[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016038659A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2016038659A1
WO2016038659A1 PCT/JP2014/073666 JP2014073666W WO2016038659A1 WO 2016038659 A1 WO2016038659 A1 WO 2016038659A1 JP 2014073666 W JP2014073666 W JP 2014073666W WO 2016038659 A1 WO2016038659 A1 WO 2016038659A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
bent portion
refrigeration cycle
cycle apparatus
Prior art date
Application number
PCT/JP2014/073666
Other languages
English (en)
French (fr)
Inventor
山下 浩司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/073666 priority Critical patent/WO2016038659A1/ja
Priority to JP2016547268A priority patent/JPWO2016038659A1/ja
Priority to EP14901661.0A priority patent/EP3193089A1/en
Publication of WO2016038659A1 publication Critical patent/WO2016038659A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0252Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures

Definitions

  • the present invention relates to a refrigeration cycle apparatus such as an air conditioner applied to, for example, a building multi-air conditioner.
  • a refrigeration cycle apparatus that forms a refrigerant circuit that circulates refrigerant and performs air conditioning, such as a multi air conditioner for buildings, generally, R410A that is nonflammable, hydrogen and carbon such as propane that exhibits flammability
  • R410A that is nonflammable, hydrogen and carbon such as propane that exhibits flammability
  • a substance containing is used as a refrigerant. When these substances are released into the atmosphere, they have different lifetimes until they are decomposed in the atmosphere and changed to other substances. However, they are highly stable in the refrigeration cycle apparatus and have been used for a long period of several decades. It can be used as a refrigerant.
  • thermal cycle system refrigeration cycle apparatus
  • HFO-1123 1,1,2-trifluoroethylene
  • 1,1,2-trifluoroethylene (HFO-1123) is used as a thermal cycle working medium.
  • 1,1,2-trifluoroethylene (HFO-1123) is a substance having a disproportionation reaction.
  • the adjacent substances react with each other and change to another substance by some energy.
  • pipe rupture or the like may occur due to a sudden rise in pressure.
  • Patent Document 1 do not describe any method for realizing an apparatus that does not cause the disproportionation reaction.
  • the present invention has been made to solve the above-described problem, and a refrigeration cycle that can safely use a substance having a property of causing a disproportionation reaction by reducing energy received from the outside of the refrigerant as a refrigerant. Get the device.
  • a refrigeration cycle apparatus comprises a refrigeration cycle in which a compressor, a first heat exchanger, a throttling device, and a second heat exchanger are connected by a refrigerant pipe and the refrigerant circulates.
  • the refrigerant is a single refrigerant composed of a substance having a disproportionation reaction or a mixed refrigerant containing a substance having a disproportionation reaction, and the refrigerant pipe has a flow direction of the refrigerant in the refrigerant pipe.
  • One of the first heat exchanger and the second heat exchanger that acts as a condenser and the other as an evaporator, and the bent portion includes a condenser and a throttle device.
  • the bending radius R of the bending portion provided in one or both of the flow path between the flow path and the flow path between the expansion device and the evaporator and through which the liquid refrigerant or the two-phase refrigerant flows satisfies the following relationship: .
  • a substance having a disproportionation reaction such as 1,1,2-trifluoroethylene (HFO-1123) causes a disproportionation reaction and cannot be used as a refrigerant. It is possible to prevent the occurrence of pipe rupture or the like and to use it safely as a refrigerant.
  • HFO-1123 1,1,2-trifluoroethylene
  • FIG. 3 is a circuit configuration diagram showing an example of a circuit configuration of the refrigeration cycle apparatus according to Embodiment 1.
  • the refrigerant circuit figure which shows the flow of the refrigerant
  • the refrigerant circuit figure which shows the flow of the refrigerant
  • FIG. 1 and the following drawings the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below.
  • the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification.
  • the combination of the components is not limited to the combination in each embodiment, and the components described in the other embodiments can be applied to another embodiment.
  • the subscripts may be omitted.
  • the size relationship of each component may be different from the actual one.
  • the level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in the state, operation, etc. of the system, apparatus, and the like.
  • FIG. Embodiment 1 of the present invention will be described with reference to the drawings.
  • FIG. 1 is a schematic diagram illustrating an installation example of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus shown in FIG. 1 can select either a cooling mode or a heating mode as an operation mode by configuring a refrigerant circuit that circulates refrigerant and using a refrigerant refrigeration cycle.
  • the refrigeration cycle apparatus of the present embodiment will be described by taking an air conditioning apparatus that performs air conditioning of the air-conditioning target space (indoor space 7) as an example.
  • the refrigeration cycle apparatus has one outdoor unit 1 that is a heat source unit and a plurality of indoor units 2.
  • the outdoor unit 1 and the indoor unit 2 are connected by an extension pipe (refrigerant pipe) 4 that conducts the refrigerant, and the cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 2.
  • extension pipe refrigerant pipe
  • the outdoor unit 1 is usually arranged in an outdoor space 6 that is a space outside a building 9 such as a building (for example, a rooftop), and supplies cold or hot heat to the indoor unit 2.
  • the indoor unit 2 is disposed at a position where air whose temperature is adjusted can be supplied to the indoor space 7 which is a space inside the building 9 (for example, a living room). Supply air.
  • an outdoor unit 1 and each indoor unit 2 are connected to each other using two extension pipes 4.
  • the indoor unit 2 is a ceiling cassette type
  • Any type may be used as long as heating air or cooling air can be blown directly into the indoor space 7 by a duct or the like, such as a ceiling-embedded type or a ceiling-suspended type.
  • FIG. 1 shows an example in which the outdoor unit 1 is installed in the outdoor space 6, but the present invention is not limited to this.
  • the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. Further, if the waste heat can be exhausted outside the building 9 by the exhaust duct, it may be installed inside the building 9. Furthermore, you may make it install in the inside of the building 9 using the water-cooled outdoor unit 1.
  • the number of connected outdoor units 1 and indoor units 2 is not limited to the number shown in FIG. 1, but the number of units can be determined according to the building 9 in which the refrigeration cycle apparatus according to the present embodiment is installed. That's fine.
  • FIG. 2 is a circuit configuration diagram showing an example of a circuit configuration of the refrigeration cycle apparatus (hereinafter referred to as the refrigeration cycle apparatus 100) according to the first embodiment. Based on FIG. 2, the detailed structure of the refrigerating-cycle apparatus 100 is demonstrated. As shown in FIG. 2, the outdoor unit 1 and the indoor unit 2 are connected by an extension pipe (refrigerant pipe) 4 through which a refrigerant flows.
  • extension pipe refrigerant pipe
  • Outdoor unit 1 The outdoor unit 1 is mounted with a compressor 10, a first refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 connected in series by a refrigerant pipe.
  • the compressor 10 sucks refrigerant and compresses the refrigerant to a high temperature and high pressure state.
  • the compressor 10 may be composed of an inverter compressor capable of capacity control.
  • the first refrigerant flow switching device 11 switches the refrigerant flow during the heating operation and the refrigerant flow during the cooling operation.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation, and functions as a condenser (or radiator) during cooling operation.
  • the heat source side heat exchanger 12 serving as the first heat exchanger performs heat exchange between air supplied from a blower (not shown) and the refrigerant, and evaporates or condenses the refrigerant. is there.
  • the heat source side heat exchanger 12 acts as a condenser in the operation of cooling the indoor space 7. Moreover, in the case of the driving
  • the accumulator 19 is provided on the suction side of the compressor 10 and stores excess refrigerant in the refrigerant circuit due to an operation mode change or the like.
  • the outdoor unit 1 includes a compressor 10, a first refrigerant flow switching device 11, a heat source side heat exchanger 12, an accumulator 19, a high pressure detection device 37, a low pressure detection device 38, and a control device 60.
  • the compressor 10 has, for example, a low-pressure shell structure that has a compression chamber in a sealed container, the inside of the sealed container has a low-pressure refrigerant pressure atmosphere, and sucks and compresses the low-pressure refrigerant in the sealed container.
  • a high-pressure shell structure is used in which the inside of the sealed container becomes a high-pressure refrigerant pressure atmosphere and the high-pressure refrigerant compressed in the compression chamber is discharged into the sealed container.
  • the outdoor unit 1 includes a control device 60, and controls equipment based on detection information from various detection devices, instructions from a remote controller, and the like.
  • the driving frequency of the compressor 10, the rotation speed of the blower (including ON / OFF), the switching of the first refrigerant flow switching device 11 and the like are controlled, and each operation mode described later is executed.
  • the control device 60 of the present embodiment is configured by a microcomputer or the like having control arithmetic processing means such as a CPU (Central Processing Unit).
  • the control device 60 has storage means (not shown), and has data in which a processing procedure related to control and the like is a program. Then, the control arithmetic processing means executes processing based on the program data to realize control.
  • the indoor unit 2 is equipped with a load-side heat exchanger 15 serving as a second heat exchanger.
  • the load side heat exchanger 15 is connected to the outdoor unit 1 by the extension pipe 4.
  • the load-side heat exchanger 15 exchanges heat between air supplied from a blower (not shown) and a refrigerant, and generates heating air or cooling air to be supplied to the indoor space 7. .
  • the load side heat exchanger 15 acts as a condenser in the case of an operation for heating the indoor space 7.
  • the load side heat exchanger 15 acts as an evaporator in the operation of cooling the indoor space 7.
  • FIG. 2 shows an example in which four indoor units 2 are connected, and are illustrated as an indoor unit 2a, an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d from the bottom of the page.
  • the load side heat exchanger 15 is also loaded from the lower side of the page with the load side heat exchanger 15a, the load side heat exchanger 15b, the load side heat exchanger 15c, and the load side heat exchange. It is shown as a container 15d.
  • the number of connected indoor units 2 is not limited to four as shown in FIG.
  • the refrigeration cycle apparatus 100 determines the operation mode of the outdoor unit 1 to be either the cooling operation mode or the heating operation mode based on an instruction from each indoor unit 2. That is, the refrigeration cycle apparatus 100 can perform the same operation (cooling operation or heating operation) for all of the indoor units 2 and adjusts the indoor temperature. Note that each indoor unit 2 can be freely operated / stopped in both the cooling operation mode and the heating operation mode.
  • the operation mode executed by the refrigeration cycle apparatus 100 includes a cooling operation mode in which all the driven indoor units 2 perform a cooling operation (including a stop), and all of the driven indoor units 2 are in a heating operation. There is a heating operation mode for executing (including stopping). Below, each operation mode is demonstrated with the flow of a refrigerant
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow in the cooling operation mode of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the cooling operation mode will be described by taking as an example a case where a cooling load is generated in all the load-side heat exchangers 15.
  • a pipe indicated by a thick line indicates a pipe through which the refrigerant flows, and a flow direction of the refrigerant is indicated by a solid line arrow.
  • the first refrigerant flow switching device 11 is switched so that the refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11.
  • the refrigerant that has flowed into the heat source side heat exchanger 12 is condensed and liquefied while dissipating heat to the outdoor air in the heat source side heat exchanger 12, becomes high-pressure liquid refrigerant, and flows out of the outdoor unit 1.
  • the high-pressure liquid refrigerant that has flowed out of the outdoor unit 1 passes through the extension pipe 4 and flows into each of the indoor units 2 (2a to 2d).
  • the high-pressure liquid refrigerant that has flowed into the indoor unit 2 (2a to 2d) flows into the expansion device 16 (16a to 16d), and is throttled and decompressed by the expansion device 16 (16a to 16d). It becomes a phase refrigerant.
  • the low-temperature and low-pressure two-phase refrigerant further flows into each of the load-side heat exchangers 15 (15a to 15d) acting as an evaporator, absorbs heat from the air circulating around the load-side heat exchanger 15, and It becomes a low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flows out of the indoor unit 2 (2a to 2d), flows into the outdoor unit 1 again through the extension pipe 4, passes through the first refrigerant flow switching device 11, and passes through the accumulator 19. Then, it is sucked into the compressor 10 again.
  • the opening degree (opening area) of the expansion devices 16a to 16d is determined based on the detected temperature of the load-side heat exchanger gas refrigerant temperature detection device 28 and the control device 60 of each outdoor unit 2 from the control device 60 of the outdoor unit 1 (FIG. It is controlled so that the temperature difference (superheat degree) between the evaporation temperature transmitted by communication to the target value (not shown) approaches the target value.
  • the cooling operation mode when executed, the operation is stopped because there is no need to flow the refrigerant to the load-side heat exchanger 15 (including the thermo-off) without the heat load.
  • the expansion device 16 corresponding to the stopped indoor unit 2 is fully closed or set to a small opening at which the refrigerant does not flow.
  • FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the refrigeration cycle apparatus according to Embodiment 1 of the present invention is in the heating operation mode.
  • the heating operation mode will be described by taking as an example a case where a thermal load is generated in all the load side heat exchangers 15.
  • a pipe indicated by a thick line indicates a pipe through which the refrigerant flows, and a flow direction of the refrigerant is indicated by a solid line arrow.
  • the refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11 to the indoor unit 2 without passing through the heat source side heat exchanger 12. Switch to inflow.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant, passes through the first refrigerant flow switching device 11, and flows out of the outdoor unit 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into each of the indoor units 2 (2a to 2d) through the extension pipe 4.
  • the high-temperature and high-pressure liquid refrigerant that has flowed out of the load-side heat exchanger 15 (15a to 15d) flows into the expansion device 16 (16a to 16d), is throttled and decompressed by the expansion device 16 (16a to 16d), It becomes a low-pressure two-phase refrigerant and flows out of the indoor unit 2 (2a to 2d).
  • the low-temperature and low-pressure two-phase refrigerant that has flowed out of the indoor unit 2 flows into the outdoor unit 1 again through the extension pipe 4.
  • the opening degree (opening area) of the expansion devices 16a to 16d is determined based on the condensation temperature transmitted from the control device 60 of the outdoor unit 1 to the control device (not shown) of each indoor unit 2 through communication and the load side heat. Control is performed so that the temperature difference (degree of supercooling) from the detected temperature of the exchanger liquid refrigerant temperature detecting device 27 approaches the target value.
  • the low-temperature and low-pressure two-phase refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12, absorbs heat from the air flowing around the heat source side heat exchanger 12, and evaporates to form a low-temperature and low-pressure gas refrigerant or low-temperature and low-pressure. It becomes a two-phase refrigerant with a large dryness.
  • the low-temperature and low-pressure gas refrigerant or two-phase refrigerant is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the heating operation mode When the heating operation mode is executed, it is not necessary to flow the refrigerant to the load-side heat exchanger 15 (including the thermo-off) that has no heat load.
  • the load-side heat exchanger 15 that is not in operation is set inside.
  • the opening degree (opening area) of the expansion device 16 corresponding to the load-side heat exchanger 15 having no heat load is set to a large opening degree such as full opening to prevent accumulation of refrigerant.
  • the first refrigerant flow switching device 11 generally uses a four-way valve. However, the first refrigerant flow switching device 11 is not limited to this, and uses a plurality of two-way flow switching valves and three-way flow switching valves. You may comprise so that a refrigerant
  • coolant may flow into this.
  • the accumulator 19 which stores an excess refrigerant
  • the heat source side heat exchanger 12 acts as a condenser, and the heat source side heat exchanger 12 has a high-temperature and high-pressure gas.
  • the refrigerant flows in and condenses, liquefies through a two-phase region, and flows out as a high-temperature and high-pressure liquid refrigerant.
  • the load side heat exchanger 15 acts as a condenser, and the load side heat exchanger 15 (15a to 15d)
  • the refrigerant flows in and condenses, liquefies through a two-phase region, and flows out as a high-temperature and high-pressure liquid refrigerant.
  • the refrigerant When using a substance that is normally used as a refrigerant, such as R32, R410A, etc., as a refrigerant used in the refrigeration cycle apparatus 100, devise to improve the stability of the refrigerant in the refrigerant circuit. Without any problem, it can be used normally.
  • the refrigerant is composed of a substance that causes a disproportionation reaction such as 1,1,2-trifluoroethylene (HFO-1123) represented by C2H1F3 and having one double bond in the molecular structure. It is assumed that a single refrigerant or a mixed refrigerant obtained by mixing another substance with a substance that causes a disproportionation reaction is used. Note that the refrigerant used in this example is not limited to HFO-1123, and any material may be used as long as it has a property of causing a disproportionation reaction.
  • CF 3 CF CH 2 HFO-1234yf which is 2,3,3,3-tetrafluoropropene, HFO-1234ze which is 1,3,3,3-tetrafluoro-1-propene represented by CF 3 CH ⁇ CHF), or Difluoromethane (HFC-32) whose chemical formula is represented by CH 2 F 2 is used.
  • the substance to be mixed with the substance having a disproportionation reaction is not limited thereto, and HC-290 (propane) or the like may be mixed, and the thermal performance that can be used as the refrigerant of the refrigeration cycle apparatus 100 is improved. Any substance may be used as long as it has a substance.
  • the mixing ratio at that time may be any mixing ratio.
  • Substances that cause a disproportionation reaction have the following problems if used as refrigerants. That is, when a strong substance is applied in a place where there is a liquid state where the distance between adjacent substances is very close, such as a liquid phase, two phases, etc., the adjacent substances react with each other and become different substances. It will change and will not function as a refrigerant. Not only that, there is a possibility of pipe rupture or the like due to a sudden rise in pressure due to heat generation. Therefore, in order to use a material having a disproportionation reaction as a refrigerant, a device that does not cause the disproportionation reaction in the liquid part or the two-phase part that is a mixed state of gas and liquid. Is required.
  • the collision energy when the refrigerant and the structure collide also causes a disproportionation reaction of the refrigerant. For this reason, if the components of the refrigerant circuit have a structure in which the collision energy is reduced, disproportionation reaction hardly occurs.
  • FIG. 5 is an enlarged cross-sectional view of a bent portion in the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the bent portion 45 if the pipe inner diameter is d and the bend radius at the center of the pipe is R, the bend radius inside the pipe of the bend section 45 is Rd / 2, and the bend radius outside the pipe is R + d / 2.
  • the bent portion 45 includes an inlet pipe 46 on the refrigerant inlet side, an outlet pipe 47 on the refrigerant outlet side, and a bent pipe 48 between the inlet pipe 46 and the outlet pipe 47.
  • Point O Center of the bending radius R of the bent portion 45
  • Point A Of the two intersections of the straight line 46b passing through the point O drawn in the normal direction perpendicular to the center line 46a of the inlet pipe 46 and the inner surface of the pipe
  • Point B Of the two intersections of the straight line 47b passing through the point O drawn in the normal direction orthogonal to the center line 47a of the outlet pipe 47 and the inner surface of the pipe, the one farther to the point O.
  • Point C the inlet pipe 46 Of the two intersections of the straight line 46b passing through the point O drawn in the normal direction perpendicular to the center line 46a and the inner surface of the pipe, the one near the point O
  • Point D Normal direction perpendicular to the center line 47a of the outlet pipe 47 Of the two intersections between the straight line 47b passing through the point O drawn on the inner surface of the pipe and the inner surface of the pipe, the one near the point O.
  • Point E The straight line along the inner surface away from the point O of the inlet pipe 46 and the point O Intersection with a straight line along the inner surface away from the point F: From a straight line connecting the point O and the point E and the point O of the pipe It is assumed that the points A, B, C, D, E, F, and O are all on the same plane.
  • the following explains the mitigation of this collision energy.
  • the actual piping has a three-dimensional cylindrical shape, but here, description will be given within the two-dimensional cross section shown in FIG. Therefore, although the actual collision energy relaxation amount and the collision energy relaxation amount described below are slightly different, the tendency is the same, and there is no big problem even if they are handled in two dimensions.
  • the facing surface of the refrigerant flowing into the bent portion 45 from the inlet pipe 46 is a curved surface having a curvature (R + d / 2), and the impact energy of the refrigerant is dispersed and relaxed by the influence.
  • the collision energy between the refrigerant and the inner surface of the pipe is not alleviated, so that a large collision energy is generated and a disproportionation reaction of the refrigerant may occur. Therefore, in order to alleviate the collision energy of the refrigerant and prevent the refrigerant from causing a disproportionation reaction, it is necessary that all of the refrigerant flowing from the inlet pipe 46 collides with the curved surface AFB.
  • FIG. 6 is an explanatory diagram of a configuration for reducing the collision energy of the refrigerant in the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigerant flowing in from the inlet pipe 46 passes through a surface having a line segment AC as a cross section, spreads from there according to the spread angle of the jet, and then collides with the opposite surface. Only the outlet pipe 47 side is not in contact with the solid wall surface, and the distance traveled by the refrigerant is the length of the line segment OB, that is, (R + d / 2). Therefore, in order to cause all of the refrigerant flowing from the inlet pipe 46 to collide with the curved surface AFB, and to reduce the collision energy of the refrigerant, the equation (2) needs to be satisfied.
  • equation (3) is obtained, and if this equation is established, the collision energy at the bent portion 45 of the refrigerant is alleviated and the refrigerant is less likely to be disproportionate.
  • the outer diameter of the inlet pipe 46 of the bent portion 45 is 1/4 inch (6.35 mm)
  • the thickness of the pipe is about 0.6 mm
  • the inner diameter is 5.15 mm
  • the bending radius is 3.0688 mm. If it is above, the disproportionation reaction of a refrigerant
  • coolant will become difficult to occur. Accordingly, when the outer diameter of the inlet tube 46 of the bent portion 45 is small, the same effect is obtained with a smaller bending radius. Therefore, when the outer diameter of the inlet tube 46 of the bent portion 45 is 1/4 inch or less, the bending radius is reduced. If it is set to 3.0688 mm or more, the disproportionation reaction of the refrigerant hardly occurs.
  • the outer diameter of the inlet pipe 46 of the bent portion 45 is 3/8 inch (9.52 mm)
  • the thickness of the pipe is about 0.7 mm
  • the inner diameter is 8.12 mm
  • the bending radius is 4 If it is at least 8385 mm, the disproportionation reaction of the refrigerant hardly occurs. Therefore, when the outer diameter of the inlet pipe 46 of the bent portion 45 is larger than 1 ⁇ 4 inch and smaller than 3/8 inch, the disproportionation reaction of the refrigerant is difficult to occur when the bending radius is 4.8385 mm or larger.
  • the outer diameter of the inlet pipe 46 of the bent portion 45 is 1/2 inch (12.7 mm)
  • the thickness of the pipe is about 0.8 mm
  • the inner diameter is 11.1 mm
  • the bending radius is 6 If it is 6142 mm or more, disproportionation reaction of the refrigerant hardly occurs. Therefore, when the outer diameter of the inlet pipe 46 of the bent portion 45 is larger than 3/8 inch and not larger than 1/2 inch, the disproportionation reaction of the refrigerant is difficult to occur when the bending radius is set to 6.6142 mm or more.
  • the outer diameter of the inlet pipe 46 of the bent portion 45 is 5/8 inch (15.88 mm)
  • the thickness of the pipe is about 0.9 mm
  • the inner diameter is 14.08 mm
  • the bending radius is 8 If it is 3899 mm or more, the disproportionation reaction of the refrigerant hardly occurs. Therefore, when the outer diameter of the inlet pipe 46 of the bent portion 45 is larger than 1 ⁇ 2 inch and smaller than 5/8 inch, the disproportionation reaction of the refrigerant hardly occurs when the bending radius is 8.3899 mm or more.
  • the outer diameter of the inlet pipe 46 of the bent portion 45 is 3/4 inch (19.05 mm)
  • the wall thickness of the pipe is about 1 mm
  • the inner diameter is 17.05 mm
  • the bending radius is 10.15597 mm. If it is above, the disproportionation reaction of a refrigerant
  • coolant will become difficult to occur. Therefore, when the outer diameter of the inlet pipe 46 of the bent portion 45 is larger than 5/8 inch and not larger than 3/4 inch, the disproportionation reaction of the refrigerant does not easily occur when the bending radius is 10.15597 mm or larger.
  • the thickness of the pipe is about 1 to 1.2 mm, and the inner diameter is 19.8 to 20.2 mm.
  • the bending radius is set to 12.0367 mm or more calculated with respect to the larger dimension of 20.2 mm, the disproportionation reaction of the refrigerant does not easily occur. Therefore, when the outer diameter of the inlet pipe 46 of the bent portion 45 is larger than 3/4 inch and not larger than 7/8 inch, the disproportionation reaction of the refrigerant does not easily occur when the bending radius is 12.0367 mm or larger.
  • the thickness of the pipe is about 1 to 1.3 mm, and the inner diameter is 22.8 to 23.4 mm.
  • the bending radius is set to a value of 13.9435 mm or more calculated with respect to the larger dimension of 23.4 mm, the disproportionation reaction of the refrigerant does not easily occur. Therefore, when the outer diameter of the inlet pipe 46 of the bent portion 45 is larger than 7/8 inch and 1 inch or less, the disproportionation reaction of the refrigerant is difficult to occur when the bending radius is set to 13.9435 mm or more.
  • FIG. 5 shows the case where the outlet pipe 47 of the bent portion 45 faces the normal direction of the inlet pipe 46, that is, the case where the angle between the inlet pipe 46 and the outlet pipe 47 is 90 degrees.
  • the collision energy when the angle between the inlet pipe 46 and the outlet pipe 47 is ⁇ will be considered.
  • FIG. 7 is a diagram showing a bent portion when the angle between the inlet pipe and the outlet pipe of the bent portion in the refrigeration cycle apparatus according to Embodiment 1 of the present invention is ⁇ .
  • the expression (4) that is, the expression (5)
  • the impact force is alleviated and refrigerant disproportionation is unlikely to occur.
  • Formula (2) and Formula (3) have shown the case where (theta) is 90 degree
  • the shape of the inlet pipe 46 of the bent portion 45, the portion including the curved surface AFB, and the shape of the outlet pipe 47 may be any shape. Although shown here as if it were a circular tube, a rectangular tube, an elliptical tube, and other shapes may be sufficient, and there exists the same effect.
  • the load-side heat exchanger 15 functions as a condenser, and the expansion device 16 (16a) is provided from the outlet of the load-side heat exchanger 15 (15a to 15d).
  • the liquid refrigerant flows to the inlets to 16d), and when the bent portion 45 of the pipe exists in this portion, the same effect can be obtained if the bent portion 45 has the same structure as described above.
  • the heat source side heat exchanger 12 acts as an evaporator, and two-phase in which liquid refrigerant and gas refrigerant are mixed from the outlet of the expansion device 16 (16a to 16d) to the evaporator inlet.
  • the same effect can be obtained if the bent portion 45 has the same structure as described above. In each operation mode, the same effect can be obtained if the bent portion 45 is also present in other portions where the liquid refrigerant or the two-phase refrigerant flows.
  • the refrigerating machine oil filled in the refrigerant circuit is mainly composed of either polyol ester or polyvinyl ether, and a part of the refrigerating machine oil filled in the compressor 10 circulates in the refrigerant circuit together with the refrigerant.
  • Both the polyol ester and the polyvinyl ether are refrigerating machine oils having compatibility easily dissolved in a refrigerant having one double bond in the molecular structure.
  • HFO-1123 dissolves to some extent in refrigeration oil.
  • the bent portion 45 is configured as described above with respect to the refrigerant having the property of causing a disproportionation reaction, the collision energy of the refrigerant is reduced and the disproportionation of the refrigerant does not easily occur. Furthermore, when the refrigerating cycle is filled with highly compatible refrigerating machine oil, the refrigerant disproportionation reaction is less likely to occur than when the refrigerating machine oil with low compatibility or incompatible refrigerating machine oil is filled into the refrigerating cycle. Become.
  • FIG. 8 is a solubility diagram of refrigerating machine oil of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • High solubility means that many refrigerants are dissolved in the refrigeration oil
  • low solubility means that only a small amount of refrigerant is dissolved in the refrigeration oil.
  • FIG. 8 shows the relationship between the solubility and the pressure for each of the refrigerant temperatures T1, T2, and T3.
  • T1, T2, and T3 are different temperatures, and Equation (6) is established.
  • the refrigerant disproportionation reaction is a phenomenon in which molecules of adjacent refrigerants react with each other.
  • the refrigerant between the molecules of the refrigerant is used. Since the molecules of the refrigerating machine oil exist, the disproportionation reaction of the refrigerant hardly occurs.
  • the refrigerating machine oil is not limited to this as long as it is compatible with the refrigerant, and another type of oil may be used.
  • the greater the solubility of the refrigerant in the refrigerating machine oil the greater the effect. Practically, if the solubility is 50 wt% (weight%) or more, many refrigerants are dissolved in the refrigerating machine oil, so that the disproportionation reaction can be suppressed.
  • the condensation temperature which is the temperature of the refrigerant in the condenser
  • the expansion device 16 is controlled so that the degree of supercooling of the refrigerant at the outlet of the condenser is about 10 ° C. That is, if the condensation temperature is about 50 ° C., the refrigerant at the outlet of the condenser is controlled to about 40 ° C. and flows out of the condenser. Therefore, the refrigerant between the condenser and the expansion device 16 is in a saturated pressure state where the temperature is about 40 ° C. and the pressure is 50 ° C.
  • the refrigerant flowing between the condenser and the expansion device 16 is in a state where the temperature is between about 40-50 ° C. and the saturation pressure is 50 ° C. It has become. Therefore, if the solubility of the refrigerant in the refrigerating machine oil is high at these temperatures and pressures, the refrigerant disproportionation reaction hardly occurs. Practically, in the state where the refrigerant is at these temperatures and pressures, if the solubility of the refrigerant in the refrigerating machine oil is 50 wt% (weight%) or more, many refrigerants are dissolved in the refrigerating machine oil. The chemical reaction can hardly occur.
  • the refrigeration cycle apparatus 100 has several operation modes. In these operation modes, the refrigerant flows through the extension pipe 4 that connects the outdoor unit 1 and the indoor unit 2.
  • the high pressure detection device 37 and the low pressure detection device 38 are installed to control the refrigeration cycle high pressure and low pressure to target values, but may be temperature detection devices that detect a saturation temperature.
  • the heat source side heat exchanger 12 and the load side heat exchangers 15a to 15d are provided with a blower, and in many cases, condensation or evaporation is promoted by blowing, but this is not restrictive.
  • the load side heat exchangers 15a to 15d those such as panel heaters using radiation can be used, and as the heat source side heat exchanger 12, a water-cooled type that moves heat by water or antifreeze liquid is used. Things can also be used. Any heat exchanger having a structure capable of radiating or absorbing heat can be used.
  • the heat source side heat exchanger 12 or the load side heat exchangers 15a to 15d have fins 44 in order to improve the heat transfer performance, but sufficient heat transfer performance can be obtained by using only the heat transfer tube 43. May not have the fins 44.
  • the indoor unit 2 can arbitrarily select one of a cooling operation and a heating operation, and the entire system can perform a mixed operation of the indoor unit 2 that performs the cooling operation and the indoor unit 2 that performs the heating operation.
  • the present invention can also be applied to a refrigeration cycle apparatus and has the same effect.
  • FIG. A second embodiment of the present invention will be described with reference to the drawings. In the following, the second embodiment will be described focusing on the differences from the first embodiment. Note that the modification applied in the configuration part of the first embodiment is also applied to the same configuration part of the second embodiment.
  • FIG. 9 is a circuit diagram of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • a refrigeration cycle apparatus 100 shown in FIG. 9 includes a refrigerant circulation circuit A in which an outdoor unit 1 and a heat medium relay unit 3 as a relay are connected by an extension pipe 4 so that a refrigerant circulates.
  • the refrigeration cycle apparatus 100 includes a heat medium circuit B in which the heat medium converter 3 and the indoor unit 2 are connected by a pipe (heat medium pipe) 5 and a heat medium such as water and brine circulates.
  • the heat medium relay unit 3 includes a load side heat exchanger 15a and a load side heat exchanger 15b that perform heat exchange between the refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B.
  • the heat medium relay unit 3 is located separately from the outdoor unit 1 and the indoor unit 2, for example, a ceiling that is inside the building 9 but separate from the indoor space 7 as shown in FIG. 1. It is installed in a space such as the back (hereinafter simply referred to as space 8).
  • the heat medium relay 3 can also be installed in a common space where there is an elevator or the like.
  • the operation mode executed by the refrigeration cycle apparatus 100 includes a cooling only operation mode in which all the driven indoor units 2 execute a cooling operation and a heating operation in which all the driven indoor units 2 execute a heating operation. There is an operation mode. Further, there are a cooling main operation mode executed when the cooling load is larger and a heating main operation mode executed when the heating load is larger.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11 and dissipates heat to the surrounding air. It condenses and becomes high-pressure liquid refrigerant and flows out of the outdoor unit 1 through the check valve 13a. Then, it flows into the heat medium relay unit 3 through the extension pipe 4. The refrigerant flowing into the heat medium relay unit 3 passes through the opening / closing device 17a, expands in the expansion device 16a and the expansion device 16b, and becomes a low-temperature and low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows into each of the load side heat exchanger 15a and the load side heat exchanger 15b acting as an evaporator, absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-temperature and low-pressure gas refrigerant. .
  • the gas refrigerant flows out of the heat medium relay unit 3 via the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b. Then, it flows into the outdoor unit 1 again through the extension pipe 4.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13d and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
  • the heat medium is cooled by the refrigerant in both the load side heat exchanger 15a and the load side heat exchanger 15b.
  • the cooled heat medium flows through the pipe 5 by the pump 21a and the pump 21b.
  • the heat medium flowing into the use side heat exchangers 26a to 26d through the second heat medium flow switching devices 23a to 23d absorbs heat from the indoor air.
  • the indoor air is cooled to cool the indoor space 7.
  • the refrigerant that has flowed out of the use side heat exchangers 26a to 26d flows into the heat medium flow control devices 25a to 25d, passes through the first heat medium flow switching devices 22a to 22d, and passes through the load side heat exchanger 15a and the load side.
  • the heat medium flow control devices 25a to 25d corresponding to the use side heat exchangers 26a to 26d without heat load are fully closed. Further, the heat medium flow control devices 25a to 25d corresponding to the use side heat exchangers 26a to 26d having the heat load adjust the opening degree to adjust the heat load in the use side heat exchangers 26a to 26d.
  • the heating only operation mode In the heating only operation mode, the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the first connection pipe 4a and the check valve 13b. To do. Then, the refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the extension pipe 4. The refrigerant that has flowed into the heat medium relay unit 3 flows into the load-side heat exchanger 15a and the load-side heat exchanger 15b through the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b, respectively.
  • the heat is radiated to the heat medium circulating in the heat medium circuit B, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant expands in the expansion device 16a and the expansion device 16b to become a low-temperature and low-pressure two-phase refrigerant, and flows out of the heat medium converter 3 through the opening / closing device 17b.
  • the refrigerant that has flowed out of the heat medium relay unit 3 flows into the outdoor unit 1 again through the extension pipe 4.
  • the refrigerant flowing into the outdoor unit 1 passes through the second connection pipe 4b and the check valve 13c, flows into the heat source side heat exchanger 12 acting as an evaporator, absorbs heat from the surrounding air, and is a low-temperature and low-pressure gas refrigerant. It becomes.
  • the gas refrigerant is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19. Note that the operation of the heat medium in the heat medium circuit B is the same as in the cooling only operation mode.
  • the heat medium is heated by the refrigerant in the load-side heat exchanger 15a and the load-side heat exchanger 15b, and is radiated to the indoor air in the use-side heat exchanger 26a and the use-side heat exchanger 26b.
  • the indoor space 7 is heated.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11 and radiates and condenses to the surrounding air. Then, it becomes a two-phase refrigerant and flows out of the outdoor unit 1 through the check valve 13a. Then, the refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the extension pipe 4.
  • the refrigerant flowing into the heat medium relay unit 3 flows into the load-side heat exchanger 15b acting as a condenser through the second refrigerant flow switching device 18b, and dissipates heat to the heat medium circulating in the heat medium circuit B. And high pressure liquid refrigerant.
  • the high-pressure liquid refrigerant expands in the expansion device 16b and becomes a low-temperature and low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows into the load-side heat exchanger 15a acting as an evaporator through the expansion device 16a, absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-pressure gas refrigerant. It flows out of the heat medium relay unit 3 through the path switching device 18a. Then, it flows again into the outdoor unit 1 through the refrigerant h that has flowed out of the heat medium relay unit 3 and the extension pipe 4.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13d and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
  • the heat of the refrigerant is transmitted to the heat medium by the load side heat exchanger 15b.
  • the heated heat medium flows in the pipe 5 by the pump 21b.
  • the heat medium that has flowed into the use side heat exchangers 26a to 26d for which heating is requested by operating the first heat medium flow switching devices 22a to 22d and the second heat medium flow switching devices 23a to 23d radiates heat to the indoor air. To do.
  • the indoor air is heated to heat the indoor space 7.
  • the cold heat of the refrigerant is transmitted to the heat medium in the load side heat exchanger 15a.
  • the cooled heat medium flows in the pipe 5 by the pump 21a.
  • the heat medium that has flowed into the use side heat exchangers 26a to 26d for which cooling is requested by operating the first heat medium flow switching devices 22a to 22d and the second heat medium flow switching devices 23a to 23d absorbs heat from the indoor air. To do.
  • the indoor air is cooled to cool the indoor space 7.
  • the heat medium flow control devices 25a to 25d corresponding to the use side heat exchangers 26a to 26d without heat load are fully closed.
  • the heat medium flow control devices 25a to 25d corresponding to the use side heat exchangers 26a to 26d having the heat load adjust the opening degree to adjust the heat load in the use side heat exchangers 26a to 26d.
  • Heating main operation mode In the heating main operation mode, the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, passes through the first connection pipe 4 a and the check valve 13 b, and then the outdoor unit 1. Spill from. Then, the refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the extension pipe 4. The refrigerant flowing into the heat medium relay unit 3 flows into the load-side heat exchanger 15b acting as a condenser through the second refrigerant flow switching device 18b, and dissipates heat to the heat medium circulating in the heat medium circuit B. And high pressure liquid refrigerant.
  • the high-pressure liquid refrigerant expands in the expansion device 16b and becomes a low-temperature and low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows into the load-side heat exchanger 15a acting as an evaporator via the expansion device 16a, absorbs heat from the heat medium circulating in the heat medium circuit B, and passes through the second refrigerant flow switching device 18a. And flows out of the heat medium relay unit 3.
  • the refrigerant flowing into the outdoor unit 1 flows into the heat source side heat exchanger 12 acting as an evaporator through the second connection pipe 4b and the check valve 13c, absorbs heat from the surrounding air, and is a low-temperature and low-pressure gas. Becomes a refrigerant.
  • the gas refrigerant is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the operation of the heat medium in the heat medium circuit B, the first heat medium flow switching devices 22a to 22d, the second heat medium flow switching devices 23a to 23d, the heat medium flow control devices 25a to 25d, and the use side The operations of the heat exchangers 26a to 26d are the same as those in the cooling main operation mode.
  • liquid refrigerant and gas refrigerant are mixed from the outlet of the expansion device 16 (16a to 16d) to the evaporator inlet.
  • the bent portion 45 of the pipe is present in the portion through which the two-phase refrigerant flows, the same effect can be obtained if the bent portion 45 has the same structure as described above.
  • the same effect can be obtained if the structure is the same.
  • the first heat medium flow switching device 22 corresponding to the use side heat exchanger 26 performing the heating operation and The second heat medium flow switching device 23 is switched to a flow path connected to the load side heat exchanger 15b for heating. Further, the first heat medium flow switching device 22 and the second heat medium flow switching device 23 corresponding to the use side heat exchanger 26 performing the cooling operation are connected to the cooling load side heat exchanger 15a. Switch to the flow path. For this reason, in each indoor unit 2, heating operation and cooling operation can be performed freely.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 are those that can switch a three-way flow path such as a three-way valve, and those that open and close a two-way flow path such as an on-off valve. What is necessary is just to switch a flow path, such as combining two.
  • the first heat medium can be obtained by combining two things such as a stepping motor drive type mixing valve that can change the flow rate of the three-way flow path and two things that can change the flow rate of the two-way flow path such as an electronic expansion valve.
  • the flow path switching device 22 and the second heat medium flow path switching device 23 may be used.
  • the heat medium flow control device 25 may be installed together with a bypass pipe that bypasses the use side heat exchanger 26 as a control valve having a three-way flow path other than the two-way valve.
  • the heat medium flow control device 25 may be a stepping motor drive type that can control the flow rate flowing through the flow path, and may be a two-way valve or a device in which one end of the three-way valve is closed.
  • a device that opens and closes a two-way flow path such as an open / close valve may be used, and the average flow rate may be controlled by repeating ON / OFF.
  • first refrigerant flow switching device 11 and the second refrigerant flow switching device 18 are shown as if they were four-way valves. However, the present invention is not limited to this, but a two-way flow switching valve, a three-way flow switching A plurality of valves may be used so that the refrigerant flows in the same manner.
  • the heat medium flow control device 25 is built in the heat medium converter 3
  • the heat medium flow control device 25 is not limited thereto, and may be built in the indoor unit 2. 3 and the indoor unit 2 may be configured separately.
  • the heat medium flow control device 25 may not be provided. if one or both of the heat medium flow switching device 22 and the heat medium flow switching device 23 have a function of adjusting the flow rate of the heat medium, the heat medium flow control device 25 may not be provided. .
  • the heat medium for example, brine (antifreeze), water, a mixed solution of brine and water, a mixed solution of an additive having a high anticorrosive effect against water, or the like can be used. Therefore, in the refrigeration cycle apparatus 100, even if the heat medium leaks into the indoor space 7 through the indoor unit 2, a highly safe heat medium is used, which contributes to an improvement in safety. Become.
  • the heat source side heat exchanger 12 and the use side heat exchangers 26a to 26d are provided with a blower, and in many cases, condensation or evaporation is promoted by blowing, but this is not restrictive.
  • a blower for example, as the use side heat exchangers 26a to 26d, a panel heater using radiation can be used.
  • a water-cooled type that moves heat by water or antifreeze can also be used. Any structure that can dissipate or absorb heat can be used.
  • a plate-type heat exchanger is generally used as the load-side heat exchanger 15.
  • the load-side heat exchanger 15 is not limited to a plate type, but can be any type that can exchange heat between the refrigerant and the heat medium. It may be a thing.
  • the number of pumps 21a and 21b is not limited to one, and a plurality of small capacity pumps may be arranged in parallel.
  • the compressor 10, the four-way valve (first refrigerant flow switching device) 11, and the heat source side heat exchanger 12 are accommodated in the outdoor unit 1, and the use side heat exchanger is configured to exchange heat between the air in the air-conditioning target space and the refrigerant.
  • 26 is accommodated in the indoor unit 2
  • the load-side heat exchanger 15 and the expansion device 16 are accommodated in the heat medium converter 3
  • the outdoor unit 1 and the heat medium converter 3 are connected by the extension pipe 4 to form a refrigerant. Is circulated, and the heat medium is circulated by connecting the indoor unit 2 and the heat medium converter 3 with a set of two pipes 5 each, and the load-side heat exchanger 15 exchanges heat between the refrigerant and the heat medium.
  • the system to be performed has been described by way of an example of a system that can perform a mixed operation of the indoor unit 2 that performs the cooling operation and the indoor unit 2 that performs the heating operation, but is not limited thereto.
  • the outdoor unit 1 and the heat medium relay unit 3 described in the first embodiment can be combined and applied to a system that performs only a cooling operation or a heating operation in the indoor unit 2 and has the same effect.
  • Heat source unit (outdoor unit), 2, 2a, 2b, 2c, 2d indoor unit, 3 heat medium converter (repeater), 4 extension piping, 4a first connection piping, 4b second connection piping, 5 piping (heat Medium piping), 6 outdoor space, 7 indoor space, 8 outdoor space such as the back of the ceiling and indoor space, 9 building, etc.
  • first refrigerant flow switching device (four-way valve) 12 heat source side heat exchanger (first heat exchanger), 13a, 13b, 13c, 13d check valve, 15, 15a, 15b, 15c, 15d load side heat exchanger (second heat exchanger), 16, 16a, 16b, 16c, 16d throttle device, 17a, 17b opening / closing device, 18, 18a, 18b second refrigerant flow switching device, 19 accumulator, 21a, 21b pump, 22, 22a, 22b, 22c, 22d 1 Heat medium flow switching device, 23, 23a, 23b, 23c, 23d Second heat medium flow switching device, 25, 25a, 25b, 25c, 25d Heat medium flow control device, 26, 26a, 26b, 26c, 26d Use side heat exchanger, 27 Load side heat exchanger liquid refrigerant temperature detection device, 28 Load side heat exchanger gas refrigerant temperature detection device, 37 High pressure detection device, 38 Low pressure detection device, 43 Heat transfer tube, 45a, 45b, 45c Bend

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 圧縮機10と、第一の熱交換器12と、絞り装置16と、第二の熱交換器15と、を冷媒配管で接続して構成され、冷媒が循環する冷凍サイクルを備え、冷媒は不均化反応を起こす性質の物質で構成した単一冷媒または混合冷媒であり、冷媒配管は曲り部45を有し、第一の熱交換器12及び第二の熱交換器15のうち、一方は凝縮器、他方は蒸発器として作用するものであり、曲り部45は凝縮器と絞り装置との間の流路、絞り装置と蒸発器との間の流路の一方または両方に設けられ、液冷媒または二相冷媒が流通する曲り部45の曲げ半径Rが、以下の関係を満たす。 R≧(d/2)×[1+{tan(π/36)+cosθ}]/[1-{tan(π/36)+cosθ}] θ(rad):曲り部45の冷媒入口側を構成する入口管の中心線と曲り部45の冷媒出口側を構成する出口管の中心線とがなす角度 R(mm):曲り部45の曲げ半径 d(mm):曲り部45の入口管の内径

Description

冷凍サイクル装置
 本発明は、たとえばビル用マルチエアコン等に適用される空気調和装置等の冷凍サイクル装置に関するものである。
 ビル用マルチエアコン等のように、冷媒を循環する冷媒回路を構成して空気調和等を行う冷凍サイクル装置においては、一般的に、不燃性であるR410A、可燃性を示すプロパン等の水素と炭素を含む物質が冷媒として用いられる。これらの物質は、大気中に放出された場合に、大気中で分解されて別の物質に変わるまでの寿命は異なるが、冷凍サイクル装置内においては、安定性が高く、数十年の長い間冷媒として使用することができる。
 これに対して、水素と炭素を含む物質の中には、冷凍サイクル装置内においても安定性が悪く、冷媒としては使用し難いものも存在する。これらの安定性が悪い物質としては、たとえば、不均化反応を起こす性質のものがある。不均化とは、同一種類の物質同士が反応して別の物質に変化する性質のことである。
 たとえば、液状態等の隣り合う物質同士の距離が非常に近い状態で、冷媒に対して何らかの強いエネルギーが加わると、このエネルギーによって、不均化反応が起き、隣り合う物質同士が反応して、別の物質に変化してしまう。不均化反応が起きると、発熱し、急激な温度上昇が起き、そのため圧力が急激に上昇する可能性がある。たとえば、不均化反応を起こす性質の物質を冷凍サイクル装置の冷媒として用い、銅等の配管内に封入していると、配管が内部の冷媒の圧力上昇に耐え切れず、配管が破裂してしまう、等が起きる可能性がある。この不均化反応を起こす性質の物質としては、たとえば、1,1,2-トリフルオロエチレン(HFO-1123)、アセチレン等が知られている。
 また、1,1,2-トリフルオロエチレン(HFO-1123)を熱サイクル用作動媒体として用いる熱サイクルシステム(冷凍サイクル装置)が存在している(たとえば、特許文献1)。
国際公開第2012/157764号(第3頁、第12頁、図1等)
 特許文献1に記載されている熱サイクルシステム等の冷凍サイクル装置においては、熱サイクル用作動媒体として、1,1,2-トリフルオロエチレン(HFO-1123)を使用することが記載されている。1,1,2-トリフルオロエチレン(HFO-1123)は、不均化反応を起こす性質の物質である。そのまま冷媒として使用すると、液、二相等の隣り合う物質同士の距離が非常に近い液状態の物質が存在する場所で、何らかのエネルギーによって、隣り合う物質同士が反応して、別の物質に変化し、冷媒として機能しなくなるばかりか、急激な圧力上昇により配管破裂等が起こる可能性がある。
 このため、冷媒として使用するためには、この不均化反応を起こさないように使用しなければならないという課題がある。そこで、この不均化反応を起こさせないための工夫が必要になるが、特許文献1等には、不均化反応を起こさせない装置等を実現する方法については、何ら記述されていない。
 本発明は、上記の課題を解決するためになされたもので、冷媒が外部から受けるエネルギーを低減させ、不均化反応を起こす性質の物質を、安全に、冷媒として使用することができる冷凍サイクル装置を得るものである。
 本発明に係る冷凍サイクル装置は、圧縮機と、第一の熱交換器と、絞り装置と、第二の熱交換器と、を冷媒配管で接続して構成され、冷媒が循環する冷凍サイクルを備え、冷媒は、不均化反応を起こす性質の物質で構成した単一冷媒または不均化反応を起こす性質の物質を含む混合冷媒であり、冷媒配管は、冷媒配管内の冷媒の流動方向を変化させる曲り部を有し、第一の熱交換器及び第二の熱交換器のうち、一方は凝縮器、他方は蒸発器として作用するものであり、曲り部は、凝縮器と絞り装置との間の流路、絞り装置と蒸発器との間の流路の一方または両方に設けられ、液冷媒または二相冷媒が流通する曲り部の曲げ半径Rが、以下の関係を満たすものである。
  R≧(d/2)×[1+{tan(π/36)+cosθ}]/[1-{tan(π/36)+cosθ}]
 θ(rad):曲り部の冷媒入口側を構成する入口管の中心線と曲り部の冷媒出口側を構成する出口管の中心線とがなす角度
 R(mm):曲り部の曲げ半径
 d(mm):曲り部の入口管の内径
 本発明の冷凍サイクル装置は、1,1,2-トリフルオロエチレン(HFO-1123)等の不均化反応を起こす性質の物質が、不均化反応を起こして、冷媒として使用できなくなったり、配管破裂等が発生したりすることを防ぎ、安全に冷媒として使用することができる。
本発明の実施の形態1に係る冷凍サイクル装置の設置例を示す概略図。 実施の形態1に係る冷凍サイクル装置の回路構成の一例を示す回路構成図。 本発明の実施の形態1に係る冷凍サイクル装置の冷房運転モード時における冷媒の流れを示す冷媒回路図。 本発明の実施の形態1に係る冷凍サイクル装置の暖房運転モード時における冷媒の流れを示す冷媒回路図。 本発明の実施の形態1に係る冷凍サイクル装置における曲り部の拡大断面図。 本発明の実施の形態1に係る冷凍サイクル装置において冷媒の衝突エネルギーを緩和させるための構成の説明図。 本発明の実施の形態1に係る冷凍サイクル装置における曲り部の入口管と出口管との角度がθである場合の曲り部を示した図。 本発明の実施の形態1に係る冷凍サイクル装置の冷凍機油の溶解度線図。 本発明の実施の形態2に係る冷凍サイクル装置の回路図。
 以下、発明の実施の形態に係る冷凍サイクル装置について図面等を参照しながら説明する。ここで、図1を含め、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。更に、添字で区別等している複数の同種の機器等について、特に区別したり、特定したりする必要がない場合には、添字を省略して記載する場合がある。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、温度、圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システム、装置等における状態、動作等において相対的に定まるものとする。
実施の形態1.
 本発明の実施の形態1について、図面に基づいて説明する。図1は、本発明の実施の形態1に係る冷凍サイクル装置の設置例を示す概略図である。図1に示す冷凍サイクル装置は、冷媒を循環させる冷媒回路を構成して冷媒による冷凍サイクルを利用することで、運転モードとして冷房モードあるいは暖房モードのいずれかを選択できるものである。ここで、本実施の形態の冷凍サイクル装置は、空調対象空間(室内空間7)の空気調和を行う空気調和装置を例として説明する。
 図1においては、本実施の形態に係る冷凍サイクル装置は、熱源機である1台の室外機1と、複数台の室内機2と、を有している。室外機1と室内機2とは、冷媒を導通する延長配管(冷媒配管)4で接続され、室外機1で生成された冷熱あるいは温熱は、室内機2に配送されるようになっている。
 室外機1は、通常、ビル等の建物9の外の空間(たとえば、屋上等)である室外空間6に配置され、室内機2に冷熱または温熱を供給するものである。室内機2は、建物9の内部の空間(たとえば、居室等)である室内空間7に温調された空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。
 図1に示すように、本実施の形態に係る冷凍サイクル装置においては、室外機1と各室内機2とが2本の延長配管4を用いて、それぞれ接続されている。
 なお、図1においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定するものではない。天井埋込型または天井吊下式等、室内空間7に直接またはダクト等により、暖房用空気あるいは冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。
 図1においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外機1は、換気口付の機械室等の囲まれた空間に設置してもよい。また、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよい。更に、水冷式の室外機1を用いて建物9の内部に設置するようにしてもよい。どのような場所に室外機1を設置するとしても、特段の問題が発生することはない。
 また、室外機1及び室内機2の接続台数を図1に図示してある台数に限定するものではなく、本実施の形態に係る冷凍サイクル装置が設置される建物9に応じて台数を決定すればよい。
 図2は、実施の形態1に係る冷凍サイクル装置(以下、冷凍サイクル装置100と称する)の回路構成の一例を示す回路構成図である。図2に基づいて、冷凍サイクル装置100の詳しい構成について説明する。図2に示すように、室外機1と室内機2とが、内部に冷媒が流れる延長配管(冷媒配管)4で接続されている。
[室外機1]
 室外機1には、圧縮機10と、四方弁等の第1冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレータ19とが冷媒配管で直列に接続されて搭載されている。
 圧縮機10は、冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。第1冷媒流路切替装置11は、暖房運転時における冷媒の流れと冷房運転時における冷媒の流れとを切り替えるものである。熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器(または放熱器)として機能する。そして、第一の熱交換器となる熱源側熱交換器12は、図示省略の送風機から供給される空気と冷媒との間で熱交換を行い、その冷媒を蒸発ガス化または凝縮液化するものである。熱源側熱交換器12は、室内空間7を冷房する運転の場合には凝縮器として作用する。また、室内空間7を暖房する運転の場合には蒸発器として作用する。アキュムレータ19は、圧縮機10の吸入側に設けられており、運転モード変化等により冷媒回路中で余剰となる冷媒を貯留するものである。
 室外機1には、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、アキュムレータ19、高圧検出装置37、低圧検出装置38、及び、制御装置60が備えられている。また、圧縮機10は、たとえば、密閉容器内に圧縮室を有し、密閉容器内が低圧の冷媒圧雰囲気となり、密閉容器内の低圧冷媒を吸入して圧縮する低圧シェル構造のものを使用するか、あるいは、密閉容器内が高圧の冷媒圧雰囲気となり、圧縮室で圧縮された高圧冷媒を密閉容器内に吐出する高圧シェル構造のものを使用する。
 また、室外機1は、制御装置60を備えており、各種検出装置での検出情報、リモコンからの指示等に基づいて、機器の制御を行う。たとえば、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切り替え等を制御し、後述する各運転モードを実行するようになっている。ここで、本実施の形態の制御装置60は、たとえばCPU(Central Processing Unit )等の制御演算処理手段を有するマイクロコンピュータ等で構成されている。また、制御装置60は、記憶手段(図示せず)を有しており、制御等に係る処理手順をプログラムとしたデータを有している。そして、制御演算処理手段がプログラムのデータに基づく処理を実行して制御を実現する。
[室内機2]
 室内機2には、それぞれ第二の熱交換器となる負荷側熱交換器15が搭載されている。この負荷側熱交換器15は、延長配管4によって室外機1に接続するようになっている。この負荷側熱交換器15は、図示省略の送風機から供給される空気と冷媒との間で熱交換を行い、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。負荷側熱交換器15は、室内空間7を暖房する運転の場合には凝縮器として作用する。また、負荷側熱交換器15は、室内空間7を冷房する運転の場合には蒸発器として作用する。
 この図2では、4台の室内機2が接続されている場合を例に示しており、紙面下から室内機2a、室内機2b、室内機2c、室内機2dとして図示している。また、室内機2a~室内機2dに応じて、負荷側熱交換器15も、紙面下側から負荷側熱交換器15a、負荷側熱交換器15b、負荷側熱交換器15c、負荷側熱交換器15dとして図示している。なお、図1と同様に、室内機2の接続台数を図2に示す4台に限定するものではない。
 冷凍サイクル装置100が実行する各運転モードについて説明する。この冷凍サイクル装置100は、各室内機2からの指示に基づいて、室外機1の運転モードを冷房運転モードか暖房運転モードかのいずれかに決定する。すなわち、冷凍サイクル装置100は、室内機2の全部で同一運転(冷房運転か暖房運転)をすることができ、室内の温度調節を行う。なお、冷房運転モード、暖房運転モードのいずれにおいても、各室内機2の運転/停止は自由に行うことができる。
 冷凍サイクル装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転(停止も含む)を実行する冷房運転モード、及び、駆動している室内機2の全てが暖房運転(停止も含む)を実行する暖房運転モードがある。以下に、各運転モードについて、冷媒の流れと共に説明する。
[冷房運転モード]
 図3は、本発明の実施の形態1に係る冷凍サイクル装置の冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図3では、全部の負荷側熱交換器15において冷熱負荷が発生している場合を例に冷房運転モードについて説明する。なお、図3では、太線で表された配管が冷媒の流れる配管を示しており、冷媒の流れ方向を実線矢印で示している。
 図3に示す冷房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された冷媒が熱源側熱交換器12へ流入するように切り替える。低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気に放熱しながら凝縮液化し、高圧の液冷媒となり、室外機1から流出する。
 室外機1を流出した高圧の液冷媒は、延長配管4を通って、室内機2(2a~2d)のそれぞれに流入する。室内機2(2a~2d)に流入した高圧の液冷媒は、絞り装置16(16a~16d)に流入して、絞り装置16(16a~16d)で絞られて、減圧され、低温低圧の二相冷媒となる。低温低圧の二相冷媒は、更に、蒸発器として作用する負荷側熱交換器15(15a~15d)のそれぞれに流入し、負荷側熱交換器15の周囲を流通する空気から吸熱して、低温低圧のガス冷媒となる。そして、低温低圧のガス冷媒は、室内機2(2a~2d)から流出し、延長配管4を通って再び室外機1へ流入し、第1冷媒流路切替装置11を通り、アキュムレータ19を介して、圧縮機10へ再度吸入される。
 このとき、絞り装置16a~16dの開度(開口面積)は、負荷側熱交換器ガス冷媒温度検出装置28の検出温度と、室外機1の制御装置60から各室内機2の制御装置(図示せず)に通信で送信された蒸発温度と、の温度差(過熱度)が目標値に近づくように制御される。
 なお、冷房運転モードを実行する際、熱負荷のない負荷側熱交換器15(サーモオフを含む)へは冷媒を流す必要がないため、運転を停止させる。このとき、停止している室内機2に対応する絞り装置16は、全閉または冷媒が流れない小さい開度としておく。
[暖房運転モード]
 図4は、本発明の実施の形態1に係る冷凍サイクル装置の暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図4では、全部の負荷側熱交換器15において温熱負荷が発生している場合を例に暖房運転モードについて説明する。なお、図4では、太線で表された配管が冷媒の流れる配管を示しており、冷媒の流れ方向を実線矢印で示している。
 図4に示す暖房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された冷媒が、熱源側熱交換器12を経由せずに室内機2へ流入するように切り替える。低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出され、第1冷媒流路切替装置11を通り、室外機1から流出する。室外機1から流出した高温高圧のガス冷媒は、延長配管4を通って室内機2(2a~2d)のそれぞれに流入する。
 室内機2(2a~2d)に流入した高温高圧のガス冷媒は、負荷側熱交換器15(15a~15d)のそれぞれに流入し、負荷側熱交換器15(15a~15d)の周囲を流通する空気に放熱しながら凝縮液化し、高温高圧の液冷媒となる。負荷側熱交換器15(15a~15d)から流出した高温高圧の液冷媒は、絞り装置16(16a~16d)に流入し、絞り装置16(16a~16d)で絞られて、減圧され、低温低圧の二相冷媒となり、室内機2(2a~2d)から流出する。室内機2から流出した低温低圧の二相冷媒は、延長配管4を通って再び室外機1へ流入する。
 このとき、絞り装置16a~16dの開度(開口面積)は、室外機1の制御装置60から各室内機2の制御装置(図示せず)に通信で送信された凝縮温度と、負荷側熱交換器液冷媒温度検出装置27の検出温度と、の温度差(過冷却度)が目標値に近づくように制御される。
 室外機1に流入した低温低圧の二相冷媒は、熱源側熱交換器12に流入し、熱源側熱交換器12の周囲に流れる空気から吸熱し、蒸発して低温低圧のガス冷媒または低温低圧の乾き度の大きい二相冷媒となる。低温低圧のガス冷媒または二相冷媒は、第1冷媒流路切替装置11及びアキュムレータ19を介して、再び圧縮機10に吸入される。
 暖房運転モードを実行する際、熱負荷のない負荷側熱交換器15(サーモオフを含む)へは冷媒を流す必要がない。しかし、暖房運転モードにおいて、暖房負荷のない負荷側熱交換器15と対応する絞り装置16を全閉または冷媒が流れない小さい開度とすると、運転していない負荷側熱交換器15の内部で冷媒が周囲空気によって冷やされて凝縮し、冷媒が溜まり込んでしまい、冷媒回路全体として冷媒不足に陥ってしまう可能性がある。そこで、暖房運転時においては、熱負荷のない負荷側熱交換器15と対応する絞り装置16の開度(開口面積)は全開等の大きい開度にし、冷媒の溜まり込みを防止する。
 また、第1冷媒流路切替装置11は、四方弁を用いるのが一般的であるが、これに限るものではなく、二方流路切替弁、三方流路切替弁を複数個用い、同じように冷媒が流れるように構成してもよい。
 また、ここでは、冷媒回路中に余剰冷媒を貯留するアキュムレータ19を備える場合について説明をしたが、延長配管4が短い場合、室内機2の台数が1台である場合等は、余剰冷媒が少ないため、アキュムレータ19を備えていなくてもよい。
 以上、説明した通り、冷凍サイクル装置100では、室内機2が冷房運転を行っている時は、熱源側熱交換器12が凝縮器として作用し、熱源側熱交換器12に、高温高圧のガス冷媒が流入して凝縮し、二相域を経て液化し、高温高圧の液冷媒となって流出する。また、室内機2が暖房運転を行っている時は、負荷側熱交換器15(15a~15d)が凝縮器として作用し、負荷側熱交換器15(15a~15d)に、高温高圧のガス冷媒が流入して凝縮し、二相域を経て液化し、高温高圧の液冷媒となって流出する。
[冷媒の種類]
 冷凍サイクル装置100で使用する冷媒として、R32、R410A等のように、通常に冷媒として使用されている物質を使用する場合は、冷媒回路内での冷媒の安定性を改善するための工夫を施すことなく、このまま普通に使用すればよい。しかし、ここでは、冷媒として、C2H1F3で表され分子構造中に二重結合を1つ有する1,1,2-トリフルオロエチレン(HFO-1123)等の不均化反応を起こす性質の物質で構成した単一冷媒、または、不均化反応を起こす性質の物質に別の物質を混合させた混合冷媒を用いるものとする。なお、本例で使用する冷媒はHFO-1123に限るものではなく、不均化反応を起こす性質の物質であれば、どのようなものを用いてもよい。
 混合冷媒を生成させるために、不均化反応を起こす性質の物質に混合させる物質としては、たとえば、Cで表されるテトラフルオロプロペン(CFCF=CHで表される2,3,3,3-テトラフルオロプロペンであるHFO-1234yf、CFCH=CHFで表される1,3,3,3-テトラフルオロ-1-プロペンであるHFO-1234ze等)、または、化学式がCHで表されるジフルオロメタン(HFC-32)等が用いられる。しかし、不均化反応を起こす性質の物質に混合させる物質は、これらに限るものではなく、HC-290(プロパン)等を混合させてもよく、冷凍サイクル装置100の冷媒として使用できる熱性能を有する物質であれば、どのようなものを用いてもよい。また、そのときの混合比は、どのような混合比としてもよい。
 不均化反応を起こす性質の物質は、そのまま冷媒として使用すると以下の問題が生じる。すなわち、液相、二相等のように隣り合う物質同士の距離が非常に近い液状態の物質が存在する場所で、何らかの強いエネルギーが加わると、隣り合う物質同士が反応して、別の物質に変化し、冷媒として機能しなくなる。そればかりか、発熱による急激な圧力上昇のため、配管破裂等が起こる可能性がある。そこで、不均化反応を起こす性質の物質を冷媒として使用するためには、液部、または、気体と液体との混合状態である二相部において、この不均化反応を起こさないような工夫が必要となる。ここで、冷媒と構造物とが衝突したときの衝突エネルギーも、冷媒の不均化反応を起こさせる要因になる。このため、冷媒回路の構成部品を、その衝突エネルギーが低減される構造にすると不均化反応が起き難くなる。
[曲り部45]
 図3の冷房運転時においては、熱源側熱交換器12が凝縮器として作用しており、熱源側熱交換器12の出口から絞り装置16(16a~16d)の入口までは液冷媒が流れており、この部分に、冷媒配管内の冷媒の流動方向を変化させる曲り部45(45a、45b)が存在している。
 図5は、本発明の実施の形態1に係る冷凍サイクル装置における曲り部の拡大断面図である。曲り部45において、管内径をd、配管の中心における曲げ半径をRとすると、曲り部45の配管の内側における曲げ半径はR-d/2、配管の外側における曲げ半径はR+d/2となる。図5において曲り部45は冷媒入口側の入口管46と、冷媒出口側の出口管47と、入口管46と出口管47との間の曲管48とを有している。
 ここで、図5における点O、点A~点Fの各点は以下の位置を示している。
 点O:曲り部45の曲げ半径Rの中心
 点A:入口管46の中心線46aと直交する法線方向に引いた点Oを通る直線46bと配管の内面との交点2つのうち、点Oに遠い方
 点B:出口管47の中心線47aと直交する法線方向に引いた点Oを通る直線47bと配管の内面の交点2つのうち、点Oに遠い方
 点C:入口管46の中心線46aと直交する法線方向に引いた点Oを通る直線46bと 配管の内面との交点2つのうち、点Oに近い方
 点D:出口管47の中心線47aと直交する法線方向に引いた点Oを通る直線47bと配管の内面の交点2つのうち、点Oに近い方
 点E:入口管46の点Oから離れた方の内面に沿った直線と出口管47の点Oから離れた方の内面に沿った直線との交点
 点F:点Oと点Eとを結ぶ直線と配管の点Oから離れた方の内面との交点
 なお、点A、点B、点C、点D、点E、点F、点Oは、すべて同一平面上にあるものとする。
 さて、ここで、冷媒が曲り部45に流入し、その対面である曲面A-F-Bに衝突する際の衝突エネルギーは式(1)で求められる。
[数1]
 衝突エネルギー = 冷媒の質量×冷媒の速度変化
         =(冷媒の質量流量×単位時間)×冷媒の速度変化    (1)
 以下に、この衝突エネルギーの緩和について説明する。なお、実際の配管は三次元の円筒形をしているが、ここでは図5に示した二次元断面内での説明を行う。従って、実際の衝突エネルギーの緩和量と、以下で説明する衝突エネルギー緩和量とは、少し値が異なることになるが、傾向は同じであり、二次元で扱っても大きな問題はない。
 図5において、入口管46から曲り部45に流入する冷媒の対面は曲率(R+d/2)の曲面になっており、その影響で、冷媒の衝突エネルギーが分散され緩和される。この時、曲り部45(曲管48)の曲げ半径Rが大きいほど、対面の曲率が大きく、冷媒の衝突エネルギーの緩和量が大きくなる。つまり、曲り部45の曲げ半径Rが大きいほど衝突エネルギーが低減され、不均化反応が起き難くなる。そして、線分B-Eの長さである(R+d/2)が、入口管46から流入した冷媒が衝突する部分よりも大きければ、入口管46から流入した冷媒が、全部、曲面A-F-Bに衝突するため、冷媒の衝突エネルギーが緩和される。
 一方、線分B-Eの長さである(R+d/2)が入口管46から流入した冷媒が衝突する部分よりも小さいと、入口管46から流入した冷媒は、曲面A-F-Bにあたるものと、出口管47に衝突するものとが発生する。出口管47の内面は入口管46の内面の法線方向に向いているため、入口管46から流入した冷媒のうち出口管47に衝突するものは、出口管47の内面に直角に衝突することになる。このため、冷媒と配管内面との衝突エネルギーが緩和されず、大きな衝突エネルギーが発生し、冷媒の不均化反応が発生する可能性がある。よって、冷媒の衝突エネルギーを緩和させ、冷媒の不均化反応を起こさせないためには、入口管46から流入した冷媒が全部曲面A-F-Bに衝突する必要がある。
 さて、流体が空間に噴出された場合、周囲に広がりながら拡散していくが、その時の広がり角度は一般的に5度程度とされている。以下、この広がり角度を踏まえ、冷媒の衝突エネルギーを緩和させるための構成について検討する。
 図6は、本発明の実施の形態1に係る冷凍サイクル装置において冷媒の衝突エネルギーを緩和させるための構成の説明図である。
 入口管46から流入した冷媒は、線分A-Cを断面とする面を通り、そこから噴流の広がり角度に従い広がってから対面に衝突する。固体壁面と接していないのは、出口管47側のみであり、冷媒が進む距離は線分O-Bの長さ、すなわち、(R+d/2)である。よって入口管46から流入した冷媒を全部曲面A-F-Bに衝突させ、冷媒の衝突エネルギーを緩和させるためには、式(2)が成りたつ必要がある。
[数2]
  R+d/2≧d+(R+d/2)×tan(5×π/180)     (2)
 これを書き換えると式(3)になり、この式が成り立てば、冷媒の曲り部45での衝突エネルギーが緩和され、冷媒の不均化が起き難くなる。
Figure JPOXMLDOC01-appb-M000001
 例えば、曲り部45の入口管46の外径が1/4インチ(6.35mm)の場合、配管の肉厚は0.6mm程度であり、内径は5.15mmとなり、曲げ半径が3.0688mm以上であれば、冷媒の不均化反応が起き難くなる。従って、曲り部45の入口管46の外径が小さい場合は、より小さい曲げ半径で同様の効果が出るため、曲り部45の入口管46の外径が1/4インチ以下の場合、曲げ半径を3.0688mm以上とすると冷媒の不均化反応が起き難くなる。
 また、例えば、曲り部45の入口管46の外径が3/8インチ(9.52mm)の場合、配管の肉厚は0.7mm程度であり、内径は8.12mmとなり、曲げ半径が4.8385mm以上であれば、冷媒の不均化反応が起き難くなる。従って、曲り部45の入口管46の外径が1/4インチより大きくかつ3/8インチ以下の場合、曲げ半径を4.8385mm以上とすると冷媒の不均化反応が起き難くなる。
 また、例えば、曲り部45の入口管46の外径が1/2インチ(12.7mm)の場合、配管の肉厚は0.8mm程度であり、内径は11.1mmとなり、曲げ半径が6.6142mm以上であれば、冷媒の不均化反応が起き難くなる。従って、曲り部45の入口管46の外径が3/8インチより大きくかつ1/2インチ以下の場合、曲げ半径を6.6142mm以上とすると冷媒の不均化反応が起き難くなる。
 また、例えば、曲り部45の入口管46の外径が5/8インチ(15.88mm)の場合、配管の肉厚は0.9mm程度であり、内径は14.08mmとなり、曲げ半径が8.3899mm以上であれば、冷媒の不均化反応が起き難くなる。従って、曲り部45の入口管46の外径が1/2インチより大きくかつ5/8インチ以下の場合、曲げ半径を8.3899mm以上とすると冷媒の不均化反応が起き難くなる。
 また、例えば、曲り部45の入口管46の外径が3/4インチ(19.05mm)の場合、配管の肉厚は1mm程度であり、内径は17.05mmとなり、曲げ半径が10.1597mm以上であれば、冷媒の不均化反応が起き難くなる。従って、曲り部45の入口管46の外径が5/8インチより大きくかつ3/4インチ以下の場合、曲げ半径を10.1597mm以上とすると冷媒の不均化反応が起き難くなる。
 また、例えば、曲り部45の入口管46の外径が7/8インチ(22.2mm)の場合、配管の肉厚は1~1.2mm程度であり、内径は19.8~20.2mmとなり、このうちの大きい方の寸法である20.2mmに対して算出した値12.0367mm以上に曲げ半径を設定すれば、冷媒の不均化反応が起き難くなる。従って、曲り部45の入口管46の外径が3/4インチより大きくかつ7/8インチ以下の場合、曲げ半径を12.0367mm以上とすると冷媒の不均化反応が起き難くなる。
 また、例えば、曲り部45の入口管46の外径が1インチ(25.4mm)の場合、配管の肉厚は1~1.3mm程度であり、内径は22.8~23.4mmとなり、このうちの大きい方の寸法である23.4mmに対して算出した値13.9435mm以上に曲げ半径を設定すれば、冷媒の不均化反応が起き難くなる。従って、曲り部45の入口管46の外径が7/8インチより大きくかつ1インチ以下の場合、曲げ半径を13.9435mm以上とすると冷媒の不均化反応が起き難くなる。
 さて、図5は、曲り部45の出口管47が入口管46の法線方向を向いている場合、すなわち、入口管46と出口管47との角度が90度である場合を示していた。以下では、入口管46と出口管47との角度がθである場合の衝突エネルギーについて検討する。
 図7は、本発明の実施の形態1に係る冷凍サイクル装置における曲り部の入口管と出口管との角度がθである場合の曲り部を示した図である。
 この場合、入口管46の傾きを考慮して、入口管46からの流入冷媒がすべて曲面A-F-Bと衝突するようにすればよく、式(4)、すなわちこれを展開した式(5)、が成りたてば、衝撃力が緩和され、冷媒の不均化が起き難い。なお、式(2)及び式(3)は、式(4)及び式(5)において、θが90度の場合を示している。
[数4]
  R+d/2≧d+(R+d/2)×{tan(5×π/180)+cosθ}(4)
Figure JPOXMLDOC01-appb-M000002
 なお、曲り部45の入口管46、曲面A-F-Bを含む部分、及び、出口管47の形状に関して、どのような形であってもよい。ここでは、円管であるかのように示したが、矩形管、楕円管、その他の形状でもよく、同様の効果を奏する。
 また、図4の暖房運転時においては、負荷側熱交換器15(15a~15d)が凝縮器として作用しており、負荷側熱交換器15(15a~15d)の出口から絞り装置16(16a~16d)の入口までは液冷媒が流れており、この部分に配管の曲り部45が存在する場合は、曲り部45を、上述と同様の構造とすれば、同様の効果を奏する。また、図4において、熱源側熱交換器12が蒸発器として作用しており、絞り装置16(16a~16d)の出口から蒸発器入口までは液冷媒とガス冷媒とが混在している二相冷媒が流れており、この二相冷媒が流れる部分に配管の曲り部45が存在する場合は、曲り部45を、上述と同様の構造とすれば、同様の効果を奏する。また、各運転モードにおいて、液冷媒または二相冷媒が流れるその他の部分においても、曲り部45が存在する場合は、同様に構造とすれば、同様の効果を奏する。
[冷凍機油]
 冷媒回路中に充填される冷凍機油は、ポリオールエステル及びポリビニルエーテルのうちいずれかを主成分とするものであり、圧縮機10に充填され冷凍機油の一部が冷媒と一緒に冷媒回路中を循環する。ポリオールエステル及びポリビニルエーテルは、いずれも、分子構造中に二重結合を1個有する冷媒に対して溶解しやすい相溶性を有する冷凍機油であり、この冷凍機油と冷媒であるHFO1123とを混合すると、HFO-1123が、冷凍機油に、ある程度溶解する。上述のように、不均化反応を起こす性質の冷媒に対し、曲り部45を上述のように構成すれば、冷媒の衝突エネルギーを緩和させ冷媒の不均化が起き難くなる。そして、更に、相溶性の高い冷凍機油を冷凍サイクルに充填すると、相溶性の低い冷凍機油または非相溶性の冷凍機油を冷凍サイクルに充填する場合に比べ、冷媒の不均化反応が更に起き難くなる。
 図8は、本発明の実施の形態1に係る冷凍サイクル装置の冷凍機油の溶解度線図である。溶解度が大きいとは、冷凍機油に沢山の冷媒が溶けることを意味し、溶解度が小さいとは、冷凍機油に少しの冷媒しか溶けないことを意味する。図8には、溶解度と圧力との関係を、冷媒の温度T1、T2、T3毎に示している。なお、図8において、T1、T2、T3は異なる温度であり、式(6)が成り立つ。
 [数6]
 T1<T2<T3                           (6)
 図8に示すように、同一圧力条件では、冷媒の温度が低い方が溶解度が大きく、同一温度条件では、冷媒の圧力が高い方が溶解度が大きい。冷媒が冷凍機油に溶解すると、冷媒の分子と分子の間に冷凍機油の分子が溶け込んで存在するようになる。すなわち、冷媒の冷凍機油に対する溶解度が大きいと、多くの冷媒の分子と分子の間に冷凍機油が存在することになる。冷媒の不均化反応は、上述したように、隣接する冷媒の分子同士が反応する現象であるため、冷媒に対して相溶性を有する冷凍機油を使用すれば、冷媒の分子と分子の間に冷凍機油の分子が存在することから、冷媒の不均化反応が起き難くなる。なお、冷凍機油は冷媒と相溶性を示すものであれば、これに限らず別の種類の油を使用してもよい。
 冷媒の不均化反応を抑制するためには、冷媒の冷凍機油に対する溶解度が大きい方が効果が大きい。実用的には、溶解度が50wt%(重量%)以上であれば、多くの冷媒が冷凍機油に溶解するため、不均化反応を抑制できる。
 通常、ビル用マルチエアコン等では、圧縮機10の周波数、熱源側熱交換器12に付属の送風機(図示せず)の回転数を制御して、凝縮器内の冷媒の温度である凝縮温度を約50℃に制御する。また、絞り装置16を制御して、凝縮器の出口の冷媒の過冷却度が約10℃になるように制御する。すなわち、凝縮温度が約50℃であれば凝縮器の出口の冷媒は約40℃に制御され、凝縮器を流出する。よって、凝縮器と絞り装置16の間の冷媒は、温度が約40℃、圧力が50℃の飽和圧力の状態になっている。
 絞り装置16での制御性能(過渡特性)も考慮すると、凝縮器と絞り装置16の間を流れる冷媒は、温度が約40~50℃の間の温度、圧力が50℃の飽和圧力の状態になっている。よって、これらの温度、圧力の状態で、冷媒の冷凍機油に対する溶解度が大きいと、冷媒の不均化反応が起き難い。実用的には、冷媒が、これらの温度、圧力にある状態において、冷媒の冷凍機油に対する溶解度が50wt%(重量%)以上であれば、多くの冷媒が冷凍機油に溶解するため、更に不均化反応が起き難くできる。
[延長配管4]
 以上説明したように、本実施の形態に係る冷凍サイクル装置100は、幾つかの運転モードを具備している。これらの運転モードにおいて、室外機1と室内機2とを接続する延長配管4には冷媒が流れている。
 なお、高圧検出装置37、低圧検出装置38は、冷凍サイクル高圧と低圧を目標値に制御するために設置されているが、飽和温度を検出する温度検出装置でもよい。
 また、一般的に、熱源側熱交換器12及び負荷側熱交換器15a~15dには、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではない。たとえば負荷側熱交換器15a~15dとしては放射を利用したパネルヒータのようなものも用いることができるし、熱源側熱交換器12としては、水または不凍液により熱を移動させる水冷式のタイプのものも用いることができる。放熱あるいは吸熱をできる構造のものであればどんな熱交換器でも用いることができる。
 また、熱源側熱交換器12または負荷側熱交換器15a~15dは、通常は伝熱性能を向上させるために、フィン44を有するが、伝熱管43のみで十分な伝熱性能が得られる場合は、フィン44を備えていなくてもよい。
 また、ここでは、負荷側熱交換器15a~15dが4つである場合を例に説明を行ったが、幾つ接続してもよい。更に、室外機1が複数接続され、1つの冷凍サイクルを構成していてもよい。
 また、室内機2が冷房運転か暖房運転のいずれかの運転のみを行う冷房暖房切替型の冷凍サイクル装置100を例に説明を行ったが、これに限定するものではない。たとえば、室内機2が冷房運転と暖房運転のいずれかの運転を任意に選択でき、システム全体として、冷房運転を行う室内機2と暖房運転を行う室内機2との混在運転を行うことができる冷凍サイクル装置にも適用することができ、同様の効果を奏する。
 また、室内機2が1つだけ接続できるルームエアコン等の空気調和装置、ショーケースまたはユニットクーラを接続する冷凍装置等にも適用することができ、冷凍サイクルを使用する冷凍サイクル装置であれば、同様の効果を奏する。
実施の形態2.
 本発明の実施の形態2について、図面に基づいて説明する。以下、実施の形態2が実施の形態1と異なる部分を中心に説明する。なお、実施の形態1の構成部分において適用された変形例は、実施の形態2の同様の構成部分においても同様に適用される。
 図9は、本発明の実施の形態2に係る冷凍サイクル装置の回路図である。
 図9に示す冷凍サイクル装置100は、室外機1と中継器である熱媒体変換機3とが延長配管4で接続されて冷媒が循環する冷媒循環回路Aを備えている。また、冷凍サイクル装置100は、熱媒体変換機3と室内機2とが配管(熱媒体配管)5で接続されて、水、ブライン等の熱媒体が循環する熱媒体循環回路Bを備えている。熱媒体変換機3は冷媒循環回路Aを循環する冷媒と、熱媒体循環回路Bを循環する熱媒体との熱交換を行う負荷側熱交換器15a及び負荷側熱交換器15bを備えている。
 熱媒体変換機3は、室外機1及び室内機2とは別体で離れた位置、たとえば、図1に示したように建物9の内部ではあるが室内空間7とは別の空間である天井裏等の空間(以下、単に空間8と称する)に設置される。熱媒体変換機3は、その他、エレベーター等がある共用空間等に設置することも可能である。
[冷媒の種類]
 この冷凍サイクル装置100において、冷媒は実施の形態1と同様のものが使用でき、同様の効果を奏する。
 この冷凍サイクル装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転を実行する全冷房運転モード及び駆動している室内機2の全てが暖房運転を実行する全暖房運転モードがある。また、冷房負荷の方が大きい場合に実行する冷房主体運転モード、及び、暖房負荷の方が大きい場合に実行する暖房主体運転モードがある。
[全冷房運転モード]
 全冷房運転モードの場合、圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を介して、熱源側熱交換器12へ流入し、周囲の空気に放熱して凝縮液化し、高圧液冷媒となり、逆止弁13aを通って室外機1から流出する。そして、延長配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した冷媒は、開閉装置17aを通り、絞り装置16a及び絞り装置16bで膨張して低温低圧の二相冷媒となる。二相冷媒は、蒸発器として作用する負荷側熱交換器15a及び負荷側熱交換器15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱し、低温低圧のガス冷媒となる。ガス冷媒は、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを介して熱媒体変換機3から流出する。そして、延長配管4を通って再び室外機1へ流入する。室外機1へ流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11及びアキュムレータ19を介して、圧縮機10へ再度吸入される。
 熱媒体循環回路Bにおいては、熱媒体は、負荷側熱交換器15a及び負荷側熱交換器15bの双方で冷媒により冷却される。冷却された熱媒体は、ポンプ21a及びポンプ21bによって配管5内を流動する。第2熱媒体流路切替装置23a~23dを介して、利用側熱交換器26a~26dに流入した熱媒体は、室内空気から吸熱する。室内空気は冷却されて室内空間7の冷房を行う。利用側熱交換器26a~26dから流出した冷媒は、熱媒体流量調整装置25a~25dに流入し、第1熱媒体流路切替装置22a~22dを通って、負荷側熱交換器15a及び負荷側熱交換器15bへ流入して冷却され、再びポンプ21a及びポンプ21bへ吸い込まれる。なお、熱負荷のない利用側熱交換器26a~26dに対応する熱媒体流量調整装置25a~25dは全閉とする。また、熱負荷のある利用側熱交換器26a~26dに対応する熱媒体流量調整装置25a~25dは開度を調整し、利用側熱交換器26a~26dでの熱負荷を調節する。
[全暖房運転モード]
 全暖房運転モードの場合、圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を介して第1接続配管4a、逆止弁13bを通り、室外機1から流出する。そして、室外機1から流出した冷媒は、延長配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した冷媒は、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを通って、負荷側熱交換器15a及び負荷側熱交換器15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体に放熱し、高圧の液冷媒となる。高圧の液冷媒は、絞り装置16a及び絞り装置16bで膨張して低温低圧の二相冷媒となり、開閉装置17bを通って、熱媒体変換機3から流出する。
 そして、熱媒体変換機3から流出した冷媒は、延長配管4を通って再び室外機1へ流入する。室外機1へ流入した冷媒は、第2接続配管4b及び逆止弁13cを通り、蒸発器として作用する熱源側熱交換器12に流入し、周囲の空気から吸熱して、低温低圧のガス冷媒となる。ガス冷媒は、第1冷媒流路切替装置11及びアキュムレータ19を介して圧縮機10へ再度吸入される。なお、熱媒体循環回路Bにおける熱媒体の動作は、全冷房運転モードの場合と同じである。全暖房運転モードでは、負荷側熱交換器15a及び負荷側熱交換器15bにおいて、熱媒体が冷媒によって加熱され、利用側熱交換器26a及び利用側熱交換器26bで室内空気に放熱して、室内空間7の暖房を行う。
[冷房主体運転モード]
 冷房主体運転モードの場合、圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入し、周囲の空気に放熱して凝縮し、二相冷媒となり、逆止弁13aを通って、室外機1から流出する。そして、室外機1から流出した冷媒は、延長配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する負荷側熱交換器15bに流入し、熱媒体循環回路Bを循環する熱媒体に放熱して高圧の液冷媒となる。
 高圧の液冷媒は、絞り装置16bで膨張して低温低圧の二相冷媒となる。二相冷媒は、絞り装置16aを介して蒸発器として作用する負荷側熱交換器15aに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱して低圧のガス冷媒となり、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出する。そして、熱媒体変換機3から流出した冷媒h、延長配管4を通って再び室外機1へ流入する。室外機1へ流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11及びアキュムレータ19を介して、圧縮機10へ再度吸入される。
 熱媒体循環回路Bにおいては、負荷側熱交換器15bで冷媒の温熱が熱媒体に伝えられる。そして、暖められた熱媒体はポンプ21bによって配管5内を流動する。第1熱媒体流路切替装置22a~22d及び第2熱媒体流路切替装置23a~23dを操作して暖房要求のある利用側熱交換器26a~26dに流入した熱媒体は、室内空気に放熱する。室内空気は加熱されて室内空間7の暖房を行う。一方、負荷側熱交換器15aで冷媒の冷熱が熱媒体に伝えられる。
 そして、冷やされた熱媒体はポンプ21aによって配管5内を流動する。第1熱媒体流路切替装置22a~22d及び第2熱媒体流路切替装置23a~23dを操作して冷房要求のある利用側熱交換器26a~26dに流入した熱媒体は、室内空気から吸熱する。室内空気は冷却されて室内空間7の冷房を行う。なお、熱負荷のない利用側熱交換器26a~26dに対応する熱媒体流量調整装置25a~25dは全閉とする。また、熱負荷のある利用側熱交換器26a~26dに対応する熱媒体流量調整装置25a~25dは開度を調整し、利用側熱交換器26a~26dでの熱負荷を調節する。
[暖房主体運転モード]
 暖房主体運転モードの場合、圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を介して、第1接続配管4a及び逆止弁13bを通って、室外機1から流出する。そして、室外機1から流出した冷媒は、延長配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する負荷側熱交換器15bに流入し、熱媒体循環回路Bを循環する熱媒体に放熱して高圧の液冷媒となる。高圧の液冷媒は、絞り装置16bで膨張して低温低圧の二相冷媒となる。二相冷媒は、絞り装置16aを介して蒸発器として作用する負荷側熱交換器15aに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出する。
 そして、延長配管4を通って再び室外機1へ流入する。室外機1へ流入した冷媒は、第2接続配管4b及び逆止弁13cを通って、蒸発器として作用する熱源側熱交換器12に流入し、周囲の空気から吸熱して、低温低圧のガス冷媒となる。ガス冷媒は、第1冷媒流路切替装置11及びアキュムレータ19を介して圧縮機10へ再度吸入される。なお、熱媒体循環回路Bにおける熱媒体の動作、第1熱媒体流路切替装置22a~22d、第2熱媒体流路切替装置23a~23d、熱媒体流量調整装置25a~25d、及び、利用側熱交換器26a~26d、の動作は冷房主体運転モードと同一である。
[曲り部45]
 図9において、熱源側熱交換器12を凝縮器として作用させる全冷房運転モードまたは冷房主体運転モードにおいて、凝縮器出口から絞り装置16の入口までの液冷媒または二相冷媒が流れる部分には、曲り部45a、曲り部45b、曲り部45cが設置されている。これらを実施の形態1に記載の式(3)または式(5)を満たすように構成すれば、冷媒の衝突エネルギーが緩和され、冷媒の不均化が起き難くなる。また、熱源側熱交換器12を蒸発器として作用させる全暖房運転モードまたは暖房主体運転モードにおいて、絞り装置16(16a~16d)の出口から蒸発器入口までは液冷媒とガス冷媒とが混在している二相冷媒が流れており、この二相冷媒が流れる部分に配管の曲り部45が存在する場合は、曲り部45を、上述と同様の構造とすれば、同様の効果を奏する。また、各運転モードにおいて、液冷媒または二相冷媒が流れるその他の部分においても、曲り部45が存在する場合は、同様な 構造とすれば、同様の効果を奏する。
[延長配管4及び配管5]
 本実施の形態における各運転モードにおいて、室外機1と熱媒体変換機3とを接続する延長配管4には冷媒が流れ、熱媒体変換機3と室内機2とを接続する配管5には水、不凍液等の熱媒体が流れている。
 利用側熱交換器26にて暖房負荷と冷房負荷とが混在して発生している場合は、暖房運転を行っている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を加熱用の負荷側熱交換器15bに接続される流路へ切り替える。また、冷房運転を行っている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を冷却用の負荷側熱交換器15aに接続される流路へ切り替える。このため、各室内機2にて、暖房運転、冷房運転を自由に行うことができる。
 なお、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、三方弁等の三方流路を切り替えられるもの、開閉弁等の二方流路の開閉を行うものを2つ組み合わせる等、流路を切り替えられるものであればよい。また、ステッピングモーター駆動式の混合弁等の三方流路の流量を変化させられるもの、電子式膨張弁等の二方流路の流量を変化させられるものを2つ組み合わせる等して第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23として用いてもよい。
 更に、熱媒体流量調整装置25は、二方弁以外でも、三方流路を持つ制御弁とし利用側熱交換器26をバイパスするバイパス管と共に設置するようにしてもよい。また、熱媒体流量調整装置25は、ステッピングモーター駆動式で流路を流れる流量を制御できるものを使用するとよく、二方弁でも三方弁の一端を閉止したものでもよい。また、熱媒体流量調整装置25として、開閉弁等の二方流路の開閉を行うものを用い、ON/OFFを繰り返して平均的な流量を制御するようにしてもよい。
 また、第1冷媒流路切替装置11及び第2冷媒流路切替装置18は四方弁であるかのように示したが、これに限るものではなく、二方流路切替弁、三方流路切替弁を複数個用い、同じように冷媒が流れるように構成してもよい。
 また、利用側熱交換器26と熱媒体流量調整装置25とが1つしか接続されていない場合でも同様のことが成り立つのは言うまでもなく、更に負荷側熱交換器15及び絞り装置16として、同じ動きをするものが複数個設置されていても、当然問題ない。更に、熱媒体流量調整装置25は、熱媒体変換機3に内蔵されている場合を例に説明したが、これに限るものではなく、室内機2に内蔵されていてもよく、熱媒体変換機3と室内機2とは別体に構成されていてもよい。
 また、熱媒体流路切替装置22及び熱媒体流路切替装置23の一方または両方に熱媒体の流量を調整する機能を備えるように構成すれば、熱媒体流量調整装置25を備えなくてもよい。
 熱媒体としては、たとえばブライン(不凍液)、水、ブラインと水との混合液、水に対して防食効果が高い添加剤の混合液等を用いることができる。従って、冷凍サイクル装置100においては、熱媒体が室内機2を介して室内空間7に漏洩したとしても、熱媒体に安全性の高いものを使用しているため安全性の向上に寄与することになる。
 また、一般的に、熱源側熱交換器12及び利用側熱交換器26a~26dには、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではない。たとえば利用側熱交換器26a~26dとしては放射を利用したパネルヒータのようなものも用いることができる。また、熱源側熱交換器12としては、水または不凍液により熱を移動させる水冷式のタイプのものも用いることができる。放熱あるいは吸熱できる構造のものであればどんなものでも用いることができる。
 また、ここでは、利用側熱交換器26a~26dが4つである場合を例に説明を行ったが、幾つ接続してもよい。更に、室外機1が複数接続され、1つの冷凍サイクルを構成していてもよい。
 また、負荷側熱交換器15a、15bが2つである場合を例に説明を行ったが、当然、これに限るものではなく、熱媒体を冷却、加熱できるように構成すれば、幾つ設置してもよい。
 また、負荷側熱交換器15としては、一般的にプレート式熱交換器が使用されるが、プレート式でなくても、冷媒と熱媒体とを熱交換できる形式ものであれば、どのようなものでもよい。
 また、ポンプ21a及び21bはそれぞれ一つとは限らず、複数の小容量のポンプを並列に並べてもよい。
 また、圧縮機10、四方弁(第1冷媒流路切替装置)11、熱源側熱交換器12を室外機1に収容し、空調対象空間の空気と冷媒とを熱交換させる利用側熱交換器26を室内機2に収容し、負荷側熱交換器15及び絞り装置16を熱媒体変換機3に収容し、室外機1と熱媒体変換機3との間を延長配管4で接続して冷媒を循環させ、室内機2と熱媒体変換機3との間をそれぞれ2本一組の配管5で接続して熱媒体を循環させ、負荷側熱交換器15で冷媒と熱媒体とを熱交換させるシステムについて、冷房運転を行う室内機2と暖房運転を行う室内機2との混在運転が可能なシステムを例に説明を行ったが、これに限るものではない。たとえば、実施の形態1で説明した室外機1と熱媒体変換機3とを組み合わせて、室内機2で冷房運転または暖房運転のみを行うシステムにも適用することができ、同様の効果を奏する。
 1 熱源機(室外機)、2、2a、2b、2c、2d 室内機、3 熱媒体変換機(中継器)、4 延長配管、4a 第1接続配管、4b 第2接続配管、5 配管(熱媒体配管)、6 室外空間、7 室内空間、8 天井裏等の室外空間及び室内空間とは別の空間、9 ビル等の建物、10 圧縮機、11 第1冷媒流路切替装置(四方弁)、12 熱源側熱交換器(第一の熱交換器)、13a、13b、13c、13d 逆止弁、15、15a、15b、15c、15d 負荷側熱交換器(第二の熱交換器)、16、16a、16b、16c、16d 絞り装置、17a、17b 開閉装置、18、18a、18b 第2冷媒流路切替装置、19 アキュムレータ、21a、21b ポンプ、22、22a、22b、22c、22d 第1熱媒体流路切替装置、23、23a、23b、23c、23d 第2熱媒体流路切替装置、25、25a、25b、25c、25d 熱媒体流量調整装置、26、26a、26b、26c、26d 利用側熱交換器、27 負荷側熱交換器液冷媒温度検出装置、28 負荷側熱交換器ガス冷媒温度検出装置、37 高圧検出装置、38 低圧検出装置、43 伝熱管、45a、45b、45c 曲り部、46 入口管、47 出口管、49 流路、60 制御装置、100 冷凍サイクル装置、A 冷媒循環回路、B 熱媒体循環回路。

Claims (18)

  1.  圧縮機と、第一の熱交換器と、絞り装置と、第二の熱交換器と、を冷媒配管で接続して構成され、冷媒が循環する冷凍サイクルを備え、
     前記冷媒は、不均化反応を起こす性質の物質で構成した単一冷媒または不均化反応を起こす性質の物質を含む混合冷媒であり、
     前記冷媒配管は、前記冷媒配管内の冷媒の流動方向を変化させる曲り部を有し、
     前記第一の熱交換器及び前記第二の熱交換器のうち、一方は凝縮器、他方は蒸発器として作用するものであり、
     前記曲り部は、前記凝縮器と前記絞り装置との間の流路、前記絞り装置と前記蒸発器との間の流路の一方または両方に設けられ、
     液冷媒または二相冷媒が流通する前記曲り部の曲げ半径Rが、以下の関係を満たす冷凍サイクル装置。

     R≧(d/2)×[1+{tan(π/36)+cosθ}]/[1-{tan(π/36)+cosθ}]
     θ(rad):前記曲り部の冷媒入口側を構成する入口管の中心線と前記曲り部の冷媒出口側を構成する出口管の中心線とがなす角度
     R(mm):前記曲り部の曲げ半径
     d(mm):前記曲り部の入口管の内径
  2.  前記角度θが90度である請求項1に記載の冷凍サイクル装置。
  3.  前記曲り部の前記入口管の外径が1/4インチ以下であり、前記曲り部の曲げ半径が3.0688mm以上である請求項1または請求項2に記載の冷凍サイクル装置。
  4.  前記曲り部の前記入口管の外径が1/4インチより大きくかつ3/8インチ以下であり、前記曲り部の曲げ半径が4.8385mm以上である請求項1または請求項2に記載の冷凍サイクル装置。
  5.  前記曲り部の前記入口管の外径が3/8インチより大きくかつ1/2インチ以下であり、前記曲り部の曲げ半径が6.6142mm以上である請求項1または請求項2に記載の冷凍サイクル装置。
  6.  前記曲り部の前記入口管の外径が1/2インチより大きくかつ5/8インチ以下であり、前記曲り部の曲げ半径が8.3899mm以上である請求項1または請求項2に記載の冷凍サイクル装置。
  7.  前記曲り部の前記入口管の外径が5/8インチより大きくかつ3/4インチ以下であり、前記曲り部の曲げ半径が10.1597mm以上である請求項1または請求項2に記載の冷凍サイクル装置。
  8.  前記曲り部の前記入口管の外径が3/4インチより大きくかつ7/8インチ以下であり、前記曲り部の曲げ半径が12.0367mm以上である請求項1または請求項2に記載の冷凍サイクル装置。
  9.  前記曲り部の前記入口管の外径が7/8インチより大きくかつ1インチ以下であり、前記曲り部の曲げ半径が13.9435mm以上である請求項1または請求項2に記載の冷凍サイクル装置。
  10.  前記冷凍サイクル中に充填される冷凍機油は、前記冷媒の温度が50℃かつ前記冷媒の圧力が50℃の飽和圧力である状態において、前記冷媒の前記冷凍機油に対する溶解度が50重量%以上である請求項1~請求項9のいずれか一項に記載の冷凍サイクル装置。
  11.  前記冷凍サイクル中に充填される冷凍機油は、前記冷媒の温度が40℃かつ前記冷媒の圧力が50℃の飽和圧力である状態において、前記冷媒の前記冷凍機油に対する溶解度が50重量%以上である請求項1~請求項9のいずれか一項に記載の冷凍サイクル装置。
  12.  前記第一の熱交換器または前記第二の熱交換器の一方を収容する室外機と、前記第一の熱交換器または前記第二の熱交換器の他方を収容する室内機とを有する請求項1~請求項11のいずれか一項に記載の冷凍サイクル装置。
  13.  前記第一の熱交換器または前記第二の熱交換器の一方を収容する室外機と、前記第一の熱交換器または前記第二の熱交換器の他方を収容し、前記室外機及び室内機とは別体で離れた位置に設置可能な中継器と、を有する請求項1~請求項11のいずれか一項に記載の冷凍サイクル装置。
  14.  前記中継器に収容された前記第一の熱交換器または前記第二の熱交換器は、前記冷媒と熱媒体とを熱交換する熱交換器である請求項13に記載の冷凍サイクル装置。
  15.  前記室外機に収容された前記第一の熱交換器または前記第二の熱交換器は、前記冷媒と熱媒体とを熱交換する熱交換器である請求項12~請求項14のいずれか一項に記載の冷凍サイクル装置。
  16.  前記室外機を1または複数と、前記室内機を1または複数備え、各室内機で温調した空気を室内に供給可能に構成した請求項12~請求項15のいずれか一項に記載の冷凍サイクル装置。
  17.  冷媒の流路を切り替える冷媒流路切替装置を更に備え、前記第一の熱交換器及び前記第二の熱交換器の一方を凝縮器として作用させ、前記第一の熱交換器及び前記第二の熱交換器の他方を蒸発器として作用させる第一の運転モードと、前記第一の熱交換器及び前記第二の熱交換器の一方を蒸発器として作用させ、前記第一の熱交換器及び前記第二の熱交換器の他方を凝縮器として作用させる第二の運転モードと、を有する請求項1~請求項16のいずれか一項に記載の冷凍サイクル装置。
  18.  前記不均化反応を起こす性質の物質は、1,1,2-トリフルオロエチレンである請求項1~請求項17のいずれか一項に記載の冷凍サイクル装置。
PCT/JP2014/073666 2014-09-08 2014-09-08 冷凍サイクル装置 WO2016038659A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/073666 WO2016038659A1 (ja) 2014-09-08 2014-09-08 冷凍サイクル装置
JP2016547268A JPWO2016038659A1 (ja) 2014-09-08 2014-09-08 冷凍サイクル装置
EP14901661.0A EP3193089A1 (en) 2014-09-08 2014-09-08 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073666 WO2016038659A1 (ja) 2014-09-08 2014-09-08 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2016038659A1 true WO2016038659A1 (ja) 2016-03-17

Family

ID=55458452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073666 WO2016038659A1 (ja) 2014-09-08 2014-09-08 冷凍サイクル装置

Country Status (3)

Country Link
EP (1) EP3193089A1 (ja)
JP (1) JPWO2016038659A1 (ja)
WO (1) WO2016038659A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019985A (ja) * 2017-07-11 2019-02-07 株式会社富士通ゼネラル 圧縮機及び空気調和装置
JP2019019984A (ja) * 2017-07-11 2019-02-07 株式会社富士通ゼネラル ロータリ圧縮機及び空気調和装置
WO2023210575A1 (ja) * 2022-04-27 2023-11-02 ダイキン工業株式会社 圧縮機における冷媒としての使用、圧縮機、および、冷凍サイクル装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120104A (ja) * 1993-10-27 1995-05-12 Hitachi Ltd 空気調和機
JP2001263830A (ja) * 2000-03-22 2001-09-26 Mitsubishi Electric Corp ブロック化ユニット及びブロック化ユニットを用いた冷凍サイクル装置
JP2009191212A (ja) * 2008-02-15 2009-08-27 Idemitsu Kosan Co Ltd 冷凍機用潤滑油組成物
WO2010050002A1 (ja) * 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置
WO2012157764A1 (ja) * 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
JP2013210184A (ja) * 2008-04-01 2013-10-10 Honeywell Internatl Inc 熱伝達回路への油戻り率を改善する方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120104A (ja) * 1993-10-27 1995-05-12 Hitachi Ltd 空気調和機
JP2001263830A (ja) * 2000-03-22 2001-09-26 Mitsubishi Electric Corp ブロック化ユニット及びブロック化ユニットを用いた冷凍サイクル装置
JP2009191212A (ja) * 2008-02-15 2009-08-27 Idemitsu Kosan Co Ltd 冷凍機用潤滑油組成物
JP2013210184A (ja) * 2008-04-01 2013-10-10 Honeywell Internatl Inc 熱伝達回路への油戻り率を改善する方法
WO2010050002A1 (ja) * 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置
WO2012157764A1 (ja) * 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019985A (ja) * 2017-07-11 2019-02-07 株式会社富士通ゼネラル 圧縮機及び空気調和装置
JP2019019984A (ja) * 2017-07-11 2019-02-07 株式会社富士通ゼネラル ロータリ圧縮機及び空気調和装置
WO2023210575A1 (ja) * 2022-04-27 2023-11-02 ダイキン工業株式会社 圧縮機における冷媒としての使用、圧縮機、および、冷凍サイクル装置
JP2023162674A (ja) * 2022-04-27 2023-11-09 ダイキン工業株式会社 圧縮機における冷媒としての使用、圧縮機、および、冷凍サイクル装置

Also Published As

Publication number Publication date
EP3193089A1 (en) 2017-07-19
JPWO2016038659A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5452629B2 (ja) 空気調和装置
JP5188629B2 (ja) 空気調和装置
JP5465333B2 (ja) 室外機および空気調和装置
JP5657030B2 (ja) 空気調和装置
JP5236080B2 (ja) 空気調和装置
WO2015140886A1 (ja) 冷凍サイクル装置
JP5614757B2 (ja) 空気調和装置
JP5602243B2 (ja) 空気調和機
WO2012070083A1 (ja) 空気調和装置
WO2015140887A1 (ja) 冷凍サイクル装置
WO2013069043A1 (ja) 空気調和装置
WO2016009565A1 (ja) 冷凍サイクル装置
WO2015140885A1 (ja) 冷凍サイクル装置
JP5657140B2 (ja) 空気調和装置
JP5312606B2 (ja) 空気調和装置
WO2015140878A1 (ja) アキュムレータ及び冷凍サイクル装置
WO2016038659A1 (ja) 冷凍サイクル装置
WO2015140877A1 (ja) 絞り装置及び冷凍サイクル装置
WO2016016999A1 (ja) 冷凍サイクル装置
WO2011030420A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901661

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547268

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014901661

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE