WO2016039232A1 - 注型用エポキシ樹脂組成物 - Google Patents
注型用エポキシ樹脂組成物 Download PDFInfo
- Publication number
- WO2016039232A1 WO2016039232A1 PCT/JP2015/074917 JP2015074917W WO2016039232A1 WO 2016039232 A1 WO2016039232 A1 WO 2016039232A1 JP 2015074917 W JP2015074917 W JP 2015074917W WO 2016039232 A1 WO2016039232 A1 WO 2016039232A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- epoxy resin
- resin composition
- core
- casting
- weight
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/42—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
Definitions
- the present invention relates to an epoxy resin composition for casting that is suitable for insulation treatment of electronic equipment and the like having excellent thermal shock resistance, and a cured product obtained therefrom.
- an epoxy resin composition for casting has been used to insulate and protect coils, motors, and electric conductors of solid-insulated switchgears incorporated in electric / electronic devices.
- the casting epoxy resin composition generally comprises an epoxy resin, a curing agent and silica.
- silica By blending silica, the thermal expansion coefficient of the epoxy resin composition is lowered.
- silica is blended, the difference between the thermal expansion coefficient of the epoxy resin composition and the thermal expansion coefficient of the metal part to be insulated is reduced. Thereby, the stress which arises between a metal component and an epoxy resin composition becomes small, and it becomes difficult to generate
- Patent Literature 1 describes that internal stress is relieved by using a polyether polyol having a molecular weight of 1000 or less in a silica-filled epoxy resin.
- Patent Document 2 describes the use of a butadiene-acrylonitrile liquid rubber (CTBN) having a terminal carboxylic acid together with a large amount of silica and a polypropylene glycol having a molecular weight of 1000.
- CBN butadiene-acrylonitrile liquid rubber
- Patent Document 3 describes that a polyol can be used in a blend of an epoxy resin and a core-shell polymer. However, the polyol is only listed in the same row as the curing agent, and its purpose and effect are not described. In fact, even if a formulation is prepared based on Patent Document 3, it is difficult to make a composition having excellent thermal shock resistance.
- An object of the present invention is to provide a casting epoxy resin composition having heat resistance and improved thermal shock resistance. Another object of the present invention is to provide a cured product obtained by curing the composition.
- silica powder A
- liquid epoxy resin B
- polyether polyol C
- liquid acid anhydride D
- curing accelerator It has been found that an epoxy resin composition for casting containing E) and a core-shell polymer (F) solves the above problems, and has completed the present invention.
- the present invention is a casting comprising silica powder (A), liquid epoxy resin (B), polyether polyol (C), liquid acid anhydride (D), curing accelerator (E) and core-shell polymer (F).
- the present invention relates to an epoxy resin composition.
- the content of the polyether polyol (C) is preferably 10 to 30 parts by weight with respect to 100 parts by weight of the liquid epoxy resin (B).
- polyether polyol (C) is a polyoxyalkylene diol.
- the polyether polyol (C) is selected from polypropylene glycol and polytetramethylene glycol.
- the polyether polyol (C) is preferably polypropylene glycol.
- the polyether polyol (C) preferably has an average molecular weight of 400 or more and 5000 or less.
- the polyether polyol (C) preferably includes a polyether polyol (C1) having an average molecular weight of 400 or more and less than 2500 and a polyether polyol (C2) having an average molecular weight of 2500 or more and 5000 or less.
- the polyether polyol (C2) is preferably 50 to 90% by weight with respect to 100% by weight of the total of the polyether polyol (C1) and the polyether polyol (C2).
- the ratio of the core layer in the core-shell polymer (F) is 80 to 95% by weight and the methyl ethyl ketone insoluble content of the core-shell polymer is 95% by weight or more.
- the core layer in the core-shell polymer (F) is preferably selected from the group consisting of diene rubbers, siloxane rubbers, and (meth) acrylate rubbers.
- the core-shell polymer (F) is primarily dispersed.
- the present invention also includes a cured product obtained by curing the above-described casting epoxy resin composition.
- a coil protected with a cured product of the epoxy resin composition for casting and an electric / electronic device incorporating the coil are included in the embodiments of the present invention.
- Another aspect of the present invention includes a solid-insulated switchgear using a cured product of the casting epoxy resin composition as an electrical insulating member.
- the cured product obtained from the epoxy resin composition for casting of the present invention has heat resistance and improved thermal shock resistance.
- the casting epoxy resin composition of the present invention comprises a silica powder (A), a liquid epoxy resin (B), a polyether polyol (C), a liquid acid anhydride (D), a curing accelerator (E) and a core-shell polymer (
- Polyether polyol has been applied for a long time in casting applications, but its main purpose is to lower the viscosity of the composition, and in fact, it has little effect on improving thermal shock resistance.
- the core-shell polymer has been applied for a long time to improve the thermal shock resistance, it is difficult to further improve the thermal shock resistance depending on the core-shell polymer alone.
- the silica powder (A) and the liquid epoxy resin are difficult to improve.
- the effect of improving the thermal shock resistance is poor.
- the surprising point of the present invention is that when a polyether polyol is selected from the polyols and this is combined with the core-shell polymer, the effect of improving the thermal shock resistance, which is poor with each addition, is remarkably enhanced.
- one or more polyether polyols in a specific molecular weight region are used, more preferably two types of polyether polyols in a specific molecular weight region and having different molecular weights are used in an appropriate ratio, and a core-shell polymer is used at the same time.
- the thermal shock resistance is synergistically improved and the heat resistance is not greatly impaired.
- the epoxy resin composition for casting of the present invention will be described in detail.
- silica powder (A) of the present invention is used to lower the thermal expansion coefficient of the casting epoxy resin composition and to improve toughness.
- an epoxy resin composition will become high viscosity and casting will become difficult. Moreover, when there are few compounding quantities of (A), a thermal shock resistance will worsen.
- the weight average particle diameter (median diameter D50) of the silica powder (A) of the present invention is preferably 3 to 50 ⁇ m, more preferably 5 to 40 ⁇ m, and particularly preferably 5 to 30 ⁇ m.
- the particle diameter can be obtained using a laser diffraction / scattering particle diameter / particle size distribution measuring device (for example, Microtrac MT3000 series manufactured by Nikkiso Co., Ltd.) or a scanning electron microscope.
- silica powder (A) examples include spherical fused silica, fused crushed silica, and crystalline silica. From the viewpoint of viscosity and toughening of the epoxy resin composition, crystalline silica is preferable.
- Spherical fused silica is FB-5D, FB-12D, and FB-20D manufactured by Electrochemical Co., Ltd., Fuse Rex series manufactured by Tatsumori Co., Ltd. is used as fused fracture silica, and Crystal Commercial products such as the light series and the MILLISIL series manufactured by Siberco NV are exemplified.
- the silica powder (A) is dried at 100 to 150 ° C. before use from the viewpoint of reducing bubbles in the cured product of the cast epoxy resin composition.
- liquid epoxy resin (B) any epoxy resin having two or more epoxy groups in the molecule can be used.
- glycidyl ether type epoxy resins such as bisphenol A diglycidyl ether and bisphenol F diglycidyl ether
- cycloaliphatic type epoxy resins such as 3,4-epoxycyclohexylmethylcarboxylate and 1,4-cyclohexanedimethanol diglycidyl ether
- Linear aliphatic epoxy resins such as 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether and polypropylene glycol diglycidyl ether
- glycidyl ester type epoxy resins such as glycidyl hexahydrophthalate
- a liquid epoxy resin can be used.
- a preferred liquid epoxy resin (B) is a glycidyl ether type epoxy resin.
- a polysiloxane type epoxy resin having an epoxy group at the terminal or side chain of polydimethylsiloxane a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, a triphenylglycidyl ether methane resin, Solid or semi-solid polyfunctional epoxy resins such as tetraphenyl glycidyl ether methane resin; brominated phenol novolac type epoxy resin, dicyclopentadiene novolac type epoxy resin, naphthol novolac type epoxy resin and the like can be used.
- the liquid epoxy resin and the solid or semi-solid polyfunctional epoxy resin can be used singly or in combination, but from the viewpoint of injection workability, the injection material is combined so as to show a liquid state.
- the cresol novolac type epoxy resin should be less than 30% by weight. That is, the amount of the liquid epoxy resin (B) is, for example, 70 to 100% by weight, preferably 80 to 100% with respect to 100% by weight of the total of the liquid epoxy resin (B) and the solid or semi-solid polyfunctional epoxy resin. % By weight, more preferably 90 to 100% by weight, particularly preferably 100% by weight.
- a reactive diluent having one epoxy group in the molecule may be added to the liquid epoxy resin (B). Further, if necessary, a reactive diluent having one or more reactive groups other than an epoxy group in the molecule, for example, a hydroxyl group or a carboxylic acid group may be used.
- the reactive diluent has an effect of lowering the viscosity of the casting epoxy resin composition.
- the reactive diluent is preferably used up to 45 parts by weight with respect to 100 parts by weight of the epoxy resin. If too much reactive diluent is used, the heat resistance of the cured product is lowered.
- Examples of the reactive diluent having one epoxy group in the molecule include alkyl monoglycidyl ethers such as alkyl glycidyl ethers having 8 to 14 carbon atoms such as butyl glycidyl ether and 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, and nonylphenyl. Mention may be made of phenol monoglycidyl ethers such as glycidyl ether. Two or more of these may be used in combination.
- the reactive diluent having one or more hydroxyl groups or carboxylic acid groups in the molecule include silicone oil having a carboxylic acid group or a hydroxyl group. Two or more of these may be used in combination. Moreover, you may use these, after mixing with the liquid acid anhydride mentioned later.
- the content of the liquid epoxy resin (B) is preferably 10% by weight or more and less than 50% by weight, more preferably 12% by weight or more and 40% by weight or less, and further preferably 15% by weight or more and 30% by weight in 100% by weight of the composition. % Or less.
- the polyether polyol (C) is a compound having a plurality of ether bonds in the main chain and a hydroxyl group at the terminal, like polyalkylene glycols such as polypropylene glycol and polytetramethylene glycol.
- Examples of the polyether polyol (C) include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, bisphenol A and the like.
- Diols such as trimethylolethane, trimethylolpropane, glycerol; tetraols such as diglycerol, pentaerythritol; saccharides such as monosaccharides, oligosaccharides, polysaccharides; sorbitol; ammonia, ethylenediamine, urea, monomethyldiethanolamine,
- an initiator containing one or more active hydrogens such as amines such as monoethyldiethanolamine; ethylene oxide, propylene oxide, butylene oxide, styrene Side like a compound obtained by ring-opening polymerization.
- it may be a polycondensate synthesized by polycondensation such as ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol and the like.
- combination may be sufficient.
- polyether polyol (C) polyoxyalkylene diols such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol are preferable; triols such as trifunctional or higher alcohols (for example, trimethylolethane, trimethylolpropane, and glycerin).
- triols such as trifunctional or higher alcohols (for example, trimethylolethane, trimethylolpropane, and glycerin).
- the preferred polyether polyol (C) is a polyol having a polyoxyalkylene unit, and polyoxyalkylene diols such as polypropylene glycol and polytetramethylene glycol are more preferred from the viewpoint of thermal shock resistance.
- Polypropylene glycol is particularly preferred from the viewpoint of thermal shock resistance and low viscosity and handling.
- the average molecular weight of the polyether polyol (C) of the present invention is a number average molecular weight determined by GPC polystyrene conversion. From the viewpoint of thermal shock resistance and ease of handling, the average molecular weight is preferably from 400 to 5,000, more preferably from 1,000 to 4,000.
- the polyether polyol (C) of the present invention it is preferable to use one or a combination of two or more of those satisfying the above average molecular weight, more preferably a poly-polyol having an average molecular weight of 400 or more and less than 2500. It is preferable to use 1 type, or 2 or more types selected from an ether polyol (C1) and a polyether polyol (C2) having an average molecular weight of 2500 to 5000, and the polyether polyol (C1) and the polyether polyol (C2) are used. It is more preferable to combine them.
- the average molecular weight of the polyether polyol (C1) is preferably 400 or more and 2000 or less, more preferably 800 or more and 2000 or less, and particularly preferably 1000 or more and 2000 or less.
- the average molecular weight of the polyether polyol (C2) is preferably 2500 or more and 4500 or less, and more preferably 3000 or more and 4000 or less.
- the weight ratio of C1 and C2 is from the viewpoint of thermal shock resistance with respect to a total of 100% by weight of C1 and C2.
- C2 is preferably 20 to 90% by weight, more preferably 50 to 90% by weight, and still more preferably 60 to 85% by weight.
- the polyether polyol (C) such as the polyether polyol (C1) and the polyether polyol (C2) may be present in the composition in the above-mentioned weight ratio, and the introduction method into the composition is not limited.
- the polyether polyol (C1) and the polyether polyol (C2) may be mixed in advance or sequentially mixed with other components. May be.
- the content (use amount) of the polyether polyol (C) is preferably 5 to 40 parts by weight, more preferably 10 to 30 parts by weight with respect to 100 parts by weight of the liquid epoxy resin (B) from the viewpoint of thermal shock resistance. Preferably, 10 to 25 parts by weight are more preferable. If the content is small, the thermal shock resistance may not be sufficiently exhibited, and if the content is large, the heat resistance may be lowered.
- the liquid acid anhydride (D) of the present invention is used as a curing agent for the liquid epoxy resin (B).
- the liquid acid anhydride (D) include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic acid anhydride, dodecyl Succinic anhydride, chlorendic anhydride, trialkyltetrahydrophthalic anhydride, glycerol tris (anhydrotrimellitate), trialkyltetrahydrophthalic anhydride-maleic anhydride adduct, ethylene glycol bisanhydro Examples include trimellitate, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride.
- methyl nadic acid anhydride, methyl tetrahydrophthalic acid anhydride or methyl hexahydrophthalic acid anhydride is preferable, and methyl hexahydrophthalic acid anhydride is more preferable.
- the solid acid anhydride at room temperature can be used in a liquid state by mixing with the liquid acid anhydride.
- the compounding amount of the liquid acid anhydride is such that the ratio of the number of acid anhydride groups of the acid anhydride (D) to the number of epoxy groups of the epoxy resin (B) (number of acid anhydride groups / number of epoxy groups).
- the ratio of the number of acid anhydride groups of the acid anhydride (D) to the number of epoxy groups of the epoxy resin (B) (number of acid anhydride groups / number of epoxy groups) is too high. If it is too large, the mechanical properties of the cured product obtained from the epoxy resin composition for casting deteriorates. For example, it is adjusted to 1.5 or less, preferably 1.2 or less, and too much. However, since the mechanical properties of the cured product obtained from the epoxy resin composition for casting deteriorate, the adjustment is made, for example, to be 0.5 or more, preferably 0.7 or more. Most preferably, it is 0.8 to 1.0.
- curing accelerator (E) examples include tertiary amines such as triethylamine and benzyldimethylamine, imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole, triphenylphosphine, and tri-p-tolyl.
- Organic phosphorus compounds such as phosphine and triphenyl phosphite, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra-p-tolylborate, tetraphenylphosphine bromide, tetra-n-butylphosphonium bromide, tetra n-butylphosphonium o Quaternary phosphonium salts such as, o-diethyl phosphorodithionate, diazabicycloalkenes such as 1,8-diazabicyclo [5.4.0] undecene-7 and its organic acid salts, zinc octylate, tin octylate Or alumini Organometallic compounds such as muacetylacetone complex, quaternary ammonium salts such as tetraethylammonium bromide and tetrabutylammonium bromide,
- microcapsule-type latent accelerators amine salt-type latent curing accelerators, Lewis acid salts, Bronsted acid salts, etc., in which the surfaces of high-melting imidazole compounds, dicyandiamides, phosphorus-based and phosphine-based accelerators are coated with polymers.
- a latent curing accelerator represented by a high temperature dissociation type thermal cationic polymerization type latent curing accelerator and the like can also be used.
- These curing accelerators (E) can be used alone or in admixture of two or more.
- imidazoles, quaternary phosphonium salts, diazabicycloalkenes, organometallic compounds from the viewpoint of being colorless and transparent per se and the heat resistance of the cured product of the epoxy resin composition
- Quaternary ammonium salts are preferred, imidazoles, quaternary phosphonium salts are more preferred, and 2-ethyl-4-methylimidazole and tetra n-butylphosphonium o, o-diethyl phosphorodithionate are more preferred.
- the blending amount of the curing accelerator (E) is preferably 0.05 to 4 parts by weight with respect to 100 parts by weight of the liquid acid anhydride (D) from the viewpoint of balance between heat generation and curing speed in the curing step. 0.1 to 2 parts by weight is more preferable.
- the core-shell polymer (F) of the present invention is used to toughen (toughen) a cured product of the cast epoxy resin composition and improve fracture toughness, thermal shock resistance, and the like.
- the core-shell polymer of the present invention is a particulate polymer having a structure of at least two layers.
- the core-shell polymer (F) is preferably a polymer composed of a core layer containing a crosslinked polymer and a shell layer made of a polymer component graft-polymerized thereto.
- the shell layer can cover a part or the whole of the surface of the core part by graft polymerization of the monomer constituting the graft component onto the core component.
- the core layer is preferably a rubber-like crosslinked polymer in order to increase the thermal shock resistance of the cured product of the epoxy resin composition.
- the glass transition temperature of the core layer (hereinafter sometimes simply referred to as “Tg”) is preferably 0 ° C. or less, more preferably ⁇ 20 ° C. or less.
- the temperature is preferably ⁇ 40 ° C. or less.
- the Tg can be measured by a dynamic viscoelasticity measurement method or a differential scanning calorimetry method.
- Examples of the polymer capable of forming the core layer having properties as rubber include at least one monomer (first monomer) selected from natural rubber, diene monomers (conjugated diene monomers), and (meth) acrylate monomers.
- first monomer selected from natural rubber
- diene monomers conjuggated diene monomers
- second monomer another copolymerizable vinyl monomer
- a diene rubber using a diene monomer is preferred because the toughening effect of the resulting cured product is high and the viscosity does not increase over time due to swelling of the core layer due to low affinity with the matrix resin.
- (Meth) acrylate rubber (also referred to as acrylic rubber) is preferred because a wide variety of polymer designs are possible by combining various monomers. Moreover, when it is going to improve the crack resistance in low temperature, impact resistance, etc., without reducing the heat resistance of hardened
- (meth) acrylate means acrylate and / or methacrylate.
- Examples of the monomer constituting the diene rubber used for forming the core layer include 1,3-butadiene, isoprene, 2-chloro-1,3-butadiene, 2-methyl-1,3. -Butadiene and the like. These diene monomers may be used alone or in combination of two or more.
- butadiene rubber using 1,3-butadiene, 1,3-butadiene, and the like because of its high toughening effect and low viscosity increase with time due to swelling of the core layer due to low affinity with the matrix resin
- butadiene-styrene rubber which is a copolymer of styrene
- butadiene-acrylate rubber which is a copolymer of 1,3-butadiene and butyl acrylate or 2-ethylhexyl acrylate
- butadiene rubber is more preferred.
- butadiene-styrene rubber is more preferable when it is possible to increase the transparency of the cured product obtained by adjusting the refractive index, and to obtain a product having a good balance of good appearance and impact resistance.
- butadiene-acrylate rubber is preferable when the concentration of butadiene double bond in the rubber is lowered by the introduction of acrylate, so that weather resistance and heat resistance are improved, and such characteristics are required.
- Examples of the monomer constituting the acrylic rubber used for forming the core layer include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and octyl (meth).
- Alkyl (meth) acrylates having 1 to 22 carbon atoms such as acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, and behenyl (meth) acrylate; carbon numbers such as phenoxyethyl (meth) acrylate and benzyl (meth) acrylate 6-20 aromatic ring-containing (meth) acrylates; hydroxyalkyl (meth) acrylates having 1 to 20 carbon atoms such as 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; glycidyl (meth) acrylate Rate, glycidyl (meth) acrylates such as glycidylalkyl (meth) acrylate; alkoxyalkyl (meth) acrylates; allylalkyl (meth) acrylates such as allyl (meth) acrylate and allylalkyl (meth)
- (meth) acrylate monomers may be used alone or in combination of two or more.
- alkyl (meth) acrylates having 1 to 20 carbon atoms and allyl (meth) acrylates and more preferred are ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, allyl (meth) ) Acrylate.
- Examples of the vinyl monomer (second monomer) copolymerizable with the first monomer include vinyl arenes such as styrene, ⁇ -methyl styrene, monochlorostyrene and dichlorostyrene; vinyl carboxylic acids such as acrylic acid and methacrylic acid.
- Vinyl cyanides such as acrylonitrile and methacrylonitrile
- vinyl halides such as vinyl chloride, vinyl bromide and chloroprene
- vinyl acetate alkenes such as ethylene, propylene, butylene and isobutylene
- polyfunctional monomers such as triallyl isocyanurate and divinylbenzene.
- These vinyl monomers may be used alone or in combination of two or more. Particularly preferred is styrene.
- Examples include siloxane-based polymers and polysiloxane-based polymers composed of alkyl or aryl 1-substituted siloxane units such as organohydrogensiloxanes in which part of the alkyl in the side chain is substituted with hydrogen atoms.
- polysiloxane polymers may be used alone or in combination of two or more.
- a composite rubber composed of (meth) acrylate rubber / polysiloxane rubber combined with (meth) acrylate rubber may be used.
- dimethylsiloxane rubber, methylphenylsiloxane rubber, and dimethylsiloxane / butylacrylate composite rubber are preferable for imparting heat resistance to the cured product, and dimethylsiloxane rubber and dimethylsiloxane / butylacrylate composite rubber are easily available and economical. However, it is most preferable because it is.
- the polysiloxane-based polymer portion contains at least 10% by weight with respect to 100% by weight of the entire core layer so as not to impair the heat resistance of the cured product. Is preferred.
- the core layer has a cross-linked structure introduced into a polymer component obtained by polymerizing the above monomers or a polysiloxane polymer component. It is preferable.
- a method for introducing a crosslinked structure a generally used method can be employed.
- a method for introducing a cross-linked structure into a polymer component obtained by polymerizing the above monomer a method in which a cross-linkable monomer such as a polyfunctional monomer or a mercapto group-containing compound is added to the monomer constituting the polymer component and then polymerized. Etc.
- a method for introducing a crosslinked structure into the polysiloxane polymer a method in which a polyfunctional alkoxysilane compound is partially used at the time of polymerization, or a reactive group such as a vinyl reactive group, a mercapto group, or a methacryloyl group is used.
- a siloxane polymer and then adding a vinyl polymerizable monomer or organic peroxide to cause a radical reaction or a polysiloxane polymer with a crosslinkable monomer such as a polyfunctional monomer or a mercapto group-containing compound. Examples of the method include adding and then polymerizing.
- butadiene is not included, and allylalkyl (meth) acrylates such as allyl (meth) acrylate and allylalkyl (meth) acrylate; allyloxyalkyl (meth) acrylates; (poly) ethylene glycol di It has two or more (meth) acryl groups such as (meth) acrylate, butanediol di (meth) acrylate, ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and tetraethylene glycol di (meth) acrylate.
- Polyfunctional (meth) acrylates diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, divinylbenzene and the like. Particularly preferred are allyl methacrylate, triallyl isocyanurate, butanediol di (meth) acrylate, and divinylbenzene.
- the core layer often has a single layer structure, but may have a multilayer structure.
- the polymer composition of each layer may be different.
- the ratio of the core layer in the core-shell polymer is preferably 80 to 95% by weight and more preferably 82 to 93% by weight from the viewpoint of the viscosity of the epoxy resin composition.
- the ratio of the core layer in the core-shell polymer can be measured from the absorbance ratio of the spectrum of infrared spectroscopic analysis.
- the methyl ethyl ketone (MEK) insoluble content of the core-shell polymer (F) is preferably 93% by weight or more, more preferably 95% by weight or more, still more preferably 97% by weight or more, and even more preferably 98% by weight or more. If it is less than 93% by weight, the viscosity of the epoxy resin composition tends to increase.
- the MEK insoluble content of the core-shell polymer (F) As a method for calculating the MEK insoluble content of the core-shell polymer (F), first, an aqueous latex containing the core-shell polymer (F) is coagulated and dehydrated, and finally dried to obtain a powder or film of polymer fine particles. Next, about 2 g of the obtained core-shell polymer is weighed and immersed in 100 g of methyl ethyl ketone (MEK) at 23 ° C. for 24 hours. Thereafter, the obtained MEK insoluble matter is separated, dried and weighed, and the weight fraction (%) with respect to the weight of the core-shell polymer used for the measurement is calculated as the MEK insoluble matter amount.
- MEK methyl ethyl ketone
- the core-shell polymer is effectively dispersed in the cured product of the casting epoxy resin composition.
- Such a shell polymer is preferably grafted to the core layer. More precisely, it is preferable that the monomer component used for forming the shell polymer is graft-polymerized to the core polymer forming the core layer, and the shell polymer and the core polymer are substantially chemically bonded. That is, preferably, the shell polymer is formed by graft polymerization of the shell-forming monomer in the presence of the core polymer, and in this way, the core polymer is graft-polymerized. Covers part or whole. This polymerization operation can be carried out by adding a monomer which is a constituent component of the shell polymer to the core polymer latex prepared and present in an aqueous polymer latex state and polymerizing it.
- the shell layer-forming monomer examples include aromatic vinyl monomer, vinyl cyan monomer, and alkyl (meth) acrylate, as described later, from the viewpoint of compatibility and dispersibility in the epoxy resin composition for casting the core-shell polymer.
- Monomers, glycidyl (meth) acrylate, allyl (meth) acrylate, and the like are preferable.
- the epoxy layer, the oxetane group, the hydroxyl group, the amino group, the imide group, the carboxylic acid group, the carboxylic acid anhydride group, the cyclic ester and the cyclic are used as the shell layer forming monomer.
- a reactive group-containing monomer containing at least one selected from the group consisting of an amide, a benzoxazine group, and a cyanate ester group may be contained.
- a monomer having an epoxy group is preferable. Since the reactive group-containing monomer participates in the reaction between the liquid epoxy resin (B) and the liquid acid anhydride (D) to form a chemical bond, the dispersion state can be suppressed.
- the monomer having an epoxy group is preferably contained in an amount of 10% by weight or less, more preferably 5% by weight or less, in 100% by weight of the shell-forming monomer.
- the monomer having an epoxy group is more than 10% by weight in the shell-forming monomer, the storage stability of the casting epoxy resin composition is deteriorated, which is not preferable. Therefore, when it is necessary to enhance the storage stability to a high degree, it is preferable not to use a monomer having an epoxy group.
- the shell layer forming monomer when a polyfunctional monomer having two or more double bonds is used as the shell layer forming monomer, a crosslinked structure is introduced into the shell layer. For this reason, the epoxy resin component in the casting epoxy resin composition is prevented from swelling into the core-shell polymer, and the casting epoxy resin composition has a low viscosity and tends to be easy to handle. It may be preferred to use a polyfunctional monomer having two or more double bonds. On the other hand, in order to maximize the effect of improving the toughness (toughness) of the resulting cured product, it is preferable not to use a polyfunctional monomer having two or more double bonds as the monomer for forming the shell layer.
- polyfunctional monomer having two or more double bonds include the same monomers as the above-mentioned polyfunctional monomer, preferably allyl methacrylate and triallyl isocyanurate.
- the polyfunctional monomer is preferably contained in an amount of 0.5 to 10% by weight, more preferably 1 to 5% by weight, in 100% by weight of the shell-forming monomer.
- aromatic vinyl monomer include styrene, ⁇ -methylstyrene, p-methylstyrene, divinylbenzene and the like.
- vinylcyan monomer examples include acrylonitrile and methacrylonitrile.
- alkyl (meth) acrylate monomer examples include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxybutyl (meth) acrylate, and the like.
- the monomer having an epoxy group examples include glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, allyl glycidyl ether, and the like.
- glycidyl methacrylate is preferable from the viewpoint of stability and reactivity.
- styrene 0 to 50% by weight (preferably 1 to 50% by weight, more preferably 5 to 50% by weight), methyl methacrylate 0 to 100% by weight (preferably 50 to 99% by weight, more preferably 70 to 95% by weight), and a shell layer which is a polymer of a shell-forming monomer that is combined with glycidyl methacrylate 0 to 10% by weight (preferably 1 to 10% by weight, more preferably 3 to 10% by weight) to make 100% by weight. It is preferable that Thereby, a desired toughening effect and mechanical characteristics can be realized in a balanced manner.
- methyl methacrylate as a main constituent component because the affinity between the epoxy resin (B) and the cured product obtained by the reaction of the acid anhydride (D) becomes appropriate.
- These monomer components may be used alone or in combination of two or more.
- the shell layer may be formed including other monomer components in addition to the monomer components.
- the ratio of the shell layer in the core-shell polymer (F) is preferably 5 to 20% by weight, more preferably 7 to 18% by weight, based on 100% by weight of the entire core-shell polymer.
- the ratio of the shell layer is too large or too small, the rubber content in the core-shell polymer is out of the range of 80 to 95% by weight, and the handleability of the epoxy resin composition is deteriorated.
- the arithmetic average particle diameter of the core-shell polymer (F) of the present invention is preferably 0.03 to 0.4 ⁇ m, and preferably 0.05 to 0.3 ⁇ m from the viewpoint of the balance between the viscosity and the thermal shock resistance of the epoxy resin composition. More preferred is 0.05 to 0.2 ⁇ m.
- the arithmetic average particle size is small, the viscosity of the epoxy resin composition becomes high and casting becomes difficult. Moreover, when it is large, the thermal shock resistance of the cured epoxy resin is lowered.
- the ratio (blending amount) of the core-shell polymer (F) in the casting epoxy resin composition is (A) + (B) + (C) + () from the viewpoint of the balance between the thermal shock resistance and the composition viscosity.
- D) + (E) + (F) 100 wt%, preferably 0.3 to 10 wt%, more preferably 1 to 6 wt%, and 1.5 to 5 wt% More preferably.
- the polymer that forms the core layer constituting the core-shell polymer (F) used in the present invention is at least one monomer (first monomer) selected from diene monomers (conjugated diene monomers) and (meth) acrylate monomers.
- first monomer selected from diene monomers (conjugated diene monomers) and (meth) acrylate monomers.
- the core layer can be formed by, for example, emulsion polymerization, suspension polymerization, microsuspension polymerization or the like, and for example, the method described in WO 2005/028546 can be used. .
- the formation of the core layer can be produced by, for example, emulsion polymerization, suspension polymerization, microsuspension polymerization, etc.
- the method described in EP1338625 can be used.
- the shell layer can be formed by polymerizing a shell layer forming monomer by known radical polymerization.
- the polymerization of the monomer for forming the shell layer is preferably carried out by an emulsion polymerization method, and for example, it can be produced according to the method described in WO 2005/028546. it can.
- alkyl or aryl sulfonic acid represented by dioctylsulfosuccinic acid and dodecylbenzenesulfonic acid
- alkyl or arylether sulfonic acid alkyl or aryl represented by dodecylsulfuric acid, and the like.
- emulsifier dispersing agent
- an emulsifier (dispersant) is so preferable that the water solubility is high. If the water solubility is high, the emulsifier (dispersant) can be easily removed by washing with water, and adverse effects on the finally obtained cured product can be easily prevented.
- Thermal initiators such as 2,2′-azobisisobutyronitrile, organic peroxides, hydrogen peroxide, potassium persulfate, and ammonium persulfate are well known as initiators for the emulsion polymerization method.
- organic peroxide is particularly preferable.
- Preferred organic peroxides include t-butyl peroxyisopropyl carbonate, paramentane hydroperoxide, cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, di-t-butyl peroxide, di-t- Examples include hexyl peroxide. Among them, di-t-butyl peroxide (T 10 : 124 ° C.), paramentane hydroperoxide (T 10 : T 10 ) having a 10 hour half-life thermal decomposition temperature (hereinafter also referred to as T 10 ) of 120 ° C. or higher.
- organic peroxides such as sodium formaldehyde sulfoxylate and glucose as necessary, transition metal salts such as iron (II) sulfate as necessary, and disodium ethylenediaminetetraacetate as necessary
- reducing agents such as sodium formaldehyde sulfoxylate and glucose
- transition metal salts such as iron (II) sulfate as necessary
- disodium ethylenediaminetetraacetate it is preferable to use a redox-type initiator that is used in combination with a chelating agent, and, if necessary, a phosphorus-containing compound such as sodium pyrophosphate.
- the polymerization can be performed at a low temperature at which the peroxide is not substantially thermally decomposed, and the polymerization temperature can be set in a wide range, which is preferable.
- the amount of the initiator used, or the redox type initiator is used, the amount of the reducing agent / transition metal salt / chelating agent used may be within a known range.
- chain transfer agents can be used if necessary.
- the chain transfer agent is not particularly limited as long as it is used in ordinary emulsion polymerization.
- chain transfer agent examples include t-dodecyl mercaptan, n-octyl mercaptan, n-tetradecyl mercaptan, n-hexyl mercaptan and the like.
- the polymerization temperature, pressure, deoxygenation, and other conditions during the polymerization can be within the known ranges.
- ingredients include dehydrating agents such as calcium oxide, anti-tracking and reducing agents such as aluminum hydroxide, heat radiation fillers such as aluminum oxide, silane coupling agents, antifoaming agents, anti-settling agents, pigments, Colorants such as dyes, extenders, ultraviolet absorbers, antioxidants, stabilizers (anti-gelling agents), plasticizers, leveling agents, antistatic agents, flame retardants, lubricants, thinning agents, low shrinkage agents, An organic filler, a thermoplastic resin, a desiccant, a dispersing agent, etc. are mentioned.
- dehydrating agents such as calcium oxide, anti-tracking and reducing agents such as aluminum hydroxide
- heat radiation fillers such as aluminum oxide, silane coupling agents, antifoaming agents, anti-settling agents, pigments
- Colorants such as dyes, extenders, ultraviolet absorbers, antioxidants, stabilizers (anti-gelling agents), plasticizers, leveling agents, antistatic agents, flame retardants, lubricants, thinning agents
- a silane coupling agent is particularly preferable because it improves the adhesion between silica and a resin.
- Specific examples include 3-glycidyloxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, and the like.
- the amount used is preferably 0.1 to 2% by weight based on silica.
- the antifoaming agent may be appropriately selected from, for example, silicone-based, fluorine-based, acrylic-based, polyoxyethylene-based, and polyoxypropylene-based antifoaming agents. Specific examples include BYK-A500 and BYK-1790 manufactured by Big Chemie. The amount used is preferably 0.01 to 4 parts by weight per 100 parts by weight of the liquid epoxy resin (B).
- an anti-settling agent in order to improve the storage stability of the epoxy resin composition for casting.
- an additive that enhances the thixotropy of the epoxy resin composition such as fumed silica or finely divided organic bentonite, is preferable.
- the amount of anti-settling agent used is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the liquid epoxy resin (B).
- the flame retardant it is preferable to use 10 to 200 parts by weight of an inorganic flame retardant such as aluminum hydroxide with respect to 100 parts by weight of the liquid epoxy resin (B).
- the epoxy resin composition for casting according to the present invention comprises silica powder (A) as a main component, liquid epoxy resin (B), polyether polyol (C), liquid acid anhydride (D), and curing accelerator (E).
- a curable resin composition (consisting of the components (B) to (F)) composed of the core-shell polymer (F) is blended as a binder for the silica powder (A).
- the blending it is easy to control the viscosity of the casting epoxy resin composition by using a dispersion in which the core-shell polymer (F) is once dispersed in the liquid epoxy resin (B) in the form of primary particles. This is preferable.
- the core-shell polymer (F) is dispersed in the liquid epoxy resin (B) in the form of primary particles.
- the core-shell polymer ( F) is brought into contact with the liquid epoxy resin (B), then unnecessary components such as water are removed, the core-shell polymer (F) is once extracted into an organic solvent, mixed with the liquid epoxy resin (B), and then organic.
- the method of removing a solvent etc. are mentioned, It is preferable to utilize the method as described in WO2005 / 028546.
- an aqueous latex containing the core-shell polymer (F) (specifically, a reaction mixture after producing the core-shell polymer by emulsion polymerization) has a solubility in water at 20 ° C. of 5% or more.
- the core-shell polymer After mixing with an organic solvent of 40% or less and further mixing with excess water, the core-shell polymer is aggregated, and after the aggregated core-shell polymer (F) is separated and recovered from the liquid phase, the organic solvent again A second step of obtaining an organic solvent solution of the core-shell polymer (F), and a third step of further distilling off the organic solvent after further mixing the organic solvent solution with the liquid epoxy resin (B). It is preferable to be prepared by.
- liquid epoxy resin (B) is liquid at 23 ° C. because the third step becomes easy.
- “Liquid at 23 ° C.” means that the softening point is 23 ° C. or lower, and indicates fluidity at 23 ° C.
- Liquid epoxy resin (B) is added to appropriately dilute the primary particle dispersion composition, and further, silica powder (A), liquid acid anhydride (D), and curing accelerator (E) are additionally mixed and necessary.
- silica powder (A), liquid acid anhydride (D), and curing accelerator (E) are additionally mixed and necessary.
- distributed is obtained by mixing the said other compounding component.
- the powdery core-shell polymer (F) obtained by solidifying by a method such as salting out and drying is obtained by using a disperser having a high mechanical shearing force such as a three paint roll, a roll mill, or a kneader.
- a disperser having a high mechanical shearing force such as a three paint roll, a roll mill, or a kneader.
- the temperature at the time of dispersion is preferably 50 to 200 ° C, more preferably 70 to 170 ° C, still more preferably 80 to 150 ° C, and particularly preferably 90 to 120 ° C.
- the core-shell polymer (F) may not be sufficiently dispersed.
- the temperature is higher than 200 ° C, the liquid epoxy resin (B) and the core-shell polymer (F) may be thermally deteriorated.
- the casting epoxy resin composition of the present invention is mainly composed of silica powder (A), liquid epoxy resin (B), liquid acid anhydride (D), curing accelerator (E), and core-shell polymer (F). And may be prepared by mixing as two liquids of the curing component.
- the casting epoxy resin composition of the present invention may be prepared by mixing a mixed component including a curing component.
- the present invention includes a cured product obtained by curing the above epoxy resin composition for casting.
- the obtained cured product is excellent in heat resistance and thermal shock resistance.
- Impact strength of the cured product of the present invention is, for example, 11 kJ / m 2 greater, preferably not more 12 kJ / m 2 or more 50 kJ / m 2 or less.
- the impact strength can be measured according to JIS K7111-1.
- the bending strength of the cured product of the present invention is preferably 80 MPa or more and 200 MPa or less. The bending strength can be measured according to JIS K7171.
- the glass transition temperature of the cured product of the present invention is, for example, 100 ° C. or higher, preferably 105 ° C. or higher, more preferably 110 ° C. or higher and 160 ° C. or lower.
- the glass transition temperature can be determined by a conventionally known differential scanning calorimeter.
- the thermal shock resistance index of the cured product of the present invention is, for example, more than 20, preferably 22 or more, more preferably 23 or more, still more preferably 25 or more, and even more preferably about 30 to 50.
- the thermal shock resistance index is one in which 150 ° C to -40 ° C is set to one cycle for a cured product 50 times, and the average value of cracks in the cured product is taken as the thermal shock index. May be> 50, and the average value of the number of cycles in which cracks have occurred may be used as the index.
- the thermal shock resistance is remarkably improved by the combined use of the polyether polyol and the core-shell polymer.
- the composition of the present invention is excellent in heat resistance and thermal shock resistance, it is suitable for insulation treatment of electronic equipment and the like.
- a preferred specific example using the composition of the present invention is a coil, a capacitor or a resistor in which a necessary part is sealed or protected with a cured product of the epoxy resin composition for casting, or the coil, capacitor or resistor. It is an electrical / electronic device with a built-in body.
- the composition of the present invention may be suitably used for a solid insulation switchgear using a cured product of the casting epoxy resin composition as an electrical insulating member.
- Tg glass transition temperature
- a cured product was obtained in the same manner as in the evaluation of the thermal shock resistance of [4] cured product. However, hex nuts were not used. The obtained cured product was cut with a diamond cutter. Using 20 mg of the cured product, measurement was performed under a nitrogen flow with a differential scanning calorimeter DSC220C manufactured by Seiko Instruments Inc. In the measurement method, the temperature was increased from 50 ° C. to 220 ° C. at a rate of 20 ° C. for 1 minute, and then the thermal history was erased by immediately decreasing the temperature to 40 ° C. at 40 ° C. for 1 minute. Thereafter, the glass transition temperature was measured by raising the temperature from 50 ° C. to 220 ° C. at a rate of temperature increase of 20 ° C. for 1 minute.
- silica powder (A), liquid epoxy resin (B), polyether polyol (C), liquid acid anhydride (D), curing accelerator (E), and core-shell polymer (F) used in Examples and Comparative Examples are shown.
- distributed the core-shell polymer (F) in the epoxy resin (B) was made into the dispersion (G).
- ⁇ Silica powder (A)> A-1: Crystallite CMC-12S (manufactured by Tatsumori Co., Ltd., median diameter D50: 6 ⁇ m)
- B-1 Bisphenol A diglycidyl ether (jER828EL manufactured by Mitsubishi Chemical Corporation, epoxy equivalents 184 to 194)
- B-2 Bisphenol F diglycidyl ether (Epicote 862 by Momentive, epoxy equivalents 165 to 173)
- ⁇ Polyether polyol (C)> Polypropylene glycol having an average molecular weight of 1000 (diol type, Actol D-1000 manufactured by Mitsui Chemicals, Inc.)
- C1-2 Polypropylene glycol having an average molecular weight of 2000 (diol type, Actol D-2000 manufactured by Mitsui Chemicals, Inc.)
- C1-3 Polytetramethylene glycol having an average molecular weight of 1000 (diol type, PTMG1000 manufactured by Mitsubishi Chemical Corporation)
- C1-4 Polyoxypropylene glyceryl ether having an average molecular weight of 1000 (triol type, Actol T-1000 manufactured by Mitsui Chemicals, Inc.)
- C2-1 Polypropylene glycol having an average molecular weight of 3000 (diol type, Actol D-3000 manufactured by Mitsui Chemicals, Inc.)
- C2-2 Polypropylene glycol having an average molecular weight of 4000 (diol type,
- D-1 Methyltetrahydrophthalic anhydride (HN2200, MTHPA manufactured by Hitachi Chemical Co., Ltd.)
- D-2 7 to 3 mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride (Rikacide MH700 manufactured by Shin Nippon Rika Co., Ltd.)
- E-1 2-ethyl-4-methylimidazole (Curesol 2E4MZ manufactured by Shikoku Chemicals Co., Ltd.)
- E-2 Tetra n-butylphosphonium o, o-diethyl phosphorodithionate (Hishikorin PX-4ET manufactured by Nippon Chemical Industry Co., Ltd.)
- F-1 to F-5 are core-shell polymers whose main component is a butadiene rubber core, F-4 is a core-shell polymer whose main component is a polyorganosiloxane rubber, F- 5 is a core-shell polymer in which the main component of the core is acrylic rubber. Details are as described in the following production examples.
- F-6 Commercial product. Dow Chemical's Paraloid EXL-2655. The amount of rubber estimated by infrared spectroscopy was about 70% butadiene rubber, and the amount of MEK insoluble matter was 95%.
- Production Example 1-2 Preparation of polydimethylsiloxane rubber latex (R-2) 251 parts of deionized water, 0.5 part of SDS, 100 parts of octamethylcyclotetrasiloxane, 2 parts of tetraethoxysilane, ⁇ -acryloyloxypropyl dimethoxymethyl
- R-2 polydimethylsiloxane rubber latex
- SDS deionized water
- SDS 100 parts of octamethylcyclotetrasiloxane
- 2 parts of tetraethoxysilane ⁇ -acryloyloxypropyl dimethoxymethyl
- An emulsion was prepared by stirring a mixed solution of 2 parts of silane with a homomixer at 10,000 rpm for 5 minutes. The emulsion was charged all at once into a 5-neck glass container equipped with stirring, a reflux condenser, a nitrogen blowing port, an additional port for monomers and an emulsifier
- Production Example 1-3 Preparation of acrylic rubber latex (R-3) In a 5-neck glass container equipped with a reflux condenser, a nitrogen blowing port, an additional port for monomers and an emulsifier, and a thermometer, 225 parts of deionized water, EDTA 0. 002 parts, Fe 0.001 part, SFS 0.05 part, and SDS 0.6 part were charged, and the temperature was raised to 60 ° C. while stirring in a nitrogen stream.
- a mixture of graft monomer (3 parts of styrene (ST), 35 parts of methyl methacrylate (MMA)) and 0.1 part of CHP was added over 2 hours. Continuous addition and graft polymerization were performed. After completion of the addition, the reaction was terminated by further stirring for 2 hours to obtain a core-shell polymer (F-1) latex (F-1LX).
- the polymerization reaction rate was 99% or more.
- the amount of the core component of the core-shell polymer (F-1) was 93% from the charged amount and the reaction rate.
- the arithmetic average particle diameter of the core-shell polymer (F-1) contained in the obtained latex was 0.14 ⁇ m, and the MEK insoluble content was 98%.
- Production Example 2-2 Preparation of Latex (F-2LX) Containing Core Shell Polymer (F-2)
- the core-shell polymer (F-2) latex (F-2LX) was prepared in the same manner as in Production Example 2-1, except that ST5 parts, glycidyl methacrylate (GMA) 5 parts, MMA 80 parts, and CHP 0.3 parts were used. Obtained.
- the polymerization reaction rate was 99% or more.
- the amount of the core component of the core-shell polymer (F-2) was 85% from the charged amount and the reaction rate.
- the arithmetic average particle diameter of the core-shell polymer (F-2) contained in the obtained latex was 0.15 ⁇ m, and the MEK insoluble content was 98%.
- Production Example 2-3 Preparation of Latex (F-3LX) Containing Core Shell Polymer (F-3)
- the core-shell polymer (F-3) latex (F-3) was prepared in the same manner as in Production Example 2-2 except that 0.6 part of (AIBN) was used and AIBN was added to the reaction system before the graft monomer was added. -3LX).
- the polymerization reaction rate was 99% or more.
- the amount of the core component of the core-shell polymer (F-3) was 85% from the charged amount and the reaction rate.
- the arithmetic average particle diameter of the core-shell polymer (F-3) contained in the obtained latex was 0.15 ⁇ m, and the MEK insoluble content of the core-shell polymer was 93%.
- Production Example 2-4 Preparation of Latex (F-4LX) Containing Core-Shell Polymer (F-4)
- F-4LX Latex
- F-4LX Core-Shell Polymer
- 2060 parts of latex (R-2) obtained in Production Example 1-2 corresponding to 510 parts of polydimethylsiloxane rubber particles was charged and stirred at 60 ° C. while purging with nitrogen.
- a mixture of a graft monomer (ST 7 parts, MMA 83 parts) and CHP 0.3 part was continuously added over 2 hours to perform graft polymerization.
- the reaction was terminated by further stirring for 2 hours to obtain a core-shell polymer (F-4) latex (F-4LX).
- the polymerization reaction rate was 99% or more.
- the core component amount of the core-shell polymer (F-4) was 85% based on the charged amount and the reaction rate.
- the arithmetic average particle diameter of the core-shell polymer (F-4) contained in the obtained latex was 0.14 ⁇ m, and the MEK insoluble content was 96%.
- Production Example 2-5 Preparation of Latex (F-5LX) Containing Core-Shell Polymer (F-5)
- F-5LX Latex
- F-5LX Core-Shell Polymer
- a 5-neck glass container equipped with a reflux condenser, a nitrogen inlet, an additional port for monomers and an emulsifier, and a thermometer 1680 parts of latex (R-3) obtained in Production Example 1-3 (corresponding to 510 parts of acrylic rubber particles) and 0.1 part of SDS were charged and stirred at 60 ° C. while purging with nitrogen.
- a mixture of 0.024 parts EDTA, 0.006 parts Fe and 1.2 parts SFS, followed by graft monomer (ST6 parts, MMA83 parts, ALMA1 parts), and 0.3 parts t-butyl hydroperoxide (t-BHP) was continuously added over 2 hours to carry out graft polymerization.
- the reaction was terminated by further stirring for 2 hours to obtain a core-shell polymer (F-5) latex (F-5LX).
- the polymerization reaction rate was 99% or more.
- the core component amount of the core-shell polymer (F-5) was 85% from the charged amount and the reaction rate.
- the arithmetic average particle diameter of the core-shell polymer (F-5) contained in the obtained latex was 0.07 ⁇ m, and the MEK insoluble content was 99%.
- a slurry liquid composed of an aqueous phase partially containing a floating aggregate and an organic solvent was obtained.
- the aqueous phase was discharged from the discharge port at the bottom of the tank.
- 70 parts of MEK was added and mixed uniformly to obtain a dispersion in which the core-shell polymer was uniformly dispersed.
- 70 parts of a liquid epoxy resin (B-1) was mixed. From this mixture, MEK was removed with a rotary evaporator.
- G-1 in which 30% by weight of the core-shell polymer (F-1) was dispersed in the liquid epoxy resin was obtained.
- Production Example 3-2 Preparation of Dispersion (G-2) Based on Liquid Epoxy Resin (B-1) Aqueous Core-shell Polymer Instead of Aqueous Latex (F-1LX) of Core-Shell Polymer Used in Production Example 3-1 Dispersion (G-2) in which 30% by weight of core-shell polymer (F-2) is dispersed in liquid epoxy resin (B-1) in the same manner as in Production Example 3-1, except that latex (F-2LX) is used Got.
- Production Example 3-3 Preparation of Dispersion (G-3) Based on Liquid Epoxy Resin (B-1) Aqueous Core-shell Polymer Instead of Aqueous Latex (F-1LX) of Core-Shell Polymer Used in Production Example 3-1 Dispersion (G-3) in which 30% by weight of core-shell polymer (F-3) is dispersed in liquid epoxy resin (B-1) in the same manner as in Production Example 3-1, except that latex (F-3LX) is used Got.
- Production Example 3-4 Preparation of Dispersion (G-4) Based on Liquid Epoxy Resin (B-2) Aqueous Core / Shell Polymer Instead of Aqueous Latex (F-1LX) of Core / Shell Polymer Used in Production Example 3-1
- Liquid epoxy resin (B-2) was prepared in the same manner as in Production Example 3-1, except that latex (F-4LX) was used and liquid epoxy resin (B-2) was used instead of liquid epoxy resin (B-1). )
- Production Example 3-5 Preparation of Dispersion (G-5) Based on Liquid Epoxy Resin (B-2) Aqueous Core-shell Polymer Instead of Aqueous Latex (F-1LX) of Core-Shell Polymer Used in Production Example 3-1
- Liquid epoxy resin (B-2) was prepared in the same manner as in Production Example 3-1, except that latex (F-5LX) was used and liquid epoxy resin (B-2) was used instead of liquid epoxy resin (B-1).
- Table 1 shows the characteristics of the core-shell polymer used in the examples and comparative examples.
- Examples 1 to 5 Comparative Examples 1 to 3
- each component was weighed and uniformly mixed using a stirrer (automatic revolution mixer, Awatori Kentaro, manufactured by Shinky Co., Ltd.). The mixture was defoamed under reduced pressure to obtain an epoxy resin composition for casting. The resulting composition was cured at 90 ° C. for 3 hours and 130 ° C. for 3 hours to obtain a cured product. Using the obtained cured product, thermal shock resistance, glass transition temperature, impact strength and bending strength were evaluated. The results are shown in Table 2.
- Examples 6 to 11 and Comparative Example 4 In accordance with the formulation shown in Table 3, each component was weighed and uniformly mixed using a stirrer (automatic revolution mixer, Awatori Nertaro, manufactured by Shinky Co., Ltd.). The mixture was defoamed under reduced pressure to obtain an epoxy resin composition for casting. The resulting composition was cured at 90 ° C. for 3 hours and 130 ° C. for 3 hours to obtain a cured product. Using the obtained cured product, thermal shock resistance and glass transition temperature were evaluated. The results are shown in Table 3.
- the cured product obtained from the epoxy resin composition for casting of the present invention has a glass transition temperature of 110 ° C. or higher and high thermal shock resistance.
- Example 12 to 16 In accordance with the formulation shown in Table 4, each component was weighed and mixed uniformly using a stirrer (automatic revolution mixer, Awatori Kentaro, manufactured by Shinky Corporation). The mixture was defoamed under reduced pressure to obtain an epoxy resin composition for casting. The resulting composition was cured at 90 ° C. for 3 hours and 130 ° C. for 3 hours to obtain a cured product. Using the obtained cured product, evaluation of thermal shock resistance and glass transition temperature were measured. The results are shown in Table 4.
- the cured product obtained from the epoxy resin composition for casting of the present invention has a glass transition temperature of 130 ° C. or higher and high thermal shock resistance.
- Examples 17 to 18, Comparative Examples 5 to 6 In accordance with the formulation shown in Table 5, each component was weighed and mixed uniformly using a stirrer (automatic revolution mixer, Awatori Nertaro, manufactured by Shinky Co., Ltd.). The mixture was defoamed under reduced pressure to obtain an epoxy resin composition for casting. The obtained composition was cured at 100 ° C. for 3 hours and at 150 ° C. for 3 hours to obtain a cured product. Using the obtained cured product, thermal shock resistance and glass transition temperature were evaluated. The results are shown in Table 5.
- Table 5 shows that the cured product obtained from the epoxy resin composition for casting of the present invention has a glass transition temperature of 130 ° C. or higher and high thermal shock resistance.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Abstract
Description
本発明の目的は、耐熱性および改善された耐熱衝撃性を有する注型用エポキシ樹脂組成物を提供することである。また、本発明は、当該組成物を硬化して得られる硬化物を提供することも課題とする。
ポリエーテルポリオール(C)がポリプロピレングリコールであることが好ましい。
本発明の驚くべき点は、ポリオールの中からポリエーテルポリオールを選択し、これとコアシェルポリマーとを組み合わせると、それぞれの単独添加では乏しかった耐熱衝撃性の改善効果が著しく高められることである。好ましくは特定分子量領域のポリエーテルポリオールを1種以上、より好ましくは特定分子量領域であって互いに分子量が異なるポリエーテルポリオールの2種を適当な割合で使用し、かつコアシェルポリマーを同時に使用すると、全く予想外に、耐熱衝撃性が相乗的に向上し、かつ耐熱性も大きく損なわれないことである。以下、本発明の注型用エポキシ樹脂組成物について詳述する。
<シリカ粉末(A)>
本発明のシリカ粉末(A)は、前記注型用エポキシ樹脂組成物の熱膨張係数を下げるために、また、強靭性を向上させるために使用される。
本発明のシリカ粉末(A)の重量平均粒子径(メジアン径D50)としては、3~50μmが好ましく、5~40μmがより好ましく、5~30μmが特に好ましい。3μmより小さくなると、エポキシ樹脂組成物の粘度が高くなり、注型が難しくなる。また、50μmより大きくなると、シリカ粉末(A)のエポキシ樹脂組成物中での分散安定性が悪くなる。また、異なる粒子径のシリカを2種以上混合して使用してもよい。前記粒子径は、レーザー回折・散乱方式の粒子径・粒度分布測定装置(例えば、日機装株式会社製のマイクロトラックMT3000シリーズ)や走査型電子顕微鏡などを用いて得ることができる。
<液状エポキシ樹脂(B)>
本発明の液状エポキシ樹脂(B)としては、分子内に2つ以上のエポキシ基を有するエポキシ樹脂であれば、任意のものを使用することができる。例えば、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル等のグリシジルエーテル型エポキシ樹脂;3,4-エポキシシクロヘキシルメチルカルボキシレート、1,4-シクロヘキサンジメタノールジグリシジルエーテル等の環状脂肪族型エポキシ樹脂;1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等の直鎖脂肪族型エポキシ樹脂;ヘキサヒドロフタル酸グリシジルエステル等のグリシジルエステル型エポキシ樹脂のような液状エポキシ樹脂を使用することができる。好ましい液状エポキシ樹脂(B)は、グリシジルエーテル型エポキシ樹脂である。
これら液状エポキシ樹脂(B)に加えて、ポリジメチルシロキサンの末端あるいは側鎖にエポキシ基を有するポリシロキサン型エポキシ樹脂あるいは、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルグリシジルエーテルメタン樹脂、テトラフェニルグリシジルエーテルメタン樹脂;ブロム化フェノールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂等の固体あるいは半固体の多官能エポキシ樹脂を使用することができる。
<ポリエーテルポリオール(C)>
前記ポリエーテルポリオール(C)は、ポリプロピレングリコールやポリテトラメチレングリコール等のポリアルキレングリコールのように主鎖に複数のエーテル結合を有し、かつ末端に水酸基を有する化合物である。ポリエーテルポリオール(C)は、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ビスフェノールA等のジオール類;トリメチロールエタン、トリメチロールプロパン、グリセリン等のトリオール類;ジグリセリン、ペンタエリスリトール等のテトラオール;単糖、オリゴ糖、多糖等の糖類;ソルビトール;アンモニア、エチレンジアミン、尿素、モノメチルジエタノールアミン、モノエチルジエタノールアミン等のアミン類;などの1種又は2種以上の活性水素を含有する開始剤の存在下、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド等を開環重合して得られる化合物である。また、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコールなどの重縮合により合成される重縮合体であってもよい。なお、合成時に複数の種類の成分を用いることで得られる、ランダムまたはブロック共重合体であってもよい。
好ましいポリエーテルポリオール(C)は、ポリオキシアルキレン単位を有するポリオールであり、耐熱衝撃性の観点から、ポリプロピレングリコール、ポリテトラメチレングリコールなどのポリオキシアルキレンジオールがより好ましい。耐熱衝撃性および低粘度で取り扱いの観点から、ポリプロピレングリコールが特に好ましい。
<液状酸無水物(D)>
本発明の液状酸無水物(D)は、前記液状エポキシ樹脂(B)の硬化剤として使用される。液状酸無水物(D)としては、フタル酸無水物、テトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、メチルナジック酸無水物、ドデシルコハク酸無水物、クロレンディック酸無水物、トリアルキルテトラヒドロフタル酸無水物、グリセロールトリス(アンヒドロトリメリテート)、トリアルキルテトラヒドロフタル酸無水物-マレイン酸無水物付加物、エチレングリコールビスアンヒドロトリメリテート、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物が例示される。その中で、エポキシ樹脂組成物の耐熱性が高いという観点から、メチルナジック酸無水物、メチルテトラヒドロフタル酸無水物あるいはメチルヘキサヒドロフタル酸無水物が好ましく、メチルヘキサヒドロフタル酸無水物がより好ましい。これらは、単独で又は組み合わせて用いることができる。
室温で固体状酸無水物は、液状酸無水物と混合することで、液状にして使用することができる。
液状酸無水物の配合量は、酸無水物(D)の酸無水物基の数とエポキシ樹脂(B)のエポキシ基の数との比(酸無水物基の数/エポキシ基の数)が以下の範囲を満たす限り、特に限定されない。
本発明においては、酸無水物(D)の酸無水物基の数とエポキシ樹脂(B)のエポキシ基の数との比(酸無水物基の数/エポキシ基の数)の値が、あまりにも大きい場合には、注型用エポキシ樹脂組成物から得られた硬化物の機械的特性が低下することから、例えば1.5以下、好ましくは1.2以下となるように調整し、またあまりにも小さい場合にも、注型用エポキシ樹脂組成物から得られた硬化物の機械的特性が低下するので、例えば0.5以上、好ましくは0.7以上となるように調整する。最も好ましくは0.8~1.0である。
<硬化促進剤(E)>
本発明の硬化促進剤(E)としては、トリエチルアミン、ベンジルジメチルアミン等の3級アミン、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール類、トリフェニルホスフィン、トリ-p-トリルホスフィン、亜リン酸トリフェニル等の有機リン系化合物、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラ-p-トリルボレート、テトラフェニルホスフィンブロマイド、テトラ-n-ブチルホスホニウムブロマイド、テトラn-ブチルホスホニウムo,o-ジエチルホスホロジチオネート等の4級ホスホニウム塩、1,8-ジアザビシクロ[5.4.0]ウンデセン-7やその有機酸塩類等のジアザビシクロアルケン類、オクチル酸亜鉛、オクチル酸錫やアルミニウムアセチルアセトン錯体等の有機金属化合物類、テトラエチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド等の4級アンモニウム塩類、三フッ化ホウ素、トリフェニルボレート等のホウ素化合物、塩化亜鉛、塩化第二錫等の金属ハロゲン化合物が挙げられる。更には、高融点イミダゾール化合物、ジシアンジアミド、リン系、ホスフィン系促進剤の表面をポリマーで被覆したマイクロカプセル型潜在性促進剤、アミン塩型潜在性硬化促進剤、ルイス酸塩、ブレンステッド酸塩等の高温解離型熱カチオン重合型の潜在性硬化促進剤等に代表される潜在性硬化促進剤も使用することができる。これらの硬化促進剤(E)は単独又は2種類以上を混合して使用することができる。
<コアシェルポリマー(F)>
本発明のコアシェルポリマー(F)は、前記注型エポキシ樹脂組成物の硬化物を強靭化(タフニング)し、破壊靭性や耐熱衝撃性などを改良するために用いられ、弾性ポリマーのコア層をポリマーシェル層で被覆した粒状物である。
本発明のコアシェルポリマーは、少なくとも2層の構造からなる粒子状ポリマーである。
前記コア層がポリシロキサンゴムから形成される態様において、ポリシロキサン系ポリマー部位は、硬化物の耐熱性を損なわないために、コア層全体を100重量%として少なくとも10重量%以上含有していることが好ましい。
また、コアシェルポリマー(F)のメチルエチルケトン(MEK)不溶分量は、93重量%以上が好ましく、95重量%以上がより好ましく、97重量%以上がさらに好ましく、98重量%以上がさらにより好ましい。93重量%未満の場合には、エポキシ樹脂組成物の粘度が上昇する傾向がある。
即ち、好ましくは、シェルポリマーは、コアポリマーの存在下に前記シェル形成用モノマーをグラフト重合させることで形成され、このようにすることで、このコアポリマーにグラフト重合されており、コアポリマーの一部又は全体を覆っている。この重合操作は、水性のポリマーラテックス状態で調製され存在するコアポリマーのラテックスに対して、シェルポリマーの構成成分であるモノマーを加えて重合させることで実施できる。
前記芳香族ビニルモノマーの具体例としては、スチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン等が挙げられる。
これらのモノマー成分は、単独で用いても2種以上を組み合わせて用いてもよい。
シェル層は、上記モノマー成分の他に、他のモノマー成分を含んで形成されてもよい。
≪コアシェルポリマー(F)の製造方法≫
(コア層の製造方法)
本発明で用いるコアシェルポリマー(F)を構成するコア層を形成するポリマーが、ジエン系モノマー(共役ジエン系モノマー)および(メタ)アクリレート系モノマーから選ばれる少なくとも1種のモノマー(第1モノマー)を含んで構成される場合には、コア層の形成は、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などによって製造することができ、例えばWO2005/028546号公報に記載の方法を用いることができる。
(シェル層の形成方法)
シェル層は、シェル層形成用モノマーを、公知のラジカル重合により重合することによって形成することができる。コア層をコアシェルポリマー粒子前駆体のエマルジョンとして得た場合には、シェル層形成用モノマーの重合は乳化重合法により行うことが好ましく、例えば、WO2005/028546号公報に記載の方法に従って製造することができる。
前記開始剤の使用量、レドックス型開始剤を用いる場合には前記還元剤・遷移金属塩・キレート剤などの使用量は公知の範囲で用いることができる。
重合に際しての重合温度、圧力、脱酸素などの条件は、公知の範囲のものが適用できる。
<その他の配合成分>
本発明では、必要に応じて、その他の配合成分を使用することができる。その他の配合成分としては、酸化カルシウムなどの脱水剤、水酸化アルミニウムなどの耐トラッキング低減剤・難燃剤、酸化アルミニウムのような放熱フィラー、シランカップリング剤、消泡剤、沈降防止剤、顔料や染料等の着色剤、体質顔料、紫外線吸収剤、酸化防止剤、安定化剤(ゲル化防止剤)、可塑剤、レベリング剤、帯電防止剤、難燃剤、滑剤、減粘剤、低収縮剤、有機質充填剤、熱可塑性樹脂、乾燥剤、分散剤等が挙げられる。特にシランカップリング剤は、シリカと樹脂との接着性を改良することから、特に好ましい。具体例としては、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-アミノプロピルトリメトキシシランなどが挙げられる。使用量は、シリカに対して0.1~2重量%が好ましい。また、注型用エポキシ樹脂組成物は、気泡を極力減らす必要があるので、消泡剤を配合中に添加することが好ましい。消泡剤としては、例えば、シリコーン系、フッ素系、アクリル系、ポリオキシエチレン系、ポリオキシプロピレン系等の消泡剤より適宜選択すればよい。具体的な例としては、ビックケミー社のBYK-A500やBYK-1790などを挙げることができる。使用量は、液状エポキシ樹脂(B)100重量部に対して、0.01~4重量部を使用することが好ましい。
<注型用エポキシ樹脂組成物の製法>
本発明の注型用エポキシ樹脂組成物は、シリカ粉末(A)を主成分とし、液状エポキシ樹脂(B)、ポリエーテルポリオール(C)、液状酸無水物(D)、硬化促進剤(E)およびコアシェルポリマー(F)から構成せしめられる硬化性樹脂組成物((B)~(F)成分からなる)がシリカ粉末(A)のバインダーとして配合される。
<硬化物>
本発明には、上記注型用エポキシ樹脂組成物を硬化して得られる硬化物が含まれる。特定のポリエーテルポリオールとコアシェルポリマーを併用することで、得られた硬化物は耐熱性および耐熱衝撃性に優れる。
本発明の硬化物の曲げ強度は、80MPa以上200MPa以下であることが好ましい。曲げ強度は、JIS K7171に準拠して測定できる。
ガラス転移温度は、従来公知の示差走査熱量計により求めることができる。
<用途>
本発明の組成物は、耐熱性および耐熱衝撃性に優れることから、電子機器等の絶縁処理に好適である。本発明の組成物を用いる好適な具体例は、前記注型用エポキシ樹脂組成物の硬化物で必要な部分が封止又は保護されたコイル、コンデンサ若しくは抵抗体、又は当該コイル、コンデンサ、若しくは抵抗体を組み込んだ電気・電子機器である。加えて、本発明の組成物は、前記注型用エポキシ樹脂組成物の硬化物を電気絶縁部材として使用した固体絶縁開閉装置に好適に使用されてもよい。
水性ラテックスに分散しているポリマー粒子の算術数平均粒子径(Mn)は、マイクロトラックUPA150(日機装株式会社製)を用いて測定した。脱イオン水で希釈したものを測定試料として用いた。
シリカの重量平均粒子径(メジアン径D50)は、マイクロトラックMT3000EX(日機装株式会社製)を用いて測定した。1%のドデシルベンゼンスルホン酸ナトリウム水溶液を撹拌しながら、0.5gのシリカを投入して分散させ測定試料を作製した。測定は、水の屈折率、およびシリカの屈折率を入力し、計測時間20秒、Signal Levelが緑色範囲内になるように試料濃度を調整して行った。
ラテックスから乾燥させて得られたコアシェルポリマーの2gを23℃にて、MEK100gに24時間浸漬した後にMEK不溶分を遠心分離した。得られた不溶分を乾燥させて重量を計り、コアシェルポリマーの重量に対するMEK不溶分の重量分率(%)を算出した。
エポキシ樹脂組成物を鉄製六角ナット(M8)が中心に埋め込まれるようにセットされた型枠に注型して、加熱硬化した(硬化条件は、実施例の文中に示す)。得られた直径30mm、高さ9mmの硬化物を各3個、150℃1時間~-40℃1時間を1サイクルとするヒートサイクルテストを50サイクル行った。硬化物にクラックが発生したサイクル数を記録し、3つの平均値を耐熱衝撃性指数とした。値が大きい程、高い耐熱衝撃性を示す。50サイクルでクラック発生しなかったものは、>50と表した。なお、例えば、3つのうち、2つが>50であり、1つが40である場合は、50、50、40として、平均値を算出した。
上記[4]硬化物の耐熱衝撃性の評価と同様にして硬化物を得た。ただし、六角ナットは用いなかった。得られた硬化物をダイヤモンドカッターにより切削した。20mgの硬化物を用いて、セイコーインスツルメント社製の示差走査熱量計DSC220Cにより窒素フロー下で測定した。測定方法は、50℃から220℃まで1分間20℃の昇温速度で昇温し、その後ただちに1分間40℃で50℃まで温度を下げることにより熱履歴を消した。その後、50℃から220℃まで1分間20℃の昇温速度で昇温してガラス転移温度を測定した。
衝撃強度の評価は、シャルピー試験により行った。JIS K7111-1に準じて、23℃でのノッチなしのシャルピーフラットワイズ衝撃試験により評価した。使用した試験片のサイズは、50mm(長さ)×6mm(幅)×5mm(厚み)である。
JIS K7171に準じて、23℃で曲げ試験により、硬化部の曲げ強度を測定した。使用した試験片のサイズは、100mm(長さ)×10mm(幅)×5mm(厚み)である。
A-1:クリスタライトCMC-12S((株)龍森製、メジアン径D50:6μm)
A-2:ミリシル(MILLISIL)M10(シベルコエヌヴィ(SIBELCO N.V.)製、メジアン径D50:23μm)
B-1:ビスフェノールAジグリシジルエーテル(三菱化学(株)製jER828EL、エポキシ当量184~194)
B-2:ビスフェノールFジグリシジルエーテル(モーメンティヴ社製Epikote862、エポキシ当量165~173)
C1-1:平均分子量1000のポリプロピレングリコール(ジオールタイプ、三井化学(株)製アクトコールD-1000)
C1-2:平均分子量2000のポリプロピレングリコール(ジオールタイプ、三井化学(株)製アクトコールD-2000)
C1-3:平均分子量1000のポリテトラメチレングリコール(ジオールタイプ、三菱化学(株)製PTMG1000)
C1-4:平均分子量1000のポリオキシプロピレングリセリルエーテル(トリオールタイプ、三井化学(株)製アクトコールT-1000)
C2-1:平均分子量3000のポリプロピレングリコール(ジオールタイプ、三井化学(株)製アクトコールD-3000)
C2-2:平均分子量4000のポリプロピレングリコール(ジオールタイプ、三井化学(株)製アクトコールD-4000)
C2-3:平均分子量3000のポリオキシプロピレングリセリルエーテル(トリオールタイプ、三井化学(株)製アクトコールT-3000)
D-1:メチルテトラヒドロフタル酸無水物(日立化成(株)製HN2200,MTHPA)
D-2:メチルヘキサヒドロフタル酸無水物とヘキサヒドロフタル酸無水物の7対3混合物(新日本理化(株)製リカシッドMH700)
E-1:2-エチル-4-メチルイミダゾール(四国化成工業(株)製キュアゾール2E4MZ)
E-2:テトラn-ブチルホスホニウムo,o-ジエチルホスホロジチオネート(日本化学工業(株)製ヒシコーリンPX-4ET)
F-1~F-5:F-1~F-3は、コアの主成分がブタジエンゴムコアであるコアシェルポリマー、F-4はコアの主成分がポリオルガノシロキサンゴムであるコアシェルポリマー、F-5はコアの主成分がアクリルゴムであるコアシェルポリマーである。詳細は、下記製造例に記載する通りである。
F-6:市販品。ダウケミカル製パラロイドEXL-2655。赤外分光分析法により推定したゴム量は、ブタジエンゴム約70%、MEK不溶分量は、95%であった。
以下に、コアシェルポリマー(F-1~F-5)の製造例およびコアシェルポリマー(F-1~F-5)が液状エポキシ樹脂(B-1)あるいは(B-2)に分散した分散物(G-1~G-5)の製造例を示す。
1.コア層の形成
製造例1-1;ポリブタジエンゴムラテックス(R-1)の調製
耐圧重合機中に、脱イオン水200部、リン酸三カリウム0.03部、リン酸二水素カリウム0.25部、エチレンジアミン四酢酸二ナトリウム(EDTA)0.002部、硫酸第一鉄・7水和塩(Fe)0.001部およびドデシルベンゼンスルホン酸ナトリウム(SDS)0.2部を投入し、撹拌しつつ十分に窒素置換を行なって酸素を除いた後、ブタジエン(BD)100部を系中に投入し、45℃に昇温した。パラメンタンハイドロパーオキサイド(PHP)0.015部、続いてナトリウムホルムアルデヒドスルホキシレート(SFS)0.04部を投入し重合を開始した。重合開始から4時間目に、SDS0.3部、PHP0.01部、EDTA0.0015部およびFe0.001部を投入した。さらに重合から7時間目に、SDS0.4部を投入した。重合10時間目に減圧下残存モノマーを脱揮除去して重合を終了し、ポリブタジエンゴム粒子を含むラテックス(R-1)を得た。重合反応率は99%以上であった。得られたラテックスに含まれるポリブタジエンゴム粒子の算術数平均粒子径は0.14μmであった。
脱イオン水251部、SDS0.5部、オクタメチルシクロテトラシロキサン100部、テトラエトキシシラン2部、γ-アクリロイルオキシプロピル ジメトキシメチルシラン2部の混合液をホモミキサーにてより10000rpmで5分間撹拌してエマルジョンを調製した。このエマルジョンを撹拌、還流冷却器、窒素吹込口、モノマーと乳化剤の追加口、温度計を備えた5口ガラス容器に一括して仕込んだ。混合物を撹拌しながら、10%ドデシルベンゼンスルホン酸水溶液1部(固形分)を添加し、80℃に約40分かけて昇温後、80℃で6時間反応させた。その後、25℃に冷却して、20時間放置後、混合物のpHを水酸化ナトリウムで6.8に戻して重合を終了し、ポリオルガノシロキサン粒子(R-2)を含むラテックスを得た。重合反応率は87%であった。得られたラテックスに含まれるポリオルガノシロキサンゴム粒子の算術数平均粒子径は0.13μmであった。
還流冷却器、窒素吹込口、モノマーと乳化剤の追加口、温度計を備えた5口ガラス容器に、脱イオン水225部、EDTA0.002部、Fe0.001部、SFS0.05部、及びSDS0.6部を仕込み、窒素気流中で撹拌しながら60℃に昇温した。
製造例2-1;コアシェルポリマー(F-1)を含有するラテックス(F-1LX)の調製
還流冷却器、窒素吹込口、モノマーと乳化剤の追加口、温度計を備えた5口ガラス容器に、製造例1-1で得たラテックス(R-1)1575部(ポリブタジエンゴム粒子518部相当)および脱イオン水315部を仕込み、窒素置換を行いながら60℃で撹拌した。EDTA0.024部、Fe0.006部、SFS1.2部を加えた後、グラフトモノマー(スチレン(ST)3部、メチルメタクリレート(MMA)35部)、およびCHP0.1部の混合物を2時間かけて連続的に添加しグラフト重合した。添加終了後、更に2時間撹拌して反応を終了させ、コアシェルポリマー(F-1)のラテックス(F-1LX)を得た。重合反応率は99%以上であった。コアシェルポリマー(F-1)のコア成分量は、仕込み量と反応率から93%であった。得られたラテックスに含まれるコアシェルポリマー(F-1)の算術数平均粒子径は0.14μmであり、MEK不溶分量は98%であった。
製造例2-1において、グラフトモノマーとして<ST3部、MMA35部、CHP0.1部>の代わりに<ST5部、グリシジルメタクリレート(GMA)5部、MMA80部、CHP0.3部>を用いたこと以外は製造例2-1と同様にして、コアシェルポリマー(F-2)のラテックス(F-2LX)を得た。重合反応率は99%以上であった。コアシェルポリマー(F-2)のコア成分量は、仕込み量と反応率から85%であった。得られたラテックスに含まれるコアシェルポリマー(F-2)の算術数平均粒子径は0.15μmであり、MEK不溶分量は98%であった。
製造例2-2において、CHP0.3部の代わりに、2,2’-アゾビスイソブチロニトリル(AIBN)0.6部を使用し、グラフトモノマーを追加する前に、反応系にAIBNを追加したこと以外は製造例2-2と同様にして、コアシェルポリマー(F-3)のラテックス(F-3LX)を得た。重合反応率は99%以上であった。コアシェルポリマー(F-3)のコア成分量は、仕込み量と反応率から85%であった。得られたラテックスに含まれるコアシェルポリマー(F-3)の算術数平均粒子径は0.15μmであり、コアシェルポリマーのMEK不溶分量は93%であった。
還流冷却器、窒素吹込口、モノマーと乳化剤の追加口、温度計を備えた5口ガラス容器に、製造例1-2で得たラテックス(R-2)2060部(ポリジメチルシロキサンゴム粒子510部相当)を仕込み、窒素置換を行いながら60℃で撹拌した。EDTA0.024部、Fe0.006部、SFS1.2部を加えた後、グラフトモノマー(ST7部、MMA83部)、およびCHP0.3部の混合物を2時間かけて連続的に添加しグラフト重合した。添加終了後、更に2時間撹拌して反応を終了させ、コアシェルポリマー(F-4)のラテックス(F-4LX)を得た。重合反応率は99%以上であった。コアシェルポリマー(F-4)のコア成分量は、仕込み量と反応率から85%であった。得られたラテックスに含まれるコアシェルポリマー(F-4)の算術数平均粒子径は0.14μmであり、MEK不溶分量は96%であった。
還流冷却器、窒素吹込口、モノマーと乳化剤の追加口、温度計を備えた5口ガラス容器に、製造例1-3で得たラテックス(R-3)1680部(アクリルゴム粒子510部相当)およびSDS0.1部を仕込み、窒素置換を行いながら60℃で撹拌した。EDTA0.024部、Fe0.006部、SFS1.2部を加えた後、グラフトモノマー(ST6部、MMA83部、ALMA1部)、およびt-ブチルハイドロパーオキサイド(t-BHP)0.3部の混合物を2時間かけて連続的に添加しグラフト重合した。添加終了後、更に2時間撹拌して反応を終了させ、コアシェルポリマー(F-5)のラテックス(F-5LX)を得た。重合反応率は99%以上であった。コアシェルポリマー(F-5)のコア成分量は、仕込み量と反応率から85%であった。得られたラテックスに含まれるコアシェルポリマー(F-5)の算術数平均粒子径は0.07μmであり、MEK不溶分量は99%であった。
製造例3-1:液状エポキシ樹脂(B-1)ベースの分散物(G-1)の調製
25℃の1L混合槽にメチルエチルケトン(MEK)100部を導入し、撹拌しながら、それぞれ前記製造例2-1で得られたコアシェルポリマーの水性ラテックス(F-1LX):コアシェルポリマー30部相当分を投入した。均一に混合後、水150部を60部/分の供給速度で投入した。供給終了後、速やかに撹拌を停止したところ、浮上性の凝集体および有機溶媒を一部含む水相からなるスラリー液を得た。次に、水相を槽下部の払い出し口より排出させた。得られた凝集体にMEK70部を追加して均一に混合し、コアシェルポリマーが均一に分散した分散体を得た。この分散体に、液状エポキシ樹脂(B-1)70部を混合した。この混合物から、回転式の蒸発装置で、MEKを除去した。このようにして、液状エポキシ樹脂にコアシェルポリマー(F-1)が30重量%分散した分散物(G-1)を得た。
製造例3-1において使用したコアシェルポリマーの水性ラテックス(F-1LX)の代わりにコアシェルポリマーの水性ラテックス(F-2LX)を用いた以外は、製造例3-1と同様にして液状エポキシ樹脂(B-1)にコアシェルポリマー(F-2)が30重量%分散した分散物(G-2)を得た。
製造例3-1において使用したコアシェルポリマーの水性ラテックス(F-1LX)の代わりにコアシェルポリマーの水性ラテックス(F-3LX)を用いた以外は、製造例3-1と同様にして液状エポキシ樹脂(B-1)にコアシェルポリマー(F-3)が30重量%分散した分散物(G-3)を得た。
製造例3-1において使用したコアシェルポリマーの水性ラテックス(F-1LX)の代わりにコアシェルポリマーの水性ラテックス(F-4LX)を用い、液状エポキシ樹脂(B-1)の代わりに液状エポキシ樹脂(B-2)を用いた以外は、製造例3-1と同様にして液状エポキシ樹脂(B-2)にコアシェルポリマー(F-4)が30重量%分散した分散物(G-4)を得た。
製造例3-1において使用したコアシェルポリマーの水性ラテックス(F-1LX)の代わりにコアシェルポリマーの水性ラテックス(F-5LX)を用い、液状エポキシ樹脂(B-1)の代わりに液状エポキシ樹脂(B-2)を用いた以外は、製造例3-1と同様にして液状エポキシ樹脂(B-2)にコアシェルポリマー(F-5)が30重量%分散した分散物(G-5)を得た。
表2に示す処方に従い、各成分をそれぞれ計量し、撹拌装置(自転公転ミキサー、あわとり練太郎、株式会社シンキー製)を用いて均一に混合した。混合物の脱泡を減圧下で行い、注型用エポキシ樹脂組成物を得た。得られた組成物を、90℃で3時間、130℃で3時間硬化して、硬化物を得た。得られた硬化物を用いて、耐熱衝撃性、ガラス転移温度、衝撃強度および曲げ強度の評価を行った。結果を表2に示す。
表3に示す処方に従い、各成分をそれぞれ計量し、撹拌装置(自転公転ミキサー、あわとり練太郎、株式会社シンキー製)を用いて均一に混合した。混合物の脱泡を減圧下で行い、注型用エポキシ樹脂組成物を得た。得られた組成物を、90℃で3時間、130℃で3時間硬化して、硬化物を得た。得られた硬化物を用いて、耐熱衝撃性およびガラス転移温度の評価を行なった。結果を表3に示す。
表4に示す処方に従い、各成分をそれぞれ計量し、撹拌装置(自転公転ミキサー、あわとり練太郎、株式会社シンキー製)を用いて均一に混合した。混合物の脱泡を減圧下で行い、注型用エポキシ樹脂組成物を得た。得られた組成物を、90℃で3時間、130℃で3時間硬化して、硬化物を得た。得られた硬化物を用いて、耐熱衝撃性の評価およびガラス転移温度を測定した。結果を表4に示す。
表5に示す処方に従い、各成分をそれぞれ計量し、撹拌装置(自転公転ミキサー、あわとり練太郎、株式会社シンキー製)を用いて均一に混合した。混合物の脱泡を減圧下で行い、注型用エポキシ樹脂組成物を得た。得られた組成物を、100℃で3時間、150℃で3時間硬化して、硬化物を得た。得られた硬化物を用いて、耐熱衝撃性およびガラス転移温度の評価を行なった。結果を表5に示す。
Claims (17)
- シリカ粉末(A)、液状エポキシ樹脂(B)、ポリエーテルポリオール(C)、液状酸無水物(D)、硬化促進剤(E)およびコアシェルポリマー(F)を含む注型用エポキシ樹脂組成物。
- ポリエーテルポリオール(C)の含有量が、液状エポキシ樹脂(B)100重量部に対して10~30重量部である請求項1に記載の注型用エポキシ樹脂組成物。
- ポリエーテルポリオール(C)がポリオキシアルキレンジオールである請求項1または2に記載の注型用エポキシ樹脂組成物。
- ポリエーテルポリオール(C)がポリプロピレングリコールおよびポリテトラメチレングリコールから選ばれる請求項1~3のいずれかに記載の注型用エポキシ樹脂組成物。
- ポリエーテルポリオール(C)がポリプロピレングリコールである請求項1~4のいずれかに記載の注型用エポキシ樹脂組成物。
- ポリエーテルポリオール(C)が、平均分子量400以上5000以下である請求項1~5のいずれかに記載の注型用エポキシ樹脂組成物。
- ポリエーテルポリオール(C)として、平均分子量400以上2500未満のポリエーテルポリオール(C1)および平均分子量2500以上5000以下のポリエーテルポリオール(C2)を含む請求項1~6のいずれかに記載の注型用エポキシ樹脂組成物。
-
ポリエーテルポリオール(C1)とポリエーテルポリオール(C2)の合計100重量%に対し、ポリエーテルポリオール(C2)が50~90重量%である請求項7に記載の注型用エポキシ樹脂組成物。 - コアシェルポリマー(F)中のコア層の比率が80~95重量%であり、かつ該コアシェルポリマーのメチルエチルケトン不溶分量が95重量%以上である請求項1~8のいずれかに記載の注型用エポキシ樹脂組成物。
- コアシェルポリマー(F)中のコア層が、ジエン系ゴム、シロキサン系ゴム、及び(メタ)アクリレート系ゴムからなる群より選択される請求項9に記載の注型用エポキシ樹脂組成物。
- コアシェルポリマー(F)が一次分散している請求項1~10のいずれかに記載の注型用エポキシ樹脂組成物。
- シリカ粉末(A)が注型用エポキシ樹脂組成物に占める割合が、40~85重量%((A)+(B)+(C)+(D)+(E)+(F)=100重量%)である請求項1~11のいずれかに記載の注型用エポキシ樹脂組成物。
- コアシェルポリマー(F)が注型用エポキシ樹脂組成物に占める割合が、0.3~10重量%((A)+(B)+(C)+(D)+(E)+(F)=100重量%)である請求項1~12のいずれかに記載の注型用エポキシ樹脂組成物。
- 請求項1~13のいずれかに記載の注型用エポキシ樹脂組成物を硬化して得られる硬化物。
- 請求項14に記載の注型用エポキシ樹脂組成物の硬化物で保護されたコイル。
- 請求項15に記載のコイルを組み込んだ電気・電子機器。
- 請求項14に記載の注型用エポキシ樹脂組成物の硬化物を電気絶縁部材として使用した固体絶縁開閉装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/505,992 US10287387B2 (en) | 2014-09-11 | 2015-09-02 | Epoxy resin composition for casting |
CN201580048821.5A CN106687526B (zh) | 2014-09-11 | 2015-09-02 | 浇铸用环氧树脂组合物 |
JP2016547398A JP6596006B2 (ja) | 2014-09-11 | 2015-09-02 | 注型用エポキシ樹脂組成物 |
EP15839746.3A EP3192835B1 (en) | 2014-09-11 | 2015-09-02 | Epoxy resin composition for casting |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-185608 | 2014-09-11 | ||
JP2014185608 | 2014-09-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016039232A1 true WO2016039232A1 (ja) | 2016-03-17 |
Family
ID=55458981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/074917 WO2016039232A1 (ja) | 2014-09-11 | 2015-09-02 | 注型用エポキシ樹脂組成物 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10287387B2 (ja) |
EP (1) | EP3192835B1 (ja) |
JP (1) | JP6596006B2 (ja) |
CN (1) | CN106687526B (ja) |
WO (1) | WO2016039232A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017179653A1 (ja) * | 2016-04-13 | 2017-10-19 | 株式会社カネカ | 強靭化エポキシ樹脂組成物 |
WO2017188286A1 (ja) * | 2016-04-28 | 2017-11-02 | 日立化成株式会社 | 封止用液状エポキシ樹脂組成物及び電子部品装置 |
JP2018053026A (ja) * | 2016-09-27 | 2018-04-05 | 株式会社カネカ | 機械的強度に優れるポリマー微粒子含有硬化性組成物 |
CN108690149A (zh) * | 2017-04-07 | 2018-10-23 | 旭化成株式会社 | 树脂组合物、增粘剂 |
WO2020090555A1 (ja) * | 2018-10-31 | 2020-05-07 | 株式会社クラレ | 耐衝撃性メタクリル系注型板とその製造方法 |
US11236228B2 (en) * | 2017-07-28 | 2022-02-01 | Kaneka Corporation | Epoxy resin composition |
JP7547031B2 (ja) | 2019-03-19 | 2024-09-09 | 株式会社カネカ | エポキシ樹脂組成物及び接着剤 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7023074B2 (ja) * | 2016-09-16 | 2022-02-21 | ソマール株式会社 | エポキシ樹脂粉体塗料 |
CN110997785A (zh) | 2017-06-02 | 2020-04-10 | 格雷斯公司 | 经涂覆的颗粒及其制备和使用方法 |
DE102019204190A1 (de) * | 2019-03-27 | 2020-10-01 | Siemens Aktiengesellschaft | Gießharz, Formkörper daraus und Verwendung des Formkörpers |
CN115671383B (zh) * | 2022-11-08 | 2023-09-12 | 杭州拉瓦生物科技有限公司 | 一种全口义齿及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06157715A (ja) * | 1992-07-09 | 1994-06-07 | Ciba Geigy Ag | エポキシ樹脂の硬化性懸濁物 |
JP2613330B2 (ja) * | 1990-07-30 | 1997-05-28 | 帝人株式会社 | 多液型熱硬化性樹脂組成物及び硬化樹脂成形物の製造法 |
JP2001040191A (ja) * | 1999-07-28 | 2001-02-13 | Polyplastics Co | 難燃性ポリエステル樹脂組成物 |
JP2004522816A (ja) * | 2000-11-29 | 2004-07-29 | バンティコ アクチエンゲゼルシャフト | 機械的強度の高い充填エポキシ樹脂系 |
JP2006089683A (ja) * | 2004-09-27 | 2006-04-06 | Nippon Steel Chem Co Ltd | 難燃性樹脂組成物 |
JP2012519761A (ja) * | 2009-03-09 | 2012-08-30 | ダウ グローバル テクノロジーズ エルエルシー | 両親媒性ブロックコポリマー及びポリオールの組合せを含む熱硬化性組成物並びにそれからの熱硬化生成物 |
WO2013011832A1 (ja) * | 2011-07-20 | 2013-01-24 | 株式会社ダイセル | 硬化性エポキシ樹脂組成物 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0348193A3 (en) | 1988-06-24 | 1990-09-12 | Somar Corporation | Epoxy resin composition |
US5223598A (en) | 1990-07-30 | 1993-06-29 | Teijin Limited | Plural liquid pack type, heat-curable polyisocyanate-polyol-polyepoxy resin composition and process for producing a shaped resin article therefrom |
PT787348E (pt) * | 1994-07-01 | 2003-12-31 | Bosch Gmbh Robert | Composicao de moldagem de resina epoxica |
JPH11279262A (ja) | 1998-03-30 | 1999-10-12 | Hitachi Chem Co Ltd | エポキシ樹脂組成物および電気機器の製造方法 |
JP5021208B2 (ja) | 2004-01-30 | 2012-09-05 | 新日鐵化学株式会社 | 硬化性樹脂組成物 |
JP2005255822A (ja) | 2004-03-11 | 2005-09-22 | Kaneka Corp | ゴム強化エポキシ樹脂製品 |
WO2009046754A1 (en) * | 2007-10-08 | 2009-04-16 | Abb Research Ltd | Polymer concrete electrical insulation system |
JP4416046B1 (ja) | 2008-08-08 | 2010-02-17 | 横浜ゴム株式会社 | エポキシ樹脂組成物および構造用接着剤 |
DE102009053965B4 (de) * | 2009-11-19 | 2016-06-02 | Siemens Aktiengesellschaft | Mit einer Vergussmasse vergossene Gradientenspule |
EP2892948A1 (en) * | 2012-09-07 | 2015-07-15 | Dow Global Technologies LLC | Toughening masterblends |
-
2015
- 2015-09-02 JP JP2016547398A patent/JP6596006B2/ja active Active
- 2015-09-02 CN CN201580048821.5A patent/CN106687526B/zh active Active
- 2015-09-02 EP EP15839746.3A patent/EP3192835B1/en active Active
- 2015-09-02 WO PCT/JP2015/074917 patent/WO2016039232A1/ja active Application Filing
- 2015-09-02 US US15/505,992 patent/US10287387B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2613330B2 (ja) * | 1990-07-30 | 1997-05-28 | 帝人株式会社 | 多液型熱硬化性樹脂組成物及び硬化樹脂成形物の製造法 |
JPH06157715A (ja) * | 1992-07-09 | 1994-06-07 | Ciba Geigy Ag | エポキシ樹脂の硬化性懸濁物 |
JP2001040191A (ja) * | 1999-07-28 | 2001-02-13 | Polyplastics Co | 難燃性ポリエステル樹脂組成物 |
JP2004522816A (ja) * | 2000-11-29 | 2004-07-29 | バンティコ アクチエンゲゼルシャフト | 機械的強度の高い充填エポキシ樹脂系 |
JP2006089683A (ja) * | 2004-09-27 | 2006-04-06 | Nippon Steel Chem Co Ltd | 難燃性樹脂組成物 |
JP2012519761A (ja) * | 2009-03-09 | 2012-08-30 | ダウ グローバル テクノロジーズ エルエルシー | 両親媒性ブロックコポリマー及びポリオールの組合せを含む熱硬化性組成物並びにそれからの熱硬化生成物 |
WO2013011832A1 (ja) * | 2011-07-20 | 2013-01-24 | 株式会社ダイセル | 硬化性エポキシ樹脂組成物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3192835A4 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3444302A4 (en) * | 2016-04-13 | 2019-10-02 | Kaneka Corporation | REINFORCED EPOXY RESIN COMPOSITION |
JPWO2017179653A1 (ja) * | 2016-04-13 | 2019-02-21 | 株式会社カネカ | 強靭化エポキシ樹脂組成物 |
CN108699321B (zh) * | 2016-04-13 | 2020-11-24 | 株式会社钟化 | 强韧化环氧树脂组合物 |
CN108699321A (zh) * | 2016-04-13 | 2018-10-23 | 株式会社钟化 | 强韧化环氧树脂组合物 |
WO2017179653A1 (ja) * | 2016-04-13 | 2017-10-19 | 株式会社カネカ | 強靭化エポキシ樹脂組成物 |
CN109071922A (zh) * | 2016-04-28 | 2018-12-21 | 日立化成株式会社 | 密封用液状环氧树脂组合物及电子部件装置 |
WO2017188286A1 (ja) * | 2016-04-28 | 2017-11-02 | 日立化成株式会社 | 封止用液状エポキシ樹脂組成物及び電子部品装置 |
JPWO2017188286A1 (ja) * | 2016-04-28 | 2019-03-07 | 日立化成株式会社 | 封止用液状エポキシ樹脂組成物及び電子部品装置 |
CN115093545A (zh) * | 2016-04-28 | 2022-09-23 | 日立化成株式会社 | 密封用液状环氧树脂组合物及电子部件装置 |
CN109071922B (zh) * | 2016-04-28 | 2022-10-28 | 昭和电工材料株式会社 | 密封用液状环氧树脂组合物及电子部件装置 |
JP2018053026A (ja) * | 2016-09-27 | 2018-04-05 | 株式会社カネカ | 機械的強度に優れるポリマー微粒子含有硬化性組成物 |
CN108690149A (zh) * | 2017-04-07 | 2018-10-23 | 旭化成株式会社 | 树脂组合物、增粘剂 |
CN108690149B (zh) * | 2017-04-07 | 2021-02-26 | 旭化成株式会社 | 树脂组合物、增粘剂 |
US11236228B2 (en) * | 2017-07-28 | 2022-02-01 | Kaneka Corporation | Epoxy resin composition |
WO2020090555A1 (ja) * | 2018-10-31 | 2020-05-07 | 株式会社クラレ | 耐衝撃性メタクリル系注型板とその製造方法 |
JP7547031B2 (ja) | 2019-03-19 | 2024-09-09 | 株式会社カネカ | エポキシ樹脂組成物及び接着剤 |
Also Published As
Publication number | Publication date |
---|---|
CN106687526A (zh) | 2017-05-17 |
EP3192835A1 (en) | 2017-07-19 |
US10287387B2 (en) | 2019-05-14 |
US20170275413A1 (en) | 2017-09-28 |
CN106687526B (zh) | 2018-12-07 |
JP6596006B2 (ja) | 2019-10-23 |
EP3192835A4 (en) | 2018-05-02 |
JPWO2016039232A1 (ja) | 2017-06-22 |
EP3192835B1 (en) | 2023-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6596006B2 (ja) | 注型用エポキシ樹脂組成物 | |
KR101685775B1 (ko) | 중합체 분체, 경화성 수지 조성물 및 그의 경화물 | |
JP7199354B2 (ja) | エポキシ樹脂組成物 | |
US10947337B2 (en) | Toughened epoxy resin composition | |
TWI580701B (zh) | 乙烯基聚合物粉末、硬化性樹脂組成物及硬化物 | |
JP7049152B2 (ja) | 塗料用エポキシ樹脂組成物 | |
JP2015218180A (ja) | 注型用エポキシ樹脂組成物 | |
JP5760347B2 (ja) | グラフト共重合体の製造方法、樹脂組成物及び成形体 | |
WO2022138807A1 (ja) | 硬化性樹脂組成物及び接着剤 | |
JP2024002788A (ja) | エポキシ樹脂組成物 | |
WO2020213642A1 (ja) | エポキシ樹脂組成物、硬化性樹脂組成物、硬化物、接着剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15839746 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016547398 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15505992 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015839746 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015839746 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |