention has three or more modified functional groups capable of interacting with silica as a diene polymer only in a range of ¼ of the total chain length from the end. A rubber component (A) containing a diene polymer having a monomer structure of a diene polymer between at least one of the modified functional groups, a filler containing an inorganic filler (B) having silica, and a silane cup Contains a ring agent (C) and all or part of an activator (D) consisting of at least one selected from vulcanization accelerators, thioureas and thiadiazoles, and a glycerol fatty acid monoester having 8 to 28 carbon atoms A first step of preparing a first mixture containing a glycerin fatty acid ester composition (E) in an amount exceeding 85% by mass and preparing the preliminary composition by kneading the first mixture; and the preliminary composition In addition Preparing a second mixture to which the agent (F) has been added, and preparing a rubber composition by kneading the second mixture, which is produced by a method for producing a rubber composition comprising a second step, In the first step, for the rubber component (A) containing a diene polymer having three or more modified functional groups capable of interacting with silica only in the range of ¼ of the total chain length from the terminal. In addition, since the filler containing the inorganic filler (B) having silica is blended, the reaction between the silica and the modified functional group is efficiently performed. As a result, higher dispersibility is exhibited. Since all or part of the silane coupling agent (C) and the activating agent (D) consisting of at least one selected from vulcanization accelerators, thioureas, and thiadiazoles are blended in the blending system, silica is used. Hydrophobic surface of inorganic filler (B) In addition, by adding at least one glycerin fatty acid ester composition having a fatty acid number of 8 to 28 which is controlled to exceed 85% by mass of the monoester that also acts as a lubricant, the activity of a vulcanization accelerator or the like The silane coupling agent (C) is activated by the agent (D), and the viscosity of the unvulcanized rubber is deteriorated by the activator (D) consisting of at least one selected from vulcanization accelerators, thioureas, and thiadiazoles. It can react with an inorganic filler (B) such as silica as a monoester alone, and also has a lubricant action, so that the viscosity is further reduced, and the hydrophobic action and the lubricant action of silica etc. Due to the plasticizing action, the deterioration of viscosity is largely suppressed, and the dispersion of the filler containing the inorganic filler (B) containing silica can be maintained at a high level. It is presumed that the workability and workability are improved by reducing the viscosity, the wear resistance and rolling resistance (RR) are improved, and the low heat build-up is also improved.
〔タイヤ〕
本発明のタイヤは、前記タイヤ用ゴム組成物をトレッド部材に用いることを特徴とする。前記ゴム組成物をトレッド部材、特にトレッドゴムに用いたタイヤは、低ロス性、破壊特性及び耐摩耗性に優れる。なお、本発明のタイヤは、上述のタイヤ用ゴム組成物をトレッド部材のいずれかに用いる以外特に制限は無く、常法に従って製造することができる。また、該タイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。 〔tire〕
The tire of the present invention is characterized by using the tire rubber composition for a tread member. A tire using the rubber composition as a tread member, particularly a tread rubber, is excellent in low loss property, fracture characteristics, and wear resistance. The tire of the present invention is not particularly limited except that the tire rubber composition described above is used for any of the tread members, and can be produced according to a conventional method. Moreover, as gas with which this tire is filled, inert gas, such as nitrogen, argon, helium other than normal or the air which adjusted oxygen partial pressure, can be used.
本発明のタイヤは、前記タイヤ用ゴム組成物をトレッド部材に用いることを特徴とする。前記ゴム組成物をトレッド部材、特にトレッドゴムに用いたタイヤは、低ロス性、破壊特性及び耐摩耗性に優れる。なお、本発明のタイヤは、上述のタイヤ用ゴム組成物をトレッド部材のいずれかに用いる以外特に制限は無く、常法に従って製造することができる。また、該タイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。 〔tire〕
The tire of the present invention is characterized by using the tire rubber composition for a tread member. A tire using the rubber composition as a tread member, particularly a tread rubber, is excellent in low loss property, fracture characteristics, and wear resistance. The tire of the present invention is not particularly limited except that the tire rubber composition described above is used for any of the tread members, and can be produced according to a conventional method. Moreover, as gas with which this tire is filled, inert gas, such as nitrogen, argon, helium other than normal or the air which adjusted oxygen partial pressure, can be used.
次に、製造例、実施例及び比較例を挙げて本発明を更に詳しく説明するが、本発明は下記実施例に何ら限定されるものではない。
Next, the present invention will be described in more detail with reference to production examples, examples and comparative examples, but the present invention is not limited to the following examples.
以下の手順に従って、変性重合体A~Mを製造した。なお、各変性重合体における、変性官能基同士の直接結合の有無、変性官能基の位置、変性官能基の種類、変性官能基の数、ポリマー分子特性である結合スチレン量(%)、ビニル粘度(%)、ムーニー粘度(ML1+4/100℃)、ピーク分子量、ガラス転移温度(℃)を下記表1に示す。
Modified polymers A to M were produced according to the following procedure. In each modified polymer, the presence or absence of direct bonding between the modified functional groups, the position of the modified functional group, the type of the modified functional group, the number of modified functional groups, the amount of styrene bonded as a polymer molecular characteristic (%), the vinyl viscosity Table 1 below shows (%), Mooney viscosity (ML 1 + 4/100 ° C.), peak molecular weight, and glass transition temperature (° C.).
(変性重合体Aの製造)
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン60g及びスチレン15gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、さらに重合開始剤として0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、変性剤としての0.57ミリモルの3,4-ビス(トリメチルシリルオキシ)-1-ビニルベンゼン(酸素系)を加え、30分間反応させた。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Aを得た。 (Production of modified polymer A)
Add 1,3-butadiene in cyclohexane solution and styrene in cyclohexane solution to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 60 g of 1,3-butadiene and 15 g of styrene. After adding 0.29 mmol of tetrahydrofurylpropane and further adding 0.57 mmol of n-butyllithium as a polymerization initiator, polymerization was carried out at 50 ° C. for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, 0.57 mmol of 3,4-bis (trimethylsilyloxy) -1-vinylbenzene (oxygen-based) as a modifying agent was added to the polymerization reaction system and reacted for 30 minutes. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer A.
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン60g及びスチレン15gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、さらに重合開始剤として0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、変性剤としての0.57ミリモルの3,4-ビス(トリメチルシリルオキシ)-1-ビニルベンゼン(酸素系)を加え、30分間反応させた。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Aを得た。 (Production of modified polymer A)
Add 1,3-butadiene in cyclohexane solution and styrene in cyclohexane solution to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 60 g of 1,3-butadiene and 15 g of styrene. After adding 0.29 mmol of tetrahydrofurylpropane and further adding 0.57 mmol of n-butyllithium as a polymerization initiator, polymerization was carried out at 50 ° C. for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, 0.57 mmol of 3,4-bis (trimethylsilyloxy) -1-vinylbenzene (oxygen-based) as a modifying agent was added to the polymerization reaction system and reacted for 30 minutes. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer A.
(変性重合体Bの製造)
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン60g及びスチレン15gになるように加え、変性剤としての3,4-ビス(トリメチルシリルオキシ)-1-ビニルベンゼン2.85ミリモルと、2,2-ジテトラヒドロフリルプロパン0.29ミリモルとを順次加え、さらに重合開始剤として0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Bを得た。 (Production of modified polymer B)
Add 1,3-butadiene in a cyclohexane solution and styrene in a cyclohexane solution to a dried, nitrogen-substituted 800 ml pressure-resistant glass container so that 60 g of 1,3-butadiene and 15 g of styrene are added. , 4-bis (trimethylsilyloxy) -1-vinylbenzene (2.85 mmol) and 2,2-ditetrahydrofurylpropane (0.29 mmol) were sequentially added, and 0.57 mmol of n-butyllithium was used as a polymerization initiator. Then, polymerization was carried out at 50 ° C. for 1.5 hours. The polymerization conversion at this time was almost 100%. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer B.
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン60g及びスチレン15gになるように加え、変性剤としての3,4-ビス(トリメチルシリルオキシ)-1-ビニルベンゼン2.85ミリモルと、2,2-ジテトラヒドロフリルプロパン0.29ミリモルとを順次加え、さらに重合開始剤として0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Bを得た。 (Production of modified polymer B)
Add 1,3-butadiene in a cyclohexane solution and styrene in a cyclohexane solution to a dried, nitrogen-substituted 800 ml pressure-resistant glass container so that 60 g of 1,3-butadiene and 15 g of styrene are added. , 4-bis (trimethylsilyloxy) -1-vinylbenzene (2.85 mmol) and 2,2-ditetrahydrofurylpropane (0.29 mmol) were sequentially added, and 0.57 mmol of n-butyllithium was used as a polymerization initiator. Then, polymerization was carried out at 50 ° C. for 1.5 hours. The polymerization conversion at this time was almost 100%. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer B.
(変性重合体Cの製造)
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン48g及びスチレン12gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン12gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3gを含むスチレンのシクロヘキサン溶液、及び、変性剤として2.85ミリモルの3,4-ビス(トリメチルシリルオキシ)-1-ビニルベンゼンの混合溶液を一度に加え、さらに1時間重合反応を行った。この際の重合転化率はほぼ100%であった。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Cを得た。 (Production of modified polymer C)
Add 1,3-butadiene in cyclohexane solution and styrene in cyclohexane solution to a dry, nitrogen-substituted 800 ml pressure-resistant glass container so that 48 g of 1,3-butadiene and 12 g of styrene are added. After adding 0.29 mmol of tetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C. for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, the polymerization reaction system was charged with a cyclohexane solution of 1,3-butadiene containing 12 g of 1,3-butadiene, a cyclohexane solution of styrene containing 3 g of styrene, and 2.85 mmol of 3,4-bis (trimethylsilyl) as a modifier. A mixed solution of (oxy) -1-vinylbenzene was added at once, and the polymerization reaction was further carried out for 1 hour. The polymerization conversion at this time was almost 100%. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer C.
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン48g及びスチレン12gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン12gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3gを含むスチレンのシクロヘキサン溶液、及び、変性剤として2.85ミリモルの3,4-ビス(トリメチルシリルオキシ)-1-ビニルベンゼンの混合溶液を一度に加え、さらに1時間重合反応を行った。この際の重合転化率はほぼ100%であった。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Cを得た。 (Production of modified polymer C)
Add 1,3-butadiene in cyclohexane solution and styrene in cyclohexane solution to a dry, nitrogen-substituted 800 ml pressure-resistant glass container so that 48 g of 1,3-butadiene and 12 g of styrene are added. After adding 0.29 mmol of tetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C. for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, the polymerization reaction system was charged with a cyclohexane solution of 1,3-butadiene containing 12 g of 1,3-butadiene, a cyclohexane solution of styrene containing 3 g of styrene, and 2.85 mmol of 3,4-bis (trimethylsilyl) as a modifier. A mixed solution of (oxy) -1-vinylbenzene was added at once, and the polymerization reaction was further carried out for 1 hour. The polymerization conversion at this time was almost 100%. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer C.
(変性重合体Dの製造)
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン45g及びスチレン11.25gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン15gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3.48gとp-メチルスチレン0.27gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として0.57ミリモルのオルトケイ酸テトラエチルを加えて15分間反応を行った。
次いで、上記重合体溶液に2.28ミリモルのsec-ブチルリチウムと1.14ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として2.28ミリモルのオルトケイ酸テトラエチルを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Dを得た。 (Production of modified polymer D)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 45 g of 1,3-butadiene and 11.25 g of styrene. -After adding 0.29 mmol of ditetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 15 g of 1,3-butadiene and a cyclohexane solution of styrene containing 3.48 g of styrene and 0.27 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion rate reached 99%, 0.57 mmol of tetraethyl orthosilicate was added as a terminal modifier and reacted for 15 minutes.
Next, 2.28 mmol of sec-butyllithium and 1.14 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, followed by reaction at 80 ° C. for 10 minutes. To the polymer solution obtained after the reaction, 2.28 mmol of tetraethyl orthosilicate was added as a main chain modifier and reacted for 15 minutes. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer D.
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン45g及びスチレン11.25gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン15gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3.48gとp-メチルスチレン0.27gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として0.57ミリモルのオルトケイ酸テトラエチルを加えて15分間反応を行った。
次いで、上記重合体溶液に2.28ミリモルのsec-ブチルリチウムと1.14ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として2.28ミリモルのオルトケイ酸テトラエチルを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Dを得た。 (Production of modified polymer D)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 45 g of 1,3-butadiene and 11.25 g of styrene. -After adding 0.29 mmol of ditetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 15 g of 1,3-butadiene and a cyclohexane solution of styrene containing 3.48 g of styrene and 0.27 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion rate reached 99%, 0.57 mmol of tetraethyl orthosilicate was added as a terminal modifier and reacted for 15 minutes.
Next, 2.28 mmol of sec-butyllithium and 1.14 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, followed by reaction at 80 ° C. for 10 minutes. To the polymer solution obtained after the reaction, 2.28 mmol of tetraethyl orthosilicate was added as a main chain modifier and reacted for 15 minutes. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer D.
(変性重合体Eの製造)
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン45g及びスチレン11.25gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン15gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3.48gとp-メチルスチレン0.27gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として0.57ミリモルのグリシドキシプロピルトリメトキシシランを加えて15分間反応を行った。
次いで、上記重合体溶液に2.28ミリモルのsec-ブチルリチウムと1.14ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として2.28ミリモルのグリシドキシプロピルトリメトキシシランを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Eを得た。 (Production of modified polymer E)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 45 g of 1,3-butadiene and 11.25 g of styrene. -After adding 0.29 mmol of ditetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 15 g of 1,3-butadiene and a cyclohexane solution of styrene containing 3.48 g of styrene and 0.27 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion rate reached 99%, 0.57 mmol of glycidoxypropyltrimethoxysilane was added as a terminal modifier and reacted for 15 minutes.
Next, 2.28 mmol of sec-butyllithium and 1.14 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, followed by reaction at 80 ° C. for 10 minutes. To the polymer solution obtained after the reaction, 2.28 mmol of glycidoxypropyltrimethoxysilane was added as a main chain modifier and reacted for 15 minutes. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer E.
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン45g及びスチレン11.25gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン15gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3.48gとp-メチルスチレン0.27gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として0.57ミリモルのグリシドキシプロピルトリメトキシシランを加えて15分間反応を行った。
次いで、上記重合体溶液に2.28ミリモルのsec-ブチルリチウムと1.14ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として2.28ミリモルのグリシドキシプロピルトリメトキシシランを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Eを得た。 (Production of modified polymer E)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 45 g of 1,3-butadiene and 11.25 g of styrene. -After adding 0.29 mmol of ditetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 15 g of 1,3-butadiene and a cyclohexane solution of styrene containing 3.48 g of styrene and 0.27 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion rate reached 99%, 0.57 mmol of glycidoxypropyltrimethoxysilane was added as a terminal modifier and reacted for 15 minutes.
Next, 2.28 mmol of sec-butyllithium and 1.14 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, followed by reaction at 80 ° C. for 10 minutes. To the polymer solution obtained after the reaction, 2.28 mmol of glycidoxypropyltrimethoxysilane was added as a main chain modifier and reacted for 15 minutes. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer E.
(変性重合体Fの製造)
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン45g及びスチレン11.25gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン15gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3.48gとp-メチルスチレン0.27gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として0.57ミリモルのN-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミンを加えて15分間反応を行った。
次いで、上記重合体溶液に2.28ミリモルのsec-ブチルリチウムと1.14ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として2.28ミリモルのN-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミンを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Fを得た。 (Production of modified polymer F)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 45 g of 1,3-butadiene and 11.25 g of styrene. -After adding 0.29 mmol of ditetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 15 g of 1,3-butadiene and a cyclohexane solution of styrene containing 3.48 g of styrene and 0.27 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion reached 99%, 0.57 mmol of N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine was added as a terminal modifier for 15 minutes. Reaction was performed.
Next, 2.28 mmol of sec-butyllithium and 1.14 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, followed by reaction at 80 ° C. for 10 minutes. To the polymer solution obtained after the reaction, 2.28 mmol of N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine as a main chain modifier is added and reacted for 15 minutes. Went. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer F.
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン45g及びスチレン11.25gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン15gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3.48gとp-メチルスチレン0.27gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として0.57ミリモルのN-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミンを加えて15分間反応を行った。
次いで、上記重合体溶液に2.28ミリモルのsec-ブチルリチウムと1.14ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として2.28ミリモルのN-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミンを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Fを得た。 (Production of modified polymer F)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 45 g of 1,3-butadiene and 11.25 g of styrene. -After adding 0.29 mmol of ditetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 15 g of 1,3-butadiene and a cyclohexane solution of styrene containing 3.48 g of styrene and 0.27 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion reached 99%, 0.57 mmol of N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine was added as a terminal modifier for 15 minutes. Reaction was performed.
Next, 2.28 mmol of sec-butyllithium and 1.14 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, followed by reaction at 80 ° C. for 10 minutes. To the polymer solution obtained after the reaction, 2.28 mmol of N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine as a main chain modifier is added and reacted for 15 minutes. Went. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer F.
(変性重合体G-1の製造)
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン45g及びスチレン11.25gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン15gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3.48gとp-メチルスチレン0.27gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として0.57ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。
次いで、上記重合体溶液に2.28ミリモルのsec-ブチルリチウムと1.14ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として2.28ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体G-1を得た。 (Production of modified polymer G-1)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 45 g of 1,3-butadiene and 11.25 g of styrene. -After adding 0.29 mmol of ditetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 15 g of 1,3-butadiene and a cyclohexane solution of styrene containing 3.48 g of styrene and 0.27 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion reached 99%, 0.57 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a terminal modifier. The reaction was performed for a minute.
Next, 2.28 mmol of sec-butyllithium and 1.14 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, followed by reaction at 80 ° C. for 10 minutes. 2.28 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane as a main chain modifier is added to the polymer solution obtained after the reaction for 15 minutes. Reaction was performed. Thereafter, 0.5 ml of a 5% by weight isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer G-1. It was.
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン45g及びスチレン11.25gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン15gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3.48gとp-メチルスチレン0.27gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として0.57ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。
次いで、上記重合体溶液に2.28ミリモルのsec-ブチルリチウムと1.14ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として2.28ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体G-1を得た。 (Production of modified polymer G-1)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 45 g of 1,3-butadiene and 11.25 g of styrene. -After adding 0.29 mmol of ditetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 15 g of 1,3-butadiene and a cyclohexane solution of styrene containing 3.48 g of styrene and 0.27 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion reached 99%, 0.57 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a terminal modifier. The reaction was performed for a minute.
Next, 2.28 mmol of sec-butyllithium and 1.14 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, followed by reaction at 80 ° C. for 10 minutes. 2.28 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane as a main chain modifier is added to the polymer solution obtained after the reaction for 15 minutes. Reaction was performed. Thereafter, 0.5 ml of a 5% by weight isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer G-1. It was.
(変性重合体G-2の製造)
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン45g及びスチレン11.25gになるように加え、2,2-ジテトラヒドロフリルプロパン0.60ミリモルを加え、1.20ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン15gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3.48gとp-メチルスチレン0.52gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として1.20ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。
次いで、上記重合体溶液に4.80ミリモルのsec-ブチルリチウムと2.40ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として4.80ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体G-2を得た。 (Production of modified polymer G-2)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 45 g of 1,3-butadiene and 11.25 g of styrene. -0.60 mmol of ditetrahydrofurylpropane was added, and 1.20 mmol of n-butyllithium was added, followed by polymerization at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 15 g of 1,3-butadiene and a cyclohexane solution of styrene containing 3.48 g of styrene and 0.52 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion reached 99%, 1.20 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a terminal modifier. The reaction was performed for a minute.
Next, 4.80 mmol of sec-butyllithium and 2.40 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, followed by reaction at 80 ° C. for 10 minutes. 4.80 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a main chain modifier to the polymer solution obtained after the reaction for 15 minutes. Reaction was performed. Thereafter, 0.5 ml of a 5% by weight isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer G-2. It was.
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン45g及びスチレン11.25gになるように加え、2,2-ジテトラヒドロフリルプロパン0.60ミリモルを加え、1.20ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン15gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3.48gとp-メチルスチレン0.52gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として1.20ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。
次いで、上記重合体溶液に4.80ミリモルのsec-ブチルリチウムと2.40ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として4.80ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体G-2を得た。 (Production of modified polymer G-2)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 45 g of 1,3-butadiene and 11.25 g of styrene. -0.60 mmol of ditetrahydrofurylpropane was added, and 1.20 mmol of n-butyllithium was added, followed by polymerization at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 15 g of 1,3-butadiene and a cyclohexane solution of styrene containing 3.48 g of styrene and 0.52 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion reached 99%, 1.20 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a terminal modifier. The reaction was performed for a minute.
Next, 4.80 mmol of sec-butyllithium and 2.40 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, followed by reaction at 80 ° C. for 10 minutes. 4.80 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a main chain modifier to the polymer solution obtained after the reaction for 15 minutes. Reaction was performed. Thereafter, 0.5 ml of a 5% by weight isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer G-2. It was.
(変性重合体G-3の製造)
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン45g及びスチレン11.25gになるように加え、2,2-ジテトラヒドロフリルプロパン0.57ミリモルを加え、1.14ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン15gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3.48gとp-メチルスチレン0.48gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として1.14ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。
次いで、上記重合体溶液に4.56ミリモルのsec-ブチルリチウムと2.28ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として4.56ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体G-3を得た。 (Production of modified polymer G-3)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 45 g of 1,3-butadiene and 11.25 g of styrene. -After adding 0.57 mmol of ditetrahydrofurylpropane and 1.14 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 15 g of 1,3-butadiene and a cyclohexane solution of styrene containing 3.48 g of styrene and 0.48 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion rate reached 99%, 1.14 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a terminal modifier. The reaction was performed for a minute.
Next, 4.56 mmol of sec-butyllithium and 2.28 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, followed by reaction at 80 ° C. for 10 minutes. To the polymer solution obtained after the reaction, 4.56 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane as a main chain modifier was added for 15 minutes. Reaction was performed. Thereafter, 0.5 ml of a 5% by mass solution of isopropanol of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer G-3. It was.
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン45g及びスチレン11.25gになるように加え、2,2-ジテトラヒドロフリルプロパン0.57ミリモルを加え、1.14ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン15gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3.48gとp-メチルスチレン0.48gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として1.14ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。
次いで、上記重合体溶液に4.56ミリモルのsec-ブチルリチウムと2.28ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として4.56ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体G-3を得た。 (Production of modified polymer G-3)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 45 g of 1,3-butadiene and 11.25 g of styrene. -After adding 0.57 mmol of ditetrahydrofurylpropane and 1.14 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 15 g of 1,3-butadiene and a cyclohexane solution of styrene containing 3.48 g of styrene and 0.48 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion rate reached 99%, 1.14 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a terminal modifier. The reaction was performed for a minute.
Next, 4.56 mmol of sec-butyllithium and 2.28 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, followed by reaction at 80 ° C. for 10 minutes. To the polymer solution obtained after the reaction, 4.56 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane as a main chain modifier was added for 15 minutes. Reaction was performed. Thereafter, 0.5 ml of a 5% by mass solution of isopropanol of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer G-3. It was.
(変性重合体G-4の製造)
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン45g及びスチレン11.25gになるように加え、2,2-ジテトラヒドロフリルプロパン0.115ミリモルを加え、0.23ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン15gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3.48gとp-メチルスチレン0.10gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として0.23ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。
次いで、上記重合体溶液に0.92ミリモルのsec-ブチルリチウムと2.85ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として0.92ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体G-4を得た。 (Production of modified polymer G-4)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 45 g of 1,3-butadiene and 11.25 g of styrene. -After adding 0.115 mmol of ditetrahydrofurylpropane and 0.23 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 15 g of 1,3-butadiene and a cyclohexane solution of styrene containing 3.48 g of styrene and 0.10 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion reached 99%, 0.23 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a terminal modifier. The reaction was performed for a minute.
Next, 0.92 mmol of sec-butyllithium and 2.85 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, and reacted at 80 ° C. for 10 minutes. To the polymer solution obtained after the reaction, 0.92 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a main chain modifier for 15 minutes. Reaction was performed. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer G-4. It was.
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン45g及びスチレン11.25gになるように加え、2,2-ジテトラヒドロフリルプロパン0.115ミリモルを加え、0.23ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン15gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3.48gとp-メチルスチレン0.10gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として0.23ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。
次いで、上記重合体溶液に0.92ミリモルのsec-ブチルリチウムと2.85ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として0.92ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体G-4を得た。 (Production of modified polymer G-4)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 45 g of 1,3-butadiene and 11.25 g of styrene. -After adding 0.115 mmol of ditetrahydrofurylpropane and 0.23 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 15 g of 1,3-butadiene and a cyclohexane solution of styrene containing 3.48 g of styrene and 0.10 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion reached 99%, 0.23 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a terminal modifier. The reaction was performed for a minute.
Next, 0.92 mmol of sec-butyllithium and 2.85 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, and reacted at 80 ° C. for 10 minutes. To the polymer solution obtained after the reaction, 0.92 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a main chain modifier for 15 minutes. Reaction was performed. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer G-4. It was.
(変性重合体Hの製造)
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン45g及びスチレン11.25gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン15gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3.61gとp-メチルスチレン0.14gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として0.57ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。
次いで、上記重合体溶液に1.14ミリモルのsec-ブチルリチウムと0.57ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として1.14ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Hを得た。 (Production of modified polymer H)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 45 g of 1,3-butadiene and 11.25 g of styrene. -After adding 0.29 mmol of ditetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 15 g of 1,3-butadiene and a cyclohexane solution of styrene containing 3.61 g of styrene and 0.14 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion reached 99%, 0.57 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a terminal modifier. The reaction was performed for a minute.
Next, 1.14 mmol of sec-butyllithium and 0.57 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, and the reaction was carried out at 80 ° C. for 10 minutes. To the polymer solution obtained after the reaction, 1.14 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane as a main chain modifier was added for 15 minutes. Reaction was performed. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer H.
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン45g及びスチレン11.25gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン15gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3.61gとp-メチルスチレン0.14gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として0.57ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。
次いで、上記重合体溶液に1.14ミリモルのsec-ブチルリチウムと0.57ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として1.14ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Hを得た。 (Production of modified polymer H)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 45 g of 1,3-butadiene and 11.25 g of styrene. -After adding 0.29 mmol of ditetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 15 g of 1,3-butadiene and a cyclohexane solution of styrene containing 3.61 g of styrene and 0.14 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion reached 99%, 0.57 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a terminal modifier. The reaction was performed for a minute.
Next, 1.14 mmol of sec-butyllithium and 0.57 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, and the reaction was carried out at 80 ° C. for 10 minutes. To the polymer solution obtained after the reaction, 1.14 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane as a main chain modifier was added for 15 minutes. Reaction was performed. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer H.
(変性重合体Iの製造)
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン45g及びスチレン11.25gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン15gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3.68gとp-メチルスチレン0.07gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として0.57ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。
次いで、上記重合体溶液に0.57ミリモルのsec-ブチルリチウムと0.28ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として0.57ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Iを得た。 (Production of modified polymer I)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 45 g of 1,3-butadiene and 11.25 g of styrene. -After adding 0.29 mmol of ditetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 15 g of 1,3-butadiene and a cyclohexane solution of styrene containing 3.68 g of styrene and 0.07 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion reached 99%, 0.57 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a terminal modifier. The reaction was performed for a minute.
Next, 0.57 mmol sec-butyllithium and 0.28 mmol 2,2-ditetrahydrofurylpropane were added to the polymer solution, followed by reaction at 80 ° C. for 10 minutes. To the polymer solution obtained after the reaction, 0.57 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a main chain modifier for 15 minutes. Reaction was performed. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer I.
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン45g及びスチレン11.25gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン15gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン3.68gとp-メチルスチレン0.07gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として0.57ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。
次いで、上記重合体溶液に0.57ミリモルのsec-ブチルリチウムと0.28ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として0.57ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Iを得た。 (Production of modified polymer I)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 45 g of 1,3-butadiene and 11.25 g of styrene. -After adding 0.29 mmol of ditetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 15 g of 1,3-butadiene and a cyclohexane solution of styrene containing 3.68 g of styrene and 0.07 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion reached 99%, 0.57 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a terminal modifier. The reaction was performed for a minute.
Next, 0.57 mmol sec-butyllithium and 0.28 mmol 2,2-ditetrahydrofurylpropane were added to the polymer solution, followed by reaction at 80 ° C. for 10 minutes. To the polymer solution obtained after the reaction, 0.57 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a main chain modifier for 15 minutes. Reaction was performed. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer I.
(変性重合体Jの製造)
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン30g及びスチレン7.5gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン30gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン7.23gとp-メチルスチレン0.27gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として0.57ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。
次いで、上記重合体溶液に2.28ミリモルのsec-ブチルリチウムと1.14ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として2.28ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Jを得た。 (Production of modified polymer J)
To an 800 ml pressure-resistant glass container that has been dried and purged with nitrogen, a cyclohexane solution of 1,3-butadiene and a cyclohexane solution of styrene are added to 30 g of 1,3-butadiene and 7.5 g of styrene. -After adding 0.29 mmol of ditetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 30 g of 1,3-butadiene and a cyclohexane solution of styrene containing 7.23 g of styrene and 0.27 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion reached 99%, 0.57 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a terminal modifier. The reaction was performed for a minute.
Next, 2.28 mmol of sec-butyllithium and 1.14 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, followed by reaction at 80 ° C. for 10 minutes. 2.28 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane as a main chain modifier is added to the polymer solution obtained after the reaction for 15 minutes. Reaction was performed. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer J.
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン30g及びスチレン7.5gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、重合反応系に、1,3-ブタジエン30gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン7.23gとp-メチルスチレン0.27gを含むスチレンのシクロヘキサン溶液を加え、さらに1時間重合反応を行った。重合転化率が99%に到達した時点で、末端変性剤として0.57ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。
次いで、上記重合体溶液に2.28ミリモルのsec-ブチルリチウムと1.14ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として2.28ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Jを得た。 (Production of modified polymer J)
To an 800 ml pressure-resistant glass container that has been dried and purged with nitrogen, a cyclohexane solution of 1,3-butadiene and a cyclohexane solution of styrene are added to 30 g of 1,3-butadiene and 7.5 g of styrene. -After adding 0.29 mmol of ditetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of 1,3-butadiene containing 30 g of 1,3-butadiene and a cyclohexane solution of styrene containing 7.23 g of styrene and 0.27 g of p-methylstyrene were added to the polymerization reaction system, and the polymerization reaction was continued for another hour. Went. When the polymerization conversion reached 99%, 0.57 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane was added as a terminal modifier. The reaction was performed for a minute.
Next, 2.28 mmol of sec-butyllithium and 1.14 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, followed by reaction at 80 ° C. for 10 minutes. 2.28 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane as a main chain modifier is added to the polymer solution obtained after the reaction for 15 minutes. Reaction was performed. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer J.
(変性重合体Kの製造)
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン60g及びスチレン14.73gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、p-メチルスチレン0.27gを含むスチレンのシクロヘキサン溶液を加え、15分重合反応を行ったのち、末端変性剤として0.57ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。
次いで、上記重合体溶液に2.28ミリモルのsec-ブチルリチウムと1.14ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として2.28ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Kを得た。 (Production of modified polymer K)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 60 g of 1,3-butadiene and 14.73 g of styrene. -After adding 0.29 mmol of ditetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of styrene containing 0.27 g of p-methylstyrene was added and the polymerization reaction was carried out for 15 minutes. Then, 0.57 mmol of N, N-bis (trimethylsilyl)-(3-amino-) was used as a terminal modifier. 1-Propyl) (methyl) (diethoxy) silane was added and allowed to react for 15 minutes.
Next, 2.28 mmol of sec-butyllithium and 1.14 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, followed by reaction at 80 ° C. for 10 minutes. 2.28 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane as a main chain modifier is added to the polymer solution obtained after the reaction for 15 minutes. Reaction was performed. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer K.
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン60g及びスチレン14.73gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、p-メチルスチレン0.27gを含むスチレンのシクロヘキサン溶液を加え、15分重合反応を行ったのち、末端変性剤として0.57ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。
次いで、上記重合体溶液に2.28ミリモルのsec-ブチルリチウムと1.14ミリモルの2,2-ジテトラヒドロフリルプロパンを添加し、80℃で10分間反応を行った。反応後に得られた重合体溶液に、主鎖変性剤として2.28ミリモルのN,N-ビス(トリメチルシリル)-(3-アミノ-1-プロピル)(メチル)(ジエトキシ)シランを加えて15分間反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Kを得た。 (Production of modified polymer K)
Add 1,3-butadiene in cyclohexane and styrene in cyclohexane to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 60 g of 1,3-butadiene and 14.73 g of styrene. -After adding 0.29 mmol of ditetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, a cyclohexane solution of styrene containing 0.27 g of p-methylstyrene was added and the polymerization reaction was carried out for 15 minutes. Then, 0.57 mmol of N, N-bis (trimethylsilyl)-(3-amino-) was used as a terminal modifier. 1-Propyl) (methyl) (diethoxy) silane was added and allowed to react for 15 minutes.
Next, 2.28 mmol of sec-butyllithium and 1.14 mmol of 2,2-ditetrahydrofurylpropane were added to the polymer solution, followed by reaction at 80 ° C. for 10 minutes. 2.28 mmol of N, N-bis (trimethylsilyl)-(3-amino-1-propyl) (methyl) (diethoxy) silane as a main chain modifier is added to the polymer solution obtained after the reaction for 15 minutes. Reaction was performed. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer K.
(変性重合体Lの製造)
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン60g及びスチレン15gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、変性剤としての3,4-ビス(トリメチルシリルオキシ)-1-ビニルベンゼン(酸素系)2.85ミリモルを加え、15分間重合反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Lを得た。 (Production of modified polymer L)
Add 1,3-butadiene in cyclohexane solution and styrene in cyclohexane solution to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 60 g of 1,3-butadiene and 15 g of styrene. After adding 0.29 mmol of tetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C. for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, 2.85 mmol of 3,4-bis (trimethylsilyloxy) -1-vinylbenzene (oxygen-based) as a modifier was added, and a polymerization reaction was performed for 15 minutes. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer L.
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン60g及びスチレン15gになるように加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率はほぼ100%であった。
引き続き、変性剤としての3,4-ビス(トリメチルシリルオキシ)-1-ビニルベンゼン(酸素系)2.85ミリモルを加え、15分間重合反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Lを得た。 (Production of modified polymer L)
Add 1,3-butadiene in cyclohexane solution and styrene in cyclohexane solution to a dry, nitrogen-substituted 800 ml pressure-resistant glass container to 60 g of 1,3-butadiene and 15 g of styrene. After adding 0.29 mmol of tetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C. for 1.5 hours. The polymerization conversion at this time was almost 100%.
Subsequently, 2.85 mmol of 3,4-bis (trimethylsilyloxy) -1-vinylbenzene (oxygen-based) as a modifier was added, and a polymerization reaction was performed for 15 minutes. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer L.
(変性重合体Mの製造)
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン1.5gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン0.375gを含むスチレンのシクロヘキサン溶液、及び、変性剤として0.57ミリモルの3,4-ビス(トリメチルシリルオキシ)-1-ビニルベンゼン(酸素系)の混合溶液を一度に加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で20分重合を行った。この際の重合転化率はほぼ100%であることを確認した後、1,3-ブタジエン1.5gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン0.375gを含むスチレンのシクロヘキサン溶液、及び、変性剤として2.28ミリモルの3,4-ビス(トリメチルシリルオキシ)-1-ビニルベンゼンの混合溶液を一度に加え、さらに20分重合を行った。この後引き続き同様の操作を回繰り返した。重合を終える度に重合転化率が100%であることを確認した。
さらに、重合反応系に、1,3-ブタジエン48.75gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン13.125gを含むスチレンのシクロヘキサン溶液を加え、さらに1.5時間重合反応を行った。この際の重合転化率はほぼ100%であった。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Mを得た。 (Production of modified polymer M)
In a dry, nitrogen-substituted 800 ml pressure-resistant glass container, 1,3-butadiene in cyclohexane solution and styrene in cyclohexane solution, 1,3-butadiene in cyclohexane solution containing 1.5 g of styrene, styrene A mixed solution of 0.375 g of styrene in cyclohexane and 0.57 mmol of 3,4-bis (trimethylsilyloxy) -1-vinylbenzene (oxygen-based) as a modifier is added all at once. After adding 0.29 mmol of ditetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C. for 20 minutes. After confirming that the polymerization conversion at this time was almost 100%, a cyclohexane solution of 1,3-butadiene containing 1.5 g of 1,3-butadiene, a cyclohexane solution of styrene containing 0.375 g of styrene, and As a modifier, 2.28 mmol of 3,4-bis (trimethylsilyloxy) -1-vinylbenzene mixed solution was added all at once, and polymerization was further performed for 20 minutes. Thereafter, the same operation was repeated repeatedly. It was confirmed that the polymerization conversion rate was 100% every time the polymerization was completed.
Further, a cyclohexane solution of 1,3-butadiene containing 48.75 g of 1,3-butadiene and a cyclohexane solution of styrene containing 13.125 g of styrene were added to the polymerization reaction system, and the polymerization reaction was further performed for 1.5 hours. The polymerization conversion at this time was almost 100%. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer M.
乾燥し、窒素置換した800ミリリットルの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液、及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン1.5gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン0.375gを含むスチレンのシクロヘキサン溶液、及び、変性剤として0.57ミリモルの3,4-ビス(トリメチルシリルオキシ)-1-ビニルベンゼン(酸素系)の混合溶液を一度に加え、2,2-ジテトラヒドロフリルプロパン0.29ミリモルを加え、0.57ミリモルのn-ブチルリチウムを加えた後、50℃で20分重合を行った。この際の重合転化率はほぼ100%であることを確認した後、1,3-ブタジエン1.5gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン0.375gを含むスチレンのシクロヘキサン溶液、及び、変性剤として2.28ミリモルの3,4-ビス(トリメチルシリルオキシ)-1-ビニルベンゼンの混合溶液を一度に加え、さらに20分重合を行った。この後引き続き同様の操作を回繰り返した。重合を終える度に重合転化率が100%であることを確認した。
さらに、重合反応系に、1,3-ブタジエン48.75gを含む1,3-ブタジエンのシクロヘキサン溶液、スチレン13.125gを含むスチレンのシクロヘキサン溶液を加え、さらに1.5時間重合反応を行った。この際の重合転化率はほぼ100%であった。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5ミリリットルを加えて反応を停止させ、常法に従い乾燥して変性重合体Mを得た。 (Production of modified polymer M)
In a dry, nitrogen-substituted 800 ml pressure-resistant glass container, 1,3-butadiene in cyclohexane solution and styrene in cyclohexane solution, 1,3-butadiene in cyclohexane solution containing 1.5 g of styrene, styrene A mixed solution of 0.375 g of styrene in cyclohexane and 0.57 mmol of 3,4-bis (trimethylsilyloxy) -1-vinylbenzene (oxygen-based) as a modifier is added all at once. After adding 0.29 mmol of ditetrahydrofurylpropane and 0.57 mmol of n-butyllithium, polymerization was carried out at 50 ° C. for 20 minutes. After confirming that the polymerization conversion at this time was almost 100%, a cyclohexane solution of 1,3-butadiene containing 1.5 g of 1,3-butadiene, a cyclohexane solution of styrene containing 0.375 g of styrene, and As a modifier, 2.28 mmol of 3,4-bis (trimethylsilyloxy) -1-vinylbenzene mixed solution was added all at once, and polymerization was further performed for 20 minutes. Thereafter, the same operation was repeated repeatedly. It was confirmed that the polymerization conversion rate was 100% every time the polymerization was completed.
Further, a cyclohexane solution of 1,3-butadiene containing 48.75 g of 1,3-butadiene and a cyclohexane solution of styrene containing 13.125 g of styrene were added to the polymerization reaction system, and the polymerization reaction was further performed for 1.5 hours. The polymerization conversion at this time was almost 100%. Thereafter, 0.5 ml of a 5 mass% isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) was added to stop the reaction, followed by drying according to a conventional method to obtain a modified polymer M.
変性重合体A~Mのポリマー分子特性である結合スチレン量(wt%)、ビニル粘度(wt%)、ムーニー粘度(ML1+4/100℃)、ピーク平均分子量、ガラス転移温度は、以下により行った。
変性重合体中のスチレン単位含有量は1H-NMRスペクトルの積分比より算出した。
ビニル粘度(wt%)は、1H-NMRスペクトルの積分比より算出した。
変性重合体のムーニー粘度は、東洋精機社製のRLM-01型テスターを用いて、100℃で測定した。
変性重合体のピーク分子量の測定は、ゲルパーミエーションクロマトグラフィー〔GPC;東ソ-製HLC-8020、カラム;東ソ-製GMH-XL(2本直列)〕により行い、示差屈折率(RI)を用いて、単分散ポリスチレンを標準としてポリスチレン換算で行った。
ガラス転移温度Tgは、示差走査熱分析機(DSC)にて、-150℃まで冷却した後に10℃/minで昇温する条件で測定した。 The polymer molecular properties of the modified polymers A to M are the bound styrene content (wt%), vinyl viscosity (wt%), Mooney viscosity (ML 1 + 4/100 ° C.), peak average molecular weight, and glass transition temperature as follows: went.
The styrene unit content in the modified polymer was calculated from the integral ratio of the 1 H-NMR spectrum.
The vinyl viscosity (wt%) was calculated from the integral ratio of the 1 H-NMR spectrum.
The Mooney viscosity of the modified polymer was measured at 100 ° C. using an RLM-01 type tester manufactured by Toyo Seiki Co., Ltd.
The peak molecular weight of the modified polymer is measured by gel permeation chromatography [GPC: HLC-8020 manufactured by Tosoh Corporation, column: GMH-XL manufactured by Tosoh Corporation (two in series)], and the differential refractive index (RI). Was carried out in terms of polystyrene using monodisperse polystyrene as a standard.
The glass transition temperature Tg was measured with a differential scanning calorimeter (DSC) under the condition of cooling to −150 ° C. and then increasing the temperature at 10 ° C./min.
変性重合体中のスチレン単位含有量は1H-NMRスペクトルの積分比より算出した。
ビニル粘度(wt%)は、1H-NMRスペクトルの積分比より算出した。
変性重合体のムーニー粘度は、東洋精機社製のRLM-01型テスターを用いて、100℃で測定した。
変性重合体のピーク分子量の測定は、ゲルパーミエーションクロマトグラフィー〔GPC;東ソ-製HLC-8020、カラム;東ソ-製GMH-XL(2本直列)〕により行い、示差屈折率(RI)を用いて、単分散ポリスチレンを標準としてポリスチレン換算で行った。
ガラス転移温度Tgは、示差走査熱分析機(DSC)にて、-150℃まで冷却した後に10℃/minで昇温する条件で測定した。 The polymer molecular properties of the modified polymers A to M are the bound styrene content (wt%), vinyl viscosity (wt%), Mooney viscosity (ML 1 + 4/100 ° C.), peak average molecular weight, and glass transition temperature as follows: went.
The styrene unit content in the modified polymer was calculated from the integral ratio of the 1 H-NMR spectrum.
The vinyl viscosity (wt%) was calculated from the integral ratio of the 1 H-NMR spectrum.
The Mooney viscosity of the modified polymer was measured at 100 ° C. using an RLM-01 type tester manufactured by Toyo Seiki Co., Ltd.
The peak molecular weight of the modified polymer is measured by gel permeation chromatography [GPC: HLC-8020 manufactured by Tosoh Corporation, column: GMH-XL manufactured by Tosoh Corporation (two in series)], and the differential refractive index (RI). Was carried out in terms of polystyrene using monodisperse polystyrene as a standard.
The glass transition temperature Tg was measured with a differential scanning calorimeter (DSC) under the condition of cooling to −150 ° C. and then increasing the temperature at 10 ° C./min.
用いるグリセリン脂肪酸エステル組成物として、下記グリセリン脂肪酸エステル組成物AとBの2種を用いた。
(グリセリン脂肪酸エステル組成物A)
国際公開第2014/098155号の製造例1に記載の方法に従い、脂肪酸をオクタン酸から同モル量のパーム由来硬化脂肪酸に変えて合成し、さらに分子蒸留することで調製したものを用いた。得られたグリセリン脂肪酸エステル組成物Aのグリセリン脂肪酸モノエステル含有量は97質量%であった。
(グリセリン脂肪酸エステル組成物Bの製造)
次に、以下の手順に従って、グリセリン脂肪酸エステル組成物B(脂肪酸の炭素数が16のグリセリン脂肪酸エステル)を製造した。
攪拌機、脱水管-冷却管、温度計、窒素導入管付きの1L四ツ口フラスコに、グリセリン450g、パルミチン酸(花王株式会社製ルナックP-95)352gを入れ[グリセリン/脂肪酸(モル比)=2.0]、少量の水に溶解させた水酸化ナトリウムをナトリウムとして10ppm添加し、窒素を液上空間部に100mL/分流しながら400r/minで撹拌下、約1.5時間かけて240℃まで昇温した。240℃に達した後、酸成分をフラスコに環流させながら脱水し、その温度で4時間反応させた。反応後の生成物中のモノグリセライド含量は67面積%であった。
続いて反応混合物を170℃まで冷却し、そのままグリセリンを圧力2.7kPa以下で減圧留去し、さらに150℃、2kPaで2時間水蒸気を供給した後、ゼータプラス30S(キュノ(株)製)を用いて加圧で吸着濾過して、モノグリセライド含有組成物を得た。得られた組成物をGPCで測定し、前述の方法で算出することで、各成分の組成を求めた。
なお、得られたグリセリン脂肪酸エステル組成物Bにおける、グリセリン脂肪酸モノエステルの含有量は64質量%、グリセリン脂肪酸ジエステルの含有量は34質量%、グリセリン脂肪酸トリエステルの含有量は1質量%、グリセリンの含有量は1質量%であった。 As the glycerin fatty acid ester composition to be used, the following two glycerin fatty acid ester compositions A and B were used.
(Glycerin fatty acid ester composition A)
According to the method described in Production Example 1 of International Publication No. 2014/098155, a fatty acid was synthesized by changing from octanoic acid to an equivalent molar amount of a palm-derived hardened fatty acid, and further prepared by molecular distillation. The glycerin fatty acid monoester content of the obtained glycerin fatty acid ester composition A was 97% by mass.
(Production of glycerin fatty acid ester composition B)
Next, according to the following procedure, glycerin fatty acid ester composition B (glycerin fatty acid ester having 16 fatty acid carbon atoms) was produced.
In a 1 L four-necked flask equipped with a stirrer, dehydrating tube-cooling tube, thermometer, nitrogen introducing tube, 450 g of glycerin and 352 g of palmitic acid (Lunac P-95 manufactured by Kao Corporation) were placed [glycerin / fatty acid (molar ratio) = 2.0], 10 ppm of sodium hydroxide dissolved in a small amount of water was added as sodium, and the mixture was stirred at 400 r / min at a flow rate of 100 mL / min through the space above the liquid at 240 ° C. over about 1.5 hours. The temperature was raised to. After reaching 240 ° C., the acid component was dehydrated while being refluxed through the flask, and reacted at that temperature for 4 hours. The monoglyceride content in the product after the reaction was 67 area%.
Subsequently, the reaction mixture was cooled to 170 ° C., and glycerin was distilled off under reduced pressure at a pressure of 2.7 kPa or less. Further, after supplying water vapor at 150 ° C. and 2 kPa for 2 hours, Zeta Plus 30S (manufactured by Cuno Co., Ltd.) was used. The resulting product was subjected to adsorption filtration under pressure to obtain a monoglyceride-containing composition. The composition obtained was measured by GPC and calculated by the method described above to determine the composition of each component.
In the obtained glycerin fatty acid ester composition B, the content of glycerin fatty acid monoester is 64% by mass, the content of glycerin fatty acid diester is 34% by mass, the content of glycerin fatty acid triester is 1% by mass, The content was 1% by mass.
(グリセリン脂肪酸エステル組成物A)
国際公開第2014/098155号の製造例1に記載の方法に従い、脂肪酸をオクタン酸から同モル量のパーム由来硬化脂肪酸に変えて合成し、さらに分子蒸留することで調製したものを用いた。得られたグリセリン脂肪酸エステル組成物Aのグリセリン脂肪酸モノエステル含有量は97質量%であった。
(グリセリン脂肪酸エステル組成物Bの製造)
次に、以下の手順に従って、グリセリン脂肪酸エステル組成物B(脂肪酸の炭素数が16のグリセリン脂肪酸エステル)を製造した。
攪拌機、脱水管-冷却管、温度計、窒素導入管付きの1L四ツ口フラスコに、グリセリン450g、パルミチン酸(花王株式会社製ルナックP-95)352gを入れ[グリセリン/脂肪酸(モル比)=2.0]、少量の水に溶解させた水酸化ナトリウムをナトリウムとして10ppm添加し、窒素を液上空間部に100mL/分流しながら400r/minで撹拌下、約1.5時間かけて240℃まで昇温した。240℃に達した後、酸成分をフラスコに環流させながら脱水し、その温度で4時間反応させた。反応後の生成物中のモノグリセライド含量は67面積%であった。
続いて反応混合物を170℃まで冷却し、そのままグリセリンを圧力2.7kPa以下で減圧留去し、さらに150℃、2kPaで2時間水蒸気を供給した後、ゼータプラス30S(キュノ(株)製)を用いて加圧で吸着濾過して、モノグリセライド含有組成物を得た。得られた組成物をGPCで測定し、前述の方法で算出することで、各成分の組成を求めた。
なお、得られたグリセリン脂肪酸エステル組成物Bにおける、グリセリン脂肪酸モノエステルの含有量は64質量%、グリセリン脂肪酸ジエステルの含有量は34質量%、グリセリン脂肪酸トリエステルの含有量は1質量%、グリセリンの含有量は1質量%であった。 As the glycerin fatty acid ester composition to be used, the following two glycerin fatty acid ester compositions A and B were used.
(Glycerin fatty acid ester composition A)
According to the method described in Production Example 1 of International Publication No. 2014/098155, a fatty acid was synthesized by changing from octanoic acid to an equivalent molar amount of a palm-derived hardened fatty acid, and further prepared by molecular distillation. The glycerin fatty acid monoester content of the obtained glycerin fatty acid ester composition A was 97% by mass.
(Production of glycerin fatty acid ester composition B)
Next, according to the following procedure, glycerin fatty acid ester composition B (glycerin fatty acid ester having 16 fatty acid carbon atoms) was produced.
In a 1 L four-necked flask equipped with a stirrer, dehydrating tube-cooling tube, thermometer, nitrogen introducing tube, 450 g of glycerin and 352 g of palmitic acid (Lunac P-95 manufactured by Kao Corporation) were placed [glycerin / fatty acid (molar ratio) = 2.0], 10 ppm of sodium hydroxide dissolved in a small amount of water was added as sodium, and the mixture was stirred at 400 r / min at a flow rate of 100 mL / min through the space above the liquid at 240 ° C. over about 1.5 hours. The temperature was raised to. After reaching 240 ° C., the acid component was dehydrated while being refluxed through the flask, and reacted at that temperature for 4 hours. The monoglyceride content in the product after the reaction was 67 area%.
Subsequently, the reaction mixture was cooled to 170 ° C., and glycerin was distilled off under reduced pressure at a pressure of 2.7 kPa or less. Further, after supplying water vapor at 150 ° C. and 2 kPa for 2 hours, Zeta Plus 30S (manufactured by Cuno Co., Ltd.) was used. The resulting product was subjected to adsorption filtration under pressure to obtain a monoglyceride-containing composition. The composition obtained was measured by GPC and calculated by the method described above to determine the composition of each component.
In the obtained glycerin fatty acid ester composition B, the content of glycerin fatty acid monoester is 64% by mass, the content of glycerin fatty acid diester is 34% by mass, the content of glycerin fatty acid triester is 1% by mass, The content was 1% by mass.
〔実施例1~18及び比較例1~11〕
下記表2に示す配合処方で下記各方法により、タイヤ用ゴム組成物を調製した。
(実施例1~18及び比較例3、6~11のタイヤ用ゴム組成物を調製方法)
実施例1~18及び比較例3、6~11では、混練の第一工程におけるゴム組成物の最高温度がいずれも150℃になるように下記表3の混練の第一工程の欄の各成分を調整してバンバリーミキサーで混練し、各タイヤ用ゴム組成物を調製した。タイヤ用ゴム組成物の混練の第一工程において、ゴム成分(A)〔変性共重合体、天然ゴム〕、無機充填剤(B)を含む充填材〔カーボンブラック、シリカ〕、シランカップリング剤(C)、活性剤(D)、グリセリン脂肪酸エステル組成物(E)を含む第一混合物を混練することによって予備組成物を調製した後に、60秒間経過した後、第二工程として、前記予備組成物に加硫剤(F)である硫黄などを加えた第二混合物を混練することによってタイヤ用ゴム組成物を調製した。
(比較例1、2、4及び5のタイヤ用ゴム組成物を調製方法)
比較例1、2、4及び5では、通常練り、混練の第一工程及び第2工程を経ることなく、表2に示すゴム成分(A)〔変性共重合体、天然ゴム〕に、無機充填剤(B)を含む充填材〔カーボンブラック、シリカ〕、シランカップリング剤(C)、活性剤(D)、グリセリン脂肪酸エステル組成物(E)、加硫剤(F)である硫黄などを加えてバンバリーミキサーで混練することによってタイヤ用ゴム組成物を調製した。
得られた各ゴム組成物の練り肌、耐摩耗性、低ロス性、バランス値を下記の各方法により評価した。
これらの結果を下記表3に示す。 [Examples 1 to 18 and Comparative Examples 1 to 11]
A rubber composition for a tire was prepared by the following methods with the formulation shown in Table 2 below.
(Method for preparing rubber compositions for tires of Examples 1 to 18 and Comparative Examples 3 and 6 to 11)
In Examples 1 to 18 and Comparative Examples 3 and 6 to 11, each component in the column of the first step of kneading in Table 3 below so that the maximum temperature of the rubber composition in the first step of kneading is 150 ° C. Were adjusted and kneaded with a Banbury mixer to prepare a rubber composition for each tire. In the first step of kneading the tire rubber composition, a rubber component (A) [modified copolymer, natural rubber], a filler containing an inorganic filler (B) [carbon black, silica], a silane coupling agent ( C) After preparing the preliminary composition by kneading the first mixture containing the activator (D) and the glycerin fatty acid ester composition (E), after 60 seconds have passed, the preliminary composition is used as the second step. A rubber composition for a tire was prepared by kneading a second mixture obtained by adding sulfur or the like as a vulcanizing agent (F).
(Method for preparing rubber compositions for tires of Comparative Examples 1, 2, 4, and 5)
In Comparative Examples 1, 2, 4 and 5, the rubber component (A) [modified copolymer, natural rubber] shown in Table 2 was filled with an inorganic material without going through the first and second steps of normal kneading and kneading. Addition agent (B) containing filler (carbon black, silica), silane coupling agent (C), activator (D), glycerin fatty acid ester composition (E), vulcanizing agent (F), sulfur etc. A rubber composition for tires was prepared by kneading with a Banbury mixer.
Each rubber composition obtained was evaluated for the kneaded skin, wear resistance, low loss, and balance value by the following methods.
These results are shown in Table 3 below.
下記表2に示す配合処方で下記各方法により、タイヤ用ゴム組成物を調製した。
(実施例1~18及び比較例3、6~11のタイヤ用ゴム組成物を調製方法)
実施例1~18及び比較例3、6~11では、混練の第一工程におけるゴム組成物の最高温度がいずれも150℃になるように下記表3の混練の第一工程の欄の各成分を調整してバンバリーミキサーで混練し、各タイヤ用ゴム組成物を調製した。タイヤ用ゴム組成物の混練の第一工程において、ゴム成分(A)〔変性共重合体、天然ゴム〕、無機充填剤(B)を含む充填材〔カーボンブラック、シリカ〕、シランカップリング剤(C)、活性剤(D)、グリセリン脂肪酸エステル組成物(E)を含む第一混合物を混練することによって予備組成物を調製した後に、60秒間経過した後、第二工程として、前記予備組成物に加硫剤(F)である硫黄などを加えた第二混合物を混練することによってタイヤ用ゴム組成物を調製した。
(比較例1、2、4及び5のタイヤ用ゴム組成物を調製方法)
比較例1、2、4及び5では、通常練り、混練の第一工程及び第2工程を経ることなく、表2に示すゴム成分(A)〔変性共重合体、天然ゴム〕に、無機充填剤(B)を含む充填材〔カーボンブラック、シリカ〕、シランカップリング剤(C)、活性剤(D)、グリセリン脂肪酸エステル組成物(E)、加硫剤(F)である硫黄などを加えてバンバリーミキサーで混練することによってタイヤ用ゴム組成物を調製した。
得られた各ゴム組成物の練り肌、耐摩耗性、低ロス性、バランス値を下記の各方法により評価した。
これらの結果を下記表3に示す。 [Examples 1 to 18 and Comparative Examples 1 to 11]
A rubber composition for a tire was prepared by the following methods with the formulation shown in Table 2 below.
(Method for preparing rubber compositions for tires of Examples 1 to 18 and Comparative Examples 3 and 6 to 11)
In Examples 1 to 18 and Comparative Examples 3 and 6 to 11, each component in the column of the first step of kneading in Table 3 below so that the maximum temperature of the rubber composition in the first step of kneading is 150 ° C. Were adjusted and kneaded with a Banbury mixer to prepare a rubber composition for each tire. In the first step of kneading the tire rubber composition, a rubber component (A) [modified copolymer, natural rubber], a filler containing an inorganic filler (B) [carbon black, silica], a silane coupling agent ( C) After preparing the preliminary composition by kneading the first mixture containing the activator (D) and the glycerin fatty acid ester composition (E), after 60 seconds have passed, the preliminary composition is used as the second step. A rubber composition for a tire was prepared by kneading a second mixture obtained by adding sulfur or the like as a vulcanizing agent (F).
(Method for preparing rubber compositions for tires of Comparative Examples 1, 2, 4, and 5)
In Comparative Examples 1, 2, 4 and 5, the rubber component (A) [modified copolymer, natural rubber] shown in Table 2 was filled with an inorganic material without going through the first and second steps of normal kneading and kneading. Addition agent (B) containing filler (carbon black, silica), silane coupling agent (C), activator (D), glycerin fatty acid ester composition (E), vulcanizing agent (F), sulfur etc. A rubber composition for tires was prepared by kneading with a Banbury mixer.
Each rubber composition obtained was evaluated for the kneaded skin, wear resistance, low loss, and balance value by the following methods.
These results are shown in Table 3 below.
(1)練り肌の評価方法
得られた各未加硫ゴム組成物(サンプル)を押し出し成形し、得られたゴムシートのシート形状を目視により以下の評価基準で評価した。シート形状が良好なほど、作業性に優れることを示す。
評価基準:
◎:シート形状が非常に良好
○:シート形状が良好
△:シート形状がボロボロで凹凸有り
×:シートにならず(物性評価不可) (1) Evaluation method of kneaded skin Each unvulcanized rubber composition (sample) obtained was extruded and the sheet shape of the obtained rubber sheet was visually evaluated according to the following evaluation criteria. The better the sheet shape, the better the workability.
Evaluation criteria:
◎: Sheet shape is very good ○: Sheet shape is good △: Sheet shape is tattered and uneven ×: Not a sheet (physical properties cannot be evaluated)
得られた各未加硫ゴム組成物(サンプル)を押し出し成形し、得られたゴムシートのシート形状を目視により以下の評価基準で評価した。シート形状が良好なほど、作業性に優れることを示す。
評価基準:
◎:シート形状が非常に良好
○:シート形状が良好
△:シート形状がボロボロで凹凸有り
×:シートにならず(物性評価不可) (1) Evaluation method of kneaded skin Each unvulcanized rubber composition (sample) obtained was extruded and the sheet shape of the obtained rubber sheet was visually evaluated according to the following evaluation criteria. The better the sheet shape, the better the workability.
Evaluation criteria:
◎: Sheet shape is very good ○: Sheet shape is good △: Sheet shape is tattered and uneven ×: Not a sheet (physical properties cannot be evaluated)
(2)耐摩耗性の評価方法
各サンプルについて、ランボーン式摩耗試験機を用い、室温におけるスリップ率60%での摩耗量を測定した。
得られた摩耗量の値は、その逆数をとり、比較例1の値を100としたときの指数として表示した。指数値が大きい程摩耗量が少なく、耐摩耗性に優れる。 (2) Evaluation method of wear resistance The amount of wear at a slip rate of 60% at room temperature was measured for each sample using a Lambone-type wear tester.
The value of the obtained amount of wear was expressed as an index when the reciprocal was taken and the value of Comparative Example 1 was set to 100. The larger the index value, the smaller the amount of wear and the better the wear resistance.
各サンプルについて、ランボーン式摩耗試験機を用い、室温におけるスリップ率60%での摩耗量を測定した。
得られた摩耗量の値は、その逆数をとり、比較例1の値を100としたときの指数として表示した。指数値が大きい程摩耗量が少なく、耐摩耗性に優れる。 (2) Evaluation method of wear resistance The amount of wear at a slip rate of 60% at room temperature was measured for each sample using a Lambone-type wear tester.
The value of the obtained amount of wear was expressed as an index when the reciprocal was taken and the value of Comparative Example 1 was set to 100. The larger the index value, the smaller the amount of wear and the better the wear resistance.
(3)低ロス性(tanδ)の評価方法
各サンプルに対して、損失正接(tanδ)を粘弾性測定装置(レオメトリックス社製)を用い、温度50℃、歪み5%、周波数15Hzの条件で測定した。得られたtanδの値は、比較例1の値を100としたときの指数として表示した。なお、低ロス性の指数値は、小さい程低ロス性に優れることを示す。 (3) Evaluation method of low loss property (tan δ) For each sample, loss tangent (tan δ) was measured using a viscoelasticity measuring device (manufactured by Rheometrics) under conditions of a temperature of 50 ° C., a strain of 5%, and a frequency of 15 Hz. It was measured. The obtained value of tan δ was displayed as an index when the value of Comparative Example 1 was set to 100. In addition, it shows that it is excellent in low-loss property, so that the index value of low-loss property is small.
各サンプルに対して、損失正接(tanδ)を粘弾性測定装置(レオメトリックス社製)を用い、温度50℃、歪み5%、周波数15Hzの条件で測定した。得られたtanδの値は、比較例1の値を100としたときの指数として表示した。なお、低ロス性の指数値は、小さい程低ロス性に優れることを示す。 (3) Evaluation method of low loss property (tan δ) For each sample, loss tangent (tan δ) was measured using a viscoelasticity measuring device (manufactured by Rheometrics) under conditions of a temperature of 50 ° C., a strain of 5%, and a frequency of 15 Hz. It was measured. The obtained value of tan δ was displayed as an index when the value of Comparative Example 1 was set to 100. In addition, it shows that it is excellent in low-loss property, so that the index value of low-loss property is small.
(4)バランス値の評価方法
上記で評価した耐摩耗性と低ロス性の各指数において、バランス値を(耐摩耗性の指数値-低ロス性の指数値)で算出した。このバランス値が高いほど、優れた耐摩耗性と低ロス性とを高度に両立できることを示す。 (4) Evaluation Method of Balance Value For each index of wear resistance and low loss property evaluated above, the balance value was calculated as (index value of wear resistance−index value of low loss property). The higher the balance value, the higher the balance between excellent wear resistance and low loss.
上記で評価した耐摩耗性と低ロス性の各指数において、バランス値を(耐摩耗性の指数値-低ロス性の指数値)で算出した。このバランス値が高いほど、優れた耐摩耗性と低ロス性とを高度に両立できることを示す。 (4) Evaluation Method of Balance Value For each index of wear resistance and low loss property evaluated above, the balance value was calculated as (index value of wear resistance−index value of low loss property). The higher the balance value, the higher the balance between excellent wear resistance and low loss.
上記表2中の*1~*15は下記のとおりである。
*1:JSR社製(ゴム成分100質量部、油成分37.5質量部)
*2:BR01、JSR社製
*3:ニップシールAQ、東ソーシリカ社製
*4:ビス-[γ-(トリエトキシシリル)-プロピル]-テトラスルフィド、Si69、エボニックデグッサ社製
*5:ダイヤブラックN234、三菱化学社製
*6:A/O MIX、三共油化工業社製
*7:TU(チオウレア)、「チオ尿素」、堺化学工業社製
*8:DETU(N,N’-ジエチルチオウレア)、「Rhenogran ETU-80」、ラインケミー社製
*9:MTD(2,5-ジメルカプト-1,3,4-チアジアゾール)、「Bismuthiol」、東京化成社製
*10:上述の製造例で得たグリセリン脂肪酸エステル組成物A
*11:上述の製造例で得たグリセリン脂肪酸エステル組成物B
*12:1,3-ジフェニルグアニジン、ノクセラーD〔大内新興化学工業社製〕
*13:ベンゾチアジルジスルフィド、ノクセラーDM-P、大内新興化学工業製
*14:N-t-ブチル-2-ベンゾチアジルスルフェンアミド、ノクセラーNS-P、大内新興化学工業製
*15:N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン In Table 2 above, * 1 to * 15 are as follows.
* 1: Made by JSR (100 parts by mass of rubber component, 37.5 parts by mass of oil component)
* 2: BR01, manufactured by JSR * 3: Nip seal AQ, manufactured by Tosoh Silica * 4: Bis- [γ- (triethoxysilyl) -propyl] -tetrasulfide, Si69, manufactured by Evonik Degussa * 5: Diamond Black N234, manufactured by Mitsubishi Chemical Corporation * 6: A / O MIX, manufactured by Sankyo Oil Chemical Co., Ltd. * 7: TU (thiourea), “thiourea”, manufactured by Sakai Chemical Industry Co., Ltd. * 8: DETU (N, N′-diethylthiourea) ), “Rhenogran ETU-80”, manufactured by Rhein Chemie * 9: MTD (2,5-dimercapto-1,3,4-thiadiazole), “Bismuthiol”, manufactured by Tokyo Kasei Co., Ltd. * 10: obtained in the above production example Glycerin fatty acid ester composition A
* 11: Glycerin fatty acid ester composition B obtained in the above production example
* 12: 1,3-diphenylguanidine, Noxeller D (Ouchi Shinsei Chemical Co., Ltd.)
* 13: Benzothiazyl disulfide, Noxeller DM-P, manufactured by Ouchi Shinsei Chemical Industry * 14: Nt-butyl-2-benzothiazylsulfenamide, Noxeller NS-P, manufactured by Ouchi Shinsei Chemical Industry * 15 : N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine
*1:JSR社製(ゴム成分100質量部、油成分37.5質量部)
*2:BR01、JSR社製
*3:ニップシールAQ、東ソーシリカ社製
*4:ビス-[γ-(トリエトキシシリル)-プロピル]-テトラスルフィド、Si69、エボニックデグッサ社製
*5:ダイヤブラックN234、三菱化学社製
*6:A/O MIX、三共油化工業社製
*7:TU(チオウレア)、「チオ尿素」、堺化学工業社製
*8:DETU(N,N’-ジエチルチオウレア)、「Rhenogran ETU-80」、ラインケミー社製
*9:MTD(2,5-ジメルカプト-1,3,4-チアジアゾール)、「Bismuthiol」、東京化成社製
*10:上述の製造例で得たグリセリン脂肪酸エステル組成物A
*11:上述の製造例で得たグリセリン脂肪酸エステル組成物B
*12:1,3-ジフェニルグアニジン、ノクセラーD〔大内新興化学工業社製〕
*13:ベンゾチアジルジスルフィド、ノクセラーDM-P、大内新興化学工業製
*14:N-t-ブチル-2-ベンゾチアジルスルフェンアミド、ノクセラーNS-P、大内新興化学工業製
*15:N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン In Table 2 above, * 1 to * 15 are as follows.
* 1: Made by JSR (100 parts by mass of rubber component, 37.5 parts by mass of oil component)
* 2: BR01, manufactured by JSR * 3: Nip seal AQ, manufactured by Tosoh Silica * 4: Bis- [γ- (triethoxysilyl) -propyl] -tetrasulfide, Si69, manufactured by Evonik Degussa * 5: Diamond Black N234, manufactured by Mitsubishi Chemical Corporation * 6: A / O MIX, manufactured by Sankyo Oil Chemical Co., Ltd. * 7: TU (thiourea), “thiourea”, manufactured by Sakai Chemical Industry Co., Ltd. * 8: DETU (N, N′-diethylthiourea) ), “Rhenogran ETU-80”, manufactured by Rhein Chemie * 9: MTD (2,5-dimercapto-1,3,4-thiadiazole), “Bismuthiol”, manufactured by Tokyo Kasei Co., Ltd. * 10: obtained in the above production example Glycerin fatty acid ester composition A
* 11: Glycerin fatty acid ester composition B obtained in the above production example
* 12: 1,3-diphenylguanidine, Noxeller D (Ouchi Shinsei Chemical Co., Ltd.)
* 13: Benzothiazyl disulfide, Noxeller DM-P, manufactured by Ouchi Shinsei Chemical Industry * 14: Nt-butyl-2-benzothiazylsulfenamide, Noxeller NS-P, manufactured by Ouchi Shinsei Chemical Industry * 15 : N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine
上記表2の結果から明らかなように、本発明範囲となる実施例1~18のタイヤ用ゴム組成物は、本発明の範囲外となる比較例1~11に較べて、練り肌(作業性)、耐摩耗性、低ロス性に優れることが判明した。
具体的に比較例を考察すると、比較例1、2、4及び5は、本発明の第1工程、第2工程を経ることなく、通常練りで混練した場合であり、本発明のジエン系重合体や本発明の範囲外となるジエン系重合体、本発明のグリセリン脂肪酸エステル組成物や本発明の範囲外となるグリセリン脂肪酸エステル組成物を用いても、本発明の混練を用いなければ、本発明の効果である練り肌(作業性)、耐摩耗性、低ロス性を高度に両立できないことが判る。
また、比較例3は、本発明の第1工程、第2工程を経て混練する場合であるが、本発明の範囲外となるグリセリン脂肪酸エステル組成物を用いると、本発明の効果である練り肌(作業性)、耐摩耗性、低ロス性を高度に両立できないことが判る。
更に、比較例6~11では、本発明の第1工程、第2工程を経て混練する場合であるが、本発明の範囲となるグリセリン脂肪酸エステル組成物を用いても、本発明の範囲外となるジエン系重合体を用いない場合には、本発明の効果である練り肌(作業性)、耐摩耗性、低ロス性を高度に両立できないことが判る。
これに対して、本発明の範囲となる実施例1~18、すなわち、本発明の第1工程、第2工程を経て混練し、かつ、本発明の範囲となるジエン系重合体、グリセリン脂肪酸エステル組成物を用いると、本発明の効果である練り肌(作業性)、耐摩耗性、低ロス性を高度に両立できることが判った。 As is apparent from the results in Table 2 above, the rubber compositions for tires of Examples 1 to 18 that fall within the scope of the present invention are more comfortable than the comparative examples 1 to 11 that fall outside the scope of the present invention (workability). ), Excellent wear resistance and low loss.
Considering a specific comparative example, Comparative Examples 1, 2, 4 and 5 are cases where kneading is usually carried out without going through the first step and the second step of the present invention. If the kneading of the present invention is not used even if the coalescence or diene polymer outside the scope of the present invention, the glycerin fatty acid ester composition of the present invention or the glycerin fatty acid ester composition outside the scope of the present invention is used, the present invention It can be seen that the effects of the invention, such as kneaded skin (workability), wear resistance, and low loss, cannot be achieved at a high level.
Moreover, although the comparative example 3 is a case where it knead | mixes through the 1st process of this invention, and a 2nd process, when the glycerin fatty acid ester composition used outside the scope of the present invention is used, the kneaded skin that is the effect of the present invention. It can be seen that (workability), wear resistance, and low loss cannot be achieved at the same time.
Further, Comparative Examples 6 to 11 are cases where the kneading is performed through the first step and the second step of the present invention, but even if a glycerin fatty acid ester composition that falls within the scope of the present invention is used, it is out of the scope of the present invention. When the diene polymer is not used, it can be seen that the effects of the present invention, that is, the kneaded skin (workability), the wear resistance, and the low loss cannot be achieved at a high level.
On the other hand, Examples 1 to 18 that are within the scope of the present invention, that is, the diene polymer and glycerin fatty acid ester that are kneaded through the first and second processes of the present invention and are within the scope of the present invention. It has been found that when the composition is used, the effects of the present invention, such as kneaded skin (workability), wear resistance, and low loss, can be achieved at a high level.
具体的に比較例を考察すると、比較例1、2、4及び5は、本発明の第1工程、第2工程を経ることなく、通常練りで混練した場合であり、本発明のジエン系重合体や本発明の範囲外となるジエン系重合体、本発明のグリセリン脂肪酸エステル組成物や本発明の範囲外となるグリセリン脂肪酸エステル組成物を用いても、本発明の混練を用いなければ、本発明の効果である練り肌(作業性)、耐摩耗性、低ロス性を高度に両立できないことが判る。
また、比較例3は、本発明の第1工程、第2工程を経て混練する場合であるが、本発明の範囲外となるグリセリン脂肪酸エステル組成物を用いると、本発明の効果である練り肌(作業性)、耐摩耗性、低ロス性を高度に両立できないことが判る。
更に、比較例6~11では、本発明の第1工程、第2工程を経て混練する場合であるが、本発明の範囲となるグリセリン脂肪酸エステル組成物を用いても、本発明の範囲外となるジエン系重合体を用いない場合には、本発明の効果である練り肌(作業性)、耐摩耗性、低ロス性を高度に両立できないことが判る。
これに対して、本発明の範囲となる実施例1~18、すなわち、本発明の第1工程、第2工程を経て混練し、かつ、本発明の範囲となるジエン系重合体、グリセリン脂肪酸エステル組成物を用いると、本発明の効果である練り肌(作業性)、耐摩耗性、低ロス性を高度に両立できることが判った。 As is apparent from the results in Table 2 above, the rubber compositions for tires of Examples 1 to 18 that fall within the scope of the present invention are more comfortable than the comparative examples 1 to 11 that fall outside the scope of the present invention (workability). ), Excellent wear resistance and low loss.
Considering a specific comparative example, Comparative Examples 1, 2, 4 and 5 are cases where kneading is usually carried out without going through the first step and the second step of the present invention. If the kneading of the present invention is not used even if the coalescence or diene polymer outside the scope of the present invention, the glycerin fatty acid ester composition of the present invention or the glycerin fatty acid ester composition outside the scope of the present invention is used, the present invention It can be seen that the effects of the invention, such as kneaded skin (workability), wear resistance, and low loss, cannot be achieved at a high level.
Moreover, although the comparative example 3 is a case where it knead | mixes through the 1st process of this invention, and a 2nd process, when the glycerin fatty acid ester composition used outside the scope of the present invention is used, the kneaded skin that is the effect of the present invention. It can be seen that (workability), wear resistance, and low loss cannot be achieved at the same time.
Further, Comparative Examples 6 to 11 are cases where the kneading is performed through the first step and the second step of the present invention, but even if a glycerin fatty acid ester composition that falls within the scope of the present invention is used, it is out of the scope of the present invention. When the diene polymer is not used, it can be seen that the effects of the present invention, that is, the kneaded skin (workability), the wear resistance, and the low loss cannot be achieved at a high level.
On the other hand, Examples 1 to 18 that are within the scope of the present invention, that is, the diene polymer and glycerin fatty acid ester that are kneaded through the first and second processes of the present invention and are within the scope of the present invention. It has been found that when the composition is used, the effects of the present invention, such as kneaded skin (workability), wear resistance, and low loss, can be achieved at a high level.
本発明のタイヤ用ゴム組成物は、タイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部分等のタイヤ部材の用途に、特にトレッド部材に好適に用いることができる。
The rubber composition for tires of the present invention can be suitably used for tire members such as tire treads, undertreads, carcass, sidewalls, bead portions, and the like, particularly for tread members.
Claims (13)
- ジエン系重合体として、末端から全鎖長の1/4の範囲のみに、シリカとの間で相互作用が可能な変性官能基を3つ以上有し、少なくとも一つの前記変性官能基間にジエン系重合体の単量体構造を有するジエン系重合体を含むゴム成分(A)、シリカを有する無機充填材(B)を含む充填材、シランカップリング剤(C)、及び加硫促進剤、チオ尿素類、チアジアゾール類から選ばれる少なくとも一種からなる活性剤(D)の全部又は一部、並びに、炭素数が8~28のグリセリン脂肪酸モノエステル含有量が85質量%超過であるグリセリン脂肪酸エステル組成物(E)を含む第一混合物を調製し、該第一混合物を混練することによって予備組成物を調製する、第一工程と、
前記予備組成物に加硫剤(F)を加えた第二混合物を調製し、該第二混合物を混練することによってゴム組成物を調製する、第二工程と、
を含むゴム組成物の製造方法により製造されることを特徴とするタイヤ用ゴム組成物。 The diene polymer has at least three modified functional groups capable of interacting with silica only in the range of ¼ of the total chain length from the terminal, and at least one of the modified functional groups is a diene. A rubber component (A) containing a diene polymer having a monomer structure of a polymer, a filler containing an inorganic filler (B) having silica, a silane coupling agent (C), and a vulcanization accelerator, A glycerin fatty acid ester composition in which the content of glycerol fatty acid monoester having 8 to 28 carbon atoms exceeds 85% by mass, as well as all or part of the active agent (D) comprising at least one selected from thioureas and thiadiazoles Preparing a first mixture containing product (E) and preparing a preliminary composition by kneading the first mixture;
Preparing a second mixture obtained by adding a vulcanizing agent (F) to the preliminary composition, and preparing a rubber composition by kneading the second mixture; a second step;
A rubber composition for tires produced by a method for producing a rubber composition comprising - 全ての前記変性官能基間に、前記ジエン系重合体の単量体構造を有することを特徴とする、請求項1に記載のタイヤ用ゴム組成物。 2. The tire rubber composition according to claim 1, having a monomer structure of the diene polymer between all the modified functional groups.
- 前記変性官能基が、含窒素官能基、含ケイ素官能基又は含酸素官能基であることを特徴とする、請求項1又は2に記載のゴム組成物。 The rubber composition according to claim 1 or 2, wherein the modified functional group is a nitrogen-containing functional group, a silicon-containing functional group, or an oxygen-containing functional group.
- 前記ジエン系重合体のピーク分子量が5万~70万であることを特徴とする、請求項1~3のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 3, wherein the diene polymer has a peak molecular weight of 50,000 to 700,000.
- 前記ジエン系重合体は、変性官能基を有さないジエン系重合体の分子鎖を形成する工程と、前記変性官能基と前記ジエン系重合体の単量体構造とからなる分子鎖を形成する工程とを経ることよりジエン系重合体を得ることを特徴とする、請求項1~4のいずれか一項に記載のタイヤ用ゴム組成物。 The diene polymer forms a molecular chain comprising a step of forming a molecular chain of a diene polymer having no modified functional group, and a monomer structure of the modified functional group and the diene polymer. The rubber composition for tires according to any one of claims 1 to 4, wherein a diene polymer is obtained through the steps.
- 前記変性官能基と前記ジエン系重合体の単量体構造とからなる分子鎖の形成は、前記ジエン系重合体の単量体成分と変性剤とを交互又は同時に投入することで行うことを特徴とする、請求項5に記載のタイヤ用ゴム組成物。 Formation of the molecular chain composed of the modified functional group and the monomer structure of the diene polymer is performed by alternately or simultaneously adding the monomer component and the modifier of the diene polymer. The rubber composition for a tire according to claim 5.
- 前記ゴム成分(A)中の前記ジエン系重合体の含有率が、10質量%以上であることを特徴とする、請求項1~6のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 6, wherein the content of the diene polymer in the rubber component (A) is 10% by mass or more.
- 前記活性剤(D)がグアニジン類であることを特徴とする、請求項1~7のいずれか1項に記載のタイヤ用ゴム組成物。 The tire rubber composition according to any one of claims 1 to 7, wherein the activator (D) is a guanidine.
- 前記活性剤(D)がチオウレア、ジエチルチオウレアであることを特徴とする、請求項1~7のいずれか1項に記載のタイヤ用ゴム組成物。 The tire rubber composition according to any one of claims 1 to 7, wherein the activator (D) is thiourea or diethylthiourea.
- 前記活性剤(D)がジメルカプトチアジアゾールであることを特徴とする、請求項1~7のいずれか1項に記載のタイヤ用ゴム組成物。 The tire rubber composition according to any one of claims 1 to 7, wherein the activator (D) is dimercaptothiadiazole.
- 前記グリセリン脂肪酸エステル組成物(E)は、炭素数が8~28グリセリン脂肪酸モノエステル含有量が95質量%超過であることを特徴とする、請求項1~10のいずれか1項に記載のタイヤ用ゴム組成物。 The tire according to any one of claims 1 to 10, wherein the glycerin fatty acid ester composition (E) has a carbon number of 8 to 28 and a glycerin fatty acid monoester content of more than 95% by mass. Rubber composition.
- 前記グリセリン脂肪酸エステル組成物(E)の配合量が、ゴム成分(A)100質量部に対して、0.2~7質量部であることを特徴とする、請求項1~11のいずれか1項に記載のタイヤ用ゴム組成物。 The blended amount of the glycerin fatty acid ester composition (E) is 0.2 to 7 parts by mass with respect to 100 parts by mass of the rubber component (A). The rubber composition for tires according to item.
- 請求項1~12のいずれか1項に記載のタイヤ用ゴム組成物をトレッド部材に用いたことを特徴とする、タイヤ。 A tire comprising the tire rubber composition according to any one of claims 1 to 12 as a tread member.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-043824 | 2015-03-05 | ||
JP2015043824A JP6053844B2 (en) | 2015-03-05 | 2015-03-05 | Rubber composition for tire and tire |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016140217A1 true WO2016140217A1 (en) | 2016-09-09 |
Family
ID=56846515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/056231 WO2016140217A1 (en) | 2015-03-05 | 2016-03-01 | Rubber composition for tyres, and tyre |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6053844B2 (en) |
WO (1) | WO2016140217A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016006153A (en) * | 2014-05-29 | 2016-01-14 | 株式会社ブリヂストン | Rubber composition for tire |
JP2016160422A (en) * | 2015-03-05 | 2016-09-05 | 株式会社ブリヂストン | Rubber composition and tire |
WO2018230406A1 (en) * | 2017-06-16 | 2018-12-20 | 株式会社ブリヂストン | Rubber composition for tire tread, and tire |
WO2021125299A1 (en) * | 2019-12-19 | 2021-06-24 | 株式会社ブリヂストン | Rubber composition and tire |
WO2021125300A1 (en) * | 2019-12-19 | 2021-06-24 | 株式会社ブリヂストン | Rubber composition and tire |
US11241912B2 (en) | 2017-03-21 | 2022-02-08 | Compagnie Generale Des Etablissements Michelin | Tire comprising a tread |
US11390117B2 (en) | 2017-01-31 | 2022-07-19 | Compagnie Generale Des Etablissements Michelin | Tire comprising a rubber composition |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3159376B1 (en) * | 2014-06-17 | 2018-09-19 | Bridgestone Corporation | Rubber composition, method for producing same, and tire |
US20180030159A1 (en) * | 2015-03-05 | 2018-02-01 | Bridgestone Corporation | Rubber composition and tire |
CN107429003A (en) * | 2015-03-05 | 2017-12-01 | 株式会社普利司通 | Rubber composition, the manufacture method of diolefinic polymer and tire |
JP6835401B2 (en) * | 2016-08-30 | 2021-02-24 | 株式会社ブリヂストン | Rubber composition and tires |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012128194A1 (en) * | 2011-03-24 | 2012-09-27 | Jsr株式会社 | Rubber composition and manufacturing process therefor, and tire |
WO2014098155A1 (en) * | 2012-12-19 | 2014-06-26 | 株式会社ブリヂストン | Rubber composition, and tire manufactured using same |
WO2015147274A1 (en) * | 2014-03-27 | 2015-10-01 | 横浜ゴム株式会社 | Rubber composition and pneumatic tire using same |
JP2016006153A (en) * | 2014-05-29 | 2016-01-14 | 株式会社ブリヂストン | Rubber composition for tire |
JP2016037601A (en) * | 2014-08-07 | 2016-03-22 | 横浜ゴム株式会社 | Rubber composition and pneumatic tire using the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6004677B2 (en) * | 2011-03-31 | 2016-10-12 | 住友化学株式会社 | Method for producing modified conjugated diene polymer, modified conjugated diene polymer, and polymer composition |
JP6157806B2 (en) * | 2012-05-15 | 2017-07-05 | 住友化学株式会社 | Modified conjugated diene polymer and polymer composition |
JP6041530B2 (en) * | 2012-05-23 | 2016-12-07 | 旭化成株式会社 | Modified butadiene polymer, method for producing modified butadiene polymer, rubber composition, and tire |
WO2014014052A1 (en) * | 2012-07-20 | 2014-01-23 | Jsr株式会社 | Method for producing modified conjugated diene polymer, modified conjugated diene polymer, polymer composition, crosslinked polymer, and tire |
JP6303732B2 (en) * | 2014-03-31 | 2018-04-04 | 日本ゼオン株式会社 | Process for producing modified conjugated diene polymer |
JP6354493B2 (en) * | 2014-09-26 | 2018-07-11 | 日本ゼオン株式会社 | Process for producing modified conjugated diene polymer |
-
2015
- 2015-03-05 JP JP2015043824A patent/JP6053844B2/en active Active
-
2016
- 2016-03-01 WO PCT/JP2016/056231 patent/WO2016140217A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012128194A1 (en) * | 2011-03-24 | 2012-09-27 | Jsr株式会社 | Rubber composition and manufacturing process therefor, and tire |
WO2014098155A1 (en) * | 2012-12-19 | 2014-06-26 | 株式会社ブリヂストン | Rubber composition, and tire manufactured using same |
WO2015147274A1 (en) * | 2014-03-27 | 2015-10-01 | 横浜ゴム株式会社 | Rubber composition and pneumatic tire using same |
JP2016006153A (en) * | 2014-05-29 | 2016-01-14 | 株式会社ブリヂストン | Rubber composition for tire |
JP2016037601A (en) * | 2014-08-07 | 2016-03-22 | 横浜ゴム株式会社 | Rubber composition and pneumatic tire using the same |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016006153A (en) * | 2014-05-29 | 2016-01-14 | 株式会社ブリヂストン | Rubber composition for tire |
JP2016160422A (en) * | 2015-03-05 | 2016-09-05 | 株式会社ブリヂストン | Rubber composition and tire |
US11390117B2 (en) | 2017-01-31 | 2022-07-19 | Compagnie Generale Des Etablissements Michelin | Tire comprising a rubber composition |
US11241912B2 (en) | 2017-03-21 | 2022-02-08 | Compagnie Generale Des Etablissements Michelin | Tire comprising a tread |
WO2018230406A1 (en) * | 2017-06-16 | 2018-12-20 | 株式会社ブリヂストン | Rubber composition for tire tread, and tire |
JP2019001922A (en) * | 2017-06-16 | 2019-01-10 | 株式会社ブリヂストン | Rubber composition for tire tread and tire |
CN110770290A (en) * | 2017-06-16 | 2020-02-07 | 株式会社普利司通 | Rubber composition for tire tread and tire |
WO2021125299A1 (en) * | 2019-12-19 | 2021-06-24 | 株式会社ブリヂストン | Rubber composition and tire |
WO2021125300A1 (en) * | 2019-12-19 | 2021-06-24 | 株式会社ブリヂストン | Rubber composition and tire |
CN114867778A (en) * | 2019-12-19 | 2022-08-05 | 株式会社普利司通 | Rubber composition and tire |
JP7483755B2 (en) | 2019-12-19 | 2024-05-15 | 株式会社ブリヂストン | Rubber composition and tire |
JP7518858B2 (en) | 2019-12-19 | 2024-07-18 | 株式会社ブリヂストン | Rubber composition and tire |
Also Published As
Publication number | Publication date |
---|---|
JP2016160418A (en) | 2016-09-05 |
JP6053844B2 (en) | 2016-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6053844B2 (en) | Rubber composition for tire and tire | |
JP6703369B2 (en) | Rubber composition for tires | |
JP6244033B2 (en) | Rubber composition and tire | |
JP6010662B2 (en) | Method for producing rubber composition | |
JP5977517B2 (en) | Method for producing rubber composition, rubber composition and pneumatic tire using the same | |
US9447255B2 (en) | Method for producing rubber composition | |
JP5845247B2 (en) | Method for producing rubber composition | |
JP5740406B2 (en) | Method for producing rubber composition | |
JP5683597B2 (en) | Method for producing rubber composition | |
JP5696157B2 (en) | Method for producing rubber composition | |
WO2012115211A1 (en) | Rubber composition and tire produced using same, and process of producing rubber composition | |
WO2012043854A1 (en) | Method for manufacturing rubber composition | |
WO2016009775A1 (en) | Method for producing rubber composition for tires, and pneumatic tire | |
JP2016160422A (en) | Rubber composition and tire | |
JP5649515B2 (en) | Method for producing rubber composition | |
WO2016093282A1 (en) | Method for producing rubber composition | |
JP6353777B2 (en) | Method for producing rubber composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16758910 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16758910 Country of ref document: EP Kind code of ref document: A1 |