[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016031299A1 - Medical device - Google Patents

Medical device Download PDF

Info

Publication number
WO2016031299A1
WO2016031299A1 PCT/JP2015/062175 JP2015062175W WO2016031299A1 WO 2016031299 A1 WO2016031299 A1 WO 2016031299A1 JP 2015062175 W JP2015062175 W JP 2015062175W WO 2016031299 A1 WO2016031299 A1 WO 2016031299A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical device
resonance
capacitor
inductor
frequency
Prior art date
Application number
PCT/JP2015/062175
Other languages
French (fr)
Japanese (ja)
Inventor
船戸 裕樹
浩和 飯嶋
高橋 昌義
Original Assignee
株式会社日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立メディコ filed Critical 株式会社日立メディコ
Publication of WO2016031299A1 publication Critical patent/WO2016031299A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H5/00One-port networks comprising only passive electrical elements as network components
    • H03H5/02One-port networks comprising only passive electrical elements as network components without voltage- or current-dependent elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance

Definitions

  • the present invention relates to a medical device.
  • Patent Document 1 JP 2007-325377 A (Patent Document 1) as background art in this technical field. This publication describes that “a power converter capable of preventing a resonance phenomenon and reducing a common mode voltage of a bus line in a bidirectional converter” is provided.
  • Patent Document 2 states that “improvement of attenuation characteristics for noise components in a band equal to or higher than the self-resonance frequency of the common mode reactor while ensuring a bypass path for high frequency components”. Are listed.
  • EMC Electromagnetic Compatibility
  • One of the EMC standard tests is a conduction noise test, and the device must reduce the noise induced in the power supply line to a regulation value or less.
  • a method is generally used in which a conduction noise of the power line is caused to flow to the ground by installing a filter between the power line and the ground.
  • ground leakage current test the current flowing in the ground wire connecting the equipment and the power source must be less than the regulation value. In order to reduce the ground leakage current, it is important to design so that no current flows from the power line to the ground.
  • An object of the present invention is to provide a medical device that reduces power line noise to meet EMC conduction noise regulations and reduces leakage current to meet leakage current regulations.
  • a medical device including an AC power source and a power converter having a switching element connected to the AC power source.
  • a series resonance capacitor provided between a power supply line connecting the AC power supply and the power converter, and the device GND, a GND side terminal of the series resonance capacitor, and the device GND
  • a resonance inductor provided so as to be connected in series with the series resonance capacitor, and a high frequency noise bypass capacitor provided so as to be connected in parallel with the resonance inductor.
  • the resonance frequency of the capacitor for resonance and the resonance inductor is set to match the switching frequency of the power converter
  • Parallel resonance frequency of the high frequency noise bypass capacitor is characterized in that it is set to a value between the switching frequency and conduction noise restriction start frequency.
  • the present invention it is possible to provide a medical device that reduces power line noise in order to comply with EMC conduction noise regulations and reduces leakage current in order to conform to leakage current regulations.
  • FIG. 1 shows a configuration of a power supply device of a medical device according to an embodiment of the present invention.
  • a CT Computer Planar Tomography
  • the medical device is connected to a three-phase AC power supply 101, and the three-phase AC power supply line is connected to a converter 103 that is a power converter for generating a DC voltage from the AC power supply through a filter 102 for blocking noise. It is connected.
  • the power converter refers to a converter only or a configuration including a converter unit.
  • the DC voltage generated by the converter 103 is supplied to the inverter 105 via the high voltage wiring laid on the slip ring 104.
  • the high voltage generated by the inverter 105 is supplied to the X-ray tube and used to generate X-rays.
  • the converter 103 and the inverter 105 obtain a desired voltage and current waveform by performing a switching operation using a switching element for high voltage such as IGBT.
  • the inverter and the converter are generally mounted on a metal frame or casing, and the frame or casing is grounded on the power supply side via the ground wire 106.
  • the frame and the casing are electrically connected to the power supply ground (ground), and become the device GND (ground) 107.
  • the three-phase power supply is 50 Hz / 60 Hz, and the voltage varies depending on the device specifications such as 100 V to 400 V and the use of the power supply.
  • the switching frequency of the converter 103 and the inverter 105 is about several kHz to several tens of kHz.
  • the switching operation of the converter 103 generates harmonic noise of the switching frequency.
  • the generated noise propagates to the power supply side via the power supply line.
  • the noise filter is provided to suppress the conduction noise generated in the device.
  • the types of filters can be broadly classified into active filters and passive filters.
  • active filters have a relatively complicated circuit configuration, so that they are expensive and difficult to apply to power lines such as power lines.
  • the passive filter has a relatively simple configuration, is low in cost, and can be easily applied to a power line. Therefore, in this embodiment, a passive filter is mounted. Inductance and capacitance are used as elements constituting the passive filter.
  • ⁇ Inductance has the effect of increasing the high frequency impedance and suppressing noise propagation by inserting it in series with the power line.
  • a method for realizing the inductance for example, there are methods such as forming a power supply line in a coil shape and using a magnetic material such as ferrite.
  • the capacitance has an effect of bypassing only the high-frequency current to the GND by being inserted between the power supply line and the device GND. For this reason, a wire and an element with a small current value and a small current capacity can be used, and the size and cost can be suppressed.
  • EMC regulation and ground leakage current regulation will be described.
  • the conduction noise test regulates the amount of conduction noise that propagates to the power supply.
  • the frequency range of conduction noise regulation for medical devices is 150 kHz to 30 MHz.
  • the frequency that is the starting point (lower end value) in the frequency range subject to conduction noise regulation is defined as the conduction noise regulation start frequency.
  • an ammeter is used to regulate the current value flowing through the ground wire connecting the device and the power source ground.
  • the ground leakage current of a medical device must be 5 mA or less.
  • the ammeter used for measurement is defined as having a bandwidth of 1 MHz.
  • a noise filter is provided in consideration of this.
  • this noise filter shall be mounted between the converter 103 which is a three-phase alternating current power supply 101 and a power converter.
  • a series resonance capacitor (Cy) 201 is mounted between each phase of the power supply line of the three-phase AC power supply 101 and the device GND 107, and a resonance inductor (Lp) 202 is connected between the terminal connecting the three phases and the device GND 107.
  • a high frequency noise bypass capacitor (Cp) 203 connected in parallel with the inductor 202 is provided.
  • the series resonance capacitor, the resonance inductor, and the high frequency noise bypass capacitor may be mounted on a substrate included in the power converter, or may be mounted on a substrate dedicated to a noise filter.
  • the power converter substrate or the noise filter dedicated substrate is provided with a power supply connection terminal and a GND connection terminal.
  • the power converter is mounted on a substrate, it is not necessary to provide a filter substrate in particular, so that the cost can be reduced.
  • the presence or absence of the filter can be easily changed by attaching and detaching the noise filter dedicated substrate according to the situation.
  • the series resonance frequency of the capacitor 201 and the inductor 202 is adjusted to the switching frequency of the converter 103, for example, 10 kHz.
  • the impedance between the power supply line and the ground becomes small at the switching frequency of the converter 103, the switching current can be bypassed to the device GND 107, and the leakage noise to the outside of the device can be reduced.
  • the impedance between the power supply line and the device GND 107 can be kept high at a frequency lower than the series resonance frequency set as described above. That is, the switching current of the converter 103 can be bypassed to the device GND 107, and the amount of power source frequency (50 Hz / 60 Hz) current flowing to the device GND 107 can be reduced.
  • the capacitor 203 is set so that the parallel resonance frequency of the inductor 202 and the capacitor 203 is equal to or higher than the switching frequency of the converter 103 (that is, the series resonance frequency of the inductor 202 and the capacitor 201) and less than 150 kHz, which is the EMC conduction noise regulation start frequency.
  • this filter has a capacitive impedance characteristic in a band equal to or higher than the parallel resonance frequency of the inductor 202 and the capacitor 203, and the ground impedance of the power supply line can be lowered at 150 kHz or higher.
  • FIG. 3 shows definitions of terminals for calculating the filter characteristics of this embodiment.
  • the characteristic obtained by the terminal definition in FIG. 3A is herein referred to as a normal mode characteristic.
  • the characteristic obtained in FIG. 3B is a common mode characteristic.
  • the normal mode characteristic is a component in which current is input from one or two phases of the three-phase power supply line and is also output from one or two phases, and does not leak to the GND line.
  • the common mode characteristic is a component that is input from the three-phase power supply line and leaks to the GND line. That is, the definition of the input / output terminal in FIG. 3A is a normal mode characteristic, and FIG. 3B represents a common mode characteristic.
  • Fig. 4 shows the results of calculating the filter characteristics of this example.
  • the inductor (Lp) 202 3 mH
  • the capacitor (Cy) 201 25 nF
  • the capacitor (Cp) 203 5 nF.
  • the switching frequency of converter 103 is assumed to be 10 kHz
  • the series resonance frequency of inductor 202 and capacitor 201 is 10 kHz.
  • FIG. 5 shows a configuration of a noise filter for suppressing noise due to anti-resonance in the second embodiment. That is, a method for controlling the quality factor, that is, the Q value, representing the sharpness of resonance by the inductor 202 (Lp) and the capacitor 203 (Cp) in the resonance type filter of the present embodiment is provided.
  • the quality factor that is, the Q value
  • the parallel resonance frequency of the inductor Lp and the capacitor Cp is not less than the switching frequency of the converter and less than the EMC conduction noise regulation start frequency (150 kHz), but the converter noise is not bypassed near the parallel resonance frequency, The amount of propagation to the power supply side increases.
  • the resistor 501 (R) is inserted in parallel with the inductor 202 or connected in series.
  • the Q value of the parallel resonance can be lowered, thereby reducing the ground impedance.
  • the resistance value is set so that the ground impedance in parallel resonance is less than the desired value. Thereby, the impedance of the parallel resonant frequency of the inductor Lp and the capacitor Cp can be lowered, and the conduction noise can be reduced.
  • Fig. 6 shows the configuration of a noise filter that forms a resonance circuit for each phase of the power line.
  • the impedance between the phases also has resonance characteristics.
  • the phases of the power supply lines are connected by the capacitors 201 (Cy), and this has the effect of suppressing normal mode noise generated between the phases. If it occurs, it can be a path to propagate to other phases.
  • the series resonance frequency of the capacitor Cy and the inductor Lp is set to the switching frequency of a noise source such as a converter
  • the parallel resonance frequency of the capacitor Cp and the inductor Lp is set higher than the switching frequency of the noise source
  • the EMC regulation frequency By making it lower than 150 kHz, it is possible to reduce the leakage current in order to meet the leakage current regulation while reducing the power line noise to meet the EMC conduction noise regulation.
  • Fig. 7 shows the configuration of a noise filter using inductive coupling with a magnetic material such as a ferrite core.
  • the inductor 202 (Lp) connected to each of the power supply three-phase lines is inductively coupled using a magnetic material so that the magnetic fields generated by the currents of the respective phases are coupled in phase with each other, thereby causing the inductors 202 of the respective phases.
  • Inductance is generated only in the in-phase (common mode) component of the current flowing through the.
  • resonance by the capacitor 201 (Cy) and the inductor 202 can be generated only for the common mode component, and no inductance is generated for components other than the common mode component (normal mode component). Functions as a capacitor.
  • This configuration is effective when the noise component to be bypassed to GND due to resonance can be identified as the common mode.
  • an inductor element it is not necessary to add an inductor element to each phase, and an inductor can be formed by using a magnetic material such as ferrite in three phases at a time, so that the number of parts can be reduced.
  • FIG. 8 illustrates a specific method for realizing the inductor Lp.
  • FIG. 8A shows an example using a coil component.
  • the substrate and components can be shared between different devices by separately providing a substrate on which the resonant circuit is mounted as shown in FIG.
  • FIG. 8B shows an example of a mounting method for realizing the inductor Lp using a magnetic material such as ferrite.
  • FIG. 8C shows an example in which the inductor Lp is realized by substrate wiring.
  • the cost can be reduced along with the number of parts.
  • the number of components can be further reduced by designing the spiral inductor with the capacitance between wires and realizing the capacitor Cp with the capacitance between wires instead of as a component.
  • FIG. 9 shows a configuration of an embodiment in which the value of the filter element is dynamically changed.
  • the main point of this embodiment is to match the switching frequency of the noise source (converter or the like) with the resonance circuit of the filter, but the switching frequency of the noise source may change depending on the state and operation of the apparatus.
  • a signal indicating the switching frequency is transmitted from the control block that outputs a signal of the switching frequency to the resonance filter circuit via the signal line, and the filter is configured such that the inductor Lp, the capacitor Cy, and the resonance frequency match the switching frequency.
  • the filter is configured such that the inductor Lp, the capacitor Cy, and the resonance frequency match the switching frequency.
  • variable inductor may be configured to switch the connection of a plurality of components or to use an equivalent inductor using a transistor or the like.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Power Engineering (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Filters And Equalizers (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 A medical device provided with an AC power supply and a power converter having a switching element connected to the AC power supply, wherein the medical device is characterized in being provided with a series resonance capacitor (201) provided between the device GND and a power supply line connecting the AC power supply and the power converter, a resonance inductor (202) provided so as to be serially connected to the series resonance capacitor between the GND-side terminal of the series resonance capacitor and the device GND, and a high-frequency noise bypass capacitor (203) provided so as to be connected in parallel to the resonance inductor; the resonance frequency of the series resonance capacitor and the resonance inductor being set so as to match the switching frequency of the power converter, and the parallel resonance frequency of the resonance inductor and the high-frequency noise bypass capacitor being set to a value between the switching frequency and the conduction noise restriction start frequency. The present invention makes it possible to reduce leak current while reducing power supply line noise.

Description

医療装置Medical equipment
 本発明は、医療装置に関する。 The present invention relates to a medical device.
 本技術分野の背景技術として、特開2007-325377号公報(特許文献1)がある。この公報には「共振現象を防止し、双方向コンバータにおけるバスラインのコモンモード電圧を低減可能な電力変換装置を提供する」と記載されている。 There is JP 2007-325377 A (Patent Document 1) as background art in this technical field. This publication describes that “a power converter capable of preventing a resonance phenomenon and reducing a common mode voltage of a bus line in a bidirectional converter” is provided.
 また、特開2008-245037号公報(特許文献2)には、「高周波成分に対するバイパス経路を確保しつつ、コモンモードリアクトルの自己共振周波数以上の帯域にあるノイズ成分に対する減衰特性を向上させる」と記載されている。 Japanese Patent Laid-Open No. 2008-245037 (Patent Document 2) states that “improvement of attenuation characteristics for noise components in a band equal to or higher than the self-resonance frequency of the common mode reactor while ensuring a bypass path for high frequency components”. Are listed.
特開2007-325377号公報JP 2007-325377 A 特開2008-245037号公報JP 2008-245037 A
 医療機器は市場に出荷するためEMC(Electromagnetic Compatibility)規格に適合する必要がある。EMC規格試験の一つに伝導ノイズ試験があり、機器は電源線に誘起するノイズを規制値以下にしなければならない。伝導ノイズを低減するために電源線とアース間にフィルタを設置することで電源線の伝導ノイズをアースへ流す手法が一般的に行われる。 Medical devices need to conform to EMC (Electromagnetic Compatibility) standards in order to ship to the market. One of the EMC standard tests is a conduction noise test, and the device must reduce the noise induced in the power supply line to a regulation value or less. In order to reduce the conduction noise, a method is generally used in which a conduction noise of the power line is caused to flow to the ground by installing a filter between the power line and the ground.
 一方、安全規格の一つに接地漏れ電流試験がある。この規格に拠れば、機器と電源を接続するアース線に流れる電流を規制値以下にしなければならない。接地漏れ電流を低減するためには電源線からアースへ電流を流さないようにする設計が肝要である。 On the other hand, one of the safety standards is the ground leakage current test. According to this standard, the current flowing in the ground wire connecting the equipment and the power source must be less than the regulation value. In order to reduce the ground leakage current, it is important to design so that no current flows from the power line to the ground.
 以上のことから、EMC試験に適合するためにフィルタを追加すると、接地漏れ電流が増加してしまうという問題がある。 From the above, if a filter is added to meet the EMC test, there is a problem that the ground leakage current increases.
 本発明の目的は、EMC伝導ノイズ規制に適合するため電源線ノイズを低減しつつ、漏れ電流規制に適合するため漏れ電流を低減する医療装置を提供することにある。 An object of the present invention is to provide a medical device that reduces power line noise to meet EMC conduction noise regulations and reduces leakage current to meet leakage current regulations.
上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、交流電源と、前記交流電源に接続されたスイッチング素子を有する電力変換器と、を備えた医療装置であって、前記交流電源と前記電力変換器とを接続する電源線と、装置GNDとの間に設けられた直列共振用コンデンサと、前記直列共振用コンデンサのGND側端子と、前記装置GNDと、の間に前記直列共振用コンデンサと直列に接続されるように設けられた共振用インダクタと、前記共振用インダクタと並列に接続されるように設けられた高周波ノイズバイパス用コンデンサと、を備え、前記直列共振用コンデンサと前記共振用インダクタの共振周波数は前記電力変換器のスイッチング周波数に合わせるように設定され、また、前記共振用インダクタと前記高周波ノイズバイパス用コンデンサの並列共振周波数は前記スイッチング周波数と伝導ノイズ規制開始周波数との間の値に設定されたことを特徴とする。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-mentioned problem. To give an example, a medical device including an AC power source and a power converter having a switching element connected to the AC power source. A series resonance capacitor provided between a power supply line connecting the AC power supply and the power converter, and the device GND, a GND side terminal of the series resonance capacitor, and the device GND A resonance inductor provided so as to be connected in series with the series resonance capacitor, and a high frequency noise bypass capacitor provided so as to be connected in parallel with the resonance inductor. The resonance frequency of the capacitor for resonance and the resonance inductor is set to match the switching frequency of the power converter, and Parallel resonance frequency of the high frequency noise bypass capacitor is characterized in that it is set to a value between the switching frequency and conduction noise restriction start frequency.
 本発明によれば、EMC伝導ノイズ規制に適合するため電源線ノイズを低減しつつ、漏れ電流規制に適合するため漏れ電流を低減する医療装置を提供することができる。 According to the present invention, it is possible to provide a medical device that reduces power line noise in order to comply with EMC conduction noise regulations and reduces leakage current in order to conform to leakage current regulations.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の一実施例にかかる医療装置の電源機器構成を示す図である。It is a figure which shows the power supply device structure of the medical device concerning one Example of this invention. 本発明の一実施例にかかるフィルタの構成を示す図である。It is a figure which shows the structure of the filter concerning one Example of this invention. 本発明の一実施例にかかるフィルタ特性を計算するための端子の定義を示す図である。It is a figure which shows the definition of the terminal for calculating the filter characteristic concerning one Example of this invention. 本発明の一実施例にかかるフィルタ特性を計算した結果を示す図である。It is a figure which shows the result of having calculated the filter characteristic concerning one Example of this invention. 本発明の一実施例にかかる反共振によるノイズを抑制する本発明の構成を示す図である。It is a figure which shows the structure of this invention which suppresses the noise by the antiresonance concerning one Example of this invention. 本発明の一実施例にかかる電源線の相毎に共振回路を形成する構成を示す図である。It is a figure which shows the structure which forms a resonance circuit for every phase of the power wire concerning one Example of this invention. 本発明の一実施例にかかる誘導結合を用いた構成を示す図である。It is a figure which shows the structure using the inductive coupling concerning one Example of this invention. 本発明の一実施例にかかる実装の形態を示す図である。It is a figure which shows the form of mounting concerning one Example of this invention. 本発明の一実施例にかかるフィルタ素子の値を動的に変更する構成を示す図である。It is a figure which shows the structure which changes the value of the filter element concerning one Example of this invention dynamically.
 以下に本発明の実施の形態を、図を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1に本発明の一実施例に係る医療装置の電源機器構成を示す。ここではCT(Computed Tomography)装置を例とする。医療機器は3相交流電源101に接続されており、3相交流電源線は、ノイズを遮断するためのフィルタ102を介して交流電源から直流電圧を生成するための電力変換器であるコンバータ103に接続されている。なお、本実施例では、電力変換器はコンバータのみ、あるいはコンバータ部を含む構成のものを指すものとする。 FIG. 1 shows a configuration of a power supply device of a medical device according to an embodiment of the present invention. Here, a CT (Computed Tomography) apparatus is taken as an example. The medical device is connected to a three-phase AC power supply 101, and the three-phase AC power supply line is connected to a converter 103 that is a power converter for generating a DC voltage from the AC power supply through a filter 102 for blocking noise. It is connected. In this embodiment, the power converter refers to a converter only or a configuration including a converter unit.
 CT装置の場合、コンバータ103で生成した直流電圧はスリップリング104に敷設された高電圧配線を介してインバータ105に供給される。インバータ105で生成した高電圧はX線管に供給されX線を発生するために用いられる。 In the case of a CT apparatus, the DC voltage generated by the converter 103 is supplied to the inverter 105 via the high voltage wiring laid on the slip ring 104. The high voltage generated by the inverter 105 is supplied to the X-ray tube and used to generate X-rays.
 コンバータ103やインバータ105はIGBTなどの高電圧用スイッチング素子を用いてスイッチング動作をすることによって所望の電圧や電流波形を得る。インバータやコンバータは一般的に金属製のフレームや筐体に実装され、それらフレームや筐体はアース線106を介して電源側で接地される。 The converter 103 and the inverter 105 obtain a desired voltage and current waveform by performing a switching operation using a switching element for high voltage such as IGBT. The inverter and the converter are generally mounted on a metal frame or casing, and the frame or casing is grounded on the power supply side via the ground wire 106.
 よってフレームや筐体は電源アース(接地)と電気的に接続されており、装置GND(グランド)107となる。また、3相電源は50Hz/60Hzであり、100Vから400Vなど装置仕様や電源使用によって電圧は異なる。コンバータ103やインバータ105のスイッチング周波数は数kHz~数十kHz程度が用いられる。 Therefore, the frame and the casing are electrically connected to the power supply ground (ground), and become the device GND (ground) 107. The three-phase power supply is 50 Hz / 60 Hz, and the voltage varies depending on the device specifications such as 100 V to 400 V and the use of the power supply. The switching frequency of the converter 103 and the inverter 105 is about several kHz to several tens of kHz.
 次にノイズの発生とフィルタについて説明する。コンバータ103のスイッチング動作によってスイッチング周波数の高調波ノイズが発生する。発生したノイズは電源線を介して電源側へ伝播する。 Next, noise generation and filtering will be described. The switching operation of the converter 103 generates harmonic noise of the switching frequency. The generated noise propagates to the power supply side via the power supply line.
 ノイズフィルタはこのように装置内で発生した伝導ノイズを抑制するために設ける。フィルタの種類は能動フィルタと受動フィルタに大別できるが、能動フィルタは回路構成が比較的複雑になるため,高コストかつ電源線など電力線への適用は難しい。一方,受動フィルタは構成が比較的簡素であり低コスト化かつ電力線への適用が容易である。このため本実施例では、受動フィルタを搭載する構成とする。受動フィルタを構成する素子として、インダクタンスとキャパシタンスを用いる。 The noise filter is provided to suppress the conduction noise generated in the device. The types of filters can be broadly classified into active filters and passive filters. However, active filters have a relatively complicated circuit configuration, so that they are expensive and difficult to apply to power lines such as power lines. On the other hand, the passive filter has a relatively simple configuration, is low in cost, and can be easily applied to a power line. Therefore, in this embodiment, a passive filter is mounted. Inductance and capacitance are used as elements constituting the passive filter.
 インダクタンスは電源線に直列に挿入することで高周波インピーダンスを上げ、ノイズの伝播を抑制する効果をもつ。インダクタンスを実現する方法として例えば、電源線をコイル状にする、フェライトなどの磁性体を用いるなどの方法がある。 ¡Inductance has the effect of increasing the high frequency impedance and suppressing noise propagation by inserting it in series with the power line. As a method for realizing the inductance, for example, there are methods such as forming a power supply line in a coil shape and using a magnetic material such as ferrite.
 また、キャパシタンスは、電源線と装置GND間に挿入することで、高周波電流のみをGNDへバイパスする効果をもつ。このため、電流値は小さく電流容量の小さい線材や素子を用いることができ、寸法やコストを抑えられる。
 ここで、EMC規制と接地漏れ電流規制について説明する。EMC規制のうち、伝導ノイズ試験では電源へ伝播する伝導ノイズ量を規制している。例えば医療機器向け伝導ノイズ規制の周波数範囲は150kHz~30MHzである。ここで伝導ノイズ規制の対象となる周波数範囲における開始点(下端値)となる周波数を伝導ノイズ規制開始周波数とする。
Further, the capacitance has an effect of bypassing only the high-frequency current to the GND by being inserted between the power supply line and the device GND. For this reason, a wire and an element with a small current value and a small current capacity can be used, and the size and cost can be suppressed.
Here, EMC regulation and ground leakage current regulation will be described. Among the EMC regulations, the conduction noise test regulates the amount of conduction noise that propagates to the power supply. For example, the frequency range of conduction noise regulation for medical devices is 150 kHz to 30 MHz. Here, the frequency that is the starting point (lower end value) in the frequency range subject to conduction noise regulation is defined as the conduction noise regulation start frequency.
 一方、接地漏れ電流規制では電流計を用いて、装置と電源アースを接続するアース線に流れる電流値を規制している。例としてIEC-60601に従えば、医療機器の接地漏れ電流は5mA以下にしなければならないという条件がある。ここで、測定にはCR(C=0.015μF、R=10kΩ)の一次フィルタを用いる。また、測定に用いる電流計は帯域1MHzを有するものと定められている。 On the other hand, in the ground leakage current regulation, an ammeter is used to regulate the current value flowing through the ground wire connecting the device and the power source ground. As an example, according to IEC-60601, there is a condition that the ground leakage current of a medical device must be 5 mA or less. Here, a primary filter of CR (C = 0.015 μF, R = 10 kΩ) is used for the measurement. The ammeter used for measurement is defined as having a bandwidth of 1 MHz.
 上記のように医療機器においては、EMC規制と、接地漏れ電流規制の双方に適合する必要があり、本実施例ではこのことを考慮したノイズフィルタを設ける。 As described above, in medical equipment, it is necessary to comply with both EMC regulations and ground leakage current regulations. In this embodiment, a noise filter is provided in consideration of this.
 本実施例のノイズフィルタの構成について図2を用いて説明する。なお、本ノイズフィルタは3相交流電源101と電力変換器であるコンバータ103との間に搭載するものとする。 The configuration of the noise filter of this embodiment will be described with reference to FIG. In addition, this noise filter shall be mounted between the converter 103 which is a three-phase alternating current power supply 101 and a power converter.
 3相交流電源101の電源線各相と装置GND107の間に直列共振用のコンデンサ(Cy)201を実装し、3相を結線した端子と装置GND107の間に共振用のインダクタ(Lp)202を設ける。さらにインダクタ202と並列に接続する高周波ノイズバイパス用のコンデンサ(Cp)203を設ける。 A series resonance capacitor (Cy) 201 is mounted between each phase of the power supply line of the three-phase AC power supply 101 and the device GND 107, and a resonance inductor (Lp) 202 is connected between the terminal connecting the three phases and the device GND 107. Provide. Further, a high frequency noise bypass capacitor (Cp) 203 connected in parallel with the inductor 202 is provided.
 ここで、直列共振用コンデンサと共振用インダクタと高周波ノイズバイパス用コンデンサは、電力変換器が有する基板上に実装するようにしてもよいし、また、ノイズフィルタ専用の基板に実装してもよい。電力変換器用基板あるいはノイズフィルタ専用の基板は電源接続用端子とGND接続用端子を備えるものとする。電力変換器が有する基板上に実装した場合は、特別にフィルタ用の基板を設ける必要がないため、コストを低減することができる。一方、ノイズフィルタ専用基板に実装した場合は、状況に応じてノイズフィルタ専用基板を着脱することでフィルタの有無を容易に変更することができる。 Here, the series resonance capacitor, the resonance inductor, and the high frequency noise bypass capacitor may be mounted on a substrate included in the power converter, or may be mounted on a substrate dedicated to a noise filter. The power converter substrate or the noise filter dedicated substrate is provided with a power supply connection terminal and a GND connection terminal. In the case where the power converter is mounted on a substrate, it is not necessary to provide a filter substrate in particular, so that the cost can be reduced. On the other hand, when mounted on a noise filter dedicated substrate, the presence or absence of the filter can be easily changed by attaching and detaching the noise filter dedicated substrate according to the situation.
 この構成においてコンデンサ201とインダクタ202の直列共振周波数をコンバータ103のスイッチング周波数、例えば10kHzに合わせる。これにより、コンバータ103のスイッチング周波数では電源線と対地間のインピーダンスが小さくなり、スイッチング電流を装置GND107へバイパス出来、装置外部への漏洩ノイズを低減できる。 In this configuration, the series resonance frequency of the capacitor 201 and the inductor 202 is adjusted to the switching frequency of the converter 103, for example, 10 kHz. Thereby, the impedance between the power supply line and the ground becomes small at the switching frequency of the converter 103, the switching current can be bypassed to the device GND 107, and the leakage noise to the outside of the device can be reduced.
 また、インダクタ202とコンデンサ201とによるLC直列共振回路とすることで上記に設定した直列共振周波数よりも低い周波数では電源線~装置GND107間のインピーダンスを高く保つことが出来る。即ち、コンバータ103のスイッチング電流を装置GND107へバイパスすると共に、電源周波数(50Hz/60Hz)電流の装置GND107へ流れる量を低減することができる。 In addition, by using an LC series resonance circuit including the inductor 202 and the capacitor 201, the impedance between the power supply line and the device GND 107 can be kept high at a frequency lower than the series resonance frequency set as described above. That is, the switching current of the converter 103 can be bypassed to the device GND 107, and the amount of power source frequency (50 Hz / 60 Hz) current flowing to the device GND 107 can be reduced.
 さらに、インダクタ202とコンデンサ203の並列共振周波数をコンバータ103のスイッチング周波数(即ちインダクタ202とコンデンサ201の直列共振周波数)以上かつEMC伝導ノイズ規制の開始周波数である150kHzより小さい値となるようにコンデンサ203の値を選定することで、インダクタ202とコンデンサ203の並列共振周波数以上の帯域においてこのフィルタは容量性のインピーダンス特性をもち、150kHz以上で電源線の対地インピーダンスを下げることが出来る。 Further, the capacitor 203 is set so that the parallel resonance frequency of the inductor 202 and the capacitor 203 is equal to or higher than the switching frequency of the converter 103 (that is, the series resonance frequency of the inductor 202 and the capacitor 201) and less than 150 kHz, which is the EMC conduction noise regulation start frequency. By selecting this value, this filter has a capacitive impedance characteristic in a band equal to or higher than the parallel resonance frequency of the inductor 202 and the capacitor 203, and the ground impedance of the power supply line can be lowered at 150 kHz or higher.
 以下に、本実施例のノイズフィルタの効果について詳細に説明する。まず、図3に本実施例のフィルタ特性を計算するための端子の定義を示す。図3(a)の端子定義で得られる特性をここではノーマルモード特性とする。図3(b)で得られる特性をコモンモード特性とする。 Hereinafter, the effect of the noise filter of this embodiment will be described in detail. First, FIG. 3 shows definitions of terminals for calculating the filter characteristics of this embodiment. The characteristic obtained by the terminal definition in FIG. 3A is herein referred to as a normal mode characteristic. The characteristic obtained in FIG. 3B is a common mode characteristic.
 ノーマルモード特性とは三相電源線の何れか一相または二相から電流が入力され、かつ同様に一相または二相から出力され、GND線へ漏れ出ない成分である。コモンモード特性とは三相電源線から入力され、かつGND線へ漏れ出る成分である。すなわち、図3(a)の入出力端子の定義はノーマルモード特性であり、図3(b)がコモンモード特性を表す。 The normal mode characteristic is a component in which current is input from one or two phases of the three-phase power supply line and is also output from one or two phases, and does not leak to the GND line. The common mode characteristic is a component that is input from the three-phase power supply line and leaks to the GND line. That is, the definition of the input / output terminal in FIG. 3A is a normal mode characteristic, and FIG. 3B represents a common mode characteristic.
 まず、図1の三相交流電源101からノイズフィルタ102方向に流れる電流経路を考えると、これは、三相交流電源101が中点を基準に交流電圧を生成するため、例えばU相を介してインバータ105に流れる電流はV、W相がリターン路となる。よって、この時のノイズフィルタ102の特性は定義(a)のノーマルモード特性が電源電流を妨げな
い特性とすることが重要である。
First, considering the current path flowing from the three-phase AC power source 101 in FIG. 1 toward the noise filter 102, this is because the three-phase AC power source 101 generates an AC voltage with reference to the midpoint. The current flowing through the inverter 105 is the return path for the V and W phases. Therefore, it is important that the characteristic of the noise filter 102 at this time is such that the normal mode characteristic of the definition (a) does not disturb the power supply current.
 一方、図1のコンバータ103からノイズフィルタ102方向に流れるノイズ源からのノイズ電流経路を考えると、これは、インバータ105のスイッチングにより発生する伝導ノイズ成分として、各相間を流れるノイズ成分(ノーマルモード成分)と、各相の電流のうち位相が揃っている電流成分すなわち同相成分(コモンモード成分)とがあるため、この時のノイズフィルタ102の特性は図3(b)のフィルタのコモンモード特性はノイズの同相成分を低減する特性を有していることが重要である。 On the other hand, when considering a noise current path from a noise source flowing in the direction of the noise filter 102 from the converter 103 in FIG. 1, this is a noise component (normal mode component) flowing between the phases as a conduction noise component generated by switching of the inverter 105. ) And a current component having the same phase among the currents of each phase, that is, an in-phase component (common mode component), the characteristic of the noise filter 102 at this time is the common mode characteristic of the filter of FIG. It is important to have the characteristic of reducing the in-phase component of noise.
 図4に本実施例のフィルタ特性を計算した結果を示す。ここでインダクタ(Lp)202=3mH、コンデンサ(Cy)201=25nF、コンデンサ(Cp)203=5nFとした。また、コンバータ103のスイッチング周波数は10kHzを想定し、インダクタ202とコンデンサ201の直列共振周波数は10kHzとした。 Fig. 4 shows the results of calculating the filter characteristics of this example. Here, the inductor (Lp) 202 = 3 mH, the capacitor (Cy) 201 = 25 nF, and the capacitor (Cp) 203 = 5 nF. The switching frequency of converter 103 is assumed to be 10 kHz, and the series resonance frequency of inductor 202 and capacitor 201 is 10 kHz.
 定義(a)のノーマルモード特性に対しては(A)で示すように低周波(50Hz/60Hz)では高いインピーダンスを実現しつつ、定義(b)のコモンモード特性に対しては(B)の10kHzでは直列共振により低インピーダンスとする。さらに(C)で示すようにインダクタ202とコンデンサ203の並列共振周波数を10kHz以上、150kHz未満となるようコンデンサ203を選ぶことにより定義(b)のコモンモード特性に対して150kHz以上で低インピーダンス化を実現できる。 For the normal mode characteristics of definition (a), as shown in (A), high impedance is realized at low frequencies (50 Hz / 60 Hz), while for common mode characteristics of definition (b) At 10 kHz, the impedance is low due to series resonance. Further, as shown in (C), by selecting the capacitor 203 so that the parallel resonance frequency of the inductor 202 and the capacitor 203 is 10 kHz or more and less than 150 kHz, the impedance is reduced to 150 kHz or more with respect to the common mode characteristic of the definition (b). realizable.
 以上のことから、本実施例に示す構成によれば、EMC伝導ノイズ規制に適合するため電源線ノイズを低減しつつ、漏れ電流規制に適合するため漏れ電流を低減する医療装置を提供することができる。 From the above, according to the configuration shown in the present embodiment, it is possible to provide a medical device that reduces the leakage current to meet the leakage current regulation while reducing the power line noise to meet the EMC conduction noise regulation. it can.
 図5に第二の実施例における反共振によるノイズを抑制するノイズフィルタの構成を示す。すなわち、本実施例の共振型のフィルタにおけるインダクタ202(Lp)とコンデンサ203(Cp)による共振の鋭さを表すクオリティ・ファクター即ちQ値を制御する方法を提供する。 FIG. 5 shows a configuration of a noise filter for suppressing noise due to anti-resonance in the second embodiment. That is, a method for controlling the quality factor, that is, the Q value, representing the sharpness of resonance by the inductor 202 (Lp) and the capacitor 203 (Cp) in the resonance type filter of the present embodiment is provided.
 上述したように、インダクタLpとコンデンサCpによる並列共振周波数はコンバータのスイッチング周波数以上、EMC伝導ノイズ規制開始周波数(150kHz)未満とする点が重要だが、並列共振周波数付近ではコンバータノイズがバイパスされず、電源側への伝播量が大きくなる。 As described above, it is important that the parallel resonance frequency of the inductor Lp and the capacitor Cp is not less than the switching frequency of the converter and less than the EMC conduction noise regulation start frequency (150 kHz), but the converter noise is not bypassed near the parallel resonance frequency, The amount of propagation to the power supply side increases.
 150kHz未満はEMC規制の観点ではノイズ抑制が不要であるが、装置内ノイズ干渉や装置の設置環境によっては並列共振による対地インピーダンスの増大が問題になり得る。その場合、図5(a)、図5(b)に示すように抵抗501(R)を、インダクタ202に対して並列に接続するか、あるいは直列に接続するかして挿入することで、上記並列共振のQ値を下げ、これにより対地インピーダンスを低減できる。 If it is less than 150 kHz, noise suppression is unnecessary from the viewpoint of EMC regulations, but depending on the noise interference in the device and the installation environment of the device, an increase in ground impedance due to parallel resonance can be a problem. In that case, as shown in FIG. 5A and FIG. 5B, the resistor 501 (R) is inserted in parallel with the inductor 202 or connected in series. The Q value of the parallel resonance can be lowered, thereby reducing the ground impedance.
 抵抗の値は並列共振における対地インピーダンスが所望の値以下になるよう値を設定する。これにより、インダクタLpとコンデンサCpの並列共振周波数のインピーダンスを下げることができ、伝導ノイズを低減できる。 The resistance value is set so that the ground impedance in parallel resonance is less than the desired value. Thereby, the impedance of the parallel resonant frequency of the inductor Lp and the capacitor Cp can be lowered, and the conduction noise can be reduced.
 以上のことから、本実施例に示す構成によれば、EMC伝導ノイズ規制に適合するため電源線ノイズを低減しつつ、漏れ電流規制に適合するため漏れ電流を低減する医療装置を提供することができる。 From the above, according to the configuration shown in the present embodiment, it is possible to provide a medical device that reduces the leakage current to meet the leakage current regulation while reducing the power line noise to meet the EMC conduction noise regulation. it can.
 図6に電源線の相毎に共振回路を形成するノイズフィルタの構成を示す。これにより、相間のインピーダンスも共振特性をもつようになる。実施例1や2の形態は電源線各相の相間がコンデンサ201(Cy)で接続されており、これが相間に発生するノーマルモードノイズを抑制する効果があるが、一相だけ対地間のノイズが生じた場合に他の相へ伝播する経路となり得る。 Fig. 6 shows the configuration of a noise filter that forms a resonance circuit for each phase of the power line. As a result, the impedance between the phases also has resonance characteristics. In the first and second embodiments, the phases of the power supply lines are connected by the capacitors 201 (Cy), and this has the effect of suppressing normal mode noise generated between the phases. If it occurs, it can be a path to propagate to other phases.
 これらノイズ源は装置の構成や実装状態によって異なるため機種に合わせた構成をとることが望ましいが、何れかの相に独立した対地ノイズが存在する場合は図6のように各相の電源線にインダクタとキャパシタを並列接続したフィルタを設けた構成とすることで相間のインピーダンスを上げることが出来、相間のノイズ伝播を抑制することができる。 Since these noise sources differ depending on the device configuration and mounting state, it is desirable to adopt a configuration suitable for the model. However, if there is ground noise independent of any phase, the power line for each phase as shown in FIG. By providing a filter in which an inductor and a capacitor are connected in parallel, impedance between phases can be increased, and noise propagation between phases can be suppressed.
 また、この構成においてもコンデンサCyとインダクタLpの直列共振周波数をコンバータ等のノイズ源のスイッチング周波数に、コンデンサCpとインダクタLpの並列共振周波数を上記ノイズ源のスイッチング周波数より大きくし、且つEMC規制周波数150kHzより小さくすることで、EMC伝導ノイズ規制に適合するため電源線ノイズを低減しつつ、漏れ電流規制に適合するため漏れ電流を低減できる。 Also in this configuration, the series resonance frequency of the capacitor Cy and the inductor Lp is set to the switching frequency of a noise source such as a converter, the parallel resonance frequency of the capacitor Cp and the inductor Lp is set higher than the switching frequency of the noise source, and the EMC regulation frequency. By making it lower than 150 kHz, it is possible to reduce the leakage current in order to meet the leakage current regulation while reducing the power line noise to meet the EMC conduction noise regulation.
 以上のことから、本実施例に示す構成によれば、EMC伝導ノイズ規制に適合するため電源線ノイズを低減しつつ、漏れ電流規制に適合するため漏れ電流を低減する医療装置を提供することができる。 From the above, according to the configuration shown in the present embodiment, it is possible to provide a medical device that reduces the leakage current to meet the leakage current regulation while reducing the power line noise to meet the EMC conduction noise regulation. it can.
 図7にフェライトコアなど磁性体による誘導結合を用いたノイズフィルタの構成を示す。本構成では電源3相線それぞれに接続されたインダクタ202(Lp)を各相の電流が生成する磁界が互いに同相で結合するように磁性体を用いて誘導結合させることにより、各相のインダクタ202に流れる電流のうち同相(コモンモード)成分にのみインダクタンスを発生させる。 Fig. 7 shows the configuration of a noise filter using inductive coupling with a magnetic material such as a ferrite core. In this configuration, the inductor 202 (Lp) connected to each of the power supply three-phase lines is inductively coupled using a magnetic material so that the magnetic fields generated by the currents of the respective phases are coupled in phase with each other, thereby causing the inductors 202 of the respective phases. Inductance is generated only in the in-phase (common mode) component of the current flowing through the.
 これによりコモンモード成分に対してのみコンデンサ201(Cy)とインダクタ202による共振を発生させることができ、コモンモード成分以外の成分(ノーマルモード成分)に対してインダクタンスは発生せず、相間および対地のコンデンサとして機能する。 As a result, resonance by the capacitor 201 (Cy) and the inductor 202 can be generated only for the common mode component, and no inductance is generated for components other than the common mode component (normal mode component). Functions as a capacitor.
 本構成は共振によりGNDへバイパスしたいノイズ成分がコモンモードと特定できている場合に有効である。本構成では、各相へインダクタ素子を追加する必要が無く、3相一括でフェライトなどの磁性体を用いてインダクタを形成できることから部品点数を削減することができる。 This configuration is effective when the noise component to be bypassed to GND due to resonance can be identified as the common mode. In this configuration, it is not necessary to add an inductor element to each phase, and an inductor can be formed by using a magnetic material such as ferrite in three phases at a time, so that the number of parts can be reduced.
 本実施例に示す構成によれば、EMC伝導ノイズ規制に適合するため電源線ノイズを低減しつつ、漏れ電流規制に適合するため漏れ電流を低減する医療装置を提供することができる。 According to the configuration shown in the present embodiment, it is possible to provide a medical device that reduces power line noise in order to meet EMC conduction noise regulations and reduces leakage current to meet leakage current regulations.
 図8はインダクタLpの具体的な実現方法を例示したものである。図8(a)はコイル部品を用いた例である。インダクタやコンデンサの実装方法に制限はないが、同図に示すように共振回路を実装する基板を別途設けることによって異なる装置間で基板と部品の共用ができる。 FIG. 8 illustrates a specific method for realizing the inductor Lp. FIG. 8A shows an example using a coil component. There are no restrictions on the method of mounting the inductor or capacitor, but the substrate and components can be shared between different devices by separately providing a substrate on which the resonant circuit is mounted as shown in FIG.
 図8(b)はフェライトなどの磁性体を用いてインダクタLpを実現する実装方法の例である。トロイダル形状の磁性体に配線を巻きつけインダクタンスを実現する方式とすることで、インダクタLpの値を変更することが容易となり、共振周波数の調整が装置組立後にも容易にできるという利点がある。 FIG. 8B shows an example of a mounting method for realizing the inductor Lp using a magnetic material such as ferrite. By adopting a system that realizes inductance by winding a wire around a toroidal magnetic body, there is an advantage that the value of the inductor Lp can be easily changed, and the resonance frequency can be easily adjusted after assembly of the device.
 図8(c)はインダクタLpを基板配線によって実現した例である。配線を用いたスパイラルインダクタを用いることで部品点数と共にコストを削減できる。また、スパイラルインダクタの配線間容量を合わせて設計し、コンデンサCpを部品としてではなく配線間容量で実現すれば部品点数をさらに削減できる。 FIG. 8C shows an example in which the inductor Lp is realized by substrate wiring. By using a spiral inductor using wiring, the cost can be reduced along with the number of parts. Further, the number of components can be further reduced by designing the spiral inductor with the capacitance between wires and realizing the capacitor Cp with the capacitance between wires instead of as a component.
 本実施例に示す構成によれば、EMC伝導ノイズ規制に適合するため電源線ノイズを低減しつつ、漏れ電流規制に適合するため漏れ電流を低減する医療装置を提供することができる。 According to the configuration shown in the present embodiment, it is possible to provide a medical device that reduces power line noise in order to meet EMC conduction noise regulations and reduces leakage current to meet leakage current regulations.
 図9にフィルタ素子の値を動的に変更する実施例の構成を示す。本実施例の要点はノイズ源(コンバータなど)のスイッチング周波数をフィルタの共振回路と合わせることにあるが、ノイズ源のスイッチング周波数が装置の状態や動作に応じて変化する場合がある。 FIG. 9 shows a configuration of an embodiment in which the value of the filter element is dynamically changed. The main point of this embodiment is to match the switching frequency of the noise source (converter or the like) with the resonance circuit of the filter, but the switching frequency of the noise source may change depending on the state and operation of the apparatus.
 そのような場合、スイッチング周波数の信号を出力する制御ブロックから共振フィルタ回路へスイッチング周波数を示す信号を信号線を介して送信し、フィルタはスイッチング周波数に共振周波数が合うようにインダクタLpやコンデンサCyやCpの値を変化させることで変化するスイッチング周波数に合わせてノイズ電流をGNDにバイパスできる。 In such a case, a signal indicating the switching frequency is transmitted from the control block that outputs a signal of the switching frequency to the resonance filter circuit via the signal line, and the filter is configured such that the inductor Lp, the capacitor Cy, and the resonance frequency match the switching frequency. By changing the value of Cp, the noise current can be bypassed to GND in accordance with the switching frequency that changes.
 可変コンデンサやバリキャップという部品を用いる、または複数のコンデンサの直並列を切り替える構成としてもよい。可変インダクタも複数部品の接続を切り替えるか、トランジスタなどを用いた等価インダクタを用いる構成としても良い。 ∙ It may be configured to use parts such as variable capacitors and varicaps, or to switch the series / parallel of multiple capacitors. The variable inductor may be configured to switch the connection of a plurality of components or to use an equivalent inductor using a transistor or the like.
 以上のことから、本実施例に示す構成によれば、EMC伝導ノイズ規制に適合するため電源線ノイズを低減しつつ、漏れ電流規制に適合するため漏れ電流を低減する医療装置を提供することができる。 From the above, according to the configuration shown in the present embodiment, it is possible to provide a medical device that reduces the leakage current to meet the leakage current regulation while reducing the power line noise to meet the EMC conduction noise regulation. it can.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 101     電源
 102     フィルタ
 103     コンバータ
 104     スリップリング
 105     インバータ
 106     アース線
 107     装置GND
 201     コンデンサ
 202     インダクタ
 203     コンデンサ
 501     抵抗
 701     誘導結合
 801     コイル
 802     コンデンサ
 803     基板
 804     磁性体
 805     基板配線
101 Power supply 102 Filter 103 Converter 104 Slip ring 105 Inverter 106 Ground wire 107 Device GND
201 Capacitor 202 Inductor 203 Capacitor 501 Resistance 701 Inductive coupling 801 Coil 802 Capacitor 803 Substrate 804 Magnetic body 805 Substrate wiring

Claims (9)

  1.  交流電源と、
     前記交流電源に接続されたスイッチング素子を有する電力変換器と、を備えた医療装置であって、
     前記交流電源と前記電力変換器とを接続する電源線と、装置GNDとの間に設けられた直列共振用コンデンサと、
     前記直列共振用コンデンサのGND側端子と、前記装置GNDと、の間に前記直列共振用コンデンサと直列に接続されるように設けられた共振用インダクタと、
     前記共振用インダクタと並列に接続されるように設けられた高周波ノイズバイパス用コンデンサと、を備え、
     前記直列共振用コンデンサと前記共振用インダクタの共振周波数は前記電力変換器のスイッチング周波数に合わせるように設定され、
     また、前記共振用インダクタと前記高周波ノイズバイパス用コンデンサの並列共振周波数は前記スイッチング周波数と伝導ノイズ規制開始周波数との間の値に設定されたことを特徴とする医療装置。
    AC power supply,
    A medical device comprising a power converter having a switching element connected to the AC power source,
    A series resonance capacitor provided between a power supply line connecting the AC power supply and the power converter, and the device GND;
    A resonance inductor provided so as to be connected in series with the series resonance capacitor between the GND side terminal of the series resonance capacitor and the device GND;
    A high-frequency noise bypass capacitor provided so as to be connected in parallel with the resonance inductor,
    The resonance frequency of the series resonance capacitor and the resonance inductor is set to match the switching frequency of the power converter,
    The medical device is characterized in that a parallel resonance frequency of the resonance inductor and the high frequency noise bypass capacitor is set to a value between the switching frequency and a conduction noise regulation start frequency.
  2.  請求項1に記載の医療装置であって、
     前記共振用インダクタと直列に接続された抵抗または損失成分を備えることを特徴とする医療装置。
    The medical device according to claim 1,
    A medical device comprising a resistor or a loss component connected in series with the resonance inductor.
  3.  請求項1に記載の医療装置であって、
     前記高周波ノイズバイパス用コンデンサと直列に接続された抵抗または損失成分を備えることを特徴とする医療装置。
    The medical device according to claim 1,
    A medical device comprising a resistor or a loss component connected in series with the high-frequency noise bypass capacitor.
  4.  請求項1に記載の医療装置であって、
     前記交流電源は、3相交流電源であり、
     前記3相交流電源の各相の配線と前記装置GND間のそれぞれに前記共振用インダクタと前記直列共振用コンデンサとが直列に接続されるように設け、また前記共振用インダクタのそれぞれに、前記高周波ノイズバイパス用コンデンサが並列に接続されるように設けたことを特徴とする医療装置。
    The medical device according to claim 1,
    The AC power source is a three-phase AC power source,
    The resonant inductor and the series resonant capacitor are provided in series between the wiring of each phase of the three-phase AC power supply and the device GND, and the high frequency is connected to each of the resonant inductors. A medical device comprising a noise bypass capacitor connected in parallel.
  5.  請求項1に記載の医療装置であって、
     前記共振用インダクタは、磁性体で構成されたことを特徴とする医療装置。
    The medical device according to claim 1,
    The medical device, wherein the resonance inductor is made of a magnetic material.
  6.  請求項1に記載の医療装置であって、
     前記共振用インダクタと前記直列共振用コンデンサと前記高周波ノイズバイパス用コンデンサは、前記電力変換器の電力変換器用基板に実装され、前記電力変換器用基板には電源接続用端子とGND接続用端子を備えることを特徴とする医療装置。
    The medical device according to claim 1,
    The resonance inductor, the series resonance capacitor, and the high frequency noise bypass capacitor are mounted on a power converter board of the power converter, and the power converter board includes a power connection terminal and a GND connection terminal. A medical device characterized by that.
  7.  請求項1に記載の医療装置であって、
     前記共振用インダクタと前記直列共振用コンデンサと前記高周波ノイズバイパス用コンデンサは、ノイズフィルタ専用基板に実装され、前記ノイズフィルタ専用基板には電源接続用端子とGND接続用端子を備えることを特徴とする医療装置。
    The medical device according to claim 1,
    The resonance inductor, the series resonance capacitor, and the high-frequency noise bypass capacitor are mounted on a noise filter dedicated board, and the noise filter dedicated board includes a power connection terminal and a GND connection terminal. Medical device.
  8.  請求項6または7に記載の医療装置であって、
     前記共振用インダクタは、スパイラル状の配線で形成されるインダクタであることを特徴とする医療装置。
    The medical device according to claim 6 or 7,
    The medical device according to claim 1, wherein the resonance inductor is an inductor formed of spiral wiring.
  9.  請求項1に記載の医療装置であって、
     前記共振用インダクタまたは前記直列共振用コンデンサまたは高周波ノイズバイパス用コンデンサは、外部信号または手動切り替え器によってその値を変更できる可変素子または複数素子による構成とし、 前記電力変換器のスイッチング周波数を制御する制御ブロックを備え、
     前記制御ブロックと前記可変素子または複数素子とが接続されていることを特徴とする医療装置。
    The medical device according to claim 1,
    The resonance inductor, the series resonance capacitor, or the high frequency noise bypass capacitor is configured by a variable element or a plurality of elements whose values can be changed by an external signal or a manual switch, and control for controlling the switching frequency of the power converter With blocks,
    The medical device, wherein the control block and the variable element or a plurality of elements are connected.
PCT/JP2015/062175 2014-08-29 2015-04-22 Medical device WO2016031299A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014174753A JP6239468B2 (en) 2014-08-29 2014-08-29 Medical equipment
JP2014-174753 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016031299A1 true WO2016031299A1 (en) 2016-03-03

Family

ID=55399205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062175 WO2016031299A1 (en) 2014-08-29 2015-04-22 Medical device

Country Status (2)

Country Link
JP (1) JP6239468B2 (en)
WO (1) WO2016031299A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158783A1 (en) * 2016-03-17 2017-09-21 三菱電機株式会社 Power conversion device and air conditioning device using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014263A (en) * 2016-07-21 2018-01-25 株式会社日立製作所 X-ray high voltage device and X-ray imaging device
DE102018010146A1 (en) * 2018-12-24 2020-06-25 Finepower Gmbh Device for filtering high-frequency interference voltages in a circuit for power factor correction

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126201A (en) * 1994-10-19 1996-05-17 Meidensha Corp Method for suppressing carrier component
JP2006060928A (en) * 2004-08-20 2006-03-02 Yaskawa Electric Corp Noise filter device and inverter device equipped therewith
JP2006165830A (en) * 2004-12-06 2006-06-22 Renesas Technology Corp Electronic equipment, low pass filter and method for manufacturing electronic equipment
JP2008148523A (en) * 2006-12-13 2008-06-26 Fuji Electric Holdings Co Ltd Noise filter circuit
JP2008245037A (en) * 2007-03-28 2008-10-09 Fuji Electric Holdings Co Ltd Noise filter
WO2011021485A1 (en) * 2009-08-19 2011-02-24 株式会社安川電機 Output filter and electric motor drive system provided therewith
JP2012044812A (en) * 2010-08-20 2012-03-01 Fuji Electric Co Ltd Noise filter and emc filter using the same
US20130083571A1 (en) * 2011-09-29 2013-04-04 Delta Electronics (Shanghai) Co., Ltd Three-phase rectification module, the system thereof and harmonic suppression method
JP2014050260A (en) * 2012-08-31 2014-03-17 Fuji Electric Co Ltd Power conversion device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126201A (en) * 1994-10-19 1996-05-17 Meidensha Corp Method for suppressing carrier component
JP2006060928A (en) * 2004-08-20 2006-03-02 Yaskawa Electric Corp Noise filter device and inverter device equipped therewith
JP2006165830A (en) * 2004-12-06 2006-06-22 Renesas Technology Corp Electronic equipment, low pass filter and method for manufacturing electronic equipment
JP2008148523A (en) * 2006-12-13 2008-06-26 Fuji Electric Holdings Co Ltd Noise filter circuit
JP2008245037A (en) * 2007-03-28 2008-10-09 Fuji Electric Holdings Co Ltd Noise filter
WO2011021485A1 (en) * 2009-08-19 2011-02-24 株式会社安川電機 Output filter and electric motor drive system provided therewith
JP2012044812A (en) * 2010-08-20 2012-03-01 Fuji Electric Co Ltd Noise filter and emc filter using the same
US20130083571A1 (en) * 2011-09-29 2013-04-04 Delta Electronics (Shanghai) Co., Ltd Three-phase rectification module, the system thereof and harmonic suppression method
JP2014050260A (en) * 2012-08-31 2014-03-17 Fuji Electric Co Ltd Power conversion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158783A1 (en) * 2016-03-17 2017-09-21 三菱電機株式会社 Power conversion device and air conditioning device using same

Also Published As

Publication number Publication date
JP2016052155A (en) 2016-04-11
JP6239468B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
TWI232037B (en) Noise suppressing circuit
US7898827B2 (en) Active EMI filtering using magnetic coupling cancellation
JP6568743B2 (en) Conductive noise suppression circuit and inverter device
US20140347159A1 (en) Transformer
EP2876794B1 (en) Input EMI filter and method for motor drive including an active rectifier
JP2012044812A (en) Noise filter and emc filter using the same
JP2010119288A (en) Resonance mitigation system and method
KR101904997B1 (en) Switching Type Power Supply for Cancelling Electrical Noise and Apparatus Comprising the Same
US20170012594A1 (en) Tunable lc filter
JP6207751B2 (en) Power converter
US20120014144A1 (en) Power supplying apparatus
US20100134204A1 (en) Harmonic filter
CN107819397B (en) Input filter, setting method thereof and frequency converter comprising input filter
JP6239468B2 (en) Medical equipment
US20170163126A1 (en) Interference suppression filter for a dc motor and dc motor having said filter
KR20050078537A (en) Electro magnetic interference filter
JP7514074B2 (en) MOTOR DRIVE HAVING A FILTER INCLUDE A THREE-PHASE DIFFERENTIAL MODE REACTOR EXHIBITING COMMON MODE ATTENUATION - Patent application
JP6251221B2 (en) Noise filter device
CN210041770U (en) High-low frequency band filtering device and electrical equipment
JP2012019504A (en) Noise filter
CN113439313B (en) Common Mode Choke
RU131540U1 (en) ELECTROMAGNETIC COMPATIBILITY FILTER
WO2019102937A1 (en) Noise filter circuit and power supply circuit
JP2004356918A (en) Noise suppression circuit
JP2004349734A (en) Normal mode noise suppressing circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835378

Country of ref document: EP

Kind code of ref document: A1