[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016039399A1 - Laminate and laminate manufacturing method - Google Patents

Laminate and laminate manufacturing method Download PDF

Info

Publication number
WO2016039399A1
WO2016039399A1 PCT/JP2015/075662 JP2015075662W WO2016039399A1 WO 2016039399 A1 WO2016039399 A1 WO 2016039399A1 JP 2015075662 W JP2015075662 W JP 2015075662W WO 2016039399 A1 WO2016039399 A1 WO 2016039399A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
aluminum
powder
laminate
aluminum alloy
Prior art date
Application number
PCT/JP2015/075662
Other languages
French (fr)
Japanese (ja)
Inventor
優 瀧本
真也 宮地
雄一郎 山内
哲也 竹川
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to JP2016547490A priority Critical patent/JPWO2016039399A1/en
Publication of WO2016039399A1 publication Critical patent/WO2016039399A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material

Definitions

  • the present invention relates to a laminate made of aluminum or an aluminum alloy, and a method for producing the laminate.
  • a cold spray method in which material powder is deposited and coated on a substrate by spraying the material powder on the substrate at a high temperature and high speed has attracted attention as one type of thermal spraying method.
  • a base material is injected by injecting it from a Laval nozzle together with an inert gas heated below the melting point or softening point of the material powder, and the material that becomes the coating collides with the base material in the solid state. Since a film is formed on the surface, a metal film having no phase transformation and suppressing oxidation can be obtained.
  • a laminate is prepared by forming a coating of a metal material having another type of electrical conductivity on the surface of a metal material that is a base having excellent electrical conductivity, and the laminate is used as a conductive member.
  • the adhesion between the film and the substrate is low due to the presence of the oxide film on the surface of the aluminum or aluminum alloy, and the electric conduction. Only films with a conductivity significantly lower than the bulk electrical conductivity of aluminum or aluminum alloys are obtained.
  • a method for manufacturing electronic parts with a film formed on the surface of the substrate by the cold spray method which improves the thermal conductivity and electrical conductivity while enhancing the bonding of metal material powder and maintaining the thermal expansion moderately
  • a gas containing oxygen gas is used as the compressed gas, and a hard powder such as ceramics is mixed with the metal material powder to form a film.
  • the ratio of the hard powder in the film formed by the above method is 10 to 10%.
  • a method of 50% by volume is disclosed (for example, see Patent Document 1).
  • Patent Document 1 when copper is used as a metal material powder together with ceramic powder and a film having a ceramic content of 10 to 50% by volume is formed by a cold spray method, the ceramic is not used. Although it has been confirmed that the thermal conductivity can be improved while reducing the thermal expansion coefficient of the film, the case where aluminum is used as the metal material powder is not described. Further, although Patent Document 1 describes that the electrical conductivity can be improved by containing 10 to 50% by volume of ceramic particles in the film, there is no description of the result indicating that the electrical conductivity has been improved.
  • the present applicants conducted extensive research on a film having excellent electrical conductivity by a cold spray method using a mixed powder of aluminum powder and ceramic powder as a material powder.
  • a mixed powder of aluminum powder and ceramic powder as a material powder.
  • an aluminum film containing ceramics at a predetermined ratio is aluminum.
  • an improvement in electrical conductivity was recognized as compared with the film formed only from the powder, it was confirmed that it did not reach the desired standard.
  • the present invention has been made in view of the above, and in a laminate in which a film mainly composed of aluminum or an aluminum alloy is formed on the surface of a substrate composed of a metal or an alloy by a cold spray method, the substrate and the film It is an object of the present invention to provide a laminate and a method for producing the laminate that can improve the adhesion and electrical conductivity of the laminate.
  • a laminate according to the present invention includes a base material made of a metal or an alloy, and a film mainly composed of aluminum or an aluminum alloy formed on the surface of the base material.
  • the film contains a non-metal having a melting point higher than that of the aluminum or aluminum alloy in a proportion of 10% by volume or less, and the aluminum or aluminum alloy powder as the main component of the film is flat and / or in the stacking direction. Or it is laminated
  • the laminate according to the present invention comprises a base material made of a metal or an alloy, and a film mainly composed of aluminum or an aluminum alloy formed on the surface of the base material, and the electric conductivity of the film is as follows:
  • the electrical conductivity of the bulk material of aluminum or aluminum alloy that is the main component of the coating is 75.0% or more, and the aluminum or aluminum alloy powder that is the main component of the coating is flat and / or wrinkled in the stacking direction.
  • the interface between the base material and the coating film is plastically deformed.
  • the laminate according to the present invention is characterized in that, in the above invention, the porosity of the film is 5.0% by volume or less.
  • the laminate according to the present invention is characterized in that, in the above invention, the non-metallic powder is ceramic or glass.
  • the method for producing a laminate according to the present invention is a method for producing a laminate in which a film mainly composed of aluminum or an aluminum alloy is formed on the surface of a base material made of a metal or an alloy, Heat mixed powder of aluminum or aluminum alloy powder in a proportion of 5 to 95% by volume and non-metallic powder of higher melting point than aluminum or aluminum alloy to a temperature lower than the melting point of aluminum or aluminum alloy.
  • the method for producing a laminate according to the present invention is characterized in that, in the above-mentioned invention, the non-metallic powder contained in the mixed powder before spraying on the surface of the base material is spherical.
  • the manufacturing method of the laminated body concerning this invention is that in the said invention, the average particle diameter of the nonmetallic powder contained in the said mixed powder before spraying on the said base material surface is 30 micrometers or more and 500 micrometers or less.
  • the method for manufacturing a laminate according to the present invention is characterized in that, in the above invention, the non-metallic powder is ceramic or glass.
  • a non-metallic spherical powder for example, a powder of aluminum or the like containing ceramic or glass powder at a predetermined ratio is sprayed by a cold spray method to form a film on a base material such as metal, It becomes possible to produce a laminate having a low non-metal content and excellent electrical conductivity and adhesion between the substrate and the film.
  • FIG. 1 is a cross-sectional view showing the structure of a laminate according to an embodiment of the present invention.
  • FIG. 2 is an SEM photograph of the cross section of the film of the laminate according to the embodiment of the present invention (500 times).
  • FIG. 3 is a schematic diagram showing an outline of a cold spray apparatus used for forming a film of the laminate according to the embodiment of the present invention.
  • FIG. 5 is a schematic diagram for explaining the adhesion strength test (the Lomulus test).
  • FIG. 6 is a diagram showing the relationship between the type of base material and the adhesion strength of the laminate according to the embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing the structure of a laminate according to an embodiment of the present invention.
  • FIG. 2 is an SEM photograph of the cross section of the film of the laminate according to the embodiment of the
  • FIG. 11 is an SEM photograph of alumina used as a comparative example.
  • FIG. 13 is an SEM image of
  • FIG. 18 is an SEM image of the vicinity of the interface between the base material and the film in the cross section of the laminate in which the aluminum film is formed without blending ceramics.
  • FIG. 19 is an SEM image of a cross section of a laminate in which an aluminum film is formed without blending ceramics.
  • FIG. 1 is a cross-sectional view showing the structure of a laminate according to an embodiment of the present invention.
  • a laminate 1 shown in FIG. 1 includes a base material 10 and a film 11 which is formed on the surface of the base material 10 and is laminated by a cold spray method to be described later, and mainly contains aluminum or an aluminum alloy.
  • the laminated body 1 is not limited to the rectangular flat plate shape as shown in FIG. 1, and may be a cylindrical shape, a polygonal column shape, or the like. If the base material 10 consists of a metal or an alloy, material will not be limited.
  • the film 11 is made of 5 to 95% by volume of aluminum or aluminum alloy powder, and 5% of non-metallic powder having a melting point higher than that of aluminum or aluminum alloy as the main component of the film 11. Formed by accelerating a mixed powder mixed at a rate of ⁇ 95% by volume together with a gas heated to a temperature lower than the melting point of aluminum or aluminum alloy, and spraying and depositing it on the surface of the substrate 10 in a solid state. Is done.
  • the base material surface is blasted to expose the new surface of the base material. Formation of a metal bond between the base material and aluminum or an aluminum alloy is facilitated, and the adhesion strength at the interface between the base material 10 and the film 11 can be improved. Further, when aluminum or aluminum alloy powder and non-metallic powder collide with the base material 10, plastic deformation occurs at the interface between the base 10 and the coating 11. The adhesion between the base material 10 and the film 11 is improved by the anchor effect caused by plastic deformation at the interface. Furthermore, since the aluminum or aluminum alloy deposited on the base material 10 can be peened by mixing the nonmetallic powder with the aluminum or aluminum alloy powder, the dense film 11 with few pores can be obtained.
  • the coating 11 is plastically deformed and flattened in the stacking direction when the substantially spherical aluminum or aluminum alloy powder, which is the main component, is sprayed on the substrate 10 (the diameter of the copper powder in the stacking direction is the stacking direction). Smaller than the diameter in the direction perpendicular to the surface) and / or in a rolled state (wound by non-metallic powder).
  • the flattened and / or beaten state of the aluminum or aluminum alloy powder forming the film 11 can be observed, for example, with an optical microscope or a (scanning) electron microscope.
  • FIG. 2 is an SEM photograph of a cross section of the film 11 of the laminate 1 according to the embodiment of the present invention. The film 11 shown in FIG.
  • the layer 2 is formed by using a cold spray device, which will be described later, with a substantially spherical aluminum powder and a non-metallic powder (glass). Due to plastic deformation and peening and blasting effect due to non-metallic material, the layer is flat in the laminating direction (the diameter of the copper powder in the laminating direction is smaller than the diameter in the direction perpendicular to the laminating direction) and / or is crushed (non-metallic) It can be confirmed that they are laminated.
  • the average particle size of the aluminum or aluminum alloy powder used in this embodiment is 20 ⁇ m to 150 ⁇ m.
  • the average particle size is 20 ⁇ m to 150 ⁇ m, the fluidity is good and it is easy to obtain.
  • the aluminum or aluminum alloy powder is produced, for example, by a gas atomizing method.
  • the mixing ratio of the aluminum or aluminum alloy powder and the nonmetallic powder in the mixed powder is 5 to 95 vol% for the aluminum or aluminum alloy powder and 5 to 95 vol% for the nonmetallic powder.
  • the blending ratio of the non-metallic powder is less than 5% by volume, a sufficient blasting effect and peening effect cannot be obtained, so that the laminate having the dense coating 11 with excellent adhesion strength at the interface between the substrate 10 and the coating 11 Can't get body 1.
  • the blending ratio of the nonmetallic powder is more than 95% by volume, it is difficult to form the film 11 mainly composed of aluminum or an aluminum alloy.
  • the blending ratio of the non-metallic powder in the mixed powder is preferably 10 to 50% by volume, particularly preferably 30 to 50% by volume.
  • the mixed powder can be prepared by mixing aluminum or aluminum alloy powder and non-metallic powder with a sieve or the like.
  • the non-metallic powder sprayed onto the surface of the substrate 10 together with the aluminum or aluminum alloy powder is preferably granular, particularly spherical.
  • Non-spherical non-metallic powders such as rods, plates, scales, polyhedrons, and crushed powders are not preferred because they tend to remain in the film 11. All of the non-metallic powders used are preferably spherical, but at least 50% or more, preferably 70% or more may be spherical.
  • the mixing ratio of the nonmetal in the film 11 is 1/5 or less of the ratio of the nonmetallic powder contained in the mixed powder and 10 volume% or less.
  • the average particle diameter (D50) of the nonmetallic powder sprayed on the surface of the base material 10 together with the aluminum or aluminum alloy powder is preferably 30 to 500 ⁇ m.
  • the average particle diameter (D50) of the non-metallic powder is smaller than 30 ⁇ m, the non-metal content in the coating 11 is increased and the peening effect is also decreased.
  • the average particle diameter (D50) of the non-metallic powder is larger than 500 ⁇ m, a gas nozzle of a cold spray apparatus described later is likely to be clogged, and erosion may occur in the base material 10 and the deposited film 11.
  • the average particle size (D50) of the ceramic is particularly preferably 100 to 200 ⁇ m.
  • the non-metallic powder used in the present embodiment is not limited as long as it is spherical and has the above average particle diameter, but the surface of the substrate 10 is blasted to expose the new surface, and aluminum.
  • the hardness of the nonmetallic powder is preferably 500 Hv or more.
  • the same effect can be obtained even if a metal or alloy powder having a predetermined hardness is used instead of the non-metal powder.
  • the mixed metal or alloy and aluminum or aluminum alloy, the mixed metal or alloy, the mixed metal or alloy and the substrate 10 form a metal bond, and the mixed metal or alloy forms the coating 11. It is preferable to use non-metallic powder because the ratio remaining in the inside becomes high.
  • the non-metallic powder used in the present embodiment is not limited as long as it has a spherical shape and has the above average particle diameter, but glass such as soda lime glass and quartz glass, zircon, alumina, Ceramics such as zirconia and aluminum nitride can be used.
  • the electric conductivity of the film 11 is 75.0% or more of the electric conductivity of the bulk material of aluminum or aluminum alloy which is the main component of the film 11.
  • the laminate 1 can be used as a conductive member.
  • the electric conductivity of the film 11 is preferably 80.0% or more, and particularly preferably 85.0% or more of the electric conductivity of the bulk material of aluminum or aluminum alloy which is the main component of the film 11.
  • the electrical conductivity of the film 11 is expressed as a ratio when the electrical conductivity of A1050 is 100% when aluminum powder having a purity of 99.5% is used as the material of the film 11, for example.
  • the porosity of the film 11 is preferably 5.0% by volume or less.
  • the porosity of the film 11 is preferably 5.0% by volume or less, and the porosity of the film 11 is 1.0% by volume. Is more preferable, and 0.5% by volume or less is particularly preferable.
  • the manufacturing method of the laminated body 1 concerning this Embodiment is demonstrated.
  • a mixed powder obtained by mixing 5 to 95% by volume of an aluminum or aluminum alloy powder and 5 to 95% by volume of a non-metallic powder on the surface of the substrate 10 is obtained from the melting point of the aluminum or aluminum alloy.
  • the film 11 can be manufactured by accelerating with a gas heated to a low temperature and spraying and depositing on the surface of the base material 10 in a solid state to form the film 11.
  • FIG. 3 is a schematic diagram showing an outline of the cold spray device 20 used for forming the film 11 of the laminate 1 according to the present embodiment.
  • the cold spray device 20 contains a gas heater 21 that heats the compressed gas, a powder supply device 23 that contains the powder material to be sprayed onto the base material 10 and supplies the powder material to the spray gun 22, and a compressed gas heated by the spray gun 22. And a gas nozzle 24 for injecting the mixed powder material onto the substrate 10.
  • the powder material here is a mixed powder in which aluminum or aluminum alloy powder is mixed in a proportion of 5 to 95% by volume and nonmetallic powder in a proportion of 5 to 95% by volume.
  • the compressed gas helium, nitrogen, air or the like is used.
  • the supplied compressed gas is supplied to the gas heater 21 and the powder supply device 23 by valves 25 and 26, respectively.
  • the compressed gas supplied to the gas heater 21 is, for example, 100 ° C. or higher and heated to a temperature not higher than the melting point of aluminum or aluminum alloy, which is a powder material for forming the film 11, and then applied to the spray gun 22. Supplied.
  • the heating temperature of the compressed gas is preferably 100 ° C. or higher and a temperature not higher than the melting point of aluminum or aluminum alloy as a powder material.
  • the compressed gas supplied to the powder supply device 23 supplies the powder material (a mixed powder of aluminum or aluminum alloy powder and nonmetal powder) in the powder supply device 23 to the spray gun 22 so as to have a predetermined discharge amount. .
  • the heated compressed gas is converted into a supersonic flow (about 340 m / s or more) by a gas nozzle 24 having a tapered wide shape.
  • the gas pressure of the compressed gas is preferably about 1 MPa to 5 MPa, more preferably about 2 MPa to 5 MPa. By setting the pressure of the compressed gas to about 2 MPa to 5 MPa, it is possible to improve the adhesion strength between the base material 10 and the film 11.
  • the powder material supplied to the spray gun 22 is accelerated by the injection of this compressed gas into the supersonic flow, and collides with the base material 10 at a high speed in the solid state to form the film 11.
  • the apparatus is not limited to the cold spray apparatus 20 of FIG. 2 as long as the apparatus can form the coating 11 by colliding a mixed powder of aluminum or aluminum alloy powder and non-metallic powder with the base material 10 in a solid state. Absent.
  • a mixed powder obtained by mixing a spherical nonmetallic powder in a predetermined ratio with aluminum or an aluminum alloy powder is sprayed onto the surface of the substrate by a cold spray method, whereby the nonmetallic content is predetermined. Therefore, a laminate having excellent electrical conductivity and adhesion between the substrate and the film can be obtained.
  • Example 1 A mixed powder containing 50% by volume of aluminum powder and 50% by volume of zircon (ZrSiO 4 ) as a non-metallic powder is formed on the base material 10 of different materials by the method for manufacturing the laminate 1 according to the present embodiment. 3 was sprayed by the cold spray device 3 to form a laminate 1 having a film 11 (thickness 0.5 mm) containing aluminum as a main component, and the adhesion strength was evaluated.
  • the zircon used has a spherical shape as shown in FIG. Further, the adhesion strength at the interface between the substrate 10 and the film 11 was evaluated by an adhesion strength test apparatus 30 shown in FIG.
  • a stud pin 32 ( ⁇ 4.1 mm) is bonded to the film 11 formed on the substrate 10 via the adhesive 33, and from above the stud pin 32 bonded to the film 11 via the adhesive 33, After inserting the support base 31 ( ⁇ 7.5 to 9.5 mm) having the hole portion 31a from above, the stud pin 32 is pulled upward in the vertical direction, whereby the adhesion strength between the base material 10 and the film 11 is increased. evaluated. The evaluation was performed based on the tensile stress and the peeled state at the time when the adhesive peeled off.
  • aluminum As the base material 10, aluminum (A1050-H24, A5052-H114, A6061-T6), stainless steel (SUS430, SUS304), Inconel 600, phosphor bronze, brass, nickel-phosphorus plating (C1020-1 / 4H), copper (C1020) -H) was used.
  • Aluminum powder (D50) was applied to each substrate 10 by a cold spray device 20 at a compressed gas: nitrogen, a compressed gas temperature: 150 ° C., a compressed gas pressure: 5 MPa, a working distance (WD): 25 mm, a traverse speed: 400 mm / s.
  • a mixed powder obtained by mixing spherical zircon powder with aluminum powder is sprayed onto the base material 10 by a cold spray device 20 to form a film 11.
  • the adhesion strength between the base material 10 and the film 11 was improved from the film 11 formed by 100% by volume.
  • Example 2 to 4 The substrate 10 (C1020-H) was compressed by a cold spray device 20 with compressed gas: nitrogen, compressed gas temperature: 150 ° C., compressed gas pressure: 5 MPa, working distance (WD): 25 mm, traverse speed: 400 mm / s,
  • the mixed powder changed to volume% (Example 4) was sprayed to form the film 11 (thickness 0.5 mm), and the laminate 1 was produced.
  • FIG. 7 shows an SEM image in the vicinity of the interface between the base material of the laminate and the film produced in Examples 2 to 4, and FIG. 8 shows an SEM image of the film cross section.
  • FIGS. 7 (a) and 8 (a) are examples 2 formed with a mixed powder having a zircon powder ratio of 10% by volume
  • FIGS. 7 (b) and 8 (b) are 30% by volume.
  • Example 3 formed with the mixed powder
  • FIG. 7C and FIG. 8C are Example 4 formed with 50% by volume of the mixed powder. 7 (a) to 7 (c), it was confirmed that the blasting effect on the surface of the substrate 10 was larger as the mixing ratio of zircon in the mixed powder was larger.
  • the zircon content in the film 11 was calculated from the SEM image of the cross section of the film 11 by performing binary image processing with aluminum as black and zircon as white, and the ratio of zircon in the cross section of the film 11.
  • the porosity of the film 11 is the SEM image of the cross-section of the film 11 by performing image processing for dualizing the pores to be black and the film part such as aluminum and zircon (or alumina) to be white, and the ratio of the pores to the film 11 Calculated by For electrical conductivity, a portion of the film 11 is cut out from the laminate 1 into a 2 mm ⁇ 2 mm ⁇ 40 mm prismatic shape, and a measurement current (1A) is passed between measurement points where the measurement distance is 23 mm, and the potential is measured by the 4-terminal method. The electric conductivity (%) with respect to the potential of A1050-H24.
  • FIG. 10 shows SEM images of the film cross-sections of the laminates 1 of Examples 5-7.
  • only the aluminum powder was sprayed onto the base material 10 to produce a laminate 1 (Comparative Example 10).
  • the alumina content, the porosity, and the electrical conductivity in the coating film 11 were measured. The results are shown in Table 1.
  • FIG. 12 shows an SEM image in the vicinity of the interface between the base material 10 and the film 11 in the cross section of the laminate 1 of Comparative Examples 2 to 4, and
  • FIG. 13 shows an SEM image in the cross section of the film 11.
  • FIG. 14 shows an SEM image in the vicinity of the interface between the base material 10 and the film 11 in the cross section of the laminate 1 of Comparative Examples 5 to 7, and FIG. 15 shows an SEM image of the film cross section.
  • 18 shows an SEM image in the vicinity of the interface between the base material 10 and the film 11 in the cross section of the laminate 1 of Comparative Example 10
  • FIG. 19 shows an SEM image in the cross section of the film 11.
  • the laminates of Examples 2 to 7 using spherical ceramics have a low ceramic content in the film 11 and a high electrical conductivity of 75% or more (compared to A1050).
  • Comparative Examples 2 to 9 using non-spherical (pulverized) ceramics have low electrical conductivity.
  • ceramics which is an insulating material it is considered that the electric conductivity is lowered.
  • Comparative Examples 5 and 6 having a low ceramic content sufficient electric conductivity was not obtained. It is considered that this is because the electrical conductivity is caused not only by the ceramic content but also by the peening effect of the coating 11 by the ceramic. Since the laminate 1 of the present embodiment has a low porosity, a dense film, and a low ceramic content in the film 11, the electrical conductivity of the film 11 can be improved.
  • the laminates of Examples 8 to 14 using spherical soda lime glass have a low content of soda lime glass in the film 11 and an electric conductivity of 75% or more (compared to A1050). And higher.
  • Examples 9 and 12 in which spherical volume soda lime glass having a particle size D50 of 100 or more and 200 or less is mixed by 50% by volume a laminate having an extremely high electrical conductivity of 90% or more (vs. A1050) is obtained. I was able to get it.
  • Comparative Examples 11 and 12 in which titanium powder was mixed as a mixed powder remained in the film 11 regardless of whether spherical or non-spherical, and no improvement in conductivity was observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Provided are: a laminate formed by cold-spraying a film obtained mainly from aluminum, etc. on a substrate surface obtained from a metal or alloy, wherein the close adhesion and electrical conductivity between the substrate and the film can be improved; and a laminate manufacturing method. A laminate (1) is provided with a substrate (10) obtained from a metal or alloy, and a film (11) formed on the surface of the substrate (10) and having aluminum, etc. as the main component. The laminate is characterized in that: the film (11) contains a non-metal with a higher melting point than the aluminum, etc. in a proportion of not more than 10 volume% and is obtained by laminating the aluminum or aluminum alloy powder, which is the main component of the film, in a flat and/or excavated state with respect to the lamination direction; and the interface between the substrate (10) and the film (11) is plastically deformed.

Description

積層体、および積層体の製造方法Laminate and method for producing laminate
 本発明は、アルミニウムまたはアルミニウム合金からなる積層体、および積層体の製造方法に関する。 The present invention relates to a laminate made of aluminum or an aluminum alloy, and a method for producing the laminate.
 近年、溶射法の1種として、材料粉末を高温、高速にして基材に吹き付けることにより、該材料粉末を基材に堆積・コーティングするコールドスプレー方法が注目されている。コールドスプレー方法では、材料粉末の融点または軟化点以下に加熱した不活性ガスとともに先細末広(ラバル)ノズルから噴射して、皮膜となる材料を固相状態のまま基材に衝突させることによって基材の表面に皮膜を形成させるため、相変態がなく酸化も抑制された金属皮膜を得ることができる。 In recent years, a cold spray method in which material powder is deposited and coated on a substrate by spraying the material powder on the substrate at a high temperature and high speed has attracted attention as one type of thermal spraying method. In the cold spray method, a base material is injected by injecting it from a Laval nozzle together with an inert gas heated below the melting point or softening point of the material powder, and the material that becomes the coating collides with the base material in the solid state. Since a film is formed on the surface, a metal film having no phase transformation and suppressing oxidation can be obtained.
 該コールドスプレー法により、電気伝導性に優れる基材となる金属材料の表面に、別種の電気伝導性に優れる金属材料の皮膜を形成して積層体を作製し、該積層体の導電部材としての可能性が模索されているが、アルミニウムまたはアルミニウム合金の皮膜をコールドスプレー法により形成する場合、アルミニウムまたはアルミニウム合金の表面の酸化膜の存在により、皮膜と基材との密着性が低く、電気伝導性がアルミニウムまたはアルミニウム合金のバルクの電気伝導性より著しく低い皮膜しか得られていない。 By using the cold spray method, a laminate is prepared by forming a coating of a metal material having another type of electrical conductivity on the surface of a metal material that is a base having excellent electrical conductivity, and the laminate is used as a conductive member. Although the possibility has been sought, when the aluminum or aluminum alloy film is formed by the cold spray method, the adhesion between the film and the substrate is low due to the presence of the oxide film on the surface of the aluminum or aluminum alloy, and the electric conduction. Only films with a conductivity significantly lower than the bulk electrical conductivity of aluminum or aluminum alloys are obtained.
 一方、コールドスプレー法により基材表面に皮膜を形成した電子部材の製造方法であって、金属材料粉末の結合を高め、熱膨張性を適度に維持しつつ、熱伝導性および電気伝導性を向上させる方法として、圧縮ガスとして酸素ガスを含むガスを使用し、金属材料粉末にセラミックス等の硬質粉末を混合して皮膜を形成し、前記方法により形成された皮膜中の硬質粉末の割合が10~50体積%とする方法が開示されている(例えば、特許文献1参照)。 On the other hand, it is a method for manufacturing electronic parts with a film formed on the surface of the substrate by the cold spray method, which improves the thermal conductivity and electrical conductivity while enhancing the bonding of metal material powder and maintaining the thermal expansion moderately As a method for forming the film, a gas containing oxygen gas is used as the compressed gas, and a hard powder such as ceramics is mixed with the metal material powder to form a film. The ratio of the hard powder in the film formed by the above method is 10 to 10%. A method of 50% by volume is disclosed (for example, see Patent Document 1).
特許第4645464号公報Japanese Patent No. 4645464
 特許文献1では、銅を金属材料粉末としてセラミックス粉末とともに使用して、コールドスプレー法により皮膜中のセラミックスの含有量が10~50体積%となる皮膜を形成した場合、セラミックスを使用しない場合より、皮膜の熱膨張係数を低減しつつ、熱伝導率が向上できることが確認されているが、金属材料粉末としてアルミニウムを使用した場合については記載されていない。また、特許文献1では、皮膜中にセラミックス粒子が10~50体積%含まれることにより電気伝導性を向上できると記載するものの、電気伝導性が向上したことを示す結果の記載もない。 In Patent Document 1, when copper is used as a metal material powder together with ceramic powder and a film having a ceramic content of 10 to 50% by volume is formed by a cold spray method, the ceramic is not used. Although it has been confirmed that the thermal conductivity can be improved while reducing the thermal expansion coefficient of the film, the case where aluminum is used as the metal material powder is not described. Further, although Patent Document 1 describes that the electrical conductivity can be improved by containing 10 to 50% by volume of ceramic particles in the film, there is no description of the result indicating that the electrical conductivity has been improved.
 本出願人らは、アルミニウム粉末とセラミックス粉末との混合粉末を材料粉末として、コールドスプレー法により電気伝導性に優れる皮膜について鋭意研究を行ったところ、所定の割合でセラミックスを含むアルミニウム皮膜は、アルミニウム粉末のみから形成した皮膜に比べて電気伝導性の向上は認められるものの、所望の基準に達するものではないことが確認された。 The present applicants conducted extensive research on a film having excellent electrical conductivity by a cold spray method using a mixed powder of aluminum powder and ceramic powder as a material powder. As a result, an aluminum film containing ceramics at a predetermined ratio is aluminum. Although an improvement in electrical conductivity was recognized as compared with the film formed only from the powder, it was confirmed that it did not reach the desired standard.
 本発明は、上記に鑑みてなされたものであって、金属または合金からなる基材表面に、アルミニウムまたはアルミニウム合金から主としてなる皮膜をコールドスプレー法により形成された積層体において、基材と皮膜との密着性、および電気伝導性を向上しうる積層体および積層体の製造方法を提供することを目的とする。 The present invention has been made in view of the above, and in a laminate in which a film mainly composed of aluminum or an aluminum alloy is formed on the surface of a substrate composed of a metal or an alloy by a cold spray method, the substrate and the film It is an object of the present invention to provide a laminate and a method for producing the laminate that can improve the adhesion and electrical conductivity of the laminate.
 上述した課題を解決し、目的を達成するために、本発明にかかる積層体は、金属または合金からなる基材と、前記基材表面に形成されたアルミニウムまたはアルミニウム合金を主成分とする皮膜と、を備え、前記皮膜は前記アルミニウムまたはアルミニウム合金より高融点の非金属を10体積%以下の割合で含有するとともに、前記皮膜の主成分であるアルミニウムまたはアルミニウム合金粉末は、積層方向に扁平および/または抉られた状態で積層されてなり、前記基材と前記皮膜との界面が塑性変形していることを特徴とする。 In order to solve the above-described problems and achieve the object, a laminate according to the present invention includes a base material made of a metal or an alloy, and a film mainly composed of aluminum or an aluminum alloy formed on the surface of the base material. The film contains a non-metal having a melting point higher than that of the aluminum or aluminum alloy in a proportion of 10% by volume or less, and the aluminum or aluminum alloy powder as the main component of the film is flat and / or in the stacking direction. Or it is laminated | stacked in the beaten state, The interface of the said base material and the said membrane | film | coat has deformed plastically, It is characterized by the above-mentioned.
 また、本発明にかかる積層体は、金属または合金からなる基材と、前記基材表面に形成されたアルミニウムまたはアルミニウム合金を主成分とする皮膜と、を備え、前記皮膜の電気伝導率は、前記皮膜の主成分であるアルミニウムまたはアルミニウム合金のバルク材の電気伝導率の75.0%以上であって、前記皮膜の主成分であるアルミニウムまたはアルミニウム合金粉末は、積層方向に扁平および/または抉られた状態で積層されてなり、前記基材と前記皮膜との界面が塑性変形していることを特徴とする。 The laminate according to the present invention comprises a base material made of a metal or an alloy, and a film mainly composed of aluminum or an aluminum alloy formed on the surface of the base material, and the electric conductivity of the film is as follows: The electrical conductivity of the bulk material of aluminum or aluminum alloy that is the main component of the coating is 75.0% or more, and the aluminum or aluminum alloy powder that is the main component of the coating is flat and / or wrinkled in the stacking direction. The interface between the base material and the coating film is plastically deformed.
 また、本発明にかかる積層体は、上記発明において、前記皮膜の気孔率は、5.0体積%以下であることを特徴とする。 Further, the laminate according to the present invention is characterized in that, in the above invention, the porosity of the film is 5.0% by volume or less.
 また、本発明にかかる積層体は、上記発明において、前記非金属粉末は、セラミックスまたはガラスであることを特徴とする。 The laminate according to the present invention is characterized in that, in the above invention, the non-metallic powder is ceramic or glass.
 また、本発明にかかる積層体の製造方法は、金属または合金からなる基材表面にアルミニウムまたはアルミニウム合金を主成分とする皮膜を形成した積層体の製造方法であって、前記基材表面に、アルミニウムまたはアルミニウム合金の粉末を5~95体積%、アルミニウムまたはアルミニウム合金より高融点の非金属粉末を5~95体積%の割合で混合した混合粉末を、アルミニウムまたはアルミニウム合金の融点より低い温度に加熱されたガスとともに加速し、前記基材表面に固相状態のままで吹き付け、堆積させて皮膜を形成する皮膜形成工程を含み、前記皮膜中に含まれる非金属の割合は、前記混合粉末中に含まれる非金属粉末の割合の1/5以下であって、かつ、10体積%以下であることを特徴とする。 Moreover, the method for producing a laminate according to the present invention is a method for producing a laminate in which a film mainly composed of aluminum or an aluminum alloy is formed on the surface of a base material made of a metal or an alloy, Heat mixed powder of aluminum or aluminum alloy powder in a proportion of 5 to 95% by volume and non-metallic powder of higher melting point than aluminum or aluminum alloy to a temperature lower than the melting point of aluminum or aluminum alloy. A coating forming step of accelerating with the generated gas, spraying and depositing on the surface of the substrate in a solid state, and depositing to form a coating, and the ratio of nonmetal contained in the coating is in the mixed powder It is 1/5 or less of the ratio of the nonmetallic powder contained, and is 10 volume% or less.
 また、本発明にかかる積層体の製造方法は、上記発明において、前記基材表面に吹き付け前の前記混合粉末中に含まれる非金属粉末は球状であることを特徴とする。 Further, the method for producing a laminate according to the present invention is characterized in that, in the above-mentioned invention, the non-metallic powder contained in the mixed powder before spraying on the surface of the base material is spherical.
 また、本発明にかかる積層体の製造方法は、上記発明において、前記基材表面に吹き付け前の前記混合粉末中に含まれる非金属粉末の平均粒径は、30μm以上、500μm以下であることを特徴とする。 Moreover, the manufacturing method of the laminated body concerning this invention is that in the said invention, the average particle diameter of the nonmetallic powder contained in the said mixed powder before spraying on the said base material surface is 30 micrometers or more and 500 micrometers or less. Features.
 また、本発明にかかる積層体の製造方法は、上記発明において、前記非金属粉末は、セラミックスまたはガラスであることを特徴とする。 Further, the method for manufacturing a laminate according to the present invention is characterized in that, in the above invention, the non-metallic powder is ceramic or glass.
 本発明によれば、金属等の基材に、球状の非金属粉末、例えば、セラミックスやガラスの粉末を所定の割合で含むアルミニウム等の粉末をコールドスプレー法によって吹き付けて皮膜を形成することで、非金属の含有割合が低く、電気伝導性、および基材と皮膜との密着性に優れる積層体を作製することが可能となる。 According to the present invention, a non-metallic spherical powder, for example, a powder of aluminum or the like containing ceramic or glass powder at a predetermined ratio is sprayed by a cold spray method to form a film on a base material such as metal, It becomes possible to produce a laminate having a low non-metal content and excellent electrical conductivity and adhesion between the substrate and the film.
図1は、本発明の実施の形態にかかる積層体の構造を示す断面図である。FIG. 1 is a cross-sectional view showing the structure of a laminate according to an embodiment of the present invention. 図2は、本発明の実施の形態にかかる積層体の皮膜の断面のSEM写真である(500倍)。FIG. 2 is an SEM photograph of the cross section of the film of the laminate according to the embodiment of the present invention (500 times). 図3は、本発明の実施の形態にかかる積層体の皮膜の形成に使用されるコールドスプレー装置の概要を示す模式図である。FIG. 3 is a schematic diagram showing an outline of a cold spray apparatus used for forming a film of the laminate according to the embodiment of the present invention. 図4は、本発明の実施の形態で使用する球状のジルコン(D50=106~125μm)のSEM画像である。FIG. 4 is an SEM image of spherical zircon (D50 = 106 to 125 μm) used in the embodiment of the present invention. 図5は、密着強度試験(ロミュラス試験)を説明する模式図である。FIG. 5 is a schematic diagram for explaining the adhesion strength test (the Lomulus test). 図6は、本発明の実施の形態にかかる積層体の基材の種類と密着強度との関係を示す図である。FIG. 6 is a diagram showing the relationship between the type of base material and the adhesion strength of the laminate according to the embodiment of the present invention. 図7は、球状のジルコン(D50=106~125μm)を使用した積層体断面の基材と皮膜との界面近傍のSEM画像である。FIG. 7 is an SEM image of the vicinity of the interface between the base material and the coating film in the cross section of the laminate using spherical zircon (D50 = 106 to 125 μm). 図8は、球状のジルコン(D50=106~125μm)を使用した積層体の皮膜断面のSEM画像である。FIG. 8 is an SEM image of the film cross section of a laminate using spherical zircon (D50 = 106 to 125 μm). 図9は、本発明の実施の形態で使用する球状のアルミナ(D50=35μm、66μm、120μm)のSEM写真である。FIG. 9 is an SEM photograph of spherical alumina (D50 = 35 μm, 66 μm, 120 μm) used in the embodiment of the present invention. 図10は、球状のアルミナ(D50=35μm、66μm、120μm)を使用した積層体の皮膜断面のSEM画像である。FIG. 10 is an SEM image of the film cross section of the laminate using spherical alumina (D50 = 35 μm, 66 μm, 120 μm). 図11は、比較例として使用するアルミナのSEM写真である。FIG. 11 is an SEM photograph of alumina used as a comparative example. 図12は、非球状のアルミナ(D50=30μm)を使用した積層体断面の基材と皮膜との界面近傍のSEM画像である。FIG. 12 is an SEM image of the vicinity of the interface between the base material and the film of the cross section of the laminate using non-spherical alumina (D50 = 30 μm). 図13は、非球状のアルミナ(D50=30μm)を使用した積層体の皮膜断面のSEM画像である。FIG. 13 is an SEM image of the film cross section of the laminate using non-spherical alumina (D50 = 30 μm). 図14は、非球状のアルミナ(D50=57μm)を使用した積層体断面の基材と皮膜との界面近傍のSEM画像である。FIG. 14 is an SEM image of the vicinity of the interface between the base material and the film on the cross section of the laminate using non-spherical alumina (D50 = 57 μm). 図15は、非球状のアルミナ(D50=57μm)を使用した積層体の皮膜断面のSEM画像である。FIG. 15 is an SEM image of the cross-section of the laminate using non-spherical alumina (D50 = 57 μm). 図16は、非球状のアルミナ(D50=106μm)を使用した積層体の皮膜断面のSEM画像である。FIG. 16 is an SEM image of the cross section of the laminate using non-spherical alumina (D50 = 106 μm). 図17は、非球状のアルミナ(D50=212μm)を使用した積層体の皮膜断面のSEM画像である。FIG. 17 is an SEM image of the film cross section of the laminate using non-spherical alumina (D50 = 212 μm). 図18は、セラミックスを配合しないでアルミニウム皮膜を形成した積層体断面の基材と皮膜との界面近傍のSEM画像である。FIG. 18 is an SEM image of the vicinity of the interface between the base material and the film in the cross section of the laminate in which the aluminum film is formed without blending ceramics. 図19は、セラミックスを配合しないでアルミニウム皮膜を形成した積層体の皮膜断面のSEM画像である。FIG. 19 is an SEM image of a cross section of a laminate in which an aluminum film is formed without blending ceramics. 図20は、球状のチタン(D50=30μm)を使用した積層体の皮膜断面のSEM画像である。FIG. 20 is an SEM image of the film cross section of the laminate using spherical titanium (D50 = 30 μm). 図21は、非球状のチタン(D50=30μm)を使用した積層体の皮膜断面のSEM画像である。FIG. 21 is an SEM image of the film cross section of the laminate using non-spherical titanium (D50 = 30 μm).
 以下、本発明を実施するための形態を、図面を参照しながら詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解し得る程度に形状、大きさ、及び位置関係を概略的に示してあるに過ぎない。即ち、本発明は各図で例示された形状、大きさ、及び位置関係のみに限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the following embodiment. The drawings referred to in the following description only schematically show the shape, size, and positional relationship so that the contents of the present invention can be understood. That is, the present invention is not limited only to the shape, size, and positional relationship illustrated in each drawing.
 図1は、本発明の実施の形態にかかる積層体の構造を示す断面図である。図1に示す積層体1は、基材10と、基材10の表面に形成され、後述するコールドスプレー法によって積層され、アルミニウムまたはアルミニウム合金を主成分とする皮膜11と、からなる。積層体1は、図1のような矩形平板状に限定されるものではなく、円柱状、多角柱状などであってもよい。基材10は、金属または合金からなるものであれば、材料は限定されるものではない。 FIG. 1 is a cross-sectional view showing the structure of a laminate according to an embodiment of the present invention. A laminate 1 shown in FIG. 1 includes a base material 10 and a film 11 which is formed on the surface of the base material 10 and is laminated by a cold spray method to be described later, and mainly contains aluminum or an aluminum alloy. The laminated body 1 is not limited to the rectangular flat plate shape as shown in FIG. 1, and may be a cylindrical shape, a polygonal column shape, or the like. If the base material 10 consists of a metal or an alloy, material will not be limited.
 本発明の実施の形態にかかる積層体1において、皮膜11は、アルミニウムまたはアルミニウム合金の粉末を5~95体積%、皮膜11の主成分であるアルミニウムまたはアルミニウム合金より高融点の非金属粉末を5~95体積%の割合で混合した混合粉末を、アルミニウムまたはアルミニウム合金の融点より低い温度に加熱されたガスとともに加速し、基材10の表面に固相状態のままで吹き付けて堆積させることにより形成される。 In the laminate 1 according to the embodiment of the present invention, the film 11 is made of 5 to 95% by volume of aluminum or aluminum alloy powder, and 5% of non-metallic powder having a melting point higher than that of aluminum or aluminum alloy as the main component of the film 11. Formed by accelerating a mixed powder mixed at a rate of ˜95% by volume together with a gas heated to a temperature lower than the melting point of aluminum or aluminum alloy, and spraying and depositing it on the surface of the substrate 10 in a solid state. Is done.
 皮膜11を形成するアルミニウムまたはアルミニウム合金の粉末に非金属粉末を混合することにより、非金属粉末が基材表面に吹き付けられる際、基材表面がブラストされて基材の新生面が露出されるため、基材材料とアルミニウムまたはアルミニウム合金との金属結合の形成が容易となり、基材10と皮膜11との界面の密着強度を向上することができる。また、基材10にアルミニウムまたはアルミニウム合金の粉末および非金属粉末が衝突することにより、基剤10と皮膜11との界面で塑性変形が生じる。この界面での塑性変形によるアンカー効果で基材10と皮膜11との密着性が向上する。さらに、アルミニウムまたはアルミニウム合金の粉末に非金属粉末を混合することにより、基材10上に堆積したアルミニウムまたはアルミニウム合金をピーニングできるため、気孔の少ない緻密な皮膜11を得ることができる。 By mixing the nonmetallic powder with the aluminum or aluminum alloy powder forming the coating 11, when the nonmetallic powder is sprayed onto the surface of the base material, the base material surface is blasted to expose the new surface of the base material. Formation of a metal bond between the base material and aluminum or an aluminum alloy is facilitated, and the adhesion strength at the interface between the base material 10 and the film 11 can be improved. Further, when aluminum or aluminum alloy powder and non-metallic powder collide with the base material 10, plastic deformation occurs at the interface between the base 10 and the coating 11. The adhesion between the base material 10 and the film 11 is improved by the anchor effect caused by plastic deformation at the interface. Furthermore, since the aluminum or aluminum alloy deposited on the base material 10 can be peened by mixing the nonmetallic powder with the aluminum or aluminum alloy powder, the dense film 11 with few pores can be obtained.
 また、皮膜11は、主成分である略球状のアルミニウムまたはアルミニウム合金粉末が基材10に吹き付けられて堆積する際、塑性変形して積層方向に扁平(積層方向の銅粉末の径が、積層方向と垂直な方向の径より小さい)および/または抉られた状態(非金属粉末により抉られる)で積層されてなる。皮膜11を形成するアルミニウムまたはアルミニウム合金粉末の扁平および/または抉られた状態は、例えば、光学顕微鏡または(走査型)電子顕微鏡で観察することができる。図2は、本発明の実施の形態にかかる積層体1の皮膜11の断面のSEM写真である。図2に示す皮膜11は、略球状のアルミニウム粉末と非金属粉末(ガラス)を後述するコールドスプレー装置を用いて成膜されたものであるが、主成分であるアルミニウム粉末は、成膜時の塑性変形と非金属材料によるピーニングおよびブラスト効果により、積層方向に扁平な状態(積層方向の銅粉末の径が、積層方向と垂直な方向の径より小さい)および/または抉られた状態(非金属粉末により抉られる)で積層されることが確認できる。 The coating 11 is plastically deformed and flattened in the stacking direction when the substantially spherical aluminum or aluminum alloy powder, which is the main component, is sprayed on the substrate 10 (the diameter of the copper powder in the stacking direction is the stacking direction). Smaller than the diameter in the direction perpendicular to the surface) and / or in a rolled state (wound by non-metallic powder). The flattened and / or beaten state of the aluminum or aluminum alloy powder forming the film 11 can be observed, for example, with an optical microscope or a (scanning) electron microscope. FIG. 2 is an SEM photograph of a cross section of the film 11 of the laminate 1 according to the embodiment of the present invention. The film 11 shown in FIG. 2 is formed by using a cold spray device, which will be described later, with a substantially spherical aluminum powder and a non-metallic powder (glass). Due to plastic deformation and peening and blasting effect due to non-metallic material, the layer is flat in the laminating direction (the diameter of the copper powder in the laminating direction is smaller than the diameter in the direction perpendicular to the laminating direction) and / or is crushed (non-metallic) It can be confirmed that they are laminated.
 本実施の形態で使用するアルミニウムまたはアルミニウム合金の粉末は、平均粒径が20μm~150μmである。平均粒径が20μm~150μmの場合、流動性がよく、入手も容易となる。アルミニウムまたはアルミニウム合金粉末は、例えばガスアトマイズ法により製造される。 The average particle size of the aluminum or aluminum alloy powder used in this embodiment is 20 μm to 150 μm. When the average particle size is 20 μm to 150 μm, the fluidity is good and it is easy to obtain. The aluminum or aluminum alloy powder is produced, for example, by a gas atomizing method.
 混合粉末中のアルミニウムまたはアルミニウム合金の粉末と非金属粉末の混合割合は、アルミニウムまたはアルミニウム合金の粉末が5~95体積%に対し、非金属粉末が5~95体積%である。非金属粉末の配合割合が5体積%未満である場合、十分なブラスト効果およびピーニング効果が得られないため、基材10と皮膜11との界面の密着強度に優れ、緻密な皮膜11を有する積層体1を得ることができない。また、非金属粉末の配合割合が95体積%より多い場合、アルミニウムまたはアルミニウム合金を主成分とする皮膜11が形成されにくくなる。混合粉末中の非金属粉末の配合割合は、10~50体積%であることが好ましく、30~50体積%であることが特に好ましい。 The mixing ratio of the aluminum or aluminum alloy powder and the nonmetallic powder in the mixed powder is 5 to 95 vol% for the aluminum or aluminum alloy powder and 5 to 95 vol% for the nonmetallic powder. When the blending ratio of the non-metallic powder is less than 5% by volume, a sufficient blasting effect and peening effect cannot be obtained, so that the laminate having the dense coating 11 with excellent adhesion strength at the interface between the substrate 10 and the coating 11 Can't get body 1. In addition, when the blending ratio of the nonmetallic powder is more than 95% by volume, it is difficult to form the film 11 mainly composed of aluminum or an aluminum alloy. The blending ratio of the non-metallic powder in the mixed powder is preferably 10 to 50% by volume, particularly preferably 30 to 50% by volume.
 混合粉末は、アルミニウムまたはアルミニウム合金の粉末と非金属粉末とを、ふるい等により混合して調製することができる。 The mixed powder can be prepared by mixing aluminum or aluminum alloy powder and non-metallic powder with a sieve or the like.
 基材10の表面に、アルミニウムまたはアルミニウム合金の粉末とともに吹き付けられる非金属粉末は、粒状、特に球状であることが好ましい。棒状、板状、鱗片状、多面体状、破砕粉等の非球状の非金属粉末は、皮膜11内に残存しやすいため好ましくない。使用する非金属粉末は、すべてが球状であることが好ましいが、少なくとも50%以上、好ましくは、70%以上が球状であればよい。 The non-metallic powder sprayed onto the surface of the substrate 10 together with the aluminum or aluminum alloy powder is preferably granular, particularly spherical. Non-spherical non-metallic powders such as rods, plates, scales, polyhedrons, and crushed powders are not preferred because they tend to remain in the film 11. All of the non-metallic powders used are preferably spherical, but at least 50% or more, preferably 70% or more may be spherical.
 皮膜11中の非金属の混合割合は、混合粉末中に含まれる非金属粉末の割合の1/5以下であって、かつ、10体積%以下である。皮膜11中の非金属の混合割合を上記のようにすることにより、皮膜11の電気伝導性を向上することができる。 The mixing ratio of the nonmetal in the film 11 is 1/5 or less of the ratio of the nonmetallic powder contained in the mixed powder and 10 volume% or less. By setting the mixing ratio of the nonmetal in the film 11 as described above, the electrical conductivity of the film 11 can be improved.
 また、基材10の表面に、アルミニウムまたはアルミニウム合金の粉末とともに吹き付けられる非金属粉末の平均粒径(D50)は、30~500μmであることが好ましい。非金属粉末の平均粒径(D50)が30μmより小さい場合、皮膜11内の非金属含有量が高くなり、ピーニング効果も小さくなる。一方、非金属粉末の平均粒径(D50)が500μmより大きい場合、後述するコールドスプレー装置のガスノズルが目詰まりしやすくなるとともに、基材10や堆積した皮膜11にエロージョンを生じる恐れがある。セラミックスの平均粒径(D50)は、100~200μmであることが特に好ましい。 The average particle diameter (D50) of the nonmetallic powder sprayed on the surface of the base material 10 together with the aluminum or aluminum alloy powder is preferably 30 to 500 μm. When the average particle diameter (D50) of the non-metallic powder is smaller than 30 μm, the non-metal content in the coating 11 is increased and the peening effect is also decreased. On the other hand, when the average particle diameter (D50) of the non-metallic powder is larger than 500 μm, a gas nozzle of a cold spray apparatus described later is likely to be clogged, and erosion may occur in the base material 10 and the deposited film 11. The average particle size (D50) of the ceramic is particularly preferably 100 to 200 μm.
 本実施の形態で使用する非金属粉末は、球状をなし、上記の平均粒径を有する物であれば限定されるものではないが、基材10の表面をブラストして新生面を露出させ、アルミニウムまたはアルミニウム合金との金属結合を形成させるとともに、堆積したアルミニウムまたはアルミニウム合金をピーニングし緻密な皮膜11を得る観点から、所定の硬度を有するものであることが好ましい。たとえば、非金属粉末の硬度は、500Hv以上であることが好ましい。 The non-metallic powder used in the present embodiment is not limited as long as it is spherical and has the above average particle diameter, but the surface of the substrate 10 is blasted to expose the new surface, and aluminum. Alternatively, it is preferable to have a predetermined hardness from the viewpoint of forming a metal bond with an aluminum alloy and peening the deposited aluminum or aluminum alloy to obtain a dense film 11. For example, the hardness of the nonmetallic powder is preferably 500 Hv or more.
 基材10に対するアンカー効果、および皮膜11へのピーニング効果を得る観点では、非金属粉末に代えて所定の硬度を有する金属または合金粉末を使用しても同様の効果を得ることができるが、金属または合金粉末を使用した場合、混合した金属または合金とアルミニウムまたはアルミニウム合金、混合した金属または合金同士、混合した金属または合金と基材10とが金属結合を生じ、混合した金属または合金が皮膜11中に残存する割合が高くなるため、非金属粉末を使用することが好ましい。 From the viewpoint of obtaining the anchor effect on the base material 10 and the peening effect on the film 11, the same effect can be obtained even if a metal or alloy powder having a predetermined hardness is used instead of the non-metal powder. Alternatively, when alloy powder is used, the mixed metal or alloy and aluminum or aluminum alloy, the mixed metal or alloy, the mixed metal or alloy and the substrate 10 form a metal bond, and the mixed metal or alloy forms the coating 11. It is preferable to use non-metallic powder because the ratio remaining in the inside becomes high.
 本実施の形態で使用する非金属粉末としては、球状をなし、上記の平均粒径を有する物であれば限定されるものではないが、ソーダ石灰ガラス、石英ガラス等のガラス、ジルコン、アルミナ、ジルコニア、窒化アルミニウム等のセラミックス等を使用することができる。 The non-metallic powder used in the present embodiment is not limited as long as it has a spherical shape and has the above average particle diameter, but glass such as soda lime glass and quartz glass, zircon, alumina, Ceramics such as zirconia and aluminum nitride can be used.
 本実施の形態にかかる積層体1において、皮膜11の電気伝導率は、皮膜11の主成分であるアルミニウムまたはアルミニウム合金のバルク材の電気伝導率の75.0%以上である。皮膜11の電気伝導率が、皮膜11の主成分のバルク材の電気伝導率の75.0%以上であることにより、積層体1の導電部材としての使用が可能となる。皮膜11の電気伝導率は、皮膜11の主成分であるアルミニウムまたはアルミニウム合金のバルク材の電気伝導率の80.0%以上であることが好ましく、85.0%以上であることが特に好ましい。皮膜11の電気伝導率は、たとえば、皮膜11の材料であるアルミニウムとして、純度が99.5%のアルミニウム粉末を使用した場合は、A1050の電気伝導率を100%とした場合の割合で示す。 In the laminate 1 according to the present embodiment, the electric conductivity of the film 11 is 75.0% or more of the electric conductivity of the bulk material of aluminum or aluminum alloy which is the main component of the film 11. When the electric conductivity of the film 11 is 75.0% or more of the electric conductivity of the bulk material of the main component of the film 11, the laminate 1 can be used as a conductive member. The electric conductivity of the film 11 is preferably 80.0% or more, and particularly preferably 85.0% or more of the electric conductivity of the bulk material of aluminum or aluminum alloy which is the main component of the film 11. The electrical conductivity of the film 11 is expressed as a ratio when the electrical conductivity of A1050 is 100% when aluminum powder having a purity of 99.5% is used as the material of the film 11, for example.
 本実施の形態にかかる積層体1において、皮膜11の気孔率は、5.0体積%以下であることが好ましい。基材10と皮膜11との界面の密着強度向上のために、皮膜11の気孔率が5.0体積%以下であることが好ましく、皮膜11の気孔率は、1.0体積%であることがより好ましく、0.5体積%以下が特に好ましい。 In the laminate 1 according to the present embodiment, the porosity of the film 11 is preferably 5.0% by volume or less. In order to improve the adhesion strength at the interface between the base material 10 and the film 11, the porosity of the film 11 is preferably 5.0% by volume or less, and the porosity of the film 11 is 1.0% by volume. Is more preferable, and 0.5% by volume or less is particularly preferable.
 つづいて、本実施の形態にかかる積層体1の製造方法について説明する。積層体1は、基材10の表面に、アルミニウムまたはアルミニウム合金の粉末を5~95体積%、非金属粉末を5~95体積%の割合で混合した混合粉末を、アルミニウムまたはアルミニウム合金の融点より低い温度に加熱されたガスとともに加速し、基材10の表面に固相状態のままで吹き付けて堆積させて皮膜11を形成することにより製造することができる。 Then, the manufacturing method of the laminated body 1 concerning this Embodiment is demonstrated. In the laminate 1, a mixed powder obtained by mixing 5 to 95% by volume of an aluminum or aluminum alloy powder and 5 to 95% by volume of a non-metallic powder on the surface of the substrate 10 is obtained from the melting point of the aluminum or aluminum alloy. The film 11 can be manufactured by accelerating with a gas heated to a low temperature and spraying and depositing on the surface of the base material 10 in a solid state to form the film 11.
 基材10の表面への皮膜11の形成は、上述した混合粉末を用いてコールドスプレー法により行なう。皮膜11に形成について、図3を参照して説明する。図3は、本実施の形態にかかる積層体1の皮膜11の形成に使用されるコールドスプレー装置20の概要を示す模式図である。 Formation of the film 11 on the surface of the substrate 10 is performed by the cold spray method using the above-described mixed powder. The formation on the film 11 will be described with reference to FIG. FIG. 3 is a schematic diagram showing an outline of the cold spray device 20 used for forming the film 11 of the laminate 1 according to the present embodiment.
 コールドスプレー装置20は、圧縮ガスを加熱するガス加熱器21と、基材10に噴射する粉末材料を収容し、スプレーガン22に供給する粉末供給装置23と、スプレーガン22で加熱された圧縮ガスと混合された粉末材料を基材10に噴射するガスノズル24とを備えている。ここでいう粉末材料は、アルミニウムまたはアルミニウム合金の粉末を5~95体積%、非金属粉末を5~95体積%の割合で混合した混合粉末である。 The cold spray device 20 contains a gas heater 21 that heats the compressed gas, a powder supply device 23 that contains the powder material to be sprayed onto the base material 10 and supplies the powder material to the spray gun 22, and a compressed gas heated by the spray gun 22. And a gas nozzle 24 for injecting the mixed powder material onto the substrate 10. The powder material here is a mixed powder in which aluminum or aluminum alloy powder is mixed in a proportion of 5 to 95% by volume and nonmetallic powder in a proportion of 5 to 95% by volume.
 圧縮ガスとしては、ヘリウム、窒素、空気などが使用される。供給された圧縮ガスは、バルブ25および26により、ガス加熱器21と粉末供給装置23にそれぞれ供給される。ガス加熱器21に供給された圧縮ガスは、例えば100℃以上であって、皮膜11を形成するための粉末材料であるアルミニウムまたはアルミニウム合金の融点以下の温度に加熱された後、スプレーガン22に供給される。圧縮ガスの加熱温度は、好ましくは100℃以上であって粉末材料であるアルミニウムまたはアルミニウム合金の融点以下の温度である。 As the compressed gas, helium, nitrogen, air or the like is used. The supplied compressed gas is supplied to the gas heater 21 and the powder supply device 23 by valves 25 and 26, respectively. The compressed gas supplied to the gas heater 21 is, for example, 100 ° C. or higher and heated to a temperature not higher than the melting point of aluminum or aluminum alloy, which is a powder material for forming the film 11, and then applied to the spray gun 22. Supplied. The heating temperature of the compressed gas is preferably 100 ° C. or higher and a temperature not higher than the melting point of aluminum or aluminum alloy as a powder material.
 粉末供給装置23に供給された圧縮ガスは、粉末供給装置23内の、粉末材料(アルミニウムまたはアルミニウム合金粉末と非金属粉末の混合粉末)をスプレーガン22に所定の吐出量となるように供給する。加熱された圧縮ガスは先細末広形状をなすガスノズル24により超音速流(約340m/s以上)にされる。また、圧縮ガスのガス圧力は、1MPa~5MPa程度とすることが好ましく、2MPa~5MPa程度とすることがさらに好ましい。圧縮ガスの圧力を2MPa~5MPa程度とすることにより、基材10と皮膜11との間の密着強度の向上を図ることができる。スプレーガン22に供給された粉末材料は、この圧縮ガスの超音速流の中への投入により加速され、固相状態のまま基材10に高速で衝突して皮膜11を形成する。なお、アルミニウムまたはアルミニウム合金粉末と、非金属粉末の混合粉末を基材10に固相状態で衝突させて皮膜11を形成できる装置であれば、図2のコールドスプレー装置20に限定されるものではない。 The compressed gas supplied to the powder supply device 23 supplies the powder material (a mixed powder of aluminum or aluminum alloy powder and nonmetal powder) in the powder supply device 23 to the spray gun 22 so as to have a predetermined discharge amount. . The heated compressed gas is converted into a supersonic flow (about 340 m / s or more) by a gas nozzle 24 having a tapered wide shape. The gas pressure of the compressed gas is preferably about 1 MPa to 5 MPa, more preferably about 2 MPa to 5 MPa. By setting the pressure of the compressed gas to about 2 MPa to 5 MPa, it is possible to improve the adhesion strength between the base material 10 and the film 11. The powder material supplied to the spray gun 22 is accelerated by the injection of this compressed gas into the supersonic flow, and collides with the base material 10 at a high speed in the solid state to form the film 11. Note that the apparatus is not limited to the cold spray apparatus 20 of FIG. 2 as long as the apparatus can form the coating 11 by colliding a mixed powder of aluminum or aluminum alloy powder and non-metallic powder with the base material 10 in a solid state. Absent.
 上述した実施の形態によれば、アルミニウムまたはアルミニウム合金粉末に、球状の非金属粉末を所定の割合で混合した混合粉末を、コールドスプレー法により基材の表面に吹き付けることにより、非金属含量が所定の割合以下の皮膜を作製することができるので、電気伝導性および基材と皮膜との密着性に優れる積層体を得ることができる。 According to the embodiment described above, a mixed powder obtained by mixing a spherical nonmetallic powder in a predetermined ratio with aluminum or an aluminum alloy powder is sprayed onto the surface of the substrate by a cold spray method, whereby the nonmetallic content is predetermined. Therefore, a laminate having excellent electrical conductivity and adhesion between the substrate and the film can be obtained.
(実施例1)
 本実施の形態にかかる積層体1の製造方法により、材質の異なる基材10上に、アルミニウム粉末を50体積%、非金属粉末として、ジルコン(ZrSiO)を50体積%含む混合粉末を、図3のコールドスプレー装置20により吹き付けてアルミニウムを主成分とする皮膜11(厚さ0.5mm)を形成した積層体1を作製し、密着強度について評価を行った。使用したジルコンは、図4に示すように球状をなしている。また、基材10と皮膜11との界面の密着強度は、図5に示す密着強度試験装置30により評価した。この方法では、基材10上に形成した皮膜11に接着剤33を介してスタッドピン32(Φ4.1mm)を接着し、接着剤33を介して皮膜11に接着したスタッドピン32の上方から、孔部31aを有する支持台31(Φ7.5~9.5mm)を上方から挿通した後、スタッドピン32を鉛直方向の上方に引っ張ることにより、基材10と皮膜11との間の密着強度を評価した。評価は、接着が剥離した時点での引張応力と剥離状態により行なった。
(Example 1)
A mixed powder containing 50% by volume of aluminum powder and 50% by volume of zircon (ZrSiO 4 ) as a non-metallic powder is formed on the base material 10 of different materials by the method for manufacturing the laminate 1 according to the present embodiment. 3 was sprayed by the cold spray device 3 to form a laminate 1 having a film 11 (thickness 0.5 mm) containing aluminum as a main component, and the adhesion strength was evaluated. The zircon used has a spherical shape as shown in FIG. Further, the adhesion strength at the interface between the substrate 10 and the film 11 was evaluated by an adhesion strength test apparatus 30 shown in FIG. In this method, a stud pin 32 (Φ4.1 mm) is bonded to the film 11 formed on the substrate 10 via the adhesive 33, and from above the stud pin 32 bonded to the film 11 via the adhesive 33, After inserting the support base 31 (Φ7.5 to 9.5 mm) having the hole portion 31a from above, the stud pin 32 is pulled upward in the vertical direction, whereby the adhesion strength between the base material 10 and the film 11 is increased. evaluated. The evaluation was performed based on the tensile stress and the peeled state at the time when the adhesive peeled off.
 基材10として、アルミニウム(A1050-H24、A5052-H114、A6061-T6)、ステンレス(SUS430、SUS304)、インコネル600、リン青銅、真鍮、ニッケル-リンめっき(C1020-1/4H)、銅(C1020-H)を用いた。各基材10に、コールドスプレー装置20により、圧縮ガス:窒素、圧縮ガス温度:150℃、圧縮ガス圧力:5MPa、ワーキングディスタンス(WD):25mm、トラバース速度:400mm/sで、アルミニウム粉末(D50=30μm)を50体積%、球状のジルコン粉末(D50=106~125μm)を50体積%含む混合粉末を吹き付けて皮膜11を形成し、積層体1を作製した。なお、アルミニウム粉末は、ガスアトマイズ法により製造されたものを用いた。図6に、実施例1にかかる積層体1の基材10の種類と密着強度との関係を示す。 As the base material 10, aluminum (A1050-H24, A5052-H114, A6061-T6), stainless steel (SUS430, SUS304), Inconel 600, phosphor bronze, brass, nickel-phosphorus plating (C1020-1 / 4H), copper (C1020) -H) was used. Aluminum powder (D50) was applied to each substrate 10 by a cold spray device 20 at a compressed gas: nitrogen, a compressed gas temperature: 150 ° C., a compressed gas pressure: 5 MPa, a working distance (WD): 25 mm, a traverse speed: 400 mm / s. = 30 μm) and a mixed powder containing 50% by volume of spherical zircon powder (D50 = 106 to 125 μm) was sprayed to form the film 11, and the laminate 1 was produced. In addition, what was manufactured by the gas atomizing method was used for the aluminum powder. In FIG. 6, the relationship between the kind of base material 10 of the laminated body 1 concerning Example 1, and adhesive strength is shown.
(比較例1)
 比較例1として、実施例1と同様の基材10に、アルミニウム粉末(D50=30μm)100体積%の粉末を、実施例1と同様の条件で吹き付けて皮膜11を形成し、積層体1を作製した。結果を図6に示す。
(Comparative Example 1)
As Comparative Example 1, 100% by volume of aluminum powder (D50 = 30 μm) powder was sprayed on the same base material 10 as in Example 1 to form a film 11 to form a laminate 1. Produced. The results are shown in FIG.
 図6に示すように、球状のジルコン粉末をアルミニウム粉末に混合した混合粉末を、コールドスプレー装置20により基材10に吹き付けて皮膜11を形成することにより、いずれの基材10においても、アルミニウム粉末100体積%により形成した皮膜11より、基材10と皮膜11との密着強度が向上した。 As shown in FIG. 6, a mixed powder obtained by mixing spherical zircon powder with aluminum powder is sprayed onto the base material 10 by a cold spray device 20 to form a film 11. The adhesion strength between the base material 10 and the film 11 was improved from the film 11 formed by 100% by volume.
(実施例2~4)
 基材10(C1020-H)に、コールドスプレー装置20により、圧縮ガス:窒素、圧縮ガス温度:150℃、圧縮ガス圧力:5MPa、ワーキングディスタンス(WD):25mm、トラバース速度:400mm/sで、アルミニウム粉末(D50=30μm、純度99.5%)への球状のジルコン粉末(D50=106~125μm)の配合割合を、10体積%(実施例2)、30体積%(実施例3)、50体積%(実施例4)に変更した混合粉末を吹付けて皮膜11(厚さ0.5mm)を形成し、積層体1を作製した。作製した積層体1について、皮膜11内のジルコン含有量、気孔率、電気伝導性を測定した。結果を表1に示す。また、図7に、実施例2~4で作製した積層体断面の基材と皮膜との界面近傍のSEM画像、図8に皮膜断面のSEM画像を示す。図7(a)および図8(a)が、ジルコン粉体の割合が10体積%の混合粉体により形成された実施例2、図7(b)および図8(b)が30体積%の混合粉体により形成された実施例3、図7(c)および図8(c)が50体積%の混合粉体により形成された実施例4である。図7(a)~(c)では、混合粉体中のジルコンの混合割合が大きいほど、基材10の表面のブラスト効果が大きいことが確認された。
(Examples 2 to 4)
The substrate 10 (C1020-H) was compressed by a cold spray device 20 with compressed gas: nitrogen, compressed gas temperature: 150 ° C., compressed gas pressure: 5 MPa, working distance (WD): 25 mm, traverse speed: 400 mm / s, The mixing ratio of the spherical zircon powder (D50 = 106 to 125 μm) to the aluminum powder (D50 = 30 μm, purity 99.5%) is 10 volume% (Example 2), 30 volume% (Example 3), 50 The mixed powder changed to volume% (Example 4) was sprayed to form the film 11 (thickness 0.5 mm), and the laminate 1 was produced. About the produced laminated body 1, the zircon content in the membrane | film | coat 11, a porosity, and electrical conductivity were measured. The results are shown in Table 1. FIG. 7 shows an SEM image in the vicinity of the interface between the base material of the laminate and the film produced in Examples 2 to 4, and FIG. 8 shows an SEM image of the film cross section. FIGS. 7 (a) and 8 (a) are examples 2 formed with a mixed powder having a zircon powder ratio of 10% by volume, FIGS. 7 (b) and 8 (b) are 30% by volume. Example 3 formed with the mixed powder, and FIG. 7C and FIG. 8C are Example 4 formed with 50% by volume of the mixed powder. 7 (a) to 7 (c), it was confirmed that the blasting effect on the surface of the substrate 10 was larger as the mixing ratio of zircon in the mixed powder was larger.
 皮膜11内のジルコン含有量は、皮膜11断面のSEM画像について、アルミニウムを黒、ジルコンを白とする二元化する画像処理を行い、皮膜11断面におけるジルコンの割合により算出した。皮膜11の気孔率は、皮膜11の断面のSEM画像について、気孔を黒、アルミニウムおよびジルコン(またはアルミナ)等の皮膜部分を白とする二元化する画像処理を行い、皮膜11に対する気孔の割合により算出した。電気伝導性は、積層体1から皮膜11部分を2mm×2mm×40mmの角柱状に切り出し、測定距離が23mmとなる測定点の間に測定電流(1A)を流して4端子法により電位を測定し、A1050-H24の電位に対する電気伝導率(%)として表した。 The zircon content in the film 11 was calculated from the SEM image of the cross section of the film 11 by performing binary image processing with aluminum as black and zircon as white, and the ratio of zircon in the cross section of the film 11. The porosity of the film 11 is the SEM image of the cross-section of the film 11 by performing image processing for dualizing the pores to be black and the film part such as aluminum and zircon (or alumina) to be white, and the ratio of the pores to the film 11 Calculated by For electrical conductivity, a portion of the film 11 is cut out from the laminate 1 into a 2 mm × 2 mm × 40 mm prismatic shape, and a measurement current (1A) is passed between measurement points where the measurement distance is 23 mm, and the potential is measured by the 4-terminal method. The electric conductivity (%) with respect to the potential of A1050-H24.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例5~7)
 実施例2~4と同様の条件にて、アルミニウム粉末(D50=30μm)に混合するセラミックス粉末を球状のアルミナ(Al)に変更して積層体1を作製した。配合するアルミナは、D50=35μm(実施例5)、D50=66μm(実施例6)、D50=120μm(実施例7)のものを使用した。図9に、使用した球状のアルミナのSEM写真を示す。図9(a)がD50=350μm、図9(b)がD50=66μm、図9(c)が120μmのアルミナである。なお、混合粉末中のアルミナの配合割合は、実施例5~7において、いずれも50体積%である。作製した実施例5~7にかかる積層体1について、皮膜11内のジルコン含有量、気孔率、電気伝導性を測定した。結果を表1に示す。また、図10に、実施例5~7の積層体1の皮膜断面のSEM画像を示す。図10(a)が、アルミナD50=35μm(実施例5)、図10(b)がアルミナD50=66μm(実施例6)、図10(c)がアルミナD50=120μm(実施例7)である。
(Examples 5 to 7)
Under the same conditions as in Examples 2 to 4, the ceramic powder mixed with the aluminum powder (D50 = 30 μm) was changed to spherical alumina (Al 2 O 3 ) to produce a laminate 1. The alumina used was D50 = 35 μm (Example 5), D50 = 66 μm (Example 6), and D50 = 120 μm (Example 7). FIG. 9 shows an SEM photograph of the spherical alumina used. 9A shows alumina with D50 = 350 μm, FIG. 9B shows alumina with D50 = 66 μm, and FIG. 9C shows 120 μm. The mixing ratio of alumina in the mixed powder is 50% by volume in each of Examples 5 to 7. For the laminate 1 according to Examples 5 to 7, the zircon content, porosity, and electrical conductivity in the film 11 were measured. The results are shown in Table 1. FIG. 10 shows SEM images of the film cross-sections of the laminates 1 of Examples 5-7. 10A shows alumina D50 = 35 μm (Example 5), FIG. 10B shows alumina D50 = 66 μm (Example 6), and FIG. 10C shows alumina D50 = 120 μm (Example 7). .
(比較例2~10)
 実施例2~4と同様の条件にて、アルミニウム粉末(D50=30μm)に混合するセラミックス粉末を、非球状のアルミナ(Al)に変更して積層体1を作製した。配合するアルミナは、D50=30μm(比較例2~4)、D50=57μm(比較例5~7)、D50=106~125μm(比較例8)、D50=212~250μm(比較例9)のものを使用した。混合粉末中のアルミナの配合割合についても、10体積%、30体積%、50体積%に変更して積層体1を作製した。
(Comparative Examples 2 to 10)
Under the same conditions as in Examples 2 to 4, the ceramic powder mixed with the aluminum powder (D50 = 30 μm) was changed to non-spherical alumina (Al 2 O 3 ) to produce a laminate 1. The alumina to be blended is D50 = 30 μm (Comparative Examples 2 to 4), D50 = 57 μm (Comparative Examples 5 to 7), D50 = 106 to 125 μm (Comparative Example 8), and D50 = 212 to 250 μm (Comparative Example 9). It was used. Laminate 1 was prepared by changing the blending ratio of alumina in the mixed powder to 10% by volume, 30% by volume, and 50% by volume.
 図11に、使用した非球状のアルミナ(D50=57μm)のSEM写真を示す。その他の比較例で使用したアルミナ(D50=30μm、106~125μm、212~20μm)は、図11に示すアルミナ(D50=57μm)と同様の粉砕状の形状ものである。また、実施例2~4と同様の条件にて、アルミニウム粉末のみを基材10に吹き付けて積層体1を作製した(比較例10)。比較例2~10にかかる積層体1について、皮膜11内のアルミナ含有量、気孔率、電気伝導性を測定した。結果を表1に示す。 FIG. 11 shows a SEM photograph of the used non-spherical alumina (D50 = 57 μm). The alumina (D50 = 30 μm, 106 to 125 μm, 212 to 20 μm) used in the other comparative examples has a pulverized shape similar to the alumina (D50 = 57 μm) shown in FIG. Further, under the same conditions as in Examples 2 to 4, only the aluminum powder was sprayed onto the base material 10 to produce a laminate 1 (Comparative Example 10). For the laminates 1 according to Comparative Examples 2 to 10, the alumina content, the porosity, and the electrical conductivity in the coating film 11 were measured. The results are shown in Table 1.
 また、図12に、比較例2~4の積層体1断面の基材10と皮膜11との界面近傍のSEM画像、図13に皮膜11断面のSEM画像を示す。図12(a)および図13(a)が、アルミナ(D50=30μm)粉体の割合が10体積%の混合粉体により形成された比較例2、図12(b)および図13(b)がアルミナ(D50=30μm)粉体の割合が30体積%の混合粉体により形成された比較例3、図12(c)および図13(c)がアルミナ(D50=30μm)粉体の割合が50体積%の混合粉体により形成された比較例4である。 FIG. 12 shows an SEM image in the vicinity of the interface between the base material 10 and the film 11 in the cross section of the laminate 1 of Comparative Examples 2 to 4, and FIG. 13 shows an SEM image in the cross section of the film 11. FIGS. 12 (a) and 13 (a) show comparative example 2, FIG. 12 (b) and FIG. 13 (b) in which the proportion of alumina (D50 = 30 μm) powder is formed by a mixed powder of 10% by volume. Comparative Example 3 in which the ratio of the alumina (D50 = 30 μm) powder is 30% by volume, and FIGS. 12 (c) and 13 (c) show the ratio of the alumina (D50 = 30 μm) powder. It is the comparative example 4 formed with 50 volume% of mixed powder.
 図14に、比較例5~7の積層体1断面の基材10と皮膜11との界面近傍のSEM画像、図15に皮膜断面のSEM画像を示す。図14(a)および図15(a)が、アルミナ(D50=57μm)粉体の割合が10体積%の混合粉体により形成された比較例5、図14(b)および図15(b)がアルミナ(D50=57μm)粉体の割合が30体積%の混合粉体により形成された比較例6、図14(c)および図15(c)がアルミナ(D50=57μm)粉体の割合が50体積%の混合粉体により形成された比較例7である。 FIG. 14 shows an SEM image in the vicinity of the interface between the base material 10 and the film 11 in the cross section of the laminate 1 of Comparative Examples 5 to 7, and FIG. 15 shows an SEM image of the film cross section. FIGS. 14 (a) and 15 (a) show Comparative Example 5, FIG. 14 (b) and FIG. 15 (b) in which the proportion of alumina (D50 = 57 μm) powder is 10% by volume. Comparative Example 6, in which the proportion of alumina (D50 = 57 μm) powder is 30% by volume, FIG. 14 (c) and FIG. 15 (c) are the proportions of alumina (D50 = 57 μm) powder. It is the comparative example 7 formed with 50 volume% of mixed powder.
 また、図16および図17に、比較例8(アルミナD50=106~125μm)および比較例9(アルミナD50=212~250μm)の積層体1の皮膜断面のSEM画像を示す。図18に、比較例10の積層体1断面の基材10と皮膜11との界面近傍のSEM画像、図19に皮膜11断面のSEM画像を示す。 16 and 17 show SEM images of the film cross-sections of the laminate 1 of Comparative Example 8 (Alumina D50 = 106 to 125 μm) and Comparative Example 9 (Alumina D50 = 212 to 250 μm). 18 shows an SEM image in the vicinity of the interface between the base material 10 and the film 11 in the cross section of the laminate 1 of Comparative Example 10, and FIG. 19 shows an SEM image in the cross section of the film 11.
 表1に示すように、球状のセラミックスを使用した実施例2~7の積層体は、皮膜11内のセラミックスの含有量が低く、電気伝導率も75%以上(対A1050比)と高くなる。これに対し、非球状(粉砕状)のセラミックスを使用した比較例2~9は、電気伝導率が低い。絶縁性材料であるセラミックスを含有した場合、電気伝導率が低下すると考えられるが、セラミックス含有量が低い比較例5や6であっても、十分な電気伝導性は得られなかった。これは、電気伝導性が、セラミックス含有量だけでなく、セラミックスによる皮膜11のピーニング効果にも起因するものと考えられる。本実施の形態の積層体1は、気孔率が小さく、緻密な皮膜であって、かつ皮膜11内のセラミックス含量が低いため、皮膜11の電気伝導率を向上することができる。 As shown in Table 1, the laminates of Examples 2 to 7 using spherical ceramics have a low ceramic content in the film 11 and a high electrical conductivity of 75% or more (compared to A1050). In contrast, Comparative Examples 2 to 9 using non-spherical (pulverized) ceramics have low electrical conductivity. When ceramics which is an insulating material is contained, it is considered that the electric conductivity is lowered. However, even in Comparative Examples 5 and 6 having a low ceramic content, sufficient electric conductivity was not obtained. It is considered that this is because the electrical conductivity is caused not only by the ceramic content but also by the peening effect of the coating 11 by the ceramic. Since the laminate 1 of the present embodiment has a low porosity, a dense film, and a low ceramic content in the film 11, the electrical conductivity of the film 11 can be improved.
(実施例8~14)
 実施例2~4と同様の条件にて、アルミニウム粉末(D50=30μm)に混合する非金属粉末を球状のソーダ石灰ガラスに変更して積層体1を作製した。配合するソーダ石灰ガラスは、D50=150~180μm(実施例8、9)、D50=106~125μm(実施例10~12)、D50=53~63μm(実施例13、14)のものを使用した。結果を表2に示す。
(Examples 8 to 14)
Under the same conditions as in Examples 2 to 4, the non-metallic powder mixed with the aluminum powder (D50 = 30 μm) was changed to spherical soda-lime glass to produce a laminate 1. As the soda-lime glass to be blended, those having D50 = 150 to 180 μm (Examples 8 and 9), D50 = 106 to 125 μm (Examples 10 to 12), and D50 = 53 to 63 μm (Examples 13 and 14) were used. . The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(比較例11~12)
 実施例2~4と同様の条件にて、アルミニウム粉末(D50=30μm)に混合する粉末を、球状、非球状のチタン(Ti)に変更して積層体1を作製した。配合するチタンは、D50=30μm(比較例11、12)であり、混合粉末中の配合割合は50体積%として積層体1を作製した。結果を表2に示す。また、図20に、比較例11の積層体1断面の皮膜11断面のSEM画像、図21に比較例12の積層体1の皮膜11断面のSEM画像を示す。
(Comparative Examples 11 to 12)
Under the same conditions as in Examples 2 to 4, laminate 1 was prepared by changing the powder mixed with aluminum powder (D50 = 30 μm) to spherical or non-spherical titanium (Ti). The titanium to be blended was D50 = 30 μm (Comparative Examples 11 and 12), and the laminate 1 was produced with the blending ratio in the mixed powder being 50% by volume. The results are shown in Table 2. 20 shows an SEM image of the cross section of the film 11 of the laminate 1 of Comparative Example 11, and FIG. 21 shows an SEM image of the cross section of the film 11 of the laminate 1 of Comparative Example 12.
 表2に示すように、球状のソーダ石灰ガラスを使用した実施例8~14の積層体は、皮膜11内のソーダ石灰ガラスの含有量が低く、電気伝導率も75%以上(対A1050比)と高くなる。特に、粒径D50が100以上、200以下の球状のソーダ石灰ガラスを50体積%混合した実施例9および12では、電気伝導率が90%以上(対A1050)と極めて導電性の高い積層体を得ることができた。また、混合粉末としてチタン粉末を混合した比較例11および12は、球状、非球状を問わず皮膜11内に残存し、導電性の向上は認められなかった。 As shown in Table 2, the laminates of Examples 8 to 14 using spherical soda lime glass have a low content of soda lime glass in the film 11 and an electric conductivity of 75% or more (compared to A1050). And higher. In particular, in Examples 9 and 12 in which spherical volume soda lime glass having a particle size D50 of 100 or more and 200 or less is mixed by 50% by volume, a laminate having an extremely high electrical conductivity of 90% or more (vs. A1050) is obtained. I was able to get it. Further, Comparative Examples 11 and 12 in which titanium powder was mixed as a mixed powder remained in the film 11 regardless of whether spherical or non-spherical, and no improvement in conductivity was observed.
  1 積層体
 10 基材
 11 皮膜
 20 コールドスプレー装置
 21 ガス加熱器
 22 スプレーガン
 23 粉末供給装置
 24 ガスノズル
 30 密着強度試験装置
 31 支持台
 31a 孔部
 32 スタッドピン
 33 接着剤
DESCRIPTION OF SYMBOLS 1 Laminated body 10 Base material 11 Film | membrane 20 Cold spray apparatus 21 Gas heater 22 Spray gun 23 Powder supply apparatus 24 Gas nozzle 30 Adhesion strength test apparatus 31 Support stand 31a Hole part 32 Stud pin 33 Adhesive

Claims (8)

  1.  金属または合金からなる基材と、
     前記基材表面に形成されたアルミニウムまたはアルミニウム合金を主成分とする皮膜と、
     を備え、
     前記皮膜は前記アルミニウムまたはアルミニウム合金より高融点の非金属を10体積%以下の割合で含有するとともに、前記皮膜の主成分であるアルミニウムまたはアルミニウム合金粉末は、積層方向に扁平および/または抉られた状態で積層されてなり、
     前記基材と前記皮膜との界面が塑性変形していることを特徴とする積層体。
    A base material made of metal or alloy;
    A film mainly composed of aluminum or aluminum alloy formed on the substrate surface;
    With
    The film contains a non-metal having a melting point higher than that of the aluminum or aluminum alloy in a ratio of 10% by volume or less, and the aluminum or aluminum alloy powder as the main component of the film was flattened and / or crushed in the stacking direction. Laminated in a state,
    A laminate characterized in that an interface between the substrate and the coating is plastically deformed.
  2.  金属または合金からなる基材と、
     前記基材表面に形成されたアルミニウムまたはアルミニウム合金を主成分とする皮膜と、
     を備え、
     前記皮膜の電気伝導率は、前記皮膜の主成分であるアルミニウムまたはアルミニウム合金のバルク材の電気伝導率の75.0%以上であって、
     前記皮膜の主成分であるアルミニウムまたはアルミニウム合金粉末は、積層方向に扁平および/または抉られた状態で積層されてなり、前記基材と前記皮膜との界面が塑性変形していることを特徴とする積層体。
    A base material made of metal or alloy;
    A film mainly composed of aluminum or aluminum alloy formed on the substrate surface;
    With
    The electrical conductivity of the film is 75.0% or more of the electrical conductivity of the bulk material of aluminum or aluminum alloy which is the main component of the film,
    The aluminum or aluminum alloy powder, which is the main component of the film, is laminated in a state of being flattened and / or rolled in the lamination direction, and the interface between the base material and the film is plastically deformed. Laminated body.
  3.  前記皮膜の気孔率は、5.0体積%以下であることを特徴とする請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, wherein the porosity of the film is 5.0% by volume or less.
  4.  前記非金属粉末は、セラミックスまたはガラスであることを特徴とする請求項1~3のいずれか一つに記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the non-metallic powder is ceramic or glass.
  5.  金属または合金からなる基材表面にアルミニウムまたはアルミニウム合金を主成分とする皮膜を形成した積層体の製造方法であって、
     前記基材表面に、アルミニウムまたはアルミニウム合金の粉末を5~95体積%、アルミニウムまたはアルミニウム合金より高融点の非金属粉末を5~95体積%の割合で混合した混合粉末を、アルミニウムまたはアルミニウム合金の融点より低い温度に加熱されたガスとともに加速し、前記基材表面に固相状態のままで吹き付け、堆積させて皮膜を形成する皮膜形成工程を含み、
     前記皮膜中に含まれる非金属の割合は、前記混合粉末中に含まれる非金属粉末の割合の1/5以下であって、かつ、10体積%以下であることを特徴とする積層体の製造方法。
    A method for producing a laminate in which a film mainly composed of aluminum or an aluminum alloy is formed on a surface of a substrate made of a metal or an alloy,
    A mixed powder obtained by mixing 5 to 95% by volume of an aluminum or aluminum alloy powder and 5 to 95% by volume of a nonmetallic powder having a melting point higher than that of aluminum or the aluminum alloy is mixed with the surface of the base material. Accelerating with a gas heated to a temperature lower than the melting point, spraying the substrate surface in a solid state in a solid state, and depositing to form a film,
    The ratio of nonmetal contained in the film is 1/5 or less of the ratio of nonmetal powder contained in the mixed powder and is 10% by volume or less. Method.
  6.  前記基材表面に吹き付け前の前記混合粉末中に含まれる非金属粉末は球状であることを特徴とする請求項5に記載の積層体の製造方法。 The method for producing a laminate according to claim 5, wherein the non-metallic powder contained in the mixed powder before spraying on the surface of the substrate is spherical.
  7.  前記基材表面に吹き付け前の前記混合粉末中に含まれる非金属粉末の平均粒径は、30μm以上、500μm以下であることを特徴とする請求項5または6に記載の積層体の製造方法。 The method for producing a laminate according to claim 5 or 6, wherein the average particle size of the non-metallic powder contained in the mixed powder before spraying on the surface of the base material is 30 µm or more and 500 µm or less.
  8.  前記非金属粉末は、セラミックスまたはガラスであることを特徴とする請求項5~7のいずれか一つに記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 5 to 7, wherein the non-metallic powder is ceramic or glass.
PCT/JP2015/075662 2014-09-10 2015-09-09 Laminate and laminate manufacturing method WO2016039399A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016547490A JPWO2016039399A1 (en) 2014-09-10 2015-09-09 Laminate and method for producing laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-184419 2014-09-10
JP2014184419 2014-09-10

Publications (1)

Publication Number Publication Date
WO2016039399A1 true WO2016039399A1 (en) 2016-03-17

Family

ID=55459143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075662 WO2016039399A1 (en) 2014-09-10 2015-09-09 Laminate and laminate manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2016039399A1 (en)
WO (1) WO2016039399A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019537523A (en) * 2016-10-11 2019-12-26 エフュージョンテック ピーティーワイ リミテッド Method of forming 3D object

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030219542A1 (en) * 2002-05-25 2003-11-27 Ewasyshyn Frank J. Method of forming dense coatings by powder spraying
JP2007308737A (en) * 2006-05-16 2007-11-29 Toyota Motor Corp Corrosion protection method for welded part
JP2008155206A (en) * 2006-12-20 2008-07-10 United Technol Corp <Utc> Method for coating metal matrix composite material
JP2010144224A (en) * 2008-12-19 2010-07-01 Honda Motor Co Ltd Modification treatment method for metal film, and aluminum base alloy laminated body
JP2012031443A (en) * 2010-07-28 2012-02-16 Fujimi Inc Metal powder for cold spray
JP2014095148A (en) * 2012-10-10 2014-05-22 Yokogawa Bridge Corp Method of forming rust preventive film for bridge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030219542A1 (en) * 2002-05-25 2003-11-27 Ewasyshyn Frank J. Method of forming dense coatings by powder spraying
JP2007308737A (en) * 2006-05-16 2007-11-29 Toyota Motor Corp Corrosion protection method for welded part
JP2008155206A (en) * 2006-12-20 2008-07-10 United Technol Corp <Utc> Method for coating metal matrix composite material
JP2010144224A (en) * 2008-12-19 2010-07-01 Honda Motor Co Ltd Modification treatment method for metal film, and aluminum base alloy laminated body
JP2012031443A (en) * 2010-07-28 2012-02-16 Fujimi Inc Metal powder for cold spray
JP2014095148A (en) * 2012-10-10 2014-05-22 Yokogawa Bridge Corp Method of forming rust preventive film for bridge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019537523A (en) * 2016-10-11 2019-12-26 エフュージョンテック ピーティーワイ リミテッド Method of forming 3D object
JP7092756B2 (en) 2016-10-11 2022-06-28 エフュージョンテック アイピー ピーティーワイ リミテッド How to form a 3D object

Also Published As

Publication number Publication date
JPWO2016039399A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
JP5745315B2 (en) LAMINATE AND METHOD FOR PRODUCING LAMINATE
JP4310251B2 (en) Nozzle for cold spray and method for producing cold spray coating
US10643827B2 (en) Multi-block sputtering target with interface portions and associated methods and articles
JP5676161B2 (en) Thermal spray powder and method of forming thermal spray coating
WO2012128327A1 (en) Laminate, conductive material, and process for producing laminate
JP2014240511A (en) Method of producing sprayed coating and material for flame spray
JP2010047825A (en) Metal film forming method and aerospace structural member
JP2008127676A (en) Formation method of metallic film
EP3382059B1 (en) Method for producing laminate
JP5679395B2 (en) Cold spray powder
JP7272653B2 (en) STRUCTURE, LAMINATED STRUCTURE, LAMINATED STRUCTURE MANUFACTURING METHOD AND LAMINATED STRUCTURE MANUFACTURING APPARATUS
WO2016039399A1 (en) Laminate and laminate manufacturing method
Jifeng et al. Preparation of electrical contact materials by cold gas-spray
JP5548948B2 (en) Composite material in which a metal glass sprayed coating layer is formed on a thin metal substrate and method for producing the same
JP3165145U (en) Composite material with copper or aluminum coating on thin resin
JP6014199B2 (en) Manufacturing method of laminate
JP7339538B2 (en) Metal-ceramic laminate
KR101254618B1 (en) Ceramic coating method for corrosion resistant member
JP2002309383A (en) Brittle material composite structure and production method therefor
JP5996756B2 (en) Thermal spray material
JP2004307968A (en) Energizing roll and its manufacturing method
TW201507993A (en) Aerosol coating method and plasma-resistant member formed by the same
JP2012136757A (en) Component for vacuum device, and film forming device provided therewith
Cinca i Luis et al. NiTi splat features during Vacuum Thermal Spraying onto several substrates
KR20150070623A (en) Corrosion-resistive coating structure and manufacturing method threrof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547490

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840551

Country of ref document: EP

Kind code of ref document: A1