[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016038868A1 - Method for manufacturing liquid crystal display protection plate - Google Patents

Method for manufacturing liquid crystal display protection plate Download PDF

Info

Publication number
WO2016038868A1
WO2016038868A1 PCT/JP2015/004522 JP2015004522W WO2016038868A1 WO 2016038868 A1 WO2016038868 A1 WO 2016038868A1 JP 2015004522 W JP2015004522 W JP 2015004522W WO 2016038868 A1 WO2016038868 A1 WO 2016038868A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
resin
cooling roll
plate
Prior art date
Application number
PCT/JP2015/004522
Other languages
French (fr)
Japanese (ja)
Inventor
小野 陽二
一男 船崎
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2016547693A priority Critical patent/JP6542780B2/en
Priority to CN201580047965.9A priority patent/CN106687278B/en
Priority to KR1020177007867A priority patent/KR102365231B1/en
Publication of WO2016038868A1 publication Critical patent/WO2016038868A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/885External treatment, e.g. by using air rings for cooling tubular films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating

Definitions

  • the present invention relates to a method for manufacturing a liquid crystal display protective plate using a resin plate. More specifically, the present invention relates to a method for producing a protective plate for a liquid crystal display, which includes a step of processing a resin plate at a high temperature, and the in-plane retardation value is controlled within a suitable range.
  • ⁇ Liquid crystal displays may have a protective plate on the front side to prevent scratches on the surface. It has been studied to use a resin plate on which various functional films are formed as a protective plate. Various types of functional films are provided on at least one surface of the resin plate, such as a scratch-resistant (hard coat) and low-reflective cured film, an anti-glare film to prevent glare, and dirt. Alternatively, there are an antifouling film that makes it less noticeable, an antistatic film that prevents the adhesion of dust, a transparent conductive film required for a touch panel, and the like.
  • Patent Document 1 discloses that a methacrylic resin plate is used as a substrate and a cured film is formed on at least one surface thereof and used as a display window protection plate for a liquid crystal portable information terminal.
  • Patent Document 2 discloses that a laminated plate formed by laminating a methacrylic resin layer on one surface of a polycarbonate resin layer is used as a substrate, a cured film is formed on the methacrylic resin layer, and used for a liquid crystal display cover. It is disclosed.
  • a PET film polyethylene terephthalate film
  • a functional film is previously provided on the surface in addition to a method of curing an ultraviolet curable resin as described in Patent Documents 1 and 2 after being laminated on a substrate.
  • There are known methods such as a method of bonding an adhesive with an adhesive or a pressure sensitive adhesive, a method of applying and dispersing a solution dispersed and dissolved in water or an organic solvent, and a method of drying after laminating a thermosetting resin on a substrate.
  • the liquid crystal display protective plate is installed on the front side (viewer side) of the liquid crystal display. The viewer sees the screen of the liquid crystal display through the liquid crystal display protective plate.
  • the conventional liquid crystal display protective plate hardly changes the polarization of the light emitted from the liquid crystal display, which is polarized light. For this reason, when viewing the screen with polarized sunglasses, depending on the angle formed by the polarization axis of the emitted light and the transmission axis of the polarized sunglasses, the screen may be dark and the image may be difficult to see.
  • a liquid crystal display protective plate that can suppress a reduction in image visibility when a liquid crystal display screen is viewed through a polarizing filter such as polarized sunglasses has been studied.
  • Patent Document 3 discloses that the in-plane retardation value is 85 to 300 nm.
  • a resin plate used for a liquid crystal display protective plate must satisfy various required performances such as a retardation value, uniformity of appearance quality and thickness, shrinkage during heating, direction of warping and its size.
  • the temperature of the resin being molded, the peripheral speed ratio of a plurality of cooling rolls, and the resin formed in the gap between the first cooling roll and the second cooling roll called a bank It is manufactured by adjusting various manufacturing conditions such as the size of the pool.
  • it is difficult to satisfy all of the required performance.
  • the resin plate used for the liquid crystal display protective plate may be heated by being subjected to a drying process in order to adjust the state of warping or the like and sandwiched between curved plates for giving a warped shape.
  • the extruded resin plate When the extruded resin plate is manufactured under the manufacturing conditions satisfying the in-plane retardation value of the resin plate and the other required performance described above, and then subjected to heat treatment, for example, to adjust the state of warping, the surface of the resin plate In some cases, the retardation value may be lowered. In addition, when an extruded resin plate is manufactured so that the in-plane retardation value of the resin plate does not decrease even when the heat treatment is performed, the above-described other required performance other than the retardation value may not be satisfied.
  • An object of the present invention is to provide a method of manufacturing a liquid crystal display protective plate whose in-plane retardation value is controlled within a predetermined range.
  • One aspect of a method for producing a liquid crystal display protective plate comprising a resin plate according to the present invention includes at least the following steps.
  • the process of manufacturing a liquid crystal display protective board through the process of heating the said resin board at the temperature of 50 degreeC or more for 1 minute or more.
  • the in-plane retardation value of the liquid crystal display protective plate is 50 to 210 nm, and the in-plane retardation value of the liquid crystal display protective plate with respect to the in-plane retardation value of the resin plate before the heating step is performed.
  • the reduction rate of the retardation value is 5% or more.
  • the liquid crystal display protective plate described above can have an appropriate in-plane retardation when viewing the liquid crystal display through polarized sunglasses.
  • the liquid crystal display protective plate of the present invention is a substrate for a liquid crystal display protective plate, even if it is a resin plate whose in-plane retardation value does not fall within a desired range, a specific heating step for the resin plate It has been found that it can be suitably used as a protective plate for a liquid crystal display by manufacturing with the above. As a result, it is possible to adjust the manufacturing conditions by giving priority to characteristics other than the retardation value.
  • the reduction rate is preferably 15% or more.
  • the value of V3 / V2 is 1. It is preferable that it is 000 or more.
  • the value of V4 / V2 is preferably 1.000 or more.
  • the resin plate is manufactured by extruding a thermoplastic resin laminate, and unless otherwise specified, refers to the resin plate before the heating step.
  • a liquid crystal display protective plate is demonstrated as what added the heating process to the manufactured resin plate. More specifically, the resin plate is a substrate that has been extruded and before undergoing various processes, and the display protection plate is protected through some of various processes such as coating, bonding, and warping correction. It is processed into a plate. In at least one of the various steps, the substrate is heated.
  • the display protective plate is a resin plate having an appropriate retardation value through the various steps described above.
  • the method for producing a liquid crystal display protective plate of the present invention can provide a liquid crystal display protective plate having an appropriate in-plane retardation value when viewing a liquid crystal display through polarized sunglasses.
  • the resin plate used for the liquid crystal display protective plate of the present invention has a methacrylic resin layer laminated on at least one surface of a polycarbonate resin layer. Since the methacrylic resin layer is laminated on the polycarbonate resin layer, the transparency, impact resistance, and scratch resistance of the plate are excellent. A resin plate is excellent in production efficiency by being manufactured by an extrusion method.
  • the “resin plate” may be described as “extruded resin plate” as appropriate.
  • the methacrylic resin constituting the methacrylic resin layer contains a structural unit derived from a methacrylic acid ester.
  • the content of the structural unit derived from the methacrylic acid ester is preferably 50% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more.
  • the content of the structural unit derived from the methacrylic acid ester may be 100% by mass. When the content of the structural unit derived from the methacrylic acid ester is within the above range, the transparency is good.
  • methacrylic acid ester examples include methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, 2-hydroxyethyl methacrylate and the like.
  • methyl methacrylate is contained in an amount of 50% by mass or more.
  • the copolymer with the monomer which can be copolymerized with methyl methacrylate may be sufficient.
  • monomers that can be copolymerized with methyl methacrylate include methacrylic acid esters other than methyl methacrylate.
  • methacrylic acid esters include ethyl methacrylate, butyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, 2-hydroxyethyl methacrylate and the like.
  • methacrylic acid monocyclic aliphatic hydrocarbon esters such as cyclohexyl methacrylate, cyclopentyl methacrylate, cycloheptyl methacrylate; 2-norbornyl methacrylate, 2-methyl-2-norbornyl methacrylate, 2-ethyl-2 -Norbornyl methacrylate, 2-isobornyl methacrylate, 2-methyl-2-isobornyl methacrylate, 2-ethyl-2-isobornyl methacrylate, 8-tricyclo [5.2.1.0 2,6 ] Decanyl methacrylate, 8-methyl-8-tricyclo [5.2.1.0 2,6 ] decanyl methacrylate, 8-ethyl-8-tricyclo [5.2.1.0 2,6 ] decanyl methacrylate, 2-adamantyl methacrylate, 2-methyl-2-adamantyl methacrylate, 2 Methacrylic acid polycyclic aliphatic hydrocarbon esters
  • Examples of monomers that can be copolymerized with methyl methacrylate include methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, 2-acrylate Examples also include acrylic acid esters such as hydroxyethyl, styrenes, acrylonitrile, methacrylonitrile, maleic anhydride, phenylmaleimide, cyclohexylmaleimide and the like. Such monomers may be used alone or in combination of two or more.
  • the methacrylic resin is a copolymer of methyl methacrylate and methyl acrylate, the transparency is excellent.
  • a preferable monomer composition in this case is that the total amount of monomers is 100% by mass, and methyl methacrylate is preferably 80% by mass or more, more preferably 85% by mass or more, and 90% by mass or more. Even more preferably. Methyl methacrylate may be 100% by mass.
  • Methacrylic resin used in an embodiment of the present invention has a melt volume flow rate to be measured in accordance with IS0-1133 (MVR) is preferably 0.5 ⁇ 20 (cm 3/10 min, 230 °C, 37.3N ). When the MVR is in this range, the stability of extrusion molding is good.
  • the methacrylic resin used in one embodiment of the present invention may contain known additives in order to improve impact resistance, light resistance, and the like.
  • Additives include antioxidants, thermal degradation inhibitors, UV absorbers, light stabilizers, lubricants, mold release agents, polymer processing aids, antistatic agents, flame retardants, dyes and pigments, light diffusing agents, organic dyes , Matting agents, impact resistance modifiers, phosphors and the like.
  • melt volume flow rate to be measured in accordance with ISO-1133 is preferably 1 ⁇ 20 (cm 3/10 min, 300 ° C., 11.8 N). When the MVR is in this range, the stability of extrusion molding is good.
  • the polycarbonate resin used in one embodiment of the present invention may contain a known additive in order to improve light resistance and the like.
  • Additives include antioxidants, thermal degradation inhibitors, UV absorbers, light stabilizers, lubricants, mold release agents, polymer processing aids, antistatic agents, flame retardants, dyes and pigments, light diffusing agents, organic dyes , Matting agents, impact resistance modifiers, phosphors and the like.
  • the resin plate according to an embodiment of the present invention is preferable in that a methacrylic resin layer is laminated on both surfaces of a polycarbonate resin layer, so that it is excellent in scratch resistance and warpage due to humidity change is less likely to occur.
  • the thickness of the resin plate in one embodiment of the present invention is preferably 0.4 to 2 mm, more preferably 0.5 to 1.5 mm. If it is too thin, the rigidity tends to be insufficient. If it is too thick, it tends to hinder weight reduction of liquid crystal display devices.
  • the thickness of the methacrylic resin layer of the resin plate is preferably 20 to 200 ⁇ m. Within this range, the balance between scratch resistance and impact resistance is excellent. More preferably, it is 25 to 150 ⁇ m, and further preferably 30 to 100 ⁇ m.
  • the resin plate obtained by one embodiment of the present invention may be provided with a cured coating on at least one surface thereof.
  • functions such as scratch resistance and low reflectivity can be imparted.
  • the thickness of the scratch-resistant (hard coat property) cured film is preferably 2 to 30 ⁇ m, more preferably 3 to 10 ⁇ m. If it is too thin, the surface hardness will be insufficient, and if it is too thick, cracks may occur due to bending during the production process.
  • the thickness of the low reflective cured coating is preferably 80 to 200 nm, more preferably 100 to 150 nm. This is because the low reflection performance is insufficient if it is too thin or too thick.
  • the resin plate in one embodiment of the present invention is manufactured by coextrusion.
  • the polycarbonate resin and the methacrylic resin are heated and melted, extruded from a wide-shaped discharge port called a T die, and sandwiched between a pair of rolls including a first cooling roll and a second cooling roll to form a sheet-like thermoplastic resin laminate. It is formed. Thereafter, the thermoplastic resin laminate is further wound around the second cooling roll and then cooled by winding around the third cooling roll. Further, the thermoplastic resin laminate may be further cooled by a further cooling roll. Then, a resin plate is formed by taking up the thermoplastic resin laminate with a take-up roll. In such a process, the resin plate is manufactured by extruding a thermoplastic resin laminate in which a methacrylic resin layer is laminated on at least one surface of a polycarbonate resin layer from a T die in a molten state.
  • the manufactured resin plate is further subjected to a heating process to manufacture a liquid crystal display protection plate.
  • the heating process will be described later.
  • FIG. 1 shows an outline of a method for producing a resin plate by a co-extrusion apparatus comprising a T die 11, first to third cooling rolls 12 to 14, and a take-up roll 15 as one embodiment.
  • the resin extruded from the T die 11 is sandwiched between a pair of rolls including a first cooling roll 12 and a second cooling roll 13 to form a sheet-like thermoplastic resin laminate.
  • the thermoplastic resin laminate is further cooled by the third cooling roll 14 and taken up by the take-up roll 15 composed of a pair of rolls, whereby the resin plate 16 is formed.
  • the present invention is not limited to this form.
  • the T die 11 can be either a single manifold type or a multi-manifold type, but the multi-manifold type is preferable because the thickness accuracy of each layer is excellent.
  • As the cooling roll both a metal rigid roll and a metal elastic roll can be used.
  • Retardation is the phase difference between the light in the molecular main chain direction and the light perpendicular to it.
  • a polymer can be formed in an arbitrary shape by thermoforming.
  • a certain stress is generated in the heating and cooling processes, and the molecules are oriented to cause retardation. Therefore, in order to control retardation, it is necessary to control molecular orientation.
  • the orientation of the molecules is generated by, for example, stress at the time of molding near the glass transition temperature of the polymer.
  • the in-plane retardation value, appearance quality and thickness uniformity, warpage direction and size of the resin plate are controlled by adjusting various manufacturing conditions.
  • the influence of the bank, the influence of the peripheral speed ratio, the influence of the thickness of the resin plate, and the heating process will be described separately.
  • the configuration shown in FIG. 1 is used as appropriate.
  • a bank is a resin pool formed in the gap between the first cooling roll 12 and the second cooling roll 13.
  • the bank becomes larger and can be adjusted by increasing the amount of resin supplied to the roll or decreasing the roll speed.
  • the bank amount was adjusted by changing the resin supply amount, and the magnitude of the amount was visually evaluated.
  • the peripheral speed ratio is the ratio of the peripheral speed of any other cooling roll and take-up roll to the second cooling roll 13.
  • the peripheral speed ratio of the take-up roll 15 is larger. This is probably because the resin molecules are oriented when a large tensile stress is applied.
  • the peripheral speed ratio between the second cooling roll 13 and the take-up roll 15 is preferably 0.98 or more, and more preferably 1.000 or more. The reason is that when the peripheral speed ratio between the second cooling roll 13 and the take-off roll 15 is less than 0.98, the thermoplastic resin laminate is insufficient in tension and is in contact with the third cooling roll 14. This is because there is a possibility that the body cannot maintain a close contact state and peels off from the roll, so that a beautiful surface state cannot be maintained.
  • the temperature for peeling from the third cooling roll 14 is preferably in the range of + 5 ° C. to ⁇ 40 ° C. from the vicinity of the glass transition temperature of polycarbonate. The reason is that a clean surface shape cannot be obtained if the temperature is too high or too low near the glass transition temperature.
  • the peripheral speed of the second cooling roll is V2
  • the peripheral speed of the third cooling roll is V3
  • the peripheral speed of the take-up roll is V4
  • the third cooling roll and the second cooling roll The peripheral speed ratio may be described as (V3 / V2)
  • the peripheral speed ratio between the take-up roll and the second cooling roll may be described as (V4 / V2).
  • the in-plane retardation value is smaller when the metal elastic roll is used.
  • the metal elastic roll generally has a small bank amount and the molecular orientation by the bank forming is small.
  • the peripheral speed ratio between the second cooling roll 13 and the third cooling roll 14 needs to be adjusted in order to control proper in-plane retardation with the metal elastic roll.
  • Influence of thickness Thickness control in the width direction orthogonal to the extrusion direction in extrusion molding is generally performed by the gap between the first cooling roll 12 and the second cooling roll 13, the extrusion amount associated with the resin supply amount, and the second cooling. It is controlled by the peripheral speed of the roll and the bank amount.
  • the larger the bank amount the greater the pressure applied to the first cooling roll 12 and the second cooling roll 13, and the cooling roll is pushed and bent. Therefore, as the bank amount increases, the thickness distribution in the width direction perpendicular to the flow direction tends to be thick near the center and thin at both ends in a drum shape.
  • the bank amount at both ends in the width direction may be made larger than the bank amount near the center. In that case, the retardation values at both ends in the width direction are increased. Therefore, in order to control the variation of the retardation value in the width direction and the decrease rate of the retardation value to an appropriate value, it is necessary to optimize the thickness distribution in the width direction.
  • the thickness ratio (TC / TS) between the average thickness (TS) at both ends within the effective range in the width direction orthogonal to the extrusion direction and the average thickness (TC) near the center exceeds 1.0. It has been found that it is preferable to set it to 1.05 or less.
  • the average thickness (TC) near the center may be calculated at the center 100 mm in the width direction orthogonal to the extrusion direction of the resin plate 16, and the average thickness (TS) at both ends is one end in the width direction orthogonal to the extrusion direction.
  • the average thickness for 100 mm from the position 100 mm away from the position to the position 200 mm away is the thickness of one end, and the average thickness for 100 mm from the position 100 mm away from the other end to the position 200 mm away Is the thickness of the other end, and the average thickness for each end of 100 mm (average thickness of 200 mm in total) may be calculated.
  • the width direction is a direction orthogonal to the direction in which the resin plate is conveyed in the extrusion apparatus, and a part of the width direction refers to a region including an arbitrary length of the width of the resin plate.
  • the in-plane retardation value after heating is 50 to 210 nm, and the reduction rate of the in-plane retardation value before and after heating is 5% or more.
  • the obtained resin plate is preferable because the effects of the present application are exhibited.
  • the reduction rate of the in-plane retardation value before and after heating is more preferably 15% or more.
  • the rate of decrease in the in-plane retardation value before and after heating is the rate of decrease in the in-plane retardation value of the liquid crystal display protection plate relative to the in-plane retardation value of the resin plate before the heating step. be able to.
  • the thickness ratio (TC / TS) exceeds 1.05, the bank amount becomes too large and may not be stably manufactured.
  • the thickness ratio is 1.0 or less, the bank amount is too small. Therefore, the in-plane retardation value is small.
  • the thickness ratio of the manufactured extruded resin plate is set to be larger than 1.00 and within a numerical range of 1.05 or less. It is preferable to control the formation (bank amount). If the thickness control is insufficient, for example, a region where the retardation value deviates from the intended numerical range is formed at the end in the width direction of the extruded resin plate, which may not be suitable as a product. Therefore, it is preferable to control the thickness of the resin plate in order to stably produce a good product.
  • the resin plate (extruded resin plate) according to an embodiment of the present invention has a reduction rate of the in-plane retardation value in the heating process of 5% or more.
  • 5% the number of the in-plane retardation value in the heating process
  • the bank amount is too large, there may be a problem that the retardation value of the resin plate becomes too large.
  • the reduction rate of the in-plane retardation value in the heating process is 10% or more, particularly 15% or more, the occurrence of the above problem can be suppressed.
  • the reduction rate of the in-plane retardation value in the heating process is preferably 90% or less. If it is larger than this, the shrinkage rate when the resin plate is heated tends to increase. For example, the heating of the process of laminating and curing a photocurable resin may cause wrinkles in the laminated resin layer, or before and after the heating. There may be a problem that the dimensional change becomes too large and the handling ease such as transporting and fixing the plate is poor. For example, it is conceivable to reduce the bank amount.
  • the bank may not be temporarily formed due to slight temperature unevenness of the bank, etc., and the first cooling roll or the second cooling roll does not adhere to the molten resin, and the surface property of the resin plate is There may be a problem that it is inferior or thickness unevenness becomes large.
  • the reduction rate of the retardation value is more preferably 85% or less, and still more preferably 80% or less.
  • the heating process in one Embodiment of this invention heats a resin board 50 degreeC or more and 1 minute or more.
  • a heating process the following processes are included, for example.
  • a step of adjusting the warp shape of the resin plate by sandwiching the resin plate between a pair of metal plates that are heated to 50 ° C. or more and curved in the same direction.
  • An annealing process in which the resin plate is sandwiched between a pair of flat metal plates heated to 50 ° C. or higher in order to reduce molding distortion of the resin plate.
  • a resin plate annealing step in which one side of the resin plate is suspended by being held by a jig and left in a heating furnace heated to 50 ° C. or higher for 1 minute or longer.
  • the above-described process is an example of a process that is performed to process a resin plate into a display protection plate. Even if it is a process other than the above-described process, as long as it is a process of heating at 50 ° C. or more and 1 minute or more, one embodiment It is included in the heating process.
  • a heating process is included.
  • the heating step for example, one or more of the steps described above are performed.
  • the length of the heating time is determined according to each process mentioned above, and it is preferable to heat for the time which the effect of each process produces.
  • the in-plane retardation value of the liquid crystal display protective plate exceeds 210 nm, the difference in transmittance of each wavelength in the visible light range becomes large when viewed through a polarizing filter such as polarized sunglasses. Is difficult to see.
  • the thickness is less than 50 nm, the transmittance at all wavelengths in the visible light range is greatly reduced, and a black image is obtained, which is difficult to visually recognize.
  • the in-plane retardation value is 60 nm to 200 nm, the balance between brightness and color is good and the visibility is good.
  • one aspect of the liquid crystal display protective plate of the present invention is a resin plate having an in-plane retardation value that is not necessarily appropriate as a substrate for a liquid crystal display protective plate.
  • a resin plate having an in-plane retardation value that is not necessarily appropriate as a substrate for a liquid crystal display protective plate.
  • the resin plate has a retardation value in an appropriate range by performing heat treatment even if the in-plane retardation value is larger than a predetermined range.
  • a display can be provided. Therefore, the manufacturing method of the liquid crystal display and the manufactured liquid crystal display protective plate of one embodiment give priority to characteristics other than the retardation value, such as appearance quality, uniformity of thickness, direction of warping and its size, and other manufacturing conditions. Since it can be adjusted, it excels in various characteristics and productivity.
  • the average thickness of the center 100 mm in the width direction orthogonal to the extrusion direction of the resin plate is the thickness (TC) of the center, and the average thickness for 100 mm from the position 100 mm away from one end to the position 200 mm away. Is the thickness of one end, the average thickness of 100 mm from the position 100 mm away from the other end to the position 200 mm away is the thickness of the other end, and the average of the average thickness of each 100 mm at both ends
  • the value was the end thickness (TS).
  • the thickness ratio (TC / TS) between the end thickness (TS) and the center thickness (TC) was used as an index of thickness unevenness in the width direction. The thickness was measured using a micrometer.
  • the image was visually observed through the thickness direction of the test piece.
  • wearing polarized sunglasses the neck was tilted left and right with the face facing the image, and the image was visually observed in the same manner as described above.
  • The image appearance did not change significantly depending on whether or not the polarized sunglasses were worn, and the image could be visually recognized without any problem.
  • X The image was viewed in a darker image when the neck was tilted at a certain angle when the sunglasses were worn, or when the sunglasses were worn, dark coloring was seen and the image was difficult to see.
  • Example 1 (Production method of resin plate) A methacrylic resin was melted with a 150 mm ⁇ single screw extruder (manufactured by Toshiba Machine Co., Ltd.) and a polycarbonate resin was melted with a 150 mm ⁇ single screw extruder (manufactured by Toshiba Machine Co., Ltd.). Three layers were laminated in the order of methacrylic resin, polycarbonate resin, and methacrylic resin. The laminated resin (thermoplastic resin laminate) was sandwiched between a first cooling roll 12 and a second cooling roll 13 as shown in FIG. 1 to produce a resin plate. Here, all the 1st cooling roll 12, the 2nd cooling roll 13, and the 3rd cooling roll 14 were made into the metal rigid roll.
  • the bank amount is kept small, the peripheral speed ratio (V3 / V2) of the second cooling roll 13 and the third cooling roll 14 is adjusted to 1.000, and the peripheral speed of the second cooling roll 13 and the take-up roll 15 is adjusted.
  • the ratio (V4 / V2) was adjusted to 1.011.
  • the result of having measured the temperature of the whole thermoplastic resin laminated body with the infrared radiation thermometer in the position which peels from the 3rd cooling roll 14 was 130 degreeC.
  • the thickness of each layer was 75 ⁇ m for one methacrylic resin layer, 850 ⁇ m for the polycarbonate resin layer, and 75 ⁇ m for the other methacrylic resin layer.
  • the thickness of the entire laminate was molded and cooled so that the average thickness (TC) near the center was 1 mm.
  • the width of the obtained resin plate was about 1500 mm.
  • the obtained resin plate was cut into an extrusion direction of 1000 mm, and 100 mm at both ends in the width direction were cut and removed to obtain a rectangular resin plate of approximately 1000 mm ⁇ 1300 mm.
  • the obtained rectangular resin plate was put in an oven controlled at 100 ° C. ⁇ 3 ° C. for 5 hours and then taken out, and the rectangular resin plate after the heat treatment was used as a liquid crystal display protective plate.
  • the rectangular resin plate was hung with a string with the short side up.
  • the string was tied to two clips that were respectively fixed at two ends of the position where the upper short side was equally divided into three.
  • the string was fixed to the hanging tool so as to be vertical.
  • Table 1 shows the manufacturing conditions and the evaluation results of the obtained resin plate and liquid crystal display protective plate.
  • Example 2 to 5 The type of the second cooling roll, the bank amount, the peripheral speed ratio (V3 / V2) between the second cooling roll 13 and the third cooling roll 14, and the peripheral speed ratio (V4 / V2) between the second cooling roll 13 and the take-up roll 15
  • a resin plate and a liquid crystal display protective plate were produced in the same manner as in Example 1 except that the change was made according to Table 1.
  • Table 1 shows the evaluation results of the obtained resin plate and liquid crystal display protective plate.
  • the liquid crystal display protective plate of the present invention has a proper retardation value as a protective plate even if the retardation value decrease rate relative to the resin plate is large. Excellent image visibility when worn.
  • the retardation value of the resin plate is larger than the appropriate retardation value range.
  • the heating process it was possible to produce a resin plate having excellent image visibility with the polarized sunglasses attached.
  • Comparative Example 1 the rate of decrease in retardation value is 0%, and a resin plate that satisfies the retardation value before and after heating is manufactured. This shows an example of producing a resin plate that satisfies the retardation value before and after the heat treatment.
  • the comparative example 1 is excellent in the visibility of the image in the state where the polarized sunglasses are worn.
  • the value of TC / TS is 1.05, and it can be seen that the thickness unevenness in the width direction is large.
  • the fluctuation of the image of the illumination light source is conspicuous and the appearance is not excellent. Therefore, it is not sufficient as a protective plate for a liquid crystal display, and shows the difficulty of adjusting other requirements while satisfying the requirement of retardation value.
  • the liquid crystal display protective plate of the present invention is suitable as a liquid crystal display protective plate used for, for example, an in-vehicle display device, a mobile phone, a smartphone, a personal computer, a television, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention provides a method for manufacturing a liquid crystal display protection plate in which the in-plane retardation value is controlled so as to be within a predetermined range. The manufacturing method includes: extruding a thermoplastic resin laminated body in a molten state from a T-die (11), the thermoplastic resin laminated body being a polycarbonate resin layer on which a methacrylic resin layer is laminated on at least one surface of the polycarbonate resin layer; pinching the thermoplastic resin laminated body between a first cooling roll (12) and a second cooling roll (13) while forming a bank therebetween; cooling the thermoplastic resin laminated body by winding the thermoplastic resin laminated body around the second cooling roll (13) and a third cooling roll (14); and forming a resin plate (16) by taking up the thermoplastic resin laminated body with a take-up roll (15). Subsequently, after undergoing a process of heating the resin plate (16) for 1 minute or more at a temperature of 50°C or more, the liquid crystal display protection plate is manufactured. The in-plane retardation value of the liquid crystal display protection plate is 50 to 210 nm and the decreasing rate of the in-plane retardation value of the liquid crystal display protection plate with respect to the in-plane retardation value of the resin plate (16) before heating is 5% or more.

Description

液晶ディスプレイ保護板の製造方法Method for manufacturing LCD protective plate
 本発明は樹脂板を用いた液晶ディスプレイ保護板の製造方法に関する。より詳細には、樹脂板を高温で加工する工程を含み、面内のレターデーション値が好適な範囲に制御された液晶ディスプレイ保護板の製造方法に関する。 The present invention relates to a method for manufacturing a liquid crystal display protective plate using a resin plate. More specifically, the present invention relates to a method for producing a protective plate for a liquid crystal display, which includes a step of processing a resin plate at a high temperature, and the in-plane retardation value is controlled within a suitable range.
 液晶ディスプレイは表面の傷付き防止などのためその前面側に保護板が設けられる場合がある。保護板として各種機能性膜が形成されてなる樹脂板を用いることが検討されている。各種機能製膜としては、樹脂板の少なくとも一方の面に設けられた、耐擦傷性(ハードコート性)や低反射性の硬化被膜、ギラツキを抑制するための防眩膜、汚れの付着を防止あるいは目立ちにくくする防汚膜、ほこりの付着を防止する帯電防止膜、タッチパネルに要求される透明導電膜などがある。 ∙ Liquid crystal displays may have a protective plate on the front side to prevent scratches on the surface. It has been studied to use a resin plate on which various functional films are formed as a protective plate. Various types of functional films are provided on at least one surface of the resin plate, such as a scratch-resistant (hard coat) and low-reflective cured film, an anti-glare film to prevent glare, and dirt. Alternatively, there are an antifouling film that makes it less noticeable, an antistatic film that prevents the adhesion of dust, a transparent conductive film required for a touch panel, and the like.
 例えば、特許文献1には、メタクリル樹脂板を基板とし、その少なくとも一方の面に硬化被膜を形成して、液晶方式の携帯型情報端末の表示窓保護板として用いることが開示されている。 For example, Patent Document 1 discloses that a methacrylic resin plate is used as a substrate and a cured film is formed on at least one surface thereof and used as a display window protection plate for a liquid crystal portable information terminal.
 また、特許文献2には、ポリカーボネート樹脂層の一方の面にメタクリル樹脂層を積層してなる積層板を基板とし、そのメタクリル樹脂層上に硬化被膜を形成して、液晶ディスプレイカバーに用いることが開示されている。 Patent Document 2 discloses that a laminated plate formed by laminating a methacrylic resin layer on one surface of a polycarbonate resin layer is used as a substrate, a cured film is formed on the methacrylic resin layer, and used for a liquid crystal display cover. It is disclosed.
 上述した機能性膜の形成方法としては、特許文献1、2のような紫外線硬化性樹脂を基板に積層後に硬化する方法のほか、予め機能性膜を表面に設けたPETフィルム(ポリエチレンテレフタレートフィルム)を接着材や粘着材で貼り合せる方法、水や有機溶媒に分散、溶解した液を塗布後、乾燥する方法、熱硬化性樹脂を基板に積層後に硬化する方法などが公知である。 As a method for forming the functional film described above, a PET film (polyethylene terephthalate film) in which a functional film is previously provided on the surface in addition to a method of curing an ultraviolet curable resin as described in Patent Documents 1 and 2 after being laminated on a substrate. There are known methods such as a method of bonding an adhesive with an adhesive or a pressure sensitive adhesive, a method of applying and dispersing a solution dispersed and dissolved in water or an organic solvent, and a method of drying after laminating a thermosetting resin on a substrate.
 樹脂板の製造方法としては射出成形法、押出成形法などが公知である。
 液晶ディスプレイ保護板は、液晶ディスプレイの前面側(視認者側)に設置される。視認者は、液晶ディスプレイ保護板を通して液晶ディスプレイの画面を見ることになる。従来の液晶ディスプレイ保護板は、偏光である液晶ディスプレイからの出射光の偏光性をほとんど変化させない。このため、偏光サングラスをかけて画面を見ると、出射光の偏光軸と偏光サングラスの透過軸とがなす角度によっては、画面が暗く画像が見えにくくなる場合があった。そこで、偏光サングラスなどの偏光性フィルターを通して液晶ディスプレイの画面を見る場合の画像の視認性の低下を抑制しうる液晶ディスプレイ保護板が検討されている。
As a method for producing a resin plate, an injection molding method, an extrusion molding method and the like are known.
The liquid crystal display protective plate is installed on the front side (viewer side) of the liquid crystal display. The viewer sees the screen of the liquid crystal display through the liquid crystal display protective plate. The conventional liquid crystal display protective plate hardly changes the polarization of the light emitted from the liquid crystal display, which is polarized light. For this reason, when viewing the screen with polarized sunglasses, depending on the angle formed by the polarization axis of the emitted light and the transmission axis of the polarized sunglasses, the screen may be dark and the image may be difficult to see. In view of this, a liquid crystal display protective plate that can suppress a reduction in image visibility when a liquid crystal display screen is viewed through a polarizing filter such as polarized sunglasses has been studied.
 例えば、特許文献3に面内のレターデーション値を85~300nmとする事が開示されている。ところが液晶ディスプレイ保護板に用いられる樹脂板は、レターデーション値のほか、外観品位や厚さの均一性、加熱時の収縮性、反りの方向やその大小など、さまざまな要求性能を満たさねばならない。例えば押出成形法においては、上記要求性能を満たすべく、成形中の樹脂の温度、複数の冷却ロールの周速度比、バンクと呼ばれる第1冷却ロールと第2冷却ロールとの間隙に形成される樹脂溜りの大きさなど、各種製造条件を調整して製造される。しかしながら、上記要求性能を全て満たすことが困難な場合も多い。 For example, Patent Document 3 discloses that the in-plane retardation value is 85 to 300 nm. However, a resin plate used for a liquid crystal display protective plate must satisfy various required performances such as a retardation value, uniformity of appearance quality and thickness, shrinkage during heating, direction of warping and its size. For example, in the extrusion molding method, in order to satisfy the above required performance, the temperature of the resin being molded, the peripheral speed ratio of a plurality of cooling rolls, and the resin formed in the gap between the first cooling roll and the second cooling roll called a bank It is manufactured by adjusting various manufacturing conditions such as the size of the pool. However, in many cases, it is difficult to satisfy all of the required performance.
 また液晶ディスプレイ保護板に用いられる樹脂板は、反りの状態などを調整するため、乾燥工程を経る場合や、反り形状付与のため湾曲した板に挟んで加熱される場合がある。 Also, the resin plate used for the liquid crystal display protective plate may be heated by being subjected to a drying process in order to adjust the state of warping or the like and sandwiched between curved plates for giving a warped shape.
特開2004-299199号公報JP 2004-299199 A 特開2006-103169号公報JP 2006-103169 A 特開2010-085978号公報JP 2010-085978 A
 樹脂板の面内のレターデーション値及び上述した他の要求性能を満たす製造条件により押出樹脂板を製造し、その後、例えば反りの状態を調整するため加熱処理が施されると、樹脂板の面内のレターデーション値の低下が生じることがある。また上記加熱処理が施されても樹脂板の面内のレターデーション値の低下が生じないよう押出樹脂板を製造すると、レターデーション値以外の上述したほかの要求性能を満たさない場合があった。 When the extruded resin plate is manufactured under the manufacturing conditions satisfying the in-plane retardation value of the resin plate and the other required performance described above, and then subjected to heat treatment, for example, to adjust the state of warping, the surface of the resin plate In some cases, the retardation value may be lowered. In addition, when an extruded resin plate is manufactured so that the in-plane retardation value of the resin plate does not decrease even when the heat treatment is performed, the above-described other required performance other than the retardation value may not be satisfied.
 本発明の目的は、面内のレターデーション値が所定の範囲に制御された液晶ディスプレイ保護板の製造方法を提供することにある。 An object of the present invention is to provide a method of manufacturing a liquid crystal display protective plate whose in-plane retardation value is controlled within a predetermined range.
 本発明者らは、上記目的を達成するために検討した結果、以下の態様を包含する本発明を見出した。 As a result of studies to achieve the above object, the present inventors have found the present invention including the following aspects.
 すなわち、本発明は、以下の態様を包含する。本発明に係る樹脂板からなる液晶ディスプレイ保護板の製造方法の一態様は、以下の工程を少なくとも備える。
 ポリカーボネート樹脂層の少なくとも片面にメタクリル樹脂層が積層された熱可塑性樹脂積層体を溶融状態でTダイから押出す工程。
 第1冷却ロールと第2冷却ロールとの間にバンクを形成しながら前記熱可塑性樹脂積層体を挟み込む工程。
 前記熱可塑性樹脂積層体を前記第2冷却ロールに巻きかけた後、第3冷却ロールに巻きかけることにより冷却する工程。
 その後前記熱可塑性樹脂積層体を引き取りロールで引き取ることにより前記樹脂板を形成する工程。
 その後前記樹脂板を50℃以上の温度で1分以上加熱する工程を経て液晶ディスプレイ保護板を製造する工程。
 加えて、前記液晶ディスプレイ保護板の面内のレターデーション値が50~210nmであり、加熱する工程を経る前の前記樹脂板の面内のレターデーション値に対する、前記液晶ディスプレイ保護板の面内のレターデーション値の低下率が5%以上である。
That is, this invention includes the following aspects. One aspect of a method for producing a liquid crystal display protective plate comprising a resin plate according to the present invention includes at least the following steps.
A step of extruding a thermoplastic resin laminate in which a methacrylic resin layer is laminated on at least one surface of a polycarbonate resin layer from a T die in a molten state.
A step of sandwiching the thermoplastic resin laminate while forming a bank between the first cooling roll and the second cooling roll.
The process of cooling by winding the said thermoplastic resin laminated body around a said 3rd cooling roll, after winding around the said 2nd cooling roll.
Then, the step of forming the resin plate by taking the thermoplastic resin laminate with a take-off roll.
Then, the process of manufacturing a liquid crystal display protective board through the process of heating the said resin board at the temperature of 50 degreeC or more for 1 minute or more.
In addition, the in-plane retardation value of the liquid crystal display protective plate is 50 to 210 nm, and the in-plane retardation value of the liquid crystal display protective plate with respect to the in-plane retardation value of the resin plate before the heating step is performed. The reduction rate of the retardation value is 5% or more.
 上述した液晶ディスプレイ保護板の一態様は、偏光サングラスを通して液晶ディスプレイを視認するときに適切な面内レターデーションを有することができる。言い換えると、本発明の液晶ディスプレイ保護板は、液晶ディスプレイ保護板用の基板として、面内のレターデーション値が所望の範囲に収まらない樹脂板であっても、当該樹脂板に対し特定の加熱工程を施して製造することにより液晶ディスプレイ保護板として好適に使用可能であることを見出したものである。これにより、レターデーション値以外の特性を優先して製造条件の調整を行うことが可能になる。 One aspect of the liquid crystal display protective plate described above can have an appropriate in-plane retardation when viewing the liquid crystal display through polarized sunglasses. In other words, the liquid crystal display protective plate of the present invention is a substrate for a liquid crystal display protective plate, even if it is a resin plate whose in-plane retardation value does not fall within a desired range, a specific heating step for the resin plate It has been found that it can be suitably used as a protective plate for a liquid crystal display by manufacturing with the above. As a result, it is possible to adjust the manufacturing conditions by giving priority to characteristics other than the retardation value.
 また、本発明に係る液晶ディスプレイ保護板の製造方法の一態様において、前記低下率が15%以上であることが好ましい。 Moreover, in one aspect of the method for producing a liquid crystal display protective plate according to the present invention, the reduction rate is preferably 15% or more.
 さらに、本発明に係る液晶ディスプレイ保護板の製造方法の一態様において、前記第2冷却ロールの周速度をV2、第3冷却ロールの周速度をV3としたとき、V3/V2の値が1.000以上である事が好ましい。さらに加えて、前記引き取りロールの周速度をV4としたとき、V4/V2の値が1.000以上である事が好ましい。 Furthermore, in one aspect of the method for manufacturing a liquid crystal display protective plate according to the present invention, when the peripheral speed of the second cooling roll is V2 and the peripheral speed of the third cooling roll is V3, the value of V3 / V2 is 1. It is preferable that it is 000 or more. In addition, when the peripheral speed of the take-up roll is V4, the value of V4 / V2 is preferably 1.000 or more.
 以降では、説明を容易にするため、樹脂板は、熱可塑性樹脂積層体を押し出して製造したものであり、特に明記しない場合には、加熱工程を施す前の樹脂板をいう。また、液晶ディスプレイ保護板は、製造した樹脂板に加熱工程を加えたものとして説明する。より具体的には、樹脂板は、押し出した後、各種工程を経る前の基板であり、ディスプレイ保護板は、この基板に塗布、貼り合わせ、反り矯正などの各種工程のいくつかを経て、保護板に加工されるものである。各種工程の少なくとも一つでは、基板に加熱が施される。言い換えると、ディスプレイ保護板は、樹脂板が上述した各種工程を経て適切なレターデーション値になったものである。 Hereinafter, for ease of explanation, the resin plate is manufactured by extruding a thermoplastic resin laminate, and unless otherwise specified, refers to the resin plate before the heating step. Moreover, a liquid crystal display protective plate is demonstrated as what added the heating process to the manufactured resin plate. More specifically, the resin plate is a substrate that has been extruded and before undergoing various processes, and the display protection plate is protected through some of various processes such as coating, bonding, and warping correction. It is processed into a plate. In at least one of the various steps, the substrate is heated. In other words, the display protective plate is a resin plate having an appropriate retardation value through the various steps described above.
 本発明の液晶ディスプレイ保護板の製造方法は、偏光サングラスを通して液晶ディスプレイ視認する際における適切な面内のレターデーション値を有する液晶ディスプレイ保護板を提供することができる。 The method for producing a liquid crystal display protective plate of the present invention can provide a liquid crystal display protective plate having an appropriate in-plane retardation value when viewing a liquid crystal display through polarized sunglasses.
本発明の一実施形態にかかる共押出による樹脂板の製造方法を示す図である。It is a figure which shows the manufacturing method of the resin board by the co-extrusion concerning one Embodiment of this invention.
 以下、図面を参照して本発明の実施の形態について説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。各図面において同一の構成または機能を有する構成要素および相当部分には、同一の符号を付し、その説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. For clarity of explanation, the following description and drawings are omitted and simplified as appropriate. In the drawings, components having the same configuration or function and corresponding parts are denoted by the same reference numerals and description thereof is omitted.
 実施の形態1
 本発明の液晶ディスプレイ保護板に使用される樹脂板はポリカーボネート樹脂層の少なくとも一方の面にメタクリル樹脂層が積層される。ポリカーボネート樹脂層にメタクリル樹脂層が積層されていることにより、板の透明性、耐衝撃性、耐擦傷性が優れる。
 樹脂板は押出成形法で製造される事により生産効率が優れる。
 なお、以降適宜、「樹脂板」を「押出樹脂板」と記載することもある。
Embodiment 1
The resin plate used for the liquid crystal display protective plate of the present invention has a methacrylic resin layer laminated on at least one surface of a polycarbonate resin layer. Since the methacrylic resin layer is laminated on the polycarbonate resin layer, the transparency, impact resistance, and scratch resistance of the plate are excellent.
A resin plate is excellent in production efficiency by being manufactured by an extrusion method.
Hereinafter, the “resin plate” may be described as “extruded resin plate” as appropriate.
 本発明の一実施形態においてメタクリル樹脂層を構成するメタクリル樹脂は、メタクリル酸エステルに由来する構造単位を含有するものである。
 メタクリル酸エステルに由来する構造単位の含有量は50質量%以上が好ましく、より好ましくは80質量%以上、さらにより好ましくは90質量%以上が好ましい。メタクリル酸エステルに由来する構造単位の含有量は、100質量%であってもよい。メタクリル酸エステルに由来する構造単位の含有量が上記範囲内にある場合には、透明性が良好である。
In one embodiment of the present invention, the methacrylic resin constituting the methacrylic resin layer contains a structural unit derived from a methacrylic acid ester.
The content of the structural unit derived from the methacrylic acid ester is preferably 50% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more. The content of the structural unit derived from the methacrylic acid ester may be 100% by mass. When the content of the structural unit derived from the methacrylic acid ester is within the above range, the transparency is good.
 メタクリル酸エステルとしては、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸2-エチルヘキシル、メタクリル酸2-ヒドロキシエチル等が挙げられる。なかでもメタクリル酸メチルを50質量%以上含有することが透明性の点で好ましい。 Examples of the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, 2-hydroxyethyl methacrylate and the like. Among these, it is preferable in terms of transparency that methyl methacrylate is contained in an amount of 50% by mass or more.
 また、メタクリル酸メチルと共重合し得る単量体との共重合体であってもよい。メタクリル酸メチルと共重合し得る単量体としては、メタクリル酸メチル以外のメタクリル酸エステル類も挙げられる。かかるメタクリル酸エステル類としては、例えばメタクリル酸エチル、メタクリル酸ブチル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸2-エチルヘキシル、メタクリル酸2-ヒドロキシエチル等が挙げられる。また、メタクリル酸シクロヘキシル、メタクリル酸シクロペンチル、メタクリル酸シクロへプチルなどのメタクリル酸単環脂肪族炭化水素エステル;2‐ノルボルニルメタクリレート、2-メチル-2-ノルボルニルメタクリレート、2-エチル-2-ノルボルニルメタクリレート、2-イソボルニルメタクリレート、2-メチル-2-イソボルニルメタクリレート、2-エチル-2-イソボルニルメタクリレート、8-トリシクロ[5.2.1.02,6]デカニルメタクリレート、8-メチル-8-トリシクロ[5.2.1.02,6]デカニルメタクリレート、8-エチル-8-トリシクロ[5.2.1.02,6]デカニルメタクリレート、2-アダマンチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-エチル-2-アダマンチルメタクリレート、1-アダマンチルメタクリレート、2-フェンキルメタクリレート、2-メチル-2-フェンキルメタクリレートまたは2-エチル-2-フェンキルメタクリレートなどのメタクリル酸多環脂肪族炭化水素エステル;などが挙げられる。 Moreover, the copolymer with the monomer which can be copolymerized with methyl methacrylate may be sufficient. Examples of monomers that can be copolymerized with methyl methacrylate include methacrylic acid esters other than methyl methacrylate. Examples of such methacrylic acid esters include ethyl methacrylate, butyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, 2-hydroxyethyl methacrylate and the like. Also, methacrylic acid monocyclic aliphatic hydrocarbon esters such as cyclohexyl methacrylate, cyclopentyl methacrylate, cycloheptyl methacrylate; 2-norbornyl methacrylate, 2-methyl-2-norbornyl methacrylate, 2-ethyl-2 -Norbornyl methacrylate, 2-isobornyl methacrylate, 2-methyl-2-isobornyl methacrylate, 2-ethyl-2-isobornyl methacrylate, 8-tricyclo [5.2.1.0 2,6 ] Decanyl methacrylate, 8-methyl-8-tricyclo [5.2.1.0 2,6 ] decanyl methacrylate, 8-ethyl-8-tricyclo [5.2.1.0 2,6 ] decanyl methacrylate, 2-adamantyl methacrylate, 2-methyl-2-adamantyl methacrylate, 2 Methacrylic acid polycyclic aliphatic hydrocarbon esters such as ethyl-2-adamantyl methacrylate, 1-adamantyl methacrylate, 2-fenkyl methacrylate, 2-methyl-2-fenkyl methacrylate or 2-ethyl-2-fenkyl methacrylate; Is mentioned.
 また、メタクリル酸メチルと共重合し得る単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸2-エチルヘキシル、アクリル酸2-ヒドロキシエチル等のアクリル酸エステル類、スチレン類、アクリロニトリル、メタクリロニトリル、無水マレイン酸、フェニルマレイミド、シクロヘキシルマレイミド等も挙げられる。かかる単量体は、1種を用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of monomers that can be copolymerized with methyl methacrylate include methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, 2-acrylate Examples also include acrylic acid esters such as hydroxyethyl, styrenes, acrylonitrile, methacrylonitrile, maleic anhydride, phenylmaleimide, cyclohexylmaleimide and the like. Such monomers may be used alone or in combination of two or more.
 メタクリル樹脂がメタクリル酸メチルとアクリル酸メチルとの共重合体であると透明性に優れる。この場合の好ましい単量体組成は、単量体の合計を100質量%として、メタクリル酸メチルが80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらにより好ましい。メタクリル酸メチルが100質量%であってもよい。 If the methacrylic resin is a copolymer of methyl methacrylate and methyl acrylate, the transparency is excellent. A preferable monomer composition in this case is that the total amount of monomers is 100% by mass, and methyl methacrylate is preferably 80% by mass or more, more preferably 85% by mass or more, and 90% by mass or more. Even more preferably. Methyl methacrylate may be 100% by mass.
 本発明の一実施形態に用いられるメタクリル樹脂は、IS0-1133に準じて測定するメルトボリュームフローレイト(MVR)が、好ましくは0.5~20(cm/10分、230℃、37.3N)である。MVRがこの範囲にあると、押出成形の安定性が良好である。 Methacrylic resin used in an embodiment of the present invention has a melt volume flow rate to be measured in accordance with IS0-1133 (MVR) is preferably 0.5 ~ 20 (cm 3/10 min, 230 ℃, 37.3N ). When the MVR is in this range, the stability of extrusion molding is good.
 本発明の一実施形態に用いられるメタクリル樹脂には、耐衝撃性、耐光性などを向上させるために、公知の添加剤が含まれていてもよい。添加剤としては、酸化防止剤、熱劣化防止剤、紫外線吸収剤、光安定剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染顔料、光拡散剤、有機色素、艶消し剤、耐衝撃性改質剤、蛍光体などが挙げられる。 The methacrylic resin used in one embodiment of the present invention may contain known additives in order to improve impact resistance, light resistance, and the like. Additives include antioxidants, thermal degradation inhibitors, UV absorbers, light stabilizers, lubricants, mold release agents, polymer processing aids, antistatic agents, flame retardants, dyes and pigments, light diffusing agents, organic dyes , Matting agents, impact resistance modifiers, phosphors and the like.
 本発明の一実施形態に用いられるポリカーボネート樹脂は特に制限はないが、ISO―1133に準じて測定するメルトボリュームフローレイト(MVR)が、好ましくは1~20(cm/10分、300℃、11.8N)である。MVRがこの範囲にあると、押出成形の安定性が良好である。 Is not particularly limited polycarbonate resin used in an embodiment of the present invention, melt volume flow rate to be measured in accordance with ISO-1133 (MVR) is preferably 1 ~ 20 (cm 3/10 min, 300 ° C., 11.8 N). When the MVR is in this range, the stability of extrusion molding is good.
 本発明の一実施形態に用いられるポリカーボネート樹脂には、耐光性などを向上させるために、公知の添加剤が含まれていてもよい。添加剤としては、酸化防止剤、熱劣化防止剤、紫外線吸収剤、光安定剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染顔料、光拡散剤、有機色素、艶消し剤、耐衝撃性改質剤、蛍光体などが挙げられる。 The polycarbonate resin used in one embodiment of the present invention may contain a known additive in order to improve light resistance and the like. Additives include antioxidants, thermal degradation inhibitors, UV absorbers, light stabilizers, lubricants, mold release agents, polymer processing aids, antistatic agents, flame retardants, dyes and pigments, light diffusing agents, organic dyes , Matting agents, impact resistance modifiers, phosphors and the like.
 本発明の一実施形態における樹脂板はポリカーボネート樹脂層の両面にメタクリル樹脂層が積層されることで、耐擦傷性に優れる点、および湿度変化による反りが発生しにくい点で好ましい。 The resin plate according to an embodiment of the present invention is preferable in that a methacrylic resin layer is laminated on both surfaces of a polycarbonate resin layer, so that it is excellent in scratch resistance and warpage due to humidity change is less likely to occur.
 本発明の一実施形態における樹脂板は、その厚さが、好ましくは0.4~2mm、より好ましくは0.5~1.5mmである。薄すぎると剛性が不十分となる傾向がある。厚すぎると液晶表示装置などの軽量化の妨げになる傾向がある。 The thickness of the resin plate in one embodiment of the present invention is preferably 0.4 to 2 mm, more preferably 0.5 to 1.5 mm. If it is too thin, the rigidity tends to be insufficient. If it is too thick, it tends to hinder weight reduction of liquid crystal display devices.
 本発明の一実施形態における樹脂板のメタクリル樹脂層の厚さは、好ましくは20~200μmである。この範囲であると、耐擦傷性と耐衝撃性のバランスが優れる。より好ましくは25~150μm、さらに好ましくは30~100μmである。 In the embodiment of the present invention, the thickness of the methacrylic resin layer of the resin plate is preferably 20 to 200 μm. Within this range, the balance between scratch resistance and impact resistance is excellent. More preferably, it is 25 to 150 μm, and further preferably 30 to 100 μm.
 本発明の一実施形態により得られる樹脂板には、その少なくとも一方の面に硬化被膜を設けても良い。硬化被膜を設けることで耐擦傷性、低反射性などの機能を付与することができる。 The resin plate obtained by one embodiment of the present invention may be provided with a cured coating on at least one surface thereof. By providing a cured film, functions such as scratch resistance and low reflectivity can be imparted.
 例えば耐擦傷性(ハードコート性)硬化被膜の厚さは、好ましくは2~30μmであり、より好ましくは3~10μmである。薄すぎると表面硬度が不十分となり、厚すぎると製造工程中の折り曲げによりクラックが発生する可能性がある。 For example, the thickness of the scratch-resistant (hard coat property) cured film is preferably 2 to 30 μm, more preferably 3 to 10 μm. If it is too thin, the surface hardness will be insufficient, and if it is too thick, cracks may occur due to bending during the production process.
 また、例えば低反射性の硬化被膜の厚さは、好ましくは80~200nmであり、より好ましくは100~150nmである。薄すぎても厚すぎても低反射性能が不十分となるためである。 Also, for example, the thickness of the low reflective cured coating is preferably 80 to 200 nm, more preferably 100 to 150 nm. This is because the low reflection performance is insufficient if it is too thin or too thick.
 本発明の一実施形態における樹脂板は共押出しで製造される。ポリカーボネート樹脂およびメタクリル樹脂は加熱溶融され、Tダイといわれる幅広形状の吐出口から押出され、第1冷却ロールおよび第2冷却ロールからなる一対のロールにより挟まれてシート状の熱可塑性樹脂積層体に形成される。熱可塑性樹脂積層体はその後さらに、第2冷却ロールに巻きかけた後、第3冷却ロールに巻きかけることにより冷却される。また熱可塑性樹脂積層体はその後さらに、それ以上の冷却ロールで冷却される場合がある。その後、熱可塑性樹脂積層体を引き取りロールで引き取ることにより樹脂板を形成する。このような工程で、樹脂板は、ポリカーボネート樹脂層の少なくとも片面にメタクリル樹脂層が積層された熱可塑性樹脂積層体を溶融状態でTダイから押出して製造される。 The resin plate in one embodiment of the present invention is manufactured by coextrusion. The polycarbonate resin and the methacrylic resin are heated and melted, extruded from a wide-shaped discharge port called a T die, and sandwiched between a pair of rolls including a first cooling roll and a second cooling roll to form a sheet-like thermoplastic resin laminate. It is formed. Thereafter, the thermoplastic resin laminate is further wound around the second cooling roll and then cooled by winding around the third cooling roll. Further, the thermoplastic resin laminate may be further cooled by a further cooling roll. Then, a resin plate is formed by taking up the thermoplastic resin laminate with a take-up roll. In such a process, the resin plate is manufactured by extruding a thermoplastic resin laminate in which a methacrylic resin layer is laminated on at least one surface of a polycarbonate resin layer from a T die in a molten state.
 製造された樹脂板は、さらに加熱工程が施され、液晶ディスプレイ保護板が製造される。加熱工程については後述する。 The manufactured resin plate is further subjected to a heating process to manufacture a liquid crystal display protection plate. The heating process will be described later.
 図1には一実施形態としてTダイ11、第1~第3冷却ロール12~14、及び引き取りロール15からなる共押出装置による樹脂板の製造方法の概要を示した。Tダイ11から押し出された樹脂が、第1冷却ロール12及び第2冷却ロール13からなる一対のロールで挟んでシート状の熱可塑性樹脂積層体に形成される。その後さらに、熱可塑性樹脂積層体が第3冷却ロール14で冷却され、一対のロールからなる引き取りロール15により引き取られ、樹脂板16が形成される。なお、本発明はこの形態に限られるものではない。 FIG. 1 shows an outline of a method for producing a resin plate by a co-extrusion apparatus comprising a T die 11, first to third cooling rolls 12 to 14, and a take-up roll 15 as one embodiment. The resin extruded from the T die 11 is sandwiched between a pair of rolls including a first cooling roll 12 and a second cooling roll 13 to form a sheet-like thermoplastic resin laminate. Thereafter, the thermoplastic resin laminate is further cooled by the third cooling roll 14 and taken up by the take-up roll 15 composed of a pair of rolls, whereby the resin plate 16 is formed. The present invention is not limited to this form.
 Tダイ11はシングルマニホールド型、マルチマニホールド型の両方を用いることができるが、各層の厚さ精度が優れる点でマルチマニホールド型が好ましい。
 冷却ロールとしては金属剛体ロール、金属弾性ロールの両方を用いることができる。
The T die 11 can be either a single manifold type or a multi-manifold type, but the multi-manifold type is preferable because the thickness accuracy of each layer is excellent.
As the cooling roll, both a metal rigid roll and a metal elastic roll can be used.
 レターデーションとは、分子主鎖方向の光とそれに垂直な方向の光の位相差の事である。高分子は一般に加熱成形されることで任意の形状を得ることができるが、その加熱、冷却過程において一定の応力が発生し、分子が配向してレターデーションが発生することが知られている。そこで、レターデーションを制御するためには分子の配向を制御する必要がある。分子の配向は、例えば高分子のガラス転移温度近傍での成形時の応力により発生している。 Retardation is the phase difference between the light in the molecular main chain direction and the light perpendicular to it. In general, a polymer can be formed in an arbitrary shape by thermoforming. However, it is known that a certain stress is generated in the heating and cooling processes, and the molecules are oriented to cause retardation. Therefore, in order to control retardation, it is necessary to control molecular orientation. The orientation of the molecules is generated by, for example, stress at the time of molding near the glass transition temperature of the polymer.
 押出成形では製造条件を種々調整する事により、樹脂板の面内のレターデーション値、外観品位や厚さの均一性、反りの方向やその大小などを制御する。以下に、製造条件の制御に関係する要素として、バンクの影響、周速度比の影響、樹脂板の厚さの影響、加熱工程に分けて説明する。また、説明を容易にするため、適宜、図1に示す構成を用いる。 In extrusion molding, the in-plane retardation value, appearance quality and thickness uniformity, warpage direction and size of the resin plate are controlled by adjusting various manufacturing conditions. In the following, as the elements related to the control of the manufacturing conditions, the influence of the bank, the influence of the peripheral speed ratio, the influence of the thickness of the resin plate, and the heating process will be described separately. For ease of explanation, the configuration shown in FIG. 1 is used as appropriate.
* バンクの影響について
 バンクとは第1冷却ロール12と第2冷却ロール13との間隙に形成される樹脂溜りである。
* About the influence of a bank A bank is a resin pool formed in the gap between the first cooling roll 12 and the second cooling roll 13.
 そしてバンク量と面内のレターデーション値の関係を評価した結果、バンク量が大きいほど面内のレターデーション値が増すことが分かった。 As a result of evaluating the relationship between the bank amount and the in-plane retardation value, it was found that the in-plane retardation value increased as the bank amount increased.
 その理由は、溶融樹脂が樹脂溜まりの発生している位置から第1冷却ロール12と第2冷却ロール13の最小隙間に流れる際に樹脂の冷却と共に樹脂内部の流速差が生じることで分子が配向するためと思われる。 The reason is that when the molten resin flows from the position where the resin pool is generated to the minimum gap between the first cooling roll 12 and the second cooling roll 13, molecules are aligned due to a difference in flow velocity inside the resin as the resin cools. It seems to do.
 ロールへの樹脂供給量を上げること、もしくはロールの速度を下げることで、バンクは大きくなるものであり、調整が可能である。なお、後述する実施例では、バンク量は、樹脂供給量を変化させることで調整し、量の大小は目視により評価した。 The bank becomes larger and can be adjusted by increasing the amount of resin supplied to the roll or decreasing the roll speed. In the examples described later, the bank amount was adjusted by changing the resin supply amount, and the magnitude of the amount was visually evaluated.
* 周速度比の影響について
 周速度比とは第2冷却ロール13に対するそれ以外の任意の冷却ロール及び引取りロールの周速度の比である。
* Influence of peripheral speed ratio The peripheral speed ratio is the ratio of the peripheral speed of any other cooling roll and take-up roll to the second cooling roll 13.
 第2冷却ロール13に対する第3冷却ロール14の周速度比と、面内のレターデーション値の関係を評価した結果、その周速度比が大きいほど面内のレターデーション値が増すことが分かった。 As a result of evaluating the relationship between the peripheral speed ratio of the third cooling roll 14 to the second cooling roll 13 and the in-plane retardation value, it was found that the in-plane retardation value increased as the peripheral speed ratio increased.
 その理由は、樹脂が第3冷却ロール14に接触する際の樹脂温度がポリカーボネートのガラス転移温度近傍である場合、第3冷却ロール14の周速度比が大きくて熱可塑性樹脂積層体に大きな引っ張り応力が掛かる際に、樹脂の分子が配向するためと思われる。 The reason for this is that when the resin temperature when the resin contacts the third cooling roll 14 is near the glass transition temperature of the polycarbonate, the peripheral speed ratio of the third cooling roll 14 is large and the thermoplastic resin laminate has a large tensile stress. This is probably because the molecules of the resin are oriented.
 そして第2冷却ロール13に対する引き取りロール15の周速度比と、面内のレターデーション値の関係を評価した結果、その周速度比が大きいほど面内のレターデーション値が増すことが分かった。 And as a result of evaluating the relationship between the peripheral speed ratio of the take-up roll 15 to the second cooling roll 13 and the in-plane retardation value, it was found that the in-plane retardation value increased as the peripheral speed ratio increased.
 その理由は、樹脂が第3冷却ロール14から剥離する際の樹脂温度がポリカーボネートのガラス転移温度近傍より+5℃から-40℃程度の範囲である場合、引き取りロール15の周速度比が大きくてより大きな引っ張り応力が掛かる際に、樹脂の分子が配向するためと思われる。 The reason is that when the resin temperature when the resin is peeled from the third cooling roll 14 is in the range of about + 5 ° C. to −40 ° C. from the vicinity of the glass transition temperature of the polycarbonate, the peripheral speed ratio of the take-up roll 15 is larger. This is probably because the resin molecules are oriented when a large tensile stress is applied.
 また、第2冷却ロール13と引き取りロール15の周速度比は、0.98以上であることが好ましく、1.000以上である事がさらに好ましい。その理由は、第2冷却ロール13と引き取りロール15の周速度比が0.98未満の場合は熱可塑性樹脂積層体の張力が不足し、第3冷却ロール14に接触している熱可塑性樹脂積層体が密着状態を維持できなくなってロールから剥離し、綺麗な面状が保てない可能性が生じるからである。 Further, the peripheral speed ratio between the second cooling roll 13 and the take-up roll 15 is preferably 0.98 or more, and more preferably 1.000 or more. The reason is that when the peripheral speed ratio between the second cooling roll 13 and the take-off roll 15 is less than 0.98, the thermoplastic resin laminate is insufficient in tension and is in contact with the third cooling roll 14. This is because there is a possibility that the body cannot maintain a close contact state and peels off from the roll, so that a beautiful surface state cannot be maintained.
 さらに、第3冷却ロール14から剥離する温度はポリカーボネートのガラス転移温度近傍より+5℃から-40℃の範囲が良い。その理由は、ガラス転移温度近傍より高すぎても低すぎても綺麗な面状を得ることができないためである。 Furthermore, the temperature for peeling from the third cooling roll 14 is preferably in the range of + 5 ° C. to −40 ° C. from the vicinity of the glass transition temperature of polycarbonate. The reason is that a clean surface shape cannot be obtained if the temperature is too high or too low near the glass transition temperature.
 次に押出樹脂板を加熱した時の面内のレターデーション値が低下する程度を検討した。
周速度比一定でバンク量を徐々に大きくした場合は、面内のレターデーション値が徐々に大きくなるが、加熱後の面内のレターデーション値の低下率は徐々に小さくなることが分かった。
Next, the extent to which the in-plane retardation value when the extruded resin plate was heated was examined.
It was found that when the bank amount was gradually increased while the peripheral speed ratio was constant, the in-plane retardation value gradually increased, but the reduction rate of the in-plane retardation value after heating gradually decreased.
 バンク量一定で第2冷却ロール13と第3冷却ロール14の周速度比を徐々に大きくした場合は、面内のレターデーション値が徐々に大きくなり、加熱時の面内のレターデーション値の低下量も徐々に大きくなることが分かった。 When the peripheral speed ratio between the second cooling roll 13 and the third cooling roll 14 is gradually increased while the bank amount is constant, the in-plane retardation value gradually increases, and the in-plane retardation value decreases during heating. It was found that the amount gradually increased.
 また、バンク量一定で第2冷却ロール13と引き取りロール15の周速度比を徐々に大きくした場合も面内のレターデーション値が徐々に大きくなるが、加熱後の面内のレターデーション値の低下率は非常に大きくなることが分った。 In addition, when the peripheral speed ratio between the second cooling roll 13 and the take-up roll 15 is gradually increased with the bank amount being constant, the in-plane retardation value gradually increases, but the in-plane retardation value after heating decreases. The rate was found to be very large.
 以降では説明を容易にするため、第2冷却ロールの周速度をV2、第3冷却ロールの周速度をV3、引取りロールの周速度をV4とし、第3冷却ロールと第2冷却ロールとの周速度比を(V3/V2)、引取りロールと第2冷却ロールとの周速度比を(V4/V2)と記載することがある。 Hereinafter, for ease of explanation, the peripheral speed of the second cooling roll is V2, the peripheral speed of the third cooling roll is V3, the peripheral speed of the take-up roll is V4, and the third cooling roll and the second cooling roll The peripheral speed ratio may be described as (V3 / V2), and the peripheral speed ratio between the take-up roll and the second cooling roll may be described as (V4 / V2).
 次に第2冷却ロール13として金属剛体ロールまたは金属弾性ロールを使用した場合の面内のレターデーション値への影響を評価した結果、金属弾性ロールを使用した方が面内のレターデーション値が小さいことが分かった。その理由は、金属弾性ロールでは一般的にバンク量を小さくする場合が多く、バンク成形による分子配向が小さいためと思われる。そこで、金属弾性ロールで適正な面内のレターデーションを制御するためには第2冷却ロール13と第3冷却ロール14の周速度比を調整する必要があることが分った。 Next, as a result of evaluating the influence on the in-plane retardation value when the metal cooling roll or the metal elastic roll is used as the second cooling roll 13, the in-plane retardation value is smaller when the metal elastic roll is used. I understood that. The reason seems to be that the metal elastic roll generally has a small bank amount and the molecular orientation by the bank forming is small. Thus, it has been found that the peripheral speed ratio between the second cooling roll 13 and the third cooling roll 14 needs to be adjusted in order to control proper in-plane retardation with the metal elastic roll.
* 厚さの影響について
 押出成形における押し出し方向に直交する幅方向の厚さ制御は、一般的に第1冷却ロール12と第2冷却ロール13の隙間、樹脂供給量に伴う押し出し量、第2冷却ロールの周速度、バンク量によって制御される。
* Influence of thickness Thickness control in the width direction orthogonal to the extrusion direction in extrusion molding is generally performed by the gap between the first cooling roll 12 and the second cooling roll 13, the extrusion amount associated with the resin supply amount, and the second cooling. It is controlled by the peripheral speed of the roll and the bank amount.
 ここで、一般的にバンク量が大きいほど第1冷却ロール12と第2冷却ロール13への押し付け圧力が増大し、冷却ロールが押し曲げられる事になる。そのためバンク量の増大と共に流れ方向と直交する幅方向の厚さ分布は、太鼓状に中央付近が厚く両端部が薄くなる傾向がある。 Here, generally, the larger the bank amount, the greater the pressure applied to the first cooling roll 12 and the second cooling roll 13, and the cooling roll is pushed and bent. Therefore, as the bank amount increases, the thickness distribution in the width direction perpendicular to the flow direction tends to be thick near the center and thin at both ends in a drum shape.
 幅方向の厚さ分布を平坦にする手法として、例えば、幅方向の両端のバンク量を中央付近のバンク量より大きくすることがある。その場合、幅方向の両端部のレターデーション値は大きくなる。
 そこで、幅方向のレターデーション値のバラツキとレターデーション値の低下率を適正な値に制御するためには幅方向の厚さ分布を適正化する必要がある。
As a technique for flattening the thickness distribution in the width direction, for example, the bank amount at both ends in the width direction may be made larger than the bank amount near the center. In that case, the retardation values at both ends in the width direction are increased.
Therefore, in order to control the variation of the retardation value in the width direction and the decrease rate of the retardation value to an appropriate value, it is necessary to optimize the thickness distribution in the width direction.
 この事から、押し出し方向と直交する幅方向の有効範囲内の両端の平均厚さ(TS)と中央付近の平均厚さ(TC)との厚さ比(TC/TS)が1.0を超え1.05以下とする事が好ましいことが分った。中央付近の平均厚さ(TC)は樹脂板16の押し出し方向と直交する幅方向の中央100mmにおいて算出すればよく、両端の平均厚さ(TS)は押し出し方向と直交する幅方向の一方の端部から100mm離れた位置から200mm離れた位置までの100mm分の平均厚さを一方の端部の厚さとし、他方の端部から100mm離れた位置から200mm離れた位置までの100mm分の平均厚さを他方の端部の厚さとし、その両端100mmずつの平均厚さ(合計200mmの平均厚さ)をもって算出すればよい。 Therefore, the thickness ratio (TC / TS) between the average thickness (TS) at both ends within the effective range in the width direction orthogonal to the extrusion direction and the average thickness (TC) near the center exceeds 1.0. It has been found that it is preferable to set it to 1.05 or less. The average thickness (TC) near the center may be calculated at the center 100 mm in the width direction orthogonal to the extrusion direction of the resin plate 16, and the average thickness (TS) at both ends is one end in the width direction orthogonal to the extrusion direction. The average thickness for 100 mm from the position 100 mm away from the position to the position 200 mm away is the thickness of one end, and the average thickness for 100 mm from the position 100 mm away from the other end to the position 200 mm away Is the thickness of the other end, and the average thickness for each end of 100 mm (average thickness of 200 mm in total) may be calculated.
 ここで幅方向は、樹脂板が押出装置において搬送される方向と直交する方向であり、幅方向の一部とは、樹脂板の幅の任意の長さを含む領域をいう。 Here, the width direction is a direction orthogonal to the direction in which the resin plate is conveyed in the extrusion apparatus, and a part of the width direction refers to a region including an arbitrary length of the width of the resin plate.
 このような手順で選択した箇所を測定した結果、加熱後の面内のレターデーション値が50~210nmであり、かつ、加熱前後での面内のレターデーション値の低下率が5%以上であれば、得られた樹脂板は本願の効果を奏するため好ましい。加えて、加熱前後での面内のレターデーション値の低下率が15%以上であることがより好ましい。ここで、加熱前後での面内のレターデーション値の低下率は、加熱工程前の樹脂板の面内のレターデーション値に対する、液晶ディスプレイ保護板の面内のレターデーション値の低下率であるということができる。 As a result of measuring the location selected in such a procedure, the in-plane retardation value after heating is 50 to 210 nm, and the reduction rate of the in-plane retardation value before and after heating is 5% or more. In this case, the obtained resin plate is preferable because the effects of the present application are exhibited. In addition, the reduction rate of the in-plane retardation value before and after heating is more preferably 15% or more. Here, the rate of decrease in the in-plane retardation value before and after heating is the rate of decrease in the in-plane retardation value of the liquid crystal display protection plate relative to the in-plane retardation value of the resin plate before the heating step. be able to.
 尚、厚さ比(TC/TS)が1.05を超えた場合は、バンク量が大きくなりすぎるため安定的に製造出来ない場合があり、1.0以下の場合は、バンク量が少なすぎるため面内のレターデーション値が小さな値となる。 When the thickness ratio (TC / TS) exceeds 1.05, the bank amount becomes too large and may not be stably manufactured. When the thickness ratio is 1.0 or less, the bank amount is too small. Therefore, the in-plane retardation value is small.
 上述したような厚さの影響を発見したため、押出樹脂板の製造工程において、製造された押出樹脂板の厚さ比が1.00より大きく、1.05以下の数値範囲になるように、バンクの形成(バンク量)を制御することが好ましい。厚さの制御が不十分であると、例えば、押出樹脂板の幅方向の端にレターデーション値が意図した数値範囲から外れる領域が形成され、製品として適さない場合が生じ得る。そのため、安定して良好な製品を製造するためにも、樹脂板の厚さを制御することが好ましい。 Since the influence of the thickness as described above was discovered, in the manufacturing process of the extruded resin plate, the thickness ratio of the manufactured extruded resin plate is set to be larger than 1.00 and within a numerical range of 1.05 or less. It is preferable to control the formation (bank amount). If the thickness control is insufficient, for example, a region where the retardation value deviates from the intended numerical range is formed at the end in the width direction of the extruded resin plate, which may not be suitable as a product. Therefore, it is preferable to control the thickness of the resin plate in order to stably produce a good product.
 本発明の一実施形態による樹脂板(押出樹脂板)は、加熱工程における面内のレターデーション値の低下率が5%以上である。5%未満に調整しようとすると、例えばバンク量を大きくすることが考えられる。しかし、バンク量をあまり大きくしすぎると樹脂板のレターデーション値が大きくなりすぎる、という問題が生じる場合がある。また例えばロールの周速度比V3/V2またはV4/V2を小さくすることが考えられるが、あまり小さくしすぎると冷却ロールと溶融樹脂とがスムーズに離型せず、離型マークと呼ばれる微細な表面凹凸が生じ、樹脂板の表面性が劣る、という問題が生じる場合がある。 The resin plate (extruded resin plate) according to an embodiment of the present invention has a reduction rate of the in-plane retardation value in the heating process of 5% or more. In order to adjust to less than 5%, for example, it is conceivable to increase the bank amount. However, if the bank amount is too large, there may be a problem that the retardation value of the resin plate becomes too large. Further, for example, it is conceivable to reduce the peripheral speed ratio V3 / V2 or V4 / V2 of the roll, but if it is too small, the cooling roll and the molten resin do not release smoothly, and a fine surface called a release mark There may be a problem that unevenness occurs and the surface property of the resin plate is inferior.
 加熱工程における面内のレターデーション値の低下率が10%以上、特に15%以上であると、上記問題の発生を抑制する事ができる。 When the reduction rate of the in-plane retardation value in the heating process is 10% or more, particularly 15% or more, the occurrence of the above problem can be suppressed.
 加熱工程における面内のレターデーション値の低下率は90%以下であることが好ましい。これより大きいと、樹脂板を加熱した際の収縮率が大きくなる傾向があり、例えば光硬化性樹脂などを積層、硬化する工程の加熱により、積層した樹脂層にしわが発生する、あるいは加熱前後の寸法変化が大きくなりすぎ、板の搬送、固定など取り扱い易さが劣る、などの問題が生じる場合がある。また例えばバンク量を小さくすることが考えられる。しかし、あまり小さくしすぎるとバンクのわずかな温度ムラなどによって一時的にバンクが形成されない場合があり、第1冷却ロールまたは第2冷却ロールと溶融樹脂とが密着せず、樹脂板の表面性が劣る、あるいは厚さムラが大きくなる、という問題が生じる場合がある。また、レターデーション値の低下率は85%以下であることがより好ましく、80%以下であることがさらにより好ましい。 The reduction rate of the in-plane retardation value in the heating process is preferably 90% or less. If it is larger than this, the shrinkage rate when the resin plate is heated tends to increase. For example, the heating of the process of laminating and curing a photocurable resin may cause wrinkles in the laminated resin layer, or before and after the heating. There may be a problem that the dimensional change becomes too large and the handling ease such as transporting and fixing the plate is poor. For example, it is conceivable to reduce the bank amount. However, if it is too small, the bank may not be temporarily formed due to slight temperature unevenness of the bank, etc., and the first cooling roll or the second cooling roll does not adhere to the molten resin, and the surface property of the resin plate is There may be a problem that it is inferior or thickness unevenness becomes large. Further, the reduction rate of the retardation value is more preferably 85% or less, and still more preferably 80% or less.
* 加熱工程について
 本発明の一実施形態における加熱工程は樹脂板を50℃以上かつ1分以上加熱するものである。加熱工程としては、例えば、以下のような工程が含まれる。
 樹脂板表面に塗布した液を乾燥させるため、50℃以上に加熱したオーブン内に樹脂板を1分以上静置する工程。
 樹脂板表面に積層した熱硬化性樹脂を熱硬化させるため、50℃以上に加熱したオーブン内に樹脂板を1分以上静置する工程。
 50℃以上に加熱した1対の同じ方向に同程度湾曲した金属板の間に樹脂板を挟み、樹脂板のそり形状を調整する工程。
 樹脂板の成形歪を軽減するため、50℃以上に加熱した1対の平坦な金属板の間に樹脂板を挟むアニール工程。
 樹脂板の成形歪を軽減するため、樹脂板の1辺を治具により保持して吊り下げ、50℃以上に加熱した加熱炉内に1分以上静置する、樹脂板アニール工程。
 樹脂板表面に積層した光硬化性樹脂を硬化させるため、キセノンランプなどにより光を照射する工程において、ランプから放射される光線に含まれる赤外線による加熱や、光硬化性樹脂の反応による熱により、樹脂板表面が50℃以上となる時間が1分以上となる工程。
* About a heating process The heating process in one Embodiment of this invention heats a resin board 50 degreeC or more and 1 minute or more. As a heating process, the following processes are included, for example.
A step of allowing the resin plate to stand for 1 minute or longer in an oven heated to 50 ° C. or higher in order to dry the liquid applied to the surface of the resin plate.
A step of allowing the resin plate to stand for 1 minute or longer in an oven heated to 50 ° C. or higher in order to thermoset the thermosetting resin laminated on the surface of the resin plate.
A step of adjusting the warp shape of the resin plate by sandwiching the resin plate between a pair of metal plates that are heated to 50 ° C. or more and curved in the same direction.
An annealing process in which the resin plate is sandwiched between a pair of flat metal plates heated to 50 ° C. or higher in order to reduce molding distortion of the resin plate.
In order to reduce molding distortion of the resin plate, a resin plate annealing step in which one side of the resin plate is suspended by being held by a jig and left in a heating furnace heated to 50 ° C. or higher for 1 minute or longer.
In order to cure the photo-curing resin laminated on the resin plate surface, in the process of irradiating light with a xenon lamp or the like, by heating with infrared rays contained in the light emitted from the lamp, or by heat of reaction of the photo-curing resin, The process in which the time for the resin plate surface to be 50 ° C. or higher is 1 minute or longer.
 上述した工程は、樹脂板をディスプレイ保護板に加工するために実施する工程の一例であり、上述した工程以外であっても、50℃以上かつ1分以上加熱する工程であれば、一実施形態の加熱工程に含まれる。 The above-described process is an example of a process that is performed to process a resin plate into a display protection plate. Even if it is a process other than the above-described process, as long as it is a process of heating at 50 ° C. or more and 1 minute or more, one embodiment It is included in the heating process.
 一実施形態の樹脂板の製造方法では、加熱工程を含む。加熱工程は、例えば、上述した工程のうちの一つまたは複数の工程を実施する。
 なお、加熱時間の長さは、上述した各工程に応じて決定されるものであり、各工程の効果が生じる時間加熱することが好ましい。
In the manufacturing method of the resin board of one Embodiment, a heating process is included. In the heating step, for example, one or more of the steps described above are performed.
In addition, the length of the heating time is determined according to each process mentioned above, and it is preferable to heat for the time which the effect of each process produces.
 尚、液晶ディスプレイ保護板の面内のレターデーション値が210nmを超えた場合は、偏光サングラスなどの偏光フィルターを通して見た場合に可視光範囲の各波長の透過率の差が大きくなるためさまざまな色が見え視認しづらくなる。一方、50nm未満の場合は、可視光範囲の全波長での透過率が大きく減下し真っ黒な画像となり視認が困難となる。50nm~210nmの範囲内では、値が大きいほど明るい画像となり、値が小さいほど色が軽減する。特に、面内のレターデーション値を60nm~200nmとした場合に明るさと色のバランスが良好で視認性に優れ、80nm~180nmとした場合がさらに好ましく、100nm~150nmとした場合がさらにより好ましい。 In addition, when the in-plane retardation value of the liquid crystal display protective plate exceeds 210 nm, the difference in transmittance of each wavelength in the visible light range becomes large when viewed through a polarizing filter such as polarized sunglasses. Is difficult to see. On the other hand, when the thickness is less than 50 nm, the transmittance at all wavelengths in the visible light range is greatly reduced, and a black image is obtained, which is difficult to visually recognize. Within the range of 50 nm to 210 nm, the larger the value, the brighter the image, and the smaller the value, the less the color. In particular, when the in-plane retardation value is 60 nm to 200 nm, the balance between brightness and color is good and the visibility is good.
 以上説明した通り、本発明の液晶ディスプレイ保護板の一態様は、液晶ディスプレイ保護板用の基板としては必ずしも適切とは言えない面内のレターデーション値である樹脂板であっても、樹脂板に対し特定の加熱工程を経て製造される場合には、液晶ディスプレイ保護板として好適に使用可能であることを見出したものである。 As described above, one aspect of the liquid crystal display protective plate of the present invention is a resin plate having an in-plane retardation value that is not necessarily appropriate as a substrate for a liquid crystal display protective plate. On the other hand, when manufactured through a specific heating process, it discovered that it could be used conveniently as a liquid crystal display protective plate.
 一実施形態の液晶ディスプレイ保護板の製造方法によれば、樹脂板はその面内のレターデーション値が所定範囲より大きくても、加熱処理を施すことにより、適切な範囲のレターデーション値を有する液晶ディスプレイを提供することができる。そのため、一実施形態の液晶ディスプレイの製造用法及び製造された液晶ディスプレイ保護板は、外観品位や厚さの均一性、反りの方向やその大小など、レターデーション値以外の特性を優先して製造条件の調整を行えるため、各種特性や生産性に優れる。 According to the method for manufacturing a protective plate for a liquid crystal display according to one embodiment, the resin plate has a retardation value in an appropriate range by performing heat treatment even if the in-plane retardation value is larger than a predetermined range. A display can be provided. Therefore, the manufacturing method of the liquid crystal display and the manufactured liquid crystal display protective plate of one embodiment give priority to characteristics other than the retardation value, such as appearance quality, uniformity of thickness, direction of warping and its size, and other manufacturing conditions. Since it can be adjusted, it excels in various characteristics and productivity.
 以下、実施例を示し、本発明をより詳細に説明する。但し、本発明はかかる実施例により何ら限定されるものではない。
 樹脂および樹脂板の物性を以下の方法にて測定した。
EXAMPLES Hereinafter, an Example is shown and this invention is demonstrated in detail. However, this invention is not limited at all by this Example.
The physical properties of the resin and the resin plate were measured by the following method.
 〔MVR〕
 メルトインデクサー(「TAKARA L241-153」、株式会社テクノ・セブン製)を使用し、ISO-1133に準じて測定した。
〔メタクリル樹脂〕
 株式会社クラレ製「パラペット(登録商標) HR」(MVR:2.0cm/10分)をメタクリル樹脂として用意した。
〔ポリカーボネート樹脂〕
 住化スタイロンポリカーボネート株式会社製「SDポリカ(登録商標) PCX」(MVR:8cm/10分、ガラス転移温度:151℃)をポリカーボネート樹脂として用意した。
[MVR]
A melt indexer (“TAKARA L241-153”, manufactured by Techno Seven Co., Ltd.) was used, and measurement was performed according to ISO-1133.
[Methacrylic resin]
Produced by Kuraray Co., Ltd. "Parapet (registered trademark) HR" (MVR: 2.0cm 3/10 minutes) was prepared as methacrylic resin.
[Polycarbonate resin]
Sumitomo scan Tyrone polycarbonate Co., Ltd. "SD polycarbonate (registered trademark) PCX" (MVR: 8cm 3/10 min., And a glass transition temperature: 151 ℃) was prepared as a polycarbonate resin.
〔樹脂板の厚さ測定および幅方向の厚さムラの評価〕
 樹脂板の押し出し方向と直交する幅方向の中央100mmの平均厚さを中央部の厚さ(TC)とし、一方の端部から100mm離れた位置から200mm離れた位置までの100mm分の平均厚さを一方の端部の厚さとし、他方の端部から100mm離れた位置から200mm離れた位置までの100mm分の平均厚さを他方の端部の厚さとし、その両端100mmずつの平均厚さの平均値を端部の厚さ(TS)とした。そして端部の厚さ(TS)と中央部の厚さ(TC)との厚さ比(TC/TS)を幅方向の厚さムラの指標とした。厚さの測定はマイクロメータを用いた。
[Measurement of thickness of resin plate and evaluation of thickness unevenness in width direction]
The average thickness of the center 100 mm in the width direction orthogonal to the extrusion direction of the resin plate is the thickness (TC) of the center, and the average thickness for 100 mm from the position 100 mm away from one end to the position 200 mm away. Is the thickness of one end, the average thickness of 100 mm from the position 100 mm away from the other end to the position 200 mm away is the thickness of the other end, and the average of the average thickness of each 100 mm at both ends The value was the end thickness (TS). The thickness ratio (TC / TS) between the end thickness (TS) and the center thickness (TC) was used as an index of thickness unevenness in the width direction. The thickness was measured using a micrometer.
〔レターデーション値の測定〕
 樹脂板または液晶ディスプレイ保護板の試験片は、ランニングソーにより切断し、100mm四方のものを作製した。レターデーション値は、試験片を25℃±3℃の環境下に10分以上放置し株式会社フォトニックラティス製 WPA-100(-L)により測定した。測定位置は、試験片の中央付近を測定した。
 また、レターデーション値の低下率は、以下の式で得られる値とした。
(レターデーション値の低下率)
={(樹脂板のレターデーション値)-(液晶ディスプレイ保護板のレターデーション値)}/(樹脂板のレターデーション値)×100(%)
[Measurement of retardation value]
The test piece of the resin plate or the liquid crystal display protective plate was cut with a running saw to prepare a 100 mm square. The retardation value was measured with WPA-100 (-L) manufactured by Photonic Lattice Co., Ltd. after leaving the test piece in an environment of 25 ° C. ± 3 ° C. for 10 minutes or more. The measurement position was measured near the center of the test piece.
Further, the reduction rate of the retardation value was a value obtained by the following formula.
(Rate of decrease in retardation value)
= {(Retardation value of resin plate)-(Retardation value of liquid crystal display protective plate)} / (Retardation value of resin plate) × 100 (%)
〔偏光サングラス装着時の目視評価方法〕
 液晶ディスプレイ保護板の試験片は、ランニングソーにより切断し、100mm四方のものを作製した。
 次に目から35cm離れた位置に液晶表示装置を配置して画像を表示した。そして実施例および比較例にかかる試験片を液晶表示装置と目の間の、目から30cm離れた位置に表示装置の画面と平行に配置した。
[Visual evaluation method when wearing polarized sunglasses]
The test piece of the liquid crystal display protective plate was cut with a running saw to produce a 100 mm square.
Next, an image was displayed by placing a liquid crystal display device at a position 35 cm away from the eyes. And the test piece concerning an Example and a comparative example was arrange | positioned in parallel with the screen of the display apparatus in the position 30 cm away from the eyes between the liquid crystal display device and eyes.
 まず偏光サングラスを装着せずに、試験片の厚さ方向に通して、画像を目視した。
 次に、偏光サングラスを装着して、顔を画像に向けたまま左右に首を傾けて、上記と同様に画像を目視した。
 ○:画像の見え方は偏光サングラスの装着有無によって顕著な変化がなく、画像は問題なく視認できた。
 ×:画像の見え方は、偏光サングラスを装着しない場合に比べ、装着した場合は首をある角度に傾けた時に暗い映像となったか、あるいは濃い着色が見られ、画像が見えにくかった。
First, without wearing polarized sunglasses, the image was visually observed through the thickness direction of the test piece.
Next, wearing polarized sunglasses, the neck was tilted left and right with the face facing the image, and the image was visually observed in the same manner as described above.
○: The image appearance did not change significantly depending on whether or not the polarized sunglasses were worn, and the image could be visually recognized without any problem.
X: The image was viewed in a darker image when the neck was tilted at a certain angle when the sunglasses were worn, or when the sunglasses were worn, dark coloring was seen and the image was difficult to see.
〔樹脂板の外観評価方法〕
 樹脂板の表面を目視により評価した。評価は樹脂板表面に反射した室内の照明光源の像を観察し、その像のゆらぎの有無、大小で判定した。
樹脂板の配置:樹脂板のメタアクリル樹脂側の表面を上側にして床面に平行に配置
照明光源:直管型40W白色蛍光灯
照明の配置:樹脂板から上方へ約2m、水平方向へ約2m離間
照明の角度:樹脂板表面に対し上方約45°となる方向
照明の方向:樹脂板の表面に移り込む蛍光灯の長手方向と樹脂板の押出し方向とが約45°となる方向
 ○:ゆらぎはなく、良好。
 △:わずかにゆらぎはあるが、目立たない。
 ×:ゆらぎがあり、目立つ。
[Appearance evaluation method of resin plate]
The surface of the resin plate was visually evaluated. The evaluation was made by observing an image of an indoor illumination light source reflected on the surface of the resin plate and determining whether the image was fluctuating or not.
Placement of resin plate: Placed on the methacrylic resin side surface of the resin plate in parallel with the floor surface. Illumination light source: Straight tube type 40W white fluorescent lamp illumination: Placement about 2m upward from the resin plate, about horizontal direction Illumination angle of 2 m away: Direction that is about 45 ° above the surface of the resin plate Direction of illumination: Direction that the longitudinal direction of the fluorescent lamp moving to the surface of the resin plate and the direction of extrusion of the resin plate are about 45 ° ○: Good without fluctuations.
Δ: Slight fluctuation but not noticeable.
X: There is fluctuation and it stands out.
 [実施例1]
(樹脂板の製造方法)
 メタクリル樹脂を150mmφ一軸押出機[東芝機械株式会社製]で、ポリカーボネート樹脂を150mmφ一軸押出機[東芝機械株式会社製]でそれぞれ溶融し、両者を、マルチマニホールド型ダイスを介して、一方の面からメタクリル樹脂、ポリカーボネート樹脂、メタクリル樹脂の順で3層に積層した。積層した樹脂(熱可塑性樹脂積層体)を、図1で示すような第1冷却ロール12と第2冷却ロール13に挟み込んで、樹脂板の製造を行った。ここで、第1冷却ロール12と第2冷却ロール13と第3冷却ロール14は全て金属剛性ロールとした。
[Example 1]
(Production method of resin plate)
A methacrylic resin was melted with a 150 mmφ single screw extruder (manufactured by Toshiba Machine Co., Ltd.) and a polycarbonate resin was melted with a 150 mmφ single screw extruder (manufactured by Toshiba Machine Co., Ltd.). Three layers were laminated in the order of methacrylic resin, polycarbonate resin, and methacrylic resin. The laminated resin (thermoplastic resin laminate) was sandwiched between a first cooling roll 12 and a second cooling roll 13 as shown in FIG. 1 to produce a resin plate. Here, all the 1st cooling roll 12, the 2nd cooling roll 13, and the 3rd cooling roll 14 were made into the metal rigid roll.
 また、バンク量は小さい状態に保ち、第2冷却ロール13と第3冷却ロール14の周速度比(V3/V2)を1.000に調整し、第2冷却ロール13と引き取りロール15の周速度比(V4/V2)を1.011に調整した。また、第3冷却ロール14から剥離する位置において熱可塑性樹脂積層体全体の温度を赤外線放射温度計で測定した結果が130℃であった。また、各層の厚さは一方のメタクリル樹脂層が75μm、ポリカーボネート樹脂層が850μm、もう一方のメタクリル樹脂層が75μmであった。積層体全体の厚さは、中央付近の平均厚さ(TC)が厚さ1mmとなるように成形、冷却した。得られた樹脂板の幅はおよそ1500mmであった。 Further, the bank amount is kept small, the peripheral speed ratio (V3 / V2) of the second cooling roll 13 and the third cooling roll 14 is adjusted to 1.000, and the peripheral speed of the second cooling roll 13 and the take-up roll 15 is adjusted. The ratio (V4 / V2) was adjusted to 1.011. Moreover, the result of having measured the temperature of the whole thermoplastic resin laminated body with the infrared radiation thermometer in the position which peels from the 3rd cooling roll 14 was 130 degreeC. The thickness of each layer was 75 μm for one methacrylic resin layer, 850 μm for the polycarbonate resin layer, and 75 μm for the other methacrylic resin layer. The thickness of the entire laminate was molded and cooled so that the average thickness (TC) near the center was 1 mm. The width of the obtained resin plate was about 1500 mm.
 得られた樹脂板を押し出し方向1000mmに切断し、幅方向両端部それぞれ100mmを切断除去しておよそ1000mm×1300mmの長方形の樹脂板を得た。 The obtained resin plate was cut into an extrusion direction of 1000 mm, and 100 mm at both ends in the width direction were cut and removed to obtain a rectangular resin plate of approximately 1000 mm × 1300 mm.
 そりを矯正するため、得られた長方形の樹脂板を100℃±3℃に管理されたオーブン内に5時間投入した後取り出し、加熱処理後の長方形の樹脂板を液晶ディスプレイ保護板とした。オーブン内では長方形の樹脂板は短辺側を上にして紐で吊り下げた状態とした。紐は上側短辺を3等分する位置の端部2箇所にそれぞれ固定された2つのクリップに結ばれた。また紐は垂直になるよう吊具に固定された。
 製造条件及び得られた樹脂板および液晶ディスプレイ保護板の評価結果を表1に示す。
In order to correct warpage, the obtained rectangular resin plate was put in an oven controlled at 100 ° C. ± 3 ° C. for 5 hours and then taken out, and the rectangular resin plate after the heat treatment was used as a liquid crystal display protective plate. In the oven, the rectangular resin plate was hung with a string with the short side up. The string was tied to two clips that were respectively fixed at two ends of the position where the upper short side was equally divided into three. Moreover, the string was fixed to the hanging tool so as to be vertical.
Table 1 shows the manufacturing conditions and the evaluation results of the obtained resin plate and liquid crystal display protective plate.
 [実施例2~5]
 第2冷却ロールの種類、バンク量、第2冷却ロール13と第3冷却ロール14の周速度比(V3/V2)、第2冷却ロール13と引き取りロール15の周速度比(V4/V2)を表1に従って変更した以外は実施例1と同様に樹脂板および液晶ディスプレイ保護板を製造した。得られた樹脂板および液晶ディスプレイ保護板の評価結果を表1に示す。
[Examples 2 to 5]
The type of the second cooling roll, the bank amount, the peripheral speed ratio (V3 / V2) between the second cooling roll 13 and the third cooling roll 14, and the peripheral speed ratio (V4 / V2) between the second cooling roll 13 and the take-up roll 15 A resin plate and a liquid crystal display protective plate were produced in the same manner as in Example 1 except that the change was made according to Table 1. Table 1 shows the evaluation results of the obtained resin plate and liquid crystal display protective plate.
[比較例1~4]
 第2冷却ロールの種類、バンク量、第2冷却ロール13と第3冷却ロール14の周速度比(V3/V2)、第2冷却ロール13と引き取りロール15の周速度比(V4/V2)を表1に従って変更した以外は実施例1と同様に樹脂板および液晶ディスプレイ保護板を製造した。得られた樹脂板および液晶ディスプレイ保護板の評価結果を表1に示す。
[Comparative Examples 1 to 4]
The type of the second cooling roll, the bank amount, the peripheral speed ratio (V3 / V2) between the second cooling roll 13 and the third cooling roll 14, and the peripheral speed ratio (V4 / V2) between the second cooling roll 13 and the take-up roll 15 A resin plate and a liquid crystal display protective plate were produced in the same manner as in Example 1 except that the change was made according to Table 1. Table 1 shows the evaluation results of the obtained resin plate and liquid crystal display protective plate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の実施例および比較例の比較から、本発明の液晶ディスプレイ保護板は樹脂板に対するレターデーション値の低下率が大きくても、保護板としてのレターデーション値が適正であるため、偏光サングラスを装着した状態での画像の視認性に優れる。 From the comparison of the examples in Table 1 and the comparative example, the liquid crystal display protective plate of the present invention has a proper retardation value as a protective plate even if the retardation value decrease rate relative to the resin plate is large. Excellent image visibility when worn.
 特に実施例1,3,4は樹脂板のレターデーション値が適切なレターデーション値の範囲に比べて大きな値である。しかし、加熱工程を経ることによって、偏光サングラスを装着した状態での画像の視認性に優れる樹脂板を製造することができた。 Particularly in Examples 1, 3 and 4, the retardation value of the resin plate is larger than the appropriate retardation value range. However, through the heating process, it was possible to produce a resin plate having excellent image visibility with the polarized sunglasses attached.
 また、比較例1はレターデーション値の低下率が0%であり、加熱前後でレターデーション値を満たす樹脂板を製造している。これは、加熱処理の前後でレターデーション値を満たす樹脂板を製造する例を示したものである。比較例1は、偏光サングラスを装着した状態での画像の視認性に優れる。一方、TC/TSの値が1.05であり、幅方向の厚さムラが大きい事が分かる。また、照明光源の像のゆらぎが目立ち、外観も優れない。従って、液晶ディスプレイ保護板としては十分でなく、レターデーション値の要件を満たしつつ、他の要件を調整することの困難性を示している。 In Comparative Example 1, the rate of decrease in retardation value is 0%, and a resin plate that satisfies the retardation value before and after heating is manufactured. This shows an example of producing a resin plate that satisfies the retardation value before and after the heat treatment. The comparative example 1 is excellent in the visibility of the image in the state where the polarized sunglasses are worn. On the other hand, the value of TC / TS is 1.05, and it can be seen that the thickness unevenness in the width direction is large. In addition, the fluctuation of the image of the illumination light source is conspicuous and the appearance is not excellent. Therefore, it is not sufficient as a protective plate for a liquid crystal display, and shows the difficulty of adjusting other requirements while satisfying the requirement of retardation value.
 本発明の液晶ディスプレイ保護板は、例えば、車載用表示装置、携帯電話、スマートフォン、パソコン、テレビなどに用いられる液晶ディスプレイ保護板として好適である。 The liquid crystal display protective plate of the present invention is suitable as a liquid crystal display protective plate used for, for example, an in-vehicle display device, a mobile phone, a smartphone, a personal computer, a television, and the like.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
 この出願は、2014年9月8日に出願された日本出願特願2014-181902を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-181902 filed on September 8, 2014, the entire disclosure of which is incorporated herein.
11 Tダイ
12 第1冷却ロール
13 第2冷却ロール
14 第3冷却ロール
15 引き取りロール
16 樹脂板
11 T die 12 1st cooling roll 13 2nd cooling roll 14 3rd cooling roll 15 Take-off roll 16 Resin plate

Claims (4)

  1.  樹脂板からなる液晶ディスプレイ保護板の製造方法であって、
     ポリカーボネート樹脂層の少なくとも片面にメタクリル樹脂層が積層された熱可塑性樹脂積層体を溶融状態でTダイから押出し、
     第1冷却ロールと第2冷却ロールとの間にバンクを形成しながら前記熱可塑性樹脂積層体を挟み込み、
     前記熱可塑性樹脂積層体を前記第2冷却ロールに巻きかけた後、第3冷却ロールに巻きかけることにより冷却し、
     その後前記熱可塑性樹脂積層体を引き取りロールで引き取ることにより前記樹脂板を形成し、
     その後前記樹脂板を50℃以上の温度で1分以上加熱する工程を経て、前記液晶ディスプレイ保護板を製造し、
     前記液晶ディスプレイ保護板の面内のレターデーション値が50~210nmであり、
     加熱する工程を経る前の前記樹脂板の面内のレターデーション値に対する、前記液晶ディスプレイ保護板の面内のレターデーション値の低下率が5%以上である液晶ディスプレイ保護板の製造方法。
    A method of manufacturing a liquid crystal display protective plate made of a resin plate,
    A thermoplastic resin laminate in which a methacrylic resin layer is laminated on at least one side of a polycarbonate resin layer is extruded from a T-die in a molten state,
    While sandwiching the thermoplastic resin laminate while forming a bank between the first cooling roll and the second cooling roll,
    After the thermoplastic resin laminate is wound around the second cooling roll, it is cooled by winding around the third cooling roll,
    Thereafter, the resin plate is formed by taking the thermoplastic resin laminate with a take-off roll,
    Thereafter, the liquid crystal display protective plate is manufactured through a process of heating the resin plate at a temperature of 50 ° C. or more for 1 minute or more,
    The in-plane retardation value of the liquid crystal display protective plate is 50 to 210 nm,
    A method for producing a liquid crystal display protective plate, wherein a reduction rate of the in-plane retardation value of the liquid crystal display protective plate with respect to the in-plane retardation value of the resin plate before undergoing the heating step is 5% or more.
  2.  前記低下率が15%以上である請求項1の液晶ディスプレイ保護板の製造方法。 The method for manufacturing a liquid crystal display protective plate according to claim 1, wherein the rate of decrease is 15% or more.
  3.  前記第2冷却ロールの周速度をV2、前記第3冷却ロールの周速度をV3としたとき、V3/V2の値が1.000以上である事を特徴とする請求項1または2の液晶ディスプレイ保護板の製造方法。 3. The liquid crystal display according to claim 1, wherein the value of V3 / V2 is 1.000 or more, where V2 is the peripheral speed of the second cooling roll and V3 is the peripheral speed of the third cooling roll. A manufacturing method of a protection plate.
  4.  前記第2冷却ロールの周速度をV2、前記引き取りロールの周速度をV4としたとき、V4/V2の値が1.000以上である事を特徴とする請求項1乃至3のいずれか一項に記載の液晶ディスプレイ保護板の製造方法。 The value of V4 / V2 is 1.000 or more, where the peripheral speed of the second cooling roll is V2, and the peripheral speed of the take-up roll is V4. The manufacturing method of the liquid crystal display protective plate of description.
PCT/JP2015/004522 2014-09-08 2015-09-07 Method for manufacturing liquid crystal display protection plate WO2016038868A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016547693A JP6542780B2 (en) 2014-09-08 2015-09-07 Method of manufacturing liquid crystal display protection plate
CN201580047965.9A CN106687278B (en) 2014-09-08 2015-09-07 The manufacturing method of liquid crystal display protection board
KR1020177007867A KR102365231B1 (en) 2014-09-08 2015-09-07 Method for manufacturing liquid crystal display protection plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-181902 2014-09-08
JP2014181902 2014-09-08

Publications (1)

Publication Number Publication Date
WO2016038868A1 true WO2016038868A1 (en) 2016-03-17

Family

ID=55458639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004522 WO2016038868A1 (en) 2014-09-08 2015-09-07 Method for manufacturing liquid crystal display protection plate

Country Status (5)

Country Link
JP (1) JP6542780B2 (en)
KR (1) KR102365231B1 (en)
CN (1) CN106687278B (en)
TW (1) TWI683741B (en)
WO (1) WO2016038868A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164276A1 (en) * 2016-03-23 2017-09-28 株式会社クラレ Extruded resin sheet manufacturing method and extruded resin sheet
WO2018199213A1 (en) 2017-04-28 2018-11-01 株式会社クラレ Extruded resin plate and manufacturing method for same
WO2019022213A1 (en) 2017-07-28 2019-01-31 株式会社クラレ Layered/extruded resin sheet, and protective sheet for liquid crystal display with infrared sensor
KR20190040207A (en) 2016-08-12 2019-04-17 주식회사 쿠라레 Method of manufacturing extruded resin plate and extruded resin plate
WO2019107462A1 (en) 2017-11-30 2019-06-06 株式会社クラレ Thermoforming laminated plate and method for manufacturing same
WO2019203230A1 (en) * 2018-04-16 2019-10-24 株式会社クラレ Laminated sheet, manufacturing method therefor, and display with protective cover
KR20210011946A (en) 2018-05-23 2021-02-02 주식회사 쿠라레 Extruded resin plate and its manufacturing method, and laminated plate
KR102727735B1 (en) * 2018-04-16 2024-11-08 주식회사 쿠라레 Laminated sheet and its manufacturing method, and display with protective cover attached

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085978A (en) * 2008-09-03 2010-04-15 Sumitomo Chemical Co Ltd Liquid crystal display protection plate
JP2011033751A (en) * 2009-07-31 2011-02-17 Meihan Shinku Kogyo Kk Protective cover for liquid crystal display
JP2013111834A (en) * 2011-11-28 2013-06-10 Sumitomo Chemical Co Ltd Resin plate for electrode substrate, electrode plate, and touch panel
WO2015093037A1 (en) * 2013-12-19 2015-06-25 株式会社クラレ Method for producing resin plate

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3457514B2 (en) * 1997-08-08 2003-10-20 株式会社クラレ Laminated plate and method of manufacturing the same
JP4239649B2 (en) 2003-03-31 2009-03-18 住友化学株式会社 Scratch-resistant resin plate and display window protection plate of portable information terminal using the same
JP2006103169A (en) 2004-10-06 2006-04-20 Mitsubishi Gas Chem Co Inc Polycarbonate resin laminate for liquid crystal display cover
JP5031598B2 (en) * 2008-01-28 2012-09-19 株式会社クラレ Polycarbonate resin laminate
JP2015108832A (en) * 2008-09-03 2015-06-11 住友化学株式会社 Liquid crystal display protection plate
JP5411488B2 (en) * 2008-12-10 2014-02-12 富士フイルム株式会社 Film and manufacturing method thereof, optical compensation film for liquid crystal display plate, polarizing plate and liquid crystal display device
JP5620644B2 (en) * 2009-02-09 2014-11-05 住友化学株式会社 Multi-layer extrusion resin plate for touch panel and surface coating plate for touch panel
JP5292257B2 (en) * 2009-10-22 2013-09-18 株式会社クラレ Polycarbonate resin laminate
JP2011148266A (en) * 2010-01-25 2011-08-04 Fujifilm Corp Method for producing printing sheet
JP2012121142A (en) * 2010-12-06 2012-06-28 Sumitomo Chemical Co Ltd Method for manufacturing extruded resin plate
JP5936395B2 (en) * 2012-03-16 2016-06-22 住友化学株式会社 Laminated plate and scratch-resistant laminated plate using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085978A (en) * 2008-09-03 2010-04-15 Sumitomo Chemical Co Ltd Liquid crystal display protection plate
JP2011033751A (en) * 2009-07-31 2011-02-17 Meihan Shinku Kogyo Kk Protective cover for liquid crystal display
JP2013111834A (en) * 2011-11-28 2013-06-10 Sumitomo Chemical Co Ltd Resin plate for electrode substrate, electrode plate, and touch panel
WO2015093037A1 (en) * 2013-12-19 2015-06-25 株式会社クラレ Method for producing resin plate

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164276A1 (en) * 2016-03-23 2017-09-28 株式会社クラレ Extruded resin sheet manufacturing method and extruded resin sheet
KR102313558B1 (en) 2016-03-23 2021-10-15 주식회사 쿠라레 Manufacturing method of extruded resin plate and extruded resin plate
CN108778675A (en) * 2016-03-23 2018-11-09 株式会社可乐丽 The manufacturing method and extruded resin sheet of extruded resin sheet
KR20180127414A (en) * 2016-03-23 2018-11-28 주식회사 쿠라레 Method of manufacturing extruded resin plate and extruded resin plate
CN108778675B (en) * 2016-03-23 2020-06-23 株式会社可乐丽 Method for producing extruded resin sheet and extruded resin sheet
JPWO2017164276A1 (en) * 2016-03-23 2019-02-14 株式会社クラレ Extruded resin plate manufacturing method and extruded resin plate
TWI729089B (en) * 2016-03-23 2021-06-01 日商可樂麗股份有限公司 Manufacturing method of extruded resin board and extruded resin board
KR20190040207A (en) 2016-08-12 2019-04-17 주식회사 쿠라레 Method of manufacturing extruded resin plate and extruded resin plate
WO2018199213A1 (en) 2017-04-28 2018-11-01 株式会社クラレ Extruded resin plate and manufacturing method for same
KR20200036843A (en) 2017-07-28 2020-04-07 주식회사 쿠라레 Laminated extruded resin plate and protective plate for liquid crystal display with infrared sensor
WO2019022213A1 (en) 2017-07-28 2019-01-31 株式会社クラレ Layered/extruded resin sheet, and protective sheet for liquid crystal display with infrared sensor
WO2019107462A1 (en) 2017-11-30 2019-06-06 株式会社クラレ Thermoforming laminated plate and method for manufacturing same
KR20200088859A (en) 2017-11-30 2020-07-23 주식회사 쿠라레 Laminate for thermoforming and manufacturing method
WO2019203230A1 (en) * 2018-04-16 2019-10-24 株式会社クラレ Laminated sheet, manufacturing method therefor, and display with protective cover
JPWO2019203230A1 (en) * 2018-04-16 2021-05-27 株式会社クラレ Laminated sheet and its manufacturing method, and display with protective cover
JP7216717B2 (en) 2018-04-16 2023-02-01 株式会社クラレ LAMINATED SHEET, MANUFACTURING METHOD THEREOF, AND DISPLAY WITH PROTECTIVE COVER
KR102727735B1 (en) * 2018-04-16 2024-11-08 주식회사 쿠라레 Laminated sheet and its manufacturing method, and display with protective cover attached
KR20210011946A (en) 2018-05-23 2021-02-02 주식회사 쿠라레 Extruded resin plate and its manufacturing method, and laminated plate

Also Published As

Publication number Publication date
KR102365231B1 (en) 2022-02-18
JP6542780B2 (en) 2019-07-10
TWI683741B (en) 2020-02-01
CN106687278A (en) 2017-05-17
CN106687278B (en) 2019-03-15
JPWO2016038868A1 (en) 2017-06-15
TW201613743A (en) 2016-04-16
KR20170051455A (en) 2017-05-11

Similar Documents

Publication Publication Date Title
JP6266021B2 (en) Method for manufacturing extruded resin plate, method for manufacturing liquid crystal display protective plate, and liquid crystal display protective plate
WO2016038868A1 (en) Method for manufacturing liquid crystal display protection plate
JP5859449B2 (en) Front panel of TN liquid crystal display device
US20100134879A1 (en) Display screen protection film and polarization plate
WO2007119560A1 (en) Polarizing plate, liquid crystal display and protective film
WO2017164276A1 (en) Extruded resin sheet manufacturing method and extruded resin sheet
JPWO2012117897A1 (en) Multi-layer film and method for producing multi-layer film
WO2012032982A1 (en) Phase difference plate manufacturing method, phase difference plate, and liquid crystal display device
WO2018030504A1 (en) Method for manufacturing extruded resin sheet and extruded resin sheet
JP2009223163A (en) Retardation film
KR20210143822A (en) Anti-reflection circular polarizing plate and image display device using same
JP2008003425A (en) Polarizing plate
JP2012163652A (en) Optical film, manufacturing method of optical film, polarizing plate and image display device
WO2016132607A1 (en) Optical film, optical film manufacturing method, polarizing plate and liquid crystal display device
WO2016132606A1 (en) Polarizing plate and polarizing plate manufacturing method
JP5642187B2 (en) TN LCD panel front panel
WO2013133102A1 (en) Retarder manufacturing method
CN115485611A (en) Liquid crystal display protection plate, liquid crystal display protection plate with curved surface and manufacturing method thereof
JP2013200408A (en) Retardation plate and manufacturing method of the same
JP2011203642A (en) Polarizing plate, and liquid crystal panel, liquid crystal display device and polarizing plate set using the same
CN114787698B (en) Protective plate for liquid crystal display
JPWO2012060076A1 (en) Optical film manufacturing method, optical film, polarizing plate, and liquid crystal display device
JP2008230030A (en) Method of forming thermoplastic resin film
WO2010146910A1 (en) Long gradient phase difference film, method for manufacturing long gradient phase difference film, polarizing plate, and liquid crystal display device
KR20120076035A (en) Optical film and back light unit using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547693

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177007867

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15840727

Country of ref document: EP

Kind code of ref document: A1