[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016031703A1 - 有機エレクトロルミネッセンス素子および電子機器 - Google Patents

有機エレクトロルミネッセンス素子および電子機器 Download PDF

Info

Publication number
WO2016031703A1
WO2016031703A1 PCT/JP2015/073508 JP2015073508W WO2016031703A1 WO 2016031703 A1 WO2016031703 A1 WO 2016031703A1 JP 2015073508 W JP2015073508 W JP 2015073508W WO 2016031703 A1 WO2016031703 A1 WO 2016031703A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
substituted
organic layer
carbon atoms
Prior art date
Application number
PCT/JP2015/073508
Other languages
English (en)
French (fr)
Inventor
俊成 荻原
圭 吉田
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to KR1020177003229A priority Critical patent/KR102341609B1/ko
Priority to US15/501,712 priority patent/US10651398B2/en
Publication of WO2016031703A1 publication Critical patent/WO2016031703A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • C09K2211/1077Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms with oxygen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene

Definitions

  • the present invention relates to an organic electroluminescence element and an electronic device.
  • organic electroluminescence element When a voltage is applied to an organic electroluminescence element (hereinafter sometimes referred to as “organic EL element”), holes from the anode and electrons from the cathode are injected into the light emitting layer. Then, in the light emitting layer, the injected holes and electrons are recombined to form excitons. At this time, singlet excitons and triplet excitons are generated at a ratio of 25%: 75% according to the statistical rule of electron spin.
  • Organic EL elements are applied to displays such as mobile phones and televisions. There is a demand for further improving the light emission characteristics of the organic EL element such as the light emission efficiency and the light emission lifetime.
  • Patent Documents 1 to 8 describe organic EL elements in which a plurality of light emitting layers are stacked in order to improve the light emission characteristics.
  • JP-T-2004-522276 International Publication No. 2005/099313 International Publication No. 2005/112518 JP 2006-172762 A JP 2006-172663 A International Publication No. 2008/123178 JP 2013-8492 A JP 2014-75249 A
  • An object of the present invention is to provide an organic electroluminescence element capable of improving luminous efficiency, and to provide an electronic device including the organic electroluminescence element.
  • At least one of the layers includes a first compound and a second compound, and the first compound has delayed fluorescence, and an energy gap T at 77 [K] of the second compound.
  • 77K (M2) provides an organic electroluminescence device having a larger energy gap T 77K (M1) at 77 [K] of the first compound.
  • an electronic apparatus including the organic electroluminescence element according to one embodiment of the present invention described above is provided.
  • an organic electroluminescence element capable of improving light emission efficiency and to provide an electronic device including the organic electroluminescence element.
  • the organic EL element 1 includes a translucent substrate 2, an anode 3, a hole injection layer 5, a hole transport layer 6, a first organic layer 11, a bipolar layer 13, and a second organic layer.
  • the layer 12, the electron transport layer 7, the electron injection layer 8, and the cathode 4 are provided, and are stacked in this order.
  • the first organic layer 11 and the bipolar layer 13 are preferably joined.
  • the second organic layer 12 and the bipolar layer 13 are preferably joined.
  • the first organic layer 11 and the second organic layer 12 contain a first compound having delayed fluorescence.
  • the first compound contained in the first organic layer 11 and the first compound contained in the second organic layer 12 may have the same structure or different structures.
  • the use of the first compound having the same structure is preferable in that light of the same color can be emitted from the first organic layer 11 and the second organic layer 12.
  • the second compound may be contained in at least one of the first organic layer 11 and the second organic layer 12.
  • the first organic layer 11 further includes a second compound.
  • the energy gap T 77K (M2) at 77 [K] of the second compound is larger than the energy gap T 77K (M1) at 77 [K] of the first compound.
  • the first organic layer 11 and the second organic layer 12 may include a metal complex, but in the present embodiment, it is preferable not to include a phosphorescent metal complex, and a metal other than the phosphorescent metal complex. More preferably, no complex is contained.
  • the first compound of this embodiment is not a metal complex.
  • the first compound contained in the first organic layer 11 and the first compound contained in the second organic layer 12 may have different structures.
  • the main peak wavelength ⁇ 1 (unit: nm) of the emission spectrum of the first compound contained in the first organic layer 11 and the main peak of the emission spectrum of the first compound contained in the second organic layer 12 It is preferable that the wavelength ⁇ 2 (unit: nm) satisfies the relationship of the following mathematical formula (Formula 1).
  • is more preferably 90 nm or less, and further preferably 50 nm or less.
  • the first compound contained in the first organic layer 11 and the first compound contained in the second organic layer 12 may have different structures.
  • the main peak wavelength ⁇ 1 (unit: nm) of the emission spectrum of the first compound contained in the first organic layer 11 and the main peak of the emission spectrum of the first compound contained in the second organic layer 12 It is also preferable that the wavelength ⁇ 2 (unit: nm) satisfies the relationship of the following mathematical formula (Formula 2).
  • the organic EL element 1 emits white light.
  • the first compound having a predetermined emission color is appropriately selected so that the emission color from the first organic layer 11 and the emission color from the second organic layer 12 are mixed and become white.
  • the first organic layer 11 and the second organic layer 12 may be used.
  • a first compound capable of emitting blue light may be used for the first organic layer 11 and a first compound capable of emitting yellow light may be used for the second organic layer 12.
  • Delayed fluorescence (thermally activated delayed fluorescence) is explained on pages 261 to 268 of "Device properties of organic semiconductors" (edited by Chiya Adachi, published by Kodansha).
  • TADF thermally activated delayed fluorescence
  • FIG. 10.38 in this document explains the mechanism of delayed fluorescence generation.
  • the first compound in the present embodiment is a compound that exhibits thermally activated delayed fluorescence generated by such a mechanism.
  • the delayed fluorescence emission can be confirmed by transient PL (Photo Luminescence) measurement.
  • Transient PL measurement is a method of measuring the decay behavior (transient characteristics) of PL emission after irradiating a sample with a pulse laser and exciting it and stopping the irradiation.
  • PL emission in the TADF material is classified into a light emission component from a singlet exciton generated by the first PL excitation and a light emission component from a singlet exciton generated via a triplet exciton.
  • the lifetime of singlet excitons generated by the first PL excitation is on the order of nanoseconds and is very short. Therefore, light emitted from the singlet excitons is rapidly attenuated after irradiation with the pulse laser.
  • delayed fluorescence is gradually attenuated due to light emission from singlet excitons generated via a long-lived triplet exciton.
  • the emission intensity derived from delayed fluorescence can be obtained.
  • FIG. 2 shows a schematic diagram of an exemplary apparatus for measuring transient PL.
  • the transient PL measurement apparatus 100 of the present embodiment includes a pulse laser unit 101 that can irradiate light of a predetermined wavelength, a sample chamber 102 that houses a measurement sample, a spectrometer 103 that separates light emitted from the measurement sample, A streak camera 104 for forming a two-dimensional image and a personal computer 105 for capturing and analyzing the two-dimensional image are provided. Note that the measurement of the transient PL is not limited to the apparatus described in this embodiment.
  • the sample accommodated in the sample chamber 102 is obtained by forming a thin film in which a doping material is doped at a concentration of 12 mass% with respect to a matrix material on a quartz substrate.
  • the thin film sample accommodated in the sample chamber 102 is irradiated with a pulse laser from the pulse laser unit 101 to excite the doping material.
  • the emitted light is extracted in a direction of 90 degrees with respect to the irradiation direction of the excitation light, the extracted light is dispersed by the spectroscope 103, and a two-dimensional image is formed in the streak camera 104.
  • a two-dimensional image in which the vertical axis corresponds to time, the horizontal axis corresponds to wavelength, and the bright spot corresponds to emission intensity.
  • an emission spectrum in which the vertical axis represents the emission intensity and the horizontal axis represents the wavelength can be obtained.
  • an attenuation curve in which the vertical axis represents the logarithm of the emission intensity and the horizontal axis represents time can be obtained.
  • a thin film sample A was prepared as described above using the following reference compound H1 as a matrix material and the following reference compound D1 as a doping material, and transient PL measurement was performed.
  • FIG. 3 shows attenuation curves obtained from the transient PL measured for the thin film sample A and the thin film sample B.
  • the transient PL measurement it is possible to obtain a light emission decay curve with the vertical axis representing the emission intensity and the horizontal axis representing the time. Based on this emission decay curve, the fluorescence intensity of fluorescence emitted from the singlet excited state generated by photoexcitation and delayed fluorescence emitted from the singlet excited state generated by reverse energy transfer via the triplet excited state The ratio can be estimated. In the delayed fluorescence emitting material, the ratio of the delayed fluorescence intensity that attenuates slowly is somewhat larger than the fluorescence intensity that decays quickly.
  • the delayed fluorescence emission amount in this embodiment can be obtained using the apparatus of FIG.
  • the first compound is excited with pulsed light having a wavelength that is absorbed by the first compound (light irradiated from a pulse laser) and then promptly observed from the excited state. After the excitation, there is delay light emission (delayed light emission) that is not observed immediately but is observed thereafter.
  • the amount of delay light emission (delayed light emission) is preferably 5% or more with respect to the amount of Promp light emission (immediate light emission).
  • the amounts of Prompt light emission and Delay light emission can be obtained by a method similar to the method described in “Nature 492, 234-238, 2012”.
  • the apparatus used for calculation of the amount of Promp light emission and Delay light emission is not limited to the apparatus described in the said literature.
  • a first compound and the following compound TH-2 are co-deposited on a quartz substrate so that the ratio of the first compound is 12% by mass.
  • a sample in which a thin film having a thickness of 100 nm is formed can be used.
  • the first compound of this embodiment is a delayed fluorescent compound, and the emission color is not particularly limited.
  • the first compound preferably emits light having a main peak wavelength of 550 nm or less, and more preferably emits light having a main peak wavelength of 480 nm or less.
  • the first compound emits light having a main peak wavelength exceeding 550 nm.
  • the main peak wavelength is the peak of the emission spectrum where the emission intensity in the measured emission spectrum is maximum for a toluene solution in which the compound to be measured is dissolved at a concentration of 10 ⁇ 6 mol / liter to 10 ⁇ 5 mol / liter. The wavelength.
  • ⁇ ST refers to the difference between singlet energy and triplet energy of a compound.
  • ⁇ ST of the first compound is expressed as ⁇ ST (M1). If ⁇ ST (M1) is small, the reverse intersystem crossing from the triplet level of the first compound to the singlet level of the first compound is likely to occur due to externally applied thermal energy.
  • An energy state conversion mechanism in which the excited triplet state of the electrically excited exciton inside the organic EL element is spin-exchanged to the excited singlet state by crossing between inverse terms is called a TADF mechanism.
  • FIG. 4 shows an example of the relationship between the energy levels of the first compound and the second compound in a layer containing the first organic compound and the second organic compound (for example, a light emitting layer).
  • S0 represents the ground state
  • S1 H represents the lowest excited singlet state of the second compound
  • T1 H represents the lowest excited triplet state of the second compound
  • S1 D represents The lowest excited singlet state of the first compound is represented
  • T1 D represents the lowest excited triplet state of the first compound.
  • the dashed arrows in FIG. 4 represent the energy transfer between each excited state. Dexter transfer from the lowest excited triplet state T1 H of the second compound causes energy transfer to the lowest excited singlet state S1 D or lowest excited triplet state T1 D of the first compound.
  • the lowest excited triplet state T1 D of the first compound can cross between the reverse excited singlet state S1 D by thermal energy. It is. As a result, fluorescence emission from the lowest excited singlet state S1 D of the first compound can be observed. It is believed that the internal efficiency can theoretically be increased to 100% also by utilizing delayed fluorescence due to this TADF mechanism.
  • the singlet energy S (M2) of the second compound is preferably larger than the singlet energy S (M1) of the first compound.
  • the first organic layer 11 preferably contains the first compound at a concentration of 20% by mass to 80% by mass, and is contained at a concentration of 40% by mass to 60% by mass. More preferably.
  • the second organic layer 12 preferably contains the first compound at a concentration of 20% by mass or more and 80% by mass or less, and is contained at a concentration of 40% by mass or more and 60% by mass or less. More preferably.
  • the film thickness of the 1st organic layer 11 and the 2nd organic layer 12 in the organic EL element 1 of this embodiment is 5 nm or more and 50 nm or less each independently. Preferably, it is 7 nm or more and 50 nm or less, more preferably 10 nm or more and 50 nm or less.
  • the film thickness is 5 nm or more, it becomes easy to form the first organic layer 11 and the second organic layer 12 and to easily adjust the chromaticity. If the film thickness is 50 nm or less, it is easy to suppress an increase in drive voltage.
  • At least one of the first organic layer 11 and the second organic layer 12 may further contain a fifth compound.
  • at least any one of the 1st organic layer 11 and the 2nd organic layer 12 may be comprised by 2 components of a 1st compound and a 5th compound.
  • at least one of the first organic layer 11 and the second organic layer 12 may be composed of three components of a first compound, a second compound, and a fifth compound.
  • the fifth compound is not particularly limited, but is preferably a fluorescent compound.
  • the emission color and emission wavelength of the fluorescent compound are not particularly limited.
  • the fifth compound preferably exhibits red, yellow, green, or blue fluorescence.
  • the fifth compound is preferably a material having a high fluorescence quantum yield.
  • the bipolar layer 13 is included between the first organic layer 11 and the second organic layer 12.
  • the bipolar property represents a property capable of moving holes and electrons.
  • the bipolar layer 13 is a layer that can move holes and electrons.
  • the bipolar layer 13 may be made of a single material or may be made of a plurality of materials. When the bipolar layer 13 is composed of a single material, it is preferable to use a compound having a hole transporting partial structure and an electron transporting partial structure in one molecule. When the bipolar layer 13 is composed of a plurality of materials, it is preferable to use a hole transporting compound and an electron transporting compound.
  • the bipolar layer 13 preferably contains a fourth compound having a bipolar property.
  • the molecular structure of the first compound and the molecular structure of the fourth compound may be the same or different.
  • the film thickness of the bipolar layer 13 is preferably 1 nm or more and 30 nm or less, more preferably 1 nm or more and 20 nm or less, and further preferably 1 nm or more and 10 nm or less.
  • the organic EL device of this embodiment Since the bipolar layer 13 is provided between the first organic layer 11 and the second organic layer 12 containing the compound having delayed fluorescence (delayed fluorescence compound), the organic EL device of this embodiment According to 1, the luminous efficiency can be improved.
  • the delayed fluorescence compound has a small ⁇ ST and can easily move holes and electrons. Since the delayed fluorescence compound does not easily cause concentration quenching even when the concentration in the layer exceeds 10% by mass, it can be contained at a high concentration to extend the life and voltage. As described above, since the delayed fluorescent compound easily moves holes and electrons, if the delayed fluorescent compound is contained in the layer at a high concentration, the conductivity of holes and electrons is further increased.
  • the organic EL devices described in Patent Documents 1 to 7 listed as the prior art have a configuration in which a light emitting layer containing a fluorescent or phosphorescent compound is laminated.
  • concentration quenching problems and economic problems due to concentration quenching problems and economic problems, the concentration of the fluorescent light-emitting compound or phosphorescent light-emitting compound in the light-emitting layer is suppressed to about 10% by mass or less.
  • the conventional organic EL In the device it is presumed that leakage of holes and electrons from the layer containing the fluorescent compound or the phosphorescent compound to the peripheral layer is less likely to occur compared to the compound having delayed fluorescence.
  • the organic EL device described in Patent Document 8 has a configuration in which a light emitting layer containing a delayed fluorescent compound and a light emitting layer containing a fluorescent compound are stacked.
  • the technical idea of providing a bipolar layer in order to effectively utilize holes and electrons leaked from the layer containing the delayed fluorescent compound is not found.
  • at least one of the first organic layer 11 and the second organic layer 12 in the present embodiment includes the first compound and the first compound.
  • a technical idea that a second compound having an energy gap T 77K (M2) at 77 [K] larger than the energy gap T 77K (M1) at 77 [K] is included has not been found. It is thought.
  • the first organic layer 11 includes a first compound having delayed fluorescence and a second compound
  • the second organic layer 12 includes a third compound having light emission. Including. That is, the second embodiment is different from the first embodiment in terms of the compound contained in the second organic layer 12, and is otherwise the same as the first embodiment.
  • the third compound may be a compound having fluorescence or phosphorescence, and is preferably a compound having fluorescence. It is also preferable that the compound emitting light in the first organic layer 11 and the compound emitting light in the second organic layer 12 are different. For example, in the first organic layer 11, the first compound preferably emits light, and in the second organic layer 12, the third compound preferably emits light.
  • the layer containing the third compound may have a structure in which the above-described light-emitting compound is dispersed in another substance (host material).
  • Various substances can be used as a substance for dispersing the luminescent compound, and the lowest unoccupied orbital level (LUMO level) is higher than that of the luminescent compound, and the highest occupied orbital level (HOMO level). Is preferably used.
  • the main peak wavelength ⁇ 1 (unit: nm) of the emission spectrum of the first compound and the main peak wavelength ⁇ 3 (unit: nm) of the emission spectrum of the third compound are expressed by the following formula (Equation 3). It is preferable to satisfy the relationship.
  • is more preferably 90 nm or less, and further preferably 50 nm or less.
  • the main peak wavelength ⁇ 1 (unit: nm) of the emission spectrum of the first compound and the main peak wavelength ⁇ 3 (unit: nm) of the emission spectrum of the third compound have the relationship represented by the following formula (Equation 4). It is also preferable to satisfy.
  • the emission color of the first compound and the emission color of the third compound are preferably the same.
  • the organic EL element of the second embodiment emits white light.
  • the first compound and the third compound having a predetermined emission color are mixed so that the emission color from the first organic layer 11 and the emission color from the second organic layer 12 are mixed to become white.
  • These compounds may be appropriately selected and used for the first organic layer 11 and the second organic layer 12, respectively.
  • the bipolar layer 13 is provided between the first organic layer 11 containing the delayed fluorescent compound and the second organic layer 12 containing the light-emitting third compound.
  • the light emission efficiency can also be improved by the organic EL element of the second embodiment.
  • an organic EL element in which the first organic layer 11 includes a third compound and the second organic layer 12 includes a first compound and a second compound.
  • the first compound preferably emits light in the first organic layer 11 and the first compound emits light in the second organic layer 12.
  • This embodiment is different from the first embodiment in that the bipolar layer 13 contains the fifth compound, and the other points are the same as in the first embodiment. It is also preferable that the bipolar layer 13 contains a fourth compound and a fifth compound. This is because when the fifth compound is contained, the carrier balance in the bipolar layer 13 is improved. Also in the organic EL device of the second embodiment, it is preferable that the bipolar layer 13 contains a fifth compound.
  • the bipolar layer 13 is provided between the first organic layer 11 and the second organic layer 12 containing the delayed fluorescent compound, the organic EL element of the third embodiment Also, the luminous efficiency can be improved.
  • the first organic layer 11 includes a first compound having delayed fluorescence and a second compound
  • the second organic layer 12 includes a third compound having light emission.
  • the bipolar layer 13 includes a fifth compound. That is, the fourth embodiment is different from the first embodiment in terms of the compound contained in the second organic layer 12 and the compound contained in the bipolar layer 13, and the other points are the same as in the first embodiment. It is.
  • the compound emitting light in the first organic layer 11 and the compound emitting light in the second organic layer 12 are different.
  • the first compound preferably emits light
  • the third compound preferably emits light.
  • the third compound is preferably a compound having fluorescence or phosphorescence.
  • the second organic layer 12 does not contain the first compound.
  • the second organic layer 12 may be configured to include the third compound and another substance (host material) different from the above-described compound having a light emitting property.
  • the host material the same compounds as those described in the second embodiment can be used.
  • the bipolar layer 13 contains a fourth compound and a fifth compound. This is because when the fifth compound is contained, the carrier balance in the bipolar layer 13 is improved.
  • the bipolar layer 13 is provided between the first organic layer 11 and the second organic layer 12 containing the delayed fluorescent compound. Therefore, the light emission efficiency can be improved also by the organic EL element of the fourth embodiment.
  • an organic EL element including a fifth compound instead of the third compound included in the second organic layer 12 of the fourth embodiment may be used.
  • the first compound having delayed fluorescence emission preferably has a donor site and an acceptor site in the same molecule.
  • examples of the first compound include a compound represented by the following general formula (1).
  • A is an acceptor site and is a group having a partial structure selected from the following general formulas (a-1) to (a-7).
  • A may be the same or different from each other, and A may be bonded to each other to form a saturated or unsaturated ring.
  • B is a donor site and has a partial structure selected from the following general formulas (b-1) to (b-6).
  • the plurality of B may be the same or different from each other, and B may be bonded to each other to form a saturated or unsaturated ring.
  • a, b, and d are each independently an integer of 1 to 5; c is an integer from 0 to 5, When c is 0, A and B are bonded by a single bond or a spiro bond, When c is an integer from 1 to 5, L is A linking group selected from the group consisting of a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, wherein L is When there are a plurality of L, the plurality of L may be the same or different from each other, and L may be bonded to each other to form a saturated or unsaturated ring.
  • R is each independently a hydrogen atom or a substituent, and when R is a substituent, the substituent is A substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms,
  • a plurality of Rs are selected from the group consisting of a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms and a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, It may be the same or different, and R may be bonded to each other to form a saturated or unsaturated ring.
  • binding mode of the compound represented by the general formula (1) examples include, for example, the binding modes shown in Table 1 below.
  • the first compound in the present invention is not limited to these examples.
  • the first compound is produced by the method described in, for example, International Publication No. 2013/180241, International Publication No. 2014/092083, International Publication No. 2014/104346, etc. Can do.
  • (Second compound) Although it does not specifically limit as a 2nd compound, it is preferable that they are compounds other than an amine compound.
  • a carbazole derivative, a dibenzofuran derivative, and a dibenzothiophene derivative can be used, but the second compound is not limited to these derivatives.
  • the second compound is also preferably a compound containing at least one of a partial structure represented by the following general formula (21) and a partial structure represented by the following general formula (22) in one molecule.
  • Y 21 to Y 26 are each independently a nitrogen atom or a carbon atom bonded to another atom in the molecule of the second compound; Provided that at least one of Y 21 to Y 26 is a carbon atom bonded to another atom in the molecule of the second compound;
  • Y 31 to Y 38 are each independently a nitrogen atom or a carbon atom bonded to another atom in the molecule of the second compound; Provided that at least one of Y 31 to Y 38 is a carbon atom bonded to another atom in the molecule of the second compound;
  • X 2 is a nitrogen atom, an oxygen atom, or a sulfur atom.
  • the partial structure represented by the general formula (22) includes partial structures represented by the following general formulas (221), (222), (223), (224), (225), and (226). It is preferably any one selected from the group.
  • X 2 is a nitrogen atom, an oxygen atom, or a sulfur atom
  • Y 31 to Y 38 are each independently a nitrogen atom or a carbon atom bonded to another atom in the molecule of the second compound
  • X 7 is a nitrogen atom, an oxygen atom, a sulfur atom, or a carbon atom
  • Y 71 to Y 74 are each independently a nitrogen atom or a carbon atom bonded to another atom in the molecule of the second compound.
  • the second compound preferably has a partial structure represented by the general formula (223) among the general formulas (221) to (226).
  • the partial structure represented by the general formula (21) is at least one group selected from the group consisting of a group represented by the following general formula (23) and a group represented by the following general formula (24). It is preferably contained in the second compound. As represented by the following general formula (23) and the following general formula (24), it is possible to keep the energy gap T 77K (M3) at 77 [K] high because the bonding sites are located at the meta positions. Therefore, it is preferable as the second compound.
  • Y 21 , Y 22 , Y 24 and Y 26 are each independently a nitrogen atom or CR 31 ;
  • R 31 is a hydrogen atom or a substituent, and when R 31 is a substituent, the substituent is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring A heterocyclic group having 5 to 30 atoms, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted carbon group having 3 to 30 carbon atoms Selected from the group consisting of a cycloalkyl group, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted silyl group, a substituted germanium
  • the substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms in R 31 is preferably a non-condensed ring.
  • a wavy line part represents the coupling
  • Y 21 , Y 22 , Y 24 and Y 26 are preferably each independently CR 31 , and the plurality of R 31 may be the same or different.
  • Y 22 , Y 24 and Y 26 are preferably each independently CR 31 , and the plurality of R 31 may be the same or different.
  • the substituted germanium group is preferably represented by —Ge (R 101 ) 3 .
  • R 101 is each independently a substituent.
  • Substituent R 101 is preferably a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
  • the plurality of R 101 may be the same as or different from each other.
  • the partial structure represented by the general formula (22) includes a group represented by the following general formula (25), a group represented by the following general formula (26), a group represented by the following general formula (27), As at least one group selected from the group consisting of a group represented by the following general formula (28), a group represented by the following general formula (29), and a group represented by the following general formula (20a) It is preferable to be contained in two compounds.
  • Y 31 , Y 32 , Y 33 , Y 34 , Y 35 , Y 36 , Y 37 , and Y 38 are each independently a nitrogen atom or CR 32 ;
  • R 32 is a hydrogen atom or a substituent, and when R 32 is a substituent, the substituent is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring A heterocyclic group having 5 to 30 atoms, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted carbon group having 3 to 30 carbon atoms Selected from the group consisting of a cycloalkyl group, a substituted or unsubstituted aralkyl group having
  • the substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms in R 32 is preferably a non-condensed ring
  • X 2 is a nitrogen atom
  • X 2 is NR 33 , an oxygen atom or a sulfur atom
  • R 33 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, a substituted or unsubstituted carbon group having 1 to 30 carbon atoms.
  • the aromatic hydrocarbon group of ⁇ 30 is preferably a non-condensed ring.
  • the wavy line part represents a bonding site with another atom or another structure in the molecule of the second compound.
  • Y 31 to Y 38 are preferably each independently CR 32.
  • Y 31 to Y 35 , Y 37 And Y 38 are preferably each independently CR 32.
  • Y 31 , Y 32 , Y 34 , Y 35 , Y 37 and Y 38 are each independently CR 32.
  • Y 32 to Y 38 are preferably each independently CR 32 , and in the general formula (20a), Y 32 to Y 37 are each independently
  • CR 32 is preferable, and a plurality of R 32 may be the same or different.
  • X 2 is preferably an oxygen atom or a sulfur atom, and more preferably an oxygen atom.
  • X 7 is preferably an oxygen atom or a sulfur atom, and more preferably an oxygen atom.
  • X 2 and X 7 are preferably oxygen atoms.
  • R 31 and R 32 are each independently a hydrogen atom or a substituent, and the substituent in R 31 and R 32 is a fluorine atom, a cyano group, a substituted or unsubstituted carbon number of 1
  • R 31 and R 32 are a hydrogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms. More preferably. However, the substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms in R 31 and R 32 is preferably a non-condensed ring.
  • each R 33 independently represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms. It is preferably a substituent selected from the group consisting of: a substituted or unsubstituted aromatic hydrocarbon group having 6 to 20 ring carbon atoms and a substituted or unsubstituted heterocyclic ring having 5 to 20 ring atoms More preferably, the substituent is selected from the group consisting of groups. However, the substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms in R 33 is preferably a non-condensed ring.
  • the second compound is preferably an aromatic hydrocarbon compound or an aromatic heterocyclic compound. Moreover, it is preferable that the 2nd compound does not have a condensed aromatic hydrocarbon ring in a molecule
  • a 2nd compound can be manufactured by the method as described in international publication 2012/153780, international publication 2013/038650, etc., for example.
  • aromatic hydrocarbon group (sometimes referred to as an aryl group) include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, and a benzo [c] phenanthryl group.
  • chrysenyl group benzoanthryl group, triphenylenyl group, fluorenyl group, 9,9-dimethylfluorenyl group, benzofluorenyl group, dibenzofluorenyl group, biphenyl group, terphenyl group, quarterphenyl Group, fluoranthenyl group, etc., preferably phenyl group, biphenyl group, terphenyl group, quarterphenyl group, naphthyl group, triphenylenyl group, fluorenyl group and the like.
  • aromatic hydrocarbon group having a substituent examples include a tolyl group, a xylyl group, and a 9,9-dimethylfluorenyl group.
  • aryl groups include both fused and non-fused aryl groups.
  • aromatic hydrocarbon group a phenyl group, a biphenyl group, a terphenyl group, a quarterphenyl group, a naphthyl group, a triphenylenyl group, and a fluorenyl group are preferable.
  • aromatic heterocyclic group (sometimes referred to as heteroaryl group, heteroaromatic ring group, or heterocyclic group) include pyrrolyl group, pyrazolyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, pyridyl group.
  • Preferred examples include a dibenzofuranyl group, a dibenzothiophenyl group, a carbazolyl group, a pyridyl group, a pyrimidinyl group, a triazinyl group, an azadibenzofuranyl group, and an azadibenzothiophenyl group.
  • dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group, pyridyl group, pyrimidinyl group, triazinyl group, azadibenzofuranyl group, azadibenzothiophenyl group are preferable, dibenzofuranyl group, dibenzofuranyl group A thiophenyl group, an azadibenzofuranyl group, and an azadibenzothiophenyl group are more preferable.
  • the substituted silyl group is preferably a substituted or unsubstituted trialkylsilyl group, a substituted or unsubstituted arylalkylsilyl group, or a substituted or unsubstituted triarylsilyl group.
  • Specific examples of the substituted or unsubstituted trialkylsilyl group include a trimethylsilyl group and a triethylsilyl group.
  • Specific examples of the substituted or unsubstituted arylalkylsilyl group include a diphenylmethylsilyl group, a ditolylmethylsilyl group, and a phenyldimethylsilyl group.
  • Specific examples of the substituted or unsubstituted triarylsilyl group include a triphenylsilyl group and a tolylsilylsilyl group.
  • the substituted phosphine oxide group is preferably a substituted or unsubstituted diarylphosphine oxide group.
  • Specific examples of the substituted or unsubstituted diarylphosphine oxide group include a diphenylphosphine oxide group and a ditolylphosphine oxide group.
  • the third compound is preferably a compound having fluorescence or phosphorescence.
  • blue fluorescent material pyrene derivatives, styrylamine derivatives, chrysene derivatives, fluoranthene derivatives, fluorene derivatives, diamine derivatives, triarylamine derivatives, and the like can be used.
  • N, N′-bis [4- (9H-carbazol-9-yl) phenyl] -N, N′-diphenylstilbene-4,4′-diamine (abbreviation: YGA2S)
  • 4- (9H -Carbazol-9-yl) -4 '-(10-phenyl-9-anthryl) triphenylamine (abbreviation: YGAPA)
  • 4- (10-phenyl-9-anthryl) -4'-(9-phenyl-9H -Carbazol-3-yl) triphenylamine abbreviation: PCBAPA
  • examples of blue fluorescent materials include boron complex compounds such as bis (azinyl) amine boron complex and pyromethene boron complex.
  • An aromatic amine derivative or the like can be used as a green fluorescent material.
  • Tetracene derivatives, diamine derivatives, and the like can be used as red fluorescent materials.
  • red fluorescent materials include boron complex compounds, and examples thereof include bis (azinyl) amine boron complexes and pyromethene boron complexes.
  • a metal complex such as an iridium complex, an osmium complex, or a platinum complex is used as the blue phosphorescent material.
  • a metal complex such as an iridium complex, a platinum complex, a terbium complex, or a europium complex is used.
  • a metal complex such as an iridium complex, a platinum complex, a terbium complex, or a europium complex is used.
  • Tb (acac) 3 (Phen) Tris (1,3-diphenyl-1,3-propanedionate) (monophenanthroline) europium (III) (abbreviation
  • the fourth compound is also preferably represented by the following general formula (2).
  • Cz is represented by the following general formula (2a) or the following general formula (2b), and a plurality of Cz are the same or different from each other, and n is 1 or more and 4 or less.
  • L 2 is a single bond or a linking group
  • the linking group in L 2 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms
  • R 2 is a group selected from the group consisting of heterocyclic groups having 5 to 30 atoms
  • R 2 is represented by the following general formula (20).
  • * 1 and * 2 represent a binding site with L 2
  • a 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 and A 8 are each independently a nitrogen atom or CR 21
  • R 21 is a hydrogen atom or a substituent
  • the substituent is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring A heterocyclic group having 5 to 30 atoms, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted carbon group having 3 to 30 carbon atoms Selected from the group consisting of a cycloalkyl group, a substituted or unsubstituted aralkyl group
  • a plurality of R 21 may be the same or different from each other, if at least two of the substituents of the plurality of R 21, the substituents R 21 together are forming together
  • a ring structure may have been built,
  • R 20 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, a substituted or unsubstituted carbon group having 1 to 30 carbon atoms.
  • Alkyl groups substituted or unsubstituted fluoroalkyl groups having 1 to 30 carbon atoms, substituted or unsubstituted cycloalkyl groups having 3 to 30 carbon atoms, substituted or unsubstituted aralkyl groups having 7 to 30 carbon atoms, and substituted It is a substituent selected from the group consisting of silyl groups, and a plurality of R 20 may be the same or different from each other.
  • * 3 represents a binding site to L 2
  • a 11 , A 12 , A 13 , A 14 , and A 15 are each independently a nitrogen atom or CR 22
  • R 22 is a hydrogen atom or a substituent
  • the substituent is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted group.
  • a ring structure may be constructed, and when at least one of A 11 to A 15 is a nitrogen atom, or when all of A 11 to A 15 are CR 22 , at least one of a plurality of R 22 One is a cyano group.
  • the fourth compound is represented by the following general formula (2A).
  • a 1 to A 8 , A 11 to A 15 , L 2 , and n are A 1 to A 8 , A 11 to A 15 , L 2 in the general formula (2), respectively. And n are synonymous.
  • a 11 , A 13 , and A 15 are nitrogen atoms. It is also preferred that A 11 , A 13 and A 15 are nitrogen atoms.
  • a 12 and A 14 are preferably CR 21 , and R 21 is preferably a substituent, and this substituent R 21 is substituted or unsubstituted.
  • An aromatic hydrocarbon group having 6 to 30 ring carbon atoms is preferable, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 20 ring carbon atoms is more preferable, and a phenyl group is preferable. Further preferred.
  • a 11 to A 15 are CR 22 and at least one of the plurality of R 22 is a cyano group.
  • a 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 and A 8 are each independently CR 21 .
  • a 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 and A 8 are preferably CR 21 , and R 21 is preferably a hydrogen atom.
  • n 1 or 2.
  • At least one of A 1 to A 8 is CR 21 , and at least one of R 21 is a heterocyclic group represented by the following general formula (2c) or the following general formula (2d). It is also preferable that there is.
  • a 21 , A 22 , A 23 , A 24 , A 25 , A 26 , A 27 and A 28 are each independently a nitrogen atom or CR 24 ;
  • R 24 is a hydrogen atom or a substituent, and when R 24 is a substituent, the substituent is selected from the group of substituents listed when R 21 is a substituent, and a plurality of R 24 are , May be the same or different from each other, and when at least two of the plurality of R 24 are substituents, the substituents R 24 may be bonded to each other to form a ring structure,
  • R 23 is selected from the group of substituents listed for R 20 , and the plurality of R 23 may be the same or different from each other.
  • a 21 , A 22 , A 23 , A 24 , A 25 , A 26 , A 27 and A 28 are each independently CR 24 . It is also preferable that A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 and A 8 are CR 24 and R 24 is a hydrogen atom.
  • binding site * 4 in the general formula (2c) is bonded to A 3 or A 6 .
  • L 2 in the general formulas (2) and (2A) is a single bond or a linking group
  • the linking group in L 2 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 20 ring carbon atoms, and More preferably, it is selected from the group consisting of a substituted or unsubstituted heterocyclic group having 5 to 20 ring atoms
  • the linking group in L 2 is a substituted or unsubstituted aromatic group having 6 to 20 ring carbon atoms. More preferably, it is a hydrocarbon group.
  • L 2 in the general formulas (2) and (2A) is preferably a phenylene group, a biphenyldiyl group or a naphthylene group, more preferably a phenylene group or a biphenyldiyl group, and further preferably a p-phenylene group.
  • the substituent of L 2 in the general formulas (2) and (2A) at least one of a phenyl group, an alkyl group, and a cyano group is preferable.
  • the general formula (2a) is also preferably represented by any of the following general formulas (2e) to (2t).
  • * 1 represents a bonding site with L 2
  • R 25 is a hydrogen atom or a substituent
  • the substituent is A substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, Substituted or unsubstituted fluoroalkyl group having 1 to 30 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms, substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, substituted silyl group, substituted germanium Selected from the group consisting of a group, a substituted phosphine oxide group, a halogeno group, a cyano group,
  • the carbazole ring in the general formulas (2e) to (2t) may have a substituent, and the substituent is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
  • the plurality of substituents selected from the group consisting of groups may be the same or different from each other,
  • the fourth compound can be produced, for example, by the method described in International Publication No. 2003/080760, International Publication No. 2011/132683, or International Publication No. 2011/132684. it can.
  • Examples of the fourth compound are shown below.
  • the fourth compound in the present invention is not limited to these examples.
  • Fluorescent material can be used as the fifth compound.
  • fluorescent material can be used as the fifth compound.
  • the fifth compound it is preferable to use a compound containing at least one of the partial structures represented by the following general formula (3) in one molecule.
  • the fifth compound includes a plurality of partial structures represented by the following general formula (3), the plurality of partial structures may be the same as or different from each other.
  • X 3 represents a substituted or unsubstituted condensed aromatic hydrocarbon group having 10 to 40 ring carbon atoms
  • Ar 11 and Ar 12 are each independently substituted or unsubstituted.
  • L 11 , L 12 , and L 13 each independently represents a single bond or a linking group.
  • L 11 , L 12 and L 13 are linking groups
  • the linking group is a substituted or unsubstituted aromatic group having 6 to 30 ring carbon atoms.
  • p represents an integer of 1 to 4.
  • X 3 represents naphthalene, phenanthrene, fluoranthene, anthracene, pyrene, perylene, coronene, chrysene, picene, diphenylanthracene, fluorene, triphenylene, rubicene, benzoanthracene, phenylanthracene, bisanthracene, dianthryl. It is preferably a residue of a condensed aromatic hydrocarbon ring selected from the group consisting of benzene, dibenzoanthracene, benzofluorene, indenofluorene, and benzindenofluorene.
  • the fifth compound when X 3 is a residue of anthracene, the fifth compound is preferably a 9,10-substituted anthracene or a 2,6-substituted anthracene.
  • the fifth compound when X 3 is a pyrene residue, the fifth compound is preferably 1,6-substituted pyrene or 3,8-substituted pyrene.
  • the fifth compound is preferably a 6,12-substituted chrysene.
  • the partial structure represented by the general formula (3) is preferably a group represented by the following general formula (3A).
  • X 3 , Ar 11 , Ar 12 , L 11 , L 12 , L 13 , and p are each independently X 3 , Ar 11 , Ar 12 , L 11, L 12, L 13 , and is synonymous with p.
  • a wavy line portion represents a bonding site with another atom or another structure in the molecule of the fifth compound.
  • the fifth compound is also preferably a compound represented by the following general formula (30).
  • a is an integer of 0 or 1, and when a is 0, L 2 and Ar 2 are directly bonded, and Ar 1 , Ar 2 , R 121 , R 122 , R 123 , R 124 , R 125 , R 126 , R 127 , and R 128 are groups represented by the following general formula (31), and when a is 1, Ar 1 , Ar 2 , R 121 , R At least two of 122 , R123 , R124 , R125 , R126 , R127 , R128 , R131 , R132 , R133 , R134 , R135 , R136 , R137 , and R138 are as follows.
  • R 121, R 122, R 123, R 124, R 125, R 126, 127, R 128, R 131, R 132, R 133, R 134, R 135, R 136, R 137, and R 138 are each independently a hydrogen atom or a substituent, Ar 1, Ar 2, R 121 , R122 , R123 , R124 , R125 , R126 , R127 , R128 , R131 , R132 , R133 , R134 , R135 , R136 , R137 , and R138 are substituents.
  • the substituent is a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, Substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, substituted or unsubstituted carbon group having 2 to 30 carbon atoms Alkynyl group, substituted silyl group, substituted or unsubstituted trifluoroalkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, substituted or unsubstituted ring forming carbon atoms having 6 to 30 carbon atoms Selected from the group consisting of an aralkyl group and a substituted or unsubstituted aryl
  • L 11 , L 12 , and L 13 each independently represents a single bond or a linking group, and when L 11 to L 13 are linking groups, the linking group is substituted or non-substituted.
  • Ar 11 and Ar 12 are each independently selected from the group consisting of a substituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • the a is preferably 0, and the Ar 1 and Ar 2 are preferably groups represented by the general formula (31).
  • a is 0 and R 122 and R 126 are a group represented by the general formula (31).
  • the a is 1, and the Ar 1 and Ar 2 are groups represented by the general formula (31).
  • the substituents Ar 1 , Ar 2 , R 121 to R 128 , and R 131 to R 138 are substituted or unsubstituted aromatic hydrocarbon groups having 6 to 30 ring carbon atoms, substituted or unsubstituted Unsubstituted heterocyclic group having 5 to 30 ring atoms, substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, substituted silyl group, cyano group, and substituted or unsubstituted trifluoroalkyl having 1 to 20 carbon atoms It is preferably selected from the group consisting of groups.
  • the fifth compound is produced, for example, according to the methods described in International Publication No. 2004/092111 (WO2004 / 092111A1) and International Publication No. 2011/096506 (WO2011 / 096506A1). can do.
  • the number of ring-forming carbon atoms constitutes the ring itself of a compound having a structure in which atoms are bonded cyclically (for example, a monocyclic compound, a condensed ring compound, a bridged compound, a carbocyclic compound, or a heterocyclic compound). Represents the number of carbon atoms in the atom.
  • the carbon contained in the substituent is not included in the number of ring-forming carbons.
  • the “ring-forming carbon number” described below is the same unless otherwise specified.
  • the benzene ring has 6 ring carbon atoms
  • the naphthalene ring has 10 ring carbon atoms
  • the pyridinyl group has 5 ring carbon atoms
  • the furanyl group has 4 ring carbon atoms.
  • the carbon number of the alkyl group is not included in the number of ring-forming carbons.
  • the carbon number of the fluorene ring as a substituent is not included in the number of ring-forming carbons.
  • the number of ring-forming atoms means a compound (for example, a monocyclic compound, a condensed ring compound, a bridging compound, a carbocyclic compound, a heterocyclic compound) having a structure in which atoms are bonded in a cyclic manner (for example, a monocyclic ring, a condensed ring, or a ring assembly).
  • the ring compound represents the number of atoms constituting the ring itself.
  • An atom that does not constitute a ring for example, a hydrogen atom that terminates a bond of an atom that constitutes a ring
  • an atom contained in a substituent when the ring is substituted by a substituent is not included in the number of ring-forming atoms.
  • the “number of ring-forming atoms” described below is the same unless otherwise specified.
  • the pyridine ring has 6 ring atoms
  • the quinazoline ring has 10 ring atoms
  • the furan ring has 5 ring atoms.
  • a hydrogen atom bonded to a carbon atom of a pyridine ring or a quinazoline ring or an atom constituting a substituent is not included in the number of ring-forming atoms. Further, when, for example, a fluorene ring is bonded to the fluorene ring as a substituent (including a spirofluorene ring), the number of atoms of the fluorene ring as a substituent is not included in the number of ring-forming atoms.
  • Examples of the aromatic hydrocarbon group having 6 to 30 ring carbon atoms include a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a fluorenyl group, Pyrenyl group, chrysenyl group, fluoranthenyl group, benzo [a] anthryl group, benzo [c] phenanthryl group, triphenylenyl group, benzo [k] fluoranthenyl group, benzo [g] chrycenyl group, benzo [b] triphenylenyl group , Picenyl group, perylenyl group and the like.
  • the aryl group preferably has 6 to 20 ring carbon atoms, more preferably 6 to 14, and still more preferably 6 to 12.
  • a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, a terphenyl group, and a fluorenyl group are even more preferable.
  • a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, which will be described later, or a substituted or unsubstituted group is attached to the 9-position carbon atom.
  • the aryl group having 6 to 18 ring carbon atoms is preferably substituted.
  • a heterocyclic group having 5 to 30 ring atoms (sometimes referred to as a heteroaryl group, a heteroaromatic ring group, or an aromatic heterocyclic group) has nitrogen, sulfur, oxygen, silicon, selenium as a heteroatom. It preferably contains at least one atom selected from the group consisting of an atom and a germanium atom, and more preferably contains at least one atom selected from the group consisting of nitrogen, sulfur and oxygen.
  • heterocyclic group having 5 to 30 ring atoms examples include a pyridyl group, a pyrimidinyl group, a pyrazinyl group, and a pyridazinyl group.
  • the number of ring-forming atoms of the heterocyclic group is preferably 5-20, and more preferably 5-14.
  • the 1-carbazolyl group 2-carbazolyl group, 3-carbazolyl group and 4-carbazolyl group, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms or a substituted or unsubstituted group at the 9-position nitrogen atom It is preferable that the heterocyclic group having 5 to 30 ring atoms is substituted.
  • the heterocyclic group may be a group derived from a partial structure represented by the following general formulas (XY-1) to (XY-18), for example.
  • X and Y are each independently a hetero atom, preferably an oxygen atom, a sulfur atom, a selenium atom, a silicon atom, or a germanium atom.
  • the partial structures represented by the general formulas (XY-1) to (XY-18) have a bond at an arbitrary position to be a heterocyclic group, and this heterocyclic group has a substituent. Also good.
  • substituted or unsubstituted carbazolyl group may include, for example, a group in which a ring is further condensed with respect to a carbazole ring as represented by the following formula. Such a group may also have a substituent. Also, the position of the joint can be changed as appropriate.
  • the alkyl group having 1 to 30 carbon atoms may be linear, branched or cyclic.
  • Examples of the linear or branched alkyl group include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, neopentyl group,
  • the carbon number of the linear or branched alkyl group is preferably 1 to 10, and more preferably 1 to 6.
  • methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group Even more preferred are amyl, isoamyl, and neopentyl groups.
  • Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, an adamantyl group, and a norbornyl group.
  • the number of carbon atoms forming the ring of the cycloalkyl group is preferably 3 to 10, and more preferably 5 to 8.
  • a cyclopentyl group and a cyclohexyl group are even more preferable.
  • halogenated alkyl group in which the alkyl group is substituted with a halogen atom examples include groups in which the alkyl group having 1 to 30 carbon atoms is substituted with one or more halogen atoms. Specific examples include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a trifluoromethylmethyl group, a trifluoroethyl group, and a pentafluoroethyl group.
  • Examples of the substituted silyl group include an alkylsilyl group and an arylsilyl group.
  • alkylsilyl group having 3 to 30 carbon atoms include a trialkylsilyl group having an alkyl group exemplified as the alkyl group having 1 to 30 carbon atoms, specifically, a trimethylsilyl group, a triethylsilyl group, a tri-n group.
  • Examples of the arylsilyl group having 6 to 30 ring carbon atoms include a dialkylarylsilyl group, an alkyldiarylsilyl group, and a triarylsilyl group.
  • Examples of the dialkylarylsilyl group include a dialkylarylsilyl group having two alkyl groups exemplified as the alkyl group having 1 to 30 carbon atoms and one aryl group having 6 to 30 ring carbon atoms. .
  • the carbon number of the dialkylarylsilyl group is preferably 8-30.
  • alkyldiarylsilyl group examples include an alkyldiarylsilyl group having one alkyl group exemplified for the alkyl group having 1 to 30 carbon atoms and two aryl groups having 6 to 30 ring carbon atoms. .
  • the alkyldiarylsilyl group preferably has 13 to 30 carbon atoms.
  • Examples of the triarylsilyl group include a triarylsilyl group having three aryl groups having 6 to 30 ring carbon atoms.
  • the carbon number of the triarylsilyl group is preferably 18-30.
  • the substituted phosphine oxide group is preferably represented by the following general formula (100).
  • R 102 and R 103 are each independently a substituent.
  • the substituent R 102 and the substituent R 103 are each independently composed of a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms and a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms. Preferably it is selected from the group.
  • the substituted phosphine oxide group is more preferably a substituted or unsubstituted diarylphosphine oxide group.
  • the alkoxy group having 1 to 30 carbon atoms is represented as —OZ 1 .
  • Z 1 include the above alkyl groups having 1 to 30 carbon atoms.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, and a hexyloxy group.
  • the alkoxy group preferably has 1 to 20 carbon atoms.
  • Examples of the halogenated alkoxy group in which the alkoxy group is substituted with a halogen atom include a group in which the alkoxy group having 1 to 30 carbon atoms is substituted with one or more fluorine atoms.
  • the aryloxy group having 6 to 30 ring carbon atoms is represented by —OZ 2 .
  • Z 2 include the aryl group having 6 to 30 ring carbon atoms.
  • the ring-forming carbon number of the aryloxy group is preferably 6-20.
  • Examples of the aryloxy group include a phenoxy group.
  • the alkylamino group having 2 to 30 carbon atoms is represented as —NHR V or —N (R V ) 2 .
  • Examples of RV include the alkyl group having 1 to 30 carbon atoms.
  • the arylamino group having 6 to 60 ring carbon atoms is represented by —NHR W or —N (R W ) 2 .
  • R W and an aryl group the ring-forming carbon atoms 6 to 30.
  • the alkylthio group having 1 to 30 carbon atoms is represented as —SR V.
  • RV include the alkyl group having 1 to 30 carbon atoms.
  • the alkylthio group preferably has 1 to 20 carbon atoms.
  • An arylthio group having 6 to 30 ring carbon atoms is represented by —SR W. Examples of R W, and an aryl group the ring-forming carbon atoms 6 to 30.
  • the ring-forming carbon number of the arylthio group is preferably 6-20.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
  • ring-forming carbon means a carbon atom constituting a saturated ring, an unsaturated ring, or an aromatic ring.
  • Ring-forming atom means a carbon atom and a hetero atom constituting a hetero ring (including a saturated ring, an unsaturated ring, and an aromatic ring).
  • the hydrogen atom includes isotopes having different neutron numbers, that is, light hydrogen (Protium), deuterium (Deuterium), and tritium (Tritium).
  • the substituent in the case of “substituted or unsubstituted” includes an aryl group, a heterocyclic group, an alkyl group (straight chain or branched chain alkyl group, cycloalkyl group, haloalkyl) as described above. Group), alkylsilyl group, arylsilyl group, alkoxy group, aryloxy group, alkylamino group, arylamino group, alkylthio group, arylthio group, alkenyl group, alkynyl group, aralkyl group, halogen atom, cyano group, A hydroxyl group, a nitro group, and a carboxy group are mentioned.
  • an aryl group, a heterocyclic group, an alkyl group, a halogen atom, an alkylsilyl group, an arylsilyl group, and a cyano group are preferable, and further, specific examples that are preferable in the description of each substituent Are preferred.
  • These substituents may be further substituted with the above substituents. A plurality of these substituents may be bonded to each other to form a ring.
  • the alkenyl group is preferably an alkenyl group having 2 to 30 carbon atoms, which may be linear, branched or cyclic, such as vinyl group, propenyl group, butenyl group, oleyl group, eicosapentaenyl. Group, docosahexaenyl group, styryl group, 2,2-diphenylvinyl group, 1,2,2-triphenylvinyl group, 2-phenyl-2-propenyl group, cyclopentadienyl group, cyclopentenyl group, cyclohexenyl Group, cyclohexadienyl group and the like.
  • the alkynyl group is preferably an alkynyl group having 2 to 30 carbon atoms, and may be linear, branched or cyclic, and examples thereof include ethynyl, propynyl, 2-phenylethynyl and the like.
  • an aralkyl group having 6 to 30 ring carbon atoms is preferable, and is represented by —Z 3 —Z 4 .
  • Z 3 include an alkylene group corresponding to the alkyl group having 1 to 30 carbon atoms.
  • this Z 4 include the above aryl group having 6 to 30 ring carbon atoms.
  • This aralkyl group is an aralkyl group having 7 to 30 carbon atoms (the aryl moiety is 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms), and the alkyl moiety is 1 to 24 carbon atoms (preferably 1 to 1 carbon atoms).
  • aralkyl group examples include benzyl group, 2-phenylpropan-2-yl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, and phenyl-t-butyl.
  • ⁇ -naphthylmethyl group 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthylmethyl group, 1- ⁇ - Examples include naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, and 2- ⁇ -naphthylisopropyl group.
  • unsubstituted in the case of “substituted or unsubstituted” means that a hydrogen atom is bonded without being substituted with the substituent.
  • carbon number XX to YY in the expression “substituted or unsubstituted ZZ group having XX to YY carbon atoms” represents the number of carbon atoms in the case where the ZZ group is unsubstituted and substituted. In this case, the number of carbon atoms in the substituent is not included.
  • “YY” is larger than “XX”, and “XX” and “YY” each mean an integer of 1 or more.
  • atom number XX to YY in the expression “a ZZ group having a substituted or unsubstituted atom number XX to YY” represents the number of atoms when the ZZ group is unsubstituted and substituted. The number of atoms of the substituent in the case is not included.
  • YY is larger than “XX”, and “XX” and “YY” each mean an integer of 1 or more.
  • the case of “substituted or unsubstituted” is the same as described above.
  • the ring structure is a saturated ring, an unsaturated ring, or an aromatic ring.
  • examples of the aromatic hydrocarbon group and the heterocyclic group in the linking group include a divalent or higher group obtained by removing one or more atoms from the above monovalent group.
  • examples of the aromatic hydrocarbon ring and the heterocyclic ring include a ring structure derived from the above-described monovalent group.
  • the substrate 2 is used as a support for the organic EL element 1.
  • the substrate 2 for example, glass, quartz, plastic, or the like can be used.
  • a flexible substrate may be used.
  • the flexible substrate is a substrate that can be bent (flexible), and examples thereof include a plastic substrate.
  • the material forming the plastic substrate include polycarbonate, polyarylate, polyether sulfone, polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride, polyimide, and polyethylene naphthalate.
  • an inorganic vapor deposition film can also be used.
  • anode For the anode 3 formed on the substrate 2, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a high work function (specifically, 4.0 eV or more). Specifically, for example, indium tin oxide (ITO), indium oxide-tin oxide containing silicon or silicon oxide, indium oxide-zinc oxide, indium oxide containing tungsten oxide and zinc oxide, And graphene.
  • ITO indium tin oxide
  • ITO indium oxide-tin oxide containing silicon or silicon oxide
  • indium oxide-zinc oxide indium oxide containing tungsten oxide and zinc oxide
  • graphene graphene.
  • Au gold
  • platinum (Pt) nickel
  • Ni tungsten
  • W chromium
  • Mo molybdenum
  • iron (Fe) iron
  • cobalt Co
  • copper copper
  • Pd palladium
  • Ti titanium
  • a metal material nitride for example, titanium nitride
  • indium oxide containing tungsten oxide and zinc oxide is a target containing 0.5% by mass to 5% by mass of tungsten oxide and 0.1% by mass to 1% by mass of zinc oxide with respect to indium oxide.
  • the hole injection layer 5 formed in contact with the anode 3 is made of a composite material that facilitates hole injection regardless of the work function of the anode 3. It is formed.
  • Electrode materials for example, metals, alloys, electrically conductive compounds, and mixtures thereof, and other elements belonging to Group 1 or Group 2 of the periodic table
  • Examples of the element belonging to Group 1 of the periodic table include alkali metals.
  • the elements belonging to Group 2 of the periodic table include alkaline earth metals.
  • the alkali metal include lithium (Li) and cesium (Cs).
  • alkaline earth metal examples include magnesium (Mg), calcium (Ca), strontium (Sr), and the like.
  • rare earth metals include europium (Eu) and ytterbium (Yb).
  • alloys containing these metals include MgAg and AlLi.
  • the hole injection layer 5 is a layer containing a substance having a high hole injection property.
  • substances having a high hole injection property include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, and silver oxide.
  • An oxide, tungsten oxide, manganese oxide, or the like can be used.
  • TDATA N-diphenylamino triphenylamine
  • MTDATA 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine
  • DPAB 4,4′-bis [N- (4-diphenylaminophenyl) -N -Phenylamino] biphenyl
  • DNTPD 1,3,5-tris [N- (4-diphenylaminophenyl) -N-phenylamino] benzen
  • a high molecular compound can also be used.
  • the polymer compound include oligomers, dendrimers, and polymers.
  • poly (N-vinylcarbazole) abbreviation: PVK
  • poly (4-vinyltriphenylamine) abbreviation: PVTPA
  • PVTPA poly (4-vinyltriphenylamine)
  • PTPDMA poly [N- (4- ⁇ N ′-[4- (4- Diphenylamino) phenyl] phenyl-N′-phenylamino ⁇ phenyl) methacrylamide]
  • PTPDMA poly [N, N′-bis (4-butylphenyl) -N, N′-bis (phenyl) benzidine ]
  • Poly-TPD Poly-TPD
  • a polymer compound to which an acid such as poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonic acid) (PEDOT / PSS) and polyaniline / poly (styrenesulfonic acid) (PAni / PSS) is added can also be used.
  • the hole transport layer 6 is a layer containing a substance having a high hole transport property.
  • an aromatic amine compound, a carbazole derivative, an anthracene derivative, or the like can be used.
  • NPB 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • NPB N, N′-bis (3-methylphenyl) -N, N′— Diphenyl- [1,1′-biphenyl] -4,4′-diamine
  • BAFLP 4-phenyl-4 ′-(9-phenylfluoren-9-yl) triphenylamine
  • BAFLP 4-phenyl-4 ′-bis [N- (9,9-dimethylfluoren-2-yl) -N-phenylamino] biphenyl
  • DFLDPBi 4,4 ′, 4 ′′ -tris (N, N-diphenylamino)
  • TDATA 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenyla
  • the substances mentioned here are mainly substances having a hole mobility of 10 ⁇ 6 cm 2 / (V ⁇ s) or more.
  • the hole transport layer 6 includes CBP, 9- [4- (N-carbazolyl)] phenyl-10-phenylanthracene (CzPA), and 9-phenyl-3- [4- (10-phenyl-9-anthryl).
  • Carbazole derivatives such as phenyl] -9H-carbazole (PCzPA) and anthracene derivatives such as t-BuDNA, DNA, and DPAnth may be used.
  • Polymer compounds such as poly (N-vinylcarbazole) (abbreviation: PVK) and poly (4-vinyltriphenylamine) (abbreviation: PVTPA) can also be used.
  • PVK poly (N-vinylcarbazole)
  • PVTPA poly (4-vinyltriphenylamine)
  • any substance other than these may be used as long as it has a property of transporting more holes than electrons.
  • the layer containing a substance having a high hole-transport property is not limited to a single layer, and may have a structure in which two or more layers containing the above substances are stacked. When two or more hole transport layers are arranged, it is preferable to arrange a layer containing a material having a larger energy gap on the side closer to the light emitting layer.
  • the electron transport layer 7 is a layer containing a substance having a high electron transport property.
  • the electron transport layer 7 includes 1) metal complexes such as aluminum complexes, beryllium complexes, and zinc complexes, 2) heteroaromatic compounds such as imidazole derivatives, benzimidazole derivatives, azine derivatives, carbazole derivatives, and phenanthroline derivatives, and 3 ) High molecular compounds can be used.
  • Alq tris (4-methyl-8-quinolinolato) aluminum (abbreviation: Almq 3 ), bis (10-hydroxybenzo [h] quinolinato) beryllium (abbreviation: BeBq 2 ), Metal complexes such as BAlq, Znq, ZnPBO, and ZnBTZ can be used.
  • a benzimidazole compound can be suitably used.
  • the substances described here are mainly substances having an electron mobility of 10 ⁇ 6 cm 2 / (V ⁇ s) or more.
  • a substance other than the above substance may be used as the electron transport layer 7 as long as the substance has a higher electron transport property than the hole transport property.
  • the electron transport layer 7 may be configured not only as a single layer but also as a stack of two or more layers made of the above substances.
  • a polymer compound can be used for the electron transport layer 7.
  • poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF-Py)
  • poly [(9,9-dioctylfluorene- 2,7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)] (abbreviation: PF-BPy) or the like can be used.
  • the electron injection layer 8 is a layer containing a substance having a high electron injection property.
  • the electron injection layer 8 includes lithium (Li), cesium (Cs), calcium (Ca), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), and lithium oxide (LiOx).
  • Alkali metals, alkaline earth metals, or compounds thereof can be used.
  • a material in which an alkali metal, an alkaline earth metal, or a compound thereof is contained in a substance having an electron transporting property specifically, a material in which magnesium (Mg) is contained in Alq may be used. . In this case, electron injection from the cathode 4 can be performed more efficiently.
  • a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer 8.
  • a composite material is excellent in electron injecting property and electron transporting property because electrons are generated in the organic compound by the electron donor.
  • the organic compound is preferably a material excellent in transporting the generated electrons.
  • a substance (metal complex, heteroaromatic compound, etc.) constituting the electron transport layer 7 described above is used.
  • the electron donor may be any substance that exhibits an electron donating property to the organic compound.
  • an alkali metal, an alkaline earth metal, or a rare earth metal is preferable, and examples thereof include lithium, cesium, magnesium, calcium, erbium, and ytterbium.
  • an alkali metal oxide or an alkaline earth metal oxide as an electron donor, and examples thereof include lithium oxide, calcium oxide, and barium oxide.
  • a Lewis base such as magnesium oxide can also be used.
  • an organic compound such as tetrathiafulvalene (abbreviation: TTF) can be used.
  • cathode For the cathode 4, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a low work function (specifically, 3.8 eV or less).
  • a cathode material include elements belonging to Group 1 of the periodic table, elements belonging to Group 2 of the periodic table, rare earth metals, and alloys containing these.
  • the element belonging to Group 1 of the periodic table include alkali metals.
  • the elements belonging to Group 2 of the periodic table include alkaline earth metals. Examples of the alkali metal include lithium (Li) and cesium (Cs). Examples of the alkaline earth metal include magnesium (Mg), calcium (Ca), and strontium (Sr).
  • Examples of rare earth metals include europium (Eu) and ytterbium (Yb).
  • Examples of alloys containing these metals include MgAg and AlLi.
  • a vacuum evaporation method and sputtering method can be used.
  • a silver paste etc. the apply
  • various conductive materials such as Al, Ag, ITO, graphene, and indium oxide-tin oxide containing silicon or silicon oxide can be used regardless of the work function.
  • the cathode 4 can be formed. These conductive materials can be formed by a sputtering method, an inkjet method, a spin coating method, or the like.
  • each layer of the organic EL element of the embodiment is not limited except as specifically mentioned above, but a dry film forming method such as a vacuum deposition method, a sputtering method, a plasma method, and an ion plating method, Known methods such as a spin coating method, a dipping method, a flow coating method, and a wet film formation method such as an ink jet method can be employed.
  • the film thickness of each organic layer of the organic EL element of the embodiment is not limited except as specifically mentioned above. Generally, if the film thickness is too thin, defects such as pinholes are likely to occur, and conversely, if it is too thick, it is high. Since an applied voltage is required and the efficiency is deteriorated, the range of several nm to 1 ⁇ m is usually preferable.
  • the organic EL element 1 can be used for electronic devices such as a display device and a light emitting device.
  • the display device include display components such as an organic EL panel module, a television, a mobile phone, a tablet, or a personal computer.
  • the light emitting device include lighting or a vehicular lamp.
  • the organic EL element of the aspect which provided the bipolar layer 13 between the 1st organic layer 11 and the 2nd organic layer 12 was mentioned as an example and demonstrated, this invention is such an aspect. It is not limited to the organic EL element.
  • it may be an organic EL element in which an organic layer and a bipolar layer are alternately stacked a plurality of times.
  • organic EL elements having the following configurations (A) to (C) may be used.
  • the present invention is not limited to organic EL elements having these configurations (A) to (C).
  • the organic EL element that emits white light in addition to the elements described in the above embodiment, for example, in the configuration (A), the first compound that can emit blue light is used for the first organic layer 11.
  • the case where the first compound capable of emitting green light is used for the second organic layer 12 and the first compound capable of emitting red light is used for the third organic layer can be mentioned.
  • the first organic layer 11 is made of a first compound capable of emitting blue light, and the second organic layer 12 can emit fluorescent light in green or phosphorescent.
  • a case where a possible third compound is used and a third compound capable of fluorescent emission or phosphorescence emission in red is used for the third organic layer can be mentioned.
  • a third compound capable of emitting fluorescence or phosphorescence in red is used for the first organic layer 11, and fluorescence emission or phosphorescence is possible in green for the third organic layer.
  • the third compound is used, and the first compound capable of emitting blue light is used for the second organic layer 12.
  • the compounds described in the above embodiments can be used for each bipolar layer, and the compounds used in each layer May be the same or different.
  • the combination of the luminescent color for making an organic EL element light-emit in white is not limited to the above-mentioned combination.
  • the second compound may be contained in both the first organic layer 11 and the second organic layer 12.
  • the second compound contained in the first organic layer 11 and the second compound contained in the second organic layer 12 may have the same structure or different structures.
  • the 1st organic layer 11 may be comprised by 2 components of a 1st compound and a 2nd compound
  • the 2nd organic layer 12 is composed of a 1st compound and a 2nd compound. You may be comprised by three components of a compound and a 5th compound.
  • the organic EL element in which a bipolar layer is formed of a bipolar compound is described as an example, but the present invention is not limited to such an embodiment.
  • the bipolar layer may include a hole transporting compound and an electron transporting compound.
  • the hole transporting compound and the electron transporting compound include the compounds described in the description of the hole transporting layer and the electron transporting layer.
  • the hole transport zone between the first organic layer 11 and the anode 3 has been described as an example in which the hole transport band includes the hole injection layer 5 and the hole transport layer 6. It is not limited to such an aspect.
  • the hole transport zone preferably includes at least one of a hole injection layer and a hole transport layer.
  • Each of the hole injection layers may be composed of one layer, or may be composed of a plurality of layers containing different compounds.
  • Each of the hole transport layers may be composed of one layer, or may be composed of a plurality of layers containing different compounds.
  • the electron transport band between the second organic layer 12 and the cathode 4 has been described as an example including the electron transport layer 7 and the electron injection layer 8, but the present invention is such a mode.
  • the electron transport zone includes at least one of an electron injection layer and an electron transport layer.
  • Each electron injection layer may be composed of one layer, or may be composed of a plurality of layers containing different compounds.
  • Each electron transport layer may be composed of one layer, or may be composed of a plurality of layers containing different compounds.
  • a barrier layer may be provided adjacent to the anode side of the first organic layer or the cathode side of the second organic layer.
  • the barrier layer is preferably disposed in contact with the first organic layer or the second organic layer and blocks at least one of holes, electrons, and excitons.
  • the barrier layer transports electrons, and holes are on the cathode side of the barrier layer (for example, an electron transport layer). Stop reaching.
  • the organic EL element includes an electron transport layer, it is preferable to include the barrier layer between the second organic layer and the electron transport layer.
  • the barrier layer when the barrier layer is disposed in contact with the anode side of the first organic layer, the barrier layer transports holes, and the electrons are on the anode side of the barrier layer (for example, the hole transport layer). ).
  • the organic EL element includes a hole transport layer, it is preferable to include the barrier layer between the first organic layer and the hole transport layer.
  • Excitons generated in the first organic layer and the second organic layer are prevented from moving to a layer (for example, an electron transport layer or a hole transport layer) closer to the electrode than the barrier layer.
  • the first organic layer or the second organic layer is preferably bonded to the barrier layer.
  • Delayed fluorescence emission was confirmed by measuring transient PL using the apparatus shown in FIG.
  • the compound BD and the compound TH-2 were co-evaporated on a quartz substrate so that the ratio of the compound BD was 12% by mass, and a thin film having a thickness of 100 nm was formed to prepare a sample.
  • Prompt light emission immediately observed from the excited state after excitation with pulsed light (light emitted from a pulsed laser) absorbed by the compound BD, and observation immediately after the excitation There is a delay light emission (delayed light emission) that is not observed.
  • the delayed fluorescence emission in this example means that the amount of delay emission (delayed emission) is 5% or more with respect to the amount of Promp emission (immediate emission). It was confirmed that Compound BD had a Delay light emission amount (delayed light emission) of 5% or more with respect to the Prompt light emission (immediate light emission) amount.
  • the amounts of Prompt light emission and Delay light emission can be obtained by a method similar to the method described in “Nature 492, 234-238, 2012”.
  • the apparatus used for calculation of the amount of Promp light emission and Delay light emission is not limited to the apparatus of FIG. 2, or the apparatus described in literature.
  • T 77K Measurement of T 77K was performed as follows.
  • Compound BD and Compound BH were measured.
  • a sample was used.
  • a phosphorescence spectrum vertical axis: phosphorescence emission intensity, horizontal axis: wavelength
  • a tangent line is drawn with respect to the rise of the phosphorescence spectrum on the short wavelength side.
  • the tangent to the short wavelength rising edge of the phosphorescence spectrum was drawn as follows. When moving on the spectrum curve from the short wavelength side of the phosphorescence spectrum to the maximum value on the shortest wavelength side among the maximum values of the spectrum, tangents at each point on the curve are considered toward the long wavelength side. The slope of this tangent line increases as the curve rises (that is, as the vertical axis increases). The tangent drawn at the point where the value of the slope takes the maximum value (that is, the tangent at the inflection point) is the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • the maximum point having a peak intensity of 15% or less of the maximum peak intensity of the spectrum is not included in the above-mentioned maximum value on the shortest wavelength side, and has the maximum slope value closest to the maximum value on the shortest wavelength side.
  • the tangent drawn at the point where the value was taken was taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • T 77K compounds BD was 2.90EV.
  • T 77K compounds BH was 2.92 eV.
  • Example 1 A glass substrate (manufactured by Geomatic Co., Ltd.) with an ITO transparent electrode (anode) having a thickness of 25 mm ⁇ 75 mm ⁇ 1.1 mm was subjected to ultrasonic cleaning for 5 minutes in isopropyl alcohol, and then UV ozone cleaning was performed for 30 minutes.
  • the film thickness of ITO was 130 nm.
  • the glass substrate with the transparent electrode line after the cleaning is mounted on a substrate holder of a vacuum evaporation apparatus, and first, the compound HI is vapor-deposited so as to cover the transparent electrode on the surface on which the transparent electrode line is formed. A 5 nm hole injection layer was formed.
  • Compound HT-1 was vapor-deposited on the hole injection layer, and a first hole transport layer having a thickness of 80 nm was formed on the HI film.
  • Compound HT-2 was vapor-deposited on the first hole transport layer to form a second hole transport layer having a thickness of 15 nm.
  • a compound BD as the first compound and a compound BH as the second compound were co-evaporated on the second hole transport layer to form a first organic layer having a thickness of 12 nm.
  • the concentration of the compound BD in the first organic layer was 50% by mass.
  • Compound BP-1 was deposited on the first organic layer to form a bipolar layer having a thickness of 4 nm.
  • the compound BD as the first compound and the compound BH as the second compound were co-evaporated to form a second organic layer having a thickness of 13 nm.
  • the concentration of the compound BD in the second organic layer was 50% by mass.
  • Compound HB-1 was vapor-deposited on this second organic layer to form a barrier layer having a thickness of 5 nm.
  • a compound ET was vapor-deposited on the barrier layer to form an electron transport layer having a thickness of 20 nm.
  • lithium fluoride (LiF) was vapor-deposited on the electron transport layer to form an electron injecting electrode (cathode) having a thickness of 1 nm.
  • a device arrangement of the organic EL device of Example 1 is schematically shown as follows. ITO (130) / HI (5) / HT-1 (80) / HT-2 (15) / BH: BD (12, 50%) / BP-1 (4) / BH: BD (13, 50%) / HB-1 (5) / ET (20) / LiF (1) / Al (80)
  • the numbers in parentheses indicate the film thickness (unit: nm). Also, in the parentheses, the number expressed as a percentage indicates the ratio (mass%) of the first compound in the first organic layer and the second organic layer.
  • Example 2 The organic EL device of Example 2 was produced in the same manner as Example 1 except that Compound BP-1 in the bipolar layer of Example 1 was changed to Compound BP-2.
  • a device arrangement of the organic EL device of Example 2 is schematically shown as follows. ITO (130) / HI (5) / HT-1 (80) / HT-2 (15) / BH: BD (12, 50%) / BP-2 (4) / BH: BD (13, 50%) / HB-1 (5) / ET (20) / LiF (1) / Al (80)
  • Example 1 In the organic EL element of Comparative Example 1, the film thickness of the first organic layer in Example 1 is changed to 25 nm, the formation of the bipolar layer and the second organic layer is omitted, and the first organic layer is formed on the first organic layer. It was produced in the same manner as in Example 1 except that a barrier layer was formed.
  • a device arrangement of the organic EL device of Comparative Example 1 is schematically shown as follows. ITO (130) / HI (5) / HT-1 (80) / HT-2 (15) / BH: BD (25, 50%) / HB-1 (5) / ET (20) / LiF (1) / Al (80)
  • Luminance and CIE1931 chromaticity current density 0.10mA / cm 2, 1.00mA / cm 2 or 10 mA / luminance when a voltage is applied to the device as cm 2 become and CIE1931 chromaticity coordinates (x,, y) was measured with a spectral radiance meter CS-1000 (manufactured by Konica Minolta).
  • Main peak wavelength ⁇ p was determined from the obtained spectral radiance spectrum.
  • Example 3 In the same manner as in Example 1, compound HI was vapor-deposited on a glass substrate with an ITO transparent electrode (anode) to form a hole injection layer having a thickness of 5 nm. Next, Compound HT-1 was vapor-deposited on the hole injection layer, and a first hole transport layer having a thickness of 110 nm was formed on the HI film. Next, Compound HT-2 was vapor-deposited on the first hole transport layer to form a second hole transport layer having a thickness of 15 nm. Further, a compound BD as the first compound and a compound BH as the second compound were co-evaporated on the second hole transport layer to form a first organic layer having a thickness of 12 nm.
  • the concentration of the compound BD in the first organic layer was 50% by mass.
  • Compound BP-2 and Compound BD2 were co-evaporated on the first organic layer to form a bipolar layer having a thickness of 4 nm.
  • the concentration of the compound BD2 contained in the bipolar layer was 1% by mass.
  • a compound BD as the first compound, a compound BH as the second compound, and a compound BD2 as the fifth compound are co-evaporated on the bipolar layer, and a 13 nm-thick film is formed. Two organic layers were formed.
  • the concentration of Compound BD in the second organic layer was 50% by mass, and the concentration of Compound BD2 was 1% by mass.
  • Compound HB-1 was vapor-deposited on this second organic layer to form a barrier layer having a thickness of 5 nm.
  • the compound ET was vapor-deposited on the barrier layer to form an electron transport layer having a thickness of 35 nm.
  • lithium fluoride (LiF) was vapor-deposited on the electron transport layer to form an electron injecting electrode (cathode) having a thickness of 1 nm.
  • metal aluminum (Al) was vapor-deposited on this electron injecting electrode, and the metal Al cathode with a film thickness of 80 nm was formed.
  • a device arrangement of the organic EL device of Example 3 is schematically shown as follows.
  • Example 4 The organic EL device of Example 4 was produced in the same manner as Example 3 except that the compound BD2 in the bipolar layer and the second organic layer of Example 3 was changed to the compound BD3.
  • a device arrangement of the organic EL device of Example 4 is schematically shown as follows. ITO (130) / HI (5) / HT-1 (110) / HT-2 (15) / BH: BD (12, 50%) / BP-2: BD3 (4, 1%) / BH: BD: BD3 (13, 50%, 1%) / HB-1 (5) / ET (35) / LiF (1) / Al (80)
  • the numbers in parentheses indicate the film thickness (unit: nm).
  • the number indicated in percentage indicates the ratio (mass%) of the compound BD in the first organic layer, indicates the ratio (mass%) of the compound BD2 in the bipolar layer, and the second organic The ratio (mass%) of compound BD and compound BD2 in a layer is shown.
  • Example 2 In the organic EL device of Comparative Example 2, the formation of the first organic layer and the bipolar layer in Example 3 was omitted, the thickness of the second organic layer was changed to 25 nm, and the second organic layer was formed on the second organic layer. It was produced in the same manner as in Example 3 except that a barrier layer was formed.
  • a device arrangement of the organic EL device of Comparative Example 2 is schematically shown as follows. ITO (130) / HI (5) / HT-1 (110) / HT-2 (15) / BH: BD: BD2 (25, 50%, 1%) / HB-1 (5) / ET (35) / LiF (1) / Al (80)
  • the organic EL elements of Example 3 and Example 4 have a bipolar layer and include a fourth compound and a fifth compound. As a result, the organic EL element of Comparative Example 2 was obtained. It was found that the luminous efficiency was improved compared to the device.
  • Example 5 A glass substrate (manufactured by Geomatic Co., Ltd.) with an ITO transparent electrode (anode) having a thickness of 25 mm ⁇ 75 mm ⁇ 1.1 mm was subjected to ultrasonic cleaning for 5 minutes in isopropyl alcohol, and then UV ozone cleaning was performed for 30 minutes.
  • the film thickness of ITO was 130 nm.
  • the glass substrate with the transparent electrode line after cleaning is attached to a substrate holder of a vacuum evaporation apparatus, and firstly, the compound HI-2 is vapor-deposited so as to cover the transparent electrode on the surface on which the transparent electrode line is formed, A hole injection layer having a thickness of 10 nm was formed.
  • Compound HT-3 was deposited on the hole injection layer to form a 10 nm-thick hole transport layer.
  • the compound YD as the first compound and the compound YH as the second compound were co-evaporated to form a first organic layer having a thickness of 20 nm.
  • the concentration of the compound YD in the first organic layer was 20% by mass.
  • Compound BP-2 was deposited on the first organic layer to form a bipolar layer having a thickness of 5 nm.
  • a compound BH-2 as the first compound, a compound BH-3 as the second compound, and a compound BD4 as the fifth compound are co-evaporated on the bipolar layer, A 20 nm second organic layer was formed.
  • the concentration of Compound BH-2 in the second organic layer was 50% by mass, and the concentration of Compound BD4 was 1% by mass.
  • Compound BP-2 was vapor-deposited on the second organic layer to form a barrier layer having a thickness of 5 nm.
  • the compound ET was vapor-deposited on the barrier layer to form an electron transport layer having a thickness of 35 nm.
  • lithium fluoride (LiF) was vapor-deposited on the electron transport layer to form an electron injecting electrode (cathode) having a thickness of 1 nm.
  • metal aluminum (Al) was vapor-deposited on this electron injecting electrode, and the metal Al cathode with a film thickness of 80 nm was formed.
  • a device arrangement of the organic EL device of Example 5 is schematically shown as follows. ITO (130) / HI-2 (10) / HT-3 (10) / YH: YD (20, 20%) / BP-2 (5) / BH-3: BH-2: BD4 (20, 50% , 1%) / BP-2 (5) / ET (35) / LiF (1) / Al (80)
  • the numbers in parentheses indicate the film thickness (unit: nm). Also in the parentheses, the numbers expressed as percentages indicate the ratio of the first compound in the first organic layer (% by mass), and the ratio of the first compound and the fifth compound in the second organic layer ( Mass%).
  • Comparative Example 3 The organic EL device of Comparative Example 3 was produced in the same manner as in Example 5 except that the thickness of the first organic layer in Example 5 was changed to 25 nm and the formation of the bipolar layer was omitted.
  • a device arrangement of the organic EL device of Comparative Example 3 is schematically shown as follows. ITO (130) / HI-2 (10) / HT-3 (10) / YH: YD (25, 20%) / BH-3: BH-2: BD4 (20, 50%, 1%) / BP- 2 (5) / ET (35) / LiF (1) / Al (80)
  • Example 5 As the compounds used in Example 5 and Comparative Example 3, in addition to the compounds described above, the following compounds were also used.
  • the compound YH had a T 77K of 2.74 eV.
  • T 77K of the compound YD was 2.56 eV.
  • Evaluation of organic EL elements The organic EL elements produced in Example 5 and Comparative Example 3 were evaluated in the same manner as described above. The evaluation results are shown in Table 4. Evaluation items were the CIE1931 chromaticity, external quantum efficiency EQE, and a main peak wavelength lambda p. The measurement of each item was performed by applying a voltage to the device so that the current density was 1.00 mA / cm 2 . The external quantum efficiency EQE was expressed as a ratio to the EQE value, with the EQE value of Comparative Example 3 being 1.00.
  • the organic EL device of Example 5 having a bipolar layer had an external quantum efficiency of 1.11 times that of the organic EL device of Comparative Example 3 having no bipolar layer. Improved.
  • the organic EL element of Example 5 emitted white light as indicated by the chromaticity value.
  • SYMBOLS 1 Organic EL element, 3 ... Anode, 4 ... Cathode, 6 ... Hole transport layer, 7 ... Electron transport layer, 11 ... 1st organic layer, 12 ... 2nd organic layer, 13 ... Bipolar layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 陽極と、陰極と、前記陽極と前記陰極との間に含まれる第一の有機層と、前記第一の有機層と前記陰極との間に含まれる第二の有機層と、前記第一の有機層と前記第二の有機層との間に含まれ、バイポーラー性を有するバイポーラー層と、を備え、前記第一の有機層および前記第二の有機層の少なくともいずれかが、第一の化合物と、第二の化合物とを含み、前記第一の化合物は、遅延蛍光発光性を有し、前記第二の化合物の77[K]におけるエネルギーギャップT77K(M2)は、前記第一の化合物の77[K]におけるエネルギーギャップT77K(M1)よりも大きい有機エレクトロルミネッセンス素子。

Description

有機エレクトロルミネッセンス素子および電子機器
 本発明は、有機エレクトロルミネッセンス素子および電子機器に関する。
 有機エレクトロルミネッセンス素子(以下、「有機EL素子」という場合がある。)に電圧を印加すると、陽極から正孔が、また陰極から電子が、それぞれ発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。このとき、電子スピンの統計則により、一重項励起子、及び三重項励起子が25%:75%の割合で生成する。
 有機EL素子は、携帯電話やテレビ等のディスプレイに応用されている。有機EL素子の、発光効率や発光寿命などの発光特性をさらに向上させることが要望されている。
 例えば、特許文献1~8には、発光特性を向上させるため、複数の発光層を積層させた有機EL素子が記載されている。
特表2004-522276号公報 国際公開第2005/099313号 国際公開第2005/112518号 特開2006-172762号公報 特開2006-172763号公報 国際公開第2008/123178号 特開2013-8492号公報 特開2014-75249号公報
 本発明の目的は、発光効率を向上させることのできる有機エレクトロルミネッセンス素子を提供すること、および当該有機エレクトロルミネッセンス素子を備える電子機器を提供することである。
 本発明の一態様によれば、陽極と、陰極と、前記陽極と前記陰極との間に含まれる第一の有機層と、前記第一の有機層と前記陰極との間に含まれる第二の有機層と、前記第一の有機層と前記第二の有機層との間に含まれ、バイポーラー性を有するバイポーラー層と、を備え、前記第一の有機層および前記第二の有機層の少なくともいずれかが、第一の化合物と、第二の化合物とを含み、前記第一の化合物は、遅延蛍光発光性を有し、前記第二の化合物の77[K]におけるエネルギーギャップT77K(M2)は、前記第一の化合物の77[K]におけるエネルギーギャップT77K(M1)よりも大きい有機エレクトロルミネッセンス素子が提供される。
 また、本発明の一態様によれば、前述の本発明の一態様に係る有機エレクトロルミネッセンス素子を備える電子機器が提供される。
 本発明の一態様によれば、発光効率を向上させることのできる有機エレクトロルミネッセンス素子を提供すること、および当該有機エレクトロルミネッセンス素子を備える電子機器を提供することができる。
一実施形態に係る有機エレクトロルミネッセンス素子の一例の概略構成を示す図である。 過渡PLを測定する装置の概略図である。 過渡PLの減衰曲線の一例を示す図である。 発光層における第一の化合物および第二の化合物のエネルギー準位およびエネルギー移動の関係を示す図である。
〔第一実施形態〕
(有機EL素子の素子構成)
 図1に、本実施形態における有機EL素子の一例の概略構成を示す。
 有機EL素子1は、透光性の基板2と、陽極3と、正孔注入層5と、正孔輸送層6と、第一の有機層11と、バイポーラー層13と、第二の有機層12と、電子輸送層7と、電子注入層8と、陰極4と、を備え、この順番で積層されて構成される。第一の有機層11とバイポーラー層13とが接合していることが好ましい。第二の有機層12とバイポーラー層13とが接合していることが好ましい。
(第一の有機層および第二の有機層)
 本実施形態では、第一の有機層11および第二の有機層12が、遅延蛍光発光性を有する第一の化合物を含んでいる。第一の有機層11に含まれる第一の化合物と、第二の有機層12に含まれる第一の化合物とは、構造が同じであっても異なっていてもよい。
 例えば、同じ構造の第一の化合物を用いれば、第一の有機層11および第二の有機層12から同じ色の発光を放射させることが可能な点で好ましい。
 第一の有機層11および第二の有機層12の少なくともいずれかに第二の化合物が含まれていてもよい。本実施形態では、第一の有機層11は、第二の化合物をさらに含んでいる。第二の化合物の77[K]におけるエネルギーギャップT77K(M2)は、前記第一の化合物の77[K]におけるエネルギーギャップT77K(M1)よりも大きい。
 第一の有機層11および第二の有機層12は、金属錯体を含んでも良いが、本実施形態では、燐光発光性の金属錯体を含まないことが好ましく、燐光発光性の金属錯体以外の金属錯体も含まないことがより好ましい。本実施形態の第一の化合物は、金属錯体ではない。
 また、例えば、第一の有機層11に含まれる第一の化合物と、第二の有機層12に含まれる第一の化合物とが互いに異なる構造を有していてもよい。この場合、第一の有機層11に含まれる第一の化合物の発光スペクトルの主ピーク波長λ1(単位:nm)と、第二の有機層12に含まれる第一の化合物の発光スペクトルの主ピーク波長λ2(単位:nm)とが、下記数式(数1)の関係を満たすことが好ましい。
     |λ1-λ2|≦150nm     …(数1)
 |λ1-λ2|の値が90nm以下であることがより好ましく、50nm以下であることが更に好ましい。
 また、例えば、第一の有機層11に含まれる第一の化合物と、第二の有機層12に含まれる第一の化合物とが互いに異なる構造を有していてもよい。この場合、第一の有機層11に含まれる第一の化合物の発光スペクトルの主ピーク波長λ1(単位:nm)と、第二の有機層12に含まれる第一の化合物の発光スペクトルの主ピーク波長λ2(単位:nm)とが、下記数式(数2)の関係を満たすことも好ましい。
     |λ1-λ2|≧100nm     …(数2)
 また、有機EL素子1が白色で発光することが好ましい。この場合、例えば、第一の有機層11からの発光色と第二の有機層12からの発光色とが混ぜ合されて白色となるように、所定の発光色の第一の化合物を適宜選択して、第一の有機層11および第二の有機層12に用いればよい。例えば、第一の有機層11に青色で発光可能な第一の化合物を用い、第二の有機層12に黄色で発光可能な第一の化合物を用いてもよい。
・遅延蛍光発光性
 遅延蛍光(熱活性化遅延蛍光)については、「有機半導体のデバイス物性」(安達千波矢編、講談社発行)の261~268ページで解説されている。その文献の中で、蛍光発光材料の励起一重項状態と励起三重項状態のエネルギー差ΔE13を小さくすることができれば、通常は遷移確率が低い励起三重項状態から励起一重項状態への逆エネルギー移動が高効率で生じ、熱活性化遅延蛍光(Thermally Activated delayed Fluorescence, TADF)が発現すると説明されている。さらに、当該文献中の図10.38で、遅延蛍光の発生メカニズムが説明されている。本実施形態における第一の化合物は、このようなメカニズムで発生する熱活性化遅延蛍光を示す化合物である。
 遅延蛍光の発光は過渡PL(Photo Luminescence)測定により確認できる。
 過渡PL測定から得た減衰曲線に基づいて遅延蛍光の挙動を解析することもできる。過渡PL測定とは、試料にパルスレーザーを照射して励起させ、照射を止めた後のPL発光の減衰挙動(過渡特性)を測定する手法である。TADF材料におけるPL発光は、最初のPL励起で生成する一重項励起子からの発光成分と、三重項励起子を経由して生成する一重項励起子からの発光成分に分類される。最初のPL励起で生成する一重項励起子の寿命は、ナノ秒オーダーであり、非常に短い。そのため、当該一重項励起子からの発光は、パルスレーザーを照射後、速やかに減衰する。
 一方、遅延蛍光は、寿命の長い三重項励起子を経由して生成する一重項励起子からの発光のため、ゆるやかに減衰する。このように最初のPL励起で生成する一重項励起子からの発光と、三重項励起子を経由して生成する一重項励起子からの発光とでは、時間的に大きな差がある。そのため、遅延蛍光由来の発光強度を求めることができる。
 図2には、過渡PLを測定するための例示的装置の概略図が示されている。
 本実施形態の過渡PL測定装置100は、所定波長の光を照射可能なパルスレーザー部101と、測定試料を収容する試料室102と、測定試料から放射された光を分光する分光器103と、2次元像を結像するためのストリークカメラ104と、2次元像を取り込んで解析するパーソナルコンピュータ105とを備える。なお、過渡PLの測定は、本実施形態で説明する装置に限定されない。
 試料室102に収容される試料は、マトリックス材料に対し、ドーピング材料が12質量%の濃度でドープされた薄膜を石英基板に成膜することで得られる。
 試料室102に収容された薄膜試料に対し、パルスレーザー部101からパルスレーザーを照射して、ドーピング材料を励起させる。励起光の照射方向に対して90度の方向へ発光を取り出し、取り出した光を分光器103で分光し、ストリークカメラ104内で2次元像を結像する。その結果、縦軸が時間に対応し、横軸が波長に対応し、輝点が発光強度に対応する2次元画像を得ることができる。この2次元画像を所定の時間軸で切り出すと、縦軸が発光強度であり、横軸が波長である発光スペクトルを得ることができる。また、当該2次元画像を波長軸で切り出すと、縦軸が発光強度の対数であり、横軸が時間である減衰曲線(過渡PL)を得ることができる。
 例えば、マトリックス材料として、下記参考化合物H1を用い、ドーピング材料として下記参考化合物D1を用いて上述のようにして薄膜試料Aを作製し、過渡PL測定を行った。
Figure JPOXMLDOC01-appb-C000006
 ここでは、前述の薄膜試料A、および薄膜試料Bを用いて減衰曲線を解析した。薄膜試料Bは、マトリックス材料として下記参考化合物H2を用い、ドーピング材料として前記参考化合物D1を用いて、上述のようにして薄膜試料を作製した。
 図3には、薄膜試料Aおよび薄膜試料Bについて測定した過渡PLから得た減衰曲線が示されている。
Figure JPOXMLDOC01-appb-C000007
 上記したように過渡PL測定によって、縦軸を発光強度とし、横軸を時間とする発光減衰曲線を得ることができる。この発光減衰曲線に基づいて、光励起により生成した一重項励起状態から発光する蛍光と、三重項励起状態を経由し、逆エネルギー移動により生成する一重項励起状態から発光する遅延蛍光との、蛍光強度比を見積もることができる。遅延蛍光発光性の材料では、素早く減衰する蛍光の強度に対し、緩やかに減衰する遅延蛍光の強度の割合が、ある程度大きい。
 本実施形態における遅延蛍光発光量は、図2の装置を用いて求めることができる。前記第一の化合物は、当該第一の化合物が吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察されるPrompt発光(即時発光)と、当該励起後、即座には観察されず、その後観察されるDelay発光(遅延発光)とが存在する。本実施形態においては、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上であることが好ましい。
 Prompt発光とDelay発光の量は、“Nature 492, 234-238, 2012”に記載された方法と同様の方法により求めることができる。なお、Prompt発光およびDelay発光の量の算出に使用される装置は、前記文献に記載の装置に限定されない。
 また、遅延蛍光発光性の測定に用いられる試料は、例えば、第一の化合物と下記化合物TH-2とを、第一の化合物の割合が12質量%となるように石英基板上に共蒸着し、膜厚100nmの薄膜を形成した試料を使用することができる。
Figure JPOXMLDOC01-appb-C000008
 本実施形態の第一の化合物は、遅延蛍光発光性の化合物であり、その発光色は特に限定されない。例えば、第一の化合物は、主ピーク波長が550nm以下の発光を示すことが好ましく、主ピーク波長が480nm以下の発光を示すことがより好ましい。一方で、第一の化合物は、主ピーク波長が550nmを超える発光を示すことも好ましい。主ピーク波長とは、測定対象化合物が10-6モル/リットル以上10-5モル/リットル以下の濃度で溶解しているトルエン溶液について、測定した発光スペクトラムにおける発光強度が最大となる発光スペクトルのピーク波長をいう。
・TADF機構
 本実施形態の有機EL素子では、第一の化合物としてΔSTが小さい化合物を用いることが好ましい。ΔSTは、化合物の一重項エネルギーと三重項エネルギーとの差をいう。第一の化合物のΔSTを以下、ΔST(M1)と表記する。ΔST(M1)が小さければ、外部から与えられる熱エネルギーによって、第一の化合物の三重項準位から第一の化合物の一重項準位への逆項間交差が起こり易くなる。有機EL素子内部の電気励起された励起子の励起三重項状態が、逆項間交差によって、励起一重項状態へスピン交換がされるエネルギー状態変換機構をTADF機構と呼ぶ。
 図4は、第一の有機化合物および第二の有機化合物を含む層(例えば、発光層)における第一の化合物および第二の化合物のエネルギー準位の関係の一例を示す。図4において、S0は、基底状態を表し、S1は、第二の化合物の最低励起一重項状態を表し、T1は、第二の化合物の最低励起三重項状態を表し、S1は、第一の化合物の最低励起一重項状態を表し、T1は、第一の化合物の最低励起三重項状態を表す。図4中の破線の矢印は、各励起状態間のエネルギー移動を表す。第二の化合物の最低励起三重項状態T1からのデクスター移動により、第一の化合物の最低励起一重項状態S1または最低励起三重項状態T1にエネルギー移動する。さらに、第一の化合物としてΔST(M1)の小さな材料を用いると、第一の化合物の最低励起三重項状態T1は熱エネルギーによって最低励起一重項状態S1に逆項間交差することが可能である。この結果、第一の化合物の最低励起一重項状態S1からの蛍光発光を観測することができる。このTADF機構による遅延蛍光を利用することによっても、理論的に内部効率を100%まで高めることができると考えられている。
 本実施形態において、第二の化合物の一重項エネルギーS(M2)は、第一の化合物の一重項エネルギーS(M1)よりも大きいことが好ましい。
 本実施形態では、第一の有機層11に第一の化合物が20質量%以上80質量%以下の濃度で含まれていることが好ましく、40質量%以上60質量%以下の濃度で含まれていることがより好ましい。
 本実施形態では、第二の有機層12に第一の化合物が20質量%以上80質量%以下の濃度で含まれていることが好ましく、40質量%以上60質量%以下の濃度で含まれていることがより好ましい。
・第一の有機層および第二の有機層の膜厚
 本実施形態の有機EL素子1における第一の有機層11および第二の有機層12の膜厚は、それぞれ独立に、5nm以上50nm以下であることが好ましく、7nm以上50nm以下であることがより好ましく、10nm以上50nm以下であることがさらに好ましい。膜厚が5nm以上であれば第一の有機層11および第二の有機層12を形成し易くなったり、色度の調整を行い易くなる。膜厚が50nm以下であれば、駆動電圧の上昇を抑制し易くなる。
 本実施形態において、第一の有機層11および第二の有機層12の少なくともいずれかに第五の化合物がさらに含まれていてもよい。また、第一の有機層11および第二の有機層12の少なくともいずれかが、第一の化合物と第五の化合物との2成分で構成されていてもよい。さらに、第一の有機層11および第二の有機層12の少なくともいずれかが、第一の化合物と、第二の化合物と、第五の化合物との3成分で構成されていてもよい。
 第五の化合物としては、特に限定されないが、蛍光発光性の化合物であることが好ましい。蛍光発光性の化合物の発光色や発光波長は特に限定されない。
 例えば、第五の化合物は、赤色、黄色、緑色、または青色の蛍光発光を示すことが好ましい。第五の化合物は、蛍光量子収率の高い材料であることが好ましい。
(バイポーラー層)
 バイポーラー層13は、第一の有機層11と第二の有機層12との間に含まれる。本明細書において、バイポーラー性とは、正孔および電子を移動させることのできる性質を表す。バイポーラー層13は、正孔および電子を移動させることができる層である。
 バイポーラー層13は、単一の材料により構成されていてもよいし、複数の材料により構成されていてもよい。単一の材料によりバイポーラー層13が構成される場合、一分子中に正孔輸送性の部分構造および電子輸送性の部分構造を有する化合物を用いることが好ましい。複数の材料によりバイポーラー層13が構成される場合、正孔輸送性化合物および電子輸送性化合物を用いることが好ましい。
 バイポーラー層13は、バイポーラー性を有する第四の化合物を含んでいることが好ましい。第一の化合物の分子構造と第四の化合物の分子構造とが同じでも異なっていてもよい。
・バイポーラー層の膜厚
 バイポーラー層13の膜厚は、1nm以上30nm以下であることが好ましく、1nm以上20nm以下であることがより好ましく、1nm以上10nm以下であることがさらに好ましい。
 遅延蛍光発光性を有する化合物(遅延蛍光発光性化合物)を含む第一の有機層11および第二の有機層12の間にバイポーラー層13が設けられているため、本実施形態の有機EL素子1によれば、発光効率を向上させることができる。遅延蛍光発光性化合物は、前述のΔSTが小さく、正孔および電子を移動させ易い。遅延蛍光発光性化合物は、層中の濃度が10質量%を超えても濃度消光が起こりにくいため、高濃度で含有させて長寿命化や低電圧化が図られる。前述の通り、遅延蛍光発光性化合物は、正孔および電子を移動させ易いため、遅延蛍光発光性化合物が高い濃度で層に含まれていれば正孔や電子の伝導性はさらに高まる。そのため、第一の有機層11および第二の有機層12に注入された正孔および電子は、再結合せずに、隣接する層に漏れ出し易いと考えられる。本実施形態では、バイポーラー層13が設けられているため、例えば第一の有機層11から漏れ出した正孔は、バイポーラー層13を経て第二の有機層12へと注入される。それゆえ、第一の有機層11で再結合に用いられなくとも、第二の有機層12で再結合に用いられる確率が向上し、同様に、第二の有機層12から漏れ出した電子は、第一の有機層11で再結合に用いられる確率が向上すると考えられる。その結果、有機EL素子1の発光効率が向上すると考えられる。
 一方、先行技術として列挙した特許文献1~7に記載された有機EL素子は、蛍光発光性または燐光発光性の化合物を含んだ発光層を積層させた構成を有する。ところが、濃度消光の問題や、経済性の問題から、発光層中の蛍光発光性化合物や燐光発光性化合物の濃度は、約10質量%以下に低く抑えられており、その結果、従来の有機EL素子では蛍光発光性化合物や燐光発光性化合物を含む層から周辺層への正孔や電子の漏れ出しは、遅延蛍光性を有する化合物と比較して起こり難かったと推測される。
 また、特許文献8に記載された有機EL素子は、遅延蛍光性の化合物を含んだ発光層と蛍光発光性の化合物を含んだ発光層を積層させた構成を有する。ところが、遅延蛍光発光性化合物を含む層から漏れ出した正孔や電子を効果的に活用するためにバイポーラー層を設けるという技術的思想が見出されていなかったと考えられる。
 さらに、有機EL素子の長寿命化や高発光効率化の観点から本実施形態における第一の有機層11および第二の有機層12の少なくともいずれかに、第一の化合物と、第一の化合物の77[K]におけるエネルギーギャップT77K(M1)よりも大きい77[K]におけるエネルギーギャップT77K(M2)を有する第二の化合物とが含まれるという技術思想も、従来、見出されていなかったと考えられる。
〔第二実施形態〕
 第二実施形態に係る有機EL素子の構成について説明する。第二実施形態の説明において第一実施形態と同一の構成要素は、同一符号や名称を付す等して説明を省略もしくは簡略にする。また、第二実施形態では、特に言及されない材料や化合物については、前記実施形態で説明した材料や化合物と同様の材料や化合物を用いることができる。
 本実施形態では、第一の有機層11が、遅延蛍光発光性を有する第一の化合物と、第二の化合物とを含み、第二の有機層12が、発光性を有する第三の化合物を含む。すなわち、第二実施形態は、第二の有機層12に含まれる化合物の点で第一実施形態と相違し、その他の点については第一実施形態と同様である。
 第三の化合物は、蛍光発光性または燐光発光性を有する化合物であってもよく、蛍光発光性を有する化合物であることが好ましい。
 第一の有機層11において発光する化合物と、第二の有機層12において発光する化合物が異なることも好ましい。例えば、第一の有機層11では、第一の化合物が発光し、第二の有機層12では、第三の化合物が発光することが好ましい。
 第三の化合物を含む層としては、上述した発光性を有する化合物を他の物質(ホスト材料)に分散させた構成としてもよい。発光性化合物を分散させるための物質としては、各種の物質を用いることができ、発光性化合物よりも最低空軌道準位(LUMO準位)が高く、最高被占有軌道準位(HOMO準位)が低い物質を用いることが好ましい。
 本実施形態において、第一の化合物の発光スペクトルの主ピーク波長λ1(単位:nm)と、第三の化合物の発光スペクトルの主ピーク波長λ3(単位:nm)とが、下記数式(数3)の関係を満たすことが好ましい。
     |λ1-λ3|≦150nm     …(数3)
 |λ1-λ3|の値が90nm以下であることがより好ましく、50nm以下であることが更に好ましい。
 前記第一の化合物の発光スペクトルの主ピーク波長λ1(単位:nm)と、前記第三の化合物の発光スペクトルの主ピーク波長λ3(単位:nm)とが、下記数式(数4)の関係を満たすことも好ましい。
     |λ1-λ3|≧100nm     …(数4)
 第二実施形態において、例えば、第一の化合物の発光色および第三の化合物の発光色が同じであることも好ましい。
 また、第二実施形態の有機EL素子が白色で発光することが好ましい。この場合、例えば、第一の有機層11からの発光色と第二の有機層12からの発光色とが混ぜ合されて白色となるように、所定の発光色の第一の化合物および第三の化合物を適宜選択して、それぞれ第一の有機層11および第二の有機層12に用いればよい。
 第二実施形態においても、遅延蛍光発光性化合物を含む第一の有機層11、および発光性の第三の化合物を含む第二の有機層12の間にバイポーラー層13が設けられているため、第二実施形態の有機EL素子によっても発光効率を向上させることができる。
 本実施形態の別の態様として、例えば、第一の有機層11が、第三の化合物を含み、第二の有機層12が第一の化合物と、第二の化合物とを含む有機EL素子であってもよい。この態様の有機EL素子では、例えば、第一の有機層11では、第三の化合物が発光し、第二の有機層12では、第一の化合物が発光することが好ましい。
〔第三実施形態〕
 第三実施形態に係る有機EL素子の構成について説明する。第三実施形態の説明において第一実施形態と同一の構成要素は、同一符号や名称を付す等して説明を省略もしくは簡略にする。また、第三実施形態では、特に言及されない材料や化合物については、前記実施形態で説明した材料や化合物と同様の材料や化合物を用いることができる。
 本実施形態では、バイポーラー層13に第五の化合物を含む点で、第一実施形態と相違し、その他の点については第一実施形態と同様である。また、バイポーラー層13に、第四の化合物および第五の化合物が含まれていることも好ましい。第五の化合物が含まれていると、バイポーラー層13におけるキャリアバランスが向上するからである。第二実施形態の有機EL素子においてもバイポーラー層13に第五の化合物が含まれていることも好ましい。
 第三実施形態においても、遅延蛍光発光性化合物を含む第一の有機層11および第二の有機層12の間にバイポーラー層13が設けられているため、第三実施形態の有機EL素子によっても発光効率を向上させることができる。
〔第四実施形態〕
 第四実施形態に係る有機EL素子の構成について説明する。第四実施形態の説明において第一実施形態と同一の構成要素は、同一符号や名称を付す等して説明を省略もしくは簡略にする。また、第四実施形態では、特に言及されない材料や化合物については、前記実施形態で説明した材料や化合物と同様の材料や化合物を用いることができる。
 本実施形態では、第一の有機層11が、遅延蛍光発光性を有する第一の化合物と、第二の化合物とを含み、第二の有機層12が、発光性を有する第三の化合物を含み、バイポーラー層13が、第五の化合物を含む。すなわち、第四実施形態は、第二の有機層12に含まれる化合物、およびバイポーラー層13に含まれる化合物の点で第一実施形態と相違し、その他の点については第一実施形態と同様である。
 第一の有機層11において発光する化合物と、第二の有機層12において発光する化合物が異なることも好ましい。例えば、第一の有機層11では、第一の化合物が発光し、第二の有機層12では、第三の化合物が発光することが好ましい。
 第三の化合物は、蛍光発光性または燐光発光性を有する化合物であることが好ましい。
 本実施形態において、第二の有機層12には、第一の化合物が含まれていないことも好ましい。
 本実施形態において、第二の有機層12は、第三の化合物と、上述した発光性を有する化合物とは異なる他の物質(ホスト材料)とを含む構成であってもよい。ホスト材料としては、第二実施形態で説明した化合物と同様の化合物を用いることができる。
 バイポーラー層13に、第四の化合物および第五の化合物が含まれていることも好ましい。第五の化合物が含まれていると、バイポーラー層13におけるキャリアバランスが向上するからである。
 第四実施形態においても、遅延蛍光発光性化合物を含む第一の有機層11および第二の有機層12の間にバイポーラー層13が設けられている。そのため、第四実施形態の有機EL素子によっても発光効率を向上させることができる。
 本実施形態の別の態様として、例えば、第四実施形態の第二の有機層12に含まれる第三の化合物の代わりに第五の化合物を含む有機EL素子であってもよい。
〔第一、第二、第三、第四、および第五の化合物〕
 各実施形態で用い得る化合物の一例を以下で説明する。
(第一の化合物)
 遅延蛍光発光性を有する第一の化合物は、同一分子内にドナー性部位とアクセプター性部位とを有することが好ましい。
 本実施形態において、第一の化合物としては、例えば、下記一般式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 前記一般式(1)において、
 Aはアクセプター性部位であり、下記一般式(a-1)~(a-7)から選ばれる部分構造を有する基である。Aが複数存在する場合、複数のAは互いに同一または異なり、A同士が結合して飽和または不飽和の環を形成してもよい。
 Bはドナー性部位であり、下記一般式(b-1)~(b-6)から選ばれる部分構造を有する。Bが複数存在する場合、複数のBは互いに同一または異なり、B同士が結合して飽和または不飽和の環を形成してもよい。
 a,b,およびdは、それぞれ独立に、1~5の整数であり、
 cは0~5の整数であり、
 cが0のとき、AとBとは単結合またはスピロ結合で結合し、
 cが1~5の整数のとき、Lは、
  置換または無置換の環形成炭素数6~30の芳香族炭化水素基、および
  置換または無置換の環形成原子数5~30の複素環基からなる群から選択される連結基であり、Lが複数存在する場合、複数のLは互いに同一または異なり、L同士が結合して飽和または不飽和の環を形成してもよい。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 前記一般式(b-1)~(b-6)において、
 Rは、それぞれ独立に、水素原子または置換基であり、Rが置換基である場合の置換基は、
  置換または無置換の環形成炭素数6~30の芳香族炭化水素基、
  置換または無置換の環形成原子数5~30の複素環基、および
  置換または無置換の炭素数1~30のアルキル基からなる群から選択され、Rが複数存在する場合、複数のRは互いに同一または異なり、R同士が結合して飽和または不飽和の環を形成してもよい。
 前記一般式(1)で表される化合物の結合様式の一例として、例えば下記表1に示す結合様式が挙げられる。
Figure JPOXMLDOC01-appb-T000012
 第一の化合物の具体的な例を以下に示す。なお、本発明における第一の化合物は、これらの例に限定されない。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
・第一の化合物の製造方法
 第一の化合物は、例えば、国際公開第2013/180241号、国際公開第2014/092083号、および国際公開第2014/104346号等に記載された方法により製造することができる。
(第二の化合物)
 第二の化合物としては、特に限定されないが、アミン化合物以外の化合物であることが好ましい。また、例えば、第二の化合物としては、カルバゾール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体を用いることができるが、これら誘導体に限定されない。
 第二の化合物は、一つの分子中に下記一般式(21)で表される部分構造および下記一般式(22)で表される部分構造のうち少なくともいずれかを含む化合物であることも好ましい。
 前記一般式(21)において、
 Y21~Y26は、それぞれ独立に、窒素原子、または第二の化合物の分子中における他の原子と結合する炭素原子であり、
 ただし、Y21~Y26のうち少なくともいずれかは、第二の化合物の分子中における他の原子と結合する炭素原子であり、
 前記一般式(22)において、
 Y31~Y38は、それぞれ独立に、窒素原子、または第二の化合物の分子中における他の原子と結合する炭素原子であり、
 ただし、Y31~Y38のうち少なくともいずれかは、第二の化合物の分子中における他の原子と結合する炭素原子であり、
 Xは、窒素原子、酸素原子、または硫黄原子である。
 前記一般式(22)において、Y31~Y38のうち少なくとも2つが第二の化合物の分子中における他の原子と結合する炭素原子であり、当該炭素原子を含む環構造が構築されていることも好ましい。
 例えば、前記一般式(22)で表される部分構造が、下記一般式(221),(222),(223),(224),(225)および(226)で表される部分構造からなる群から選択されるいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 前記一般式(221)~(226)において、
 Xは、窒素原子、酸素原子、または硫黄原子であり、
 Y31~Y38は、それぞれ独立に、窒素原子、または第二の化合物の分子中における他の原子と結合する炭素原子であり、
 Xは、窒素原子、酸素原子、硫黄原子、または炭素原子であり、
 Y71~Y74は、それぞれ独立に、窒素原子、または第二の化合物の分子中における他の原子と結合する炭素原子である。
 本実施形態においては、第二の化合物は、前記一般式(221)~(226)のうち前記一般式(223)で表される部分構造を有することが好ましい。
 前記一般式(21)で表される部分構造は、下記一般式(23)で表される基および下記一般式(24)で表される基からなる群から選択される少なくともいずれかの基として第二の化合物に含まれることが好ましい。
 下記一般式(23)および下記一般式(24)で表されるように、結合箇所が互いにメタ位に位置することは、77[K]におけるエネルギーギャップT77K(M3)を高く保つことができるため、第二の化合物として好ましい。
Figure JPOXMLDOC01-appb-C000024
 前記一般式(23)および前記一般式(24)において、
 Y21,Y22,Y24およびY26は、それぞれ独立に、窒素原子、またはCR31であり、
 R31は、水素原子または置換基であり、R31が置換基である場合の置換基は、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のフルオロアルキル基、置換もしくは無置換の炭素数3~30のシクロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換シリル基、置換ゲルマニウム基、置換ホスフィンオキシド基、ハロゲン原子、シアノ基、ニトロ基、およびカルボキシ基からなる群から選択される置換基であり、ただし、R31における置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基は、非縮合環であることが好ましい。
 前記一般式(23)および前記一般式(24)において、波線部分は、第二の化合物の分子中における他の原子または他の構造との結合箇所を表す。
 前記一般式(23)において、Y21,Y22,Y24およびY26は、それぞれ独立に、CR31であることが好ましく、複数のR31は、同一でも異なっていてもよい。
 また、前記一般式(24)において、Y22,Y24およびY26は、それぞれ独立に、CR31であることが好ましく、複数のR31は、同一でも異なっていてもよい。
 置換ゲルマニウム基は、-Ge(R101で表されることが好ましい。R101は、それぞれ独立に、置換基である。置換基R101は、置換もしくは無置換の炭素数1~30のアルキル基、または置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であることが好ましい。複数のR101は、互いに同一でも異なっていてもよい。
 前記一般式(22)で表される部分構造は、下記一般式(25)で表される基,下記一般式(26)で表される基,下記一般式(27)で表される基,下記一般式(28)で表される基,下記一般式(29)で表される基,および下記一般式(20a)で表される基からなる群から選択される少なくともいずれかの基として第二の化合物に含まれることが好ましい。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 前記一般式(25)~(29),(20a)において、
 Y31,Y32,Y33,Y34,Y35,Y36,Y37,およびY38は、それぞれ独立に、窒素原子またはCR32であり、
 R32は、水素原子または置換基であり、R32が置換基である場合の置換基は、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のフルオロアルキル基、置換もしくは無置換の炭素数3~30のシクロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換シリル基、置換ゲルマニウム基、置換ホスフィンオキシド基、ハロゲン原子、シアノ基、ニトロ基、およびカルボキシ基からなる群から選択される置換基であり、ただし、R32における置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基は、非縮合環であることが好ましく、
 前記一般式(25),(26)において、Xは、窒素原子であり、
 前記一般式(27)~(29),(20a)において、Xは、NR33、酸素原子または硫黄原子であり、
 R33は、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のフルオロアルキル基、置換もしくは無置換の炭素数3~30のシクロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換シリル基、置換ゲルマニウム基、置換ホスフィンオキシド基、フッ素原子、シアノ基、ニトロ基、およびカルボキシ基からなる群から選択される置換基であり、ただし、R33における置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基は、非縮合環であることが好ましい。
 前記一般式(25)~(29),(20a)において、波線部分は、第二の化合物の分子中における他の原子または他の構造との結合箇所を表す。
 前記一般式(25)において、Y31~Y38は、それぞれ独立に、CR32であることが好ましく、前記一般式(26)および前記一般式(27)において、Y31~Y35,Y37およびY38は、それぞれ独立に、CR32であることが好ましく、前記一般式(28)において、Y31,Y32,Y34,Y35,Y37およびY38は、それぞれ独立に、CR32であることが好ましく、前記一般式(29)において、Y32~Y38は、それぞれ独立に、CR32であることが好ましく、前記一般式(20a)において、Y32~Y37は、それぞれ独立に、CR32であることが好ましく、複数のR32は、同一でも異なっていてもよい。
 第二の化合物において、Xは、酸素原子もしくは硫黄原子であることが好ましく、酸素原子であることがより好ましい。
 Xは、酸素原子もしくは硫黄原子であることが好ましく、酸素原子であることがより好ましい。
 また、XおよびXが酸素原子であることが好ましい。
 第二の化合物において、R31およびR32は、それぞれ独立に、水素原子または置換基であって、R31およびR32における置換基は、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、および置換もしくは無置換の環形成原子数5~30の複素環基からなる群から選択される置換基であることが好ましい。R31およびR32は、水素原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、または置換もしくは無置換の環形成原子数5~30の複素環基であることがより好ましい。ただし、R31およびR32における置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基は、非縮合環であることが好ましい。
 第二の化合物において、R33は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、および置換もしくは無置換の環形成原子数5~30の複素環基からなる群から選択される置換基であることが好ましく、置換もしくは無置換の環形成炭素数6~20の芳香族炭化水素基、および置換もしくは無置換の環形成原子数5~20の複素環基からなる群から選択される置換基であることがより好ましい。ただし、R33における置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基は、非縮合環であることが好ましい。
 第二の化合物は、芳香族炭化水素化合物、または芳香族複素環化合物であることも好ましい。また、第二の化合物は、分子中に縮合芳香族炭化水素環を有していないことが好ましい。
・第二の化合物の製造方法
 第二の化合物は、例えば、国際公開第2012/153780号および国際公開第2013/038650号等に記載の方法により製造することができる。
 第二の化合物における置換基の例は、例えば、以下のとおりであるが、本発明は、これらの例に限定されない。
 芳香族炭化水素基(アリ-ル基と称する場合がある。)の具体例としては、フェニル基、トリル基、キシリル基、ナフチル基、フェナントリル基、ピレニル基、クリセニル基、ベンゾ[c]フェナントリル基、ベンゾ[g]クリセニル基、ベンゾアントリル基、トリフェニレニル基、フルオレニル基、9,9-ジメチルフルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、ビフェニル基、ターフェニル基、クォーターフェニル基、フルオランテニル基等が挙げられ、好ましくはフェニル基、ビフェニル基、ターフェニル基、クォーターフェニル基、ナフチル基、トリフェニレニル基、フルオレニル基等を挙げることができる。
 置換基を有する芳香族炭化水素基としては、トリル基、キシリル基、9,9-ジメチルフルオレニル基等を挙げることができる。
 具体例が示すように、アリール基は、縮合アリール基及び非縮合アリール基の両方を含む。
 芳香族炭化水素基としては、フェニル基、ビフェニル基、ターフェニル基、クォーターフェニル基、ナフチル基、トリフェニレニル基、フルオレニル基が好ましい。
 芳香族複素環基(ヘテロアリール基、ヘテロ芳香族環基、または複素環基と称する場合がある。)の具体例としては、ピロリル基、ピラゾリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、ピリジル基、トリアジニル基、インドリル基、イソインドリル基、イミダゾリル基、ベンズイミダゾリル基、インダゾリル基、イミダゾ[1,2-a]ピリジニル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、ジベンゾフラニル基、アザジベンゾフラニル基、チオフェニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、アザジベンゾチオフェニル基、キノリル基、イソキノリル基、キノキサリニル基、キナゾリニル基、ナフチリジニル基、カルバゾリル基、アザカルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、オキサゾリル基、オキサジアゾリル基、フラザニル基、ベンズオキサゾリル基、チエニル基、チアゾリル基、チアジアゾリル基、ベンズチアゾリル基、トリアゾリル基、テトラゾリル基等が挙げられ、好ましくは、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、ピリジル基、ピリミジニル基、トリアジニル基、アザジベンゾフラニル基、アザジベンゾチオフェニル基等を挙げることができる。
 芳香族複素環基としては、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、ピリジル基、ピリミジニル基、トリアジニル基、アザジベンゾフラニル基、アザジベンゾチオフェニル基が好ましく、ジベンゾフラニル基、ジベンゾチオフェニル基、アザジベンゾフラニル基、アザジベンゾチオフェニル基がさらに好ましい。
 第二の化合物において、置換シリル基は、置換もしくは無置換のトリアルキルシリル基、置換もしくは無置換のアリールアルキルシリル基、または置換もしくは無置換のトリアリールシリル基であることも好ましい。
 置換もしくは無置換のトリアルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基を挙げることができる。
 置換若しくは無置換のアリールアルキルシリル基の具体例としては、ジフェニルメチルシリル基、ジトリルメチルシリル基、フェニルジメチルシリル基等を挙げることができる。
 置換若しくは無置換のトリアリールシリル基の具体例としては、トリフェニルシリル基、トリトリルシリル基等を挙げることができる。
 第二の化合物において、置換ホスフィンオキシド基は、置換もしくは無置換のジアリールホスフィンオキシド基であることも好ましい。
 置換もしくは無置換のジアリールホスフィンオキシド基の具体例としては、ジフェニルホスフィンオキシド基、ジトリルホスフィンオキシド基等を挙げることができる。
(第三の化合物)
 第三の化合物は、蛍光発光性または燐光発光性を有する化合物であることが好ましい。
 青色系の蛍光発光性材料として、ピレン誘導体、スチリルアミン誘導体、クリセン誘導体、フルオランテン誘導体、フルオレン誘導体、ジアミン誘導体、トリアリールアミン誘導体等が使用できる。具体的には、N,N’-ビス[4-(9H-カルバゾール-9-イル)フェニル]-N,N’-ジフェニルスチルベン-4,4’-ジアミン(略称:YGA2S)、4-(9H-カルバゾール-9-イル)-4’-(10-フェニル-9-アントリル)トリフェニルアミン(略称:YGAPA)、4-(10-フェニル-9-アントリル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBAPA)などが挙げられる。他にも、青色系の蛍光発光性材料としては、ホウ素錯体化合物が挙げられ、例えば、ビス(アジニル)アミンホウ素錯体、およびピロメテンホウ素錯体が挙げられる。
 緑色系の蛍光発光性材料として、芳香族アミン誘導体等を使用できる。具体的には、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCABPhA)、N-(9,10-ジフェニル-2-アントリル)-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPABPhA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)]-N-[4-(9H-カルバゾール-9-イル)フェニル]-N-フェニルアントラセン-2-アミン(略称:2YGABPhA)、N,N,9-トリフェニルアントラセン-9-アミン(略称:DPhAPhA)などが挙げられる。他にも、緑色系の蛍光発光性材料としては、ホウ素錯体化合物が挙げられ、例えば、ビス(アジニル)アミンホウ素錯体、およびピロメテンホウ素錯体が挙げられる。
 赤色系の蛍光発光性材料として、テトラセン誘導体、ジアミン誘導体等が使用できる。具体的には、N,N,N’,N’-テトラキス(4-メチルフェニル)テトラセン-5,11-ジアミン(略称:p-mPhTD)、7,14-ジフェニル-N,N,N’,N’-テトラキス(4-メチルフェニル)アセナフト[1,2-a]フルオランテン-3,10-ジアミン(略称:p-mPhAFD)などが挙げられる。他にも、赤色系の蛍光発光性材料としては、ホウ素錯体化合物が挙げられ、例えば、ビス(アジニル)アミンホウ素錯体、およびピロメテンホウ素錯体が挙げられる。
 青色系の燐光発光性材料として、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体が使用される。具体的には、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)テトラキス(1-ピラゾリル)ボラート(略称:FIr6)、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス[2-(3’,5’ビストリフルオロメチルフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:Ir(CFppy)(pic))、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)アセチルアセトナート(略称:FIracac)などが挙げられる。
 緑色系の燐光発光性材料として、イリジウム錯体等が使用される。トリス(2-フェニルピリジナト-N,C2’)イリジウム(III)(略称:Ir(ppy))、ビス(2-フェニルピリジナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(ppy)(acac))、ビス(1,2-ジフェニル-1H-ベンゾイミダゾラト)イリジウム(III)アセチルアセトナート(略称:Ir(pbi)(acac))、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:Ir(bzq)(acac))などが挙げられる。
 赤色系の燐光発光性材料として、イリジウム錯体、白金錯体、テルビウム錯体、ユーロピウム錯体等の金属錯体が使用される。具体的には、ビス[2-(2’-ベンゾ[4,5-α]チエニル)ピリジナト-N,C3’]イリジウム(III)アセチルアセトナート(略称:Ir(btp)(acac))、ビス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(piq)(acac))、(アセチルアセトナト)ビス[2,3-ビス(4-フルオロフェニル)キノキサリナト]イリジウム(III)(略称:Ir(Fdpq)(acac))、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィリン白金(II)(略称:PtOEP)等の有機金属錯体が挙げられる。
 また、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:Tb(acac)(Phen))、トリス(1,3-ジフェニル-1,3-プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:Eu(DBM)(Phen))、トリス[1-(2-テノイル)-3,3,3-トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:Eu(TTA)(Phen))等の希土類金属錯体は、希土類金属イオンからの発光(異なる多重度間の電子遷移)であるため、燐光発光性化合物として用いることができる。
(第四の化合物)
 第四の化合物は、下記一般式(2)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000027
 前記一般式(2)において、Czは、下記一般式(2a)または下記一般式(2b)で表され、複数のCzは、互いに同一であるか、または異なり、nは、1以上4以下の整数であり、Lは、単結合または連結基であり、Lにおける連結基は、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、および置換もしくは無置換の環形成原子数5~30の複素環基からなる群から選択される基であり、Rは、下記一般式(20)で表される。
Figure JPOXMLDOC01-appb-C000028
 前記一般式(2a)および(2b)において、
 *1および*2は、Lとの結合部位を表し、
 A、A、A、A、A、A、AおよびAは、それぞれ独立に、窒素原子、またはCR21であり、
 R21は、水素原子または置換基であり、R21が置換基である場合の置換基は、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のフルオロアルキル基、置換もしくは無置換の炭素数3~30のシクロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換シリル基、置換ゲルマニウム基、置換ホスフィンオキシド基、ハロゲノ基、シアノ基、カルボニル基、およびカルボキシ基からなる群から選択され、複数のR21は、互いに同一でも異なっていてもよく、複数のR21のうち少なくとも2つが置換基である場合、置換基R21同士は、互いに結合して環構造が構築されていてもよく、
 R20は、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のフルオロアルキル基、置換もしくは無置換の炭素数3~30のシクロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、および置換シリル基からなる群から選択される置換基であり、複数のR20は、互いに同一でも異なっていてもよい。
 前記一般式(20)において、*3は、Lとの結合部位を表し、A11、A12、A13、A14、およびA15は、それぞれ独立に、窒素原子、またはCR22であり、R22は、水素原子または置換基であり、R22が置換基である場合の置換基は、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のフルオロアルキル基、置換もしくは無置換の炭素数3~30のシクロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換シリル基、置換ゲルマニウム基、置換ホスフィンオキシド基、ハロゲノ基、シアノ基、カルボニル基、およびカルボキシ基からなる群から選択され、複数のR22は、互いに同一でも異なっていてもよく、複数のR22のうち少なくとも2つが置換基である場合、置換基R22同士は、互いに結合して環構造が構築されていてもよく、A11~A15のうち少なくとも1つは窒素原子であるか、もしくはA11~A15の全てがCR22である場合は、複数のR22のうち少なくとも1つはシアノ基である。
 第四の化合物は、下記一般式(2A)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000029
 前記一般式(2A)において、A~A、A11~A15、L、およびnは、それぞれ前記一般式(2)におけるA~A、A11~A15、L、およびnと同義である。
 A11、A13、およびA15のうち少なくとも2つが窒素原子であることが好ましい。A11、A13、およびA15が窒素原子であることも好ましい。A11、A13、およびA15が窒素原子である場合、A12およびA14がCR21であり、R21が置換基であることが好ましく、この置換基R21が、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であることが好ましく、置換もしくは無置換の環形成炭素数6~20の芳香族炭化水素基であることがより好ましく、フェニル基であることがさらに好ましい。
 A11~A15がCR22であり、複数のR22のうち少なくとも1つがシアノ基であることも好ましい。
 A、A、A、A、A、A、AおよびAは、それぞれ独立に、CR21であることも好ましい。また、A、A、A、A、A、A、AおよびAは、CR21であって、R21が水素原子であることも好ましい。
 nが1または2であることも好ましい。
 前記一般式(2a)におけるA~Aのうち少なくとも一つがCR21であり、R21のうち少なくとも一つが下記一般式(2c)または下記一般式(2d)で表される複素環基であることも好ましい。
Figure JPOXMLDOC01-appb-C000030
 前記一般式(2c)および(2d)において、
 *4および*5は、前記一般式(2a)におけるA~Aとの結合部位を表し、
 A21、A22、A23、A24、A25、A26、A27およびA28は、それぞれ独立に、窒素原子、またはCR24であり、
 R24は、水素原子または置換基であり、R24が置換基である場合の置換基は、R21が置換基である場合に列挙された置換基の群から選択され、複数のR24は、互いに同一でも異なっていてもよく、複数のR24のうち少なくとも2つが置換基である場合、置換基R24同士は、互いに結合して環構造が構築されていてもよく、
 R23は、R20について列挙された置換基の群から選択され、複数のR23は、互いに同一でも異なっていてもよい。
 A21、A22、A23、A24、A25、A26、A27およびA28は、それぞれ独立に、CR24であることも好ましい。また、A、A、A、A、A、A、AおよびAは、CR24であって、R24が水素原子であることも好ましい。
 前記一般式(2c)における結合部位*4は、AまたはAと結合していることも好ましい。
 前記一般式(2)および(2A)におけるLは、単結合または連結基であり、Lにおける連結基は、置換もしくは無置換の環形成炭素数6~20の芳香族炭化水素基、および置換もしくは無置換の環形成原子数5~20の複素環基からなる群から選択されることがより好ましく、Lにおける連結基は、置換もしくは無置換の環形成炭素数6~20の芳香族炭化水素基であることがより好ましい。前記一般式(2)および(2A)におけるLは、フェニレン基、ビフェニルジイル基またはナフチレン基であることが好ましく、フェニレン基またはビフェニルジイル基であることがより好ましく、p-フェニレン基がさらに好ましい。前記一般式(2)および(2A)におけるLの置換基としては、フェニル基、アルキル基、およびシアノ基の少なくともいずれかが好ましい。
 前記一般式(2a)は、下記一般式(2e)~(2t)の何れかで表されることも好ましい。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 前記一般式(2e)~(2t)において、*は、Lとの結合部位を表し、R25は、水素原子または置換基であり、R25が置換基である場合の置換基は、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のフルオロアルキル基、置換もしくは無置換の炭素数3~30のシクロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換シリル基、置換ゲルマニウム基、置換ホスフィンオキシド基、ハロゲノ基、シアノ基、カルボニル基、およびカルボキシ基からなる群から選択される。
 また、前記一般式(2e)~(2t)のカルバゾール環は、置換基を有していてもよく、その置換基は、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のフルオロアルキル基、置換もしくは無置換の炭素数3~30のシクロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換シリル基、置換ゲルマニウム基、置換ホスフィンオキシド基、ハロゲノ基、シアノ基、カルボニル基、およびカルボキシ基からなる群から選択され、複数の置換基は、互いに同一でも異なっていてもよく、複数の置換基同士は、互いに結合して環構造が構築されていてもよい。
 前記一般式(2e)~(2t)のうち、前記一般式(2a)は、前記一般式(2j)、(2k)、(2l)、(2n)、(2p)、(2r)または(2s)の何れかであることがさらに好ましい。
・第四の化合物の製造方法
 前記第四の化合物は、例えば、国際公開第2003/080760号、国際公開第2011/132683号、または国際公開第2011/132684号に記載の方法により製造することができる。
 第四の化合物の例を以下に示す。なお、本発明における第四の化合物は、これらの例に限定されない。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
(第五の化合物)
 第五の化合物としては、蛍光発光性材料を用いることができる。具体的には、例えば、ビスアリールアミノナフタレン誘導体、アリール置換ナフタレン誘導体、ビスアリールアミノアントラセン誘導体、アリール基置換アントラセン誘導体、ビスアリールアミノピレン誘導体、アリール基置換ピレン誘導体、ビスアリールアミノクリセン誘導体、アリール置換クリセン誘導体、ビスアリールアミノフルオランテン誘導体、アリール置換フルオランテン誘導体、インデノペリレン誘導体、ピロメテンホウ素錯体化合物、ピロメテン骨格を有する化合物、ピロメテン骨格を有する化合物の金属錯体、ジケトピロロピロール誘導体、ペリレン誘導体、アリールアミノフルオレン誘導体、アリール置換フルオレン誘導体、アリールアミノベンズフルオレン誘導体、アリール置換ベンズフルオレン誘導体、アリールアミノインデノフルオレン誘導体、アリール置換インデノフルオレン誘導体等が挙げられる。
 第五の化合物としては、一つの分子中に下記一般式(3)で表される部分構造のうち少なくともいずれかを含む化合物を用いることが好ましい。第五の化合物が、下記一般式(3)で表される部分構造を複数含む場合、複数の部分構造は互いに同一でも異なってもよい。
Figure JPOXMLDOC01-appb-C000092
 前記一般式(3)において、Xは、環形成炭素数10~40の置換もしくは無置換の縮合芳香族炭化水素基を示し、Ar11およびAr12は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~40の芳香族炭化水素基、および置換もしくは無置換の環形成原子数5~30の複素環基からなる群から選択される基を示し、L11,L12,およびL13は、それぞれ独立に、単結合または連結基を示し、L11,L12,およびL13が連結基である場合の連結基は、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、および置換もしくは無置換の環形成原子数5~30の複素環基からなる群から選択され、pは1~4の整数を示す。
 前記一般式(3)において、Xは、ナフタレン、フェナントレン、フルオランテン、アントラセン、ピレン、ペリレン、コロネン、クリセン、ピセン、ジフェニルアントラセン、フルオレン、トリフェニレン、ルビセン、ベンゾアントラセン、フェニルアントラセン、ビスアントラセン、ジアントリルベンゼン、ジベンゾアントラセン、ベンゾフルオレン、インデノフルオレン、およびベンズインデノフルオレンからなる群から選択される縮合芳香族炭化水素環の残基であることが好ましい。
 特に、Xがアントラセンの残基である場合、第五の化合物は、9,10-置換アントラセンまたは2,6-置換アントラセンが好ましい。Xがピレンの残基である場合、第五の化合物は、1,6-置換ピレンまたは3,8-置換ピレンが好ましい。Xがクリセンの残基である場合、第五の化合物は、6,12-置換クリセンが好ましい。
 前記一般式(3)で表される部分構造は、下記一般式(3A)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000093
 前記一般式(3A)において、X,Ar11,Ar12,L11,L12,L13,およびpは、それぞれ独立に、前記一般式(3)におけるX,Ar11,Ar12,L11,L12,L13,およびpと同義である。前記一般式(3A)において、波線部分は、前記第五の化合物の分子中における他の原子または他の構造との結合箇所を表す。
 前記第五の化合物は、下記一般式(30)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000094
 前記一般式(30)において、aは、0または1の整数であり、aが0の場合、LとArとが直接結合し、Ar,Ar,R121,R122,R123,R124,R125,R126,R127,およびR128の少なくとも2つが下記一般式(31)で表される基であり、aが1の場合、Ar,Ar,R121,R122,R123,R124,R125,R126,R127,R128,R131,R132,R133,R134,R135,R136,R137,およびR138の少なくとも2つが下記一般式(31)で表される基であり、下記一般式(31)で表される基以外のAr,Ar,R121,R122,R123,R124,R125,R126,R127,R128,R131,R132,R133,R134,R135,R136,R137,およびR138は、それぞれ独立に、水素原子または置換基であり、Ar,Ar,R121,R122,R123,R124,R125,R126,R127,R128,R131,R132,R133,R134,R135,R136,R137,およびR138が置換基である場合の置換基は、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換シリル基、置換もしくは無置換の炭素数1~20のトリフルオロアルキル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、および置換もしくは無置換の環形成炭素数6~30のアリールオキシ基からなる群から選択され、LおよびLは、それぞれ独立に、単結合または連結基であり、LおよびLが連結基である場合の連結基は、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、および置換もしくは無置換の環形成原子数5~30の複素環基からなる群から選択される。R121~R128,R131~R138のうち、2つ以上が置換基である場合、置換基同士は互いに結合して環を形成してもよい。
Figure JPOXMLDOC01-appb-C000095
 前記一般式(31)において、L11,L12,およびL13は、それぞれ独立に、単結合または連結基を示し、L11~L13が連結基である場合の連結基は、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、および置換もしくは無置換の環形成原子数5~30の複素環基からなる群から選択され、Ar11およびAr12は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、および置換もしくは無置換の環形成原子数5~30の複素環基からなる群から選択される基である。
 前記一般式(30)において、前記aが0であり、前記ArおよびArが、前記一般式(31)で表される基であることが好ましい。
 また、前記一般式(30)において、前記aが0であり、前記R122およびR126が、前記一般式(31)で表される基であることも好ましい。
 また、前記一般式(30)において、前記aが1であり、前記ArおよびArが、前記一般式(31)で表される基であることも好ましい。
 前記一般式(30)において、置換基Ar,Ar,R121~R128,R131~R138は、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換シリル基、シアノ基および置換もしくは無置換の炭素数1~20のトリフルオロアルキル基からなる群から選択されることが好ましい。
・第五の化合物の製造方法
 第五の化合物は、例えば、国際公開第2004/092111号(WO2004/092111A1)および国際公開第2011/096506号(WO2011/096506A1)等に記載された方法に従い、製造することができる。
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記される「環形成炭素数」については、特筆しない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジニル基は環形成炭素数5であり、フラニル基は環形成炭素数4である。また、ベンゼン環やナフタレン環に置換基として例えばアルキル基が置換している場合、当該アルキル基の炭素数は、環形成炭素数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の炭素数は環形成炭素数の数に含めない。 本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子(例えば環を構成する原子の結合手を終端する水素原子)や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環は、環形成原子数が6であり、キナゾリン環は、環形成原子数が10であり、フラン環は、環形成原子数が5である。ピリジン環やキナゾリン環の炭素原子にそれぞれ結合している水素原子や置換基を構成する原子については、環形成原子数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の原子数は環形成原子数の数に含めない。
 次に本明細書における前記一般式に記載の各置換基について説明する。
 環形成炭素数6~30の芳香族炭化水素基(アリール基と称する場合がある。)としては、例えば、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、ピレニル基、クリセニル基、フルオランテニル基、ベンゾ[a]アントリル基、ベンゾ[c]フェナントリル基、トリフェニレニル基、ベンゾ[k]フルオランテニル基、ベンゾ[g]クリセニル基、ベンゾ[b]トリフェニレニル基、ピセニル基、およびペリレニル基などが挙げられる。
 アリール基としては、環形成炭素数が6~20であることが好ましく、6~14であることがより好ましく、6~12であることが更に好ましい。上記アリール基の中でもフェニル基、ビフェニル基、ナフチル基、フェナントリル基、ターフェニル基、フルオレニル基がさらにより好ましい。1-フルオレニル基、2-フルオレニル基、3-フルオレニル基および4-フルオレニル基については、9位の炭素原子に、後述する置換もしくは無置換の炭素数1~30のアルキル基や置換もしくは無置換の環形成炭素数6~18のアリール基が置換されていることが好ましい。
 環形成原子数5~30の複素環基(ヘテロアリール基、ヘテロ芳香族環基、または芳香族複素環基と称する場合がある。)は、ヘテロ原子として、窒素、硫黄、酸素、ケイ素、セレン原子、およびゲルマニウム原子からなる群から選択される少なくともいずれかの原子を含むことが好ましく、窒素、硫黄、および酸素からなる群から選択される少なくともいずれかの原子を含むことがより好ましい。
 環形成原子数5~30の複素環基(ヘテロアリール基、ヘテロ芳香族環基、または芳香族複素環基と称する場合がある。)としては、例えば、ピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基、トリアジニル基、キノリル基、イソキノリニル基、ナフチリジニル基、フタラジニル基、キノキサリニル基、キナゾリニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、ベンズイミダゾリル基、インダゾリル基、イミダゾピリジニル基、ベンズトリアゾリル基、カルバゾリル基、フリル基、チエニル基、オキサゾリル基、チアゾリル基、イソキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、ベンゾフラニル基、ベンゾチオフェニル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾイソキサゾリル基、ベンゾイソチアゾリル基、ベンゾオキサジアゾリル基、ベンゾチアジアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、ピペリジニル基、ピロリジニル基、ピペラジニル基、モルホリル基、フェナジニル基、フェノチアジニル基、およびフェノキサジニル基などが挙げられる。
 複素環基の環形成原子数は、5~20であることが好ましく、5~14であることがさらに好ましい。上記複素環基の中でも1-ジベンゾフラニル基、2-ジベンゾフラニル基、3-ジベンゾフラニル基、4-ジベンゾフラニル基、1-ジベンゾチオフェニル基、2-ジベンゾチオフェニル基、3-ジベンゾチオフェニル基、4-ジベンゾチオフェニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、および9-カルバゾリル基がさらにより好ましい。1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基および4-カルバゾリル基については、9位の窒素原子に、置換もしくは無置換の環形成炭素数6~30のアリール基または置換もしくは無置換の環形成原子数5~30の複素環基が置換していることが好ましい。
 また、複素環基は、例えば、下記一般式(XY-1)~(XY-18)で表される部分構造から誘導される基であってもよい。
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
 前記一般式(XY-1)~(XY-18)において、XおよびYは、それぞれ独立に、ヘテロ原子であり、酸素原子、硫黄原子、セレン原子、ケイ素原子、またはゲルマニウム原子であることが好ましい。前記一般式(XY-1)~(XY-18)で表される部分構造は、任意の位置で結合手を有して複素環基となり、この複素環基は、置換基を有していてもよい。
 また、置換もしくは無置換のカルバゾリル基としては、例えば、下記式で表されるような、カルバゾール環に対してさらに環が縮合した基も含み得る。このような基も置換基を有していてもよい。また、結合手の位置も適宜変更され得る。
Figure JPOXMLDOC01-appb-C000099
 炭素数1~30のアルキル基としては、直鎖、分岐鎖または環状のいずれであってもよい。直鎖または分岐鎖のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、アミル基、イソアミル基、1-メチルペンチル基、2-メチルペンチル基、1-ペンチルヘキシル基、1-ブチルペンチル基、1-ヘプチルオクチル基、および3-メチルペンチル基等が挙げられる。
 直鎖または分岐鎖のアルキル基の炭素数は、1~10であることが好ましく、1~6であることがさらに好ましい。上記直鎖または分岐鎖のアルキル基の中でもメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、アミル基、イソアミル基、およびネオペンチル基がさらにより好ましい。
 シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、アダマンチル基、およびノルボルニル基等が挙げられる。シクロアルキル基の環形成炭素数は、3~10であることが好ましく、5~8であることがさらに好ましい。上記シクロアルキル基の中でも、シクロペンチル基やシクロヘキシル基がさらにより好ましい。
 アルキル基がハロゲン原子で置換されたハロゲン化アルキル基としては、例えば、上記炭素数1~30のアルキル基が1以上のハロゲン原子で置換された基が挙げられる。具体的には、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、トリフルオロメチルメチル基、トリフルオロエチル基、ペンタフルオロエチル基等が挙げられる。
 置換シリル基としてはアルキルシリル基およびアリールシリル基が挙げられる。
 炭素数3~30のアルキルシリル基としては、上記炭素数1~30のアルキル基で例示したアルキル基を有するトリアルキルシリル基が挙げられ、具体的にはトリメチルシリル基、トリエチルシリル基、トリ-n-ブチルシリル基、トリ-n-オクチルシリル基、トリイソブチルシリル基、ジメチルエチルシリル基、ジメチルイソプロピルシリル基、ジメチル-n-プロピルシリル基、ジメチル-n-ブチルシリル基、ジメチル-t-ブチルシリル基、ジエチルイソプロピルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、およびトリイソプロピルシリル基等が挙げられる。トリアルキルシリル基における3つのアルキル基は、それぞれ同一でも異なっていてもよい。
 環形成炭素数6~30のアリールシリル基としては、例えばジアルキルアリールシリル基、アルキルジアリールシリル基、およびトリアリールシリル基が挙げられる。
 ジアルキルアリールシリル基は、例えば、上記炭素数1~30のアルキル基で例示したアルキル基を2つ有し、上記環形成炭素数6~30のアリール基を1つ有するジアルキルアリールシリル基が挙げられる。ジアルキルアリールシリル基の炭素数は、8~30であることが好ましい。
 アルキルジアリールシリル基は、例えば、上記炭素数1~30のアルキル基で例示したアルキル基を1つ有し、上記環形成炭素数6~30のアリール基を2つ有するアルキルジアリールシリル基が挙げられる。アルキルジアリールシリル基の炭素数は、13~30であることが好ましい。
 トリアリールシリル基は、例えば、上記環形成炭素数6~30のアリール基を3つ有するトリアリールシリル基が挙げられる。トリアリールシリル基の炭素数は、18~30であることが好ましい。
 置換ホスフィンオキシド基は、下記一般式(100)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000100
 前記一般式(100)において、R102およびR103は、それぞれ独立に、置換基である。置換基R102および置換基R103は、それぞれ独立に、置換もしくは無置換の炭素数1~30のアルキル基、および置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基からなる群から選択されることが好ましい。
 置換ホスフィンオキシド基は、置換もしくは無置換のジアリールホスフィンオキシド基であることがより好ましい。
 炭素数1~30のアルコキシ基は、-OZと表される。このZの例として、上記炭素数1~30のアルキル基が挙げられる。アルコキシ基は、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、およびヘキシルオキシ基が挙げられる。アルコキシ基の炭素数は、1~20であることが好ましい。
 アルコキシ基がハロゲン原子で置換されたハロゲン化アルコキシ基としては、例えば、上記炭素数1~30のアルコキシ基が1以上のフッ素原子で置換された基が挙げられる。
 環形成炭素数6~30のアリールオキシ基は、-OZと表される。このZの例として、上記環形成炭素数6~30のアリール基が挙げられる。アリールオキシ基の環形成炭素数は、6~20であることが好ましい。このアリールオキシ基としては、例えば、フェノキシ基が挙げられる。
 炭素数2~30のアルキルアミノ基は、-NHR、または-N(Rと表される。このRの例として、上記炭素数1~30のアルキル基が挙げられる。
 環形成炭素数6~60のアリールアミノ基は、-NHR、または-N(Rと表される。このRの例として、上記環形成炭素数6~30のアリール基が挙げられる。
 炭素数1~30のアルキルチオ基は、-SRと表される。このRの例として、上記炭素数1~30のアルキル基が挙げられる。アルキルチオ基の炭素数は、1~20であることが好ましい。
 環形成炭素数6~30のアリールチオ基は、-SRと表される。このRの例として、上記環形成炭素数6~30のアリール基が挙げられる。アリールチオ基の環形成炭素数は、6~20であることが好ましい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、およびヨウ素原子等が挙げられ、フッ素原子が好ましい。
 本明細書において、「環形成炭素」とは飽和環、不飽和環、または芳香環を構成する炭素原子を意味する。「環形成原子」とはヘテロ環(飽和環、不飽和環、および芳香環を含む)を構成する炭素原子およびヘテロ原子を意味する。
 また、本明細書において、水素原子とは、中性子数の異なる同位体、すなわち、軽水素(Protium)、重水素(Deuterium)、三重水素(Tritium)を包含する。
 また、本明細書において、「置換もしくは無置換の」という場合における置換基としては、上述のようなアリール基、複素環基、アルキル基(直鎖または分岐鎖のアルキル基、シクロアルキル基、ハロアルキル基)、アルキルシリル基、アリールシリル基、アルコキシ基、アリールオキシ基、アルキルアミノ基、アリールアミノ基、アルキルチオ基、アリールチオ基の他に、アルケニル基、アルキニル基、アラルキル基、ハロゲン原子、シアノ基、ヒドロキシル基、ニトロ基、およびカルボキシ基が挙げられる。
 ここで挙げた置換基の中では、アリール基、複素環基、アルキル基、ハロゲン原子、アルキルシリル基、アリールシリル基、シアノ基が好ましく、さらには、各置換基の説明において好ましいとした具体的な置換基が好ましい。
 これらの置換基は、上記の置換基によって更に置換されてもよい。また、これらの置換基は複数が互いに結合して環を形成してもよい。
 アルケニル基としては、炭素数2~30のアルケニル基が好ましく、直鎖、分岐鎖、または環状のいずれであってもよく、例えば、ビニル基、プロペニル基、ブテニル基、オレイル基、エイコサペンタエニル基、ドコサヘキサエニル基、スチリル基、2,2-ジフェニルビニル基、1,2,2-トリフェニルビニル基、2-フェニル-2-プロペニル基、シクロペンタジエニル基、シクロペンテニル基、シクロヘキセニル基、およびシクロヘキサジエニル基等が挙げられる。
 アルキニル基としては、炭素数2~30のアルキニル基が好ましく、直鎖、分岐鎖、または環状のいずれであってもよく、例えば、エチニル、プロピニル、および2-フェニルエチニル等が挙げられる。
 アラルキル基としては、環形成炭素数6~30のアラルキル基が好ましく、-Z-Zと表される。このZの例として、上記炭素数1~30のアルキル基に対応するアルキレン基が挙げられる。このZの例として、上記環形成炭素数6~30のアリール基の例が挙げられる。このアラルキル基は、炭素数7~30のアラルキル基(アリール部分は炭素数6~30、好ましくは6~20、より好ましくは6~12)、アルキル部分は炭素数1~24(好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6)であることが好ましい。このアラルキル基としては、例えば、ベンジル基、2-フェニルプロパン-2-イル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、2-β-ナフチルイソプロピル基が挙げられる。
 本明細書において、「置換もしくは無置換の」という場合における「無置換」とは前記置換基で置換されておらず、水素原子が結合していることを意味する。なお、本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表し、置換されている場合の置換基の炭素数は含めない。ここで、「YY」は「XX」よりも大きく、「XX」と「YY」はそれぞれ1以上の整数を意味する。
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表し、置換されている場合の置換基の原子数は含めない。ここで、「YY」は「XX」よりも大きく、「XX」と「YY」はそれぞれ1以上の整数を意味する。
 以下に説明する化合物またはその部分構造において、「置換もしくは無置換の」という場合についても、前記と同様である。
 本明細書において、置換基同士が互いに結合して環構造が構築される場合、環構造は、飽和環、不飽和環、または芳香環である。
 本明細書において、連結基における芳香族炭化水素基および複素環基としては、上述した一価の基から、さらに1つ以上の原子を除いて得られる二価以上の基が挙げられる。
 また、本明細書において、芳香族炭化水素環および複素環としては、上述した一価の基の由来となる環構造が挙げられる。
〔有機EL素子の構成要素〕
 前述した構成要素以外の有機EL素子の構成要素の例について以下に説明する。
(基板)
 基板2は、有機EL素子1の支持体として用いられる。基板2としては、例えば、ガラス、石英、およびプラスチックなどを用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、プラスチック基板等が挙げられる。プラスチック基板を形成する材料としては、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニル、ポリイミド、およびポリエチレンナフタレート等が挙げられる。また、無機蒸着フィルムを用いることもできる。
(陽極)
 基板2上に形成される陽極3には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素もしくは酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステンおよび酸化亜鉛を含有した酸化インジウム、並びにグラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、または金属材料の窒化物(例えば、窒化チタン)等が挙げられる。
 これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1質量%以上10質量%以下の酸化亜鉛を加えたターゲットを用いることにより、スパッタリング法で形成することができる。また、例えば、酸化タングステンおよび酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5質量%以上5質量%以下、酸化亜鉛を0.1質量%以上1質量%以下含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、およびスピンコート法などにより作製してもよい。
 陽極3上に形成される有機層のうち、陽極3に接して形成される正孔注入層5は、陽極3の仕事関数に関係なく正孔(ホール)注入が容易である複合材料を用いて形成される。そのため、その他電極材料として使用可能な材料(例えば、金属、合金、電気伝導性化合物、およびこれらの混合物、その他、元素周期表の第1族または第2族に属する元素も含む)を陽極3として用いることもできる。
 仕事関数の小さい材料である、元素周期表の第1族に属する元素、元素周期表の第2族に属する元素、希土類金属、およびこれらを含む合金等を陽極3として用いることもできる。元素周期表の第1族に属する元素としては、アルカリ金属が挙げられる。元素周期表の第2族に属する元素としては、アルカリ土類金属が挙げられる。アルカリ金属としては、例えば、リチウム(Li)およびセシウム(Cs)等が挙げられる。アルカリ土類金属としては、例えば、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等が挙げられる。希土類金属としては、例えば、ユーロピウム(Eu)、およびイッテルビウム(Yb)等が挙げられる。これらの金属を含む合金としては、例えば、MgAg、およびAlLi等が挙げられる。
(正孔注入層)
 正孔注入層5は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、例えば、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、およびマンガン酸化物等を用いることができる。
 また、正孔注入性の高い物質としては、例えば、低分子の有機化合物である4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、4,4’-ビス(N-{4-[N’-(3-メチルフェニル)-N’-フェニルアミノ]フェニル}-N-フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、および3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物等、並びにジピラジノ[2,3-f:20,30-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)等も挙げられる。
 また、正孔注入性の高い物質としては、高分子化合物を用いることもできる。高分子化合物としては、例えば、オリゴマー、デンドリマー、およびポリマー等が挙げられる。具体的には、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、およびポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)などの高分子化合物が挙げられる。また、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)、およびポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子化合物を用いることもできる。
(正孔輸送層)
 正孔輸送層6は、正孔輸送性の高い物質を含む層である。正孔輸送層6には、例えば、芳香族アミン化合物、カルバゾール誘導体、およびアントラセン誘導体等を使用することができる。具体的には、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BAFLP)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、および4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)等の芳香族アミン化合物等を用いることができる。ここに述べた物質は、主に10-6cm/(V・s)以上の正孔移動度を有する物質である。
 正孔輸送層6には、CBP、9-[4-(N-カルバゾリル)]フェニル-10-フェニルアントラセン(CzPA)、および9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(PCzPA)のようなカルバゾール誘導体、並びにt-BuDNA、DNA、およびDPAnthのようなアントラセン誘導体を用いても良い。ポリ(N-ビニルカルバゾール)(略称:PVK)、およびポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。
 但し、電子よりも正孔の輸送性の高い物質であれば、これら以外の物質を用いてもよい。なお、正孔輸送性の高い物質を含む層は、単層だけでなく、上記物質からなる層が二層以上積層した構成でもよい。
 正孔輸送層を二層以上配置する場合、エネルギーギャップのより大きい材料を含む層を、発光層に近い側に配置することが好ましい。
(電子輸送層)
 電子輸送層7は、電子輸送性の高い物質を含む層である。電子輸送層7には、1)アルミニウム錯体、ベリリウム錯体、および亜鉛錯体等の金属錯体、2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、およびフェナントロリン誘導体等の複素芳香族化合物、並びに3)高分子化合物を使用することができる。具体的には低分子の有機化合物として、Alq、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、BAlq、Znq、ZnPBO、およびZnBTZなどの金属錯体等を用いることができる。また、金属錯体以外にも、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(ptert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、および4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)などの複素芳香族化合物も用いることができる。本実施態様においては、ベンゾイミダゾール化合物を好適に用いることができる。ここに述べた物質は、主に10-6cm/(V・s)以上の電子移動度を有する物質である。なお、正孔輸送性よりも電子輸送性の高い物質であれば、上記以外の物質を電子輸送層7として用いてもよい。また、電子輸送層7は、単層だけでなく、上記物質からなる層が二層以上積層した構成でもよい。
 また、電子輸送層7には、高分子化合物を用いることもできる。例えば、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、およびポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)などを用いることができる。
(電子注入層)
 電子注入層8は、電子注入性の高い物質を含む層である。電子注入層8には、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、およびリチウム酸化物(LiOx)等のような、アルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。その他、電子輸送性を有する物質にアルカリ金属、アルカリ土類金属、またはそれらの化合物を含有させた材料や、具体的にはAlq中にマグネシウム(Mg)を含有させた材料等を用いてもよい。なお、この場合には、陰極4からの電子注入をより効率良く行うことができる。
 あるいは、電子注入層8に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層7を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属、アルカリ土類金属、または希土類金属が好ましく、例えば、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、およびイッテルビウム等が挙げられる。また、アルカリ金属酸化物、またはアルカリ土類金属酸化物を電子供与体として用いることも好ましく、例えば、リチウム酸化物、カルシウム酸化物、およびバリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
(陰極)
 陰極4には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物等を用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族に属する元素、元素周期表の第2族に属する元素、希土類金属、およびこれらを含む合金等が挙げられる。元素周期表の第1族に属する元素としては、アルカリ金属が挙げられる。元素周期表の第2族に属する元素としては、アルカリ土類金属が挙げられる。アルカリ金属としては、例えば、リチウム(Li)、およびセシウム(Cs)等が挙げられる。アルカリ土類金属としては、例えば、マグネシウム(Mg)、カルシウム(Ca)、およびストロンチウム(Sr)等が挙げられる。希土類金属としては、例えば、ユーロピウム(Eu)、およびイッテルビウム(Yb)等が挙げられる。これらの金属を含む合金としては、例えば、MgAg、およびAlLi等が挙げられる。
 なお、アルカリ金属、アルカリ土類金属、およびこれらを含む合金を用いて陰極4を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペースト等を用いる場合には、塗布法やインクジェット法等を用いることができる。
 なお、電子注入層8を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、および珪素または酸化珪素を含有した酸化インジウム-酸化スズ等、様々な導電性材料を用いて陰極4を形成することができる。これらの導電性材料は、スパッタリング法、インクジェット法、およびスピンコート法等を用いて成膜することができる。
(層形成方法)
 前記実施形態の有機EL素子の各層の形成方法としては、上記で特に言及した以外には制限されないが、真空蒸着法、スパッタリング法、プラズマ法、およびイオンプレーティング法などの乾式成膜法や、スピンコーティング法、ディッピング法、フローコーティング法、およびインクジェット法などの湿式成膜法などの公知の方法を採用することができる。
(膜厚)
 前記実施形態の有機EL素子の各有機層の膜厚は、上記で特に言及した以外には制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから1μmの範囲が好ましい。
(電子機器)
 本発明の一実施形態に係る有機EL素子1は、表示装置や発光装置等の電子機器に使用できる。表示装置としては、例えば、有機ELパネルモジュール等の表示部品、テレビ、携帯電話、タブレットもしくはパーソナルコンピュータ等が挙げられる。発光装置としては、例えば、照明、もしくは車両用灯具等が挙げられる。
〔実施形態の変形〕
 なお、本発明は、上述の実施形態に限定されず、本発明の目的を達成できる範囲での変更、改良などは、本発明に含まれる。
 前記実施形態では、第一の有機層11と第二の有機層12との間にバイポーラー層13を設けた態様の有機EL素子を例に挙げて説明したが、本発明はこのような態様の有機EL素子に限定されない。例えば、有機層とバイポーラー層とを交互に複数回積層させた態様の有機EL素子であってもよい。
 例えば、次のような構成(A)~(C)を有する有機EL素子であってもよい。ただし、本発明はこれら構成(A)~(C)を有する有機EL素子に限定されない。
・構成(A)
 陽極/正孔注入層/正孔輸送層/第一の有機層/第一のバイポーラー層/第二の有機層/第二のバイポーラー層/第三の有機層/電子輸送層/電子注入層/陰極
・構成(B)
 陽極/正孔注入層/正孔輸送層/第一の有機層/第一のバイポーラー層/第二の有機層/第三の有機層/電子輸送層/電子注入層/陰極
・構成(C)
 陽極/正孔注入層/正孔輸送層/第一の有機層/第三の有機層/第一のバイポーラー層/第二の有機層/電子輸送層/電子注入層/陰極
 白色で発光する有機EL素子としては、前記実施形態で述べた素子の他に、例えば、前記構成(A)において、第一の有機層11に青色で発光可能な第一の化合物を用い、第二の有機層12に緑色で発光可能な第一の化合物を用い、第三の有機層に赤色で発光可能な第一の化合物を用いた場合が挙げられる。
 また、例えば、前記構成(A)または構成(B)において、第一の有機層11に青色で発光可能な第一の化合物を用い、第二の有機層12に緑色で蛍光発光可能または燐光発光可能な第三の化合物を用い、第三の有機層に赤色で蛍光発光可能または燐光発光可能な第三の化合物を用いた場合が挙げられる。
 また、例えば、前記構成(C)において、第一の有機層11に赤色で蛍光発光可能または燐光発光可能な第三の化合物を用い、第三の有機層に緑色で蛍光発光可能または燐光発光可能な第三の化合物を用い、第二の有機層12に青色で発光可能な第一の化合物を用いた場合が挙げられる。
 有機EL素子が、上記構成(A)~(C)のように、複数のバイポーラー層を有する場合、各バイポーラー層には前記実施形態で述べた化合物を用いることができ、各層で用いる化合物が同一でも異なっていてもよい。
 また、有機EL素子を白色で発光させるための発光色の組み合せは、前述の組み合せに限定されない。
 第二の化合物は、第一の有機層11および第二の有機層12の両方に含まれていてもよい。この場合、第一の有機層11に含まれる第二の化合物と、第二の有機層12に含まれる第二の化合物とは、構造が同じであっても異なっていてもよい。
 また、第一の有機層11が、第一の化合物と、第二の化合物との2成分で構成されていてもよいし、第二の有機層12が、第一の化合物と、第二の化合物と、第五の化合物との3成分で構成されていてもよい。
 前記実施形態では、バイポーラー性を有する化合物によりバイポーラー層が形成された有機EL素子を例に挙げて説明したが、本発明はこのような態様に限定されない。例えば、バイポーラー層が、正孔輸送性の化合物および電子輸送性の化合物を含んで構成されていてもよい。正孔輸送性の化合物および電子輸送性の化合物としては、例えば、前述した正孔輸送層や電子輸送層の説明で示した化合物が挙げられる。
 前記実施形態では、第一の有機層11と陽極3との間における正孔輸送帯域が正孔注入層5と正孔輸送層6とを含む態様を例に挙げて説明したが、本発明はこのような態様に限定されない。正孔輸送帯域は、正孔注入層および正孔輸送層のうちの少なくともいずれかの層を含んでいることが好ましい。正孔注入層は、それぞれ一つの層で構成されていてもよいし、互いに異なる化合物を含む複数の層で構成されていてもよい。正孔輸送層は、それぞれ一つの層で構成されていてもよいし、互いに異なる化合物を含む複数の層で構成されていてもよい。
 前記実施形態では、第二の有機層12と陰極4との間における電子輸送帯域が電子輸送層7と電子注入層8を含む態様を例に挙げて説明したが、本発明はこのような態様に限定されない。電子輸送帯域は、電子注入層および電子輸送層のうちの少なくともいずれかの層を含んでいることが好ましい。電子注入層は、それぞれ一つの層で構成されていてもよいし、互いに異なる化合物を含む複数の層で構成されていてもよい。電子輸送層は、それぞれ一つの層で構成されていてもよいし、互いに異なる化合物を含む複数の層で構成されていてもよい。
 また、例えば、第一の有機層の陽極側や、第二の有機層の陰極側に障壁層を隣接させて設けてもよい。障壁層は、第一の有機層や第二の有機層に接して配置され、正孔、電子および励起子の少なくともいずれかを阻止することが好ましい。
 例えば、第二の有機層の陰極側で接して障壁層が配置された場合、当該障壁層は、電子を輸送し、正孔が当該障壁層よりも陰極側の層(例えば、電子輸送層)に到達することを阻止する。有機EL素子が、電子輸送層を含む場合は、第二の有機層と電子輸送層との間に当該障壁層を含むことが好ましい。
 また、第一の有機層の陽極側で接して障壁層が配置された場合、当該障壁層は、正孔を輸送し、電子が当該障壁層よりも陽極側の層(例えば、正孔輸送層)に到達することを阻止する。有機EL素子が、正孔輸送層を含む場合は、第一の有機層と正孔輸送層との間に当該障壁層を含むことが好ましい。
 また、励起エネルギーが第一の有機層や第二の有機層からその周辺層に漏れ出さないように、障壁層を第一の有機層や第二の有機層に隣接させて設けてもよい。第一の有機層や第二の有機層で生成した励起子が、当該障壁層よりも電極側の層(例えば、電子輸送層や正孔輸送層)に移動することを阻止する。
 第一の有機層や第二の有機層と障壁層とは接合していることが好ましい。
 その他、本発明の実施における具体的な構造および形状などは、本発明の目的を達成できる範囲で他の構造などとしてもよい。
 次に、実施例を説明する。本発明はこれらの実施例の記載内容になんら制限されない。
 有機EL素子の製造に用いた化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
<化合物の評価>
 次に、本実施例で使用した化合物の物性を測定した。測定方法および算出方法を以下に示す。
・遅延蛍光発光性
 遅延蛍光発光性は図2に示す装置を利用して過渡PLを測定することにより確認した。前記化合物BDと前記化合物TH-2とを化合物BDの割合が12質量%となるように石英基板上に共蒸着し、膜厚100nmの薄膜を形成して試料を作製した。前記化合物BDが吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察されるPrompt発光(即時発光)と、当該励起後、即座には観察されず、その後観察されるDelay発光(遅延発光)とが存在する。本実施例における遅延蛍光発光とは、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上を意味する。化合物BDはDelay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上あることを確認した。Prompt発光とDelay発光の量は、“Nature 492, 234-238, 2012”に記載された方法と同様の方法により求めることができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、図2の装置や文献に記載された装置に限定されない。
・77[K]におけるエネルギーギャップT77K
 T77Kの測定は、次のようにして行った。ここでは、化合物BDおよび化合物BHを測定対象とした。測定対象となる化合物をEPA(ジエチルエーテル:イソペンタン:エタノール=5:5:2(容積比))中に、濃度が10μmol/Lとなるように溶解し、この溶液を石英セル中に入れて測定試料とした。この測定試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]に基づいて、次の換算式1から算出されるエネルギー量を77[K]におけるエネルギーギャップT77Kとした。
  換算式1:T77K[eV]=1239.85/λedge
 燐光の測定には、(株)日立ハイテクノロジー製のF-4500形分光蛍光光度計本体を用いた。
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引いた。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線(すなわち変曲点における接線)が、当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
 なお、スペクトルの最大ピーク強度の15%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
 化合物BDのT77Kは、2.90eVであった。化合物BHのT77Kは、2.92eVであった。
<有機EL素子の作製および評価>
 有機EL素子を以下のように作製し、評価した。
(実施例1)
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック社製)を、イソプロピルアルコール中で5分間超音波洗浄を行った後、UVオゾン洗浄を30分間行った。ITOの膜厚は、130nmとした。
 洗浄後の透明電極ライン付き前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HIを蒸着し、膜厚5nmの正孔注入層を形成した。
 次に、正孔注入層上に、化合物HT-1を蒸着し、HI膜上に膜厚80nmの第一正孔輸送層を形成した。
 次に、この第一正孔輸送層上に、化合物HT-2を蒸着し、膜厚15nmの第二正孔輸送層を形成した。
 さらに、この第二正孔輸送層上に、第一の化合物としての化合物BDと、第二の化合物としての化合物BHと、を共蒸着し、膜厚12nmの第一の有機層を形成した。第一の有機層における化合物BDの濃度を50質量%とした。
 次に、この第一の有機層上に、化合物BP-1を蒸着し、膜厚4nmのバイポーラー層を形成した。
 次に、このバイポーラー層上に、第一の化合物としての化合物BDと、第二の化合物としての化合物BHと、を共蒸着し、膜厚13nmの第二の有機層を形成した。第二の有機層における化合物BDの濃度を50質量%とした。
 次に、この第二の有機層上に、化合物HB-1を蒸着し、膜厚5nmの障壁層を形成した。
 次に、この障壁層上に、化合物ETを蒸着し、膜厚20nmの電子輸送層を形成した。
 次に、この電子輸送層上に、フッ化リチウム(LiF)を蒸着し、膜厚1nmの電子注入性電極(陰極)を形成した。
 そして、この電子注入性電極上に、金属アルミニウム(Al)を蒸着し、膜厚80nmの金属Al陰極を形成した。
 実施例1の有機EL素子の素子構成を略式的に示すと、次のとおりである。
  ITO(130) / HI(5) / HT-1(80) / HT-2(15) / BH : BD (12, 50%) / BP-1 (4) / BH : BD (13, 50%)/ HB-1(5) / ET(20) / LiF(1) / Al(80) なお、括弧内の数字は、膜厚(単位:nm)を示す。また、同じく括弧内において、パーセント表示された数字は、第一の有機層および第二の有機層における第一の化合物の割合(質量%)を示す。
(実施例2)
 実施例2の有機EL素子は、実施例1のバイポーラー層における化合物BP-1を化合物BP-2に変更したこと以外は、実施例1と同様にして作製した。
 実施例2の有機EL素子の素子構成を略式的に示すと、次のとおりである。
  ITO(130) / HI(5) / HT-1(80) / HT-2(15) / BH : BD (12, 50%) / BP-2 (4) / BH : BD (13, 50%)/ HB-1(5) / ET(20) / LiF(1) / Al(80)
(比較例1)
 比較例1の有機EL素子は、実施例1における第一の有機層の膜厚を25nmに変更し、バイポーラー層および第二の有機層の形成を省略し、第一の有機層の上に障壁層を形成したこと以外は、実施例1と同様にして作製した。
 比較例1の有機EL素子の素子構成を略式的に示すと、次のとおりである。
  ITO(130) / HI(5) / HT-1(80) / HT-2(15) / BH : BD (25, 50%) / HB-1(5) / ET(20) / LiF(1) / Al(80)
〔有機EL素子の評価〕
 実施例1,2並びに比較例1において作製した有機EL素子について、以下の評価を行った。評価結果を表2に示す。
・駆動電圧
 電流密度が、0.10mA/cm、1.00mA/cm、または10mA/cmとなるようにITO透明電極と金属Al陰極との間に通電したときの電圧(単位:V)を計測した。
・輝度およびCIE1931色度
 電流密度が、0.10mA/cm、1.00mA/cm、または10mA/cmとなるように素子に電圧を印加した時の輝度およびCIE1931色度座標(x、y)を、分光放射輝度計CS-1000(コニカミノルタ社製)で計測した。
・電流効率L/Jおよび電力効率η
 電流密度が、0.10mA/cm、1.00mA/cm、または10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを、上記分光放射輝度計で計測した。得られた分光放射輝度スペクトルから、電流効率(単位:cd/A)および電力効率η(単位:lm/W)を算出した。
・主ピーク波長λ
 得られた上記分光放射輝度スペクトルから主ピーク波長λを求めた。
・外部量子効率EQE
 電流密度が、0.10mA/cm、1.00mA/cm、または10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを上記分光放射輝度計で計測した。得られた上記分光放射輝度スペクトルから、ランバシアン放射を行なったと仮定し外部量子効率EQE(単位:%)を算出した。
Figure JPOXMLDOC01-appb-T000105
 表2によれば、バイポーラー層を有する実施例1および実施例2の有機EL素子は、バイポーラー層を有さない比較例1の有機EL素子に比べて、発光効率が向上したことが分かった。
(実施例3)
 実施例1と同様にしてITO透明電極(陽極)付きガラス基板に化合物HIを蒸着し、膜厚5nmの正孔注入層を形成した。
 次に、正孔注入層上に、化合物HT-1を蒸着し、HI膜上に膜厚110nmの第一正孔輸送層を形成した。
 次に、この第一正孔輸送層上に、化合物HT-2を蒸着し、膜厚15nmの第二正孔輸送層を形成した。
 さらに、この第二正孔輸送層上に、第一の化合物としての化合物BDと、第二の化合物としての化合物BHと、を共蒸着し、膜厚12nmの第一の有機層を形成した。第一の有機層における化合物BDの濃度を50質量%とした。
 次に、この第一の有機層上に、化合物BP-2と、化合物BD2と、を共蒸着し、膜厚4nmのバイポーラー層を形成した。バイポーラー層に含まれる化合物BD2の濃度を1質量%とした。
 次に、このバイポーラー層上に、第一の化合物としての化合物BDと、第二の化合物としての化合物BHと、第五の化合物としての化合物BD2と、を共蒸着し、膜厚13nmの第二の有機層を形成した。第二の有機層における化合物BDの濃度を50質量%とし、化合物BD2の濃度を1質量%とした。
 次に、この第二の有機層上に、化合物HB-1を蒸着し、膜厚5nmの障壁層を形成した。
 次に、この障壁層上に、化合物ETを蒸着し、膜厚35nmの電子輸送層を形成した。
 次に、この電子輸送層上に、フッ化リチウム(LiF)を蒸着し、膜厚1nmの電子注入性電極(陰極)を形成した。
 そして、この電子注入性電極上に、金属アルミニウム(Al)を蒸着し、膜厚80nmの金属Al陰極を形成した。
 実施例3の有機EL素子の素子構成を略式的に示すと、次のとおりである。
  ITO(130) / HI(5) / HT-1(110) / HT-2(15) / BH : BD (12, 50%) / BP-2: BD2 (4, 1%) / BH : BD : BD2 (13, 50% ,1%)/ HB-1(5) / ET(35) / LiF(1) / Al(80)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。また、同じく括弧内において、パーセント表示された数字は、第一の有機層における化合物BDの割合(質量%)を示し、バイポーラー層における化合物BD2の割合(質量%)を示し、第二の有機層における化合物BDおよび化合物BD2の割合(質量%)を示す。
Figure JPOXMLDOC01-appb-C000106
(実施例4)
 実施例4の有機EL素子は、実施例3のバイポーラー層および第二の有機層における化合物BD2を化合物BD3に変更したこと以外は、実施例3と同様にして作製した。
 実施例4の有機EL素子の素子構成を略式的に示すと、次のとおりである。
  ITO(130) / HI(5) / HT-1(110) / HT-2(15) / BH : BD (12, 50%) / BP-2: BD3 (4, 1%) / BH : BD : BD3 (13, 50% ,1%)/ HB-1(5) / ET(35) / LiF(1) / Al(80)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。また、同じく括弧内において、パーセント表示された数字は、第一の有機層における化合物BDの割合(質量%)を示し、バイポーラー層における化合物BD2の割合(質量%)を示し、第二の有機層における化合物BDおよび化合物BD2の割合(質量%)を示す。
(比較例2)
 比較例2の有機EL素子は、実施例3における第一の有機層およびバイポーラー層の形成を省略し、第二の有機層の膜厚を25nmに変更し、第二の有機層の上に障壁層を形成したこと以外は、実施例3と同様にして作製した。
 比較例2の有機EL素子の素子構成を略式的に示すと、次のとおりである。
  ITO(130) / HI(5) / HT-1(110) / HT-2(15) / BH : BD : BD2 (25, 50% ,1%)/ HB-1(5) / ET(35) / LiF(1) / Al(80)
〔有機EL素子の評価〕
 実施例3,4並びに比較例2において作製した有機EL素子について、前述と同様の評価を行った。評価結果を表3に示す。
 表3によれば、実施例3および実施例4の有機EL素子は、バイポーラー層を有し、第四の化合物と第五の化合物とを含んでおり、その結果、比較例2の有機EL素子に比べて発光効率が向上したことが分かった。
(実施例5)
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック社製)を、イソプロピルアルコール中で5分間超音波洗浄を行った後、UVオゾン洗浄を30分間行った。ITOの膜厚は、130nmとした。
 洗浄後の透明電極ライン付き前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HI-2を蒸着し、膜厚10nmの正孔注入層を形成した。
 次に、正孔注入層上に、化合物HT-3を蒸着し、膜厚10nmの正孔輸送層を形成した。
 次に、この正孔輸送層上に、第一の化合物としての化合物YDと、第二の化合物としての化合物YHと、を共蒸着し、膜厚20nmの第一の有機層を形成した。第一の有機層における化合物YDの濃度を20質量%とした。
 次に、この第一の有機層上に、化合物BP-2を蒸着し、膜厚5nmのバイポーラー層を形成した。
 次に、このバイポーラー層上に、第一の化合物としての化合物BH-2と、第二の化合物としての化合物BH-3と、第五の化合物としての化合物BD4とを共蒸着し、膜厚20nmの第二の有機層を形成した。第二の有機層における化合物BH-2の濃度を50質量%とし、化合物BD4の濃度を1質量%とした。
 次に、この第二の有機層上に、化合物BP-2を蒸着し、膜厚5nmの障壁層を形成した。
 次に、この障壁層上に、化合物ETを蒸着し、膜厚35nmの電子輸送層を形成した。
 次に、この電子輸送層上に、フッ化リチウム(LiF)を蒸着し、膜厚1nmの電子注入性電極(陰極)を形成した。
 そして、この電子注入性電極上に、金属アルミニウム(Al)を蒸着し、膜厚80nmの金属Al陰極を形成した。
 実施例5の有機EL素子の素子構成を略式的に示すと、次のとおりである。
  ITO(130) / HI-2(10) / HT-3(10) / YH : YD (20, 20%) / BP-2 (5) / BH-3 : BH-2 : BD4 (20, 50%, 1%)/ BP-2 (5) / ET(35) / LiF(1) / Al(80)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。また、同じく括弧内において、パーセント表示された数字は、第一の有機層における第一の化合物の割合(質量%)、並びに第二の有機層における第一の化合物および第五の化合物の割合(質量%)を示す。
(比較例3)
 比較例3の有機EL素子は、実施例5における第一の有機層の膜厚を25nmに変更し、バイポーラー層の形成を省略したこと以外は、実施例5と同様にして作製した。
 比較例3の有機EL素子の素子構成を略式的に示すと、次のとおりである。
  ITO(130) / HI-2(10) / HT-3(10) / YH : YD (25, 20%) / BH-3 : BH-2 : BD4 (20, 50%, 1%)/ BP-2 (5) / ET(35) / LiF(1) / Al(80)
 実施例5および比較例3で用いた化合物は、前掲の化合物の他に、下記の化合物も用いた。
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
 化合物YHのT77Kは、2.74eVであった。化合物YDのT77Kは、2.56eVであった。
〔有機EL素子の評価〕
 実施例5および比較例3において作製した有機EL素子について、前述と同様の評価を行った。評価結果を表4に示す。なお、評価項目は、CIE1931色度、外部量子効率EQE、及び主ピーク波長λとした。各項目の測定は、電流密度が、1.00mA/cmとなるように素子に電圧を印加して行った。外部量子効率EQEは、比較例3のEQE値を1.00とし、このEQE値に対する比で表した。
Figure JPOXMLDOC01-appb-T000111
 表4に示されているように、バイポーラー層を有する実施例5の有機EL素子は、バイポーラー層を有さない比較例3の有機EL素子に比べて、外部量子効率が1.11倍向上した。実施例5の有機EL素子は、色度の値が示すように、白色で発光した。
 1…有機EL素子、3…陽極、4…陰極、6…正孔輸送層、7…電子輸送層、11…第一の有機層、12…第二の有機層、13…バイポーラー層。

Claims (26)

  1.  陽極と、
     陰極と、
     前記陽極と前記陰極との間に含まれる第一の有機層と、
     前記第一の有機層と前記陰極との間に含まれる第二の有機層と、
     前記第一の有機層と前記第二の有機層との間に含まれ、バイポーラー性を有するバイポーラー層と、を備え、
     前記第一の有機層および前記第二の有機層の少なくともいずれかが、第一の化合物と、第二の化合物とを含み、
     前記第一の化合物は、遅延蛍光発光性を有し、
     前記第二の化合物の77[K]におけるエネルギーギャップT77K(M2)は、前記第一の化合物の77[K]におけるエネルギーギャップT77K(M1)よりも大きい有機エレクトロルミネッセンス素子。
  2.  前記第二の有機層が前記第一の化合物を含んでいる
     請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  前記第一の有機層が前記第一の化合物を含んでいる
     請求項1に記載の有機エレクトロルミネッセンス素子。
  4.  前記第一の有機層および前記第二の有機層が前記第一の化合物を含んでいる
     請求項1に記載の有機エレクトロルミネッセンス素子。
  5.  前記第一の有機層に含まれる前記第一の化合物と、前記第二の有機層に含まれる前記第一の化合物とが互いに異なる構造を有し、
     前記第一の有機層に含まれる前記第一の化合物の発光スペクトルの主ピーク波長λ1(単位:nm)と、前記第二の有機層に含まれる前記第一の化合物の発光スペクトルの主ピーク波長λ2(単位:nm)とが、下記数式(数1)の関係を満たす
     請求項4に記載の有機エレクトロルミネッセンス素子。
         |λ1-λ2|≦150nm     …(数1)
  6.  前記第一の有機層に含まれる前記第一の化合物と、前記第二の有機層に含まれる前記第一の化合物とが互いに異なる構造を有し、
     前記第一の有機層に含まれる前記第一の化合物の発光スペクトルの主ピーク波長λ1(単位:nm)と、前記第二の有機層に含まれる前記第一の化合物の発光スペクトルの主ピーク波長λ2(単位:nm)とが、下記数式(数2)の関係を満たす
     請求項4に記載の有機エレクトロルミネッセンス素子。
         |λ1-λ2|≧100nm     …(数2)
  7.  白色に発光する請求項4または請求項6に記載の有機エレクトロルミネッセンス素子。
  8.  前記第一の有機層および前記第二の有機層のうち一方が前記第一の化合物および前記第二の化合物を含み、
     前記第一の有機層および前記第二の有機層のうち他方が発光性を有する第三の化合物を含む請求項1に記載の有機エレクトロルミネッセンス素子。
  9.  前記第一の化合物の発光スペクトルの主ピーク波長λ1(単位:nm)と、前記第三の化合物の発光スペクトルの主ピーク波長λ3(単位:nm)とが、下記数式(数3)の関係を満たす請求項8に記載の有機エレクトロルミネッセンス素子。
         |λ1-λ3|≦150nm     …(数3)
  10.  前記第一の化合物の発光スペクトルの主ピーク波長λ1(単位:nm)と、前記第三の化合物の発光スペクトルの主ピーク波長λ3(単位:nm)とが、下記数式(数4)の関係を満たす請求項8に記載の有機エレクトロルミネッセンス素子。
         |λ1-λ3|≧100nm     …(数4)
  11.  白色に発光する請求項8または請求項10に記載の有機エレクトロルミネッセンス素子。
  12.  前記第三の化合物は、蛍光発光性または燐光発光性を有する化合物である
     請求項8から請求項11のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  13.  前記第三の化合物は、蛍光発光性を有する化合物である
     請求項8から請求項12のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  14.  前記第一の有機層および前記第二の有機層の少なくともいずれかが、前記第一の化合物を20質量%以上80質量%以下の濃度で含んでいる
     請求項1から請求項13のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  15.  前記第一の有機層および前記第二の有機層には、燐光発光性の金属錯体を含まない
     請求項1から請求項14のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  16.  前記バイポーラー層は、下記一般式(2)で表される第四の化合物を含んでいる
     請求項1から請求項15のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001

    (前記一般式(2)において、
     Czは、下記一般式(2a)または下記一般式(2b)で表され、複数のCzは、互いに同一であるか、または異なり、
     nは、1以上4以下の整数であり、
     Lは、単結合または連結基であり、Lにおける連結基は、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、および置換もしくは無置換の環形成原子数5~30の複素環基からなる群から選択される基であり、
     Rは、下記一般式(20)で表される。)
    Figure JPOXMLDOC01-appb-C000002

    (前記一般式(2a)および(2b)において、
     *1および*2は、Lとの結合部位を表し、
     A、A、A、A、A、A、AおよびAは、それぞれ独立に、窒素原子、またはCR21であり、
     R21は、水素原子または置換基であり、R21が置換基である場合の置換基は、
      置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、
      置換もしくは無置換の環形成原子数5~30の複素環基、
      置換もしくは無置換の炭素数1~30のアルキル基、
      置換もしくは無置換の炭素数1~30のフルオロアルキル基、
      置換もしくは無置換の炭素数3~30のシクロアルキル基、
      置換もしくは無置換の炭素数7~30のアラルキル基、
      置換シリル基、
      置換ゲルマニウム基、
      置換ホスフィンオキシド基、
      ハロゲノ基、
      シアノ基、
      カルボニル基、および
      カルボキシ基からなる群から選択され、複数のR21は、互いに同一でも異なっていてもよく、複数のR21のうち少なくとも2つが置換基である場合、置換基R21同士は、互いに結合して環構造が構築されていてもよく、
     R20は、
      置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、
      置換もしくは無置換の環形成原子数5~30の複素環基、
      置換もしくは無置換の炭素数1~30のアルキル基、
      置換もしくは無置換の炭素数1~30のフルオロアルキル基、
      置換もしくは無置換の炭素数3~30のシクロアルキル基、
      置換もしくは無置換の炭素数7~30のアラルキル基、および
      置換シリル基からなる群から選択される置換基であり、複数のR20は、互いに同一でも異なっていてもよい。
     前記一般式(20)において、
     *3は、Lとの結合部位を表し、
     A11、A12、A13、A14、およびA15は、それぞれ独立に、窒素原子、またはCR22であり、
     R22は、水素原子または置換基であり、R22が置換基である場合の置換基は、
      置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、
      置換もしくは無置換の環形成原子数5~30の複素環基、
      置換もしくは無置換の炭素数1~30のアルキル基、
      置換もしくは無置換の炭素数1~30のフルオロアルキル基、
      置換もしくは無置換の炭素数3~30のシクロアルキル基、
      置換もしくは無置換の炭素数7~30のアラルキル基、
      置換シリル基、
      置換ゲルマニウム基、
      置換ホスフィンオキシド基、
      ハロゲノ基、
      シアノ基、
      カルボニル基、および
      カルボキシ基からなる群から選択され、複数のR22は、互いに同一でも異なっていてもよく、複数のR22のうち少なくとも2つが置換基である場合、置換基R22同士は、互いに結合して環構造が構築されていてもよく、
     A11~A15のうち少なくとも1つは窒素原子であるか、もしくはA11~A15の全てがCR22である場合は、複数のR22のうち少なくとも1つはシアノ基である。)
  17.  A11、A13、およびA15のうち少なくとも2つが窒素原子である請求項16に記載の有機エレクトロルミネッセンス素子。
  18.  A11、A13、およびA15が窒素原子である請求項16または請求項17に記載の有機エレクトロルミネッセンス素子。
  19.  A11~A15がCR22であり、複数のR22のうち少なくとも1つがシアノ基である請求項16に記載の有機エレクトロルミネッセンス素子。
  20.  nが1または2である請求項16から請求項19のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  21.  前記一般式(2a)におけるA~Aのうち少なくとも一つがCR21であり、
     R21のうち少なくとも一つが下記一般式(2c)または下記一般式(2d)で表される複素環基である請求項16から請求項20のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003

     
    (前記一般式(2c)および(2d)において、
     *4および*5は、前記一般式(2a)におけるA~Aとの結合部位を表し、
     A21、A22、A23、A24、A25、A26、A27およびA28は、それぞれ独立に、窒素原子、またはCR24であり、
     R24は、水素原子または置換基であり、R24が置換基である場合の置換基は、R21が置換基である場合に列挙された置換基の群から選択され、複数のR24は、互いに同一でも異なっていてもよく、複数のR24のうち少なくとも2つが置換基である場合、置換基R24同士は、互いに結合して環構造が構築されていてもよく、
     R23は、R20について列挙された置換基の群から選択され、複数のR23は、互いに同一でも異なっていてもよい。
  22.  前記第一の有機層および前記第二の有機層のうち少なくとも一方が前記第一の化合物、前記第二の化合物及び下記一般式(3)で表される第五の化合物を含む請求項1から請求項21のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004

    (前記一般式(3)において、
     Xは、環形成炭素数10~40の置換もしくは無置換の縮合芳香族炭化水素基を示し、
     Ar11およびAr12は、それぞれ独立に、
      置換もしくは無置換の環形成炭素数6~40の芳香族炭化水素基、および
      置換もしくは無置換の環形成原子数5~30の複素環基からなる群から選択される基を示し、
     L11~L13は、それぞれ独立に、単結合または連結基を示し、L11~L13が連結基である場合の連結基は、
      置換もしくは無置換の環形成炭素数6~30の芳香族複素環基、および  置換もしくは無置換の環形成原子数5~30の複素環基の二価の残基からなる群から選択され、
     pは1~4の整数を示す。)
  23.  前記バイポーラー層が、下記一般式(3)で表される第五の化合物をさらに含んでいる請求項16から請求項22のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005

    (前記一般式(3)において、
     Xは、環形成炭素数10~40の置換もしくは無置換の縮合芳香族炭化水素基を示し、
     Ar11およびAr12は、それぞれ独立に、
      置換もしくは無置換の環形成炭素数6~40の芳香族炭化水素基、および
      置換もしくは無置換の環形成原子数5~30の複素環基からなる群から選択される基を示し、
     L11~L13は、それぞれ独立に、単結合または連結基を示し、L11~L13が連結基である場合の連結基は、
      置換もしくは無置換の環形成炭素数6~30の芳香族複素環基、および
      置換もしくは無置換の環形成原子数5~30の複素環基の二価の残基からなる群から選択され、
     pは1~4の整数を示す。)
  24.  前記陽極と前記第一の有機層との間に正孔輸送層が含まれる請求項1から請求項23のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  25.  前記陰極と前記第二の有機層との間に電子輸送層が含まれる請求項1から請求項24のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  26.  請求項1から請求項25のいずれか一項に記載の有機エレクトロルミネッセンス素子を備える電子機器。
PCT/JP2015/073508 2014-08-28 2015-08-21 有機エレクトロルミネッセンス素子および電子機器 WO2016031703A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177003229A KR102341609B1 (ko) 2014-08-28 2015-08-21 유기 일렉트로루미네센스 소자 및 전자 기기
US15/501,712 US10651398B2 (en) 2014-08-28 2015-08-21 Organic electroluminescence element and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-174589 2014-08-28
JP2014174589A JP2017212024A (ja) 2014-08-28 2014-08-28 有機エレクトロルミネッセンス素子および電子機器

Publications (1)

Publication Number Publication Date
WO2016031703A1 true WO2016031703A1 (ja) 2016-03-03

Family

ID=55399596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073508 WO2016031703A1 (ja) 2014-08-28 2015-08-21 有機エレクトロルミネッセンス素子および電子機器

Country Status (4)

Country Link
US (1) US10651398B2 (ja)
JP (1) JP2017212024A (ja)
KR (1) KR102341609B1 (ja)
WO (1) WO2016031703A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170229660A1 (en) * 2014-08-28 2017-08-10 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and electronic device
US10703762B2 (en) 2015-08-28 2020-07-07 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence device, organic electroluminescence device and electronic apparatus
WO2021210582A1 (ja) * 2020-04-15 2021-10-21 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024141862A1 (ja) * 2022-12-27 2024-07-04 株式会社半導体エネルギー研究所 発光デバイス

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132684A1 (ja) * 2010-04-20 2011-10-27 出光興産株式会社 ビスカルバゾール誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
US20120097998A1 (en) * 2010-10-26 2012-04-26 Sung-Hoon Pieh White Organic Light Emitting Device
WO2012099241A1 (ja) * 2011-01-20 2012-07-26 出光興産株式会社 有機エレクトロルミネッセンス素子
JP2014075249A (ja) * 2012-10-03 2014-04-24 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
WO2014092083A1 (ja) * 2012-12-10 2014-06-19 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2014104346A1 (ja) * 2012-12-28 2014-07-03 出光興産株式会社 有機エレクトロルミネッセンス素子

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE498898T1 (de) 2001-05-16 2011-03-15 Univ Princeton Hocheffiziente mehrfarbige elektrophosphoreszente oleds
EP1489155A4 (en) 2002-03-22 2006-02-01 Idemitsu Kosan Co MATERIAL FOR ORGANIC ELECTROLUMINESCENT DEVICES AND ORGANIC ELECTROLUMINESCENT DEVICES PRODUCED WITH THIS MATERIAL
EP1612202B1 (en) 2003-04-10 2013-07-31 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element employing the same
JP2005099313A (ja) 2003-09-24 2005-04-14 Yamaha Corp 画像描画方法ならびに画像描画装置
US7737625B2 (en) 2004-03-25 2010-06-15 Idemitsu Kosan Co., Ltd. Organic electroluminescent device with carrier blocking layer interposed between two emitting layers
JPWO2005099313A1 (ja) 2004-04-02 2008-03-06 出光興産株式会社 電子障壁層を介して2つの発光層を有する有機エレクトロルミネッセンス素子
JP4496948B2 (ja) 2004-12-13 2010-07-07 株式会社豊田自動織機 有機el素子
JP4496949B2 (ja) 2004-12-13 2010-07-07 株式会社豊田自動織機 有機el素子
TW200908777A (en) 2007-03-23 2009-02-16 Idemitsu Kosan Co Organic el device
WO2011096506A1 (ja) 2010-02-05 2011-08-11 出光興産株式会社 アミノアントラセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JPWO2012153780A1 (ja) 2011-05-11 2014-07-31 出光興産株式会社 新規化合物、有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP2013008492A (ja) 2011-06-23 2013-01-10 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
US9978952B2 (en) 2011-09-13 2018-05-22 Idemitsu Kosan Co., Ltd. Fused heterocyclic aromatic derivative, organic electroluminescence element material, and organic electroluminescence element using same
JP5594750B2 (ja) * 2012-05-17 2014-09-24 国立大学法人九州大学 化合物、発光材料および有機発光素子
EP2858136B1 (en) 2012-06-01 2021-05-26 Idemitsu Kosan Co., Ltd Organic electroluminescence element and material for organic electroluminescence element
WO2014104315A1 (ja) * 2012-12-28 2014-07-03 出光興産株式会社 有機エレクトロルミネッセンス素子
JP2016122672A (ja) * 2013-03-18 2016-07-07 出光興産株式会社 発光装置
US10862047B2 (en) * 2013-08-14 2020-12-08 Kyushu University, National University Corporation Organic electroluminescent device
CN104716268B (zh) * 2013-12-17 2017-09-29 北京维信诺科技有限公司 一种有机电致发光器件及其制备方法
JP5905916B2 (ja) * 2013-12-26 2016-04-20 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
JP2017212024A (ja) * 2014-08-28 2017-11-30 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
WO2016063169A1 (en) * 2014-10-23 2016-04-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10680017B2 (en) * 2014-11-07 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element including EL layer, electrode which has high reflectance and a high work function, display device, electronic device, and lighting device
CN105810846B (zh) * 2014-12-31 2020-07-07 北京维信诺科技有限公司 一种有机电致发光器件
US10062861B2 (en) * 2015-02-24 2018-08-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
KR102543330B1 (ko) * 2015-02-25 2023-06-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 소자, 표시 장치, 전자 기기, 및 조명 장치
KR20170008358A (ko) * 2015-07-13 2017-01-24 삼성디스플레이 주식회사 유기 발광 표시 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132684A1 (ja) * 2010-04-20 2011-10-27 出光興産株式会社 ビスカルバゾール誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
US20120097998A1 (en) * 2010-10-26 2012-04-26 Sung-Hoon Pieh White Organic Light Emitting Device
WO2012099241A1 (ja) * 2011-01-20 2012-07-26 出光興産株式会社 有機エレクトロルミネッセンス素子
JP2014075249A (ja) * 2012-10-03 2014-04-24 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
WO2014092083A1 (ja) * 2012-12-10 2014-06-19 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2014104346A1 (ja) * 2012-12-28 2014-07-03 出光興産株式会社 有機エレクトロルミネッセンス素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170229660A1 (en) * 2014-08-28 2017-08-10 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and electronic device
US10703762B2 (en) 2015-08-28 2020-07-07 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence device, organic electroluminescence device and electronic apparatus
WO2021210582A1 (ja) * 2020-04-15 2021-10-21 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器

Also Published As

Publication number Publication date
US20170229660A1 (en) 2017-08-10
KR102341609B1 (ko) 2021-12-22
US10651398B2 (en) 2020-05-12
JP2017212024A (ja) 2017-11-30
KR20170045201A (ko) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6722579B2 (ja) 有機エレクトロルミネッセンス素子、および電子機器
JP6742236B2 (ja) 有機エレクトロルミネッセンス素子および電子機器
JP5905916B2 (ja) 有機エレクトロルミネッセンス素子および電子機器
WO2018181188A1 (ja) 有機エレクトロルミネッセンス素子および電子機器
WO2016158540A1 (ja) 有機エレクトロルミネッセンス素子、電子機器、および化合物
WO2017010489A1 (ja) 有機エレクトロルミネッセンス素子および電子機器
WO2015151965A1 (ja) 有機エレクトロルミネッセンス素子および電子機器
WO2019230708A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び電子機器
WO2016125807A1 (ja) 有機エレクトロルミネッセンス素子および電子機器
JP6573442B2 (ja) 有機エレクトロルミネッセンス素子および電子機器
JP2019165101A (ja) 有機エレクトロルミネッセンス素子、及び電子機器
WO2019181858A1 (ja) 有機エレクトロルミネッセンス素子、及び電子機器
WO2017115788A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP2019165102A (ja) 有機エレクトロルミネッセンス素子、及び電子機器
JP2018076259A (ja) 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器
WO2019181859A1 (ja) 有機エレクトロルミネッセンス素子、及び電子機器
KR102341609B1 (ko) 유기 일렉트로루미네센스 소자 및 전자 기기
WO2015198987A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子用材料、および電子機器
CN113892194A (zh) 有机电致发光元件以及电子设备
WO2017065295A1 (ja) 有機エレクトロルミネッセンス素子および電子機器
JP6433935B2 (ja) 有機エレクトロルミネッセンス素子および電子機器
JP2015141806A (ja) 有機エレクトロルミネッセンス素子の製造方法、組成物、有機エレクトロルミネッセンス素子、および電子機器
JP2019137617A (ja) 化合物、有機エレクトロルミネッセンス素子、及び電子機器
JP2018076260A (ja) 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器
CN117480879A (zh) 有机电致发光元件、有机电致发光显示装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177003229

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP