WO2016035280A1 - Battery system, electric vehicle, and method for charging battery system - Google Patents
Battery system, electric vehicle, and method for charging battery system Download PDFInfo
- Publication number
- WO2016035280A1 WO2016035280A1 PCT/JP2015/004251 JP2015004251W WO2016035280A1 WO 2016035280 A1 WO2016035280 A1 WO 2016035280A1 JP 2015004251 W JP2015004251 W JP 2015004251W WO 2016035280 A1 WO2016035280 A1 WO 2016035280A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- charging
- voltage
- current
- discharge
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
Definitions
- the present invention relates to a battery system, an electric vehicle using the battery system, and a charging method for the battery system.
- aqueous lead acid batteries that are relatively inexpensive and have a high track record of use have been widely used as power sources for electric vehicles.
- non-aqueous liquid lithium ion batteries that have a longer life than lead-acid batteries, have a high voltage, and have a high energy density have been used. And these lithium ion batteries and lead acid batteries are charged by the charging method according to the characteristic of each battery.
- a battery system in which a lithium ion battery and a lead storage battery are connected in parallel to increase capacity and improve performance.
- Patent Document 3 a lithium ion capacitor unit and a lead storage battery are connected in parallel, and during charging, the lithium ion capacitor unit and the lead storage battery are disconnected, and the lithium ion capacitor unit and the lead storage battery are separately provided.
- a DC power supply for charging has been proposed.
- Patent Document 3 the configuration and operation of the DC power supply device disclosed in Patent Document 3 may be complicated. In addition, a switch or the like used to disconnect the lithium ion capacitor unit from the lead storage battery may be damaged.
- Embodiments of the present invention provide a battery system that can be appropriately charged according to the characteristics of each battery with a simple configuration and can suppress damage to a switch, an electric vehicle using the battery system, and a battery system.
- An object is to provide a charging method.
- a battery system includes a first non-aqueous liquid battery, an aqueous second battery connected in parallel with the first battery, and the first battery in series.
- the charging control is performed by constant current and constant voltage charging, and the charging current at the end of the charging is
- a battery system characterized by detecting a lowered state, operating the switch to cut off the connection of the first battery, and controlling the charging current to flow through the second battery.
- a battery system capable of appropriately charging according to the characteristics of each battery with a simple configuration and suppressing damage to a switch, an electric vehicle using the battery system, and A battery system charging method can be provided.
- the battery system of the present embodiment is used by being mounted on an electric vehicle such as an electric vehicle, for example.
- FIG. 1 is a configuration diagram showing an outline of a battery system. As shown in FIG. 1, the battery system 1 is configured by combining a first battery 10 and a second battery 20. The first battery 10 and the second battery 20 are electrically connected in parallel.
- a lithium ion battery is used as the first battery 10
- a lead storage battery is used as the second battery 20. These are connected in parallel via respective positive and negative terminals.
- a protective circuit 11 and a switch 12 are connected to the first battery 10 in series.
- the protection circuit 11 has a function of interrupting energization and protecting the first battery 10 when a large current discharge such as overcharge, overdischarge, or external short circuit occurs in the first battery 10.
- the switch 12 has a function of interrupting charging of the first battery 10 and stopping charging of the first battery 10.
- the lithium ion battery is a type of non-aqueous liquid secondary battery, and is a secondary battery in which lithium ions in the electrolyte are responsible for electrical conduction.
- a lithium-containing metal oxide such as lithium cobaltate, lithium nickelate, or lithium iron phosphate is used for the positive electrode
- a carbon material is used for the negative electrode
- an organic electrolyte is used for the electrolytic solution. It has a wound electrode body wound through a separator. The electrode body is soaked in a non-aqueous electrolyte and accommodated in a cylindrical battery can.
- Such a lithium ion battery has a high voltage, high energy density, high charge / discharge energy efficiency, and rapid charge / discharge. On the other hand, it has a characteristic that is weak against overcharge and overdischarge. Further, when the battery is stored in a fully charged state, the deterioration rapidly progresses, and it has a characteristic that the capacity recoverability is better in the discharge storage than in the charge storage.
- the capacity recoverability is a property of recovering to a level compared to the initial capacity when charge / discharge is performed after storage.
- the lead acid battery is an aqueous solution type secondary battery using lead dioxide for the positive electrode, spongy lead for the negative electrode, and dilute sulfuric acid as the electrolyte.
- Each cell chamber accommodates an electrode group in which a plurality of positive electrode plates and negative electrode plates are laminated via a glass fiber separator.
- Lead-acid batteries are relatively inexpensive and have a long history of use. On the other hand, it is desirable to maintain a fully charged state because it deteriorates quickly when overdischarge is performed, and has a characteristic that capacity recovery is better when stored under charge than when stored during discharge. .
- the nominal voltage of the first battery 10 and the second battery 20 is higher in the first battery 10 than in the second battery 20. In other words, the nominal voltage of the second battery 20 is lower than the nominal voltage of the first battery 10.
- FIG. 12 shows a discharge curve in use in relation to the state of charge (SOC: State Of Charge) and voltage.
- SOC State Of Charge
- the horizontal axis shows the state of charge (%) in the range of 100% to 0%, and the vertical axis shows the voltage (V).
- the unstable regions A and A ′ are regions with a large rate of change in which the voltage changes greatly with a slight change in the state of charge. In other words, this is a region where the discharge curve changes sharply and the voltage changes greatly with a slight change in discharge capacity.
- the unstable region A is a region in which the voltage is greatly decreased due to a slight decrease in the state of charge from the full charge to the initial stage of discharge.
- the unstable region A ′ is a region where the voltage is greatly reduced due to a slight decrease in the state of charge at the end of discharge to complete discharge.
- the stable region B is a region with a small change rate with little change in voltage even when the state of charge changes, and the discharge curve changes slowly, and the change in voltage hardly changes even when the discharge capacity changes. It is an area.
- the discharge curve is drawn as a curve that shifts from the unstable region A to the start portion of the stable region B and then shifts from the end portion of the stable region B to the unstable region A ′.
- the actual voltage range is wider than the nominal voltage range of the battery. In actual use, there may occur an overcharge in which charging is performed to a voltage higher than the nominal voltage range or an overdischarge in which discharge is performed to a voltage lower than the nominal voltage range.
- FIG. 2A shows the discharge characteristics of the first battery 10
- FIG. 2B shows the discharge characteristics of the second battery 20
- FIG. 2 shows the discharge characteristics corresponding to FIG. 8 above.
- the horizontal axis shows the state of charge (%) in the range of 100% to 0%
- the vertical axis shows the voltage (V). ing.
- the first battery 10 and the second battery 20 have unstable regions A and A ′ in the initial discharge portion and the final discharge portion, respectively, in the same manner as in FIG. A stable region B exists in the portion.
- the first battery 10 and the second battery 20 have unstable regions A and A ′ in which the rate of change of the voltage with respect to the discharge capacity is steep at the beginning and end of discharge.
- a and A ′ In the middle part between A and the unstable region A ′ at the end of discharge, there is a stable region B in which the rate of change of the voltage with respect to the discharge capacity is relatively smaller than the unstable regions A and A ′.
- the unstable region A occurs when the state of charge is approximately 100% to 80%, and the unstable region A ′ occurs when the state of charge is approximately 20% to 0%. Therefore, the stable region B occurs when the state of charge is approximately 80% to 20%. More specifically, the change rate of the voltage (V) with respect to the discharge capacity (%) in the stable region B is ⁇ 0.5 or more, which is a substantially flat curve. That is, for example, when the state of charge changes by -10%, the battery voltage is changed from 3.7V to 3.6V, and the change rate of the voltage at that time is -2.7% with respect to 3.7V. Therefore, the rate of change is 0.27 [ ⁇ ]. That is, the rate of change is 0.5 or less. The unit at this time is [-] dimensionless.
- the voltage change in the unstable region A ′ changes by 0.3 V from 3.3 to 3.0 V when the state of charge changes from 10% to 0%, for example.
- This rate of change is 9%. Therefore, since the voltage changes by 9% when the state of charge changes by 10%, the rate of change at this time is 0.9 [-], which is larger than 0.5.
- This value of 0.5 is one example, and the ratio of the change in voltage (V) (%) to the actual change in discharge capacity (%) varies depending on the type of battery, but is generally 0.1-0. It is divided by the value of .9.
- the discharge characteristics of the first battery 10 and the second battery 20 are mainly different in the following points.
- the voltage in the stable region B of the first battery 10 is higher than the voltage in the stable region B of the second battery 20. Conversely, the voltage in the stable region B of the second battery 20 is lower than the voltage in the stable region B of the first battery 10. Thus, there is a voltage difference in the stable region B.
- the voltage height in the unstable region A of the first battery 10 is narrow, whereas the voltage height in the unstable region A of the second battery 20 is wide. That is, in the unstable region A of the second battery 20, the voltage is greatly reduced by a slight change in the state of charge.
- the final voltage Vt in the stable region B of the first battery 10 and the stable region B of the second battery 20 is configured to substantially match.
- the coincidence between the voltage Vt at the end portion and the voltage Vc at the start portion can be realized, for example, by adjusting the number of cells connected in series in the first battery 10 and the second battery 20.
- the first battery 10 is mainly preferentially discharged from the start of discharge until the voltage Vt at the end of the stable region B of the first battery 10 (shown voltages Vh to Vm).
- the second battery 20 is hardly discharged, and only the voltage changes following the voltage of the first battery 10.
- the voltage Vt at the end of the stable region B of the first battery 10 shifts to the stable region B and the unstable region A ′ of the second battery 20, and discharges to near 0 V (shown voltages Vm to Vl). In this case, discharge is mainly performed by the second battery 20.
- This discharge is based on the fact that the voltage Vt at the end portion of the stable region B of the first battery 10 and the voltage Vc at the start portion of the stable region B of the second battery 20 are substantially matched. Yes.
- discharge is performed mainly in the stable region B of the first battery 10 during the voltage Vh to Vm, and discharge is performed mainly in the stable region B of the second battery 20 during the voltage Vm to Vl.
- the discharge is transferred from the stable region B of the first battery 10 to the stable region B of the second battery 20.
- FIG. 4 shows a state in which the discharge characteristics of the first battery 10 and the second battery 20 connected in parallel shown in FIG. 3 are synthesized.
- the stable region B of the first battery 10 and the stable region B of the second battery 20 are connected so as to be continuous, and the individual batteries of the first battery 10 and the second battery 20 are connected.
- the stable region B is expanded.
- the first battery 10 is mainly discharged
- the second battery 20 is mainly discharged.
- the first battery 10 when the user actually uses the electric vehicle, the first battery 10 is preferentially discharged, so that the first battery 10 is charged and discharged with high frequency. become. That is, the frequency with which the second battery 20 is charged and discharged is lower than the frequency with which the first battery 10 is charged and discharged.
- the first battery 10 a battery having a capacity recoverability superior to the capacity recoverability during charge storage, the capacity recovery when the second battery 20 is stored under discharge can be restored.
- the overall performance of the battery can be improved.
- the battery system 1 includes a battery unit 30 and a control device 6.
- the battery unit 30 is provided with a first battery 10 and a second battery 20.
- the first battery 10 and the second battery 20 are connected in parallel.
- a series circuit in which the first battery 10, the protection circuit 11, the switch 12 and the current sensor 2a are connected and a series circuit in which the second battery 20 and the current sensor 2b are connected are connected in parallel.
- a load 3 that is, a motor of an electric vehicle is connected to both ends of these series circuits.
- first battery 10 and the second battery 20 are connected to the commercial power source 5 via the charger 4 and charged as necessary. Further, the battery unit 30 is connected to the control device 6. The protection circuit 11, the switch 12 and the current sensors 2a and 2b are controlled by the control device 6.
- the control device 6 controls the entire system, has a charge control unit 61, and has a function of controlling charge / discharge states, voltages, currents, and the like of the first battery 10 and the second battery 20. is doing.
- the protection circuit 11 includes a relay, a switching element, and the like.
- the protection circuit 11 operates to cut off the energization of the first battery 10 to ensure safety. It is like that. Specifically, the charging current and the discharging current are monitored by the current sensor 2a, and based on this, a control signal is output from the control device 6 to the protection circuit 11, and the protection circuit 11 is ON / OFF controlled.
- the switch 12 operates to disconnect the first battery 10 from the charging circuit and stop the charging of the first battery 10.
- This switch 12 can be comprised by a relay or a switching element, for example.
- the current sensors 2a and 2b are composed of shunt resistors. Hall elements or magnetoresistive elements may be used for the current sensors 2a and 2b.
- the first battery 10 normally adopts a charging method using a constant current and a constant voltage.
- This charging method can be charged at a relatively high speed and is effective in preventing overcharging. That is, it is possible to prevent the danger that the organic electrolyte is decomposed to generate heat or ignite in an overcharged state with a high voltage.
- This embodiment provides a charging method capable of performing appropriate charging according to the characteristics of the first battery 10 and the second battery 20.
- the charging method of the present embodiment is generally performed in a sequence of five steps (S1 to S5) from the start of charging (S0).
- the first step (S1) is constant current charging
- the second step (S2) is constant voltage charging.
- the third step (S3) is a step of stopping the charging of the first battery 10
- the fourth step (S4) is a constant current charging of the second battery 20.
- the fifth step (S5) is constant current charging and corresponds to equal charging.
- both the first battery 10 and the second battery 20 are charged in the first step (S1) and the second step (S2), and the fourth step (S4). ) And the fifth step (S5), only the second battery 20 is charged.
- FIG. 7 and 8 show charging methods suitable for the first battery 10 and the second battery 20, respectively.
- FIG. 7 shows a charging method for the first battery 10
- FIG. 8 shows a charging method for the second battery 20.
- the charging voltage (battery terminal voltage) and current change with time are shown, the horizontal axis shows charging time (h), and the vertical axis shows voltage (V) and current (A).
- the first battery 10 is initially charged with a constant current charge (CC), and after reaching a predetermined voltage, a constant voltage charge (CV) is performed with a recommended charge voltage (RV). is there. Overcharging can be prevented by not exceeding the recommended charging voltage.
- the recommended charging voltage (RV) is a voltage set based on the upper limit charging voltage in each temperature range (for example, standard temperature range 0 ° C. to 45 ° C., high temperature range 45 ° C. to 60 ° C.).
- the second battery 20 is initially subjected to constant current charging (CC), and thereafter, the charging current is reduced to perform equal charging (EC) with constant current, and the recommended charging voltage (RV).
- CC constant current charging
- EC equal charging
- RV recommended charging voltage
- FIG. 9 shows the time variation of the charging voltage and current as in FIGS. 7 and 8, the horizontal axis shows the charging time (h), and the vertical axis shows the voltage (V) and current (A ).
- both the first battery 10 and the second battery 20 connected in parallel are charged by constant current charging (CC) (first step (S1)), followed by constant voltage charging. Charging is performed at (CV) (second step (S2)). Next, a state in which the charging current at the end of charging in the constant voltage charging (CV) is reduced is detected, and the charging circuit of the first battery 10 is cut off as the charging is completed, and the charging of the first battery 10 is stopped. (Third step (S3)).
- the first battery 10 is charged with a standard 0.7 It. For example, if the first battery 10 has a capacity of 150 Ah, it is charged at 100 A.
- the second step (S2) when the first battery 10 reaches 4 V / cell, the charging current changes so as to decrease, and when the charging reaches 0.05 It, it is determined that the charging is completed. Based on this determination, the charging circuit of the first battery 10 is shut off.
- the voltage drop of the current sensor 2a is detected by the charging control unit 61 of the control device 6, and the charging control unit 61 determines that the charging current has decreased to a predetermined value. Based on this determination, the charging control unit 61 transmits a cutoff (OFF) signal to the switch 12. Then, the switch 12 is shut off and charging of the first battery 10 is stopped. In this case, since the switch 12 is operated with a low current, damage to the switch 12 can be suppressed.
- the second battery 20 is charged alone with the first battery 10 disconnected from the charging circuit (fourth step (S4) to fifth step). (S5)). In this step, since the second battery 20 is charged independently, the charge suitable for the characteristics of the second battery 20 can be performed.
- the initial constant current charging (CC) is performed (fourth step (S4)), and then the charging current is decreased, and then the equal charging (EC) is performed with the constant current (fifth step (S5)). )).
- the fourth step (S4) since the second battery 20 is charged alone, the second battery 20 reaches a predetermined voltage in a short time, and then the charging current decreases.
- the charging current is reduced to a certain level, equal charge (EC) is continuously performed at a constant current, and the electrolyte solution in the battery is circulated by the voltage at that time, and the distribution of the specific gravity of the electrolyte solution is made uniform. It becomes like this.
- the charging control as described above is executed by a program stored in the control device 6.
- the fourth step (S3) is performed so that charging of the second battery 20 is started immediately after the charging circuit of the first battery 10 is shut off without leaving a time interval. You may make it transfer to S4).
- the program that can be executed by the charger 4 may be executed by the charger 4, and the control of both the control device 6 and the charger 4 may be combined to execute the above-described charging control.
- a battery system that can be appropriately charged according to the characteristics of the first battery 10 and the second battery 20 with a simple configuration and can suppress damage to the switch 12. 1. It is possible to provide an electric vehicle using the battery system and a battery system charging method.
- the first battery 10 is a LiFePO 4 type lithium ion battery.
- the battery has a nominal voltage of 3.2 V, and 18 cells are connected in series. Therefore, the nominal voltage as a lithium ion battery is 57.6V.
- the protection circuit 11 (refer FIG. 5) which monitors charging / discharging is provided.
- the second battery 20 is an open-type lead storage battery, the nominal voltage of the cell is 2V, and 24 cells are connected in series. Therefore, the nominal voltage as a lead storage battery is 48V.
- the first battery 10 is a 18650 type lithium ion battery.
- This battery has a nominal voltage of 3.6 V, and 16 cells are connected in series. Therefore, the nominal voltage as a lithium ion battery is 57.6V.
- the protection circuit 11 (refer FIG. 5) which monitors charging / discharging is provided.
- the second battery 20 is an open-type lead storage battery, and is the same as that of the first embodiment.
- the first battery 10 does not necessarily need to be formed of a 18650 type lithium ion battery, and may be formed of a 3.6 V lithium ion battery such as a lithium polymer battery.
- the battery system 1 that can realize the above-described effects can be obtained.
- a protection circuit may be used without providing a special switch.
- the battery system and the battery system charging method of the present invention can be suitably used for electric vehicles such as electric vehicles, electric scooters and forklifts. Moreover, it is not limited to an electric vehicle, It can apply also to another apparatus and apparatus.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
In order to provide a battery system making it possible to perform appropriate charging according to the characteristics of each battery and capable of suppressing damage to a switch, the battery system is equipped with: a nonaqueous first battery; an aqueous second battery connected in parallel with the first battery; and a switch connected to the first battery in series. The charging of the first and second batteries is controlled by a constant-current/constant-voltage charging while the first and second batteries are connected in parallel with each other. When a decrease in the charging current is detected in a terminal phase of this charging, the connection of the first battery is cut by operating the switch so that the charging current flows through the second battery.
Description
本発明は、バッテリーシステム、このバッテリーシステムが用いられた電動車両及びバッテリーシステムの充電方法に関する。
The present invention relates to a battery system, an electric vehicle using the battery system, and a charging method for the battery system.
従来、電気自動車用の電源として、比較的安価で使用実績が高い水溶液系の鉛蓄電池が広く用いられている。また、近年、鉛蓄電池と比較して長寿命であり、高い電圧が得られ、高エネルギー密度を有する非水液系のリチウムイオン電池が用いられている。そして、これらリチウムイオン電池及び鉛蓄電池は、それぞれの電池の特性に応じた充電方式により充電される。
Conventionally, aqueous lead acid batteries that are relatively inexpensive and have a high track record of use have been widely used as power sources for electric vehicles. In recent years, non-aqueous liquid lithium ion batteries that have a longer life than lead-acid batteries, have a high voltage, and have a high energy density have been used. And these lithium ion batteries and lead acid batteries are charged by the charging method according to the characteristic of each battery.
ところで、リチウムイオン電池と鉛蓄電池とを並列に接続して、容量の増加や性能の向上を図るバッテリーシステムが知られている。この場合、リチウムイオン電池の特性に応じた充電方式又は鉛蓄電池の特性に応じた充電方式を採用することが考えられる。
By the way, a battery system is known in which a lithium ion battery and a lead storage battery are connected in parallel to increase capacity and improve performance. In this case, it is conceivable to employ a charging method according to the characteristics of the lithium ion battery or a charging method according to the characteristics of the lead storage battery.
しかし、リチウムイオン電池の特性に応じた充電方式又は鉛蓄電池の特性に応じた充電方式において、一方の充電方式を採用すると、バッテリーシステム全体としては適切な充電が行われないという課題が生じる。
However, if one of the charging methods according to the characteristics of the lithium-ion battery or the lead-acid battery is adopted, the battery system as a whole cannot be properly charged.
そこで、特許文献3において、リチウムイオンキャパシタ・ユニットと鉛蓄電池とを並列に接続し、充電時にこれらリチウムイオンキャパシタ・ユニットと鉛蓄電池とを切り離して、リチウムイオンキャパシタ・ユニットと鉛蓄電池とを各別に充電する直流電源装置が提案されている。
Therefore, in Patent Document 3, a lithium ion capacitor unit and a lead storage battery are connected in parallel, and during charging, the lithium ion capacitor unit and the lead storage battery are disconnected, and the lithium ion capacitor unit and the lead storage battery are separately provided. A DC power supply for charging has been proposed.
しかしながら、上記特許文献3に示された直流電源装置は、構成及び動作が複雑化する可能性がある。また、リチウムイオンキャパシタ・ユニットと鉛蓄電池とを切り離すために用いられるスイッチ等が損傷する可能性もある。
However, the configuration and operation of the DC power supply device disclosed in Patent Document 3 may be complicated. In addition, a switch or the like used to disconnect the lithium ion capacitor unit from the lead storage battery may be damaged.
本発明の実施形態は、簡単な構成で各バッテリーの特性に応じた適切な充電が可能であるとともに、開閉器の損傷を抑制できるバッテリーシステム、このバッテリーシステムが用いられた電動車両及びバッテリーシステムの充電方法を提供することを目的とする。
Embodiments of the present invention provide a battery system that can be appropriately charged according to the characteristics of each battery with a simple configuration and can suppress damage to a switch, an electric vehicle using the battery system, and a battery system. An object is to provide a charging method.
本発明の実施形態に係るバッテリーシステムは、非水液系の第1のバッテリーと、この第1のバッテリーと並列に接続された水溶液系の第2のバッテリーと、前記第1のバッテリーに直列に接続された開閉器とを備え、前記第1のバッテリーと第2のバッテリーとが並列に接続された状態で、両者を定電流定電圧充電によって充電制御するとともに、この充電の末期における充電電流が低下した状態を検知して、前記開閉器を動作させて第1のバッテリーの接続を遮断し、第2のバッテリーに充電電流が流れるように制御することを特徴とするバッテリーシステム。
A battery system according to an embodiment of the present invention includes a first non-aqueous liquid battery, an aqueous second battery connected in parallel with the first battery, and the first battery in series. In the state where the first battery and the second battery are connected in parallel, the charging control is performed by constant current and constant voltage charging, and the charging current at the end of the charging is A battery system characterized by detecting a lowered state, operating the switch to cut off the connection of the first battery, and controlling the charging current to flow through the second battery.
本発明の実施形態によれば、簡単な構成で各バッテリーの特性に応じた適切な充電が可能であるとともに、開閉器の損傷を抑制可能なバッテリーシステム、このバッテリーシステムが用いられた電動車両及びバッテリーシステムの充電方法を提供することができる。
According to the embodiments of the present invention, a battery system capable of appropriately charging according to the characteristics of each battery with a simple configuration and suppressing damage to a switch, an electric vehicle using the battery system, and A battery system charging method can be provided.
以下、本発明の実施形態に係るバッテリーシステムについて図1乃至図12を参照して説明する。本実施形態のバッテリーシステムは、例えば、電気自動車等の電動車両に搭載されて用いられる。
Hereinafter, a battery system according to an embodiment of the present invention will be described with reference to FIGS. 1 to 12. The battery system of the present embodiment is used by being mounted on an electric vehicle such as an electric vehicle, for example.
図1は、バッテリーシステムの概略を示す構成図である。図1に示すように、バッテリーシステム1は、第1のバッテリー10と第2のバッテリー20とが組合わされて構成されている。この第1のバッテリー10と第2のバッテリー20とは、電気的に並列に接続されている。
FIG. 1 is a configuration diagram showing an outline of a battery system. As shown in FIG. 1, the battery system 1 is configured by combining a first battery 10 and a second battery 20. The first battery 10 and the second battery 20 are electrically connected in parallel.
具体的には、第1のバッテリー10としてリチウムイオン電池が用いられ、第2のバッテリー20として鉛蓄電池が用いられている。これらがそれぞれの正極端子及び負極端子を介して並列に接続されている。また、第1のバッテリー10には直列に保護回路11及び開閉器12が接続されている。保護回路11は、第1のバッテリー10に過充電や過放電、外部短絡等の大電流放電が生じた場合に、通電を遮断して第1のバッテリー10を保護する機能を有している。開閉器12は、第1のバッテリー10の充電を遮断して第1のバッテリー10の充電を停止する機能を有している。
Specifically, a lithium ion battery is used as the first battery 10, and a lead storage battery is used as the second battery 20. These are connected in parallel via respective positive and negative terminals. A protective circuit 11 and a switch 12 are connected to the first battery 10 in series. The protection circuit 11 has a function of interrupting energization and protecting the first battery 10 when a large current discharge such as overcharge, overdischarge, or external short circuit occurs in the first battery 10. The switch 12 has a function of interrupting charging of the first battery 10 and stopping charging of the first battery 10.
リチウムイオン電池は、非水液係の二次電池の一種であり、電解質中のリチウムイオンが電気的伝導を担う二次電池である。代表的なセルの構成では、正極にコバルト酸リチウム、ニッケル酸リチウム、リン酸鉄リチウム等のリチウム含有金属酸化物、負極に炭素材料、電解液に有機電解液が用いられ、この正極及び負極をセパレータを介して捲回した捲回式の電極体を有している。そして、この電極体が非水電解液に浸され円筒状の電池缶に収容されて構成されている。
The lithium ion battery is a type of non-aqueous liquid secondary battery, and is a secondary battery in which lithium ions in the electrolyte are responsible for electrical conduction. In a typical cell configuration, a lithium-containing metal oxide such as lithium cobaltate, lithium nickelate, or lithium iron phosphate is used for the positive electrode, a carbon material is used for the negative electrode, and an organic electrolyte is used for the electrolytic solution. It has a wound electrode body wound through a separator. The electrode body is soaked in a non-aqueous electrolyte and accommodated in a cylindrical battery can.
このようなリチウムイオン電池は、高い電圧が得られエネルギー密度が高く、充放電エネルギーの効率が高く、急速充放電が可能である。一方で過充電、過放電に弱い特性を有している。さらに、満充電状態で保存すると劣化が急激に進行するものであり、充電保存のときよりも放電保存のときの方が容量回復性に優れているという特性を有している。この容量回復性とは、保存した後に充放電を行ったときに初期容量に比較してどのレベルまで回復するかという性質である。
Such a lithium ion battery has a high voltage, high energy density, high charge / discharge energy efficiency, and rapid charge / discharge. On the other hand, it has a characteristic that is weak against overcharge and overdischarge. Further, when the battery is stored in a fully charged state, the deterioration rapidly progresses, and it has a characteristic that the capacity recoverability is better in the discharge storage than in the charge storage. The capacity recoverability is a property of recovering to a level compared to the initial capacity when charge / discharge is performed after storage.
鉛蓄電池は、水溶液系の二次電池であり、正極に二酸化鉛、負極に海綿状の鉛、電解液として希硫酸を用いたものである。各セル室には、複数の正極板と負極板とがガラス繊維のセパレータを介して積層された電極群が収容されている。
The lead acid battery is an aqueous solution type secondary battery using lead dioxide for the positive electrode, spongy lead for the negative electrode, and dilute sulfuric acid as the electrolyte. Each cell chamber accommodates an electrode group in which a plurality of positive electrode plates and negative electrode plates are laminated via a glass fiber separator.
鉛蓄電池は、比較的安価で使用実績が高い。一方、過放電を行うと劣化が早いため、満充電の状態を維持することが望ましく、放電保存のときよりも充電保存のときの方が容量回復性に優れているという特性を有している。
Lead-acid batteries are relatively inexpensive and have a long history of use. On the other hand, it is desirable to maintain a fully charged state because it deteriorates quickly when overdischarge is performed, and has a characteristic that capacity recovery is better when stored under charge than when stored during discharge. .
このような第1のバッテリー10と第2のバッテリー20とは、公称電圧が第1のバッテリー10の方が第2のバッテリー20より高くなっている。換言すれば、第2のバッテリー20の公称電圧は、第1のバッテリー10の公称電圧より低くなっている。
The nominal voltage of the first battery 10 and the second battery 20 is higher in the first battery 10 than in the second battery 20. In other words, the nominal voltage of the second battery 20 is lower than the nominal voltage of the first battery 10.
まず、この種のバッテリーの使用時における一般的な放電特性を図12を参照して説明する。図12は、充電状態(SOC:State Of Charge)と電圧との関係において使用時における放電カーブを示している。横軸は、100%~0%の範囲で充電状態(%)を示し、縦軸は、電圧(V)を示している。
First, general discharge characteristics when using this type of battery will be described with reference to FIG. FIG. 12 shows a discharge curve in use in relation to the state of charge (SOC: State Of Charge) and voltage. The horizontal axis shows the state of charge (%) in the range of 100% to 0%, and the vertical axis shows the voltage (V).
図12に示すように、放電カーブにおいて、放電が継続されると、充電状態が低下し、つまり、充電残存容量が低下し、これとともに電圧が低下していく。ここで、放電初期部分と放電末期部分には、不安定領域A、A´が存在し、この不安定領域AとA´との間の中間部分には、安定領域Bが存在する。
As shown in FIG. 12, when the discharge continues in the discharge curve, the state of charge decreases, that is, the remaining charge capacity decreases, and the voltage decreases along with this. Here, unstable regions A and A ′ exist in the initial discharge portion and the final discharge portion, and a stable region B exists in an intermediate portion between the unstable regions A and A ′.
不安定領域A、A´は、僅かな充電状態の変化で電圧が大きく変化する変化率の大きな領域である。換言すれば、放電カーブが急峻に変化し、僅かな放電容量の変化で電圧が大きく変化する領域である。
The unstable regions A and A ′ are regions with a large rate of change in which the voltage changes greatly with a slight change in the state of charge. In other words, this is a region where the discharge curve changes sharply and the voltage changes greatly with a slight change in discharge capacity.
具体的には、不安定領域Aは、満充電から放電初期における僅かな充電状態の低下で大きく電圧が低下する領域である。不安定領域A´は、完全放電への放電末期における僅かな充電状態の低下で大きく電圧が低下する領域である。
Specifically, the unstable region A is a region in which the voltage is greatly decreased due to a slight decrease in the state of charge from the full charge to the initial stage of discharge. The unstable region A ′ is a region where the voltage is greatly reduced due to a slight decrease in the state of charge at the end of discharge to complete discharge.
また、安定領域Bは、充電状態が変化しても電圧の変化が少ない変化率の小さな領域であり、放電カーブが緩やかに変化し、放電容量が変化しても電圧の変化が少ない略平坦な領域である。
The stable region B is a region with a small change rate with little change in voltage even when the state of charge changes, and the discharge curve changes slowly, and the change in voltage hardly changes even when the discharge capacity changes. It is an area.
このように放電カーブは、不安定領域Aから安定領域Bの始期部分へ移行し、そして、安定領域Bの終期部分から不安定領域A´へと移行するような曲線で描かれる。また、実際の電圧範囲は、バッテリーの公称電圧範囲よりも広い。実際の使用においては、公称電圧範囲より高い電圧まで充電が行われる過充電や公称電圧範囲より低い電圧まで放電が行われる過放電が生じる場合がある。
Thus, the discharge curve is drawn as a curve that shifts from the unstable region A to the start portion of the stable region B and then shifts from the end portion of the stable region B to the unstable region A ′. Also, the actual voltage range is wider than the nominal voltage range of the battery. In actual use, there may occur an overcharge in which charging is performed to a voltage higher than the nominal voltage range or an overdischarge in which discharge is performed to a voltage lower than the nominal voltage range.
次に、本実施形態における第1のバッテリー10と第2のバッテリー20の使用時における放電特性を図2を参照して説明する。図2(a)は第1のバッテリー10の放電特性を示し、図2(b)は第2のバッテリー20の放電特性を示している。図2は、上記図8と対応する放電特性を示しており、同様に、横軸は、100%~0%の範囲で充電状態(%)を示し、縦軸は、電圧(V)を示している。
Next, discharge characteristics during use of the first battery 10 and the second battery 20 in the present embodiment will be described with reference to FIG. 2A shows the discharge characteristics of the first battery 10, and FIG. 2B shows the discharge characteristics of the second battery 20. FIG. 2 shows the discharge characteristics corresponding to FIG. 8 above. Similarly, the horizontal axis shows the state of charge (%) in the range of 100% to 0%, and the vertical axis shows the voltage (V). ing.
第1のバッテリー10及び第2のバッテリー20は、上記一般的な放電特性を示す図12と同様に、ともに放電初期部分と放電末期部分には、不安定領域A、A´が存在し、中間部分には、安定領域Bが存在する。
The first battery 10 and the second battery 20 have unstable regions A and A ′ in the initial discharge portion and the final discharge portion, respectively, in the same manner as in FIG. A stable region B exists in the portion.
詳しくは、第1のバッテリー10及び第2のバッテリー20は、放電初期及び放電末期において放電容量に対する電圧の変化率が急峻な不安定領域A、A´を有し、この放電初期の不安定領域Aと放電末期の不安定領域A´との間の中間部分に、放電容量に対する電圧の変化率が不安定領域A、A´より相対的に小さい安定領域Bを有している。
Specifically, the first battery 10 and the second battery 20 have unstable regions A and A ′ in which the rate of change of the voltage with respect to the discharge capacity is steep at the beginning and end of discharge. In the middle part between A and the unstable region A ′ at the end of discharge, there is a stable region B in which the rate of change of the voltage with respect to the discharge capacity is relatively smaller than the unstable regions A and A ′.
不安定領域Aは、充電状態が約100%~80%の範囲で生じ、不安定領域A´は、充電状態が約20%~0%の範囲で生じている。したがって、安定領域Bは、充電状態が約80%~20%の範囲で生じている。また、より具体的には、安定領域Bにおける放電容量(%)に対する電圧(V)の変化率は、-0.5以上となって略平坦なカーブとなっている。つまり、例えば、充電状態が-10%変化したとき、電池の電圧は3.7Vから3.6Vになっており、そのときの電圧の変化率は3.7Vに対して-2.7%のため変化率としては0.27[-]となる。つまり、変化率は0.5以下である。このときの単位は[-]無次元である。一方で不安定領域A´の電圧の変化は、例えば、充電状態が10%から0%になるときに3.3から3.0Vに0.3V変化する。この変化率は9%である。よって充電状態が10%変化するときに電圧が9%変化するので、このときの変化率は0.9[-]となり0.5より大きい。この0.5という値は、一つの事例であり実際の放電容量(%)の変化に対する、電圧(V)の変化(%)の比率は電池の種類によりそれぞれ異なるが、概ね0.1~0.9の値で区分される。
The unstable region A occurs when the state of charge is approximately 100% to 80%, and the unstable region A ′ occurs when the state of charge is approximately 20% to 0%. Therefore, the stable region B occurs when the state of charge is approximately 80% to 20%. More specifically, the change rate of the voltage (V) with respect to the discharge capacity (%) in the stable region B is −0.5 or more, which is a substantially flat curve. That is, for example, when the state of charge changes by -10%, the battery voltage is changed from 3.7V to 3.6V, and the change rate of the voltage at that time is -2.7% with respect to 3.7V. Therefore, the rate of change is 0.27 [−]. That is, the rate of change is 0.5 or less. The unit at this time is [-] dimensionless. On the other hand, the voltage change in the unstable region A ′ changes by 0.3 V from 3.3 to 3.0 V when the state of charge changes from 10% to 0%, for example. This rate of change is 9%. Therefore, since the voltage changes by 9% when the state of charge changes by 10%, the rate of change at this time is 0.9 [-], which is larger than 0.5. This value of 0.5 is one example, and the ratio of the change in voltage (V) (%) to the actual change in discharge capacity (%) varies depending on the type of battery, but is generally 0.1-0. It is divided by the value of .9.
但し、第1のバッテリー10と第2のバッテリー20との放電特性は、主として次の点で異なっている。
However, the discharge characteristics of the first battery 10 and the second battery 20 are mainly different in the following points.
(1)第1のバッテリー10の安定領域Bにおける電圧は、第2のバッテリー20の安定領域Bにおける電圧より高い。逆に言えば、第2のバッテリー20の安定領域Bにおける電圧は、第1のバッテリー10の安定領域Bにおける電圧より低い。このように、安定領域Bにおいて電圧の高低差がある。
(1) The voltage in the stable region B of the first battery 10 is higher than the voltage in the stable region B of the second battery 20. Conversely, the voltage in the stable region B of the second battery 20 is lower than the voltage in the stable region B of the first battery 10. Thus, there is a voltage difference in the stable region B.
(2)第1のバッテリー10の不安定領域Aにおける電圧の高低幅が狭いのに対し、第2のバッテリー20の不安定領域Aにおける電圧の高低幅は広い。つまり、第2のバッテリー20の不安定領域Aにおいては、僅かな充電状態の変化で電圧が大きく低下する。
(2) The voltage height in the unstable region A of the first battery 10 is narrow, whereas the voltage height in the unstable region A of the second battery 20 is wide. That is, in the unstable region A of the second battery 20, the voltage is greatly reduced by a slight change in the state of charge.
(3)第1のバッテリー10の不安定領域A´における電圧の高低幅が広いのに対し、第2のバッテリー20の不安定領域A´における電圧の高低幅は狭い。つまり、第1のバッテリー10の不安定領域A´においては、僅かな充電状態の変化で電圧が急峻に大きく低下する。
(3) While the voltage range in the unstable region A ′ of the first battery 10 is wide, the voltage range in the unstable region A ′ of the second battery 20 is narrow. That is, in the unstable region A ′ of the first battery 10, the voltage sharply decreases greatly due to a slight change in the state of charge.
さらに、このような第1のバッテリー10と第1のバッテリー10との放電特性に加えて、第1のバッテリー10の安定領域Bにおける終期部分の電圧Vtと第2のバッテリー20の安定領域Bの始期部分の電圧Vcとが略一致するように構成されている。この終期部分の電圧Vtと始期部分の電圧Vcとの一致は、例えば、第1のバッテリー10及び第2のバッテリー20のセルの直列接続数を調整することによって実現可能となる。
Further, in addition to the discharge characteristics of the first battery 10 and the first battery 10, the final voltage Vt in the stable region B of the first battery 10 and the stable region B of the second battery 20 The initial voltage Vc is configured to substantially match. The coincidence between the voltage Vt at the end portion and the voltage Vc at the start portion can be realized, for example, by adjusting the number of cells connected in series in the first battery 10 and the second battery 20.
図3において、第1のバッテリー10と第2のバッテリー20とを電気的に並列に接続した場合の放電特性を説明する。放電開始から第1のバッテリー10の安定領域Bの終期部分の電圧Vtまで(図示電圧Vh~Vm)は、第1のバッテリー10が優先的に主として放電される。この場合、第2のバッテリー20は、ほとんど放電されず、電圧だけが第1のバッテリー10の電圧に追随して変化するようになる。
3, the discharge characteristics when the first battery 10 and the second battery 20 are electrically connected in parallel will be described. The first battery 10 is mainly preferentially discharged from the start of discharge until the voltage Vt at the end of the stable region B of the first battery 10 (shown voltages Vh to Vm). In this case, the second battery 20 is hardly discharged, and only the voltage changes following the voltage of the first battery 10.
これは、第2のバッテリー20の安定領域Bにおける電圧は、第1のバッテリー10の安定領域Bにおける電圧より低いという第1のバッテリー10と第2のバッテリー20との放電特性に基づいている。また、第1のバッテリー10と第2のバッテリー20とが並列に接続されており、各バッテリーの電圧は等しくなることに起因している。
This is based on the discharge characteristics of the first battery 10 and the second battery 20 that the voltage in the stable region B of the second battery 20 is lower than the voltage in the stable region B of the first battery 10. Further, the first battery 10 and the second battery 20 are connected in parallel, and this is because the voltages of the respective batteries become equal.
次いで、第1のバッテリー10の安定領域Bの終期部分の電圧Vtから第2のバッテリー20の安定領域B、不安定領域A´へと移行し0V近く(図示電圧Vm~Vl)まで放電する。この場合は、主として第2のバッテリー20によって放電が行われるようになる。
Next, the voltage Vt at the end of the stable region B of the first battery 10 shifts to the stable region B and the unstable region A ′ of the second battery 20, and discharges to near 0 V (shown voltages Vm to Vl). In this case, discharge is mainly performed by the second battery 20.
この放電は、第1のバッテリー10の安定領域Bの終期部分の電圧Vtと第2のバッテリー20の安定領域Bの始期部分の電圧Vcとが略一致するように構成されていることに基づいている。
This discharge is based on the fact that the voltage Vt at the end portion of the stable region B of the first battery 10 and the voltage Vc at the start portion of the stable region B of the second battery 20 are substantially matched. Yes.
したがって、電圧Vh~Vmの間は、主として第1のバッテリー10の安定領域Bで放電が行われ、電圧Vm~Vlの間は、主として第2のバッテリー20の安定領域Bで放電が行われる。その結果、放電は、第1のバッテリー10の安定領域Bから第2のバッテリー20の安定領域Bへ移行されるようになる。
Therefore, discharge is performed mainly in the stable region B of the first battery 10 during the voltage Vh to Vm, and discharge is performed mainly in the stable region B of the second battery 20 during the voltage Vm to Vl. As a result, the discharge is transferred from the stable region B of the first battery 10 to the stable region B of the second battery 20.
図4は、図3に示す並列に接続された第1のバッテリー10と第2のバッテリー20との放電特性を合成した状態を示している。図4に示すように、第1のバッテリー10の安定領域Bと第2のバッテリー20の安定領域Bとが連続するように繋がり、第1のバッテリー10と第2のバッテリー20との個々のバッテリーに比し安定領域Bが広がる状態となる。そして、電圧Vh~Vmの範囲では、第1のバッテリー10が主として放電され、電圧Vm~Vlの範囲では、第2のバッテリー20が主として放電される。
FIG. 4 shows a state in which the discharge characteristics of the first battery 10 and the second battery 20 connected in parallel shown in FIG. 3 are synthesized. As shown in FIG. 4, the stable region B of the first battery 10 and the stable region B of the second battery 20 are connected so as to be continuous, and the individual batteries of the first battery 10 and the second battery 20 are connected. As compared with the case, the stable region B is expanded. In the range of voltages Vh to Vm, the first battery 10 is mainly discharged, and in the range of voltages Vm to Vl, the second battery 20 is mainly discharged.
以上のようなバッテリーシステム1の構成において、ユーザが電動車両を実際に使用する場合、第1のバッテリー10が優先的に放電されるため、第1のバッテリー10が高い頻度で充放電されるようになる。すなわち、第2のバッテリー20が充放電される頻度は、第1のバッテリー10が充放電される頻度に比較し低くなる。
In the configuration of the battery system 1 as described above, when the user actually uses the electric vehicle, the first battery 10 is preferentially discharged, so that the first battery 10 is charged and discharged with high frequency. become. That is, the frequency with which the second battery 20 is charged and discharged is lower than the frequency with which the first battery 10 is charged and discharged.
よって、第1のバッテリー10を充電保存のときの容量回復性よりも放電保存のときの容量回復性が優れたバッテリーとすることにより、また、第2のバッテリー20を放電保存のときの容量回復性よりも充電保存のときの容量回復性が優れたバッテリーとすることにより、バッテリー全体の性能を高めることができる。
Therefore, by making the first battery 10 a battery having a capacity recoverability superior to the capacity recoverability during charge storage, the capacity recovery when the second battery 20 is stored under discharge can be restored. By making the battery more excellent in capacity recovery during storage when charged, the overall performance of the battery can be improved.
次に、図5のブロック図を参照してバッテリーシステムの構成を説明する。図5に示すように、バッテリーシステム1は、バッテリー部30と制御装置6とを備えている。バッテリー部30には、第1のバッテリー10及び第2のバッテリー20が設けられている。この第1のバッテリー10と第2のバッテリー20とは並列に接続されている。
Next, the configuration of the battery system will be described with reference to the block diagram of FIG. As shown in FIG. 5, the battery system 1 includes a battery unit 30 and a control device 6. The battery unit 30 is provided with a first battery 10 and a second battery 20. The first battery 10 and the second battery 20 are connected in parallel.
具体的には、第1のバッテリー10、保護回路11、開閉器12及び電流センサ2aが接続された直列回路と、第2のバッテリー20及び電流センサ2bが接続された直列回路とが並列に接続されている。これら直列回路の両端には、負荷3、すなわち、電動車両のモータが接続されている。
Specifically, a series circuit in which the first battery 10, the protection circuit 11, the switch 12 and the current sensor 2a are connected and a series circuit in which the second battery 20 and the current sensor 2b are connected are connected in parallel. Has been. A load 3, that is, a motor of an electric vehicle is connected to both ends of these series circuits.
また、第1のバッテリー10と第2のバッテリー20とは必要に応じて充電器4を介して商用電源5に接続されて充電されるようになっている。さらに、バッテリー部30は、制御装置6と接続されている。保護回路11、開閉器12及び電流センサ2a、2bは、この制御装置6によって制御される。
Further, the first battery 10 and the second battery 20 are connected to the commercial power source 5 via the charger 4 and charged as necessary. Further, the battery unit 30 is connected to the control device 6. The protection circuit 11, the switch 12 and the current sensors 2a and 2b are controlled by the control device 6.
制御装置6は、システム全体の制御を実行するものであり、充電制御部61を有し、第1のバッテリー10と第2のバッテリー20の充放電状態や電圧、電流等を制御する機能を有している。
The control device 6 controls the entire system, has a charge control unit 61, and has a function of controlling charge / discharge states, voltages, currents, and the like of the first battery 10 and the second battery 20. is doing.
保護回路11は、リレーやスイッチング素子等から構成されており、第1のバッテリー10に過充電や過放電が生じた場合、動作して第1のバッテリー10の通電を遮断して安全を確保するようになっている。具体的には、電流センサ2aによって充電電流及び放電電流が監視され、これに基づいて制御装置6から保護回路11に制御信号が出力され、保護回路11はON、OFF制御される。
The protection circuit 11 includes a relay, a switching element, and the like. When the first battery 10 is overcharged or overdischarged, the protection circuit 11 operates to cut off the energization of the first battery 10 to ensure safety. It is like that. Specifically, the charging current and the discharging current are monitored by the current sensor 2a, and based on this, a control signal is output from the control device 6 to the protection circuit 11, and the protection circuit 11 is ON / OFF controlled.
開閉器12は、第1のバッテリー10を充電回路から切り離して、第1のバッテリー10の充電を停止するように動作する。この開閉器12は、例えば、リレーやスイッチング素子で構成することができる。
The switch 12 operates to disconnect the first battery 10 from the charging circuit and stop the charging of the first battery 10. This switch 12 can be comprised by a relay or a switching element, for example.
なお、電流センサ2a、2bはシャント抵抗から構成されている。この電流センサ2a、2bには、ホール素子や磁気抵抗素子を用いてもよい。
The current sensors 2a and 2b are composed of shunt resistors. Hall elements or magnetoresistive elements may be used for the current sensors 2a and 2b.
このように構成されたバッテリーシステム1の充電方法について、図5乃至図9を参照して説明する。
A charging method of the battery system 1 configured as described above will be described with reference to FIGS.
まず、第1のバッテリー10は、標準的には定電流定電圧による充電方式を採用するのが望ましい。この充電方式は、比較的高速で充電が可能で、過充電を防止するためには有効である。つまり、高い電圧の過充電の状態において、有機電解液が分解して発熱や発火等が生じる危険性を防止できる。
First, it is desirable that the first battery 10 normally adopts a charging method using a constant current and a constant voltage. This charging method can be charged at a relatively high speed and is effective in preventing overcharging. That is, it is possible to prevent the danger that the organic electrolyte is decomposed to generate heat or ignite in an overcharged state with a high voltage.
また、第2のバッテリー20については、均等充電を含む充電方式を採用するのが望ましい。第2のバッテリー20の場合、バッテリー内における電解液の比重の分布にばらつきが生じる。このばらつきを解消するためには均等充電を行う必要がある。
In addition, it is desirable to adopt a charging method including equal charge for the second battery 20. In the case of the second battery 20, the distribution of the specific gravity of the electrolyte in the battery varies. In order to eliminate this variation, it is necessary to perform uniform charging.
第1のバッテリー10と第2のバッテリー20とが並列に接続されたバッテリーシステム1の場合、仮に、第1のバッテリー10の特性に応じた定電流定電圧による充電方式を採用すると、第1のバッテリー10は適切に充電が行われるものの、第2のバッテリー20は均等充電が行われず、電解液の比重の分布を均一化できない。また、第2のバッテリー20の特性に応じた充電方式を採用すると、比較的大きな電流が継続して流れるため第1のバッテリー10の保護回路11が動作して充電電流が遮断されてしまい充電容量を十分に確保できないという問題が生じる。
In the case of the battery system 1 in which the first battery 10 and the second battery 20 are connected in parallel, if a charging method using a constant current and a constant voltage according to the characteristics of the first battery 10 is adopted, Although the battery 10 is appropriately charged, the second battery 20 is not uniformly charged, and the specific gravity distribution of the electrolyte cannot be made uniform. In addition, when a charging method according to the characteristics of the second battery 20 is adopted, a relatively large current flows continuously, so that the protection circuit 11 of the first battery 10 operates and the charging current is cut off, so that the charging capacity is reduced. A problem arises in that it cannot be sufficiently secured.
本実施形態は、第1のバッテリー10及び第2のバッテリー20の特性に応じた適切な充電が可能な充電方法を提供する。
This embodiment provides a charging method capable of performing appropriate charging according to the characteristics of the first battery 10 and the second battery 20.
図6に示すように、本実施形態の充電方法は、充電開始(S0)から概略的には5つのステップ(S1~S5)のシーケンスで行われる。第1のステップ(S1)は定電流充電であり、第2のステップ(S2)は定電圧充電である。第3のステップ(S3)は第1のバッテリー10の充電を停止するステップであり、第4のステップ(S4)は第2のバッテリー20の定電流充電である。また、第5のステップ(S5)は定電流充電であって、均等充電に該当している。
As shown in FIG. 6, the charging method of the present embodiment is generally performed in a sequence of five steps (S1 to S5) from the start of charging (S0). The first step (S1) is constant current charging, and the second step (S2) is constant voltage charging. The third step (S3) is a step of stopping the charging of the first battery 10, and the fourth step (S4) is a constant current charging of the second battery 20. Further, the fifth step (S5) is constant current charging and corresponds to equal charging.
このような充電方法においては、第1のステップ(S1)及び第2のステップ(S2)で、第1のバッテリー10及び第2のバッテリー20の両者の充電が行われ、第4のステップ(S4)及び第5のステップ(S5)で、第2のバッテリー20のみの充電が行われる。
In such a charging method, both the first battery 10 and the second battery 20 are charged in the first step (S1) and the second step (S2), and the fourth step (S4). ) And the fifth step (S5), only the second battery 20 is charged.
図7及び図8は、第1のバッテリー10と第2のバッテリー20とのそれぞれに適した充電方式を示している。図7は、第1のバッテリー10の充電方式であり、図8は、第2のバッテリー20の充電方式である。充電電圧(バッテリーの端子電圧)と電流の時間的変化を示しており、横軸は、充電時間(h)を示し、縦軸は、電圧(V)及び電流(A)を示している。
7 and 8 show charging methods suitable for the first battery 10 and the second battery 20, respectively. FIG. 7 shows a charging method for the first battery 10, and FIG. 8 shows a charging method for the second battery 20. The charging voltage (battery terminal voltage) and current change with time are shown, the horizontal axis shows charging time (h), and the vertical axis shows voltage (V) and current (A).
図7に示すように第1のバッテリー10については、当初に定電流充電(CC)を行い、所定電圧に到達した後、推奨充電電圧(RV)で定電圧充電(CV)を行う充電方式である。推奨充電電圧以上にならないようにして過充電を防止することができる。定電圧充電(CV)の期間においては、充電電流は漸次低下するように変化し、充電の末期では充電電流が略最も低下した状態となる。なお、推奨充電電圧(RV)は、各温度域(例えば、標準温度域0℃~45℃、高温度域45℃~60℃)における上限充電電圧に基づいて設定される電圧である。
As shown in FIG. 7, the first battery 10 is initially charged with a constant current charge (CC), and after reaching a predetermined voltage, a constant voltage charge (CV) is performed with a recommended charge voltage (RV). is there. Overcharging can be prevented by not exceeding the recommended charging voltage. During the constant voltage charging (CV) period, the charging current changes so as to gradually decrease, and the charging current is substantially reduced at the end of charging. The recommended charging voltage (RV) is a voltage set based on the upper limit charging voltage in each temperature range (for example, standard temperature range 0 ° C. to 45 ° C., high temperature range 45 ° C. to 60 ° C.).
図8に示すように第2のバッテリー20については、当初に定電流充電(CC)を行い、その後、充電電流を低下させて定電流で均等充電(EC)を行い、推奨充電電圧(RV)とする充電方式である。したがって、充電容量を確保できるとともに電解液の比重の分布を均一化が可能となる。
As shown in FIG. 8, the second battery 20 is initially subjected to constant current charging (CC), and thereafter, the charging current is reduced to perform equal charging (EC) with constant current, and the recommended charging voltage (RV). This is a charging method. Therefore, the charge capacity can be ensured and the specific gravity distribution of the electrolyte can be made uniform.
本実施形態は、図9に示すように、上記第1のバッテリー10充電方式(図7)と第2のバッテリー20の充電方式(図8)とを組み合わせて、各バッテリーの特性に応じた適切な充電方法を行うものである。図9は、図7及び図8と同様に、充電電圧と電流の時間的変化を示しており、横軸は、充電時間(h)を示し、縦軸は、電圧(V)及び電流(A)を示している。
In this embodiment, as shown in FIG. 9, the first battery 10 charging method (FIG. 7) and the charging method of the second battery 20 (FIG. 8) are combined, and appropriate according to the characteristics of each battery. A simple charging method. FIG. 9 shows the time variation of the charging voltage and current as in FIGS. 7 and 8, the horizontal axis shows the charging time (h), and the vertical axis shows the voltage (V) and current (A ).
図9において、まず、並列に接続された第1のバッテリー10及び第2のバッテリー20の両者を定電流充電(CC)で充電し(第1のステップ(S1))、続いて、定電圧充電(CV)で充電を行う(第2のステップ(S2))。次に、この定電圧充電(CV)における充電末期の充電電流が低下した状態を検出し、充電完了として第1のバッテリー10の充電回路を遮断して、第1のバッテリー10の充電を停止する(第3のステップ(S3))。
In FIG. 9, first, both the first battery 10 and the second battery 20 connected in parallel are charged by constant current charging (CC) (first step (S1)), followed by constant voltage charging. Charging is performed at (CV) (second step (S2)). Next, a state in which the charging current at the end of charging in the constant voltage charging (CV) is reduced is detected, and the charging circuit of the first battery 10 is cut off as the charging is completed, and the charging of the first battery 10 is stopped. (Third step (S3)).
第1のステップ(S1)においては、第1のバッテリー10における標準の0.7Itで充電する。例えば、第1のバッテリー10が容量150Ahであれば100Aで充電する。第2のステップ(S2)においては、第1のバッテリー10が4V/セルになると充電電流は低下するように変化し、0.05Itの充電に達すると充電が完了したものと判定する。この判定に基づいて第1のバッテリー10の充電回路を遮断する。
In the first step (S1), the first battery 10 is charged with a standard 0.7 It. For example, if the first battery 10 has a capacity of 150 Ah, it is charged at 100 A. In the second step (S2), when the first battery 10 reaches 4 V / cell, the charging current changes so as to decrease, and when the charging reaches 0.05 It, it is determined that the charging is completed. Based on this determination, the charging circuit of the first battery 10 is shut off.
具体的には、図5に示すように電流センサ2aの電圧降下を制御装置6の充電制御部61で検出し、充電制御部61において、充電電流が所定値に低下したと判断する。充電制御部61は、この判断に基づき、開閉器12に遮断(OFF)信号を送信する。すると、開閉器12が遮断され、第1のバッテリー10の充電が停止される。この場合、開閉器12は低電流で動作されるので、開閉器12の損傷を抑制することが可能となる。
Specifically, as shown in FIG. 5, the voltage drop of the current sensor 2a is detected by the charging control unit 61 of the control device 6, and the charging control unit 61 determines that the charging current has decreased to a predetermined value. Based on this determination, the charging control unit 61 transmits a cutoff (OFF) signal to the switch 12. Then, the switch 12 is shut off and charging of the first battery 10 is stopped. In this case, since the switch 12 is operated with a low current, damage to the switch 12 can be suppressed.
再び図9に示すように、第1のバッテリー10が充電回路から切り離された状態で、第2のバッテリー20が単独で充電されるようになる(第4のステップ(S4)~第5のステップ(S5))。このステップでは、第2のバッテリー20を単独で充電するので、第2のバッテリー20の特性に適した充電を行うことができる。
As shown in FIG. 9 again, the second battery 20 is charged alone with the first battery 10 disconnected from the charging circuit (fourth step (S4) to fifth step). (S5)). In this step, since the second battery 20 is charged independently, the charge suitable for the characteristics of the second battery 20 can be performed.
まず、初期の定電流充電(CC)を行い(第4のステップ(S4))、その後、充電電流が低下するので、続いて定電流で均等充電(EC)を行う(第5のステップ(S5))。
First, the initial constant current charging (CC) is performed (fourth step (S4)), and then the charging current is decreased, and then the equal charging (EC) is performed with the constant current (fifth step (S5)). )).
第4のステップ(S4)では、第2のバッテリー20が単独で充電されるため、第2のバッテリー20は短時間で所定の電圧に達し、その後、充電電流は低下していく。一定の充電電流まで低下すると、定電流で均等充電(EC)が継続して行われ、そのときの電圧によって、バッテリー内の電解液の循環が生じ、電解液の比重の分布が均一化されるようになる。
In the fourth step (S4), since the second battery 20 is charged alone, the second battery 20 reaches a predetermined voltage in a short time, and then the charging current decreases. When the charging current is reduced to a certain level, equal charge (EC) is continuously performed at a constant current, and the electrolyte solution in the battery is circulated by the voltage at that time, and the distribution of the specific gravity of the electrolyte solution is made uniform. It becomes like this.
以上のような充電制御は、制御装置6に格納されたプログラムによって実行されるようになっている。なお、第3のステップ(S3)において、時間間隔を空けずに、第1のバッテリー10の充電回路を遮断した直後に、第2のバッテリー20の充電が開始されるように第4のステップ(S4)に移行するようにしてもよい。また充電器4で実行可能なプログラムは、充電器4で実行されて、制御装置6と充電器4の両方の制御が合わさって、以上のような充電制御が実行されてもよい。
The charging control as described above is executed by a program stored in the control device 6. In the third step (S3), the fourth step (S3) is performed so that charging of the second battery 20 is started immediately after the charging circuit of the first battery 10 is shut off without leaving a time interval. You may make it transfer to S4). The program that can be executed by the charger 4 may be executed by the charger 4, and the control of both the control device 6 and the charger 4 may be combined to execute the above-described charging control.
以上のように本実施形態によれば、簡単な構成で第1のバッテリー10及び第2のバッテリー20の特性に応じた適切な充電が可能であるとともに、開閉器12の損傷を抑制できるバッテリーシステム1、このバッテリーシステムが用いられた電動車両及びバッテリーシステムの充電方法を提供することができる。
As described above, according to the present embodiment, a battery system that can be appropriately charged according to the characteristics of the first battery 10 and the second battery 20 with a simple configuration and can suppress damage to the switch 12. 1. It is possible to provide an electric vehicle using the battery system and a battery system charging method.
次に、図10及び図11を参照して本実施形態による第1のバッテリー10と第2のバッテリー20とを組合わせた具体例について説明する。
Next, a specific example in which the first battery 10 and the second battery 20 according to the present embodiment are combined will be described with reference to FIGS. 10 and 11.
(実施例1)
図10に示すように、第1のバッテリー10は、LiFePO4形のリチウムイオン電池であり、この電池はセルの公称電圧が3.2Vであり、このセルを18個直列に接続したものである。したがって、リチウムイオン電池としての公称電圧は、57.6Vとなる。また、充放電を監視する保護回路11(図5参照)が設けられている。 (Example 1)
As shown in FIG. 10, thefirst battery 10 is a LiFePO 4 type lithium ion battery. The battery has a nominal voltage of 3.2 V, and 18 cells are connected in series. Therefore, the nominal voltage as a lithium ion battery is 57.6V. Moreover, the protection circuit 11 (refer FIG. 5) which monitors charging / discharging is provided.
図10に示すように、第1のバッテリー10は、LiFePO4形のリチウムイオン電池であり、この電池はセルの公称電圧が3.2Vであり、このセルを18個直列に接続したものである。したがって、リチウムイオン電池としての公称電圧は、57.6Vとなる。また、充放電を監視する保護回路11(図5参照)が設けられている。 (Example 1)
As shown in FIG. 10, the
一方、第2のバッテリー20は、開放型の鉛蓄電池であり、セルの公称電圧が2Vであり、このセルを24個直列に接続したものである。したがって、鉛蓄電池としての公称電圧は、48Vとなる。
On the other hand, the second battery 20 is an open-type lead storage battery, the nominal voltage of the cell is 2V, and 24 cells are connected in series. Therefore, the nominal voltage as a lead storage battery is 48V.
このような第1のバッテリー10と第2のバッテリー20とを並列に接続して構成することにより、上記のような作用効果の実現が可能となる。
By configuring the first battery 10 and the second battery 20 in parallel as described above, the above-described operation and effect can be realized.
(実施例2)
図11に示すように、第1のバッテリー10は、18650形のリチウムイオン電池であり、この電池はセルの公称電圧が3.6Vであり、このセルを16個直列に接続したものである。したがって、リチウムイオン電池としての公称電圧は、57.6Vとなる。また、充放電を監視する保護回路11(図5参照)が設けられている。第2のバッテリー20は、開放型の鉛蓄電池であり、実施例1と同様のものである。なお、第1のバッテリー10は、必ずしも18650形のリチウムイオン電池で構成される必要はなく、リチウムポリマー電池等の3.6V系のリチウムイオン電池で構成することもできる。 (Example 2)
As shown in FIG. 11, thefirst battery 10 is a 18650 type lithium ion battery. This battery has a nominal voltage of 3.6 V, and 16 cells are connected in series. Therefore, the nominal voltage as a lithium ion battery is 57.6V. Moreover, the protection circuit 11 (refer FIG. 5) which monitors charging / discharging is provided. The second battery 20 is an open-type lead storage battery, and is the same as that of the first embodiment. Note that the first battery 10 does not necessarily need to be formed of a 18650 type lithium ion battery, and may be formed of a 3.6 V lithium ion battery such as a lithium polymer battery.
図11に示すように、第1のバッテリー10は、18650形のリチウムイオン電池であり、この電池はセルの公称電圧が3.6Vであり、このセルを16個直列に接続したものである。したがって、リチウムイオン電池としての公称電圧は、57.6Vとなる。また、充放電を監視する保護回路11(図5参照)が設けられている。第2のバッテリー20は、開放型の鉛蓄電池であり、実施例1と同様のものである。なお、第1のバッテリー10は、必ずしも18650形のリチウムイオン電池で構成される必要はなく、リチウムポリマー電池等の3.6V系のリチウムイオン電池で構成することもできる。 (Example 2)
As shown in FIG. 11, the
このような第1のバッテリー10と第2のバッテリー20とを並列に接続して構成することにより、上記のような作用効果が実現できるバッテリーシステム1が得られる。
By configuring the first battery 10 and the second battery 20 to be connected in parallel, the battery system 1 that can realize the above-described effects can be obtained.
なお、本発明は、上記実施形態の構成に限定されることなく、発明の要旨を逸脱しない範囲で種々の変形が可能である。また、上記実施形態は、一例として提示したものであり、発明の範囲を限定することは意図していない。
The present invention is not limited to the configuration of the above-described embodiment, and various modifications can be made without departing from the spirit of the invention. Moreover, the said embodiment is shown as an example and is not intending limiting the range of invention.
例えば、第1のバッテリーの充電を停止する手段は、格別に開閉器を設けることなく、保護回路を用いるようにしてもよい。
For example, as a means for stopping the charging of the first battery, a protection circuit may be used without providing a special switch.
本発明のバッテリーシステム及びバッテリーシステムの充電方法は、電気自動車、電動スクータやフォークリフト等の電動車両に好適に用いることができる。また、電動車両に限定されるものではなく、他の機器、装置にも適用可能である。
The battery system and the battery system charging method of the present invention can be suitably used for electric vehicles such as electric vehicles, electric scooters and forklifts. Moreover, it is not limited to an electric vehicle, It can apply also to another apparatus and apparatus.
1・・・バッテリーシステム
2a、2b・・・電流センサ
3・・・負荷
4・・・充電器
5・・・商用電源
6・・・制御装置
61・・・充電制御部
10・・・第1のバッテリー(リチウムイオン電池)
11・・・保護回路
12・・・開閉器
20・・・第2のバッテリー(鉛蓄電池)
30・・・バッテリー部
A、A´・・・不安定領域
B・・・安定領域 DESCRIPTION OFSYMBOLS 1 ... Battery system 2a, 2b ... Current sensor 3 ... Load 4 ... Charger 5 ... Commercial power supply 6 ... Control apparatus 61 ... Charge control part 10 ... 1st Battery (lithium-ion battery)
DESCRIPTION OFSYMBOLS 11 ... Protection circuit 12 ... Switch 20 ... 2nd battery (lead acid battery)
30 ... Battery part A, A '... Unstable region B ... Stable region
2a、2b・・・電流センサ
3・・・負荷
4・・・充電器
5・・・商用電源
6・・・制御装置
61・・・充電制御部
10・・・第1のバッテリー(リチウムイオン電池)
11・・・保護回路
12・・・開閉器
20・・・第2のバッテリー(鉛蓄電池)
30・・・バッテリー部
A、A´・・・不安定領域
B・・・安定領域 DESCRIPTION OF
DESCRIPTION OF
30 ... Battery part A, A '... Unstable region B ... Stable region
Claims (5)
- 非水液系の第1のバッテリーと、
この第1のバッテリーと並列に接続された水溶液系の第2のバッテリーと、
前記第1のバッテリーに直列に接続された開閉器とを備え、
前記第1のバッテリーと第2のバッテリーとが並列に接続された状態で、両者を定電流定電圧充電によって充電制御するとともに、この充電の末期における充電電流が低下した状態を検知して、前記開閉器を動作させて第1のバッテリーの接続を遮断し、第2のバッテリーに充電電流が流れるように制御することを特徴とするバッテリーシステム。 A first non-aqueous liquid battery;
An aqueous second battery connected in parallel with the first battery;
A switch connected in series to the first battery;
In the state where the first battery and the second battery are connected in parallel, charging control is performed by constant current and constant voltage charging, and a state in which the charging current at the end of this charging is reduced is detected, A battery system characterized by operating a switch to disconnect the connection of the first battery and controlling the charging current to flow through the second battery. - 前記第1のバッテリーは、リチウムイオン電池であり、前記第2のバッテリーは、鉛蓄電池であることを特徴とする請求項1に記載のバッテリーシステム。 The battery system according to claim 1, wherein the first battery is a lithium ion battery, and the second battery is a lead acid battery.
- 前記第2のバッテリーの鉛蓄電池は、開放型鉛蓄電池であることを特徴とする請求項2に記載のバッテリーシステム。 3. The battery system according to claim 2, wherein the lead storage battery of the second battery is an open type lead storage battery.
- 前記請求項1乃至請求項3のいずれか一に記載のバッテリーシステムが用いられていることを特徴とする電動車両。 An electric vehicle using the battery system according to any one of claims 1 to 3.
- 非水液系の第1のバッテリーと、この第1のバッテリーと並列に接続された水溶液系の第2のバッテリーとを有するバッテリーシステムにおいて、
前記第1のバッテリー及び第2のバッテリーを定電流充電するステップと、
この定電流充電に続いて定電圧充電するステップと、
この定電圧充電の末期における充電電流が低下した状態で、前記第1のバッテリーを充電回路から遮断して第1のバッテリーの充電を停止するステップと、
次いで、前記第2のバッテリーを定電流充電するステップと、
この定電流充電の後、第2のバッテリーを均等充電するステップと、
を備えることを特徴とするバッテリーシステムの充電方法。 In a battery system having a first nonaqueous liquid battery and an aqueous second battery connected in parallel with the first battery,
Charging the first battery and the second battery with a constant current;
A step of constant voltage charging following this constant current charging;
Shutting off the charging of the first battery by cutting off the first battery from the charging circuit in a state where the charging current at the end of the constant voltage charging is reduced;
Next, charging the second battery with a constant current;
After the constant current charging, charging the second battery evenly;
A charging method for a battery system, comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014180898 | 2014-09-05 | ||
JP2014-180898 | 2014-09-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016035280A1 true WO2016035280A1 (en) | 2016-03-10 |
Family
ID=55439368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/004251 WO2016035280A1 (en) | 2014-09-05 | 2015-08-25 | Battery system, electric vehicle, and method for charging battery system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016035280A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019522866A (en) * | 2017-05-31 | 2019-08-15 | グアンツォ カイジェ パワー サプライ インダストリアル シーオー.,エルティーディー. | Battery pack for starting |
CN111527664A (en) * | 2018-03-01 | 2020-08-11 | 株式会社村田制作所 | Battery pack |
CN115257599A (en) * | 2022-08-19 | 2022-11-01 | 奇瑞汽车股份有限公司 | Power supply method and system for automatic driving vehicle type |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003134689A (en) * | 2001-10-24 | 2003-05-09 | Shin Kobe Electric Mach Co Ltd | Power supply system |
JP2012228051A (en) * | 2011-04-19 | 2012-11-15 | Mitsubishi Electric Corp | Power supply system for vehicle |
WO2013054795A1 (en) * | 2011-10-11 | 2013-04-18 | Kachi Naoyoshi | Hybrid storage cell, vehicle and power storage unit employing same, smart grid vehicle system employing vehicle, and power supply network system employing power storage unit |
JP2014086278A (en) * | 2012-10-24 | 2014-05-12 | Mazda Motor Corp | Power supply control device for vehicle |
WO2014162686A1 (en) * | 2013-04-03 | 2014-10-09 | パナソニック株式会社 | Battery system |
-
2015
- 2015-08-25 WO PCT/JP2015/004251 patent/WO2016035280A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003134689A (en) * | 2001-10-24 | 2003-05-09 | Shin Kobe Electric Mach Co Ltd | Power supply system |
JP2012228051A (en) * | 2011-04-19 | 2012-11-15 | Mitsubishi Electric Corp | Power supply system for vehicle |
WO2013054795A1 (en) * | 2011-10-11 | 2013-04-18 | Kachi Naoyoshi | Hybrid storage cell, vehicle and power storage unit employing same, smart grid vehicle system employing vehicle, and power supply network system employing power storage unit |
JP2014086278A (en) * | 2012-10-24 | 2014-05-12 | Mazda Motor Corp | Power supply control device for vehicle |
WO2014162686A1 (en) * | 2013-04-03 | 2014-10-09 | パナソニック株式会社 | Battery system |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019522866A (en) * | 2017-05-31 | 2019-08-15 | グアンツォ カイジェ パワー サプライ インダストリアル シーオー.,エルティーディー. | Battery pack for starting |
CN111527664A (en) * | 2018-03-01 | 2020-08-11 | 株式会社村田制作所 | Battery pack |
CN111527664B (en) * | 2018-03-01 | 2023-06-30 | 株式会社村田制作所 | Battery pack |
CN115257599A (en) * | 2022-08-19 | 2022-11-01 | 奇瑞汽车股份有限公司 | Power supply method and system for automatic driving vehicle type |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6406533B2 (en) | Battery system | |
US9419450B2 (en) | Fast charging of battery using adjustable voltage control | |
CN110011368B (en) | Power storage element protection device, power storage device, and power storage element protection method | |
WO2010113206A1 (en) | Charging device | |
US20140103859A1 (en) | Electric storage system | |
US20100194351A1 (en) | Charging method and charger | |
JP2006166615A (en) | Voltage equalization control system of storage device | |
US9847663B2 (en) | Secondary-battery charging system and method and battery pack | |
US9413037B2 (en) | Cell capacity adjusting device | |
WO2013008409A1 (en) | Method for manufacturing battery pack and battery pack | |
JP7183409B2 (en) | Method and device for controlling electric vehicle traction battery charge level | |
CN109655753B (en) | Estimation method of SOC of battery pack | |
CN107369858A (en) | A kind of battery pack Bi-objective equalizing circuit control strategy stage by stage | |
JP5705046B2 (en) | Power system | |
WO2016035280A1 (en) | Battery system, electric vehicle, and method for charging battery system | |
JP7027860B2 (en) | Power system | |
JP2014121134A (en) | Electric voltage balance controller | |
EP2946433B1 (en) | Electrochemical cell or battery with reduced impedance and method for producing same | |
JP2017162721A (en) | Cell balance circuit control apparatus and cell balance circuit control method | |
KR20190054512A (en) | Battery charging method and battery charging apparatus | |
WO2016035278A1 (en) | Battery system and electric vehicle | |
JP4472415B2 (en) | Non-aqueous electrolyte secondary battery charging method and charger | |
WO2016035279A1 (en) | Battery system and electric vehicle | |
Abeywardana et al. | Improved shared transformer cell balancing of Li-ion batteries | |
JP2019165572A (en) | Electrical power system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15838182 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15838182 Country of ref document: EP Kind code of ref document: A1 |