[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016038815A1 - Liquid surface detection device - Google Patents

Liquid surface detection device Download PDF

Info

Publication number
WO2016038815A1
WO2016038815A1 PCT/JP2015/004214 JP2015004214W WO2016038815A1 WO 2016038815 A1 WO2016038815 A1 WO 2016038815A1 JP 2015004214 W JP2015004214 W JP 2015004214W WO 2016038815 A1 WO2016038815 A1 WO 2016038815A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid level
magnetic field
hall element
magnetic flux
rotating body
Prior art date
Application number
PCT/JP2015/004214
Other languages
French (fr)
Japanese (ja)
Inventor
宮川 功
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016038815A1 publication Critical patent/WO2016038815A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/32Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using rotatable arms or other pivotable transmission elements
    • G01F23/38Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using rotatable arms or other pivotable transmission elements using magnetically actuated indicating means

Definitions

  • the present disclosure relates to a liquid level detection device that includes a non-contact Hall element and is suitable for use in detecting the liquid level in a fuel tank for a vehicle, for example.
  • Patent Document 1 As a conventional liquid level detection device, for example, the one described in Patent Document 1 is known.
  • the liquid level detection device of Patent Document 1 is applied to a fuel tank for a vehicle, and a non-contact Hall element is used.
  • a hall element magnettoelectric conversion element
  • a magnet holder is rotatably supported on the shaft portion.
  • a pair of magnets are fixed to the magnet holder so as to sandwich the shaft portion, that is, the Hall element.
  • the magnet holder is provided with an arm, and a float is connected to the tip of the arm.
  • the float moves up and down according to the change in the liquid level, and the magnet holder and the magnet rotate accordingly. Then, according to the rotation angle, the magnetic flux amount of the magnet passing through the Hall element changes, and the voltage generated in the Hall element changes (Hall effect). Therefore, in the liquid level detection device of Patent Document 1, the liquid level is detected by a change in voltage generated in the Hall element.
  • the object of the present disclosure is to provide a liquid level detection device that can suppress the influence of an external magnetic field from a road surface, or can detect a liquid level that is safe for the user. Is to provide.
  • the liquid level detection device detects the height of the liquid level of the liquid stored in the container, A rotating body that rotates following the liquid level; A shaft portion that is provided on the main body fixed to the container side and supports the rotation of the rotating body; A pair of magnet portions that are fixed to the rotating body so as to sandwich the shaft portion and generate magnetic flux penetrating the shaft portion; A hall element that is arranged inside the shaft part and generates a voltage due to the Hall effect in accordance with the magnetic flux from the magnet part associated with the rotational position of the rotating body, The application surface to which the magnetic flux from the magnet portion of the Hall element is applied is set to be parallel to the direction of the external magnetic field generated outside the container.
  • the external magnetic field does not act so as to be orthogonal to the application surface of the Hall element, and thus the Hall element can be configured not to detect the external magnetic field. Therefore, the influence by the external magnetic field can be eliminated.
  • the liquid level detection device detects the height of the liquid level of the liquid stored in the container, A rotating body that rotates following the liquid level; A shaft portion that is provided on the main body fixed to the container side and supports the rotation of the rotating body; A pair of magnet portions that are fixed to the rotating body so as to sandwich the shaft portion and generate magnetic flux penetrating the shaft portion; A hall element that is arranged inside the shaft part and generates a voltage due to the Hall effect in accordance with the magnetic flux from the magnet part associated with the rotational position of the rotating body,
  • the direction of the orthogonal component perpendicular to the application surface to which the magnetic flux of the Hall element is applied is the same as the direction of the external magnetic field generated outside the container with respect to the magnetic flux generated by the magnet unit when the liquid level becomes the minimum side. It is set to become.
  • the magnetic element acts on the Hall element in a form in which the magnetic flux of the external magnetic field is added to the orthogonal component of the magnetic flux by the magnet portion with respect to the application surface. Therefore, as a detection result of the liquid level, the lower liquid level is detected. Therefore, even when there is an external magnetic field, it is possible to detect the liquid level on the safe side for the user.
  • FIG. 1 is a front view showing a liquid level detection device in the first embodiment
  • 2 is a cross-sectional view showing a II-II portion in FIG.
  • FIG. 3 is a front view showing the positional relationship between the magnet and the Hall element and the external magnetic field in the first embodiment.
  • FIG. 4 is a graph showing the relationship between the amount of magnetic flux and the output of the Hall IC.
  • FIG. 5 is a graph showing the relationship between the rotation angle of the magnet part and the liquid level in the first embodiment
  • FIG. 6 is a front view showing the positional relationship between the magnet and the Hall element in the comparative example, and the external magnetic field, FIG.
  • FIG. 7 is a side view showing the positional relationship between the magnet and the Hall element in the comparative example, and the external magnetic field
  • FIG. 8 is a graph showing the relationship between the rotation angle of the magnet part and the liquid level in the comparative example
  • FIG. 9 is a front view showing the positional relationship between the magnet and the Hall element and the external magnetic field in the second embodiment
  • FIG. 10 is a graph showing the relationship between the rotation angle of the magnet unit and the liquid level in the second embodiment.
  • the liquid level detection device 100 according to the first embodiment will be described with reference to FIGS. As shown in FIGS. 1 to 3, the liquid level detection device 100 is installed in a fuel tank 10 for storing vehicle fuel.
  • the fuel tank 10 corresponds to the container of the present disclosure.
  • the liquid level detection device 100 determines the height (liquid level) of the liquid level 12 of the fuel stored in the fuel tank 10 while being held by the fuel pump module 11 installed in the fuel tank 10. It is a device to detect.
  • the liquid level detection device 100 includes a housing 20, a magnet holder 50, a float 60, a Hall IC 70, and the like.
  • the housing 20 forms the base of the liquid level detection device 100 and includes an inner case 21 and an outer case 31.
  • the housing 20 is provided with three terminals 35a to 35c.
  • the inner case 21 is formed of a resin material such as polyphenylene sulfide (PPS) resin.
  • the inner case 21 has a flat plate-like portion 21a formed in a flat plate shape, and a columnar portion 21b that protrudes circularly from the flat plate-like portion 21a.
  • An element accommodation chamber 21c that accommodates the Hall IC 70 is provided in the cylindrical portion 21b.
  • the outer case 31 accommodates the inner case 21 by being formed so as to cover the outer side of the inner case 21.
  • the outer case 31 is formed of a resin material such as PPS resin, like the inner case 21.
  • the outer case 31 protrudes in a cylindrical shape from the outer main body 31a so as to cover the outer main body 31a fixed to the fuel tank 10 (on the container side) via the fuel pump module 11 and the columnar part 21b. And a shaft portion 31b.
  • the outer main body 31a corresponds to the main body of the present disclosure.
  • the three terminals 35a to 35c are formed in a strip shape from a conductive material such as phosphor bronze. Each of the terminals 35a to 35c is disposed in the flat plate portion 21a and the outer main body portion 31a. Each terminal 35a to 35c is used for transmission of a detection signal such as a voltage in the Hall IC 70 between the Hall IC 70 and an external device (for example, a combination meter).
  • a detection signal such as a voltage in the Hall IC 70 between the Hall IC 70 and an external device (for example, a combination meter).
  • the magnet holder 50 includes a main body 51, a magnet 52, a yoke 53, a holder cover 54, and the like.
  • the magnet holder 50 corresponds to the rotating body of the present disclosure.
  • the main body 51 is formed in a flat cylindrical shape by a resin material or the like.
  • the cylindrical first end side in the axial direction is closed by the first wall 51a, and the cylindrical peripheral surface is the second wall 51b.
  • a central hole 51c opened in the axial direction is formed in the central region of the main body.
  • the main body 51 is arranged so that the second end side (opening side) in the axial direction faces the housing 20, and the shaft portion 31b of the housing 20 is inserted into the center hole 51c. That is, the magnet holder 50 is rotatably supported with respect to the housing 20 by being externally fitted to the shaft portion 31b.
  • the magnets 52 are each formed in a circular arc shape and are a pair of permanent magnets that form an N pole and an S pole, and are accommodated inside the second wall portion 51 b of the main body portion 51.
  • a ferrite magnet is used as the magnet 52.
  • the magnet 52 corresponds to the magnet unit of the present disclosure.
  • the pair of magnets 52 are provided so that the N pole and the S pole face each other with the shaft portion 31b interposed therebetween by being held by a claw portion formed in the main body portion 51.
  • the pair of magnets 52 generates the magnetic flux mfM (FIG. 2) that passes through the Hall IC 70 accommodated in the element accommodating chamber 21c from the N pole side toward the S pole side.
  • the yoke 53 is a flat cylindrical member formed of, for example, an iron material, and is interposed between the second wall portion 51 b and the magnet 52. That is, the yoke 53 is fixed to the inner peripheral surface of the second wall portion 51 b, and the magnet 52 is disposed on the inner peripheral side of the yoke 53.
  • the yoke 53 forms a path for returning the magnetic flux mfM generated from the north pole side to the south pole side of the pair of magnets 52 from the south pole side to the north pole side.
  • the holder cover 54 has an oval shape in which two short sides bulge outward based on a rectangle, and covers the center hole 51c in the main body 51 so as to cover the outer surface of the first wall 51a. It is a cover to be attached to.
  • the holder cover 54 is formed from a resin material having elasticity. For example, polyacetal resin is used as the resin material.
  • the float 60 is a floating member made of a material having a specific gravity smaller than that of a fuel such as foamed ebonite.
  • the float 60 can float on the fuel liquid level 12.
  • a float arm 65 is connected to the float 60.
  • the float arm 65 is formed in a round bar shape from a magnetic material such as stainless steel.
  • the first end side of the float arm 65 is inserted through a through hole 61 formed in the float 60.
  • the second end side of the float arm 65 is supported by the magnet holder 50.
  • a portion between the intermediate region of the float arm 65 and the second end side is routed so as to cross the outer surface of the holder cover 54. Therefore, the holder cover 54 is sandwiched between the first wall portion 51 a and the float arm 65.
  • the magnet holder 50 is rotated relative to the housing 20 integrally with the magnet 52 so as to follow the liquid level 12 by the float 60 and the float arm 65.
  • the magnet holder 50 is rotated clockwise in FIG. Therefore, when the liquid level is maximum (when FULL), the pair of magnets 52 has an N pole on the upper right and an S pole on the lower left, as shown in FIG.
  • the magnet holder 50 is rotated counterclockwise in FIG. Therefore, when the liquid level is minimum (EMPTY), the pair of magnets 52 has an N pole on the upper left and an S pole on the lower right as shown in FIG.
  • the rotation angle ⁇ of the magnet holder 50 is defined as follows. That is, as shown in FIG. 3, the vertical downward position of the Hall element 71 is set to a position of 0 ° of the rotation angle ⁇ . Further, a rotation angle that is counterclockwise from the 0 ° position is plus (+ ⁇ ), and a rotation angle that is clockwise is minus ( ⁇ ). Further, the range that can be taken by the rotation angle ⁇ in the liquid level detection device 100 is a predetermined range that is less than ⁇ 90 °, and this range is a use range (FIG. 5).
  • the Hall IC 70 is a detection element that detects the relative angle of the magnet holder 50 with respect to the housing 20.
  • the Hall IC 70 includes a Hall element 71 provided in a plate-like IC substrate, three lead wires 72 provided on the Hall element 71, and the like.
  • the hall element 71 is formed in a flat plate shape and is disposed inside the shaft portion 31 b so as to be sandwiched between the pair of magnets 52. Specifically, the Hall element 71 is accommodated in the element accommodating chamber 21c provided in the cylindrical portion 21b that is inside the shaft portion 31b. As shown in FIG. 3, the plate surfaces (both plate surfaces) of the flat Hall element 71 are application surfaces 71 a to which the magnetic flux mfM from the magnet 52 is applied. Each lead wire 72 extends from the hall element 71 and is connected to each terminal 35a to 35c.
  • the Hall element 71 (Hall IC 70) is subjected to the action of a magnetic field by the magnet 52 in a state where a voltage is applied, and thereby depends on the density of the magnetic flux mfM passing from one application surface 71a by the Hall effect (that is, proportional). ) Generate voltage. As shown in FIG. 3, the voltage generated by the Hall element 71 changes according to the magnitude of the component orthogonal to the application surface 71 a with respect to the actual magnetic flux mfM generated by the magnet 52. Hereinafter, the magnetic flux component orthogonal to the application surface 71a is defined as an acting magnetic flux mfMv.
  • the voltage generated in the Hall element 71 is output as a signal indicating the detection result via each lead wire 72, each terminal 35a to 35c, and is measured by an external device.
  • the application surface 71a of the Hall element 71 is the following with respect to the shaft portion 31b in a state where the housing 20 (outer body portion 31a) is fixed to the fuel pump module 11 (position defined state). It is arranged like this. That is, the application surface 71a is disposed in the element storage chamber 21c so as to be parallel to a virtual surface including the axial line of the shaft portion 31b and the vertical direction (vertical direction) line. In other words, as shown in FIGS. 1 and 3, the Hall element 71 is disposed such that the application surface 71 a is parallel to the vertical line.
  • the reciprocating motion of the float 60 that moves up and down following the fuel liquid level 12 is converted into a rotational motion by the float arm 65 held by the magnet holder 50.
  • the magnet holder 50 follows the liquid level of the fuel stored in the fuel tank 10 and rotates relative to the housing 20. Due to the relative rotation of the magnet holder 50, the acting magnetic flux mfMv acting on the Hall element 71 changes, whereby the output voltage V output from the Hall element 71 changes.
  • the output voltage V of the Hall element 71 is proportional to the amount of magnetic flux.
  • the output voltage V from the Hall element 71 with respect to the rotation angle ⁇ of the magnet holder 50 is a sin waveform output. In the range of use of the rotation angle ⁇ , the output voltage V with respect to the rotation angle ⁇ has a substantially linear relationship.
  • the maximum position of the rotation angle ⁇ in the use range is a position when the float 60 moves toward the minimum side of the liquid surface 12 and the magnet holder 50 rotates to the maximum counterclockwise, and is the point E (EMPTY point).
  • the output voltage V at the point E displays, for example, an E scale (EMPTY scale) on the display unit (fuel remaining amount meter).
  • the minimum position of the rotation angle ⁇ in the use range is a position when the float 60 moves toward the maximum side of the liquid surface 12 and the magnet holder 50 rotates to the maximum in the clockwise direction, and the F point (FULL) Point).
  • the output voltage -V at the point F displays, for example, the F scale (FULL scale) on the display unit (fuel remaining amount meter).
  • the liquid level detection device 100 may be affected by an external magnetic field generated outside the fuel tank 10.
  • the external magnetic field can be generated from, for example, various devices provided on a travel path on which the vehicle travels, and magnetic field generating components.
  • Various devices and magnetic field generating components include, for example, road heaters embedded in roads in cold districts, coils for chargers for non-contact charging of batteries such as electric vehicles and hybrid vehicles, embedded in roads There are equipment for transportation infrastructure and railway lines for trains.
  • As the magnetic flux mfO of the external magnetic field for example, in the present embodiment, as shown in FIG. 3, it is assumed that the magnetic field goes to the liquid level detection device 100 in the vertical direction from the road surface.
  • the application surface 71a of the Hall element 71 is parallel to the vertical line. That is, the application surface 71a of the Hall element 71 is parallel to the direction of the external magnetic field. Therefore, the external magnetic field does not act so as to be orthogonal to the application surface 71a of the Hall element 71, so that the Hall element 71 can be configured not to detect the external magnetic field. Therefore, the influence by the external magnetic field can be eliminated.
  • the display shows that the position of the liquid level 12 is shifted to a higher side than the actual level, such as “there is still some fuel”. End up. Therefore, the display for fuel replenishment is delayed for the user, and there is a possibility of causing a gas shortage. In this embodiment, occurrence of such a situation can be prevented.
  • FIG. 1 A liquid level detection device 100A of the second embodiment is shown in FIG.
  • the second embodiment is different from the first embodiment in that the direction of the application surface 71a of the Hall element 71 is changed, and the magnetic flux mfMv applied by the magnet 52 to the Hall element 71 when the liquid level 12 is at the minimum side. Is the same as the direction of the magnetic flux mfO of the external magnetic field.
  • the application surface 71a of the Hall element 71 is arranged so as to face the horizontal direction with respect to the shaft portion 31b. Further, when the position of the rotation angle ⁇ of 0 ° is the left side position of the hall element 71 in the horizontal direction and the liquid level 12 is at the minimum side, as shown in FIG. The south pole is on the upper right. Therefore, when the magnet holder 50 rotates with the liquid surface 12 facing the minimum side, the magnetic flux mfM by the magnet 52 goes from the region on the generation side of the external magnetic field to the region on the opposite side across the Hall element 71. That is, here, the magnetic flux mfM is directed to the upper right.
  • the orthogonal component orthogonal to the application surface 71a that is, the actual working magnetic flux mfMv with respect to the Hall element 71 is directed upward with respect to the magnetic flux mfM. Therefore, the direction of the acting magnetic flux mfMv is the same as the direction of the magnetic flux mfO of the external magnetic field.
  • the position of the float arm 65 is set so that the maximum position and the minimum position of the liquid surface 12 can be obtained based on the position of 0 ° of the rotation angle ⁇ .
  • the output voltage V takes a form in which the output voltage V increases (broken line in FIG. 10) when there is no external magnetic field (solid line in FIG. 10).
  • the position where the rotation scale ⁇ is at the E point and the E scale should be displayed is a display in which the position of the liquid level 12 is shifted to a lower side than the actual position. Therefore, it is possible to speed up the display for replenishing fuel to the user, and it is possible to avoid a situation where the user runs out of gas.
  • the direction of the application surface 71a of the Hall element 71 is set to the shaft portion 31b.
  • the application surface 71a was made parallel to the direction of the external magnetic field.
  • the orientation of the housing 20 (outer main body portion 31a) is adjusted and fixed to the fuel pump module 11, thereby applying the application surface.
  • 71a may be parallel to the direction of the external magnetic field.
  • the external magnetic field is assumed to be directed from the road surface to the liquid level detection devices 100 and 100A in the vertical direction, for example.
  • the relative positional relationship (structure) of the Hall element 71 and the magnet 52 in each of the above embodiments is rotated by 90 degrees. It becomes possible to respond by setting.
  • the liquid level detection device of the present disclosure is applied to one that detects the liquid level 12 of the fuel in the fuel tank 10 for a vehicle.
  • the present invention is not limited to this. You may apply to what detects liquid levels, such as oil or ATF for torque converters.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Level Indicators Using A Float (AREA)

Abstract

A liquid surface detection device detects the height of the liquid surface (12) of a liquid stored in a container (10) and is provided with a rotating body (50) that rotates so as to follow the liquid surface (12), a shaft part (31b) that is provided on a main body unit (31a) fixed to a container (10) side and supports the rotation of the rotating body (50), a pair of magnet units (52) that are fixed to the rotating body (50) so as to sandwich the shaft part (31b) and generate magnetic flux that penetrates the shaft part (31b), and a Hall element (71) that is disposed inside the shaft part (31b) and generates, through the Hall effect, a voltage corresponding to the magnetic flux from the magnet units (52) accompanying the rotation position of the rotating body (50). The application surface (71a) of the hall element (71) onto which the magnetic flux from the magnet units (52) is applied is set so as to be parallel to the direction of the external magnetic field generated outside the container (10).

Description

液面検出装置Liquid level detector 関連出願の相互参照Cross-reference of related applications
 本出願は、2014年9月11日に出願された日本出願番号2014-185336号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2014-185336 filed on September 11, 2014, the contents of which are incorporated herein by reference.
 本開示は、非接触式のホール素子を備え、例えば、車両用の燃料タンク内の液面位の検出に用いて好適な液面検出装置に関するものである。 The present disclosure relates to a liquid level detection device that includes a non-contact Hall element and is suitable for use in detecting the liquid level in a fuel tank for a vehicle, for example.
 従来の液面検出装置として、例えば、特許文献1に記載されたものが知られている。特許文献1の液面検出装置は、車両用の燃料タンクに適用されており、非接触式のホール素子が用いられている。具体的には、液面検出装置の本体部を成すボディに形成された軸部に、ホール素子(磁電変換素子)が内蔵されている。軸部には、マグネットホルダが回転可能に支持されている。マグネットホルダには、軸部、つまりホール素子を挟むように1対のマグネットが固定されている。更に、マグネットホルダには、アームが設けられて、このアームの先端部にフロートが接続されている。 As a conventional liquid level detection device, for example, the one described in Patent Document 1 is known. The liquid level detection device of Patent Document 1 is applied to a fuel tank for a vehicle, and a non-contact Hall element is used. Specifically, a hall element (magnetoelectric conversion element) is built in a shaft portion formed in a body constituting the main body portion of the liquid level detection device. A magnet holder is rotatably supported on the shaft portion. A pair of magnets are fixed to the magnet holder so as to sandwich the shaft portion, that is, the Hall element. Furthermore, the magnet holder is provided with an arm, and a float is connected to the tip of the arm.
 特許文献1の液面検出装置においては、液面位の変化に応じてフロートが上下動し、これに伴い、マグネットホルダ、およびマグネットが回転する。そして、回転角度に応じて、ホール素子を通過するマグネットの磁束量が変化し、ホール素子に発生する電圧が変化する(ホール効果)。よって、特許文献1の液面検出装置においては、ホール素子に発生する電圧の変化をもって液面位を検出する。 In the liquid level detection device of Patent Document 1, the float moves up and down according to the change in the liquid level, and the magnet holder and the magnet rotate accordingly. Then, according to the rotation angle, the magnetic flux amount of the magnet passing through the Hall element changes, and the voltage generated in the Hall element changes (Hall effect). Therefore, in the liquid level detection device of Patent Document 1, the liquid level is detected by a change in voltage generated in the Hall element.
特開2008-39613号公報JP 2008-39613 A
 ここで、車両が走行する路面においては種々の機器が設置されており、この機器によって路面から車両に向けて外部磁界が発生する場合がある。しかしながら、上記特許文献1では、このような路面からの外部磁界について、何ら考慮されていない。外部磁界の発生があると、ホール素子には、マグネットによる磁界に加えて外部磁界がかけられることになり、ホール素子によって本来検出されるべき検出結果にずれが発生して、ユーザには誤った検出結果を示してしまうおそれがある。 Here, various devices are installed on the road surface on which the vehicle travels, and an external magnetic field may be generated from the road surface toward the vehicle by this device. However, in Patent Document 1, no consideration is given to such an external magnetic field from the road surface. If an external magnetic field is generated, an external magnetic field will be applied to the Hall element in addition to the magnetic field generated by the magnet. There is a risk of showing the detection result.
 本開示の目的は、上記事項に鑑み、路面からの外部磁界があっても、その影響を抑制可能とする、あるいはユーザに対して安全側となる液面の検出を可能とする液面検出装置を提供することにある。 In view of the above, the object of the present disclosure is to provide a liquid level detection device that can suppress the influence of an external magnetic field from a road surface, or can detect a liquid level that is safe for the user. Is to provide.
 本開示の第一の態様において、容器に貯留された液体の液面の高さを検出する液面検出装置であって、
 液面に追従して回転する回転体と、
 容器側に固定される本体部に設けられて、回転体の回転を支持する軸部と、
 軸部を挟むように回転体に固定されて、軸部を貫通する磁束を発生させる一対の磁石部と、
 軸部の内部に配置されて、回転体の回転位置に伴う磁石部からの磁束に応じて、ホール効果による電圧を発生させるホール素子とを備え、
 ホール素子の磁石部からの磁束が印加される印加面は、容器の外部において発生する外部磁界の方向と平行となるように設定されている。
In the first aspect of the present disclosure, the liquid level detection device detects the height of the liquid level of the liquid stored in the container,
A rotating body that rotates following the liquid level;
A shaft portion that is provided on the main body fixed to the container side and supports the rotation of the rotating body;
A pair of magnet portions that are fixed to the rotating body so as to sandwich the shaft portion and generate magnetic flux penetrating the shaft portion;
A hall element that is arranged inside the shaft part and generates a voltage due to the Hall effect in accordance with the magnetic flux from the magnet part associated with the rotational position of the rotating body,
The application surface to which the magnetic flux from the magnet portion of the Hall element is applied is set to be parallel to the direction of the external magnetic field generated outside the container.
 この開示によれば、外部磁界は、ホール素子の印加面に対して直交するようには作用しないので、ホール素子は外部磁界を検出しないものとすることができる。よって、外部磁界による影響をなくすことができる。 According to this disclosure, the external magnetic field does not act so as to be orthogonal to the application surface of the Hall element, and thus the Hall element can be configured not to detect the external magnetic field. Therefore, the influence by the external magnetic field can be eliminated.
 本開示の第二の態様において、容器に貯留された液体の液面の高さを検出する液面検出装置であって、
 液面に追従して回転する回転体と、
 容器側に固定される本体部に設けられて、回転体の回転を支持する軸部と、
 軸部を挟むように回転体に固定されて、軸部を貫通する磁束を発生させる一対の磁石部と、
 軸部の内部に配置されて、回転体の回転位置に伴う磁石部からの磁束に応じて、ホール効果による電圧を発生させるホール素子とを備え、
 液面が最小側となるときに発生する磁石部による磁束に対して、ホール素子の磁束が印加される印加面に直交する直交成分の方向は、容器の外部において発生する外部磁界の方向と同一となるように設定されている。
In the second aspect of the present disclosure, the liquid level detection device detects the height of the liquid level of the liquid stored in the container,
A rotating body that rotates following the liquid level;
A shaft portion that is provided on the main body fixed to the container side and supports the rotation of the rotating body;
A pair of magnet portions that are fixed to the rotating body so as to sandwich the shaft portion and generate magnetic flux penetrating the shaft portion;
A hall element that is arranged inside the shaft part and generates a voltage due to the Hall effect in accordance with the magnetic flux from the magnet part associated with the rotational position of the rotating body,
The direction of the orthogonal component perpendicular to the application surface to which the magnetic flux of the Hall element is applied is the same as the direction of the external magnetic field generated outside the container with respect to the magnetic flux generated by the magnet unit when the liquid level becomes the minimum side. It is set to become.
 この開示によれば、液面が最小側となるときに、印加面に対する磁石部による磁束の直交成分に、外部磁界の磁束が加えられた形でホール素子に作用する。よって、液面の検出結果としては、より低い側となる液面位が検出されることになる。よって、外部磁界があってもユーザに対しては安全側となる液面の検出が可能となる。 According to this disclosure, when the liquid level is at the minimum side, the magnetic element acts on the Hall element in a form in which the magnetic flux of the external magnetic field is added to the orthogonal component of the magnetic flux by the magnet portion with respect to the application surface. Therefore, as a detection result of the liquid level, the lower liquid level is detected. Therefore, even when there is an external magnetic field, it is possible to detect the liquid level on the safe side for the user.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態における液面検出装置を示す正面図であり、 図2は、図1中のII-II部を示す断面図であり、 図3は、第1実施形態におけるマグネットとホール素子との位置関係、および外部磁界を示す正面図であり、 図4は、磁束量とホールICの出力との関係を示すグラフであり、 図5は、第1実施形態における磁石部の回転角度と液面位との関係を示すグラフであり、 図6は、比較例におけるマグネットとホール素子との位置関係、および外部磁界を示す正面図であり、 図7は、比較例におけるマグネットとホール素子との位置関係、および外部磁界を示す側面図であり、 図8は、比較例における磁石部の回転角度と液面位との関係を示すグラフであり、 図9は、第2実施形態におけるマグネットとホール素子との位置関係、および外部磁界を示す正面図であり、 図10は、第2実施形態における磁石部の回転角度と液面位との関係を示すグラフである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a front view showing a liquid level detection device in the first embodiment, 2 is a cross-sectional view showing a II-II portion in FIG. FIG. 3 is a front view showing the positional relationship between the magnet and the Hall element and the external magnetic field in the first embodiment. FIG. 4 is a graph showing the relationship between the amount of magnetic flux and the output of the Hall IC. FIG. 5 is a graph showing the relationship between the rotation angle of the magnet part and the liquid level in the first embodiment, FIG. 6 is a front view showing the positional relationship between the magnet and the Hall element in the comparative example, and the external magnetic field, FIG. 7 is a side view showing the positional relationship between the magnet and the Hall element in the comparative example, and the external magnetic field, FIG. 8 is a graph showing the relationship between the rotation angle of the magnet part and the liquid level in the comparative example, FIG. 9 is a front view showing the positional relationship between the magnet and the Hall element and the external magnetic field in the second embodiment, FIG. 10 is a graph showing the relationship between the rotation angle of the magnet unit and the liquid level in the second embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly indicate that the combination is possible in each embodiment, but also a combination of the embodiments even if they are not clearly specified unless there is a problem with the combination. It is also possible.
 (第1実施形態)
 第1実施形態の液面検出装置100について、図1~図5を用いて説明する。液面検出装置100は、図1~図3に示すように、車両用の燃料を貯留する燃料タンク10内に設置されている。燃料タンク10は、本開示の容器に対応する。液面検出装置100は、燃料タンク10内に設置される燃料ポンプモジュール11等に保持された状態にて、燃料タンク10に貯留されている燃料の液面12の高さ(液面位)を検出する装置となっている。液面検出装置100は、ハウジング20、マグネットホルダ50、フロート60、およびホールIC70等によって構成されている。
(First embodiment)
The liquid level detection device 100 according to the first embodiment will be described with reference to FIGS. As shown in FIGS. 1 to 3, the liquid level detection device 100 is installed in a fuel tank 10 for storing vehicle fuel. The fuel tank 10 corresponds to the container of the present disclosure. The liquid level detection device 100 determines the height (liquid level) of the liquid level 12 of the fuel stored in the fuel tank 10 while being held by the fuel pump module 11 installed in the fuel tank 10. It is a device to detect. The liquid level detection device 100 includes a housing 20, a magnet holder 50, a float 60, a Hall IC 70, and the like.
 ハウジング20は、液面検出装置100の基部を形成するものであり、インナーケース21、およびアウターケース31を備えている。そして、ハウジング20には、3つのターミナル35a~35cが設けられている。 The housing 20 forms the base of the liquid level detection device 100 and includes an inner case 21 and an outer case 31. The housing 20 is provided with three terminals 35a to 35c.
 インナーケース21は、例えばポリフェニレンサルファイド(PPS)樹脂等の樹脂材料によって形成されている。インナーケース21は、平板状に形成された平板状部21aと、この平板状部21aから円注状に突出する円柱状部21bとを有している。円柱状部21b内には、ホールIC70を収容する素子収容室21cが設けられている。 The inner case 21 is formed of a resin material such as polyphenylene sulfide (PPS) resin. The inner case 21 has a flat plate-like portion 21a formed in a flat plate shape, and a columnar portion 21b that protrudes circularly from the flat plate-like portion 21a. An element accommodation chamber 21c that accommodates the Hall IC 70 is provided in the cylindrical portion 21b.
 アウターケース31は、インナーケース21の外側を覆うよう形成されることで、インナーケース21を収容している。アウターケース31は、インナーケース21と同様に、PPS樹脂等の樹脂材料によって形成されている。アウターケース31には、燃料ポンプモジュール11を介して燃料タンク10に対し(容器側に)固定されるアウター本体部31aと、円柱状部21bを覆うようにしてアウター本体部31aから円筒状に突出する軸部31bとを備えている。アウター本体部31aは、本開示の本体部に対応する。 The outer case 31 accommodates the inner case 21 by being formed so as to cover the outer side of the inner case 21. The outer case 31 is formed of a resin material such as PPS resin, like the inner case 21. The outer case 31 protrudes in a cylindrical shape from the outer main body 31a so as to cover the outer main body 31a fixed to the fuel tank 10 (on the container side) via the fuel pump module 11 and the columnar part 21b. And a shaft portion 31b. The outer main body 31a corresponds to the main body of the present disclosure.
 3つのターミナル35a~35cは、りん青銅等の導電性材料によって、帯板状に形成されている。各ターミナル35a~35cは、平板状部21aおよびアウター本体部31a内に配置されている。各ターミナル35a~35cは、ホールIC70、および外部の機器(例えば、コンビネーションメータ)間において、ホールIC70における電圧等の検出信号の伝送に用いられる。 The three terminals 35a to 35c are formed in a strip shape from a conductive material such as phosphor bronze. Each of the terminals 35a to 35c is disposed in the flat plate portion 21a and the outer main body portion 31a. Each terminal 35a to 35c is used for transmission of a detection signal such as a voltage in the Hall IC 70 between the Hall IC 70 and an external device (for example, a combination meter).
 マグネットホルダ50は、本体部51、マグネット52、ヨーク53、およびホルダカバー54等を備えている。マグネットホルダ50は、本開示の回転体に対応する。 The magnet holder 50 includes a main body 51, a magnet 52, a yoke 53, a holder cover 54, and the like. The magnet holder 50 corresponds to the rotating body of the present disclosure.
 本体部51は、樹脂材料等により扁平な円筒状に形成されている。円筒状の軸方向の第一端側は、第一壁部51aによって閉塞されており、また、円筒状の周面は、第二壁部51bとなっている。また、本体部の中心領域には、軸方向に開口された中心孔51cが形成されている。 The main body 51 is formed in a flat cylindrical shape by a resin material or the like. The cylindrical first end side in the axial direction is closed by the first wall 51a, and the cylindrical peripheral surface is the second wall 51b. A central hole 51c opened in the axial direction is formed in the central region of the main body.
 本体部51は、軸方向の第二端側(開口側)がハウジング20に対向するように配置されて、中心孔51cには、ハウジング20の軸部31bが挿通されている。つまり、マグネットホルダ50は、軸部31bに外嵌されることでハウジング20対して回転自在に支持されている。 The main body 51 is arranged so that the second end side (opening side) in the axial direction faces the housing 20, and the shaft portion 31b of the housing 20 is inserted into the center hole 51c. That is, the magnet holder 50 is rotatably supported with respect to the housing 20 by being externally fitted to the shaft portion 31b.
 マグネット52は、それぞれ円弧状に形成されて、N極とS極とを形成する一対の永久磁石となっており、本体部51の第二壁部51bの内側に収容されている。マグネット52は、例えば、フェライト磁石が用いられている。マグネット52は、本開示の磁石部に対応する。一対のマグネット52は、本体部51に形成された爪部によって保持されることで、軸部31bを挟んでN極とS極とが対向するように設けられている。以上により、一対のマグネット52は、N極側からS極側に向けて、素子収容室21cに収容されたホールIC70を通過する磁束mfM(図2)を発生させる。 The magnets 52 are each formed in a circular arc shape and are a pair of permanent magnets that form an N pole and an S pole, and are accommodated inside the second wall portion 51 b of the main body portion 51. For example, a ferrite magnet is used as the magnet 52. The magnet 52 corresponds to the magnet unit of the present disclosure. The pair of magnets 52 are provided so that the N pole and the S pole face each other with the shaft portion 31b interposed therebetween by being held by a claw portion formed in the main body portion 51. As described above, the pair of magnets 52 generates the magnetic flux mfM (FIG. 2) that passes through the Hall IC 70 accommodated in the element accommodating chamber 21c from the N pole side toward the S pole side.
 ヨーク53は、例えば、鉄材によって形成された扁平な筒状の部材であり、第二壁部51bとマグネット52との間に介在されている。つまり、ヨーク53は、第二壁部51bの内周面に固定されており、更に、マグネット52がヨーク53の内周側に配置されている。ヨーク53は、一対のマグネット52のN極側からS極側に向けて発生される磁束mfMを、S極側からN極側に戻すための経路を形成する。 The yoke 53 is a flat cylindrical member formed of, for example, an iron material, and is interposed between the second wall portion 51 b and the magnet 52. That is, the yoke 53 is fixed to the inner peripheral surface of the second wall portion 51 b, and the magnet 52 is disposed on the inner peripheral side of the yoke 53. The yoke 53 forms a path for returning the magnetic flux mfM generated from the north pole side to the south pole side of the pair of magnets 52 from the south pole side to the north pole side.
 ホルダカバー54は、長方形を基にして2つの短辺が外側に膨らむ円弧状となる長円形状を成して、本体部51における中心孔51cを覆うように、第一壁部51aの外側面に装着されるカバーとなっている。ホルダカバー54は、弾性を有する樹脂材料から形成されている。樹脂材料としては、例えば、ポリアセタール樹脂が使用されている。 The holder cover 54 has an oval shape in which two short sides bulge outward based on a rectangle, and covers the center hole 51c in the main body 51 so as to cover the outer surface of the first wall 51a. It is a cover to be attached to. The holder cover 54 is formed from a resin material having elasticity. For example, polyacetal resin is used as the resin material.
 フロート60は、例えば、発泡させたエボナイト等の燃料よりも比重の小さい材料により形成された浮き部材である。フロート60は、燃料の液面12に浮揚可能である。フロート60には、フロートアーム65が接続されている。フロートアーム65は、ステンレス鋼等の磁性材料によって丸棒状に形成されている。フロートアーム65の第一端側は、フロート60に形成された貫通孔61に挿通されている。また、フロートアーム65の第二端側は、マグネットホルダ50に支持されている。フロートアーム65の中間領域と第二端側との間となる部位は、ホルダカバー54における外側面をよぎるように取り回しされている。よって、ホルダカバー54は、第一壁部51aと、フロートアーム65とに挟まれる形となっている。 The float 60 is a floating member made of a material having a specific gravity smaller than that of a fuel such as foamed ebonite. The float 60 can float on the fuel liquid level 12. A float arm 65 is connected to the float 60. The float arm 65 is formed in a round bar shape from a magnetic material such as stainless steel. The first end side of the float arm 65 is inserted through a through hole 61 formed in the float 60. The second end side of the float arm 65 is supported by the magnet holder 50. A portion between the intermediate region of the float arm 65 and the second end side is routed so as to cross the outer surface of the holder cover 54. Therefore, the holder cover 54 is sandwiched between the first wall portion 51 a and the float arm 65.
 マグネットホルダ50は、フロート60およびフロートアーム65によって、液面12に追従するように、マグネット52と一体でハウジング20に対して相対回転する。ここでは、液面位が最大側(FULL側)に変化する場合は、マグネットホルダ50は、図1の時計方向に回転される。よって、液面位が最大時(FULL時)において、一対のマグネット52は、図1に示すように、右上にN極が、左下にS極が位置する。また、逆に、液面位が最小側(EMPTY側)に変化する場合は、マグネットホルダ50は、図3の反時計方向に回転される。よって、液面位が最小時(EMPTY時)において、一対のマグネット52は、図3に示すように、左上にN極が、右下にS極が位置する。 The magnet holder 50 is rotated relative to the housing 20 integrally with the magnet 52 so as to follow the liquid level 12 by the float 60 and the float arm 65. Here, when the liquid level changes to the maximum side (FULL side), the magnet holder 50 is rotated clockwise in FIG. Therefore, when the liquid level is maximum (when FULL), the pair of magnets 52 has an N pole on the upper right and an S pole on the lower left, as shown in FIG. Conversely, when the liquid level changes to the minimum side (EMPTY side), the magnet holder 50 is rotated counterclockwise in FIG. Therefore, when the liquid level is minimum (EMPTY), the pair of magnets 52 has an N pole on the upper left and an S pole on the lower right as shown in FIG.
 以下の説明における理解を深めるために、マグネットホルダ50の回転角度θについて、以下のように定義しておく。即ち、図3に示すように、ホール素子71の鉛直下方位置を、回転角度θの0°の位置とする。また、0°の位置から反時計方向となる回転角度をプラス(+θ)、時計方向となる回転角度をマイナス(-θ)とする。また、本液面検出装置100における回転角度θの取り得る範囲は、±90°未満となる所定の範囲としており、この範囲を使用範囲(図5)とする。 In order to deepen understanding in the following description, the rotation angle θ of the magnet holder 50 is defined as follows. That is, as shown in FIG. 3, the vertical downward position of the Hall element 71 is set to a position of 0 ° of the rotation angle θ. Further, a rotation angle that is counterclockwise from the 0 ° position is plus (+ θ), and a rotation angle that is clockwise is minus (−θ). Further, the range that can be taken by the rotation angle θ in the liquid level detection device 100 is a predetermined range that is less than ± 90 °, and this range is a use range (FIG. 5).
 ホールIC70は、ハウジング20に対するマグネットホルダ50の相対角度を検出する検出素子である。ホールIC70は、板状のIC基板内に設けられたホール素子71、およびホール素子71に設けられた3つのリード線72等によって構成されている。 The Hall IC 70 is a detection element that detects the relative angle of the magnet holder 50 with respect to the housing 20. The Hall IC 70 includes a Hall element 71 provided in a plate-like IC substrate, three lead wires 72 provided on the Hall element 71, and the like.
 ホール素子71は、平板状に形成され、一対のマグネット52に挟まれるように、軸部31bの内部に配置されている。具体的には、ホール素子71は、軸部31bの内側となる円柱状部21bに設けられた素子収容室21cに収容されている。図3に示すように、平板状のホール素子71の板面(両板面)は、マグネット52からの磁束mfMが印加される印加面71aとなっている。また、各リード線72は、ホール素子71から延出されており、各ターミナル35a~35cに接続されている。 The hall element 71 is formed in a flat plate shape and is disposed inside the shaft portion 31 b so as to be sandwiched between the pair of magnets 52. Specifically, the Hall element 71 is accommodated in the element accommodating chamber 21c provided in the cylindrical portion 21b that is inside the shaft portion 31b. As shown in FIG. 3, the plate surfaces (both plate surfaces) of the flat Hall element 71 are application surfaces 71 a to which the magnetic flux mfM from the magnet 52 is applied. Each lead wire 72 extends from the hall element 71 and is connected to each terminal 35a to 35c.
 ホール素子71(ホールIC70)は、電圧を印加された状態でマグネット52による磁界の作用を受けることにより、ホール効果によって、一方の印加面71aから通過する磁束mfMの密度に応じた(つまり比例した)電圧を発生させる。ホール素子71が発生する電圧は、図3に示すように、マグネット52による実際の磁束mfMに対して、印加面71aに直交する成分の大きさに応じて変化する。以下、印加面71aに直交する磁束成分を作用磁束mfMvと定義する。ホール素子71に発生した電圧は、各リード線72および各ターミナル35a~35c等を介し、検出結果を示す信号として出力されて、外部の機器に計測される。 The Hall element 71 (Hall IC 70) is subjected to the action of a magnetic field by the magnet 52 in a state where a voltage is applied, and thereby depends on the density of the magnetic flux mfM passing from one application surface 71a by the Hall effect (that is, proportional). ) Generate voltage. As shown in FIG. 3, the voltage generated by the Hall element 71 changes according to the magnitude of the component orthogonal to the application surface 71 a with respect to the actual magnetic flux mfM generated by the magnet 52. Hereinafter, the magnetic flux component orthogonal to the application surface 71a is defined as an acting magnetic flux mfMv. The voltage generated in the Hall element 71 is output as a signal indicating the detection result via each lead wire 72, each terminal 35a to 35c, and is measured by an external device.
 そして、本実施形態では、ホール素子71の印加面71aは、ハウジング20(アウター本体部31a)が燃料ポンプモジュール11に固定された状態(位置規定された状態)で、軸部31bに対して以下のように配置されている。即ち、印加面71aは、軸部31bの軸方向線と、上下方向(天地方向)線とを含む仮想面に対して、平行となるように、素子収容室21cに配置されている。換言すると、図1、図3に示すように、ホール素子71は、印加面71aが上下方向線に対して平行となるように配置されている。 In the present embodiment, the application surface 71a of the Hall element 71 is the following with respect to the shaft portion 31b in a state where the housing 20 (outer body portion 31a) is fixed to the fuel pump module 11 (position defined state). It is arranged like this. That is, the application surface 71a is disposed in the element storage chamber 21c so as to be parallel to a virtual surface including the axial line of the shaft portion 31b and the vertical direction (vertical direction) line. In other words, as shown in FIGS. 1 and 3, the Hall element 71 is disposed such that the application surface 71 a is parallel to the vertical line.
 上記のように構成される液面検出装置100においては、燃料の液面12に追従して上下移動するフロート60の往復動作は、マグネットホルダ50に保持されたフロートアーム65によって回転運動に変換され、これら一体要素50、65に伝達される。故に、マグネットホルダ50は、燃料タンク10に貯留される燃料の液面に追従し、ハウジング20に対して相対回転する。このマグネットホルダ50の相対回転により、ホール素子71に作用する作用磁束mfMvが変化することで、ホール素子71から出力される出力電圧Vは変化する。 In the liquid level detection device 100 configured as described above, the reciprocating motion of the float 60 that moves up and down following the fuel liquid level 12 is converted into a rotational motion by the float arm 65 held by the magnet holder 50. Are transmitted to these integral elements 50, 65. Therefore, the magnet holder 50 follows the liquid level of the fuel stored in the fuel tank 10 and rotates relative to the housing 20. Due to the relative rotation of the magnet holder 50, the acting magnetic flux mfMv acting on the Hall element 71 changes, whereby the output voltage V output from the Hall element 71 changes.
 一般に、図4に示すように、ホール素子71の出力電圧Vは、磁束量に比例する。本実施形態では、図5に示すように、マグネットホルダ50の回転角度θに対するホール素子71からの出力電圧Vは、sin波形出力となる。そして、回転角度θの使用範囲においては、回転角度θに対する出力電圧Vは、ほぼリニアな関係となる。 Generally, as shown in FIG. 4, the output voltage V of the Hall element 71 is proportional to the amount of magnetic flux. In the present embodiment, as shown in FIG. 5, the output voltage V from the Hall element 71 with respect to the rotation angle θ of the magnet holder 50 is a sin waveform output. In the range of use of the rotation angle θ, the output voltage V with respect to the rotation angle θ has a substantially linear relationship.
 使用範囲における回転角度θの最大位置は、液面12の最小側に向けてフロート60が移動し、マグネットホルダ50が反時計方向に最大限、回転した場合の位置であり、E点(EMPTY点)となる。E点における出力電圧Vは、例えば表示部(燃料残量計)におけるE目盛り(EMPTY目盛り)を表示するものとなる。 The maximum position of the rotation angle θ in the use range is a position when the float 60 moves toward the minimum side of the liquid surface 12 and the magnet holder 50 rotates to the maximum counterclockwise, and is the point E (EMPTY point). ) The output voltage V at the point E displays, for example, an E scale (EMPTY scale) on the display unit (fuel remaining amount meter).
 また、使用範囲における回転角度θの最小位置は、液面12の最大側に向けてフロート60が移動し、マグネットホルダ50が時計方向に最大限、回転した場合の位置であり、F点(FULL点)となる。F点における出力電圧-Vは、例えば表示部(燃料残量計)におけるF目盛り(FULL目盛り)を表示するものとなる。 Further, the minimum position of the rotation angle θ in the use range is a position when the float 60 moves toward the maximum side of the liquid surface 12 and the magnet holder 50 rotates to the maximum in the clockwise direction, and the F point (FULL) Point). The output voltage -V at the point F displays, for example, the F scale (FULL scale) on the display unit (fuel remaining amount meter).
 ここで、液面検出装置100には、燃料タンク10の外部において発生する外部磁界の影響を受ける場合がある。外部磁界は、例えば、車両が走行する走行路に設けられた各種機器、および磁界発生部品等から発生し得る。各種機器、および磁界発生部品としては、例えば、寒冷地等において道路内に埋設されるロードヒータ、電気自動車やハイブリッド自動車等のバッテリに非接触充電を行う際の充電器用のコイル、道路内に埋設される交通インフラ用の機器、および電車用の線路等がある。外部磁界の磁束mfOとしては、例えば、本実施形態では、図3に示すように、路面から垂直方向に液面検出装置100に向かうものを想定している。 Here, the liquid level detection device 100 may be affected by an external magnetic field generated outside the fuel tank 10. The external magnetic field can be generated from, for example, various devices provided on a travel path on which the vehicle travels, and magnetic field generating components. Various devices and magnetic field generating components include, for example, road heaters embedded in roads in cold districts, coils for chargers for non-contact charging of batteries such as electric vehicles and hybrid vehicles, embedded in roads There are equipment for transportation infrastructure and railway lines for trains. As the magnetic flux mfO of the external magnetic field, for example, in the present embodiment, as shown in FIG. 3, it is assumed that the magnetic field goes to the liquid level detection device 100 in the vertical direction from the road surface.
 本実施形態では、上記したように、ホール素子71の印加面71aが、上下方向線に対して平行となる。つまり、ホール素子71の印加面71aは、外部磁界の方向と平行となる。よって、外部磁界は、ホール素子71の印加面71aに対して直交するようには作用しないものとなるので、ホール素子71は外部磁界を検出しないものとすることができる。よって、外部磁界による影響をなくすことができる。 In the present embodiment, as described above, the application surface 71a of the Hall element 71 is parallel to the vertical line. That is, the application surface 71a of the Hall element 71 is parallel to the direction of the external magnetic field. Therefore, the external magnetic field does not act so as to be orthogonal to the application surface 71a of the Hall element 71, so that the Hall element 71 can be configured not to detect the external magnetic field. Therefore, the influence by the external magnetic field can be eliminated.
 尚、比較例として、図6、図7に示すように、ホール素子71の印加面71aが外部磁界の方向に対して直交するような場合であると、ホール素子71に発生する作用磁束mfMvの方向と、外部磁界の方向とが同一線上に並ぶものとなってしまう。図6に示すように、両者の向きが逆向きであると、図8に示すように、ホール素子71から出力される出力電圧Vは、本来の出力電圧Vから外部磁界による電圧分が差し引かれたものとなる。 As a comparative example, as shown in FIGS. 6 and 7, when the application surface 71a of the Hall element 71 is orthogonal to the direction of the external magnetic field, the acting magnetic flux mfMv generated in the Hall element 71 is The direction and the direction of the external magnetic field are aligned on the same line. As shown in FIG. 6, when both directions are opposite, the output voltage V output from the Hall element 71 is subtracted from the original output voltage V by a voltage due to an external magnetic field as shown in FIG. It will be.
 つまり、本来、回転角度θがE点にあって、E目盛りを表示すべきところを、「まだ多少燃料がある」というように、液面12位置が実際よりも高い側にずれた表示となってしまう。よって、ユーザに対しては、燃料の補給のための表示が遅れることとなり、ガス欠を招いてしまうおそれがある。本実施形態では、このような事態の発生を防止できる。 In other words, when the rotation angle θ is originally at the point E and the E scale should be displayed, the display shows that the position of the liquid level 12 is shifted to a higher side than the actual level, such as “there is still some fuel”. End up. Therefore, the display for fuel replenishment is delayed for the user, and there is a possibility of causing a gas shortage. In this embodiment, occurrence of such a situation can be prevented.
 (第2実施形態)
 第2実施形態の液面検出装置100Aを図9に示す。第2実施形態は、上記第1実施形態に対して、ホール素子71の印加面71aの方向を変更し、且つ、液面12が最小側となる場合のホール素子71に対するマグネット52による作用磁束mfMvの方向を、外部磁界の磁束mfOの方向と同一になるようにしたものである。
(Second Embodiment)
A liquid level detection device 100A of the second embodiment is shown in FIG. The second embodiment is different from the first embodiment in that the direction of the application surface 71a of the Hall element 71 is changed, and the magnetic flux mfMv applied by the magnet 52 to the Hall element 71 when the liquid level 12 is at the minimum side. Is the same as the direction of the magnetic flux mfO of the external magnetic field.
 具体的には、軸部31bに対して、ホール素子71の印加面71aは、水平方向を向くように配置されている。また、回転角度θの0°の位置をホール素子71の水平方向の左側位置として、液面12が最小側となるときに、図9に示すように、マグネット52のN極が左下となり、またS極が右上となる。よって、液面12が最小側に向けてマグネットホルダ50が回転すると、マグネット52による磁束mfMは、ホール素子71を挟んで、外部磁界の発生側の領域から反対側の領域に向かう。つまり、ここでは、磁束mfMは、右上を向くものとなる。よって、磁束mfMに対して、印加面71aに直交する直交成分、つまり、ホール素子71に対する実際の作用磁束mfMvは、上側を向く。よって、作用磁束mfMvの方向は、外部磁界の磁束mfOの方向と同一となっている。 Specifically, the application surface 71a of the Hall element 71 is arranged so as to face the horizontal direction with respect to the shaft portion 31b. Further, when the position of the rotation angle θ of 0 ° is the left side position of the hall element 71 in the horizontal direction and the liquid level 12 is at the minimum side, as shown in FIG. The south pole is on the upper right. Therefore, when the magnet holder 50 rotates with the liquid surface 12 facing the minimum side, the magnetic flux mfM by the magnet 52 goes from the region on the generation side of the external magnetic field to the region on the opposite side across the Hall element 71. That is, here, the magnetic flux mfM is directed to the upper right. Therefore, the orthogonal component orthogonal to the application surface 71a, that is, the actual working magnetic flux mfMv with respect to the Hall element 71 is directed upward with respect to the magnetic flux mfM. Therefore, the direction of the acting magnetic flux mfMv is the same as the direction of the magnetic flux mfO of the external magnetic field.
 尚、フロートアーム65の位置は、上記回転角度θの0°の位置を基に、液面12の最大位置、最小位置が得られるように設定されている。 In addition, the position of the float arm 65 is set so that the maximum position and the minimum position of the liquid surface 12 can be obtained based on the position of 0 ° of the rotation angle θ.
 本実施形態においては、作用磁束mfMvの方向が、外部磁界の磁束mfOの方向と同一となるので、作用磁束mfMvに外部磁界の磁束mfOが加えられた形でホール素子71に作用する。よって、図10に示すように、出力電圧Vは、外部磁界がない場合(図10中の実線)に対して、出力電圧Vが増加する形(図10中の破線)となる。本実施形態では、本来、回転角度θがE点にあって、E目盛りを表示すべきところを、液面12位置が実際よりも低い側にずれた表示となる。よって、ユーザに対しては、燃料の補給のための表示を早めることができ、ガス欠に至る事態を避けることが可能となる。 In this embodiment, since the direction of the acting magnetic flux mfMv is the same as the direction of the magnetic flux mfO of the external magnetic field, the magnetic flux mfO of the external magnetic field is applied to the working magnetic flux mfMv. Therefore, as shown in FIG. 10, the output voltage V takes a form in which the output voltage V increases (broken line in FIG. 10) when there is no external magnetic field (solid line in FIG. 10). In the present embodiment, the position where the rotation scale θ is at the E point and the E scale should be displayed is a display in which the position of the liquid level 12 is shifted to a lower side than the actual position. Therefore, it is possible to speed up the display for replenishing fuel to the user, and it is possible to avoid a situation where the user runs out of gas.
 (その他の実施形態)
 上記第1実施形態では、ハウジング20(アウター本体部31a)が燃料ポンプモジュール11に固定された状態(位置規制された状態)で、ホール素子71の印加面71aの方向を軸部31bに対して相対的に設定することで、印加面71aが外部磁界の方向と平行になるようにした。しかしながら、ホール素子71が軸部31bに対して、所定の方向で設定されたものについて、ハウジング20(アウター本体部31a)の向きを調整して、燃料ポンプモジュール11に固定することで、印加面71aが外部磁界の方向と平行になるようにしてもよい。
(Other embodiments)
In the first embodiment, in the state in which the housing 20 (outer body portion 31a) is fixed to the fuel pump module 11 (position-regulated state), the direction of the application surface 71a of the Hall element 71 is set to the shaft portion 31b. By setting them relatively, the application surface 71a was made parallel to the direction of the external magnetic field. However, with respect to the one in which the Hall element 71 is set in a predetermined direction with respect to the shaft portion 31b, the orientation of the housing 20 (outer main body portion 31a) is adjusted and fixed to the fuel pump module 11, thereby applying the application surface. 71a may be parallel to the direction of the external magnetic field.
 また、上記各実施形態では、外部磁界は、例えば、路面から垂直方向に液面検出装置100、100Aに向かうものを想定した。これに対して、水平方向に向かう外部磁界が想定される場合であれば、上記各実施形態におけるホール素子71、およびマグネット52の相対的な位置関係(構造)を90度、回転させたものを設定することで対応が可能となる。 In each of the above embodiments, the external magnetic field is assumed to be directed from the road surface to the liquid level detection devices 100 and 100A in the vertical direction, for example. On the other hand, if an external magnetic field directed in the horizontal direction is assumed, the relative positional relationship (structure) of the Hall element 71 and the magnet 52 in each of the above embodiments is rotated by 90 degrees. It becomes possible to respond by setting.
 また、上記各実施形態では、本開示の液面検出装置を車両用の燃料タンク10内の燃料の液面12を検出するものに適用したが、これに限定されることなく、エンジンオイル、ブレーキオイル、あるいはトルクコンバータ用のATF等液面を検出するものに適用してもよい。 Further, in each of the above embodiments, the liquid level detection device of the present disclosure is applied to one that detects the liquid level 12 of the fuel in the fuel tank 10 for a vehicle. However, the present invention is not limited to this. You may apply to what detects liquid levels, such as oil or ATF for torque converters.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

 
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (6)

  1.  容器(10)に貯留された液体の液面(12)の高さを検出する液面検出装置であって、
     前記液面(12)に追従して回転する回転体(50)と、
     前記容器(10)側に固定される本体部(31a)に設けられて、前記回転体(50)の回転を支持する軸部(31b)と、
     前記軸部(31b)を挟むように前記回転体(50)に固定されて、前記軸部(31b)を貫通する磁束(mfM)を発生させる一対の磁石部(52)と、
     前記軸部(31b)の内部に配置されて、前記回転体(50)の回転位置に伴う前記磁石部(52)からの前記磁束(mfM)に応じて、ホール効果による電圧を発生させるホール素子(71)とを備え、
     前記ホール素子(71)の前記磁石部(52)からの前記磁束(mfM)が印加される印加面(71a)は、前記容器(10)の外部において発生する外部磁界の方向と平行となるように設定されている液面検出装置。
    A liquid level detection device for detecting the height of a liquid level (12) of a liquid stored in a container (10),
    A rotating body (50) that rotates following the liquid surface (12);
    A shaft portion (31b) provided on a main body portion (31a) fixed to the container (10) side and supporting the rotation of the rotating body (50);
    A pair of magnet portions (52) that are fixed to the rotating body (50) so as to sandwich the shaft portion (31b) and generate magnetic flux (mfM) that penetrates the shaft portion (31b);
    Hall element which is arranged inside the shaft part (31b) and generates a voltage due to the Hall effect according to the magnetic flux (mfM) from the magnet part (52) accompanying the rotational position of the rotating body (50). (71)
    The application surface (71a) to which the magnetic flux (mfM) from the magnet part (52) of the Hall element (71) is applied is parallel to the direction of the external magnetic field generated outside the container (10). Liquid level detection device set to.
  2.  前記軸部(31b)に対する前記ホール素子(71)の方向が相対的に設定されることで、前記印加面(71a)が前記外部磁界(mfO)の方向と平行となっている請求項1に記載の液面検出装置。 The direction of the Hall element (71) relative to the shaft portion (31b) is set relatively, so that the application surface (71a) is parallel to the direction of the external magnetic field (mfO). The liquid level detection apparatus described.
  3.  前記容器(10)に対する前記本体部(31a)の方向が相対的に設定されることで、前記印加面(71a)が前記外部磁界(mfO)の方向と平行となっている請求項1に記載の液面検出装置。 The direction of the said main-body part (31a) with respect to the said container (10) is set relatively, The said application surface (71a) is parallel to the direction of the said external magnetic field (mfO). Liquid level detection device.
  4.  容器(10)に貯留された液体の液面(12)の高さを検出する液面検出装置であって、
     前記液面(12)に追従して回転する回転体(50)と、
     前記容器(10)側に固定される本体部(31a)に設けられて、前記回転体(50)の回転を支持する軸部(31b)と、
     前記軸部(31b)を挟むように前記回転体(50)に固定されて、前記軸部(31b)を貫通する磁束(mfM)を発生させる一対の磁石部(52)と、
     前記軸部(31b)の内部に配置されて、前記回転体(50)の回転位置に伴う前記磁石部(52)からの前記磁束(mfM)に応じて、ホール効果による電圧を発生させるホール素子(71)とを備え、
     前記液面(12)が最小側となるときに発生する前記磁石部(52)による前記磁束(mfM)に対して、前記ホール素子(71)の前記磁束(mfM)が印加される印加面(71a)に直交する直交成分(mfMv)の方向は、前記容器(10)の外部において発生する外部磁界の方向と同一となるように設定されている液面検出装置。
    A liquid level detection device for detecting the height of a liquid level (12) of a liquid stored in a container (10),
    A rotating body (50) that rotates following the liquid surface (12);
    A shaft portion (31b) provided on a main body portion (31a) fixed to the container (10) side and supporting the rotation of the rotating body (50);
    A pair of magnet portions (52) that are fixed to the rotating body (50) so as to sandwich the shaft portion (31b) and generate magnetic flux (mfM) that penetrates the shaft portion (31b);
    Hall element which is arranged inside the shaft part (31b) and generates a voltage due to the Hall effect according to the magnetic flux (mfM) from the magnet part (52) accompanying the rotational position of the rotating body (50). (71)
    Application surface (mfM) of the Hall element (71) is applied to the magnetic flux (mfM) generated by the magnet part (52) generated when the liquid level (12) is at the minimum side ( 71. The liquid level detection device set so that the direction of the orthogonal component (mfMv) orthogonal to 71a) is the same as the direction of the external magnetic field generated outside the container (10).
  5.  前記印加面(71a)は、前記外部磁界の方向と直交し、
     前記磁石部(52)による前記磁束(mfM)の方向は、前記ホール素子(71)を挟んで、前記外部磁界の発生側の領域から反対側の領域に向かうように設定されている請求項4に記載の液面検出装置。
    The application surface (71a) is orthogonal to the direction of the external magnetic field,
    The direction of the magnetic flux (mfM) by the magnet part (52) is set so as to go from the region on the generation side of the external magnetic field to the region on the opposite side across the Hall element (71). The liquid level detection apparatus described in 1.
  6.  車両に搭載されるものであって、
     前記外部磁界は、前記車両が走行する走行路に設けられた機器から発生される磁界である請求項1~請求項5のいずれか1つに記載の液面検出装置。

     
    Mounted on the vehicle,
    The liquid level detection device according to any one of claims 1 to 5, wherein the external magnetic field is a magnetic field generated from a device provided on a travel path on which the vehicle travels.

PCT/JP2015/004214 2014-09-11 2015-08-21 Liquid surface detection device WO2016038815A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-185336 2014-09-11
JP2014185336A JP6365155B2 (en) 2014-09-11 2014-09-11 Liquid level detector

Publications (1)

Publication Number Publication Date
WO2016038815A1 true WO2016038815A1 (en) 2016-03-17

Family

ID=55458590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004214 WO2016038815A1 (en) 2014-09-11 2015-08-21 Liquid surface detection device

Country Status (2)

Country Link
JP (1) JP6365155B2 (en)
WO (1) WO2016038815A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214844A (en) * 2004-01-30 2005-08-11 Hitachi Ltd Liquid level detector
JP2006208242A (en) * 2005-01-28 2006-08-10 Denso Corp Liquid level detector, and output regulation method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214844A (en) * 2004-01-30 2005-08-11 Hitachi Ltd Liquid level detector
JP2006208242A (en) * 2005-01-28 2006-08-10 Denso Corp Liquid level detector, and output regulation method therefor

Also Published As

Publication number Publication date
JP6365155B2 (en) 2018-08-01
JP2016057229A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
WO2014156023A1 (en) Liquid-level detection device
JP5825520B2 (en) Liquid level detector
JP2007132920A (en) Liquid level detector
WO2016038815A1 (en) Liquid surface detection device
US10416023B2 (en) Liquid surface level sensor
JP2014137271A (en) Liquid level detection module
JP5678865B2 (en) Mounting structure of liquid level detector
JP5621517B2 (en) Liquid level detector
JP6107462B2 (en) Liquid level detector
JP6319058B2 (en) Liquid level detector
JP4957644B2 (en) Liquid level detector
JP6287772B2 (en) Liquid level detector
JP2013190373A (en) Liquid level detector
JP2006220561A (en) Liquid level sensor
JP6477067B2 (en) Liquid level detector
JP6372180B2 (en) Liquid level detector
JP2006242777A (en) Liquid level detection device and its output adjusting method
JP2013171015A (en) Liquid level detector
JP2006208242A (en) Liquid level detector, and output regulation method therefor
JP2013205195A (en) Liquid level detection device
JP2006208117A (en) Liquid level detector
JP2004325104A (en) Liquid level sensor
JP2016125819A (en) Liquid level detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840598

Country of ref document: EP

Kind code of ref document: A1