WO2016039145A1 - Magnet driving mechanism - Google Patents
Magnet driving mechanism Download PDFInfo
- Publication number
- WO2016039145A1 WO2016039145A1 PCT/JP2015/074041 JP2015074041W WO2016039145A1 WO 2016039145 A1 WO2016039145 A1 WO 2016039145A1 JP 2015074041 W JP2015074041 W JP 2015074041W WO 2016039145 A1 WO2016039145 A1 WO 2016039145A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pole
- permanent magnets
- rotor
- magnet
- switch
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H21/00—Gearings comprising primarily only links or levers, with or without slides
- F16H21/10—Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
- F16H21/16—Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for interconverting rotary motion and reciprocating motion
- F16H21/18—Crank gearings; Eccentric gearings
- F16H21/22—Crank gearings; Eccentric gearings with one connecting-rod and one guided slide to each crank or eccentric
- F16H21/24—Crank gearings; Eccentric gearings with one connecting-rod and one guided slide to each crank or eccentric without further links or guides
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/06—Means for converting reciprocating motion into rotary motion or vice versa
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N99/00—Subject matter not provided for in other groups of this subclass
Definitions
- the present invention relates to a magnet drive mechanism that converts a linear displacement into a rotational displacement or a vertical displacement into a horizontal displacement by using an attractive force and a repulsive force between non-contact permanent magnets.
- Patent Document 1 a technique related to a magnet motor and a drive mechanism in Patent Document 1, for example. Below, the magnet motor of patent document 1 is demonstrated.
- the magnet motor of Patent Document 1 is installed on the inner side of a rotor having a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets attached at symmetrical positions on the inner circumferential surface of the cylinder. And a plurality of switching elements.
- a plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the outer peripheral surface of the switching element.
- the drive means displaces the switching element in a direction parallel to the central axis and applies a rotational force to the rotor. Yes.
- Patent Document 1 has the following problems.
- the present invention has been made to solve the above-described problems, and can generate a sufficient rotational force in the rotor, and a predetermined rotational force can be applied to the rotor by changing the driving force of the switching element.
- An object of the present invention is to provide a magnet drive mechanism capable of providing
- the present invention has the following configuration in order to solve the above-described problems.
- a rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are attached to symmetrical positions on the cylindrical inner peripheral surface;
- a plurality of switching elements installed at predetermined angles around the central axis of the rotor inside the rotor;
- a plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the outer peripheral surface of the switching element, and the plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged.
- the driving means When the driving means is in a state where the plurality of N-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of S-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet, or When the drive means is in a state where the plurality of S-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of N-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet, A magnet driving mechanism that applies a rotational force about the central axis to the rotor.
- a rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are attached to symmetrical positions on a cylindrical outer peripheral surface;
- a plurality of switching elements installed at predetermined angles around the central axis of the rotor on the outside of the rotor;
- a plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the inner peripheral surface of the switch, and the plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are permanent.
- Magnets are installed parallel to the inner circumference direction, In order to switch the magnetic poles of the plurality of permanent magnets installed in the switching element facing the plurality of magnets of the rotor from N pole to S pole, or from S pole to N pole, the switching element is moved to the central axis.
- the driving means When the driving means is in a state where the plurality of N-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of S-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet, or When the drive means is in a state where the plurality of S-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of N-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet, A magnet driving mechanism that applies a rotational force about the central axis to the rotor.
- a rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are attached to symmetrical positions on the inner peripheral surface of the cylinder;
- a plurality of switching elements installed at predetermined angles around the central axis of the rotor on the inside and outside of the rotor;
- a plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the inner peripheral surface of the rotor of the switching element, and the plurality of N-pole permanent magnets and the plurality of N-pole permanent magnets.
- a plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the outer peripheral surface of the rotor of the switching element, and the plurality of N-pole permanent magnets
- a plurality of S-pole permanent magnets are installed in parallel to the inner circumferential direction
- the plurality of N-pole or S-pole permanent magnets installed in the switch act on the permanent magnets of the switch in a state where both the S-pole and N-pole permanent magnets of the rotor face each other simultaneously.
- the driving means When the driving means is in a state where the plurality of N-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of S-pole permanent magnets of the switch are permanent of the rotor.
- the plurality of N-pole permanent magnets of the switch are permanent of the rotor.
- a magnet driving mechanism that applies a rotational force about the central axis to the rotor.
- the driving unit varies a force applied to the rotor by varying a force that displaces the switching element.
- the plurality of groups of N-pole permanent magnets and the plurality of groups of S-pole permanent magnets installed on the outer peripheral surface of the cylinder or the inner peripheral surface of the cylinder are alternately provided in a plurality of stages in the direction of the central axis.
- the plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed on the outer peripheral surface or inner peripheral surface of the switching element are alternately arranged in a plurality of stages in the direction of the central axis.
- the magnet drive mechanism according to any one of (1) to (7).
- a moving plate in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are installed in the same linear direction; A plurality of N pole permanent magnets and a plurality of S pole permanent magnets are arranged in the linear direction, and the plurality of N pole permanent magnets and the plurality of S pole permanent magnets are parallel to the direction perpendicular to the linear direction. And a switching plate installed in In order to switch the magnetic poles of the plurality of permanent magnets installed on the switching plate facing the plurality of magnets of the moving plate from N pole to S pole, or from S pole to N pole, the moving plate is moved in the linear direction.
- Driving means for displacing in a direction perpendicular to The plurality of N-pole or S-pole permanent magnets installed on the switching plate act on the permanent magnets of the switching plate in a state where both the S-pole and N-pole permanent magnets of the moving plate face each other simultaneously.
- the drive means is in a state where the plurality of N-pole permanent magnets of the switching plate are opposed to the permanent magnet of the moving plate, the plurality of S-pole permanent magnets of the switching plate are permanent of the moving plate.
- the plurality of N-pole permanent magnets of the switching plate are permanent of the moving plate.
- a magnet drive mechanism that applies a propulsive force in the linear direction to the moving plate.
- the plurality of groups of N-pole permanent magnets and the plurality of groups of S-pole permanent magnets installed on the moving plate are alternately arranged in a plurality of stages in a direction perpendicular to the linear direction,
- the plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed on the switching plate are alternately arranged in a plurality of stages in a direction perpendicular to the linear direction.
- a magnet capable of generating a sufficient rotational force in the rotor and applying a predetermined rotational force to the rotor by changing the drive force of the switching element.
- a drive mechanism can be provided.
- FIG. 1st figure for demonstrating the force which acts on the rotor of Example 1.
- FIG. 2nd figure for demonstrating the force which acts on the rotor of Example 1.
- FIG. 1st figure for demonstrating the force which acts on the switching element of Example 1 2nd figure for demonstrating the force which acts on the switching element of Example 1
- FIG. 3 is a third diagram for explaining the force acting on the switch of the first embodiment. 1st figure for demonstrating the force which acts on the rotor in the intermediate position of Example 1 2nd figure for demonstrating the force which acts on the rotor in the intermediate position of Example 1
- FIG. 2nd figure for demonstrating the force which acts on the rotor of Example 1.
- FIG. 3 is a third diagram for explaining the force acting on the switch of the first embodiment. 1st figure for demonstrating the force which acts on the rotor in
- FIG. 1A is a cross-sectional structural view showing the configuration of the magnet drive mechanism of the present embodiment
- FIG. 1B is a cross-sectional view of FIG.
- FIG. 1C is a perspective view showing the structure of the rotor
- FIG. 1D is a perspective view showing the structure of the switching element.
- the rotor 20 includes a cylindrical body 20a having a plurality of magnets installed therein and a rotating shaft 20b.
- the rotor 20 is rotatably supported on the casing 60 by two bearings 40.
- Three switching elements A 30 a, switching elements B 30 b, and switching elements C 30 c are supported and held by a holding member 50 inside the cylindrical body 20 a of the rotor 20, and the switching element 30 is illustrated along the holding member 50.
- 1 (a) can be displaced by a predetermined distance in the left-right direction.
- the holding member 50 is fixed to the casing 60, and the holding member 50 and the switching element 30 do not rotate.
- the rotor 20 and the magnets installed in the three switching elements A 30a, the switching element B 30b, and the switching element C 30c will be described.
- the rotor 20 is provided with a magnet. That is, a plurality of N-pole and S-pole magnets are installed in half along the circumferential direction of the cylindrical body 20a, and such a ring of magnets is installed inside the cylindrical body 20a for four circumferences.
- the switching element 30 has a fan shape, and a plurality of N-pole and S-pole magnets are provided on the outer peripheral surface thereof as shown in FIG.
- a plurality of N-pole magnets or a plurality of S-pole magnets are installed on the same circumference of the outer peripheral surface, and these N-pole magnets and S-pole magnets are arranged in the axial direction of the rotor 20. It is installed alternately.
- FIG. 1 (d) 8 rows of magnets are installed in total including N and S poles. It is assumed that the distance between the N pole and S pole rows of the switching element 30 is the same as the gap between the magnet rows inside the cylindrical body 20a of the rotor 20.
- the three switching elements A 30a, switching element B 30b, and switching element C 30c are all the same.
- FIG. 1B these three switching elements are installed at equal angular intervals every 120 °.
- the S pole magnet of switch A 30a faces the N pole magnet of rotor 20
- the N pole magnet of switch B 30b faces the S pole magnet of the rotor.
- the N pole magnet of the switching element C 30c is opposed to both the N pole magnet and the S pole magnet of the rotor 20.
- Such switching of the facing state of the magnet can be performed by displacing a bar provided at the right end of the switching element to the left and right as shown in FIG.
- the upper switching element 30 in FIG. 1B is pushed into the left side of the drawing, and the lower switching element 30 in FIG.
- FIG. 1B is drawn to the right side in the drawing. In this manner, the facing state of the magnet can be changed by displacing the right end of the switching element 30 to the left and right.
- Various mechanisms can be considered as the drive mechanism for displacing the switching element 30 to the left and right.
- an engine piston may be used.
- the inner magnetic pole of the magnet on the inner peripheral surface of the rotor 20 is the S pole on the downstream side (left side in FIG. 2-1) in the rotation direction and the N pole on the upstream side (right side in FIG. 2-1). .
- the N-pole magnet on the surface of the switching element 30 and the S-pole magnet on the inner peripheral surface of the rotor 20 are opposed to each other.
- the boundary between the S-pole magnet and the N-pole magnet of the rotor 20 (the place where there is no magnet) is located upstream in the rotational direction in FIG.
- the force vector shown in the drawing represents the force acting on the magnet on the inner peripheral surface of the rotor 20 (in this case, the S-pole magnet). Of these force vectors, the force vector toward the center of rotation does not affect the rotation of the rotor 20 at all.
- the force vectors shown in bold of the total of four magnets on the left and right ends in FIG. 2-1 (1) affect the rotation.
- the two force vectors on the left side act as a brake for rotation
- the two force vectors on the right side act as a thrust for rotation.
- the state shown in FIG. since the total values are equal, the state shown in FIG. Then it will not affect the rotation.
- FIG. 2-1 (2) shows a state in which the rotation of the rotor 20 has progressed counterclockwise by one magnet from the state of FIG. 2-1 (1).
- the rotation of the rotor 20 proceeds by one magnet.
- the vector component of the brake force is larger, and the brake starts to act on the rotor 20 as a whole.
- the brake is further increased.
- the N-pole magnet of the rotor 20 also acts as a brake, and in FIG. 2-1 (5), the brake reaches the maximum value. Thereafter, the brake does not change until the state of FIG.
- the switch 30 is switched between the state of FIG. 2-1 (6) and the state of FIG. 2-1 (7). That is, the state where the N pole magnet of the switching element 30 faces the magnet of the rotor 20 is switched to the state where the S pole magnet of the switching element 30 faces the magnet of the rotor 20.
- FIG. 2-1 (7) since the magnet facing the magnet of the rotor 20 is the S pole, a large thrust in the rotating direction acts on the rotor 20. This large thrust continues until FIG. 2-2 (11). This thrust gradually decreases and the thrust and the brake are balanced in FIG. 2-2 (15). A resistance force is generated to change the state of FIG. 2-1 (6) to the state of FIG. 2-1 (7). This resistance force will be described in detail later.
- resistance force the force necessary for linearly displacing the switching element 30 in the direction of the rotation axis
- FIG. 3-1 (b) is a view as viewed from A in FIG. 3-1 (a) and shows a state where the switch 30 has moved slightly downward in the figure.
- FIG. 3-1 (d) is a side view of FIG. 3-1 (b).
- FIG. 3C is a side view of the state before the switching element 30 moves.
- ten S-pole magnets exist on the inner peripheral surface of the outer rotor 20, and ten N-pole magnets exist on the outer peripheral surface of the inner switch 30.
- 3-1 (b) and (d) are cases where the upper and lower boundaries of the two-stage magnet of the switching element 30 have moved to the position of the vertical center line of the rotor 20 magnet.
- the N-pole magnet of the switching element 30 still receives the attractive force from the S-pole magnet of the rotor 20, but the value is far away, so that the case of FIG. 3-1 (c) It becomes a smaller value.
- the S pole magnet at the upper stage of the switching element 30 is closer to the S pole magnet of the rotor 20, it receives a larger repulsive force than in the case of FIG.
- FIG. 3-2 (b) is a view as viewed from A in FIG. 3-2 (a) and shows a state where the switch 30 has moved slightly.
- FIG. 3-2 (c) is a side view of the left part of FIG. 3-2 (a).
- FIG. 3-2 (d) is a side view of the state (FIG. 3-2 (b)) in which the switch 30 has moved slightly downward from the state of FIG. 3-2 (c).
- FIG. 3-2 (e) is a side view of the right portion of FIG. 3-2 (a).
- FIG. 3-2 (f) is a side view of the state (FIG. 3-2 (b)) in which the switch 30 has moved slightly downward from the state of FIG. 3-2 (e).
- FIG. 3-2 (a) there are five S-pole magnets and three N-pole magnets on the inner circumferential surface of the outer rotor 20, and the outer circumferential surface of the inner switching element 30.
- the eight N-pole magnets actually face the rotor 20 magnet.
- the five S-pole magnets of the rotor 20 are opposed to the five N-pole magnets of the switch 30, and the three N-pole magnets of the rotor 20 are the three N-poles of the switch 30. It will be opposed to the magnet. Then, as in the case of FIG. 2-1 (1), what kind of resistance force is generated when the switch 30 is displaced in the direction of the rotation axis is considered. First, the five sets of S-pole and N-pole magnets of the left rotor 20 and the switch 30 have resistance acting on the switch 30 as in the case of FIG. 2-1 (1) already described. The resistance value is 5.
- FIG. 3-2 (f) shows a state in which the switching element 30 is slightly displaced in the direction of the rotation axis from this state.
- This state is a case where the upper and lower boundaries of the two-stage magnet of the switching element 30 have moved to the position of the center line in the vertical direction of the magnet of the rotor 20.
- the N-pole magnet of the switching element 30 still receives repulsive force from the N-pole magnet of the rotor 20, but the value is far away from that of FIG. 3-2 (e). Small value.
- the S pole magnet at the upper stage of the switching element 30 is closer to the N pole magnet of the rotor 20, it receives a larger pulling force than in the case of FIG.
- the N-pole (lower stage) and S-pole (upper stage) magnets of the switching element 30 receive the same amount of attractive force and repulsive force from the N-pole magnets of the rotor 20. That is, when the switch 30 is displaced in the direction of the rotation axis, a force in the same direction (forward direction) as the displacement direction is received. The magnitude of this forward force is 3 because there are 3 sets of N-pole and S-pole magnets.
- FIG. 3-3 (b) is a view A of FIG. 3-3 (a) and shows a state where the switch 30 has moved slightly.
- FIG. 3-3 (c) is a side view of the left part of FIG. 3-3 (a).
- FIG. 3-3 (d) is a side view of the state (FIG. 3-3 (b)) in which the switch 30 has moved slightly downward from the state of FIG. 3-3 (c).
- FIG. 3-3 (e) is a side view of the right portion of FIG. 3-3 (a).
- FIG. 3-3 (f) is a side view of the state (FIG. 3-3 (b)) in which the switch 30 has moved slightly downward from the state of FIG. 3-3 (e).
- FIG. 2-1 (7) shows the state after the magnet facing the rotor 20 of the switching element 30 has changed from the N pole to the S pole. Described below.
- FIG. 4A shows this intermediate state.
- 4B shows a state where the upper S pole magnet of the switching element 30 faces the rotor 20, and
- FIG. 4C shows a lower N pole magnet of the switching element 30. Shows a state of facing the rotor 20.
- FIG. 2-1 shows the state after the magnet facing the rotor 20 of the switching element 30 has changed from the N pole to the S pole. Described below.
- FIG. 4-2 (a) shows this intermediate state.
- 4B shows a state in which the upper S pole magnet of the switching element 30 faces the rotor 20
- FIG. 4-2C shows a lower N pole magnet of the switching element 30. Shows a state of facing the rotor 20.
- FIGS. 5 (a) to 5 (h) show a state in which the rotor 20 is sequentially rotated with the movement of the three switching elements A 30a, B, 30b, and C 30c.
- each position is determined by the angle, the angle is defined.
- the angle above the rotation center is 0 °. And it defines as 90 degrees, 180 degrees, and 270 degrees counterclockwise.
- the center of switch A 30a is at the 0 ° position
- the center of switch B 30b is at the 120 ° position
- the center of switch C 30c is at the 240 ° position. This position is unchanged, and the switch 30 is only displaced in a direction perpendicular to the paper surface.
- the pole of the magnet facing the magnet of the rotor 20 can be switched from the N pole to the S pole or from the S pole to the N pole.
- An S-pole magnet is installed on the left inner peripheral surface of the rotor 20 and an N-pole magnet is installed on the right inner peripheral surface.
- the upper boundary of the N pole magnet and the N pole magnet is at the position of ⁇ clockwise from the position of 0 °.
- the rotor 20 rotates counterclockwise.
- the magnitude of ⁇ can be freely determined. If the magnitude of ⁇ is increased, a large force is required to displace the switching element A 30a. However, a large force can be applied to the rotor 20 and a large rotational force can be obtained. Furthermore, the value of ⁇ may be negative, that is, a position deviated counterclockwise from 0 °. That is, switching of the switch A 30a may be started before 0 °, and the switching may be completed at a position exceeding 0 °. Even in this case, since the braking force can be reduced, the rotor 20 can be rotated continuously.
- Switcher A 30a is facing the N pole magnet
- Switcher B 30b is facing the N pole magnet
- Switcher C 30c is facing the S pole magnet and the rotor 20 magnet. Only the force in the direction of the rotation center is generated in the magnet of the rotor 20 facing the switch B 30b and the switch C 30c, and the rotation of the rotor 20 is not affected.
- the brake force B 4 acts on the magnet of the rotor 20 facing the switch A 30a as described above. Further, in order to displace the switch A 30a in FIG. 5A, a force that opposes the resistance force 2 must be applied to the switch A 30a.
- FIG. 5 (b) shows a state after the switch A 30a is displaced by applying a force against the resistance force 2.
- FIG. 5C shows a state in which the rotor 20 is rotated 60 ° counterclockwise.
- a braking force acts on the magnet of the rotor 20 facing the switching element C 30c.
- This is the same state as the magnet of the rotor 20 facing the switch A 30a in FIG.
- the rotational force is no longer applied to the magnet facing the switching element A 30a of the rotor 20, and only the force in the direction of the rotation center is applied.
- the force acting on the magnet facing the switching element B 30b of the rotor 20 is the same as the force acting on the magnet facing the switching element B 30b in the state of FIGS. 5 (a) and 5 (b).
- the S pole magnet of the switching element C 30c faces the magnet of the rotor 20, but the switching element C 30c is placed so that the N pole magnet faces the magnet of the rotor 20. Displace.
- the state after the displacement is the state shown in FIG.
- a rotational force is applied to the rotor 20 to rotate it counterclockwise. In this case, the state of the switch A 30a and the switch B 30b does not change.
- FIG. 5 (e) shows a state in which the rotor 20 is further rotated by 60 °, that is, 120 ° from the state of FIG. 5 (a) by the rotational force shown in FIG. 5 (d).
- the brake is acting on the magnet of the rotor 20 facing the switching element B 30b.
- the switch B 30b is switched. That is, the N pole magnet of the switching element B 30 b is opposed to the magnet of the rotor 20 so that the S pole magnet is opposed to the magnet of the rotor 20.
- FIG. 5F shows a state after the switch B 30b is switched.
- the same switching is performed to sequentially switch the switching element 30 and rotate the rotor 20.
- the switch A 30a, the switch B 30b, and the switch C 30c only move to the left and right, and the rotor 20 rotates, but on the contrary, the rotor 20 is fixed.
- a configuration in which the switch A 30a, the switch B 30b, and the switch C 30c are rotated may be employed. The same applies to the following embodiments.
- a sufficient rotational force can be generated in the rotor, and a predetermined rotational force can be applied to the rotor by changing the drive force of the switching element.
- FIG. 6A is a cross-sectional structural view showing the configuration of the magnet drive mechanism of the present embodiment
- FIG. 6B is a cross-sectional view of FIG. 6A
- FIG. 6C is a perspective view showing the structure of the rotor 22
- FIG. 6D is a perspective view showing the structure of the switching element 32.
- the rotor 22 includes a cylindrical body 22a having a magnet installed on the outside and a rotating shaft 22b.
- the rotor 22 is rotatably supported on the casing 60 by two bearings 40.
- Three switching elements A 32a, switching element B 32b, and switching element C 32c are supported and held by the casing 60 outside the cylindrical body 22a of the rotor 22, and the switching element 32 is shown in FIG. Although it can be displaced by a predetermined distance in the left-right direction of a), it does not rotate.
- the magnets installed on the rotor 22 and the three switching elements 32 will be described.
- the rotor 22 is provided with a magnet. That is, a plurality of N-pole and S-pole magnets are installed in half along the circumferential direction of the cylindrical body, and so-called magnet rings are installed on the outside of the cylindrical body for four circles.
- the switching element 32 has a fan-shaped shape, and a plurality of N-pole and S-pole magnets are installed on its inner peripheral surface as shown in FIG.
- a magnet having only N poles or a magnet having only S poles is installed on the same circumference of the inner peripheral surface, and these N pole magnets and S pole magnets are alternately installed in the axial direction of the rotor 22.
- FIG. 6 (d) eight rows of magnets are installed in total including N and S poles. The interval between the N pole and S pole rows is the same as the interval between the magnet rows outside the cylindrical body 22a of the rotor 22.
- all three switching elements 32 are the same.
- the three switching elements 32 are installed at equal angular intervals every 120 °. This installation state is the same as in the first embodiment. As shown in FIG. 6 (b), the S pole magnet of the switch A 32a faces both the N pole magnet and the S pole magnet of the rotor 22, and the S pole magnet of the switch B 32b rotates. Opposite to the south pole magnet of the child 22. Further, the N pole magnet of the switching element C 32 c faces the N pole magnet of the rotor 22. Such switching of the facing state of the magnet can be performed by displacing a bar provided at the right end of the switching element 32 to the left and right as shown in FIG.
- the upper switch 32 in FIG. 6A is pushed to the left in the figure, and the lower switch 32 in FIG. 6A is pulled to the right in the figure. In this manner, the facing state of the N-pole magnet and the S-pole magnet can be changed by displacing the right end of the switching element 32 to the left and right.
- FIGS. 7A to 7H show a state in which the rotor 22 sequentially rotates in accordance with the movement of the three switching elements A 32a, switching element B 32b, and switching element C 32c.
- each position is determined by the angle, the angle is defined.
- the angle above the rotation center is 0 °. And it defines as 90 degrees, 180 degrees, and 270 degrees counterclockwise.
- the center of the switch A 32a is at the 0 ° position
- the center of the switch B 32b is at the 120 ° position
- the center of the switch C 32c is at the 240 ° position. This position is unchanged, and the switch 32 is only displaced in the direction perpendicular to the paper surface.
- the pole of the magnet facing the magnet of the rotor 22 can be switched from N pole to S pole or from S pole to N pole.
- An S-pole magnet is installed on the left outer peripheral surface of the rotor 22 and an N-pole magnet is installed on the right outer peripheral surface.
- the upper boundary of the pole magnet is at a position of ⁇ clockwise from a position of 0 °. Note that the rotor 22 rotates counterclockwise.
- the magnitude of ⁇ can be freely determined. Increasing the magnitude of ⁇ requires a large force to displace the switching element A 32a. However, a large force can be applied to the rotor 22 and a large rotational force can be obtained. Furthermore, the value of ⁇ may be negative, that is, a position deviated counterclockwise from 0 °. That is, switching of the switch A 32a may be started before 0 °, and the switching may be completed at a position exceeding 0 °. Even in this case, since the braking force can be reduced, the rotor 22 can be continuously rotated.
- the switch A 32a faces the N pole magnet
- the switch B 32b faces the N pole magnet
- the switch C 32c faces the S pole magnet.
- Only the force in the center direction is generated in the magnet of the rotor 22 facing the switch B 32b and the switch C 32c, and the rotation of the rotor 22 is not affected.
- FIG. 7B shows a state after the switch A 32a is displaced by applying a force against the resistance force 2. That is, in the switching element A 32a, the magnet facing the rotor 22 is an S-pole magnet. As a result, a force of thrust 4 acts on the rotor 22 counterclockwise.
- FIG. 7C shows a state in which the rotor 22 is rotated 60 ° counterclockwise. In this state, a braking force is applied to the magnet of the rotor 22 facing the switching element C 32c. This is the same state as the magnet of the rotor 22 facing the switch A 32a in FIG. In addition, the rotational force no longer acts on the magnet at the location of the rotor 22 facing the switching element A 32a, and only the force in the center direction of the rotor 22 acts. In addition, about the force which acts on the magnet of the location facing the switching element B 32b of the rotor 22, the force which acts on the magnet of the location facing the switching element B 32b in the state of FIG. 7 (a), (b) The same. In FIG.
- FIG. 7 (e) shows a state in which the rotor 22 is further rotated by 60 °, that is, 120 ° from the state of FIG. 7 (a) by the rotational force shown in FIG. 7 (d).
- the brake is acting on the magnet of the rotor 22 facing the switching element B 32b.
- the switch B 32b is switched. That is, the N pole magnet of the switching element B 32b is opposed to the magnet of the rotor 22 so that the S pole magnet is opposed to the magnet of the rotor 22.
- FIG. 7F shows a state after the switching element B 32b is switched.
- the same switching is performed to sequentially switch the switching element 32 and rotate the rotor 22.
- the switch A 32a, the switch B 32b, and the switch C 32c are only displaced to the left and right, and the rotor 22 rotates, but on the contrary, the rotor 22 is fixed.
- the switch A 32a, the switch B 32b, and the switch C 32c may be rotated. The same applies to the following embodiments.
- a sufficient rotational force can be generated in the rotor, and a predetermined rotational force can be applied to the rotor by changing the drive force of the switching element.
- the magnet drive mechanism of the present embodiment is a magnet drive mechanism having a configuration in which the magnet drive mechanism of the first embodiment and the magnet drive mechanism of the second embodiment are integrated.
- the magnets are installed on both the inner peripheral surface and the outer peripheral surface of the rotor 24. That is, the rotor 24 receives rotational force on both the inner peripheral surface and the outer peripheral surface, and as a result, a remarkably large rotational torque can be generated as compared with the magnet drive mechanisms of the first and second embodiments.
- the switching element 34 is installed inside and outside the rotor 24, and the inner switching element 34 and the outer switching element 34 are connected as shown in the figure and are displaced at the same timing.
- the arrangement of the three switching elements A 34a, switching element B 34b, and switching element C 34c in the rotational direction, the magnet installation method, the timing for displacing the switching elements, and the like are the same as in the first and second embodiments, and the description thereof is omitted. .
- the magnet drive mechanism of the present embodiment is substantially the same size as the magnet drive mechanisms of Embodiments 1 and 2, but can generate a larger rotational torque.
- a sufficient rotational force can be generated in the rotor, and a predetermined rotational force can be applied to the rotor by changing the drive force of the switching element.
- the present embodiment relates to a magnet drive mechanism that moves the moving plate by switching the moving plate on which the magnet is installed with the switching plate on which the magnet is also installed.
- This magnet drive mechanism drives the moving plate 100 in which the S-pole and N-pole magnets are installed as shown in FIG.
- the individual magnets are separate and independent. There is a predetermined distance between the S pole magnet and the N pole magnet.
- This moving plate 100 corresponds to the rotor 20 of the first embodiment.
- FIGS. 9C and 9D show the states of the opposing magnets only with the magnets of the moving plate 100 and the switching plate 110.
- the N-pole magnet of the switching plate 110 is opposed to the magnet of the moving plate 100
- the S-pole magnet of the switching plate 110 is opposed to the magnet of the moving plate 100.
- FIGS. 10-1 and 10-2 are diagrams for illustrating the operating principle of the magnet drive mechanism of the present embodiment. Basically, it is the same as the contents of FIGS. 2-1 and 2-2 described in the first embodiment, and the state in which FIGS. 2-1 and 2-2 are straightly straightened is shown in FIGS. It can be considered as shown in FIG. Note that the state of the switching plate 110 in (1) to (6) of FIG. 10-1 is the state of FIG. 9C, and the state of the switching plate 110 in (7) to (15) of FIG. This is the state of FIG.
- the moving plate 100 is moved from right to left in the figure, and the position of the switching plate 110 is not changed.
- the switching plate 110 is displaced in the direction perpendicular to the paper surface.
- the switching plate 110 is switched between FIGS. 10-1 (6) and 10-1 (7) so that the N-pole magnet faces the moving plate 100 so that the S-pole magnet faces.
- a large driving force is generated. Since the direction of force generation, the magnitude of the force, and the like are the same as those in the first embodiment, description thereof is omitted.
- the switching plate 110 is switched between FIGS. 10-1 (6) and 10-1 (7), and the N-pole magnet is opposed to the moving plate 100.
- the switching plate 110 may be switched between FIGS. 10-1 (5) and 10-1 (6). By doing so, a larger force is required for switching, but a larger force can be applied to the moving plate 100.
- the magnet row of the moving plate 100 is described as one row, and the magnet row of the switching plate 110 is described as two rows, but both may be a plurality of rows as in the first embodiment. In this way, a greater driving force can be obtained.
- a moving mechanism can be configured to replace the belt conveyor installed in the factory.
- a plurality of switching plates 110 may be installed on the moving track at predetermined intervals, and the moving plate 100 may be moved sequentially, or the plurality of moving plates 100 may be moved sequentially. Further, the moving plate 100 may be fixed and the switching plate 110 may be moved.
- a sufficient force can be generated on the moving plate, and a predetermined thrust can be applied to the moving plate by changing the driving force of the switching element.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
Abstract
The purpose of the present invention is to provide a magnet driving mechanism capable of causing a rotor to generate a rotational force and capable of imparting a predetermined rotational force to the rotor by changing the driving force of armatures. This magnet driving mechanism is characterized by being provided with: a rotor (20) wherein one group of N-pole permanent magnets and one group of S-pole permanent magnets are attached to the cylindrical inner peripheral surface thereof at symmetrical positions with respect to each other; multiple armatures (30) disposed inside the rotor (20), wherein multiple N-pole permanent magnets and multiple S-pole permanent magnets are disposed on the outer peripheral surfaces of the armatures (30) in the central axis direction while the multiple N-pole permanent magnets and multiple S-pole permanent magnets are arranged parallel to each other in the outer circumferential direction; and a driving means for displacing the armatures (30) in a direction parallel to the central axis. Before forces directed toward the central axis so as to act on the permanent magnets of the armatures (30) counterbalance, the driving means displaces the armatures (30) in the direction parallel to the central axis in order to impart a rotational force to the rotor (20).
Description
本発明は、非接触な永久磁石同士の吸引力と反発力を利用して、直線変位を回転変位にまたは垂直変位を水平変位に変換するマグネット駆動機構に関する。
The present invention relates to a magnet drive mechanism that converts a linear displacement into a rotational displacement or a vertical displacement into a horizontal displacement by using an attractive force and a repulsive force between non-contact permanent magnets.
近年、マグネットのみを用いたマグネットモータまたは駆動機構が種々提案されている。本出願人は、例えば特許文献1において、マグネットモータ及び駆動機構に関する技術を提案している。以下に、特許文献1のマグネットモータについて説明する。
Recently, various magnet motors or drive mechanisms using only magnets have been proposed. The present applicant has proposed a technique related to a magnet motor and a drive mechanism in Patent Document 1, for example. Below, the magnet motor of patent document 1 is demonstrated.
特許文献1のマグネットモータは、円筒内周面の対称位置に複数の一群のN極の永久磁石と複数の一群のS極の永久磁石を取付けた回転子と、回転子の内側に設置された複数の切換子とを具備している。また、切換子の外周面上に、複数のN極の永久磁石と複数のS極の永久磁石が中心軸方向に配置されている。
The magnet motor of Patent Document 1 is installed on the inner side of a rotor having a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets attached at symmetrical positions on the inner circumferential surface of the cylinder. And a plurality of switching elements. A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the outer peripheral surface of the switching element.
そして、切換子の永久磁石に作用する回転中心に向かう力が釣り合ったタイミングで、駆動手段が切換子を中心軸と平行な方向に変位させて回転子に回転力を付与する構成を有している。
And at the timing when the force toward the rotation center acting on the permanent magnet of the switching element balances, the drive means displaces the switching element in a direction parallel to the central axis and applies a rotational force to the rotor. Yes.
しかし、上述の特許文献1のマグネットモータ及び駆動機構については、以下の課題があった。
However, the above-described magnet motor and drive mechanism of Patent Document 1 have the following problems.
(1)駆動手段による切換子の移動(変化)は容易にできるものの、回転子に十分な回転力を発生させることができないという問題があった。
(1) Although it is easy to move (change) the switching element by the driving means, there is a problem that a sufficient rotational force cannot be generated in the rotor.
(2)切換子を変位させる駆動手段の駆動力と回転子の回転力の関係が不明であり、所定の回転力を得たい場合に、いかなる駆動力を駆動手段に付与すべきかが明確でなかった。
(2) The relationship between the driving force of the driving means for displacing the switching element and the rotating force of the rotor is unknown, and it is not clear what driving force should be applied to the driving means when obtaining a predetermined rotating force. It was.
本発明は、上記課題を解決するためになされたものであり、回転子に十分な回転力を発生させることができ、かつ、切換子の駆動力を変動させることにより回転子に所定の回転力を付与することができるマグネット駆動機構を提供することを目的とする。
The present invention has been made to solve the above-described problems, and can generate a sufficient rotational force in the rotor, and a predetermined rotational force can be applied to the rotor by changing the driving force of the switching element. An object of the present invention is to provide a magnet drive mechanism capable of providing
本発明は、上述の課題を解決するため、以下の構成を備えるものである。
The present invention has the following configuration in order to solve the above-described problems.
(1)円筒内周面の対称位置に複数の一群のN極の永久磁石と複数の一群のS極の永久磁石を取付けた回転子と、
前記回転子の内側に、該回転子の中心軸を中心に所定角度毎に設置された複数の切換子とを具備し、
前記切換子の外周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が外周方向に平行に設置され、
前記回転子の複数の磁石と対峙する前記切換子に設置された前記複数の永久磁石の磁極をN極からS極へ、またはS極からN極に切り換えるために、前記切換子を前記中心軸と平行な方向に変位させる駆動手段と、を有し、
前記切換子に設置された前記複数のN極またはS極の永久磁石が前記回転子のS極とN極の永久磁石の両方に同時に対峙する状態において、前記切換子の永久磁石に作用する前記中心軸方向の力が釣り合う前に、
前記駆動手段が、前記切換子の前記複数のN極の永久磁石が前記回転子の永久磁石に対峙している状態を、前記切換子の前記複数のS極の永久磁石が前記回転子の永久磁石に対峙する状態にすることにより、または、
前記駆動手段が、前記切換子の前記複数のS極の永久磁石が前記回転子の永久磁石に対峙している状態を、前記切換子の前記複数のN極の永久磁石が前記回転子の永久磁石に対峙する状態にすることにより、
前記回転子に前記中心軸を中心にした回転力を付与することを特徴とするマグネット駆動機構。 (1) a rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are attached to symmetrical positions on the cylindrical inner peripheral surface;
A plurality of switching elements installed at predetermined angles around the central axis of the rotor inside the rotor;
A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the outer peripheral surface of the switching element, and the plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged. Is installed in parallel to the outer circumferential direction,
In order to switch the magnetic poles of the plurality of permanent magnets installed in the switching element facing the plurality of magnets of the rotor from N pole to S pole, or from S pole to N pole, the switching element is moved to the central axis. Driving means for displacing in a direction parallel to the
The plurality of N-pole or S-pole permanent magnets installed in the switch act on the permanent magnets of the switch in a state where both the S-pole and N-pole permanent magnets of the rotor face each other simultaneously. Before the forces in the central axis balance,
When the driving means is in a state where the plurality of N-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of S-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet, or
When the drive means is in a state where the plurality of S-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of N-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet,
A magnet driving mechanism that applies a rotational force about the central axis to the rotor.
前記回転子の内側に、該回転子の中心軸を中心に所定角度毎に設置された複数の切換子とを具備し、
前記切換子の外周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が外周方向に平行に設置され、
前記回転子の複数の磁石と対峙する前記切換子に設置された前記複数の永久磁石の磁極をN極からS極へ、またはS極からN極に切り換えるために、前記切換子を前記中心軸と平行な方向に変位させる駆動手段と、を有し、
前記切換子に設置された前記複数のN極またはS極の永久磁石が前記回転子のS極とN極の永久磁石の両方に同時に対峙する状態において、前記切換子の永久磁石に作用する前記中心軸方向の力が釣り合う前に、
前記駆動手段が、前記切換子の前記複数のN極の永久磁石が前記回転子の永久磁石に対峙している状態を、前記切換子の前記複数のS極の永久磁石が前記回転子の永久磁石に対峙する状態にすることにより、または、
前記駆動手段が、前記切換子の前記複数のS極の永久磁石が前記回転子の永久磁石に対峙している状態を、前記切換子の前記複数のN極の永久磁石が前記回転子の永久磁石に対峙する状態にすることにより、
前記回転子に前記中心軸を中心にした回転力を付与することを特徴とするマグネット駆動機構。 (1) a rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are attached to symmetrical positions on the cylindrical inner peripheral surface;
A plurality of switching elements installed at predetermined angles around the central axis of the rotor inside the rotor;
A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the outer peripheral surface of the switching element, and the plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged. Is installed in parallel to the outer circumferential direction,
In order to switch the magnetic poles of the plurality of permanent magnets installed in the switching element facing the plurality of magnets of the rotor from N pole to S pole, or from S pole to N pole, the switching element is moved to the central axis. Driving means for displacing in a direction parallel to the
The plurality of N-pole or S-pole permanent magnets installed in the switch act on the permanent magnets of the switch in a state where both the S-pole and N-pole permanent magnets of the rotor face each other simultaneously. Before the forces in the central axis balance,
When the driving means is in a state where the plurality of N-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of S-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet, or
When the drive means is in a state where the plurality of S-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of N-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet,
A magnet driving mechanism that applies a rotational force about the central axis to the rotor.
(2)円筒外周面の対称位置に複数の一群のN極の永久磁石と複数の一群のS極の永久磁石を取付けた回転子と、
前記回転子の外側に、該回転子の中心軸を中心に所定角度毎に設置された複数の切換子とを具備し、
前記切換子の内周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が内周方向に平行に設置され、
前記回転子の複数の磁石と対峙する前記切換子に設置された前記複数の永久磁石の磁極をN極からS極へ、またはS極からN極に切り換えるために、前記切換子を前記中心軸と平行な方向に変位させる駆動手段と、を有し、
前記切換子に設置された前記複数のN極またはS極の永久磁石が前記回転子のS極とN極の永久磁石の両方に同時に対峙する状態において、前記切換子の永久磁石に作用する前記中心軸方向の力が釣り合う前に、
前記駆動手段が、前記切換子の前記複数のN極の永久磁石が前記回転子の永久磁石に対峙している状態を、前記切換子の前記複数のS極の永久磁石が前記回転子の永久磁石に対峙する状態にすることにより、または、
前記駆動手段が、前記切換子の前記複数のS極の永久磁石が前記回転子の永久磁石に対峙している状態を、前記切換子の前記複数のN極の永久磁石が前記回転子の永久磁石に対峙する状態にすることにより、
前記回転子に前記中心軸を中心にした回転力を付与することを特徴とするマグネット駆動機構。 (2) a rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are attached to symmetrical positions on a cylindrical outer peripheral surface;
A plurality of switching elements installed at predetermined angles around the central axis of the rotor on the outside of the rotor;
A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the inner peripheral surface of the switch, and the plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are permanent. Magnets are installed parallel to the inner circumference direction,
In order to switch the magnetic poles of the plurality of permanent magnets installed in the switching element facing the plurality of magnets of the rotor from N pole to S pole, or from S pole to N pole, the switching element is moved to the central axis. Driving means for displacing in a direction parallel to the
The plurality of N-pole or S-pole permanent magnets installed in the switch act on the permanent magnets of the switch in a state where both the S-pole and N-pole permanent magnets of the rotor face each other simultaneously. Before the forces in the central axis balance,
When the driving means is in a state where the plurality of N-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of S-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet, or
When the drive means is in a state where the plurality of S-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of N-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet,
A magnet driving mechanism that applies a rotational force about the central axis to the rotor.
前記回転子の外側に、該回転子の中心軸を中心に所定角度毎に設置された複数の切換子とを具備し、
前記切換子の内周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が内周方向に平行に設置され、
前記回転子の複数の磁石と対峙する前記切換子に設置された前記複数の永久磁石の磁極をN極からS極へ、またはS極からN極に切り換えるために、前記切換子を前記中心軸と平行な方向に変位させる駆動手段と、を有し、
前記切換子に設置された前記複数のN極またはS極の永久磁石が前記回転子のS極とN極の永久磁石の両方に同時に対峙する状態において、前記切換子の永久磁石に作用する前記中心軸方向の力が釣り合う前に、
前記駆動手段が、前記切換子の前記複数のN極の永久磁石が前記回転子の永久磁石に対峙している状態を、前記切換子の前記複数のS極の永久磁石が前記回転子の永久磁石に対峙する状態にすることにより、または、
前記駆動手段が、前記切換子の前記複数のS極の永久磁石が前記回転子の永久磁石に対峙している状態を、前記切換子の前記複数のN極の永久磁石が前記回転子の永久磁石に対峙する状態にすることにより、
前記回転子に前記中心軸を中心にした回転力を付与することを特徴とするマグネット駆動機構。 (2) a rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are attached to symmetrical positions on a cylindrical outer peripheral surface;
A plurality of switching elements installed at predetermined angles around the central axis of the rotor on the outside of the rotor;
A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the inner peripheral surface of the switch, and the plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are permanent. Magnets are installed parallel to the inner circumference direction,
In order to switch the magnetic poles of the plurality of permanent magnets installed in the switching element facing the plurality of magnets of the rotor from N pole to S pole, or from S pole to N pole, the switching element is moved to the central axis. Driving means for displacing in a direction parallel to the
The plurality of N-pole or S-pole permanent magnets installed in the switch act on the permanent magnets of the switch in a state where both the S-pole and N-pole permanent magnets of the rotor face each other simultaneously. Before the forces in the central axis balance,
When the driving means is in a state where the plurality of N-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of S-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet, or
When the drive means is in a state where the plurality of S-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of N-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet,
A magnet driving mechanism that applies a rotational force about the central axis to the rotor.
(3)円筒内外周面の対称位置に複数の一群のN極の永久磁石と複数の一群のS極の永久磁石を取付けた回転子と、
前記回転子の内側及び外側に、該回転子の中心軸を中心に所定角度毎に設置された複数の切換子とを具備し、
前記切換子の前記回転子の内側の外周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が外周方向に平行に設置され、
前記切換子の前記回転子の外側の内周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が内周方向に平行に設置され、
前記回転子の複数の磁石と対峙する前記切換子に設置された前記複数の永久磁石の磁極をN極からS極へ、またはS極からN極に切り換えるために、前記切換子を前記中心軸と平行な方向に変位させる駆動手段と、を有し、
前記切換子に設置された前記複数のN極またはS極の永久磁石が前記回転子のS極とN極の永久磁石の両方に同時に対峙する状態において、前記切換子の永久磁石に作用する前記中心軸方向の力が釣り合う前に、
前記駆動手段が、前記切換子の前記複数のN極の永久磁石が前記回転子の永久磁石に対峙している状態を、前記切換子の前記複数のS極の永久磁石が前記回転子の永久磁石に対峙する状態にすることにより、または、
前記駆動手段が、前記切換子の前記複数のS極の永久磁石が前記回転子の永久磁石に対峙している状態を、前記切換子の前記複数のN極の永久磁石が前記回転子の永久磁石に対峙する状態にすることにより、
前記回転子に前記中心軸を中心にした回転力を付与することを特徴とするマグネット駆動機構。 (3) a rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are attached to symmetrical positions on the inner peripheral surface of the cylinder;
A plurality of switching elements installed at predetermined angles around the central axis of the rotor on the inside and outside of the rotor;
A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the inner peripheral surface of the rotor of the switching element, and the plurality of N-pole permanent magnets and the plurality of N-pole permanent magnets. Are installed in parallel to the outer peripheral direction,
A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the outer peripheral surface of the rotor of the switching element, and the plurality of N-pole permanent magnets A plurality of S-pole permanent magnets are installed in parallel to the inner circumferential direction,
In order to switch the magnetic poles of the plurality of permanent magnets installed in the switching element facing the plurality of magnets of the rotor from N pole to S pole, or from S pole to N pole, the switching element is moved to the central axis. Driving means for displacing in a direction parallel to the
The plurality of N-pole or S-pole permanent magnets installed in the switch act on the permanent magnets of the switch in a state where both the S-pole and N-pole permanent magnets of the rotor face each other simultaneously. Before the forces in the central axis balance,
When the driving means is in a state where the plurality of N-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of S-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet, or
When the drive means is in a state where the plurality of S-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of N-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet,
A magnet driving mechanism that applies a rotational force about the central axis to the rotor.
前記回転子の内側及び外側に、該回転子の中心軸を中心に所定角度毎に設置された複数の切換子とを具備し、
前記切換子の前記回転子の内側の外周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が外周方向に平行に設置され、
前記切換子の前記回転子の外側の内周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が内周方向に平行に設置され、
前記回転子の複数の磁石と対峙する前記切換子に設置された前記複数の永久磁石の磁極をN極からS極へ、またはS極からN極に切り換えるために、前記切換子を前記中心軸と平行な方向に変位させる駆動手段と、を有し、
前記切換子に設置された前記複数のN極またはS極の永久磁石が前記回転子のS極とN極の永久磁石の両方に同時に対峙する状態において、前記切換子の永久磁石に作用する前記中心軸方向の力が釣り合う前に、
前記駆動手段が、前記切換子の前記複数のN極の永久磁石が前記回転子の永久磁石に対峙している状態を、前記切換子の前記複数のS極の永久磁石が前記回転子の永久磁石に対峙する状態にすることにより、または、
前記駆動手段が、前記切換子の前記複数のS極の永久磁石が前記回転子の永久磁石に対峙している状態を、前記切換子の前記複数のN極の永久磁石が前記回転子の永久磁石に対峙する状態にすることにより、
前記回転子に前記中心軸を中心にした回転力を付与することを特徴とするマグネット駆動機構。 (3) a rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are attached to symmetrical positions on the inner peripheral surface of the cylinder;
A plurality of switching elements installed at predetermined angles around the central axis of the rotor on the inside and outside of the rotor;
A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the inner peripheral surface of the rotor of the switching element, and the plurality of N-pole permanent magnets and the plurality of N-pole permanent magnets. Are installed in parallel to the outer peripheral direction,
A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the outer peripheral surface of the rotor of the switching element, and the plurality of N-pole permanent magnets A plurality of S-pole permanent magnets are installed in parallel to the inner circumferential direction,
In order to switch the magnetic poles of the plurality of permanent magnets installed in the switching element facing the plurality of magnets of the rotor from N pole to S pole, or from S pole to N pole, the switching element is moved to the central axis. Driving means for displacing in a direction parallel to the
The plurality of N-pole or S-pole permanent magnets installed in the switch act on the permanent magnets of the switch in a state where both the S-pole and N-pole permanent magnets of the rotor face each other simultaneously. Before the forces in the central axis balance,
When the driving means is in a state where the plurality of N-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of S-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet, or
When the drive means is in a state where the plurality of S-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of N-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet,
A magnet driving mechanism that applies a rotational force about the central axis to the rotor.
(4)前記駆動手段が、エンジンのピストン機構であることを特徴とする前記(1)乃至(3)のいずれか1項に記載のマグネット駆動機構。
(4) The magnet drive mechanism according to any one of (1) to (3), wherein the drive means is an engine piston mechanism.
(5)前記駆動手段が前記切換子を変位させる力を変動させることにより、前記回転子に付与される力を変動させることを特徴とする前記(1)乃至(4)のいずれか1項に記載のマグネット駆動機構。
(5) In any one of (1) to (4), the driving unit varies a force applied to the rotor by varying a force that displaces the switching element. The magnet drive mechanism described.
(6)前記回転子を固定し、前記複数の切換子を回転させることを特徴とする前記(1)乃至(4)のいずれか1項に記載のマグネット駆動機構。
(6) The magnet drive mechanism according to any one of (1) to (4), wherein the rotor is fixed and the plurality of switching elements are rotated.
(7)前記駆動手段が前記切換子を変位させる力を変動させることにより、前記切換子に付与される力を変動させることを特徴とする前記(6)に記載のマグネット駆動機構。
(7) The magnet drive mechanism according to (6), wherein the force applied to the switch is changed by changing the force with which the drive means displaces the switch.
(8)前記円筒外周面または前記円筒内周面に設置された前記複数の一群のN極の永久磁石と前記複数の一群のS極の永久磁石が、前記中心軸の方向に交互に複数段配置され、
前記切換子の外周面または内周面に設置された前記複数のN極の永久磁石と前記複数のS極の永久磁石が、前記中心軸の方向に交互に複数段配置されていることを特徴とする前記(1)乃至(7)のいずれか1項に記載のマグネット駆動機構。 (8) The plurality of groups of N-pole permanent magnets and the plurality of groups of S-pole permanent magnets installed on the outer peripheral surface of the cylinder or the inner peripheral surface of the cylinder are alternately provided in a plurality of stages in the direction of the central axis. Arranged,
The plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed on the outer peripheral surface or inner peripheral surface of the switching element are alternately arranged in a plurality of stages in the direction of the central axis. The magnet drive mechanism according to any one of (1) to (7).
前記切換子の外周面または内周面に設置された前記複数のN極の永久磁石と前記複数のS極の永久磁石が、前記中心軸の方向に交互に複数段配置されていることを特徴とする前記(1)乃至(7)のいずれか1項に記載のマグネット駆動機構。 (8) The plurality of groups of N-pole permanent magnets and the plurality of groups of S-pole permanent magnets installed on the outer peripheral surface of the cylinder or the inner peripheral surface of the cylinder are alternately provided in a plurality of stages in the direction of the central axis. Arranged,
The plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed on the outer peripheral surface or inner peripheral surface of the switching element are alternately arranged in a plurality of stages in the direction of the central axis. The magnet drive mechanism according to any one of (1) to (7).
(9)複数の一群のN極の永久磁石と複数の一群のS極の永久磁石が同一の直線方向に設置された移動板と、
複数のN極の永久磁石と複数のS極の永久磁石が前記直線方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が前記直線方向に垂直な方向に平行に設置された切換板とを具備し、
前記移動板の複数の磁石と対峙する前記切換板に設置された前記複数の永久磁石の磁極をN極からS極へ、またはS極からN極に切り換えるために、前記移動板を前記直線方向と垂直な方向に変位させる駆動手段と、を有し、
前記切換板に設置された前記複数のN極またはS極の永久磁石が前記移動板のS極とN極の永久磁石の両方に同時に対峙する状態において、前記切換板の永久磁石に作用する前記中心軸方向の力が釣り合う前に、
前記駆動手段が、前記切換板の前記複数のN極の永久磁石が前記移動板の永久磁石に対峙している状態を、前記切換板の前記複数のS極の永久磁石が前記移動板の永久磁石に対峙する状態にすることにより、または、
前記駆動手段が、前記切換板の前記複数のS極の永久磁石が前記移動板の永久磁石に対峙している状態を、前記切換板の前記複数のN極の永久磁石が前記移動板の永久磁石に対峙する状態にすることにより、
前記移動板に前記直線方向の推進力を付与することを特徴とするマグネット駆動機構。 (9) a moving plate in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are installed in the same linear direction;
A plurality of N pole permanent magnets and a plurality of S pole permanent magnets are arranged in the linear direction, and the plurality of N pole permanent magnets and the plurality of S pole permanent magnets are parallel to the direction perpendicular to the linear direction. And a switching plate installed in
In order to switch the magnetic poles of the plurality of permanent magnets installed on the switching plate facing the plurality of magnets of the moving plate from N pole to S pole, or from S pole to N pole, the moving plate is moved in the linear direction. Driving means for displacing in a direction perpendicular to
The plurality of N-pole or S-pole permanent magnets installed on the switching plate act on the permanent magnets of the switching plate in a state where both the S-pole and N-pole permanent magnets of the moving plate face each other simultaneously. Before the forces in the central axis balance,
When the drive means is in a state where the plurality of N-pole permanent magnets of the switching plate are opposed to the permanent magnet of the moving plate, the plurality of S-pole permanent magnets of the switching plate are permanent of the moving plate. By facing the magnet, or
When the driving means is in a state where the plurality of S-pole permanent magnets of the switching plate are opposed to the permanent magnet of the moving plate, the plurality of N-pole permanent magnets of the switching plate are permanent of the moving plate. By facing the magnet,
A magnet drive mechanism that applies a propulsive force in the linear direction to the moving plate.
複数のN極の永久磁石と複数のS極の永久磁石が前記直線方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が前記直線方向に垂直な方向に平行に設置された切換板とを具備し、
前記移動板の複数の磁石と対峙する前記切換板に設置された前記複数の永久磁石の磁極をN極からS極へ、またはS極からN極に切り換えるために、前記移動板を前記直線方向と垂直な方向に変位させる駆動手段と、を有し、
前記切換板に設置された前記複数のN極またはS極の永久磁石が前記移動板のS極とN極の永久磁石の両方に同時に対峙する状態において、前記切換板の永久磁石に作用する前記中心軸方向の力が釣り合う前に、
前記駆動手段が、前記切換板の前記複数のN極の永久磁石が前記移動板の永久磁石に対峙している状態を、前記切換板の前記複数のS極の永久磁石が前記移動板の永久磁石に対峙する状態にすることにより、または、
前記駆動手段が、前記切換板の前記複数のS極の永久磁石が前記移動板の永久磁石に対峙している状態を、前記切換板の前記複数のN極の永久磁石が前記移動板の永久磁石に対峙する状態にすることにより、
前記移動板に前記直線方向の推進力を付与することを特徴とするマグネット駆動機構。 (9) a moving plate in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are installed in the same linear direction;
A plurality of N pole permanent magnets and a plurality of S pole permanent magnets are arranged in the linear direction, and the plurality of N pole permanent magnets and the plurality of S pole permanent magnets are parallel to the direction perpendicular to the linear direction. And a switching plate installed in
In order to switch the magnetic poles of the plurality of permanent magnets installed on the switching plate facing the plurality of magnets of the moving plate from N pole to S pole, or from S pole to N pole, the moving plate is moved in the linear direction. Driving means for displacing in a direction perpendicular to
The plurality of N-pole or S-pole permanent magnets installed on the switching plate act on the permanent magnets of the switching plate in a state where both the S-pole and N-pole permanent magnets of the moving plate face each other simultaneously. Before the forces in the central axis balance,
When the drive means is in a state where the plurality of N-pole permanent magnets of the switching plate are opposed to the permanent magnet of the moving plate, the plurality of S-pole permanent magnets of the switching plate are permanent of the moving plate. By facing the magnet, or
When the driving means is in a state where the plurality of S-pole permanent magnets of the switching plate are opposed to the permanent magnet of the moving plate, the plurality of N-pole permanent magnets of the switching plate are permanent of the moving plate. By facing the magnet,
A magnet drive mechanism that applies a propulsive force in the linear direction to the moving plate.
(10)前記移動板に設置された前記複数の一群のN極の永久磁石と前記複数の一群のS極の永久磁石が、前記直線方向と垂直な方向に交互に複数段配置され、
前記切換板に設置された前記複数のN極の永久磁石と前記複数のS極の永久磁石が、前記直線方向と垂直な方向に交互に複数段配置されていることを特徴とする前記(9)に記載のマグネット駆動機構。 (10) The plurality of groups of N-pole permanent magnets and the plurality of groups of S-pole permanent magnets installed on the moving plate are alternately arranged in a plurality of stages in a direction perpendicular to the linear direction,
The plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed on the switching plate are alternately arranged in a plurality of stages in a direction perpendicular to the linear direction. The magnet drive mechanism described in).
前記切換板に設置された前記複数のN極の永久磁石と前記複数のS極の永久磁石が、前記直線方向と垂直な方向に交互に複数段配置されていることを特徴とする前記(9)に記載のマグネット駆動機構。 (10) The plurality of groups of N-pole permanent magnets and the plurality of groups of S-pole permanent magnets installed on the moving plate are alternately arranged in a plurality of stages in a direction perpendicular to the linear direction,
The plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed on the switching plate are alternately arranged in a plurality of stages in a direction perpendicular to the linear direction. The magnet drive mechanism described in).
(11)前記移動板を固定し、前記切換板を変位させることを特徴とする前記(7)に記載のマグネット駆動機構。
(11) The magnet drive mechanism according to (7), wherein the moving plate is fixed and the switching plate is displaced.
(12)前記駆動手段が前記切換板を変位させる力を変動させることにより、前記移動板に付与される力を変動させることを特徴とする前記(9)または(10)に記載のマグネット駆動機構。
(12) The magnet drive mechanism according to (9) or (10), wherein the force applied to the moving plate is changed by changing the force by which the driving unit displaces the switching plate. .
本発明のマグネット駆動機構によれば、回転子に十分な回転力を発生させることができ、かつ、切換子の駆動力を変動させることにより回転子に所定の回転力を付与することができるマグネット駆動機構を提供することができる。
According to the magnet drive mechanism of the present invention, a magnet capable of generating a sufficient rotational force in the rotor and applying a predetermined rotational force to the rotor by changing the drive force of the switching element. A drive mechanism can be provided.
以下に、本発明を実施するための形態を、図面を参照しながら詳しく説明する。
Hereinafter, modes for carrying out the present invention will be described in detail with reference to the drawings.
図1(a)は、本実施例のマグネット駆動機構の構成を示す断面構造図であり、図1(b)は、図1(a)の断面図である。また、図1(c)は回転子の構造を示す斜視図、図1(d)は切換子の構造を示す斜視図である。
FIG. 1A is a cross-sectional structural view showing the configuration of the magnet drive mechanism of the present embodiment, and FIG. 1B is a cross-sectional view of FIG. FIG. 1C is a perspective view showing the structure of the rotor, and FIG. 1D is a perspective view showing the structure of the switching element.
図1(a)に示すように、回転子20は内側に複数の磁石が設置された円筒体20aと回転軸20bから構成されている。この回転子20はケーシング60に2つのベアリング40により回転自在に支持されている。回転子20の円筒体20aの内部には3つの切換子A 30a,切換子B 30b,切換子C 30cが保持部材50により支持・保持されており、切換子30は保持部材50に沿って図1(a)の左右方向に所定の距離だけ変位することができる。保持部材50はケーシング60に固定されており、この保持部材50と切換子30は回転しない。
As shown in FIG. 1 (a), the rotor 20 includes a cylindrical body 20a having a plurality of magnets installed therein and a rotating shaft 20b. The rotor 20 is rotatably supported on the casing 60 by two bearings 40. Three switching elements A 30 a, switching elements B 30 b, and switching elements C 30 c are supported and held by a holding member 50 inside the cylindrical body 20 a of the rotor 20, and the switching element 30 is illustrated along the holding member 50. 1 (a) can be displaced by a predetermined distance in the left-right direction. The holding member 50 is fixed to the casing 60, and the holding member 50 and the switching element 30 do not rotate.
次に、回転子20と3つの切換子A 30a,切換子B 30b,切換子C 30cに設置された磁石について説明する。回転子20には図1(c)に示すように磁石が設置されている。すなわち、円筒体20aの周方向に沿って複数のN極とS極の磁石が半分ずつ設置されており、このような磁石のリングが4円周分円筒体20aの内側に設置されている。一方、切換子30は扇型の形状を有しており、その外周面には複数のN極とS極の磁石が図1(d)のように設置されている。すなわち、外周面の同一の円周上には複数のN極のみの磁石、あるいは複数のS極のみの磁石が設置され、これらN極の磁石とS極の磁石が回転子20の軸方向に交互に設置されている。図1(d)ではN極、S極合わせて8列の磁石が設置されている。なお、この切換子30のN極とS極の列の間隔は、回転子20の円筒体20a内側の磁石の列の間隔と同一であるものとする。なお、本実施例のマグネットモータでは、3つの切換子A 30a,切換子B 30b,切換子C 30cはすべて同一のものである。
Next, the rotor 20 and the magnets installed in the three switching elements A 30a, the switching element B 30b, and the switching element C 30c will be described. As shown in FIG. 1C, the rotor 20 is provided with a magnet. That is, a plurality of N-pole and S-pole magnets are installed in half along the circumferential direction of the cylindrical body 20a, and such a ring of magnets is installed inside the cylindrical body 20a for four circumferences. On the other hand, the switching element 30 has a fan shape, and a plurality of N-pole and S-pole magnets are provided on the outer peripheral surface thereof as shown in FIG. That is, a plurality of N-pole magnets or a plurality of S-pole magnets are installed on the same circumference of the outer peripheral surface, and these N-pole magnets and S-pole magnets are arranged in the axial direction of the rotor 20. It is installed alternately. In FIG. 1 (d), 8 rows of magnets are installed in total including N and S poles. It is assumed that the distance between the N pole and S pole rows of the switching element 30 is the same as the gap between the magnet rows inside the cylindrical body 20a of the rotor 20. In the magnet motor of this embodiment, the three switching elements A 30a, switching element B 30b, and switching element C 30c are all the same.
次に、回転子20の磁石と切換子30の磁石の配置について説明する。これら3つの切換子は図1(b)に示すように、120°毎に等角度間隔で設置されている。切換子A 30aのS極の磁石は回転子20のN極の磁石と対峙し、切換子B 30bのN極の磁石は回転子のS極の磁石と対峙している。また、切換子C 30cのN極の磁石は、回転子20のN極の磁石とS極の磁石の両方に対峙している。このような磁石の対峙状態の切換は、図1(a)に示すように切換子の右側端部に設けられた棒材を左右に変位させることによって行うことができる。図1(b)の上側の切換子30は図の左側に押し込んだ状態であり、図1(b)の下側の切換子30は図の右側に引いた状態を示している。このように、切換子30の右端を左右に変位させることにより磁石の対峙状態を変化させることができる。切換子30を左右に変位させる駆動機構については、種々の機構が考えられる。例えば、エンジンのピストンを使用してもよい。
Next, the arrangement of the magnets of the rotor 20 and the switching element 30 will be described. As shown in FIG. 1B, these three switching elements are installed at equal angular intervals every 120 °. The S pole magnet of switch A 30a faces the N pole magnet of rotor 20, and the N pole magnet of switch B 30b faces the S pole magnet of the rotor. Further, the N pole magnet of the switching element C 30c is opposed to both the N pole magnet and the S pole magnet of the rotor 20. Such switching of the facing state of the magnet can be performed by displacing a bar provided at the right end of the switching element to the left and right as shown in FIG. The upper switching element 30 in FIG. 1B is pushed into the left side of the drawing, and the lower switching element 30 in FIG. 1B is drawn to the right side in the drawing. In this manner, the facing state of the magnet can be changed by displacing the right end of the switching element 30 to the left and right. Various mechanisms can be considered as the drive mechanism for displacing the switching element 30 to the left and right. For example, an engine piston may be used.
[回転子に作用する回転方向の力]
回転子20に作用する回転方向の力について、図2-1,図2-2を用いて説明する。図2-1の(1)~(6)では、切換子30において複数のN極の磁石が回転子20の複数の磁石と対峙している状態であり、図2-1(7)、(8)及び図2-2の(9)~(15)では、切換子30においてS極の磁石が回転子20の磁石と対峙している。すなわち図2-1(6)の状態から図2-1(7)の状態の間において、切換子30の表面側の回転子20の磁石と対峙する磁極がN極からS極に切り換わる。回転子20は、反時計回りに回転しているものとする。また、回転子20の内周面上の磁石の内側の磁極は、回転方向の下流側(図2-1の左側)ではS極、上流側(図2-1の右側)ではN極である。 [Rotational force acting on the rotor]
The rotational force acting on therotor 20 will be described with reference to FIGS. 2-1 and 2-2. In (1) to (6) of FIG. 2-1, a plurality of N-pole magnets are opposed to a plurality of magnets of the rotor 20 in the switching element 30, and FIGS. 8) and (9) to (15) in FIG. 2-2, the S pole magnet is opposed to the magnet of the rotor 20 in the switch 30. In FIG. That is, between the state of FIG. 2-1 (6) and the state of FIG. 2-1 (7), the magnetic pole facing the magnet of the rotor 20 on the surface side of the switching element 30 is switched from the N pole to the S pole. It is assumed that the rotor 20 is rotating counterclockwise. Further, the inner magnetic pole of the magnet on the inner peripheral surface of the rotor 20 is the S pole on the downstream side (left side in FIG. 2-1) in the rotation direction and the N pole on the upstream side (right side in FIG. 2-1). .
回転子20に作用する回転方向の力について、図2-1,図2-2を用いて説明する。図2-1の(1)~(6)では、切換子30において複数のN極の磁石が回転子20の複数の磁石と対峙している状態であり、図2-1(7)、(8)及び図2-2の(9)~(15)では、切換子30においてS極の磁石が回転子20の磁石と対峙している。すなわち図2-1(6)の状態から図2-1(7)の状態の間において、切換子30の表面側の回転子20の磁石と対峙する磁極がN極からS極に切り換わる。回転子20は、反時計回りに回転しているものとする。また、回転子20の内周面上の磁石の内側の磁極は、回転方向の下流側(図2-1の左側)ではS極、上流側(図2-1の右側)ではN極である。 [Rotational force acting on the rotor]
The rotational force acting on the
図2-1(1)の状態では、切換子30の表面のN極の磁石と回転子20の内周面のS極の磁石が対峙している。回転子20のS極の磁石とN極の磁石との境界(磁石のない箇所)は、図2-1(1)では回転方向の上流側に位置している。図に示した力のベクトルは、回転子20の内周面の磁石(今の場合は、S極の磁石)に働く力を表している。これら複数の力のベクトルのうち回転中心に向かう力のベクトルは回転子20の回転には全く影響しない。一方、図2-1(1)の左右両端側の合計4個の磁石の太く示した力のベクトルは回転に影響する。左側の2個の力のベクトルは回転のブレーキとして作用し、右側の2個の力のベクトルは回転の推力として作用するが、それぞれの合計値は等しいので結局図2-1(1)の状態では回転には影響しないことになる。
In the state of FIG. 2-1 (1), the N-pole magnet on the surface of the switching element 30 and the S-pole magnet on the inner peripheral surface of the rotor 20 are opposed to each other. The boundary between the S-pole magnet and the N-pole magnet of the rotor 20 (the place where there is no magnet) is located upstream in the rotational direction in FIG. The force vector shown in the drawing represents the force acting on the magnet on the inner peripheral surface of the rotor 20 (in this case, the S-pole magnet). Of these force vectors, the force vector toward the center of rotation does not affect the rotation of the rotor 20 at all. On the other hand, the force vectors shown in bold of the total of four magnets on the left and right ends in FIG. 2-1 (1) affect the rotation. The two force vectors on the left side act as a brake for rotation, and the two force vectors on the right side act as a thrust for rotation. However, since the total values are equal, the state shown in FIG. Then it will not affect the rotation.
図2-1(2)は、図2-1(1)の状態から磁石1個分だけ回転子20の回転が反時計方向に進行した状態を示している。以降の図においても、同様に磁石1個分ずつ回転子20の回転が進行していくものとする。図2-1(2)では、ブレーキの力のベクトル成分の方が多く、全体として回転子20にブレーキが作用し始めることになる。図2-1(3)では、更にブレーキが増える。そして、図2-1(4)では、回転子20のN極の磁石もブレーキとして作用し、図2-1(5)ではブレーキが最大値に到達する。その後、図2-1(6)の状態まで、ブレーキは変化しない。次に、図2-1(6)の状態から図2-1(7)の状態の間に、切換子30を切り換える。すなわち、切換子30のN極の磁石が回転子20の磁石と対峙している状態を、切換子30のS極の磁石が回転子20の磁石と対峙する状態に切り換える。
FIG. 2-1 (2) shows a state in which the rotation of the rotor 20 has progressed counterclockwise by one magnet from the state of FIG. 2-1 (1). In the subsequent drawings, similarly, it is assumed that the rotation of the rotor 20 proceeds by one magnet. In FIG. 2A, the vector component of the brake force is larger, and the brake starts to act on the rotor 20 as a whole. In FIG. 2-1 (3), the brake is further increased. In FIG. 2-1 (4), the N-pole magnet of the rotor 20 also acts as a brake, and in FIG. 2-1 (5), the brake reaches the maximum value. Thereafter, the brake does not change until the state of FIG. Next, the switch 30 is switched between the state of FIG. 2-1 (6) and the state of FIG. 2-1 (7). That is, the state where the N pole magnet of the switching element 30 faces the magnet of the rotor 20 is switched to the state where the S pole magnet of the switching element 30 faces the magnet of the rotor 20.
図2-1(7)では、回転子20の磁石と対峙する磁石がS極となったため、回転方向の大きな推力が回転子20に作用する。この大きな推力は図2-2(11)まで継続することになる。そして、この推力は徐々に減少し図2-2(15)において推力とブレーキが釣り合った状態となる。なお、図2-1(6)の状態から図2-1(7)の状態に変化させるには抵抗力が発生するが、この抵抗力については後に詳しく説明する。
In FIG. 2-1 (7), since the magnet facing the magnet of the rotor 20 is the S pole, a large thrust in the rotating direction acts on the rotor 20. This large thrust continues until FIG. 2-2 (11). This thrust gradually decreases and the thrust and the brake are balanced in FIG. 2-2 (15). A resistance force is generated to change the state of FIG. 2-1 (6) to the state of FIG. 2-1 (7). This resistance force will be described in detail later.
上記した回転子20に作用する回転方向の力をまとめると以下のようになる。なお、推力をFa、ブレーキ力をFbとし、最も小さい値を1として以下に記載する。
(図2-1)
(1)Fb=0、(2)Fb=1、(3)Fb=2、(4)Fb=3
(5)Fb=4、(6)Fb=4
(図2-1、図2-2)
(7)Fa=4、(8)Fa=4、(9)Fa=4、(10)Fa=4
(11)Fa=4、(12)Fa=3、(13)Fa=2、(14)Fa=1、
(15)Fa=0 The rotational force acting on therotor 20 is summarized as follows. Note that the following description will be made assuming that the thrust is Fa, the braking force is Fb, and the smallest value is 1.
(Figure 2-1)
(1) Fb = 0, (2) Fb = 1, (3) Fb = 2, (4) Fb = 3
(5) Fb = 4, (6) Fb = 4
(Figures 2-1 and 2-2)
(7) Fa = 4, (8) Fa = 4, (9) Fa = 4, (10) Fa = 4
(11) Fa = 4, (12) Fa = 3, (13) Fa = 2, (14) Fa = 1,
(15) Fa = 0
(図2-1)
(1)Fb=0、(2)Fb=1、(3)Fb=2、(4)Fb=3
(5)Fb=4、(6)Fb=4
(図2-1、図2-2)
(7)Fa=4、(8)Fa=4、(9)Fa=4、(10)Fa=4
(11)Fa=4、(12)Fa=3、(13)Fa=2、(14)Fa=1、
(15)Fa=0 The rotational force acting on the
(Figure 2-1)
(1) Fb = 0, (2) Fb = 1, (3) Fb = 2, (4) Fb = 3
(5) Fb = 4, (6) Fb = 4
(Figures 2-1 and 2-2)
(7) Fa = 4, (8) Fa = 4, (9) Fa = 4, (10) Fa = 4
(11) Fa = 4, (12) Fa = 3, (13) Fa = 2, (14) Fa = 1,
(15) Fa = 0
[切換子の抵抗力]
次に、切換子30を回転軸方向に直線変位させる場合に必要な力(以下、この力を「抵抗力」という。)について以下に述べる。 [Resistance of switching element]
Next, the force necessary for linearly displacing the switchingelement 30 in the direction of the rotation axis (hereinafter referred to as “resistance force”) will be described below.
次に、切換子30を回転軸方向に直線変位させる場合に必要な力(以下、この力を「抵抗力」という。)について以下に述べる。 [Resistance of switching element]
Next, the force necessary for linearly displacing the switching
まず、図2-1(1)の場合の抵抗力について述べる。図2-1(1)の状態をあらためて図3-1(a)に示す。図3-1(b)は、図3-1(a)のA視図であり切換子30が少し図の下方向に移動した状態を示している。図3-1(d)は、図3-1(b)の側面図である。また、図3-1(c)は切換子30が移動する前の状態の側面図である。今の場合、外側の回転子20の内周面には10個のS極の磁石が存在し、内側の切換子30の外周面には10個のN極の磁石が存在している。これらの10個のS極とN極の磁石は、異なる極同士であるので互いに吸引力で引き合うことになる(図3-1(a),図3-1(c)参照)。そして、次にこの状態から切換子30を回転軸方向に変位させる場合にどのような抵抗力が必要であるかを考える。まず、図3-1(c)に示したように切換子30の下側の10個のN極の磁石は回転子20の側に引っ張られ、切換子30の上側のS極の磁石は、回転子20のS極の磁石から大きさは小さいが反発し合う力(斥力)を受けている状態にある。この状態から切換子30が更に下方に押し下げられた状態を考える(図3-1(d))。
First, the resistance in the case of Fig. 2-1 (1) will be described. The state of FIG. 2-1 (1) is shown again in FIG. 3-1 (a). FIG. 3-1 (b) is a view as viewed from A in FIG. 3-1 (a) and shows a state where the switch 30 has moved slightly downward in the figure. FIG. 3-1 (d) is a side view of FIG. 3-1 (b). FIG. 3C is a side view of the state before the switching element 30 moves. In this case, ten S-pole magnets exist on the inner peripheral surface of the outer rotor 20, and ten N-pole magnets exist on the outer peripheral surface of the inner switch 30. Since these ten S-pole and N-pole magnets are different poles, they are attracted to each other by an attractive force (see FIGS. 3-1 (a) and 3-1 (c)). Next, what kind of resistance force is necessary when the switch 30 is displaced in the direction of the rotation axis from this state will be considered. First, as shown in FIG. 3C, the ten N-pole magnets on the lower side of the switch 30 are pulled toward the rotor 20, and the S-pole magnet on the upper side of the switch 30 is The rotor 20 is in a state of receiving a repulsive force (repulsive force) from the S pole magnet of the rotor 20 although the size is small. Consider a state in which the switch 30 is pushed downward further from this state (FIG. 3-1 (d)).
図3-1(b),(d)の状態は、切換子30の2段の磁石の上下の境界が、回転子20の磁石の上下方向の中心線の位置に移動した場合である。この場合、切換子30のN極の磁石は依然として、回転子20のS極の磁石から吸引力を受けているが、その値は距離が離れているため、図3-1(c)の場合よりも小さな値となる。一方、切換子30の上段のS極の磁石は回転子20のS極の磁石により近づくため、図3-1(c)の場合よりも大きな斥力を受けることになる。結局、切換子30のN極(下段)とS極(上段)の磁石は、同程度の大きさの吸引力と斥力を回転子20のS極の磁石から受けることになる。すなわち、切換子30を回転軸の方向に変位させようとすると非常に大きな抵抗力を受けることになる。今の場合、切換子30には上下2段に10組の磁石が設置されているため、1組の磁石が受ける力を1とし、抵抗力をRとした場合、R=10の抵抗を受けることになる。結局、図2-1(1)の状態で、切換子30を回転軸方向に変位させるには、非常に大きな力が必要となる。
3-1 (b) and (d) are cases where the upper and lower boundaries of the two-stage magnet of the switching element 30 have moved to the position of the vertical center line of the rotor 20 magnet. In this case, the N-pole magnet of the switching element 30 still receives the attractive force from the S-pole magnet of the rotor 20, but the value is far away, so that the case of FIG. 3-1 (c) It becomes a smaller value. On the other hand, since the S pole magnet at the upper stage of the switching element 30 is closer to the S pole magnet of the rotor 20, it receives a larger repulsive force than in the case of FIG. Eventually, the N-pole (lower stage) and S-pole (upper stage) magnets of the switching element 30 receive approximately the same amount of attractive force and repulsive force from the S-pole magnets of the rotor 20. That is, if the switching element 30 is displaced in the direction of the rotation axis, a very large resistance force is received. In this case, since there are 10 sets of magnets in the upper and lower two stages in the switch 30, when the force received by one set of magnets is 1 and the resistance is R, the resistance is R = 10. It will be. After all, in order to displace the switching element 30 in the direction of the rotation axis in the state of FIG. 2-1 (1), a very large force is required.
次に、図2-1(6)の状態から図2-1(7)の状態に切り換える場合の抵抗力について述べる。図2-1(6)の状態をあらためて図3-2(a)に示す。図3-2(b)は、図3-2(a)のA視図であり切換子30が少し移動した状態を示している。図3-2(c)は、図3-2(a)の左側部分の側面図である。また、図3-2(d)は図3-2(c)の状態から切換子30が少し下方に移動した状態(図3-2(b))の側面図である。図3-2(e)は、図3-2(a)の右側部分の側面図である。また、図3-2(f)は図3-2(e)の状態から切換子30が少し下方に移動した状態(図3-2(b))の側面図である。図3-2(a)の場合には、外側の回転子20の内周面には5個のS極の磁石と3個のN極の磁石が存在し、内側の切換子30の外周面には10個のN極の磁石が存在している。ただし、切換子30の外周面の10個のN極の磁石のうち回転子20の磁石と実際に対峙しているのは、8個のN極の磁石である。
Next, the resistance force when switching from the state of FIG. 2-1 (6) to the state of FIG. 2-1 (7) will be described. The state of FIG. 2-1 (6) is shown again in FIG. 3-2 (a). FIG. 3-2 (b) is a view as viewed from A in FIG. 3-2 (a) and shows a state where the switch 30 has moved slightly. FIG. 3-2 (c) is a side view of the left part of FIG. 3-2 (a). FIG. 3-2 (d) is a side view of the state (FIG. 3-2 (b)) in which the switch 30 has moved slightly downward from the state of FIG. 3-2 (c). FIG. 3-2 (e) is a side view of the right portion of FIG. 3-2 (a). FIG. 3-2 (f) is a side view of the state (FIG. 3-2 (b)) in which the switch 30 has moved slightly downward from the state of FIG. 3-2 (e). In the case of FIG. 3-2 (a), there are five S-pole magnets and three N-pole magnets on the inner circumferential surface of the outer rotor 20, and the outer circumferential surface of the inner switching element 30. There are 10 N-pole magnets. However, among the 10 N-pole magnets on the outer peripheral surface of the switching element 30, the eight N-pole magnets actually face the rotor 20 magnet.
すなわち、回転子20の5個のS極の磁石が切換子30の5個のN極の磁石と対峙し、回転子20の3個のN極の磁石が切換子30の3個のN極の磁石と対峙していることになる。そして、図2-1(1)の場合と同様に、切換子30を回転軸方向に変位させる場合にどのような抵抗力が発生するのかを考える。まず、左側の回転子20と切換子30の5組のS極とN極の磁石の組は、既に述べた図2-1(1)の場合と同様に切換子30に抵抗力が働き、抵抗力の値は5となる。
That is, the five S-pole magnets of the rotor 20 are opposed to the five N-pole magnets of the switch 30, and the three N-pole magnets of the rotor 20 are the three N-poles of the switch 30. It will be opposed to the magnet. Then, as in the case of FIG. 2-1 (1), what kind of resistance force is generated when the switch 30 is displaced in the direction of the rotation axis is considered. First, the five sets of S-pole and N-pole magnets of the left rotor 20 and the switch 30 have resistance acting on the switch 30 as in the case of FIG. 2-1 (1) already described. The resistance value is 5.
一方、右側の回転子20の3個のN極の磁石が、切換子30の3個のN極の磁石と対峙している場合の力について述べる。まず、切換子30が回転軸方向に変位する前の状態を図3-2(e)に示す。この状態では、切換子30の下段のN極の磁石は回転子20のN極の磁石と反発し合っており、切換子30の上段のS極の磁石は、回転子20のN極の磁石と引き合っている。この引き合っている力は、反発力(斥力)ほど大きくはない。次に、この状態から、切換子30を回転軸の方向に少しだけ変位させた状態を図3-2(f)に示す。この状態は、切換子30の2段の磁石の上下の境界が、回転子20の磁石の上下方向の中心線の位置に移動した場合である。この場合、切換子30のN極の磁石は依然として回転子20のN極の磁石から斥力を受けているが、その値は距離が離れているため、図3-2(e)の場合よりも小さい値となる。一方、切換子30の上段のS極の磁石は回転子20のN極の磁石により近づくため、図3-2(e)の場合よりも、より大きな引っ張り力を受けることになる。結局、切換子30のN極(下段)とS極(上段)の磁石は、同程度の大きさの吸引力と斥力を回転子20のN極の磁石から受けることになる。すなわち、切換子30を回転軸の方向に変位させようとすると、変位方向と同方向(順方向)の力を受けることになる。この順方向の力の大きさは3組のN極とS極の磁石であるため、3となる。
On the other hand, the force when the three N-pole magnets of the right rotor 20 are opposed to the three N-pole magnets of the switching element 30 will be described. First, the state before the switch 30 is displaced in the direction of the rotation axis is shown in FIG. In this state, the lower N pole magnet of the switching element 30 is repelling the N pole magnet of the rotor 20, and the upper S pole magnet of the switching element 30 is the N pole magnet of the rotor 20. Is attracting. This attracting force is not as great as the repulsive force (repulsive force). Next, FIG. 3-2 (f) shows a state in which the switching element 30 is slightly displaced in the direction of the rotation axis from this state. This state is a case where the upper and lower boundaries of the two-stage magnet of the switching element 30 have moved to the position of the center line in the vertical direction of the magnet of the rotor 20. In this case, the N-pole magnet of the switching element 30 still receives repulsive force from the N-pole magnet of the rotor 20, but the value is far away from that of FIG. 3-2 (e). Small value. On the other hand, since the S pole magnet at the upper stage of the switching element 30 is closer to the N pole magnet of the rotor 20, it receives a larger pulling force than in the case of FIG. Eventually, the N-pole (lower stage) and S-pole (upper stage) magnets of the switching element 30 receive the same amount of attractive force and repulsive force from the N-pole magnets of the rotor 20. That is, when the switch 30 is displaced in the direction of the rotation axis, a force in the same direction (forward direction) as the displacement direction is received. The magnitude of this forward force is 3 because there are 3 sets of N-pole and S-pole magnets.
図2-1(6)の場合には、抵抗の値は5、順方向の力の大きさは3であるため、結局R=2の抵抗力が発生することになる。これは、切換子30の中心線から左側の2組の磁石の組による力に抵抗する力であると言える。
In the case of FIG. 2-1 (6), since the resistance value is 5 and the magnitude of the forward force is 3, a resistance force of R = 2 is eventually generated. This can be said to be a force that resists the force of the two sets of magnets on the left side from the center line of the switching element 30.
結局、図2-1(6)の状態から図2-1(7)の状態にする、すなわち切換子30を回転軸の方向に変位させるには、R=2の抵抗力に抗する力が必要になる。これは、図2-1(1)の抵抗力R=10の場合に比べて、格段に小さな力であることがわかる。
After all, in order to change the state of FIG. 2-1 (6) to the state of FIG. 2-1 (7), that is, to displace the switch 30 in the direction of the rotation axis, a force against the resistance force of R = 2 is required. I need it. It can be seen that this is a much smaller force than in the case of the resistance force R = 10 in FIG.
次に、図2-1(8)の場合に抵抗力について述べる。図2-1(8)の状態をあらためて図3-3(a)に示す。図3-3(b)は、図3-3(a)のA視図であり切換子30が少し移動した状態を示している。図3-3(c)は、図3-3(a)の左側部分の側面図である。また、図3-3(d)は図3-3(c)の状態から切換子30が少し下方に移動した状態(図3-3(b))の側面図である。図3-3(e)は、図3-3(a)の右側部分の側面図である。また、図3-3(f)は図3-3(e)の状態から切換子30が少し下方に移動した状態(図3-3(b))の側面図である。
Next, resistance will be described in the case of Fig. 2-1 (8). The state of FIG. 2-1 (8) is shown again in FIG. 3-3 (a). FIG. 3-3 (b) is a view A of FIG. 3-3 (a) and shows a state where the switch 30 has moved slightly. FIG. 3-3 (c) is a side view of the left part of FIG. 3-3 (a). FIG. 3-3 (d) is a side view of the state (FIG. 3-3 (b)) in which the switch 30 has moved slightly downward from the state of FIG. 3-3 (c). FIG. 3-3 (e) is a side view of the right portion of FIG. 3-3 (a). FIG. 3-3 (f) is a side view of the state (FIG. 3-3 (b)) in which the switch 30 has moved slightly downward from the state of FIG. 3-3 (e).
図3-3(a)の状態では、外側の回転子20の内周面には4個のS極の磁石と4個のN極の磁石が存在し、内側の切換子30の外周面には10個のN極の磁石が存在している。ただし、切換子30の外周面の10個のN極の磁石のうち、回転子20の磁石と実際に対向しているのは、8個のN極の磁石である。すなわち、回転子20の4個のS極の磁石が切換子30の4個のN極の磁石と対峙し、回転子20の4個のN極の磁石が切換子30の4個のN極の磁石と対峙していることになる。そして、図2-1(1)の場合と同様に、切換子30を回転軸方向に変位させる場合にどのような力が必要であるかを考える。まず、左側の回転子20と切換子30の4組のS極とN極の磁石の組は、既に述べた図2-1(1)、(7)の場合と同様に抵抗力が働き、抵抗力R=4となる。
In the state of FIG. 3-3 (a), there are four S-pole magnets and four N-pole magnets on the inner peripheral surface of the outer rotor 20, and on the outer peripheral surface of the inner switch 30. There are 10 N pole magnets. However, among the 10 N-pole magnets on the outer peripheral surface of the switching element 30, the eight N-pole magnets that are actually opposed to the magnet of the rotor 20. That is, the four S pole magnets of the rotor 20 are opposed to the four N pole magnets of the switch 30, and the four N pole magnets of the rotor 20 are the four N poles of the switch 30. It will be opposed to the magnet. Then, as in the case of FIG. 2-1 (1), what force is necessary when the switch 30 is displaced in the direction of the rotation axis will be considered. First, the four sets of S-pole and N-pole magnets of the left rotor 20 and the switch 30 have the same resistance as in the case of FIGS. 2-1 (1) and (7) already described. Resistance force R = 4.
一方、回転子20の右側の4個のN極の磁石が、切換子30の4個のN極の磁石と対峙している場合の力について述べる。この場合は、既に図2-1(7)の右側の3組のN極同士が対峙しているのと同様に考えれば、順方向の力が発生しその大きさは4である。結局図2-1(8)の場合には、抵抗の値は4、順方向の力の大きさも4であるため、切換子30を回転軸方向に変位させるための力は基本的には不要であることがわかる。上記した切換子30を回転軸方向に変位させるのに必要な抵抗力R以下のようになる。
(図2-1)
(1)R=10、(2)R=10、(3)R=9、(4)R=8
(5)R=6、(6)R=4、(7)R=2、(8)R=0 On the other hand, the force when the four N-pole magnets on the right side of therotor 20 are opposed to the four N-pole magnets of the switching element 30 will be described. In this case, assuming that the three sets of N poles on the right side of FIG. 2-1 (7) are facing each other, a forward force is generated and the magnitude thereof is 4. After all, in the case of FIG. 2-1 (8), since the resistance value is 4 and the magnitude of the forward force is 4, the force for displacing the switching element 30 in the rotational axis direction is basically unnecessary. It can be seen that it is. The resistance force R required to displace the switching element 30 in the rotation axis direction is as follows.
(Figure 2-1)
(1) R = 10, (2) R = 10, (3) R = 9, (4) R = 8
(5) R = 6, (6) R = 4, (7) R = 2, (8) R = 0
(図2-1)
(1)R=10、(2)R=10、(3)R=9、(4)R=8
(5)R=6、(6)R=4、(7)R=2、(8)R=0 On the other hand, the force when the four N-pole magnets on the right side of the
(Figure 2-1)
(1) R = 10, (2) R = 10, (3) R = 9, (4) R = 8
(5) R = 6, (6) R = 4, (7) R = 2, (8) R = 0
[切換子が中間位置にある場合の回転力]
(1)図2-1(7)は、切換子30の回転子20と対峙する磁石がN極からS極に変わった後の状態を表しているが、この変化の中間状態の回転力について以下に述べる。図4-1(a)は、この中間状態を示している。そして、図4-1(b)は切換子30の上段のS極の磁石が回転子20と対向している状態を、図4-1(c)は切換子30の下段のN極の磁石が回転子20と対向している状態を示している。 [Rotating force when the switch is in the middle position]
(1) FIG. 2-1 (7) shows the state after the magnet facing therotor 20 of the switching element 30 has changed from the N pole to the S pole. Described below. FIG. 4A shows this intermediate state. 4B shows a state where the upper S pole magnet of the switching element 30 faces the rotor 20, and FIG. 4C shows a lower N pole magnet of the switching element 30. Shows a state of facing the rotor 20.
(1)図2-1(7)は、切換子30の回転子20と対峙する磁石がN極からS極に変わった後の状態を表しているが、この変化の中間状態の回転力について以下に述べる。図4-1(a)は、この中間状態を示している。そして、図4-1(b)は切換子30の上段のS極の磁石が回転子20と対向している状態を、図4-1(c)は切換子30の下段のN極の磁石が回転子20と対向している状態を示している。 [Rotating force when the switch is in the middle position]
(1) FIG. 2-1 (7) shows the state after the magnet facing the
図4-1(b)の状態では回転子20に推力Fa=4の力が働き、図4-1(c)の状態では回転子20にブレーキ力Fb=4が働く。結局、図4-1(a)の切換子30が中間位置にある場合には、回転子20には回転方向の力は発生しないことになる。
In the state of FIG. 4-1 (b), the force of thrust Fa = 4 acts on the rotor 20, and in the state of FIG. 4-1 (c), the brake force Fb = 4 acts on the rotor 20. After all, when the switching element 30 in FIG. 4A is in the intermediate position, no force in the rotational direction is generated on the rotor 20.
(2)図2-1(8)は、切換子30の回転子20と対峙する磁石がN極からS極に変わった後の状態を表しているが、この変化の中間状態の回転力について以下に述べる。図4-2(a)は、この中間状態を示している。そして、図4-2(b)は切換子30の上段のS極の磁石が回転子20と対向している状態を、図4-2(c)は切換子30の下段のN極の磁石が回転子20と対向している状態を示している。
(2) FIG. 2-1 (8) shows the state after the magnet facing the rotor 20 of the switching element 30 has changed from the N pole to the S pole. Described below. FIG. 4-2 (a) shows this intermediate state. 4B shows a state in which the upper S pole magnet of the switching element 30 faces the rotor 20, and FIG. 4-2C shows a lower N pole magnet of the switching element 30. Shows a state of facing the rotor 20.
図4-2(b)の状態では回転子20に推力Fa=4の力が働き、図4-2(c)の状態では回転子20にブレーキ力Fb=4が働く。結局、図4-2(a)の切換子30が中間位置にある場合には、回転子20には回転方向の力は発生しないことになる。
In the state of FIG. 4-2 (b), a force Fa = 4 acts on the rotor 20, and in the state of FIG. 4-2 (c), a brake force Fb = 4 acts on the rotor 20. Eventually, when the switching element 30 in FIG. 4A is in the intermediate position, no force in the rotational direction is generated in the rotor 20.
なお、図4-2に示した状態を考えるのは、切換子30の回転軸方向への切り換えを遅らせて、図2-1(8)の後の状態で切り換えが終了する場合もあるからである。この場合、切り換えに必要な力は小さくて済むが、大きな回転力を得ることはできない。
Note that the state shown in FIG. 4-2 is considered because the switching of the switch 30 in the direction of the rotation axis may be delayed and the switching may be completed in the state after FIG. 2-1 (8). is there. In this case, the force required for switching is small, but a large rotational force cannot be obtained.
[マグネット駆動機構の回転制御]
本実施例のマグネット駆動機構の回転制御につき、図5を参照しつつ以下に説明する。 [Rotation control of magnet drive mechanism]
The rotation control of the magnet drive mechanism of the present embodiment will be described below with reference to FIG.
本実施例のマグネット駆動機構の回転制御につき、図5を参照しつつ以下に説明する。 [Rotation control of magnet drive mechanism]
The rotation control of the magnet drive mechanism of the present embodiment will be described below with reference to FIG.
図5(a)~(h)は、回転子20が3つの切換子A 30a,切換子B 30b,切換子C 30cの動きに伴って順次回転する状態を示している。
FIGS. 5 (a) to 5 (h) show a state in which the rotor 20 is sequentially rotated with the movement of the three switching elements A 30a, B, 30b, and C 30c.
まず、図5(a)を用いて、回転子20と3つの切換子A 30a,切換子B 30b,切換子C 30cの位置関係について述べる。それぞれの位置は角度によって決まるため、角度の定義を行う。図5(a)において、回転中心から上方を角度0°とする。そして、反時計回りに90°,180°,270°と定義する。切換子A 30aの中心は0°の位置にあり、切換子B 30bの中心は120°の位置、切換子C 30cの中心は240°の位置にある。この位置は不変であり、切換子30は紙面に垂直な方向に変位するだけである。紙面に垂直な方向に変位することで、回転子20の磁石と対峙する磁石の極をN極からS極へ、またはS極からN極に切り換えることができる。回転子20の左側の内周面にはS極の磁石が、右側の内周面にはN極の磁石が設置されているが、図5(a)の状態では、回転子20のS極とN極の磁石の上側の境界は0°の位置から時計回りにθの位置にあるものとする。回転子20は反時計回りに回転している。
First, the positional relationship between the rotor 20 and the three switching elements A 30a, switching element B 30b, and switching element C 30c will be described with reference to FIG. Since each position is determined by the angle, the angle is defined. In FIG. 5A, the angle above the rotation center is 0 °. And it defines as 90 degrees, 180 degrees, and 270 degrees counterclockwise. The center of switch A 30a is at the 0 ° position, the center of switch B 30b is at the 120 ° position, and the center of switch C 30c is at the 240 ° position. This position is unchanged, and the switch 30 is only displaced in a direction perpendicular to the paper surface. By displacing in the direction perpendicular to the paper surface, the pole of the magnet facing the magnet of the rotor 20 can be switched from the N pole to the S pole or from the S pole to the N pole. An S-pole magnet is installed on the left inner peripheral surface of the rotor 20 and an N-pole magnet is installed on the right inner peripheral surface. In the state shown in FIG. It is assumed that the upper boundary of the N pole magnet and the N pole magnet is at the position of θ clockwise from the position of 0 °. The rotor 20 rotates counterclockwise.
なお、θの大きさは自由に決定することができる。θの大きさを大きくすれば切換子A 30aを変位させるのに大きな力が必要となるが、回転子20に大きな力を付加することができ大きな回転力を得ることができる。更に、θの値がマイナス、すなわち0°から反時計方向にずれた位置であっても良い。すなわち、0°の手前から切換子A 30aの切り換えを開始し、0°を超えた位置で切り換えが完了してもよい。この場合でもブレーキ力を減らすことができるので、回転子20を持続的に回転させることができる。
Note that the magnitude of θ can be freely determined. If the magnitude of θ is increased, a large force is required to displace the switching element A 30a. However, a large force can be applied to the rotor 20 and a large rotational force can be obtained. Furthermore, the value of θ may be negative, that is, a position deviated counterclockwise from 0 °. That is, switching of the switch A 30a may be started before 0 °, and the switching may be completed at a position exceeding 0 °. Even in this case, since the braking force can be reduced, the rotor 20 can be rotated continuously.
切換子A 30aはN極の磁石が、切換子B 30bはN極の磁石が、切換子C 30cはS極の磁石が、回転子20の磁石と対峙している。切換子B 30bと切換子C 30cと対峙する回転子20の磁石には回転中心の方向の力のみが発生しており、回転子20の回転には影響を及ぼさない。一方、切換子A 30aと対向する回転子20の磁石には、既に述べたようにブレーキ力B=4が作用している。また、図5(a)の切換子A 30aを変位させるには抵抗力2に対抗する力を切換子A 30aに付加しなければならない。
Switcher A 30a is facing the N pole magnet, Switcher B 30b is facing the N pole magnet, Switcher C 30c is facing the S pole magnet and the rotor 20 magnet. Only the force in the direction of the rotation center is generated in the magnet of the rotor 20 facing the switch B 30b and the switch C 30c, and the rotation of the rotor 20 is not affected. On the other hand, the brake force B = 4 acts on the magnet of the rotor 20 facing the switch A 30a as described above. Further, in order to displace the switch A 30a in FIG. 5A, a force that opposes the resistance force 2 must be applied to the switch A 30a.
図5(b)は切換子A 30aに、抵抗力2に対抗して力を加え変位させた後の状態を示している。すなわち、切換子A 30aは、回転子20と対向する磁石がS極の磁石となっている。その結果、回転子20には推力4の力が反時計方向に働く。
FIG. 5 (b) shows a state after the switch A 30a is displaced by applying a force against the resistance force 2. FIG. That is, in the switching element A 30a, the magnet facing the rotor 20 is an S-pole magnet. As a result, a force of thrust 4 acts on the rotor 20 in the counterclockwise direction.
結局、図5(a)の状態で、抵抗力2に抗して切換子A 30aを変位させることで、回転子20に働くブレーキ力が作用する時間を短くすることができ、推力4が働く時間を長くすることができる。その結果、回転子20は持続的に回転することができる。別言すれば、切換子A 30aに付加した力が、回転子20を回す力に変換されたものと言える。なお、切換子B 30b、切換子C 30cの状態に変化はない。反時計方向の力により、回転子20は図5(b)の状態から図5(c)の状態に変化する。
After all, by displacing the switching element A 30a against the resistance force 2 in the state of FIG. 5A, the time during which the braking force acting on the rotor 20 acts can be shortened, and the thrust 4 works. The time can be lengthened. As a result, the rotor 20 can rotate continuously. In other words, it can be said that the force applied to the switching element A 30a is converted to the force that turns the rotor 20. Note that there is no change in the state of the switch B 30b and the switch C 30c. Due to the counterclockwise force, the rotor 20 changes from the state shown in FIG. 5B to the state shown in FIG.
図5(c)は、回転子20が反時計方向に60°回転した状態を示す。この状態では、切換子C 30cに対向する回転子20の磁石にブレーキ力が作用することになる。これは、図5(a)の切換子A 30aに対向する回転子20の磁石と同様の状態である。また、回転子20の切換子A 30aに対向する磁石には、もはや回転力は作用せず回転中心の方向の力のみが作用する。なお、回転子20の切換子B 30bに対向する磁石に作用する力については、図5(a),(b)の状態の切換子B 30bに対向する磁石に作用する力と同じである。図5(c)において、切換子C 30cのS極の磁石が回転子20の磁石と対峙しているが、N極の磁石が回転子20の磁石と対峙するように、切換子C 30cを変位させる。変位させた後の状態が図5(d)の状態である。切換子C 30cが図5(d)の状態になった瞬間に、回転子20には反時計回りに回転させようとする回転力が作用する。なお、この場合切換子A 30a,切換子B 30bの状態は変化しない。
FIG. 5C shows a state in which the rotor 20 is rotated 60 ° counterclockwise. In this state, a braking force acts on the magnet of the rotor 20 facing the switching element C 30c. This is the same state as the magnet of the rotor 20 facing the switch A 30a in FIG. In addition, the rotational force is no longer applied to the magnet facing the switching element A 30a of the rotor 20, and only the force in the direction of the rotation center is applied. The force acting on the magnet facing the switching element B 30b of the rotor 20 is the same as the force acting on the magnet facing the switching element B 30b in the state of FIGS. 5 (a) and 5 (b). In FIG. 5C, the S pole magnet of the switching element C 30c faces the magnet of the rotor 20, but the switching element C 30c is placed so that the N pole magnet faces the magnet of the rotor 20. Displace. The state after the displacement is the state shown in FIG. At the moment when the switching element C 30c is in the state shown in FIG. 5D, a rotational force is applied to the rotor 20 to rotate it counterclockwise. In this case, the state of the switch A 30a and the switch B 30b does not change.
図5(e)は、図5(d)に示した回転力により回転子20が更に60°、すなわち図5(a)の状態から120°回転した状態を示している。この状態では、切換子B 30bに対向する回転子20の磁石にはブレーキが作用している状態となっている。また、切換子A 30a,切換子C 30cに対向する回転子20の箇所には、中心方向の力のみが作用している。そして、この状態で切換子B 30bを切り換える。すなわち、切換子B 30bのN極の磁石が回転子20の磁石と対峙しているのを、S極の磁石が回転子20の磁石と対峙するように切り換える。図5(f)は切換子B 30bが切り換わった後の状態を示す。以後は、同様の切り換えを実行し切換子30を順次切り換え回転子20を回転させる。なお、上述の実施例では、切換子A 30a,切換子B 30b,切換子C 30cは左右に移動するのみで、回転するのは回転子20であったが、反対に回転子20を固定し、切換子A 30a,切換子B 30b,切換子C 30cを回転させる構成を採用してもよい。以下の実施例においても、同様である。
FIG. 5 (e) shows a state in which the rotor 20 is further rotated by 60 °, that is, 120 ° from the state of FIG. 5 (a) by the rotational force shown in FIG. 5 (d). In this state, the brake is acting on the magnet of the rotor 20 facing the switching element B 30b. Further, only the force in the central direction acts on the location of the rotor 20 facing the switch A 30a and the switch C 30c. In this state, the switch B 30b is switched. That is, the N pole magnet of the switching element B 30 b is opposed to the magnet of the rotor 20 so that the S pole magnet is opposed to the magnet of the rotor 20. FIG. 5F shows a state after the switch B 30b is switched. Thereafter, the same switching is performed to sequentially switch the switching element 30 and rotate the rotor 20. In the above-described embodiment, the switch A 30a, the switch B 30b, and the switch C 30c only move to the left and right, and the rotor 20 rotates, but on the contrary, the rotor 20 is fixed. Alternatively, a configuration in which the switch A 30a, the switch B 30b, and the switch C 30c are rotated may be employed. The same applies to the following embodiments.
本実施例のマグネット駆動機構によれば、回転子に十分な回転力を発生させることができ、かつ、切換子の駆動力を変動させることにより回転子に所定の回転力を付与することができる。
According to the magnet drive mechanism of the present embodiment, a sufficient rotational force can be generated in the rotor, and a predetermined rotational force can be applied to the rotor by changing the drive force of the switching element. .
図6(a)は、本実施例のマグネット駆動機構の構成を示す断面構造図であり、図6(b)は、図6(a)の断面図である。また、図6(c)は回転子22の構造を示す斜視図、図6(d)は切換子32の構造を示す斜視図である。
FIG. 6A is a cross-sectional structural view showing the configuration of the magnet drive mechanism of the present embodiment, and FIG. 6B is a cross-sectional view of FIG. 6A. FIG. 6C is a perspective view showing the structure of the rotor 22, and FIG. 6D is a perspective view showing the structure of the switching element 32.
図6(a)に示すように、回転子22は外側に磁石が設置された円筒体22aと回転軸22bから構成されている。この回転子22はケーシング60に2つのベアリング40により回転自在に支持されている。回転子22の円筒体22aの外部には3つの切換子A 32a,切換子B 32b,切換子C 32cがケーシング60により支持・保持されており、切換子32はケーシング60に沿って図6(a)の左右方向に所定の距離だけ変位することができるが、回転はしない。
As shown in FIG. 6 (a), the rotor 22 includes a cylindrical body 22a having a magnet installed on the outside and a rotating shaft 22b. The rotor 22 is rotatably supported on the casing 60 by two bearings 40. Three switching elements A 32a, switching element B 32b, and switching element C 32c are supported and held by the casing 60 outside the cylindrical body 22a of the rotor 22, and the switching element 32 is shown in FIG. Although it can be displaced by a predetermined distance in the left-right direction of a), it does not rotate.
次に、回転子22と3つの切換子32に設置された磁石について説明する。回転子22には図6(c)に示すように磁石が設置されている。すなわち、円筒体の周方向に沿って複数のN極とS極の磁石が半分ずつ設置されており、このような言わば磁石のリングが4円周分、円筒体の外側に設置されている。一方、切換子32は扇型の形状を有しており、その内周面には複数のN極とS極の磁石が図6(d)のように設置されている。すなわち、内周面の同一の円周上にはN極のみの磁石、あるいはS極のみの磁石が設置され、これらN極の磁石とS極の磁石が回転子22の軸方向に交互に設置されている。図6(d)ではN極、S極合わせて8列の磁石が設置されている。なお、このN極とS極の列の間隔は、回転子22の円筒体22aの外側の磁石列の間隔と同一であるものとする。なお、本実施例のマグネット駆動機構では、3つの切換子32はすべて同一のものである。
Next, the magnets installed on the rotor 22 and the three switching elements 32 will be described. As shown in FIG. 6C, the rotor 22 is provided with a magnet. That is, a plurality of N-pole and S-pole magnets are installed in half along the circumferential direction of the cylindrical body, and so-called magnet rings are installed on the outside of the cylindrical body for four circles. On the other hand, the switching element 32 has a fan-shaped shape, and a plurality of N-pole and S-pole magnets are installed on its inner peripheral surface as shown in FIG. That is, a magnet having only N poles or a magnet having only S poles is installed on the same circumference of the inner peripheral surface, and these N pole magnets and S pole magnets are alternately installed in the axial direction of the rotor 22. Has been. In FIG. 6 (d), eight rows of magnets are installed in total including N and S poles. The interval between the N pole and S pole rows is the same as the interval between the magnet rows outside the cylindrical body 22a of the rotor 22. In the magnet drive mechanism of the present embodiment, all three switching elements 32 are the same.
次に、回転子22の磁石と切換子32の磁石の切換制御について説明する。3つの切換子32は120°毎に等角度間隔で設置されている。この設置状態は、実施例1と同様である。図6(b)に示すように、切換子A 32aのS極の磁石は回転子22のN極の磁石とS極の磁石の両方に対峙し、切換子B 32bのS極の磁石は回転子22のS極の磁石と対峙している。また、切換子C 32cのN極の磁石は、回転子22のN極の磁石に対峙している。このような磁石の対峙状態の切換は、図6(a)に示すように切換子32の右側端部に設けられた棒材を左右に変位させることによって行うことができる。図6(a)の上側の切換子32は図の左側に押し込んだ状態であり、図6(a)の下側の切換子32は図の右側に引いた状態を示している。このように、切換子32の右端を左右に変位させることによりN極の磁石とS極の磁石の対峙状態を変化させることができる。
Next, switching control between the magnet of the rotor 22 and the magnet of the switching element 32 will be described. The three switching elements 32 are installed at equal angular intervals every 120 °. This installation state is the same as in the first embodiment. As shown in FIG. 6 (b), the S pole magnet of the switch A 32a faces both the N pole magnet and the S pole magnet of the rotor 22, and the S pole magnet of the switch B 32b rotates. Opposite to the south pole magnet of the child 22. Further, the N pole magnet of the switching element C 32 c faces the N pole magnet of the rotor 22. Such switching of the facing state of the magnet can be performed by displacing a bar provided at the right end of the switching element 32 to the left and right as shown in FIG. The upper switch 32 in FIG. 6A is pushed to the left in the figure, and the lower switch 32 in FIG. 6A is pulled to the right in the figure. In this manner, the facing state of the N-pole magnet and the S-pole magnet can be changed by displacing the right end of the switching element 32 to the left and right.
[マグネット駆動機構の回転制御]
本実施例のマグネット駆動機構の回転制御につき、図7を参照しつつ以下に説明する。図7(a)~(h)は、回転子22が3つの切換子A 32a,切換子B 32b,切換子C 32cの動きに伴って順次回転する状態を示している。 [Rotation control of magnet drive mechanism]
The rotation control of the magnet drive mechanism of the present embodiment will be described below with reference to FIG. FIGS. 7A to 7H show a state in which therotor 22 sequentially rotates in accordance with the movement of the three switching elements A 32a, switching element B 32b, and switching element C 32c.
本実施例のマグネット駆動機構の回転制御につき、図7を参照しつつ以下に説明する。図7(a)~(h)は、回転子22が3つの切換子A 32a,切換子B 32b,切換子C 32cの動きに伴って順次回転する状態を示している。 [Rotation control of magnet drive mechanism]
The rotation control of the magnet drive mechanism of the present embodiment will be described below with reference to FIG. FIGS. 7A to 7H show a state in which the
まず、図7(a)を用いて、回転子20と3つの切換子A 32a,切換子B 32b,切換子C 32cの位置関係について述べる。それぞれの位置は角度によって決まるため、角度の定義を行う。図7(a)において、回転中心から上方を角度0°とする。そして、反時計回りに90°,180°,270°と定義する。切換子A 32aの中心は0°の位置にあり、切換子B 32bの中心は120°の位置、切換子C 32cの中心は240°の位置にある。この位置は不変であり、切換子32は紙面に垂直な方向に変位するだけである。紙面に垂直な方向に変位することで、回転子22の磁石と対向する磁石の極をN極からS極へ、またはS極からN極に切り換えることができる。回転子22の左側の外周面にはS極の磁石が、右側の外周面にはN極の磁石が設置されているが、図7(a)の状態では、回転子22のS極とN極の磁石の上側の境界は0°の位置から時計回りにθの位置にあるものとする。なお、回転子22は反時計回りに回転している。
First, the positional relationship between the rotor 20 and the three switching elements A 32a, switching element B 32b, and switching element C 32c will be described with reference to FIG. Since each position is determined by the angle, the angle is defined. In FIG. 7A, the angle above the rotation center is 0 °. And it defines as 90 degrees, 180 degrees, and 270 degrees counterclockwise. The center of the switch A 32a is at the 0 ° position, the center of the switch B 32b is at the 120 ° position, and the center of the switch C 32c is at the 240 ° position. This position is unchanged, and the switch 32 is only displaced in the direction perpendicular to the paper surface. By displacing in the direction perpendicular to the paper surface, the pole of the magnet facing the magnet of the rotor 22 can be switched from N pole to S pole or from S pole to N pole. An S-pole magnet is installed on the left outer peripheral surface of the rotor 22 and an N-pole magnet is installed on the right outer peripheral surface. However, in the state shown in FIG. It is assumed that the upper boundary of the pole magnet is at a position of θ clockwise from a position of 0 °. Note that the rotor 22 rotates counterclockwise.
なお、θの大きさは自由に決定することができる。θの大きさを大きくすれば切換子A 32aを変位させるのに大きな力が必要となるが、回転子22に大きな力を付加することができ大きな回転力を得ることができる。更に、θの値がマイナス、すなわち0°から反時計方向にずれた位置であっても良い。すなわち、0°の手前から切換子A 32aの切り換えを開始し、0°を超えた位置で切り換えが完了してもよい。この場合でもブレーキ力を減らすことができるので、回転子22を持続的に回転させることができる。
Note that the magnitude of θ can be freely determined. Increasing the magnitude of θ requires a large force to displace the switching element A 32a. However, a large force can be applied to the rotor 22 and a large rotational force can be obtained. Furthermore, the value of θ may be negative, that is, a position deviated counterclockwise from 0 °. That is, switching of the switch A 32a may be started before 0 °, and the switching may be completed at a position exceeding 0 °. Even in this case, since the braking force can be reduced, the rotor 22 can be continuously rotated.
図7(a)では、切換子A 32aはN極の磁石が、切換子B 32bはN極の磁石が、切換子C 32cはS極の磁石が、回転子22の磁石と対向している。切換子B 32bと切換子C 32cに対峙する回転子22の磁石には中心方向の力のみが発生しており、回転子22の回転には影響を及ぼさない。一方、切換子A 32aと対向する回転子22の箇所には、既に述べたようにブレーキ力B=4が作用している。また、図7(a)の切換子A 32aを変位させるには抵抗力2に対抗する力を切換子A 32aに付加しなければならない。
In FIG. 7A, the switch A 32a faces the N pole magnet, the switch B 32b faces the N pole magnet, and the switch C 32c faces the S pole magnet. . Only the force in the center direction is generated in the magnet of the rotor 22 facing the switch B 32b and the switch C 32c, and the rotation of the rotor 22 is not affected. On the other hand, the brake force B = 4 is acting on the portion of the rotor 22 facing the switch A 32a as described above. Further, in order to displace the switch A 32a in FIG. 7A, a force that opposes the resistance force 2 must be applied to the switch A 32a.
図7(b)は切換子A 32aに、抵抗力2に対抗して力を加え変位させた後の状態を示している。すなわち、切換子A 32aは、回転子22と対向する磁石がS極の磁石となっている。その結果、回転子22には推力4の力が反時計方向に働く。
FIG. 7B shows a state after the switch A 32a is displaced by applying a force against the resistance force 2. That is, in the switching element A 32a, the magnet facing the rotor 22 is an S-pole magnet. As a result, a force of thrust 4 acts on the rotor 22 counterclockwise.
すなわち、図7(a)の状態で、抵抗力2に抗して切換子A 32aを変位させることで、回転子22に働くブレーキ力が作用する時間を短くすることができ、推力4が働く時間を長くすることができる。その結果、回転子22は持続的に回転することができる。別言すれば、切換子A 32aに付加した力が、回転子22を回す力に変換されたものと言える。なお、切換子B 32b、切換子C 32cの状態に変化はない。反時計方向の力により、回転子22は図7(b)の状態から図7(c)の状態に変化する。
That is, in the state of FIG. 7 (a), by displacing the switching element A 32a against the resistance force 2, the time during which the braking force acting on the rotor 22 acts can be shortened, and the thrust 4 works. The time can be lengthened. As a result, the rotor 22 can rotate continuously. In other words, it can be said that the force applied to the switching element A 32a is converted into a force for turning the rotor 22. There is no change in the state of the switch B 32b and the switch C 32c. Due to the counterclockwise force, the rotor 22 changes from the state shown in FIG. 7B to the state shown in FIG.
図7(c)は、回転子22が反時計方向に60°回転した状態を示す。この状態では、切換子C 32cに対向する回転子22の磁石にブレーキ力が作用することになる。これは、図7(a)の切換子A 32aに対向する回転子22の磁石と同様の状態である。また、回転子22の切換子A 32aに対向する箇所の磁石には、もはや回転力は作用せず回転子22の中心方向の力のみが作用する。なお、回転子22の切換子B 32bに対向する箇所の磁石に作用する力については、図7(a),(b)の状態の切換子B 32bに対向する箇所の磁石に作用する力と同じである。図7(c)において、切換子C 32cのS極の磁石が回転子22の磁石と対峙しているが、N極の磁石が回転子22の磁石と対峙するように、切換子C 32cを変位させる。変位させた後の状態が図7(d)の状態である。切換子C 32cが図7(d)の状態になった瞬間に、回転子22には反時計回りに回転させようとする回転力が作用する。なお、この場合切換子A 32a,切換子B 32bの状態は変化しない。
FIG. 7C shows a state in which the rotor 22 is rotated 60 ° counterclockwise. In this state, a braking force is applied to the magnet of the rotor 22 facing the switching element C 32c. This is the same state as the magnet of the rotor 22 facing the switch A 32a in FIG. In addition, the rotational force no longer acts on the magnet at the location of the rotor 22 facing the switching element A 32a, and only the force in the center direction of the rotor 22 acts. In addition, about the force which acts on the magnet of the location facing the switching element B 32b of the rotor 22, the force which acts on the magnet of the location facing the switching element B 32b in the state of FIG. 7 (a), (b) The same. In FIG. 7C, the S pole magnet of the switch C 32c faces the magnet of the rotor 22, but the switch C 32c is placed so that the N pole magnet faces the magnet of the rotor 22. Displace. The state after the displacement is the state of FIG. At the moment when the switch C 32c is in the state shown in FIG. 7D, a rotational force is applied to the rotor 22 to rotate it counterclockwise. In this case, the state of the switch A 32a and the switch B 32b does not change.
図7(e)は、図7(d)に示した回転力により回転子22が更に60°、すなわち図7(a)の状態から120°回転した状態を示している。この状態では、切換子B 32bに対向する回転子22の磁石にはブレーキが作用している状態となっている。また、切換子A 32a,切換子C 32cに対向する回転子22の箇所には、中心方向の力のみが作用している。そして、この状態で切換子B 32bを切り換える。すなわち、切換子B 32bのN極の磁石が回転子22の磁石と対峙しているのを、S極の磁石が回転子22の磁石と対峙するように切り換える。図7(f)は切換子B 32bが切り換わった後の状態を示す。以後は、同様の切り換えを実行し切換子32を順次切り換え回転子22を回転させる。なお、上述の実施例では、切換子A 32a,切換子B 32b,切換子C 32cは左右に変位するのみで、回転するのは回転子22であったが、反対に回転子22を固定し、切換子A 32a,切換子B 32b,切換子C 32cを回転させる構成を採用してもよい。以下の実施例においても、同様である。
FIG. 7 (e) shows a state in which the rotor 22 is further rotated by 60 °, that is, 120 ° from the state of FIG. 7 (a) by the rotational force shown in FIG. 7 (d). In this state, the brake is acting on the magnet of the rotor 22 facing the switching element B 32b. Further, only the force in the central direction acts on the location of the rotor 22 facing the switch A 32a and the switch C 32c. In this state, the switch B 32b is switched. That is, the N pole magnet of the switching element B 32b is opposed to the magnet of the rotor 22 so that the S pole magnet is opposed to the magnet of the rotor 22. FIG. 7F shows a state after the switching element B 32b is switched. Thereafter, the same switching is performed to sequentially switch the switching element 32 and rotate the rotor 22. In the above-described embodiment, the switch A 32a, the switch B 32b, and the switch C 32c are only displaced to the left and right, and the rotor 22 rotates, but on the contrary, the rotor 22 is fixed. The switch A 32a, the switch B 32b, and the switch C 32c may be rotated. The same applies to the following embodiments.
本実施例のマグネット駆動機構によれば、回転子に十分な回転力を発生させることができ、かつ、切換子の駆動力を変動させることにより回転子に所定の回転力を付与することができる。
According to the magnet drive mechanism of the present embodiment, a sufficient rotational force can be generated in the rotor, and a predetermined rotational force can be applied to the rotor by changing the drive force of the switching element. .
本実施例を、図8を参照しつつ以下に説明する。本実施例のマグネット駆動機構は、実施例1のマグネット駆動機構と実施例2のマグネット駆動機構を統合した構成を有するマグネット駆動機構である。
This example will be described below with reference to FIG. The magnet drive mechanism of the present embodiment is a magnet drive mechanism having a configuration in which the magnet drive mechanism of the first embodiment and the magnet drive mechanism of the second embodiment are integrated.
本実施例の回転子24では、磁石は回転子24の内周面と外周面の両方に設置されている。すなわち、回転子24は内周面と外周面の両面で回転力を受けることになり、その結果実施例1,2のマグネット駆動機構に比較して格段に大きな回転トルクを発生させることができる。
In the rotor 24 of the present embodiment, the magnets are installed on both the inner peripheral surface and the outer peripheral surface of the rotor 24. That is, the rotor 24 receives rotational force on both the inner peripheral surface and the outer peripheral surface, and as a result, a remarkably large rotational torque can be generated as compared with the magnet drive mechanisms of the first and second embodiments.
また、切換子34は回転子24の内外にそれぞれ設置されており、内側の切換子34と外側の切換子34は図に示したように連結されており、同じタイミングで変位するものとする。3つの切換子A 34a,切換子B 34b,切換子C 34cの回転方向の配置や磁石の設置方法、切換子の変位させるタイミング等は、実施例1,2と同一であるので説明を省略する。
Further, the switching element 34 is installed inside and outside the rotor 24, and the inner switching element 34 and the outer switching element 34 are connected as shown in the figure and are displaced at the same timing. The arrangement of the three switching elements A 34a, switching element B 34b, and switching element C 34c in the rotational direction, the magnet installation method, the timing for displacing the switching elements, and the like are the same as in the first and second embodiments, and the description thereof is omitted. .
本実施例のマグネット駆動機構は、実施例1,2のマグネット駆動機構と略同じ大きさでありながら、より大きな回転トルクを発生させることができる。
The magnet drive mechanism of the present embodiment is substantially the same size as the magnet drive mechanisms of Embodiments 1 and 2, but can generate a larger rotational torque.
本実施例のマグネット駆動機構によれば、回転子に十分な回転力を発生させることができ、かつ、切換子の駆動力を変動させることにより回転子に所定の回転力を付与することができる。
According to the magnet drive mechanism of the present embodiment, a sufficient rotational force can be generated in the rotor, and a predetermined rotational force can be applied to the rotor by changing the drive force of the switching element. .
本実施例は、実施例1乃至3のマグネットモータとは異なり、磁石が設置された移動板を同じく磁石が設置された切換板で切り換えることにより、移動板を移動させるマグネット駆動機構に関するものである。
Unlike the magnet motors of the first to third embodiments, the present embodiment relates to a magnet drive mechanism that moves the moving plate by switching the moving plate on which the magnet is installed with the switching plate on which the magnet is also installed. .
本実施例の駆動機構の構成について、図9により説明する。このマグネット駆動機構は、図9(a)のようにS極とN極の磁石が設置された移動板100をその長手方向に駆動するものである。個々の磁石は別個独立のものであり一体のものではない。S極の磁石とN極の磁石の間は所定の間隔を有している。なお、図ではS極磁石の左側端部側のS極の磁石、及びN極磁石の右側端部側のN極の磁石は省略されている。この移動板100は実施例1の回転子20に相当する。
The configuration of the drive mechanism of this embodiment will be described with reference to FIG. This magnet drive mechanism drives the moving plate 100 in which the S-pole and N-pole magnets are installed as shown in FIG. The individual magnets are separate and independent. There is a predetermined distance between the S pole magnet and the N pole magnet. In the drawing, the S pole magnet on the left end side of the S pole magnet and the N pole magnet on the right end side of the N pole magnet are omitted. This moving plate 100 corresponds to the rotor 20 of the first embodiment.
一方、切換板110には、S極とN極の磁石が二列に平行に設置されている。この切換板110は、その磁石面が移動板100の磁石面と対向するように移動板100と平行に間隔をあけて設置される。この切換板110は、実施例1の切換子30に相当する。図9(c),(d)は対向する磁石の状態を、移動板100と切換板110の磁石のみで示したものである。図9(c)では、切換板110のN極の磁石が移動板100の磁石と対峙しており、図9(d)では、切換板110のS極の磁石が移動板100の磁石と対峙していることを示す。図9(c)において切換板110が矢印方向に変位すると、図9(d)の状態となる。
On the other hand, on the switching plate 110, S-pole and N-pole magnets are installed in two rows in parallel. The switching plate 110 is installed in parallel with the moving plate 100 so that the magnet surface thereof faces the magnet surface of the moving plate 100. The switch plate 110 corresponds to the switch 30 of the first embodiment. FIGS. 9C and 9D show the states of the opposing magnets only with the magnets of the moving plate 100 and the switching plate 110. 9C, the N-pole magnet of the switching plate 110 is opposed to the magnet of the moving plate 100, and in FIG. 9D, the S-pole magnet of the switching plate 110 is opposed to the magnet of the moving plate 100. Indicates that When the switching plate 110 is displaced in the arrow direction in FIG. 9C, the state shown in FIG. 9D is obtained.
図10-1,図10-2は、本実施例のマグネット駆動機構の動作原理を示すための図である。基本的には、実施例1で述べた図2-1,図2-2の内容と同一であり、図2-1,図2-2をまっすぐ直線状に伸ばした状態が図10-1,図10-2になると考えればよい。なお、図10-1の(1)~(6)における切換板110の状態が図9(c)の状態であり、図9-2の(7)~(15)における切換板110の状態が図9(d)の状態である。
FIGS. 10-1 and 10-2 are diagrams for illustrating the operating principle of the magnet drive mechanism of the present embodiment. Basically, it is the same as the contents of FIGS. 2-1 and 2-2 described in the first embodiment, and the state in which FIGS. 2-1 and 2-2 are straightly straightened is shown in FIGS. It can be considered as shown in FIG. Note that the state of the switching plate 110 in (1) to (6) of FIG. 10-1 is the state of FIG. 9C, and the state of the switching plate 110 in (7) to (15) of FIG. This is the state of FIG.
図10-1,図10-2において、移動板100は図において右から左に移動しているものとし、切換板110の位置は変動しないものとする。ただし、切換板110は紙面に垂直方向に変位する。そして、図10-1(6)と図10-1(7)の間において切換板110を切り換えてN極の磁石が移動板100に対峙していたのを、S極の磁石が対峙するようにする。この状態で大きな移動方向の推進力が発生することになる。力の発生方向、力の大きさ等については、実施例1と同様であるので説明を省略する。なお、上記の例では、図10-1(6)と図10-1(7)の間において切換板110を切り換えて、N極の磁石が移動板100に対峙していたのをS極の磁石が対峙するようにしたが、例えば、図10-1(5)と図10-1(6)の間において切換板110を切り換えてもよい。こうすることで、切り換えるのにより大きな力が必要であるが、より大きな力を移動板100に付加することができる。
10-1 and 10-2, the moving plate 100 is moved from right to left in the figure, and the position of the switching plate 110 is not changed. However, the switching plate 110 is displaced in the direction perpendicular to the paper surface. Then, the switching plate 110 is switched between FIGS. 10-1 (6) and 10-1 (7) so that the N-pole magnet faces the moving plate 100 so that the S-pole magnet faces. To. In this state, a large driving force is generated. Since the direction of force generation, the magnitude of the force, and the like are the same as those in the first embodiment, description thereof is omitted. In the above example, the switching plate 110 is switched between FIGS. 10-1 (6) and 10-1 (7), and the N-pole magnet is opposed to the moving plate 100. Although the magnets are opposed to each other, for example, the switching plate 110 may be switched between FIGS. 10-1 (5) and 10-1 (6). By doing so, a larger force is required for switching, but a larger force can be applied to the moving plate 100.
図9では移動板100の磁石の列を1列、切換板110の磁石の列を2列として説明したが、実施例1と同様にどちらも複数列としてもよい。こうすることで、より大きな推進力を得ることができる。
In FIG. 9, the magnet row of the moving plate 100 is described as one row, and the magnet row of the switching plate 110 is described as two rows, but both may be a plurality of rows as in the first embodiment. In this way, a greater driving force can be obtained.
上記した駆動機構を使用すれば、工場内に設置されているベルトコンベヤーに代わる移動機構を構成できる。移動軌道上に切換板110を所定間隔で複数設置し、移動板100を順次移動させてもよいし、複数の移動板100を順次移動させてもよい。また、移動板100を固定し、切換板110を移動させてもよい。
If the drive mechanism described above is used, a moving mechanism can be configured to replace the belt conveyor installed in the factory. A plurality of switching plates 110 may be installed on the moving track at predetermined intervals, and the moving plate 100 may be moved sequentially, or the plurality of moving plates 100 may be moved sequentially. Further, the moving plate 100 may be fixed and the switching plate 110 may be moved.
本実施例のマグネット駆動機構によれば、移動板に十分な力を発生させることができ、かつ、切換子の駆動力を変動させることにより移動板に所定の推力を付与することができる。
According to the magnet drive mechanism of this embodiment, a sufficient force can be generated on the moving plate, and a predetermined thrust can be applied to the moving plate by changing the driving force of the switching element.
20 回転子
30 切換子
40 ベアリング
50 保持部材
60 ケーシング 20Rotator 30 Switch 40 Bearing 50 Holding Member 60 Casing
30 切換子
40 ベアリング
50 保持部材
60 ケーシング 20
Claims (12)
- 円筒内周面の対称位置に複数の一群のN極の永久磁石と複数の一群のS極の永久磁石を取付けた回転子と、
前記回転子の内側に、該回転子の中心軸を中心に所定角度毎に設置された複数の切換子とを具備し、
前記切換子の外周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が外周方向に平行に設置され、
前記回転子の複数の磁石と対峙する前記切換子に設置された前記複数の永久磁石の磁極をN極からS極へ、またはS極からN極に切り換えるために、前記切換子を前記中心軸と平行な方向に変位させる駆動手段と、を有し、
前記切換子に設置された前記複数のN極またはS極の永久磁石が前記回転子のS極とN極の永久磁石の両方に同時に対峙する状態において、前記切換子の永久磁石に作用する前記中心軸方向の力が釣り合う前に、
前記駆動手段が、前記切換子の前記複数のN極の永久磁石が前記回転子の永久磁石に対峙している状態を、前記切換子の前記複数のS極の永久磁石が前記回転子の永久磁石に対峙する状態にすることにより、または、
前記駆動手段が、前記切換子の前記複数のS極の永久磁石が前記回転子の永久磁石に対峙している状態を、前記切換子の前記複数のN極の永久磁石が前記回転子の永久磁石に対峙する状態にすることにより、
前記回転子に前記中心軸を中心にした回転力を付与することを特徴とするマグネット駆動機構。 A rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are attached to symmetrical positions on a cylindrical inner peripheral surface;
A plurality of switching elements installed at predetermined angles around the central axis of the rotor inside the rotor;
A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the outer peripheral surface of the switching element, and the plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged. Is installed in parallel to the outer circumferential direction,
In order to switch the magnetic poles of the plurality of permanent magnets installed in the switching element facing the plurality of magnets of the rotor from N pole to S pole, or from S pole to N pole, the switching element is moved to the central axis. Driving means for displacing in a direction parallel to the
The plurality of N-pole or S-pole permanent magnets installed in the switch act on the permanent magnets of the switch in a state where both the S-pole and N-pole permanent magnets of the rotor face each other simultaneously. Before the forces in the central axis balance,
When the driving means is in a state where the plurality of N-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of S-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet, or
When the drive means is in a state where the plurality of S-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of N-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet,
A magnet driving mechanism that applies a rotational force about the central axis to the rotor. - 円筒外周面の対称位置に複数の一群のN極の永久磁石と複数の一群のS極の永久磁石を取付けた回転子と、
前記回転子の外側に、該回転子の中心軸を中心に所定角度毎に設置された複数の切換子とを具備し、
前記切換子の内周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が内周方向に平行に設置され、
前記回転子の複数の磁石と対峙する前記切換子に設置された前記複数の永久磁石の磁極をN極からS極へ、またはS極からN極に切り換えるために、前記切換子を前記中心軸と平行な方向に変位させる駆動手段と、を有し、
前記切換子に設置された前記複数のN極またはS極の永久磁石が前記回転子のS極とN極の永久磁石の両方に同時に対峙する状態において、前記切換子の永久磁石に作用する前記中心軸方向の力が釣り合う前に、
前記駆動手段が、前記切換子の前記複数のN極の永久磁石が前記回転子の永久磁石に対峙している状態を、前記切換子の前記複数のS極の永久磁石が前記回転子の永久磁石に対峙する状態にすることにより、または、
前記駆動手段が、前記切換子の前記複数のS極の永久磁石が前記回転子の永久磁石に対峙している状態を、前記切換子の前記複数のN極の永久磁石が前記回転子の永久磁石に対峙する状態にすることにより、
前記回転子に前記中心軸を中心にした回転力を付与することを特徴とするマグネット駆動機構。 A rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are mounted at symmetrical positions on a cylindrical outer peripheral surface;
A plurality of switching elements installed at predetermined angles around the central axis of the rotor on the outside of the rotor;
A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the inner peripheral surface of the switch, and the plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are permanent. Magnets are installed parallel to the inner circumference direction,
In order to switch the magnetic poles of the plurality of permanent magnets installed in the switching element facing the plurality of magnets of the rotor from N pole to S pole, or from S pole to N pole, the switching element is moved to the central axis. Driving means for displacing in a direction parallel to the
The plurality of N-pole or S-pole permanent magnets installed in the switch act on the permanent magnets of the switch in a state where both the S-pole and N-pole permanent magnets of the rotor face each other simultaneously. Before the forces in the central axis balance,
When the driving means is in a state where the plurality of N-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of S-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet, or
When the drive means is in a state where the plurality of S-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of N-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet,
A magnet driving mechanism that applies a rotational force about the central axis to the rotor. - 円筒内外周面の対称位置に複数の一群のN極の永久磁石と複数の一群のS極の永久磁石を取付けた回転子と、
前記回転子の内側及び外側に、該回転子の中心軸を中心に所定角度毎に設置された複数の切換子とを具備し、
前記切換子の前記回転子の内側の外周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が外周方向に平行に設置され、
前記切換子の前記回転子の外側の内周面上に、複数のN極の永久磁石と複数のS極の永久磁石が前記中心軸方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が内周方向に平行に設置され、
前記回転子の複数の磁石と対峙する前記切換子に設置された前記複数の永久磁石の磁極をN極からS極へ、またはS極からN極に切り換えるために、前記切換子を前記中心軸と平行な方向に変位させる駆動手段と、を有し、
前記切換子に設置された前記複数のN極またはS極の永久磁石が前記回転子のS極とN極の永久磁石の両方に同時に対峙する状態において、前記切換子の永久磁石に作用する前記中心軸方向の力が釣り合う前に、
前記駆動手段が、前記切換子の前記複数のN極の永久磁石が前記回転子の永久磁石に対峙している状態を、前記切換子の前記複数のS極の永久磁石が前記回転子の永久磁石に対峙する状態にすることにより、または、
前記駆動手段が、前記切換子の前記複数のS極の永久磁石が前記回転子の永久磁石に対峙している状態を、前記切換子の前記複数のN極の永久磁石が前記回転子の永久磁石に対峙する状態にすることにより、
前記回転子に前記中心軸を中心にした回転力を付与することを特徴とするマグネット駆動機構。 A rotor in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are attached to symmetrical positions on the inner peripheral surface of the cylinder;
A plurality of switching elements installed at predetermined angles around the central axis of the rotor on the inside and outside of the rotor;
A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the inner peripheral surface of the rotor of the switching element, and the plurality of N-pole permanent magnets and the plurality of N-pole permanent magnets. Are installed in parallel to the outer peripheral direction,
A plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are arranged in the central axis direction on the outer peripheral surface of the rotor of the switching element, and the plurality of N-pole permanent magnets A plurality of S-pole permanent magnets are installed in parallel to the inner circumferential direction,
In order to switch the magnetic poles of the plurality of permanent magnets installed in the switching element facing the plurality of magnets of the rotor from N pole to S pole, or from S pole to N pole, the switching element is moved to the central axis. Driving means for displacing in a direction parallel to the
The plurality of N-pole or S-pole permanent magnets installed in the switch act on the permanent magnets of the switch in a state where both the S-pole and N-pole permanent magnets of the rotor face each other simultaneously. Before the forces in the central axis balance,
When the driving means is in a state where the plurality of N-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of S-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet, or
When the drive means is in a state where the plurality of S-pole permanent magnets of the switch are opposed to the permanent magnet of the rotor, the plurality of N-pole permanent magnets of the switch are permanent of the rotor. By facing the magnet,
A magnet driving mechanism that applies a rotational force about the central axis to the rotor. - 前記駆動手段が、エンジンのピストン機構であることを特徴とする請求項1乃至3のいずれか1項に記載のマグネット駆動機構。 The magnet drive mechanism according to any one of claims 1 to 3, wherein the drive means is an engine piston mechanism.
- 前記駆動手段が前記切換子を変位させる力を変動させることにより、前記回転子に付与される力を変動させることを特徴とする請求項1乃至4のいずれか1項に記載のマグネット駆動機構。 The magnet driving mechanism according to any one of claims 1 to 4, wherein the driving means changes a force applied to the rotor by changing a force for displacing the switching element.
- 前記回転子を固定し、前記複数の切換子を回転させることを特徴とする請求項1乃至4のいずれか1項に記載のマグネット駆動機構。 The magnet driving mechanism according to any one of claims 1 to 4, wherein the rotor is fixed and the plurality of switching elements are rotated.
- 前記駆動手段が前記切換子を変位させる力を変動させることにより、前記切換子に付与される力を変動させることを特徴とする請求項6に記載のマグネット駆動機構。 The magnet driving mechanism according to claim 6, wherein the force applied to the switching element is changed by changing the force by which the driving means displaces the switching element.
- 前記円筒外周面または前記円筒内周面に設置された前記複数の一群のN極の永久磁石と前記複数の一群のS極の永久磁石が、前記中心軸の方向に交互に複数段配置され、
前記切換子の外周面または内周面に設置された前記複数のN極の永久磁石と前記複数のS極の永久磁石が、前記中心軸の方向に交互に複数段配置されていることを特徴とする請求項1乃至7のいずれか1項に記載のマグネット駆動機構。 The plurality of groups of N-pole permanent magnets and the plurality of groups of S-pole permanent magnets installed on the outer circumferential surface of the cylinder or the inner circumferential surface of the cylinder are alternately arranged in a plurality of stages in the direction of the central axis,
The plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed on the outer peripheral surface or inner peripheral surface of the switching element are alternately arranged in a plurality of stages in the direction of the central axis. The magnet drive mechanism according to any one of claims 1 to 7. - 複数の一群のN極の永久磁石と複数の一群のS極の永久磁石が同一の直線方向に設置された移動板と、
複数のN極の永久磁石と複数のS極の永久磁石が前記直線方向に配置され、且つ前記複数のN極の永久磁石と複数のS極の永久磁石が前記直線方向に垂直な方向に平行に設置された切換板とを具備し、
前記移動板の複数の磁石と対峙する前記切換板に設置された前記複数の永久磁石の磁極をN極からS極へ、またはS極からN極に切り換えるために、前記移動板を前記直線方向と垂直な方向に変位させる駆動手段と、を有し、
前記切換板に設置された前記複数のN極またはS極の永久磁石が前記移動板のS極とN極の永久磁石の両方に同時に対峙する状態において、前記切換板の永久磁石に作用する前記中心軸方向の力が釣り合う前に、
前記駆動手段が、前記切換板の前記複数のN極の永久磁石が前記移動板の永久磁石に対峙している状態を、前記切換板の前記複数のS極の永久磁石が前記移動板の永久磁石に対峙する状態にすることにより、または、
前記駆動手段が、前記切換板の前記複数のS極の永久磁石が前記移動板の永久磁石に対峙している状態を、前記切換板の前記複数のN極の永久磁石が前記移動板の永久磁石に対峙する状態にすることにより、
前記移動板に前記直線方向の推進力を付与することを特徴とするマグネット駆動機構。 A moving plate in which a plurality of groups of N-pole permanent magnets and a plurality of groups of S-pole permanent magnets are installed in the same linear direction;
A plurality of N pole permanent magnets and a plurality of S pole permanent magnets are arranged in the linear direction, and the plurality of N pole permanent magnets and the plurality of S pole permanent magnets are parallel to the direction perpendicular to the linear direction. And a switching plate installed in
In order to switch the magnetic poles of the plurality of permanent magnets installed on the switching plate facing the plurality of magnets of the moving plate from N pole to S pole, or from S pole to N pole, the moving plate is moved in the linear direction. Driving means for displacing in a direction perpendicular to
The plurality of N-pole or S-pole permanent magnets installed on the switching plate act on the permanent magnets of the switching plate in a state where both the S-pole and N-pole permanent magnets of the moving plate face each other simultaneously. Before the forces in the central axis balance,
When the drive means is in a state where the plurality of N-pole permanent magnets of the switching plate are opposed to the permanent magnet of the moving plate, the plurality of S-pole permanent magnets of the switching plate are permanent of the moving plate. By facing the magnet, or
When the driving means is in a state where the plurality of S-pole permanent magnets of the switching plate are opposed to the permanent magnet of the moving plate, the plurality of N-pole permanent magnets of the switching plate are permanent of the moving plate. By facing the magnet,
A magnet drive mechanism that applies a propulsive force in the linear direction to the moving plate. - 前記移動板に設置された前記複数の一群のN極の永久磁石と前記複数の一群のS極の永久磁石が、前記直線方向と垂直な方向に交互に複数段配置され、
前記切換板に設置された前記複数のN極の永久磁石と前記複数のS極の永久磁石が、前記直線方向と垂直な方向に交互に複数段配置されていることを特徴とする請求項9に記載のマグネット駆動機構。 The plurality of groups of N pole permanent magnets and the plurality of groups of S pole permanent magnets installed on the moving plate are alternately arranged in a plurality of stages in a direction perpendicular to the linear direction,
The plurality of N-pole permanent magnets and the plurality of S-pole permanent magnets installed on the switching plate are alternately arranged in a plurality of stages in a direction perpendicular to the linear direction. The magnet drive mechanism described in 1. - 前記移動板を固定し、前記切換板を変位させることを特徴とする請求項7に記載のマグネット駆動機構。 The magnet driving mechanism according to claim 7, wherein the moving plate is fixed and the switching plate is displaced.
- 前記駆動手段が前記切換板を変位させる力を変動させることにより、前記移動板に付与される力を変動させることを特徴とする請求項9または10に記載のマグネット駆動機構。 The magnet driving mechanism according to claim 9 or 10, wherein the force applied to the moving plate is changed by changing the force by which the driving means displaces the switching plate.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014183377A JP5727079B1 (en) | 2014-09-09 | 2014-09-09 | Magnet drive mechanism |
JP2014-183377 | 2014-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016039145A1 true WO2016039145A1 (en) | 2016-03-17 |
Family
ID=53437871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/074041 WO2016039145A1 (en) | 2014-09-09 | 2015-08-26 | Magnet driving mechanism |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5727079B1 (en) |
WO (1) | WO2016039145A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108361347A (en) * | 2017-01-13 | 2018-08-03 | 熵零技术逻辑工程院集团股份有限公司 | A kind of torque-converters |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61218360A (en) * | 1985-03-23 | 1986-09-27 | Shin Yoneda | Permanent magnet prime mover |
JPH0315262A (en) * | 1989-06-10 | 1991-01-23 | Hitoshi Kawabata | Magnetic rotary machine |
JP2011043157A (en) * | 2009-08-20 | 2011-03-03 | Hideki Wakabayashi | Magnetic force applied piston power unit |
JP2011083121A (en) * | 2009-10-07 | 2011-04-21 | Hirotoshi Tochihira | Air drive motor |
JP2012219811A (en) * | 2011-04-02 | 2012-11-12 | Hiroyuki Hagiyama | Magnetic force and spring motor |
JP5073125B1 (en) * | 2011-11-24 | 2012-11-14 | 博敏 栃平 | Magnet motor driving method and magnet motor |
JP2014100027A (en) * | 2012-11-15 | 2014-05-29 | Hirotoshi Tochihira | Magnet motor and drive mechanism |
-
2014
- 2014-09-09 JP JP2014183377A patent/JP5727079B1/en not_active Expired - Fee Related
-
2015
- 2015-08-26 WO PCT/JP2015/074041 patent/WO2016039145A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61218360A (en) * | 1985-03-23 | 1986-09-27 | Shin Yoneda | Permanent magnet prime mover |
JPH0315262A (en) * | 1989-06-10 | 1991-01-23 | Hitoshi Kawabata | Magnetic rotary machine |
JP2011043157A (en) * | 2009-08-20 | 2011-03-03 | Hideki Wakabayashi | Magnetic force applied piston power unit |
JP2011083121A (en) * | 2009-10-07 | 2011-04-21 | Hirotoshi Tochihira | Air drive motor |
JP2012219811A (en) * | 2011-04-02 | 2012-11-12 | Hiroyuki Hagiyama | Magnetic force and spring motor |
JP5073125B1 (en) * | 2011-11-24 | 2012-11-14 | 博敏 栃平 | Magnet motor driving method and magnet motor |
JP2014100027A (en) * | 2012-11-15 | 2014-05-29 | Hirotoshi Tochihira | Magnet motor and drive mechanism |
Also Published As
Publication number | Publication date |
---|---|
JP2016059163A (en) | 2016-04-21 |
JP5727079B1 (en) | 2015-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8400037B2 (en) | Device for providing rotational torque and method of use | |
US8803392B2 (en) | Axial magnetic suspension | |
WO2009142258A1 (en) | Magnetic coupling device | |
JP2015515846A5 (en) | ||
US11121616B2 (en) | Rotary-linear actuation assembly | |
JP5608721B2 (en) | Magnet motor and drive mechanism | |
US20160036311A1 (en) | Magnetic clutch systems and methods | |
NL2020783B1 (en) | Magnetic spring | |
WO2016039145A1 (en) | Magnet driving mechanism | |
US20110266904A1 (en) | Permanent magnet actuator for adaptive actuation | |
WO2019064239A1 (en) | Magnetic biasing assembly | |
JP2008202726A (en) | Balancer mechanism for reciprocating engine | |
JP2011217540A (en) | Electromagnetic actuator | |
JP2018132071A (en) | Phase adjustment mechanism and torque control mechanism using the same | |
JP2008054374A (en) | Magnetic drive mechanism | |
WO2018079488A1 (en) | Rotating device | |
JP3977860B2 (en) | Rotating device | |
JP2019106779A (en) | Permanent magnet rotary machine | |
KR101029610B1 (en) | motor | |
JP2009038945A (en) | Magnetic drive mechanism | |
RU2340025C1 (en) | Method of controlling pulling force of magnetic drive armature | |
JP2019002447A (en) | Torque fluctuation suppression device | |
KR101648805B1 (en) | Piezoelectric stepping motor | |
AU2008234988B2 (en) | An Electric Motor | |
KR20180113895A (en) | Rotational apparatus using the Magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15840694 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15840694 Country of ref document: EP Kind code of ref document: A1 |