[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016039258A1 - In-wheel motor drive device - Google Patents

In-wheel motor drive device Download PDF

Info

Publication number
WO2016039258A1
WO2016039258A1 PCT/JP2015/075151 JP2015075151W WO2016039258A1 WO 2016039258 A1 WO2016039258 A1 WO 2016039258A1 JP 2015075151 W JP2015075151 W JP 2015075151W WO 2016039258 A1 WO2016039258 A1 WO 2016039258A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive device
wheel
mating surface
motor
rear cover
Prior art date
Application number
PCT/JP2015/075151
Other languages
French (fr)
Japanese (ja)
Inventor
四郎 田村
貴則 石川
真也 太向
Original Assignee
Ntn株式会社
四郎 田村
貴則 石川
真也 太向
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 四郎 田村, 貴則 石川, 真也 太向 filed Critical Ntn株式会社
Publication of WO2016039258A1 publication Critical patent/WO2016039258A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/14Sealings between relatively-stationary surfaces by means of granular or plastic material, or fluid
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to an in-wheel motor drive device.
  • the in-wheel motor drive device includes a motor unit, a deceleration unit that receives a driving force from the motor unit and decelerates the number of rotations to output to the wheel side, and a wheel hub bearing unit that is coupled to the output shaft of the deceleration unit. It has.
  • a conventional in-wheel motor drive device for example, JP 2011-240772 A (Patent Document 1) shown in FIG.
  • the in-wheel motor drive device of Patent Document 1 includes a motor part A, a reduction part B, and a wheel hub bearing part C, and includes a motor housing 101 and one axial direction of the motor housing 101.
  • the rear cover 102 that covers the opening on the side forms an outline of the motor part A.
  • the motor housing 101 and the rear cover 102 are abutted and coupled in the axial direction via an O-ring 103.
  • the in-wheel motor drive device is disposed at the lower part of the chassis and in the vicinity of the road surface and is exposed to the outside of the vehicle.
  • the in-wheel motor drive device is housed in a wheel of a tire, the entire in-wheel motor drive device does not fit in the wheel and a part thereof is exposed. Since the motor part A of the in-wheel motor drive device often comes to the inside of the vehicle body, the motor housing 101 of the motor part A is partly exposed. And since it is exposed, mud, water, etc. which the tire repels adhere to the motor housing 101.
  • an object of the present invention is to provide an in-wheel motor drive device that improves the sealing performance of the mating surface between the motor housing and the rear cover.
  • the above problem is caused by the fact that the O-ring 103 is disposed for the purpose of sealing from the inside to the outside, such as preventing the internal lubricating oil from being discharged to the outside in the motor part A.
  • the inventor found.
  • a liquid gasket is applied to the mating surface and completed the present invention.
  • the in-wheel motor drive device of the present invention is an in-wheel motor drive device including a motor portion and a wheel hub bearing portion, and a casing that forms an outer shell of the in-wheel motor drive device includes a cylindrical motor housing and And a rear cover for closing the opening end of the motor housing, and the entire outer edge of the mating surface of the motor housing and the rear cover is filled with a liquid gasket.
  • the liquid gasket is disposed and cured on the entire outer edge of the mating surface between the motor housing and the rear cover, it is possible to prevent water from entering the mating surface. For this reason, corrosion resistance improves and it can suppress that rust arises in a mating surface. Therefore, the sealing performance of the mating surfaces can be improved.
  • At least one of the entire inner edge and the entire outer edge is chamfered in at least one of the motor housing and the rear cover constituting the mating surface, and the chamfered portion is filled with a liquid gasket.
  • the chamfered portion can be filled with the liquid gasket when cured.
  • the allowable amount of elongation of the liquid gasket filled in the chamfered portion is large.
  • the chamfered portion is filled even when a large external force is applied due to vibration in the direction in which the motor housing and the rear cover are separated due to the in-wheel motor drive device being mounted in the vehicle wheel.
  • the liquid gasket can absorb a large external force. For this reason, durability by vibration can be improved.
  • the entire inner edge is chamfered in at least one of the motor housing and the rear cover constituting the mating surface.
  • the in-wheel motor drive device of the present invention may further include an O-ring arranged on the mating surface.
  • the outer edge of the mating surface is filled with a liquid gasket, water can be prevented from entering from the outside, so that the sealing performance can be improved even if an O-ring is further provided on the mating surface.
  • the sealing performance of the mating surface between the motor housing and the rear cover can be improved.
  • FIG. 1 is a longitudinal sectional view schematically showing an in-wheel motor driving device in an embodiment of the present invention. It is a cross-sectional view which shows roughly the in-wheel motor drive device in embodiment of this invention. It is the longitudinal cross-sectional view which expanded the area
  • FIG. 4 is a longitudinal sectional view of still another embodiment corresponding to the longitudinal sectional view of FIG. 3.
  • FIG. 4 is a longitudinal sectional view of still another embodiment corresponding to the longitudinal sectional view of FIG. 3.
  • FIG. 4 is a longitudinal sectional view of still another embodiment corresponding to the longitudinal sectional view of FIG. 3.
  • FIG. 4 is a longitudinal sectional view of still another embodiment corresponding to the longitudinal sectional view of FIG. 3.
  • FIG. 4 is a longitudinal sectional view of still another embodiment corresponding to the longitudinal sectional view of FIG. 3.
  • FIG. 4 is a longitudinal sectional view of still another
  • the in-wheel motor drive device 21 includes a motor unit A that generates a driving force, a deceleration unit B that decelerates and outputs the rotation of the motor unit A, and a wheel hub bearing that transmits the output from the deceleration unit B to driving wheels. Part C.
  • the motor part A, the speed reduction part B, and the wheel hub bearing part C are arranged coaxially in this order along the axis O direction of the in-wheel motor drive device 21.
  • the casing 22 forms an outer shell of the in-wheel motor drive device 21.
  • the casing 22 includes a cylindrical motor housing 22a that extends along the axis O, and a rear cover 22d that closes an opening end of the motor housing 22a (an opening end located on the opposite side of the speed reduction portion B in the direction of the axis O). Including.
  • the motor housing 22a and the rear cover 22d are butted together in the direction of the axis O.
  • the motor part A is a radial gap motor including a motor housing 22a, a rear cover 22d, a stator 23, a rotor 24, and a motor rotating shaft 35.
  • the stator 23 is fixed to the inner peripheral surface of the motor housing 22a.
  • a coil 23c is wound around the stator 23.
  • a rotor 24 is arranged at a position facing the inner side of the stator 23 with a radial gap.
  • the rotor 24 is formed so as to protrude radially outward from the outer periphery of the motor rotating shaft 35 and the rotor main body 24a having a hollow cylindrical shape in which a plurality of discs having a through hole in the center are stacked.
  • a cylindrical rotor support 24b that is fixed to the inner periphery and supports the rotor main body 24a at the axial center of the motor rotation shaft 35 is provided.
  • a motor rotating shaft 35 is fixedly connected to the inside of the rotor 24 and rotates integrally with the rotor 24.
  • the axial end of the motor rotation shaft 35 located on the side opposite to the speed reduction portion B is rotatably supported by the center portion of the rear cover 22d via a rolling bearing 36a.
  • the axial end of the motor rotating shaft 35 located on the side close to the speed reduction portion B is passed through the center hole of the inward flange portion 22e of the motor housing 22a, and the center hole of the inward flange portion 22e via the rolling bearing 36b. Is supported rotatably.
  • the end located on the side closer to the speed reduction part B is connected and fixed to the input shaft 25 of the speed reduction part B by, for example, serration fitting. Since the motor rotation shaft 35 of the motor part A and the input shaft 25 of the speed reduction part B extend along the substantially horizontal axis O and rotate together, the assembly of the motor rotation shaft 35 and the input shaft 25 is a motor side rotation member. Called.
  • the deceleration part B includes a cylindrical deceleration housing 22b.
  • the deceleration unit B includes an input shaft 25, an output shaft 28, and a cycloid reduction mechanism that transmits rotation between the input shaft 25 and the output shaft 28.
  • eccentric members 25a and 25b provided eccentrically at two positions of the end of the input shaft 25 on the side far from the motor rotation shaft 35, and the inner periphery of the eccentric member 25a.
  • curved plates 26a, 26b as revolving members which are attached to the outer periphery of the rotating shaft 25b so as to be relatively rotatable and perform a revolving motion around the rotation axis along with the rotation of the input shaft 25, and a curved curve
  • a plurality of outer pins 27 as outer peripheral engagement members that engage with the outer peripheral portions of the plates 26a and 26b (see FIG. 2) to cause the rotational motion of the curved plates 26a and 26b, and only the rotation of the curved plates 26a and 26b.
  • the curved plate 26 b has a plurality of corrugations composed of trochoidal curves such as epitrochoids on the outer peripheral portion, a plurality of through holes 30 a penetrating from one end face to the other end face, and A through hole 30b is provided at the center.
  • a plurality of through holes 30a are provided at equal intervals on a circumference centered on the rotation axis of the curved plate 26b, and receive an inner pin 31 described later.
  • the through hole 30b is provided at the center (rotation axis) of the curved plate 26b, and holds the outer peripheral surface of the eccentric member 25b so as to be concentric. The same applies to the curved plate 26a.
  • the motion conversion mechanism is composed of a plurality of inner pins 31 as inner engaging members implanted in the flange portion 28a (see FIG. 1) of the output shaft 28, and through holes 30a provided in the curved plates 26a and 26b. Is done.
  • the inner pins 31 are provided at equal intervals on a circumferential orbit centering on the axis O that is the rotation axis of the output shaft 28, and extend parallel to the axis O of the output shaft 28, as shown in FIG.
  • the root end of the inner pin 31 is fixed to the output shaft 28.
  • the output shaft 28 arranged coaxially with the input shaft 25 takes out the rotation of the curved plates 26a and 26b as the output of the speed reduction unit B through this motion conversion mechanism. As a result, the rotation of the input shaft 25 is decelerated by the deceleration unit B and transmitted to the output shaft 28. Therefore, even when the low torque, high rotation type motor unit A is employed, it is possible to transmit the necessary torque to the drive wheels.
  • the lubricating oil circulation mechanism includes a lubricating oil pump 51, a discharge oil passage 54, a casing oil passage 55, a communication oil passage 56, a motor rotation shaft oil passage 58a, and a speed reduction unit input shaft oil.
  • the lubricating oil is circulated in this order. Thereby, the lubricating oil circulation mechanism performs lubrication and cooling of the speed reduction part B.
  • the wheel hub bearing portion C includes a hub wheel 32 fixedly connected to the shaft portion 28 b of the output shaft 28, and a wheel hub bearing 33 that holds the hub wheel 32 rotatably with respect to the casing 22.
  • the wheel hub bearing 33 is a double-row angular ball bearing, and an inner ring member 33 n is fitted and fixed to the outer peripheral surface of the hub ring 32.
  • a plurality of balls (rolling elements) 33 b are arranged in the annular gap between the outer ring member 33 g and the inner ring member 33 n and the hollow portion 32 a of the hub ring 32. Further, a plurality of balls 33 b are also arranged in the annular gap between the outer ring member 33 g and the hub ring 32.
  • the outer ring member 33g of the wheel hub bearing 33 is fixed to the axial end of the speed reduction housing 22b.
  • the hub wheel 32 includes a cylindrical hollow portion 32a that is coupled to the shaft portion 28b of the output shaft 28, and a flange portion 32b that is formed at an end portion of the shaft portion 28b that is far from the speed reduction portion B.
  • a drive wheel (not shown) is fixedly connected to the flange portion 32b by a bolt 32c and a taper nut (not shown). Since the output shaft 28 of the speed reduction part B and the hub wheel 32 of the wheel hub bearing part C extend along the substantially horizontal axis O and rotate integrally, the assembly of the output shaft 28 and the hub wheel 32 is a wheel side rotating member. Called.
  • the driving wheel is disposed on the outermost side in the vehicle width direction of the vehicle, and has a sufficiently larger outer diameter than the in-wheel motor driving device 21 and contacts the road surface. Thereby, the clearance from the contact surface of the drive wheel to the casing 22 is ensured.
  • the casing 22 has a cylindrical shape in which a cylindrical motor housing 22a and a speed reduction housing 22b having different outer diameters are connected in the direction of the axis O, and constitutes an outline of the in-wheel motor drive device 21.
  • the motor housing 22a having a large outer diameter constitutes the outline of the motor part A.
  • the reduction housing 22b having a small outer diameter constitutes the outline of the reduction portion B.
  • the motor housing 22a has the largest outer diameter in the in-wheel motor drive device 21, and includes a hollow cylindrical wall centering on the axis O and an inward flange portion 22e.
  • the speed reduction housing 22b which is a part located in the speed reduction portion B of the casing 22, has the next largest outer diameter, and includes a hollow cylindrical wall centering on the axis O and an inward flange portion 22h.
  • a rear cover 22d is attached and fixed by bolts 22f to the axial end on the side farther from the speed reduction portion B of both ends in the axial direction of the motor housing 22a.
  • the rear cover 22d is a disk-shaped wall member that becomes a part of the casing 22, and seals the opening at the axial end of the motor housing 22a.
  • An inward flange portion 22e is integrally formed at the axial end located on the side closer to the speed reduction portion B of both ends in the axial direction of the motor housing 22a.
  • the inward flange portion 22 e is a disc-shaped portion that becomes a part of the casing 22, and partitions the internal space of the motor part A and the internal space of the speed reduction part B.
  • One axial end of the speed reduction housing 22b is fixed to the inward flange portion 22e with a bolt 22g.
  • a lubricating oil pump 51 is provided on the inward flange portion 22e.
  • An inward flange portion 22h is integrally formed at the axial end on the side close to the wheel hub bearing portion C of both ends in the axial direction of the deceleration housing 22b.
  • the inward flange portion 22 h is a disk-shaped portion that becomes a part of the casing 22.
  • a flange portion 33f of the outer ring member 33g of the wheel hub bearing 33 is fixed to the inward flange portion 22h by a bolt 22i.
  • the mating surfaces of the motor housing 22a and the rear cover 22d will be described with reference to FIGS. 3 to 8, the upper side is the inside of the in-wheel motor driving device 21, and the lower side is the outside of the in-wheel motor driving device 21.
  • the entire outer edge of the mating surface between the motor housing 22a and the rear cover 22d is filled with a liquid gasket 70.
  • the liquid gasket 70 of the present embodiment is filled at least at the outer edge along the circumferential direction.
  • the mating surface is a surface orthogonal to the axis O, and is an axis perpendicular surface extending in an arc around the axis O.
  • the liquid gasket 70 is a substance having fluidity, and when applied to the joint surface, the liquid gasket 70 is cured after a predetermined time to form an elastic or adhesive film.
  • the liquid gasket 70 includes organic solvent types such as modified alkyd, fiber ester, and synthetic rubber, solventless types such as phenol, modified ester, silicone, and acrylic, and aqueous types such as aqueous acrylic. In addition, since it has high heat resistance, a silicone type is preferable.
  • the thickness of the liquid gasket 70 is, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the end surface of the motor housing 22a and the end surface of the rear cover 22d constituting the mating surface are flat surfaces and are not chamfered.
  • the liquid gasket 70 extends from the outer edge to the inner edge of the mating surfaces. That is, the liquid gasket 70 is filled in the entire mating surface.
  • the structure shown in FIGS. 4 to 8 shows a mating surface structure of another embodiment different from FIG.
  • the entire inner edge (entire circumference) and the entire outer edge (full circumference) of the surface portion constituting the mating surface of the motor housing 22a are chamfered, and the surface portion constituting the mating surface of the rear cover 22d is a flat surface. It is not chamfered.
  • the entire outer edge of the surface portion constituting the mating surface of the rear cover 22d is chamfered, the inner edge of the surface portion constituting the mating surface of the rear cover 22d, the outer edge and the inner edge constituting the mating surface of the motor housing 22a are It is not chamfered.
  • the mating surface of the motor housing 22a is a flat surface.
  • the entire inner edge of the surface portion constituting the mating surface of the motor housing 22a is chamfered to constitute the outer edge of the surface portion constituting the mating surface of the motor housing 22a and the mating surface of the rear cover 22d.
  • the outer and inner edges of the face portion are not chamfered. That is, the end surface of the rear cover 22d in FIGS. 6 and 7 is a flat surface.
  • FIG. 6 and 7 is a flat surface.
  • the entire outer edge of the surface portion constituting the mating surface of the motor housing 22a is chamfered, the inner edge of the surface portion constituting the mating surface of the motor housing, and the outer edge of the surface portion constituting the mating surface of the rear cover 22d. And the inner edge is not chamfered. That is, the end surface of the rear cover 22d in FIG. 8 is a flat surface. Thus, it is preferable that at least one of the entire inner edge and the entire outer edge is chamfered in at least one of the motor housing 22a and the rear cover 22d constituting the mating surface.
  • the liquid gasket 70 extends from the outer edge to the inner edge of the mating surface. That is, the liquid gasket is filled in the entire chamfered portion. 7 and 8, the liquid gasket 70 extends from the outer edge of the mating surface to the front of the inner edge, and the liquid gasket 70 is not filled in the inner edge of the mating surface. Specifically, in the structure shown in FIG. 7, the liquid gasket 70 is filled in a part of the chamfered portion, and the liquid gasket 70 is not filled in the inner edge of the chamfered portion. In the structure shown in FIG. 8, the liquid gasket 70 extends from the outer edge of the mating surface to the front of the O-ring 71, and the inner edge is not filled with the liquid gasket 71.
  • an O-ring 71 is filled on the inner edge side of the mating surface of the motor housing 22a and the rear cover 22d.
  • the O-ring 71 continues all around the axis O.
  • the O-ring 71 is made of, for example, rubber or resin.
  • the angle ⁇ at which the extending direction of the non-chamfered surface portion intersects the extending direction of the chamfered portion is, for example, It is 20 degrees or more and 30 degrees or less.
  • the in-wheel motor drive device 21 of the present embodiment is an in-wheel motor drive device 21 that includes the motor part A and the wheel hub bearing part C, and is an outline of the in-wheel motor drive apparatus 21.
  • the casing 22 includes a cylindrical motor housing 22a and a rear cover 22d that closes the opening end of the motor housing 22a. The entire outer edge of the mating surface of the motor housing 22a and the rear cover 22d is filled with a liquid gasket. ing.
  • the entire outer edge (entire circumference along the circumferential direction) of the mating surface of the motor housing 22a and the rear cover 22d is filled and cured. .
  • it can prevent that water permeates into the inside of the mating surface. That is, it can prevent effectively that water contacts a mating surface.
  • the corrosion resistance of a mating surface improves and it can suppress that rust arises. Therefore, the sealing performance of the mating surfaces can be improved.
  • the liquid gasket 70 is filled on the entire outer edge of the mating surface. From the viewpoint of improving the durability of the liquid gasket 70, the liquid gasket 70 is used. Is preferably extended from the outer edge toward the inner edge, and is preferably filled to more than half the area of the mating surface (from the outer edge to the center position of the mating surface).
  • the in-wheel motor drive device 21 of the present embodiment is formed by disposing a liquid gasket on the entire outer edge of one of the motor housing 22a and the rear cover 22d constituting the mating surface and pressing the other.
  • the liquid gasket before curing is pressed in a state where the mating surface is filled, the liquid gasket spreads along the mating surface (along the direction orthogonal to the axis O). For this reason, it is preferable to include a portion for filling the liquid gasket so that the liquid gasket does not protrude from the mating surface. From this point of view, as shown in FIGS.
  • the in-wheel motor drive device 21 of the present embodiment at least one of the entire inner edge and the entire outer edge in at least one of the motor housing 22a and the rear cover 22d constituting the mating surface. It is preferable that one side is chamfered and the chamfered portion is filled with the liquid gasket 70.
  • Such a structure is not limited to the structure shown in FIGS. 4 to 7.
  • the entire outer edge of the mating surface may be chamfered, or the inner edge of the mating surface of the rear cover 22d. The whole may be chamfered alone or in combination with the structure of FIGS.
  • the drive device 21 it is more preferable that at least one of the motor housing 22 a and the rear cover 22 d constituting the mating surface, the entire inner edge is chamfered and the chamfered portion is filled with the liquid gasket 70.
  • the rear cover 22d constituting the mating surface is not chamfered, and the entire inner edge of the motor housing 22a is chamfered, and the motor housing 22a is chamfered.
  • the liquid gasket 70 may be filled between the portion and the rear cover 22d.
  • the liquid gasket 70 filled in the chamfered portion can largely follow the elongation as compared with the liquid gasket 70 filled in the non-chamfered portion. For this reason, even if a large external force due to vibration is applied in a direction in which the motor housing 22a and the rear cover 22d are separated due to the in-wheel motor drive device 21 being mounted in the wheel of the vehicle, the chamfered portion The filled liquid gasket 70 can absorb a large external force. For this reason, the in-wheel motor drive device 21 of this Embodiment can improve the durability by vibration.
  • the in-wheel motor drive device 21 including the motor part A, the speed reduction part B, and the wheel hub bearing part C has been described as an example.
  • the speed reduction part B is omitted. Includes an in-wheel motor drive device directly connected to the motor.
  • the in-wheel motor drive device of the present invention is advantageously used in electric vehicles, hybrid vehicles and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Gasket Seals (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

This in-wheel motor drive device (21) is provided with a motor section (A) and a wheel hub bearing section (C). A casing (22) forming the outer shell of the in-wheel motor drive device (21) includes a cylindrical motor housing (22a) and a rear cover (22d) which closes an opening end of the motor housing (22a). A liquid gasket is applied to the entire outer edge of the mating face between the motor housing (22a) and the rear cover (22d).

Description

インホイールモータ駆動装置In-wheel motor drive device
 本発明は、インホイールモータ駆動装置に関する。 The present invention relates to an in-wheel motor drive device.
 インホイールモータ駆動装置は、モータ部と、このモータ部から駆動力を入力されて回転数を減速して車輪側に出力する減速部と、この減速部の出力軸と結合する車輪ハブ軸受部とを備えている。従来のインホイールモータ駆動装置として、例えば、図9に示す特開2011-240772号公報(特許文献1)が挙げられる。特許文献1のインホイールモータ駆動装置は、図9に示すように、モータ部Aと、減速部Bと、車輪ハブ軸受部Cとを備え、モータハウジング101と、このモータハウジング101の軸線方向一方側の開口を覆うリアカバー102とは、モータ部Aの外郭を形成している。モータハウジング101とリアカバー102とは、Oリング103を介して、軸線方向に突き合わされて結合されている。 The in-wheel motor drive device includes a motor unit, a deceleration unit that receives a driving force from the motor unit and decelerates the number of rotations to output to the wheel side, and a wheel hub bearing unit that is coupled to the output shaft of the deceleration unit. It has. As a conventional in-wheel motor drive device, for example, JP 2011-240772 A (Patent Document 1) shown in FIG. As shown in FIG. 9, the in-wheel motor drive device of Patent Document 1 includes a motor part A, a reduction part B, and a wheel hub bearing part C, and includes a motor housing 101 and one axial direction of the motor housing 101. The rear cover 102 that covers the opening on the side forms an outline of the motor part A. The motor housing 101 and the rear cover 102 are abutted and coupled in the axial direction via an O-ring 103.
特開2011-240772号公報JP 2011-240772 A
 しかしながら、インホイールモータ駆動装置は、自動車のシャーシの上部でボンネット内に収容されるエンジンと異なり、シャーシの下部でかつ路面の近傍に配置されて車外へ露出している。インホイールモータ駆動装置はタイヤのホイール内に収納するものであるが、インホイールモータ駆動装置の全てがホイール内に収まらず、一部が露出している。インホイールモータ駆動装置のモータ部Aが車体内側にくることが多いので、モータ部Aのモータハウジング101が一部露出している部分になる。そして露出しているためタイヤが撥ねた泥や水等がモータハウジング101に付着する。上記特許文献1などの従来のインホイールモータ駆動装置では、タイヤが撥ねた泥や水がモータハウジング101とリアカバー102との合わせ面に付着すると、その隙間に水が浸入して、Oリング103の周囲に錆びなどの腐食生成物が生じるという問題があることを本発明者は見出した。合わせ面に錆びが生じると、この錆びの影響により合わせ面の隙間が大きくなり、Oリング103に必要なつぶし代を確保できず、合わせ面のシール性が低下してしまう。 However, unlike the engine housed in the hood at the upper part of the automobile chassis, the in-wheel motor drive device is disposed at the lower part of the chassis and in the vicinity of the road surface and is exposed to the outside of the vehicle. Although the in-wheel motor drive device is housed in a wheel of a tire, the entire in-wheel motor drive device does not fit in the wheel and a part thereof is exposed. Since the motor part A of the in-wheel motor drive device often comes to the inside of the vehicle body, the motor housing 101 of the motor part A is partly exposed. And since it is exposed, mud, water, etc. which the tire repels adhere to the motor housing 101. In the conventional in-wheel motor drive device such as Patent Document 1 described above, when mud or water splashed by the tire adheres to the mating surface between the motor housing 101 and the rear cover 102, water enters the gap, and the O-ring 103 The present inventor has found that there is a problem in that corrosion products such as rust are generated around. When rusting occurs on the mating surfaces, the gap between the mating surfaces becomes large due to the influence of the rust, and a crushing margin necessary for the O-ring 103 cannot be secured, and the sealing performance of the mating surfaces decreases.
 本発明は、上記問題点に鑑み、モータハウジングとリアカバーとの合わせ面のシール性を向上するインホイールモータ駆動装置を提供することを課題とする。 In view of the above problems, an object of the present invention is to provide an in-wheel motor drive device that improves the sealing performance of the mating surface between the motor housing and the rear cover.
 上記課題は、モータ部Aにおいて内部の潤滑油が外部に排出されることを防止するなど、内部から外部への封止を目的としてOリング103を配置していることに起因していることを本発明者は見出した。そこで、モータハウジングとリアカバーとの合わせ面において外部から内部に水が浸入することを抑制するために鋭意研究した結果、合わせ面に液状ガスケットを塗布することを見出し、本発明を完成させた。 The above problem is caused by the fact that the O-ring 103 is disposed for the purpose of sealing from the inside to the outside, such as preventing the internal lubricating oil from being discharged to the outside in the motor part A. The inventor found. Thus, as a result of intensive studies to prevent water from entering from the outside into the mating surface between the motor housing and the rear cover, the inventors have found that a liquid gasket is applied to the mating surface and completed the present invention.
 すなわち、本発明のインホイールモータ駆動装置は、モータ部と車輪ハブ軸受部とを備えたインホイールモータ駆動装置であって、インホイールモータ駆動装置の外郭をなすケーシングは、筒状のモータハウジングと、このモータハウジングの開口端を閉鎖するリアカバーとを含み、モータハウジングとリアカバーとの合わせ面の外縁全体に、液状ガスケットが充填されている。 That is, the in-wheel motor drive device of the present invention is an in-wheel motor drive device including a motor portion and a wheel hub bearing portion, and a casing that forms an outer shell of the in-wheel motor drive device includes a cylindrical motor housing and And a rear cover for closing the opening end of the motor housing, and the entire outer edge of the mating surface of the motor housing and the rear cover is filled with a liquid gasket.
 本発明のインホイールモータ駆動装置によれば、モータハウジングとリアカバーとの合わせ面の外縁全体に、液状ガスケットが配置されて硬化されているので、合わせ面に水が浸入することを抑制できる。このため、防食性が向上し、合わせ面に錆が生じることを抑制できる。したがって、合わせ面のシール性を向上することができる。 According to the in-wheel motor drive device of the present invention, since the liquid gasket is disposed and cured on the entire outer edge of the mating surface between the motor housing and the rear cover, it is possible to prevent water from entering the mating surface. For this reason, corrosion resistance improves and it can suppress that rust arises in a mating surface. Therefore, the sealing performance of the mating surfaces can be improved.
 本発明のインホイールモータ駆動装置において好ましくは、合わせ面を構成するモータハウジング及びリアカバーの少なくとも一方において、内縁全体及び外縁全体の少なくとも一方が面取りされ、面取りされた部分に液状ガスケットが充填されている。 Preferably, in the in-wheel motor drive device of the present invention, at least one of the entire inner edge and the entire outer edge is chamfered in at least one of the motor housing and the rear cover constituting the mating surface, and the chamfered portion is filled with a liquid gasket. .
 これにより、硬化前の液状ガスケットを合わせ面に配置し、硬化する際に、面取りされた部分に液状ガスケットを充填することができる。面取りされた部分に充填された液状ガスケットの許容可能な伸び量は大きい。このため、インホイールモータ駆動装置が車両のホイール内に搭載されることに起因して、モータハウジングとリアカバーとが離れる方向に振動による大きな外力が加えられても、面取りされた部分に充填された液状ガスケットは、大きな外力を吸収できる。このため、振動による耐久性を向上することができる。 This allows the liquid gasket before curing to be placed on the mating surface, and the chamfered portion can be filled with the liquid gasket when cured. The allowable amount of elongation of the liquid gasket filled in the chamfered portion is large. For this reason, the chamfered portion is filled even when a large external force is applied due to vibration in the direction in which the motor housing and the rear cover are separated due to the in-wheel motor drive device being mounted in the vehicle wheel. The liquid gasket can absorb a large external force. For this reason, durability by vibration can be improved.
 本発明のインホイールモータ駆動装置において好ましくは、合わせ面を構成するモータハウジング及びリアカバーの少なくとも一方において、内縁全体が面取りされている。 In the in-wheel motor drive device of the present invention, preferably, the entire inner edge is chamfered in at least one of the motor housing and the rear cover constituting the mating surface.
 これにより、硬化前の液状ガスケットを合わせ面に配置し、硬化する際に、内縁の面取りされた部分に液状ガスケットを充填することができる。このため、合わせ面の内縁から硬化した液状ガスケットがはみ出ることを抑制できる。したがって、硬化した液状ガスケットが合わせ面から離脱し、モータ部内部に侵入して、異物となる可能性を低減することができる。 This allows the liquid gasket before curing to be placed on the mating surface and filled with the chamfered portion of the inner edge when cured. For this reason, it can suppress that the liquid gasket hardened | cured from the inner edge of the mating surface protrudes. Therefore, it is possible to reduce the possibility that the hardened liquid gasket is detached from the mating surfaces and enters the motor portion to become a foreign matter.
 本発明のインホイールモータ駆動装置において、合わせ面に配置されたOリングをさらに備えていてもよい。 The in-wheel motor drive device of the present invention may further include an O-ring arranged on the mating surface.
 合わせ面の外縁に液状ガスケットが充填されていれば、外部から水が浸入することを抑制できるので、合わせ面にOリングがさらに設けられていても、シール性を向上することができる。 If the outer edge of the mating surface is filled with a liquid gasket, water can be prevented from entering from the outside, so that the sealing performance can be improved even if an O-ring is further provided on the mating surface.
 本発明のインホイールモータ駆動装置によれば、モータハウジングとリアカバーとの合わせ面のシール性を向上することができる。 According to the in-wheel motor drive device of the present invention, the sealing performance of the mating surface between the motor housing and the rear cover can be improved.
本発明の実施の形態におけるインホイールモータ駆動装置を概略的に示す縦断面図である。1 is a longitudinal sectional view schematically showing an in-wheel motor driving device in an embodiment of the present invention. 本発明の実施の形態におけるインホイールモータ駆動装置を概略的示す横断面図である。It is a cross-sectional view which shows roughly the in-wheel motor drive device in embodiment of this invention. 図1における領域IIIを拡大した縦断面図である。It is the longitudinal cross-sectional view which expanded the area | region III in FIG. 図3の縦断面図に相当する他の実施形態の縦断面図である。It is a longitudinal cross-sectional view of other embodiment corresponded to the longitudinal cross-sectional view of FIG. 図3の縦断面図に相当するさらに他の実施形態の縦断面図である。FIG. 4 is a longitudinal sectional view of still another embodiment corresponding to the longitudinal sectional view of FIG. 3. 図3の縦断面図に相当するさらに他の実施形態の縦断面図である。FIG. 4 is a longitudinal sectional view of still another embodiment corresponding to the longitudinal sectional view of FIG. 3. 図3の縦断面図に相当するさらに他の実施形態の縦断面図である。FIG. 4 is a longitudinal sectional view of still another embodiment corresponding to the longitudinal sectional view of FIG. 3. 図3の縦断面図に相当するさらに他の実施形態の縦断面図である。FIG. 4 is a longitudinal sectional view of still another embodiment corresponding to the longitudinal sectional view of FIG. 3. 特許文献1におけるインホイールモータ駆動装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the in-wheel motor drive device in patent document 1.
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照符号を付しその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 インホイールモータ駆動装置21は、駆動力を発生させるモータ部Aと、このモータ部Aの回転を減速して出力する減速部Bと、この減速部Bからの出力を駆動輪に伝える車輪ハブ軸受部Cとを備えている。そして、インホイールモータ駆動装置21の軸線O方向に沿って、モータ部A、減速部B、及び車輪ハブ軸受部Cの順に同軸配置される。 The in-wheel motor drive device 21 includes a motor unit A that generates a driving force, a deceleration unit B that decelerates and outputs the rotation of the motor unit A, and a wheel hub bearing that transmits the output from the deceleration unit B to driving wheels. Part C. The motor part A, the speed reduction part B, and the wheel hub bearing part C are arranged coaxially in this order along the axis O direction of the in-wheel motor drive device 21.
 ケーシング22は、インホイールモータ駆動装置21の外郭をなす。ケーシング22は、軸線Oに沿って延びる筒状のモータハウジング22aと、このモータハウジング22aの開口端(軸線O方向において、減速部Bと反対側に位置する開口端)を閉鎖するリアカバー22dとを含む。モータハウジング22aとリアカバー22dとは、軸線O方向に突き合わされて結合されている。 The casing 22 forms an outer shell of the in-wheel motor drive device 21. The casing 22 includes a cylindrical motor housing 22a that extends along the axis O, and a rear cover 22d that closes an opening end of the motor housing 22a (an opening end located on the opposite side of the speed reduction portion B in the direction of the axis O). Including. The motor housing 22a and the rear cover 22d are butted together in the direction of the axis O.
 モータ部Aは、モータハウジング22aと、リアカバー22dと、ステータ23と、ロータ24と、モータ回転軸35とを備えるラジアルギャップモータである。ステータ23は、モータハウジング22aの内周面に固定されている。ステータ23には、コイル23cが巻回される。このステータ23の内側に径方向の隙間を空けて対向する位置にロータ24が配置されている。ロータ24は、中央に貫通孔を有する複数枚の円盤を積層してなる中空円筒形状のロータ本体24aと、モータ回転軸35の外周から径方向外側に突出するよう形成されるとともにロータ本体24aの内周に固定されて、ロータ本体24aをモータ回転軸35の軸線方向中央部に支持する円筒形状のロータ支持体24bとを有する。このロータ24の内側にモータ回転軸35が固定連結されて、ロータ24と一体回転する。減速部Bとは反対側に位置するモータ回転軸35の軸線方向端は、転がり軸受36aを介してリアカバー22dの中心部に回転自在に支持されている。減速部Bに近い側に位置するモータ回転軸35の軸線方向端は、モータハウジング22aの内向きフランジ部分22eの中心孔に通されて、転がり軸受36bを介して内向きフランジ部分22eの中心孔に回転自在に支持されている。さらにモータ回転軸35の両端部のうち、減速部Bに近い側に位置する端部は、減速部Bの入力軸25と、例えばセレーション嵌合によって連結固定される。モータ部Aのモータ回転軸35及び減速部Bの入力軸25は、略水平な軸線Oに沿って延び、一体回転することから、モータ回転軸35及び入力軸25の組立体はモータ側回転部材と呼ばれる。 The motor part A is a radial gap motor including a motor housing 22a, a rear cover 22d, a stator 23, a rotor 24, and a motor rotating shaft 35. The stator 23 is fixed to the inner peripheral surface of the motor housing 22a. A coil 23c is wound around the stator 23. A rotor 24 is arranged at a position facing the inner side of the stator 23 with a radial gap. The rotor 24 is formed so as to protrude radially outward from the outer periphery of the motor rotating shaft 35 and the rotor main body 24a having a hollow cylindrical shape in which a plurality of discs having a through hole in the center are stacked. A cylindrical rotor support 24b that is fixed to the inner periphery and supports the rotor main body 24a at the axial center of the motor rotation shaft 35 is provided. A motor rotating shaft 35 is fixedly connected to the inside of the rotor 24 and rotates integrally with the rotor 24. The axial end of the motor rotation shaft 35 located on the side opposite to the speed reduction portion B is rotatably supported by the center portion of the rear cover 22d via a rolling bearing 36a. The axial end of the motor rotating shaft 35 located on the side close to the speed reduction portion B is passed through the center hole of the inward flange portion 22e of the motor housing 22a, and the center hole of the inward flange portion 22e via the rolling bearing 36b. Is supported rotatably. Further, of the both ends of the motor rotation shaft 35, the end located on the side closer to the speed reduction part B is connected and fixed to the input shaft 25 of the speed reduction part B by, for example, serration fitting. Since the motor rotation shaft 35 of the motor part A and the input shaft 25 of the speed reduction part B extend along the substantially horizontal axis O and rotate together, the assembly of the motor rotation shaft 35 and the input shaft 25 is a motor side rotation member. Called.
 減速部Bは筒状の減速ハウジング22bを含む。また減速部Bは、入力軸25と、出力軸28と、入力軸25及び出力軸28間で回転を伝達するサイクロイド減速機構とを含む。具体的には入力軸25の両端部のうち、モータ回転軸35から遠い側にある入力軸25の端部の2箇所に偏心して設けられた偏心部材25a,25bと、内周が偏心部材25a,25bの外周に相対回転可能に取り付けられ、入力軸25の回転に伴って回転軸線を中心とする公転運動を行う公転部材としての2枚の曲線板26a,26bと、波形状にされた曲線板26a,26b(図2参照)の外周部に係合して曲線板26a,26bの自転運動を生じさせる外周係合部材としての複数の外ピン27と、曲線板26a,26bの自転のみを取り出して出力軸28に伝達する運動変換機構とを有する。また、減速部Bは、後述する潤滑油循環機構により、潤滑油が供給される。 The deceleration part B includes a cylindrical deceleration housing 22b. The deceleration unit B includes an input shaft 25, an output shaft 28, and a cycloid reduction mechanism that transmits rotation between the input shaft 25 and the output shaft 28. Specifically, of the both ends of the input shaft 25, eccentric members 25a and 25b provided eccentrically at two positions of the end of the input shaft 25 on the side far from the motor rotation shaft 35, and the inner periphery of the eccentric member 25a. 25b, two curved plates 26a, 26b as revolving members which are attached to the outer periphery of the rotating shaft 25b so as to be relatively rotatable and perform a revolving motion around the rotation axis along with the rotation of the input shaft 25, and a curved curve A plurality of outer pins 27 as outer peripheral engagement members that engage with the outer peripheral portions of the plates 26a and 26b (see FIG. 2) to cause the rotational motion of the curved plates 26a and 26b, and only the rotation of the curved plates 26a and 26b. A motion conversion mechanism for taking out and transmitting it to the output shaft 28. Further, the deceleration unit B is supplied with lubricating oil by a lubricating oil circulation mechanism described later.
 図2を参照して、曲線板26bは、外周部にエピトロコイド等のトロコイド系曲線で構成される複数の波形を有し、一方側端面から他方側端面に貫通する複数の貫通孔30aとその中央に貫通孔30bを有する。貫通孔30aは、曲線板26bの自転軸心を中心とする円周上に等間隔に複数個設けられており、後述する内ピン31を受入れる。また、貫通孔30bは、曲線板26bの中心(自転軸心)に設けられており、偏心部材25bの外周面を同心円となるように保持する。曲線板26aも同様である。 Referring to FIG. 2, the curved plate 26 b has a plurality of corrugations composed of trochoidal curves such as epitrochoids on the outer peripheral portion, a plurality of through holes 30 a penetrating from one end face to the other end face, and A through hole 30b is provided at the center. A plurality of through holes 30a are provided at equal intervals on a circumference centered on the rotation axis of the curved plate 26b, and receive an inner pin 31 described later. The through hole 30b is provided at the center (rotation axis) of the curved plate 26b, and holds the outer peripheral surface of the eccentric member 25b so as to be concentric. The same applies to the curved plate 26a.
 運動変換機構は、出力軸28のフランジ部28a(図1参照)に植設された内側係合部材としての複数の内ピン31と、曲線板26a,26bに設けられた貫通孔30aとで構成される。内ピン31は、出力軸28の回転軸線になる軸線Oを中心とする円周軌道上に等間隔に設けられており、図1に示すように、出力軸28の軸線Oと平行に延び、内ピン31の根元端が出力軸28に固定されている。 The motion conversion mechanism is composed of a plurality of inner pins 31 as inner engaging members implanted in the flange portion 28a (see FIG. 1) of the output shaft 28, and through holes 30a provided in the curved plates 26a and 26b. Is done. The inner pins 31 are provided at equal intervals on a circumferential orbit centering on the axis O that is the rotation axis of the output shaft 28, and extend parallel to the axis O of the output shaft 28, as shown in FIG. The root end of the inner pin 31 is fixed to the output shaft 28.
 この運動変換機構を介して、入力軸25と同軸に配置された出力軸28は、曲線板26a,26bの自転を減速部Bの出力として取り出す。この結果、入力軸25の回転が減速部Bによって減速されて出力軸28に伝達される。したがって、低トルク、高回転型のモータ部Aを採用した場合でも、駆動輪に必要なトルクを伝達することが可能となる。 The output shaft 28 arranged coaxially with the input shaft 25 takes out the rotation of the curved plates 26a and 26b as the output of the speed reduction unit B through this motion conversion mechanism. As a result, the rotation of the input shaft 25 is decelerated by the deceleration unit B and transmitted to the output shaft 28. Therefore, even when the low torque, high rotation type motor unit A is employed, it is possible to transmit the necessary torque to the drive wheels.
 なお、摩擦損失を低減するために、入力軸25と曲線板26a,26bの貫通孔30bとの間、及び、内ピン31と曲線板26a,26bの貫通孔30aとの間との摺動部分は、転がり軸受を介して転がり接触している。外ピン27は、その両端をハウジング22bに転がり軸受(ニードル軸受)を介して保持されているので、曲線板26a,26bと外ピン27は転がり接触している。 In order to reduce friction loss, sliding portions between the input shaft 25 and the through holes 30b of the curved plates 26a and 26b, and between the inner pin 31 and the through holes 30a of the curved plates 26a and 26b. Is in rolling contact via a rolling bearing. Since both ends of the outer pin 27 are held by the housing 22b via rolling bearings (needle bearings), the curved plates 26a and 26b and the outer pin 27 are in rolling contact.
 潤滑油循環機構は、図1に示すように、潤滑油ポンプ51と、吐出油路54と、ケーシング油路55と、連絡油路56と、モータ回転軸油路58aと、減速部入力軸油路58bと、径方向油路59a,59bと、環状溝60g(図2参照)と、給油孔60h(図2参照)と、排出油路57と、潤滑油タンク53と、吸入油路52とを備え、この順序で潤滑油を循環させる。これにより、潤滑油循環機構は、減速部Bの潤滑と冷却とを行う。 As shown in FIG. 1, the lubricating oil circulation mechanism includes a lubricating oil pump 51, a discharge oil passage 54, a casing oil passage 55, a communication oil passage 56, a motor rotation shaft oil passage 58a, and a speed reduction unit input shaft oil. A passage 58b, radial oil passages 59a and 59b, an annular groove 60g (see FIG. 2), an oil supply hole 60h (see FIG. 2), a discharge oil passage 57, a lubricating oil tank 53, and a suction oil passage 52. The lubricating oil is circulated in this order. Thereby, the lubricating oil circulation mechanism performs lubrication and cooling of the speed reduction part B.
 図1に示すように、車輪ハブ軸受部Cは、出力軸28の軸部28bに固定連結されたハブ輪32と、このハブ輪32をケーシング22に対して回転自在に保持する車輪ハブ軸受33とを備える。車輪ハブ軸受33は複列アンギュラ玉軸受であって、その内輪部材33nがハブ輪32の外周面に嵌合固定される。外輪部材33g及び内輪部材33nとハブ輪32の中空部32aとの環状隙間には、複数の玉(転動体)33bが配置される。さらに外輪部材33g及びハブ輪32の環状隙間にも複数の玉33bが配置される。 As shown in FIG. 1, the wheel hub bearing portion C includes a hub wheel 32 fixedly connected to the shaft portion 28 b of the output shaft 28, and a wheel hub bearing 33 that holds the hub wheel 32 rotatably with respect to the casing 22. With. The wheel hub bearing 33 is a double-row angular ball bearing, and an inner ring member 33 n is fitted and fixed to the outer peripheral surface of the hub ring 32. A plurality of balls (rolling elements) 33 b are arranged in the annular gap between the outer ring member 33 g and the inner ring member 33 n and the hollow portion 32 a of the hub ring 32. Further, a plurality of balls 33 b are also arranged in the annular gap between the outer ring member 33 g and the hub ring 32.
 車輪ハブ軸受33の外輪部材33gは、減速ハウジング22bの軸線方向端に固定される。ハブ輪32は、出力軸28の軸部28bと結合する円筒形状の中空部32aと、軸部28bのうち減速部Bから遠い側の端部に形成されるフランジ部32bとを有する。フランジ部32bにはボルト32c及びテーパーナット(図示せず)によって駆動輪(図示せず)が固定連結される。減速部Bの出力軸28及び車輪ハブ軸受部Cのハブ輪32は、略水平な軸線Oに沿って延び、一体回転することから、出力軸28及びハブ輪32の組立体は車輪側回転部材と呼ばれる。 The outer ring member 33g of the wheel hub bearing 33 is fixed to the axial end of the speed reduction housing 22b. The hub wheel 32 includes a cylindrical hollow portion 32a that is coupled to the shaft portion 28b of the output shaft 28, and a flange portion 32b that is formed at an end portion of the shaft portion 28b that is far from the speed reduction portion B. A drive wheel (not shown) is fixedly connected to the flange portion 32b by a bolt 32c and a taper nut (not shown). Since the output shaft 28 of the speed reduction part B and the hub wheel 32 of the wheel hub bearing part C extend along the substantially horizontal axis O and rotate integrally, the assembly of the output shaft 28 and the hub wheel 32 is a wheel side rotating member. Called.
 駆動輪は、車両の車幅方向に関し最も外側に配置され、インホイールモータ駆動装置21よりも充分大きな外径を有して路面に接地する。これにより、駆動輪の接地面からケーシング22までのクリアランスが確保される。 The driving wheel is disposed on the outermost side in the vehicle width direction of the vehicle, and has a sufficiently larger outer diameter than the in-wheel motor driving device 21 and contacts the road surface. Thereby, the clearance from the contact surface of the drive wheel to the casing 22 is ensured.
 ケーシング22は、外径寸法が互いに異なる円筒状のモータハウジング22a及び減速ハウジング22bを軸線O方向に接続した筒状であって、インホイールモータ駆動装置21の外郭を構成する。外径の大きなモータハウジング22aはモータ部Aの外郭を構成する。外径の小さな減速ハウジング22bは減速部Bの外郭を構成する。 The casing 22 has a cylindrical shape in which a cylindrical motor housing 22a and a speed reduction housing 22b having different outer diameters are connected in the direction of the axis O, and constitutes an outline of the in-wheel motor drive device 21. The motor housing 22a having a large outer diameter constitutes the outline of the motor part A. The reduction housing 22b having a small outer diameter constitutes the outline of the reduction portion B.
 ケーシング22のうちモータハウジング22aは、インホイールモータ駆動装置21の中で最も外径が大きく、軸線Oを中心とする中空円筒壁と、内向きフランジ部分22eを含む。ケーシング22のうち減速部Bに位置する部位である減速ハウジング22bは、次に外径が大きく、軸線Oを中心とする中空円筒壁と、内向きフランジ部分22hを含む。 Of the casing 22, the motor housing 22a has the largest outer diameter in the in-wheel motor drive device 21, and includes a hollow cylindrical wall centering on the axis O and an inward flange portion 22e. The speed reduction housing 22b, which is a part located in the speed reduction portion B of the casing 22, has the next largest outer diameter, and includes a hollow cylindrical wall centering on the axis O and an inward flange portion 22h.
 モータハウジング22aの軸線方向両端のうち減速部Bから遠い側にある軸線方向端には、リアカバー22dがボルト22fにより取付固定される。リアカバー22dは、ケーシング22の一部になる円板形状の壁部材であって、モータハウジング22aの軸線方向端の開口を封止する。モータハウジング22aの軸線方向両端のうち減速部Bに近い側に位置する軸線方向端には、内向きフランジ部分22eが一体に形成される。内向きフランジ部分22eは、ケーシング22の一部になる円板形状部分であって、モータ部Aの内部空間と減速部Bの内部空間とを仕切る。内向きフランジ部分22eには、減速ハウジング22bの一方の軸線方向端がボルト22gで固定される。また、内向きフランジ部分22eには潤滑油ポンプ51が設けられている。 A rear cover 22d is attached and fixed by bolts 22f to the axial end on the side farther from the speed reduction portion B of both ends in the axial direction of the motor housing 22a. The rear cover 22d is a disk-shaped wall member that becomes a part of the casing 22, and seals the opening at the axial end of the motor housing 22a. An inward flange portion 22e is integrally formed at the axial end located on the side closer to the speed reduction portion B of both ends in the axial direction of the motor housing 22a. The inward flange portion 22 e is a disc-shaped portion that becomes a part of the casing 22, and partitions the internal space of the motor part A and the internal space of the speed reduction part B. One axial end of the speed reduction housing 22b is fixed to the inward flange portion 22e with a bolt 22g. A lubricating oil pump 51 is provided on the inward flange portion 22e.
 減速ハウジング22bの軸線方向両端のうち車輪ハブ軸受部Cに近い側にある軸線方向端には、内向きフランジ部分22hが一体に形成される。内向きフランジ部分22hは、ケーシング22の一部になる円板形状部分である。内向きフランジ部分22hには、車輪ハブ軸受33の外輪部材33gのフランジ部分33fがボルト22iで固定される。 An inward flange portion 22h is integrally formed at the axial end on the side close to the wheel hub bearing portion C of both ends in the axial direction of the deceleration housing 22b. The inward flange portion 22 h is a disk-shaped portion that becomes a part of the casing 22. A flange portion 33f of the outer ring member 33g of the wheel hub bearing 33 is fixed to the inward flange portion 22h by a bolt 22i.
 ここで、モータハウジング22aとリアカバー22dとの合わせ面について、図3~図8を参照して説明する。なお、図3~図8において、上側は、インホイールモータ駆動装置21の内部であり、下側は、インホイールモータ駆動装置21の外部である。 Here, the mating surfaces of the motor housing 22a and the rear cover 22d will be described with reference to FIGS. 3 to 8, the upper side is the inside of the in-wheel motor driving device 21, and the lower side is the outside of the in-wheel motor driving device 21.
 図3~図8に示すように、モータハウジング22aとリアカバー22dとの合わせ面の外縁全体に、液状ガスケット70が充填されている。本実施の形態の液状ガスケット70は、周方向に沿って、少なくとも外縁に充填されている。なお、合わせ面は、軸線Oに直交する面であり、軸線O周りに円弧状に延びる軸直角面である。 As shown in FIGS. 3 to 8, the entire outer edge of the mating surface between the motor housing 22a and the rear cover 22d is filled with a liquid gasket 70. The liquid gasket 70 of the present embodiment is filled at least at the outer edge along the circumferential direction. The mating surface is a surface orthogonal to the axis O, and is an axis perpendicular surface extending in an arc around the axis O.
 液状ガスケット70は、流動性を有する物質で、接合面に塗布すると、一定時間後に硬化し、弾性または粘着性の膜を形成するものである。液状ガスケット70は、変性アルキッド系、繊維素エステル系、合成ゴム系などの有機溶剤タイプ、フェノール系、変性エステル系、シリコーン系、アクリル系などの無溶剤タイプ、水性アクリル系などの水性タイプなどを含み、耐熱性が高いので、シリコーン系であることが好ましい。液状ガスケット70の厚みは、例えば、10μm以上100μm以下である。 The liquid gasket 70 is a substance having fluidity, and when applied to the joint surface, the liquid gasket 70 is cured after a predetermined time to form an elastic or adhesive film. The liquid gasket 70 includes organic solvent types such as modified alkyd, fiber ester, and synthetic rubber, solventless types such as phenol, modified ester, silicone, and acrylic, and aqueous types such as aqueous acrylic. In addition, since it has high heat resistance, a silicone type is preferable. The thickness of the liquid gasket 70 is, for example, 10 μm or more and 100 μm or less.
 具体的には、図3に示す構造では、合わせ面を構成するモータハウジング22aの端面及びリアカバー22dの端面は平坦面であって、面取りされていない。この合わせ面の外縁から内縁まで液状ガスケット70は延在している。つまり、合わせ面全体に液状ガスケット70は充填されている。 Specifically, in the structure shown in FIG. 3, the end surface of the motor housing 22a and the end surface of the rear cover 22d constituting the mating surface are flat surfaces and are not chamfered. The liquid gasket 70 extends from the outer edge to the inner edge of the mating surfaces. That is, the liquid gasket 70 is filled in the entire mating surface.
 図4~図8に示す構造は、図3とは他の実施の形態の合わせ面構造を示している。図4に示す構造では、モータハウジング22aの合わせ面を構成する面部分の内縁全体(全周)及び外縁全体(全周)は面取りされ、リアカバー22dの合わせ面を構成する面部分は平坦面であって、面取りされていない。図5に示す構造では、リアカバー22dの合わせ面を構成する面部分の外縁全体は面取りされ、リアカバー22dの合わせ面を構成する面部分の内縁、モータハウジング22aの合わせ面を構成する外縁及び内縁は面取りされていない。つまりモータハウジング22aの合わせ面は平坦面である。図6及び図7に示す構造では、モータハウジング22aの合わせ面を構成する面部分の内縁全体が面取りされ、モータハウジング22aの合わせ面を構成する面部分の外縁、リアカバー22dの合わせ面を構成する面部分の外縁及び内縁は面取りされていない。つまり図6と図7のリアカバー22dの端面は平坦面である。図8に示す構造では、モータハウジング22aの合わせ面を構成する面部分の外縁全体が面取りされ、モータハウジングの合わせ面を構成する面部分の内縁、リアカバー22dの合わせ面を構成する面部分の外縁及び内縁は面取りされていない。つまり図8のリアカバー22dの端面は平坦面である。このように、合わせ面を構成するモータハウジング22a及びリアカバー22dの少なくとも一方において、内縁全体及び外縁全体の少なくとも一方が面取りされていることが好ましい。 The structure shown in FIGS. 4 to 8 shows a mating surface structure of another embodiment different from FIG. In the structure shown in FIG. 4, the entire inner edge (entire circumference) and the entire outer edge (full circumference) of the surface portion constituting the mating surface of the motor housing 22a are chamfered, and the surface portion constituting the mating surface of the rear cover 22d is a flat surface. It is not chamfered. In the structure shown in FIG. 5, the entire outer edge of the surface portion constituting the mating surface of the rear cover 22d is chamfered, the inner edge of the surface portion constituting the mating surface of the rear cover 22d, the outer edge and the inner edge constituting the mating surface of the motor housing 22a are It is not chamfered. That is, the mating surface of the motor housing 22a is a flat surface. In the structure shown in FIGS. 6 and 7, the entire inner edge of the surface portion constituting the mating surface of the motor housing 22a is chamfered to constitute the outer edge of the surface portion constituting the mating surface of the motor housing 22a and the mating surface of the rear cover 22d. The outer and inner edges of the face portion are not chamfered. That is, the end surface of the rear cover 22d in FIGS. 6 and 7 is a flat surface. In the structure shown in FIG. 8, the entire outer edge of the surface portion constituting the mating surface of the motor housing 22a is chamfered, the inner edge of the surface portion constituting the mating surface of the motor housing, and the outer edge of the surface portion constituting the mating surface of the rear cover 22d. And the inner edge is not chamfered. That is, the end surface of the rear cover 22d in FIG. 8 is a flat surface. Thus, it is preferable that at least one of the entire inner edge and the entire outer edge is chamfered in at least one of the motor housing 22a and the rear cover 22d constituting the mating surface.
 また、図4~図6に示す構造では、合わせ面の外縁から内縁まで液状ガスケット70が延在している。つまり、面取りされた部分全体に液状ガスケットが充填されている。図7及び図8に示す構造では、合わせ面の外縁から内縁の手前まで液状ガスケット70が延在しており、合わせ面の内縁には液状ガスケット70は充填されていない。詳細には、図7に示す構造では、面取りされた部分の一部に液状ガスケット70が充填されており、面取りされた部分の内縁には液状ガスケット70は充填されていない。図8に示す構造では、合わせ面の外縁からOリング71の手前まで液状ガスケット70が延在し、内縁には液状ガスケット71は充填されていない。 In the structure shown in FIGS. 4 to 6, the liquid gasket 70 extends from the outer edge to the inner edge of the mating surface. That is, the liquid gasket is filled in the entire chamfered portion. 7 and 8, the liquid gasket 70 extends from the outer edge of the mating surface to the front of the inner edge, and the liquid gasket 70 is not filled in the inner edge of the mating surface. Specifically, in the structure shown in FIG. 7, the liquid gasket 70 is filled in a part of the chamfered portion, and the liquid gasket 70 is not filled in the inner edge of the chamfered portion. In the structure shown in FIG. 8, the liquid gasket 70 extends from the outer edge of the mating surface to the front of the O-ring 71, and the inner edge is not filled with the liquid gasket 71.
 図8に示す構造では、モータハウジング22aとリアカバー22dとの合わせ面の内縁側にOリング71が充填されている。Oリング71は、軸線O回りに全周を連続する。Oリング71は、例えばゴム製または樹脂製である。 In the structure shown in FIG. 8, an O-ring 71 is filled on the inner edge side of the mating surface of the motor housing 22a and the rear cover 22d. The O-ring 71 continues all around the axis O. The O-ring 71 is made of, for example, rubber or resin.
 図4~図8に示すように、面取りされている合わせ面を有する場合には、面取りされていない面部分の延在方向と面取りされた部分の延在方向とが交差する角度θは、例えば20°以上30°以下である。 As shown in FIGS. 4 to 8, in the case of having a chamfered mating surface, the angle θ at which the extending direction of the non-chamfered surface portion intersects the extending direction of the chamfered portion is, for example, It is 20 degrees or more and 30 degrees or less.
 以上説明したように、本実施の形態のインホイールモータ駆動装置21は、モータ部Aと車輪ハブ軸受部Cとを備えたインホイールモータ駆動装置21であって、インホイールモータ駆動装置21の外郭をなすケーシング22は、筒状のモータハウジング22aと、このモータハウジング22aの開口端を閉鎖するリアカバー22dとを含み、モータハウジング22aとリアカバー22dとの合わせ面の外縁全体に、液状ガスケットが充填されている。 As described above, the in-wheel motor drive device 21 of the present embodiment is an in-wheel motor drive device 21 that includes the motor part A and the wheel hub bearing part C, and is an outline of the in-wheel motor drive apparatus 21. The casing 22 includes a cylindrical motor housing 22a and a rear cover 22d that closes the opening end of the motor housing 22a. The entire outer edge of the mating surface of the motor housing 22a and the rear cover 22d is filled with a liquid gasket. ing.
 本実施の形態のインホイールモータ駆動装置21によれば、モータハウジング22aとリアカバー22dとの合わせ面の外縁全体(周方向に沿って全周)に、液状ガスケット70が充填されて硬化されている。これにより、合わせ面の内部に水が浸入することを防止できる。つまり、合わせ面に水が接触することを効果的に防止できる。このため、合わせ面に腐食雰囲気が形成されることを防止できるので、合わせ面の防食性が向上し、錆が生じることを抑制できる。したがって、合わせ面のシール性を向上することができる。 According to the in-wheel motor drive device 21 of the present embodiment, the entire outer edge (entire circumference along the circumferential direction) of the mating surface of the motor housing 22a and the rear cover 22d is filled and cured. . Thereby, it can prevent that water permeates into the inside of the mating surface. That is, it can prevent effectively that water contacts a mating surface. For this reason, since it can prevent that a corrosive atmosphere is formed in a mating surface, the corrosion resistance of a mating surface improves and it can suppress that rust arises. Therefore, the sealing performance of the mating surfaces can be improved.
 外部から合わせ面に水が侵入することを抑制するためには、合わせ面の外縁全体に液状ガスケット70が充填されていればよいが、液状ガスケット70の耐久性を向上する観点から、液状ガスケット70は、外縁から内縁側に向けて延在していることが好ましく、合わせ面の面積の半分以上(外縁から合わせ面の中央位置以上)に充填されていることが好ましい。 In order to suppress water from entering the mating surface from the outside, it is sufficient that the liquid gasket 70 is filled on the entire outer edge of the mating surface. From the viewpoint of improving the durability of the liquid gasket 70, the liquid gasket 70 is used. Is preferably extended from the outer edge toward the inner edge, and is preferably filled to more than half the area of the mating surface (from the outer edge to the center position of the mating surface).
 本実施の形態のインホイールモータ駆動装置21は、合わせ面を構成するモータハウジング22a及びリアカバー22dの一方における外縁全体に液状ガスケットを配置し、他方を押圧することで形成される。硬化前の液状ガスケットが合わせ面に充填された状態で押圧されると、合わせ面に沿って(軸線Oと直交する方向に沿って)液状ガスケットが広がる。このため、液状ガスケットが合わせ面からはみ出ないように、液状ガスケットを充填する部分を含んでいることが好ましい。この観点から、図4~図7に示すように、本実施の形態のインホイールモータ駆動装置21において、合わせ面を構成するモータハウジング22a及びリアカバー22dの少なくとも一方において、内縁全体及び外縁全体の少なくとも一方が面取りされ、面取りされた部分に液状ガスケット70が充填されていることが好ましい。なお、このような構造は図4~図7に示す構造に限定されず、例えば、モータハウジング22a及びリアカバー22dにおいて、合わせ面の外縁全体が面取りされていてもよく、リアカバー22dの合わせ面の内縁全体が、単独でまたは図4~図7の構造などに併せて面取りされていてもよい。 The in-wheel motor drive device 21 of the present embodiment is formed by disposing a liquid gasket on the entire outer edge of one of the motor housing 22a and the rear cover 22d constituting the mating surface and pressing the other. When the liquid gasket before curing is pressed in a state where the mating surface is filled, the liquid gasket spreads along the mating surface (along the direction orthogonal to the axis O). For this reason, it is preferable to include a portion for filling the liquid gasket so that the liquid gasket does not protrude from the mating surface. From this point of view, as shown in FIGS. 4 to 7, in the in-wheel motor drive device 21 of the present embodiment, at least one of the entire inner edge and the entire outer edge in at least one of the motor housing 22a and the rear cover 22d constituting the mating surface. It is preferable that one side is chamfered and the chamfered portion is filled with the liquid gasket 70. Such a structure is not limited to the structure shown in FIGS. 4 to 7. For example, in the motor housing 22a and the rear cover 22d, the entire outer edge of the mating surface may be chamfered, or the inner edge of the mating surface of the rear cover 22d. The whole may be chamfered alone or in combination with the structure of FIGS.
 特に、硬化した液状ガスケットが合わせ面の内縁から剥がれ、モータ部A内部に侵入して、異物となる可能性を低減する観点から、図4、図6及び図7に示すように、インホイールモータ駆動装置21において、合わせ面を構成するモータハウジング22a及びリアカバー22dの少なくとも一方において、内縁全体が面取りされ、面取りされた部分に液状ガスケット70が充填されていることがより好ましい。形成の容易さの観点から、図4、図6及び図7に示すように、合わせ面を構成するリアカバー22dは面取りされず、モータハウジング22aの内縁全体が面取りされ、モータハウジング22aにおいて面取りされた部分とリアカバー22dとの間に液状ガスケット70が充填されてもよい。 In particular, from the viewpoint of reducing the possibility that the hardened liquid gasket is peeled off from the inner edge of the mating surface and enters the inside of the motor part A to become a foreign substance, as shown in FIGS. In the drive device 21, it is more preferable that at least one of the motor housing 22 a and the rear cover 22 d constituting the mating surface, the entire inner edge is chamfered and the chamfered portion is filled with the liquid gasket 70. From the viewpoint of ease of formation, as shown in FIGS. 4, 6, and 7, the rear cover 22d constituting the mating surface is not chamfered, and the entire inner edge of the motor housing 22a is chamfered, and the motor housing 22a is chamfered. The liquid gasket 70 may be filled between the portion and the rear cover 22d.
 面取りされた部分に充填された液状ガスケット70は、面取りされていない部分に充填された液状ガスケット70に比べて、伸びに対して大きく追従することができる。このため、インホイールモータ駆動装置21が車両のホイール内に搭載されることに起因して、モータハウジング22aとリアカバー22dとが離れる方向に振動による大きな外力が加えられても、面取りされた部分に充填された液状ガスケット70は、大きな外力を吸収できる。このため、本実施の形態のインホイールモータ駆動装置21は、振動による耐久性を向上することができる。 The liquid gasket 70 filled in the chamfered portion can largely follow the elongation as compared with the liquid gasket 70 filled in the non-chamfered portion. For this reason, even if a large external force due to vibration is applied in a direction in which the motor housing 22a and the rear cover 22d are separated due to the in-wheel motor drive device 21 being mounted in the wheel of the vehicle, the chamfered portion The filled liquid gasket 70 can absorb a large external force. For this reason, the in-wheel motor drive device 21 of this Embodiment can improve the durability by vibration.
 なお、本実施の形態では、モータ部Aと減速部Bと車輪ハブ軸受部Cとを備えるインホイールモータ駆動装置21を例に挙げて説明したが、本発明は、減速部Bが省略されたモータ直結型のインホイールモータ駆動装置を含む。 In the present embodiment, the in-wheel motor drive device 21 including the motor part A, the speed reduction part B, and the wheel hub bearing part C has been described as an example. However, in the present invention, the speed reduction part B is omitted. Includes an in-wheel motor drive device directly connected to the motor.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 本発明のインホイールモータ駆動装置は、電気自動車、ハイブリッド車両などにおいて有利に利用される。 The in-wheel motor drive device of the present invention is advantageously used in electric vehicles, hybrid vehicles and the like.
 21 インホイールモータ駆動装置、22 ケーシング、22a モータハウジング、22b 減速ハウジング、22d リアカバー、22e,22h 内向きフランジ部分、22f,22g,22i,32c ボルト、23 ステータ、23c コイル、24 ロータ、24a ロータ本体、24b ロータ支持体、25 入力軸、25a,25b 偏心部材、26a,26b 曲線板、27 外ピン、28 出力軸、28a,32b フランジ部、28b 軸部、30a,30b 貫通孔、31 内ピン、32 ハブ輪、32a 中空部、33 車輪ハブ軸受、33b 玉、33f フランジ部分、33g 外輪部材、33n 内輪部材、35 モータ回転軸、36a,36b 軸受、51 潤滑油ポンプ、52 吸入油路、53 潤滑油タンク、54 吐出油路、55 ケーシング油路、56 連絡油路、57 排出油路、58a モータ回転軸油路、58b 減速部入力軸油路、59a,59b 径方向油路、60g 環状溝、60h 給油孔、70 液状ガスケット、71 OリングA モータ部、B 減速部、C 車輪ハブ軸受部、O 軸線。 21 In-wheel motor drive unit, 22 casing, 22a motor housing, 22b deceleration housing, 22d rear cover, 22e, 22h inward flange portion, 22f, 22g, 22i, 32c bolt, 23 stator, 23c coil, 24 rotor, 24a rotor body 24b rotor support, 25 input shaft, 25a, 25b eccentric member, 26a, 26b curved plate, 27 outer pin, 28 output shaft, 28a, 32b flange portion, 28b shaft portion, 30a, 30b through hole, 31 inner pin, 32 hub wheel, 32a hollow part, 33 wheel hub bearing, 33b ball, 33f flange part, 33g outer ring member, 33n inner ring member, 35 motor rotating shaft, 36a, 36b bearing, 51 lubricating oil pump, 52 intake oil passage, 53 moisture Oil tank, 54 discharge oil passage, 55 casing oil passage, 56 communication oil passage, 57 discharge oil passage, 58a motor rotation shaft oil passage, 58b speed reducer input shaft oil passage, 59a, 59b radial oil passage, 60g annular groove, 60h oiling hole, 70 liquid gasket, 71 O-ring A motor part, B deceleration part, C wheel hub bearing part, O axis.

Claims (4)

  1.  モータ部と車輪ハブ軸受部とを備えたインホイールモータ駆動装置であって、
     前記インホイールモータ駆動装置の外郭をなすケーシングは、筒状のモータハウジングと、前記モータハウジングの開口端を閉鎖するリアカバーとを含み、
     前記モータハウジングと前記リアカバーとの合わせ面の外縁全体に、液状ガスケットが充填されている、インホイールモータ駆動装置。
    An in-wheel motor drive device comprising a motor part and a wheel hub bearing part,
    A casing that forms an outline of the in-wheel motor drive device includes a cylindrical motor housing and a rear cover that closes an opening end of the motor housing,
    An in-wheel motor drive device in which the entire outer edge of the mating surface of the motor housing and the rear cover is filled with a liquid gasket.
  2.  前記合わせ面を構成する前記モータハウジング及び前記リアカバーの少なくとも一方において、内縁全体及び外縁全体の少なくとも一方が面取りされ、
     面取りされた部分に前記液状ガスケットが充填されている、請求項1に記載のインホイールモータ駆動装置。
    In at least one of the motor housing and the rear cover constituting the mating surface, at least one of the entire inner edge and the entire outer edge is chamfered,
    The in-wheel motor drive device according to claim 1, wherein the liquid gasket is filled in a chamfered portion.
  3.  前記合わせ面を構成する前記モータハウジング及び前記リアカバーの少なくとも一方において、内縁全体が面取りされている、請求項2に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 2, wherein the entire inner edge is chamfered in at least one of the motor housing and the rear cover constituting the mating surface.
  4.  前記合わせ面に配置されたOリングをさらに備えた、請求項1~3のいずれか1項に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to any one of claims 1 to 3, further comprising an O-ring disposed on the mating surface.
PCT/JP2015/075151 2014-09-11 2015-09-04 In-wheel motor drive device WO2016039258A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014184990A JP6445813B2 (en) 2014-09-11 2014-09-11 In-wheel motor drive device
JP2014-184990 2014-09-11

Publications (1)

Publication Number Publication Date
WO2016039258A1 true WO2016039258A1 (en) 2016-03-17

Family

ID=55459006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075151 WO2016039258A1 (en) 2014-09-11 2015-09-04 In-wheel motor drive device

Country Status (2)

Country Link
JP (1) JP6445813B2 (en)
WO (1) WO2016039258A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111033972A (en) * 2017-09-08 2020-04-17 日本电产株式会社 Drive device
US10693350B2 (en) 2017-10-23 2020-06-23 Audi Ag Electric machine cooling system and motor vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6866261B2 (en) * 2017-08-30 2021-04-28 日立Astemo株式会社 Seal structure
MX2020013693A (en) * 2018-06-15 2021-05-27 Indigo Tech Inc A sealed axial flux motor with integrated cooling.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012171428A (en) * 2011-02-18 2012-09-10 Ntn Corp In-wheel motor driving apparatus
WO2012120650A1 (en) * 2011-03-07 2012-09-13 Ntn株式会社 Drive device for electric vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012171428A (en) * 2011-02-18 2012-09-10 Ntn Corp In-wheel motor driving apparatus
WO2012120650A1 (en) * 2011-03-07 2012-09-13 Ntn株式会社 Drive device for electric vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111033972A (en) * 2017-09-08 2020-04-17 日本电产株式会社 Drive device
CN111033972B (en) * 2017-09-08 2022-02-22 日本电产株式会社 Drive device
US10693350B2 (en) 2017-10-23 2020-06-23 Audi Ag Electric machine cooling system and motor vehicle
EP3474424B1 (en) * 2017-10-23 2020-09-09 Audi Ag Electrical machine and motor vehicle

Also Published As

Publication number Publication date
JP6445813B2 (en) 2018-12-26
JP2016059195A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP5709373B2 (en) In-wheel motor drive device
US9490679B2 (en) Wheel driving device
US9914349B2 (en) In-wheel motor drive device
JP5685111B2 (en) Electric vehicle drive
US8002060B2 (en) Vehicle wheel driving apparatus and electric motor
WO2013047695A1 (en) Bearing device for wheel with built-in in-wheel motor
JP5685113B2 (en) Electric vehicle drive
US9033840B2 (en) Speed reduction mechanism and motor torque transmission apparatus including the same
US9735648B2 (en) Drive device for electric vehicle
JP2015020707A (en) Wheel bearing device with built-in type in-wheel motor
WO2020098494A1 (en) Wheel hub motor drive system and motor vehicle
WO2016039258A1 (en) In-wheel motor drive device
WO2014168031A1 (en) In-wheel motor unit for vehicles
JP6011718B2 (en) In-wheel motor unit for vehicle and method for assembling displacement absorbing mechanism thereof
JP2015093492A (en) In-wheel motor driving device
WO2016047442A1 (en) In-wheel motor drive apparatus
EP4147896B1 (en) In-wheel driving device
WO2016093149A1 (en) Wiring structure of motor drive device for vehicle
JP5913925B2 (en) Bearing device for wheels with built-in in-wheel motor
JP2013071599A (en) Bearing device for wheel with built-in in-wheel motor
JP2014205382A (en) In-wheel motor unit for vehicle
JP2012097903A (en) In-wheel motor driving device
US20190176610A1 (en) In-wheel motor drive device for steered wheel
JP6374758B2 (en) In-wheel motor drive casing structure
JP5830133B2 (en) In-wheel motor drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839248

Country of ref document: EP

Kind code of ref document: A1