WO2016027988A1 - 초박막 실크피브로인/콜라겐 복합이식체 및 이의 제조방법 - Google Patents
초박막 실크피브로인/콜라겐 복합이식체 및 이의 제조방법 Download PDFInfo
- Publication number
- WO2016027988A1 WO2016027988A1 PCT/KR2015/007210 KR2015007210W WO2016027988A1 WO 2016027988 A1 WO2016027988 A1 WO 2016027988A1 KR 2015007210 W KR2015007210 W KR 2015007210W WO 2016027988 A1 WO2016027988 A1 WO 2016027988A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silk fibroin
- collagen
- silk
- solution
- film
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/26—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/20—Polysaccharides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/222—Gelatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/227—Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/24—Collagen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3604—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3804—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
- A61L27/3808—Endothelial cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/48—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/16—Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea
Definitions
- the present invention relates to a composite diaphragm for transplantation in the form of a film in the form of a solution containing silk fibroin or silk protein and collagen and optionally a biomaterial
- the present invention relates to a transplantable implant that is manufactured to produce an implantable material in the form of an implantable film and to apply the same to organs requiring an ultra thin film of 4 to 10 ⁇ m.
- Tissue engineering involves attaching certain cells separated and cultured in a patient to an implant made of a biocompatible / biodegradable material, and organizing through biochemical stimulation using bioactive factors or physical stimulation using a bioreactor.
- tissue engineering is defined by three factors of cells, stimulating factors, and grafts.
- the grafts are focused on.
- an ultra-thin silk composite is fabricated from biomaterials and characterized .
- Korean Patent Publication No. 2010-0121169 relates to an artificial eosinophore using silk protein and a method for preparing the same, and the implant obtained from the process including the additive has a thickness of 80 to 120 ⁇ m, However, it has limitations that can not be applied to areas requiring ultra thin film of less than 20 ⁇ m such as cornea.
- Korean Patent Laid-Open Publication No. 2011-0104584 relates to a composite support including silk and collagen and a method of manufacturing the composite support, and they form a structure including a woven silk tube layer and a collagen layer inside the tube to regenerate ligaments and tendons, It is a three-dimensional scaffold that can be used as a substrate for muscle reconstruction in case of damage, and there are limitations on ultra-thin films such as cornea, retina, eardrum and transparency.
- Bombyx mori silk derived from Bombyx mori (B.mori) is composed of two proteins, fibroin and sericin.
- the fibroin is a protein which occupies 75% of silk cocoon and is composed of insoluble proteins such as glycine, alanine and serine up to 90%.
- fibroin does not cause an immune response during in vivo transplantation, can control the rate of degradation, has excellent mechanical strength and good permeability to oxygen and water.
- silk fibroin supports the adhesion and growth of human limbal stem cells and fibroblasts, and is used in a variety of applications such as creams, enzyme immobilization membranes, cell culture media, artificial skin, and soft contact lenses , Many researchers have reported that two-dimensional silk fibroin films provide good biocompatibility.
- sericin constitutes the remaining 25% of silk, but it is used after refining to remove sericin, as it causes immune and allergic reactions.
- sericin is a hydrophilic protein with a strong polar chain and is a biodegradable material that provides various advantages such as anticoagulation, antioxidation, anti-wrinkle, and recently, sericin prevents cell death, inhibits cancer production, And it can be used as a component of cell culture, researchers report.
- the above-mentioned silk fibroin is used in tissue engineering by dissolving purified silk fibroin using an organic solvent after lyophilization, and then casting the film to be used for tissue engineering.
- residual organic solvent remains in the silk fibroin film thus produced
- the residual organic solvent remaining may act as a toxic agent in cells and in the body during transplantation, which may affect cell adhesion and growth. Therefore, there is a need for an ultra-thin composite membrane for transplantation which is free from cytotoxicity, has minimal effect on cell growth, does not induce toxicity in the body during transplantation, and can be transplanted to an area requiring ultra thin membrane such as corneal endothelial transplantation come.
- the powder obtained by freeze-drying the purified silk fibroin was dissolved in an organic solvent.
- the present inventors have found that by using the purified silk fibroin aqueous solution as it is without using an organic solvent, , It minimizes the influence on adhesion and growth of cells and the harmony with surrounding tissues and provides a structural environment for attachment, proliferation, and cell transfer of graft cells by using biomaterials
- an ultra-thin film can be produced by using an acid component used for dissolving collagen, and the transparency is not significantly influenced.
- the corneal epithelium, , Adherent and proliferating tissue cells selected from the group consisting of retina, eardrum and oral cavity Good to know that more and completed the present invention.
- the present invention provides a silk fibroin / collagen complex having a form of ultra thin film by preparing a solution containing silk fibroin and collagen as a film .
- the present invention provides an ultrafine composite transparent transparent implantable material using a biomaterial.
- the present invention also provides a method for producing the ultra-thin silk fibroin / collagen composite.
- the ultra-thin silk fibroin / collagen composite according to the present invention can be used for various transplantation operations requiring an ultra-thin film, and in particular, as a substrate for corneal endothelial cells, It has the effect of suggesting the possibility of replacing the cornea.
- FIG. 1 (a) is a photograph of a silk fibroin / collagen / gelatin composite film (Example 1-1) and a silk fibroin / collagen composite film (Example 2) prepared by the method according to the present invention, And the transparency was measured.
- Fig. 2 is a photograph of a cross section of a film using a field emission scanning electron microscope to measure the thickness of the composite film of the embodiment and the comparative example.
- Fig. 3 is a photograph of a composite film of Example 1-1 and Comparative Examples 1 to 3 observed using a field emission scanning electron microscope to observe the adherence and cell morphology of corneal endothelial cells of rabbits.
- Fig. 4 is a graph showing the cell proliferation rate (incubation for 7 days) of the composite film of Examples 1-1 to 1-3 and Comparative Example 1 in comparison.
- the composite diaphragm manufactured using conventional silk fibroin was prepared by refining silk fibroin and lyophilizing and dissolving it in an organic solvent to prepare a film by casting method, There is a limit that can affect adhesion and growth. Accordingly, the present inventors have made efforts to develop a composite fabric using silk fibroin which is different from the conventional silk fibroin.
- the problems caused by the residual organic solvent could be overcome by not using the organic solvent after the silkworm cocoons or the silk fiber were purified.
- the purified silk fibroin solution containing sericin completely that is, containing sericin at a concentration of 1 to 10 v / v%, can effectively adhere cells and regenerate (grow) cells.
- a silk fibroin / collagen complex having a form of ultra thin film by preparing a solution containing silk fibroin and collagen as a film.
- the solution may further comprise a biomaterial.
- " collagen "
- collagen is preferably extracted from flakes using an acid solution.
- collagen may be extracted using a rat tail, chicken, pig, or the like, or may be commercially available, but is not limited thereto.
- the acid solution at least one selected from the group consisting of acetic acid, citric acid, and lactic acid may be used, but acetic acid is most preferable.
- biomaterial " refers to a natural or synthetic polymer that is substantially non-toxic to the human body, chemically inert, and has no immunogenicity.
- the biomaterial is a material which can be mixed with silk fibroin to form an implant.
- Synthetic materials such as polyvinyl pyrrolidone (PVP) and carboxymethyl cellulose (CMC) It is difficult to apply it as an ultra-thin transplantable implant for transplantation.
- the bbiomaterial is a mucopolysaccharide containing hyaluronic acid; Natural proteins including at least one member selected from the group consisting of gelatin and collagen; A linear polysaccharide comprising at least one member selected from the group consisting of chitosan, starch and cellulose; Polysaccharides derived from algae including alginic acid; Polysaccharides obtained from the fermentation of bacteria comprising at least one member selected from the group consisting of gellan gum and pluran; And low-molecular-weight polysaccharides including cyclodextrin are preferably used.
- the silk fibroin / collagen complex is preferably in the form of an ultra-thin film, but the thickness is preferably as small as possible, but should be easily handled and preferably 4 to 10 ⁇ in order to deliver the transplanted cells to the culture and implantation sites.
- a method for producing collagen comprising: (i) dissolving collagen in an acid;
- step (ii) mixing the collagen solution prepared in step (i) with an aqueous solution of silk fibroin containing 1 to 10 v / v% sericin obtained from cocoon or silk fiber;
- the manufacturing method of the present invention is characterized in that after the step (v), the transparent silk fibroin / collagen complex is applied to a tissue cell selected from the group consisting of corneal epithelium, corneal endothelium, retina, (Vi) < / RTI >
- collagen is prepared by dissolving collagen in 0.1 to 1 N acid solvent. Preferably in a 0.2 to 0.8 N acid solvent, and more preferably in a 0.4 to 0.6 N acid solvent. Most preferably in a 0.5 N acid solvent.
- the solvent is not limited as long as it can dissolve collagen, and preferably acetic acid, citric acid, lactic acid and the like can be used, and more preferably, acetic acid is used.
- the collagen can be extracted from a rat tail, a chicken, a pig, etc.
- a collagen having excellent collagen content is used.
- collagen is dissolved in a 0.5 N acidic solvent, that is, acetic acid, and the purified 1 to 10 wt% silk fibroin aqueous solution is added to a microtube in a total volume of 0.5 to 4 mL. Preferably 1 to 3 mL, and more preferably 2 mL.
- the purified silk fibroin aqueous solution contains 1 to 10 v / v% of sericin, and can be prepared by controlling the boiling time in the process of boiling silk cocoon. More specifically, the purified silk fibroin aqueous solution was prepared by dissolving the silk cocoon or silk fiber in a solution of sodium carbonate (Na 2 CO 3 ), boiling and drying, again in lithium bromide (LiBr) solution, And dialyzed with a dialysis membrane.
- Na 2 CO 3 sodium carbonate
- LiBr lithium bromide
- silk fibroin collagen is preferably mixed in a volume ratio of 1: 3: 3-1. At this time, as the amount of silk fibroin increases, it is difficult to reproduce the thickness of the ultra thin film. In the case where the amount of collagen is too much, it is not easy to produce the film.
- the collagen contains 25 v / v% or more based on the total volume of the solution containing silk fibroin and collagen.
- Biomaterials are preferably mixed in a volume ratio of 1: 3: 1. When the ratio is out of the above range, there is a problem that the film can not be formed into a film form when the film is produced.
- the solution containing silk fibroin, collagen and biomaterial prepared in step (ii) is cast in a glass dish of 10 to 100 mm in diameter, preferably in a glass dish of 30 to 70 mm, more preferably in a glass dish of 50 mm And then dried at room temperature for 24 to 120 hours. Preferably 48 to 96 hours, more preferably 72 hours to 10 to 35 degrees Celsius, preferably 15 to 30 degrees Celsius, more preferably 20 to 25 degrees Celsius Dry.
- ethyl-3- (3-dimethylaminopropyl) carbodiimide at a concentration of 0.1 to 3% was poured into the film prepared in the step (iii) at room temperature Cross-link for 24 hours.
- the collagen crosslinked film was then treated with 100% methanol for one day to crystallize the silk fibroin.
- 90% methanol and ethanol may be used instead of 100% methanol.
- the room temperature condition is desirably dried at a temperature range of 10 to 35 ⁇ ⁇ , preferably at a temperature range of 15 to 30 ⁇ ⁇ , more preferably at a temperature range of 20 to 25 ⁇ ⁇ , Hour, more preferably for 24 hours.
- the crosslinked and crystallized silk fibroin / collagen film is treated with 50 to 100% methanol to separate the film from the glass dish.
- 50 to 100% methanol Preferably 70 to 100% methanol, more preferably 100% methanol, and can be removed by treating with ethanol. Since the film produced without crosslinking easily dissolves in an aqueous solution, it can not provide a minimum time for culturing the cells, and it is difficult to handle the film.
- the film produced in step (iv) is dried at room temperature for 24 to 120 hours. Preferably for 48 to 96 hours. More preferably, it is dried at a temperature range of 10 to 35 DEG C for 72 hours, preferably at a temperature range of 15 to 30 DEG C, more preferably at a temperature range of 20 to 25 DEG C, and stored in a desiccator.
- the prepared film was prepared by sterilizing with ethylene oxide gas, but it can be sterilized by using gamma ray, alcohol, chloroform or the like.
- tissue cells such as corneal epithelial cells, skin epithelial cells, fibroblasts, and vascular endothelial cells
- corneal endothelial cells have a cell density of 50 to 1000 cells / mm 2 .
- the culturing conditions are preferably cultivated for 30 minutes to 10 days at a temperature of 20 to 40 ° C and a carbon dioxide concentration of 1 to 10%, and more preferably for 1 day at the time of sowing at a cell density of 500 cells / mm 2 .
- the ultra-thin transparent film produced by the process according to the present invention can be manufactured to be applied not only to the cornea but also to an ultra thin film or an implantable region requiring transparency.
- the purified silk fibroin aqueous solution was prepared by dissolving silk cocoon in 0.02N sodium carbonate (Na 2 CO 3 ) solution, boiling and drying the dried silk again in 9.3M lithium bromide (LiBr) solution, Dialyzed with a dialysis membrane having a molecular weight cut-off of 3,500, and filtered.
- step (ii) 1 mL of 1 mL of 1% collagen / 6% silk fibroin aqueous solution of step (ii) was prepared, and 1 mL of gelatin was mixed with each 1: 1 ratio and mixed in a microtube so that the total volume became 2 mL.
- the mixture of silk fibroin / collagen / gelatin was poured into a 50 mm diameter glass dish and dried at room temperature for 48 hours.
- a 1% 1-ethyl-3- [3-dimethylaminopropyl] carbodiimide solution was poured onto the dried silk fibroin / collagen / gelatin film and crosslinked at room temperature for one day.
- the crosslinked silk fibroin-collagen-gelatin film was treated with 100% methanol to separate the film from the glass dish.
- the silk fibroin / collagen / gelatin film was dried at room temperature for 72 hours to finally produce an ultrathin transparent silk fibroin / collagen complex.
- the prepared film was prepared by sterilizing with ethylene oxide gas.
- the corneal endothelial cells isolated from rabbits were sown at a density of 500 cells / mm 2 on the prepared film prepared by sterilizing with ethylene oxide gas, and cultured for 1 day. At this time, seeded cells were cultured at 37 ° C under a carbon dioxide concentration of 5%.
- a silk fibroin / collagen composite diatomaceous film was prepared in the same manner as in Example but without (ii-1).
- the silk fibroin solution / collagen / biomaterial composite implant (1) was prepared in the same manner as in Example 1 except that the silk fibroin solution used in the step (ii) was prepared by dissolving silk fibroin purified with an organic solvent (hexa-fluoro-isopropanol) A film was prepared.
- the method for producing the silk fibroin solution used in Comparative Example 1 is as follows. Silk cocoon was added to a 0.02N sodium carbonate (Na 2 CO 3 ) solution and boiled and dried. The dried silk was again dissolved in 9.3 M lithium bromide (LiBr) solution, and water was changed every 12 hours. , Dialyzed and filtered, and dialyzed.
- the silk aqueous solution filtered with the gauze was poured into the plastic dish and was treated at -80 ° C for 24 hours, lyophilized to dryness, and then dissolved in hexafluorine The solution was dissolved in isopropanol (hexa-fluoro-isopropanol).
- a silk fibroin film was prepared in the same manner as in Example 1 except that the collagen aqueous solution of the step (ii) and the biomaterial of the (ii-1) were not mixed.
- a transparent PLGA film was prepared using polylactide glycolide copolymer (PLGA), a synthetic biomaterial approved by the US Food and Drug Administration (FDA).
- PLGA polylactide glycolide copolymer
- FDA US Food and Drug Administration
- Example 1-1 The transparency of the silk fibroin / collagen / gelatin composite film prepared in Example 1-1 and the silk fibroin / collagen composite film prepared in Example 2 were visually observed, and the results are shown in FIGS. 1 (a) and 1 b).
- the two films were confirmed to be very transparent, and the transparency was observed to be well maintained regardless of whether collagen or gelatin was present or not.
- the film produced in Example 1-1 had a thickness in the range of 4 to 7 ⁇ m (5.53 ⁇ 0.45 ⁇ m), the film produced in Example 2 had a thickness of 5 to 10 ⁇ m (8.0 ⁇ 0.3 Mu m). ≪ / RTI >
- FIG. 3 (a) shows the results of cell proliferation of the ultra-thin silk fibroin / collagen composite film prepared in Example 1-1, confirming that the cells proliferated vigorously and morphological specificity of the corneal endothelial cells Were maintained well.
- the film of the example according to the present invention is excellent in cell growth as compared with the film of Comparative Example 1 using a silk fibroin solution prepared by dissolving silk fibroin purified using an organic solvent .
- Cell proliferation increased with increasing collagen content, and it was observed that the cell proliferation rate was better than organic solvent - based silk fibroin film.
- the silk fibroin / collagen complex of the present invention has transparency in the form of a film, has an ultra-thin film having a thickness of about 4 to 10 mu m, and has excellent ability in correlation with cells, It can be confirmed that it is suitable as an implant capable of transplanting various tissue cells including endothelial cells.
- the present invention minimizes the influence of the residual organic solvent on the adhesion and growth of cells by acting as a toxic agent on the cells by using the conventional purified silk fibroin without dissolving in the organic solvent.
- the biomaterial Can be used to provide a structural environment for attachment, proliferation, and cell transfer of the graft cells.
- the implants were mixed with silk fibroin and collagen, there was no significant influence on the ultra thin film and transparency, and the corneal epithelium, corneal endothelium, retina, It is advantageous to adhere and propagate tissue cells selected from the group consisting of oral cavity.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Dermatology (AREA)
- Veterinary Medicine (AREA)
- Transplantation (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Cell Biology (AREA)
- Zoology (AREA)
- Botany (AREA)
- Urology & Nephrology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Materials For Medical Uses (AREA)
Abstract
본 발명은 조직공학용 초박막 실크피브로인/콜라겐 복합이식체 및 이의 제조방법에 관한 것이다. 본 발명에 따른 초박막 실크피브로인/콜라겐 복합이식체는 정제된 실크피브로인 수용액, 콜라겐 및 다양한 생체재료의 혼합 사용으로 인해 세포 독성이 없고, 세포 성장에 영향을 최소화할 수 있어 이식용 초박막 이식체로 널리 이용될 수 있다.
Description
본 발명은 실크피브로인(silk fibroin, 또는 실크단백질) 및 콜라겐(collagen)과, 선택적으로 생체재료(biomaterial)를 포함하는 용액을 필름형태로 제조하여 초박막의 형태를 갖는 이식용 복합이식체 및 이의 제조방법에 관한 것으로, 이식 가능한 필름 형태의 이식체를 제작하여 4 ~ 10 μm 의 초박막을 요하는 장기에 적용하기 위해 제작된 이식용 이식체에 관한 것이다.
재생의학과 조직공학은 대체재로서의 조직이나 장기의 부족에 따른 한계를 극복할 수 있는 이상적인 방안으로 제안되고 있다. 조직공학은 환자에서 분리되고 배양된 특정 세포를 생체적합성/생분해성 재료로 제조된 이식체에 점착시키고, 생체활성인자를 이용한 생화학적 자극 또는 생체반응기를 이용한 물리적인 자극 등을 통해 조직화하는 것이다.
즉, 이러한 방법을 이용하여 공학적으로 제조된 인공장기는 우리 몸의 생체조직과 유사하여 자가 조직이식물의 대체재로 많은 가능성을 가진다. 조직공학은 앞서 말했듯이, 세포와 자극인자, 그리고 이식체의 세가지 요소에 의해 정의되며, 본 발명에서는 이식체에 초점을 두었으며, 특히 생체재료로부터 초박막 실크 복합이식체를 제작하여 특징을 확인하였다.
실크는 수세기 동안 봉합사로 사용되었기 때문에 조직공학적 응용에 있어 좋은 생체재료가 될 수 있다. 한국 공개특허 제2010-0121169호는 실크단백질을 이용한 인공고막 및 그 제조방법에 관한 것으로, 첨가제를 포함하여 제작하는 과정에서 얻어진 이식체는 80 ~ 120 μm 의 두께를 제시하여 고막 등 박막을 요하는 곳에 응용할 수 있다고 제시하고 있으나 각막 등과 같이 20 μm 이하의 초박막을 요하는 곳에는 적용할 수 없는 한계를 가지고 있다.
한국 공개특허 제2011-0104584호는 실크 및 콜라겐을 포함하는 복합지지체 및 그 제조방법에 관한 것으로, 이들은 직조된 실크 튜브층 및 튜브 내부의 콜라겐층을 포함하는 구조를 형성하여 인대 및 건의 재생, 근육 손상 시 근육 재건을 위한 기질로 유용하게 사용될 수 있는 3차원의 지지체로 각막, 망막, 고막 등의 초박막 및 투명성을 요하는 곳에는 제한이 있다.
한편 Bombyx mori(B.mori) 유래 실크는 두가지 단백질, 즉, 피브로인(fibroin), 세리신(sericin)로 구성되어 있다.
이때 상기 피브로인은 실크 코쿤의 75%를 차지하는 단백질이며, 불용성 단백질인 글리신, 알라닌, 세린으로 최대 90% 까지 구성되어 있다. 또한 피브로인은 생체 내 이식 시 면역반응을 일으키지 않으며, 분해율을 조절할 수 있으며, 뛰어난 기계적 강도 및 산소와 물에 대해 좋은 투과도를 가진다.
게다가 실크피브로인(silk fibroin)은 인간 윤부 줄기세포와 섬유아세포의 부착과 성장을 지지하며, 창상제, 효소고정막(enzyme immobilization membrane), 세포 배지, 인공 피부, 소프트 컨택트렌즈 등 다양하게 이용되고 있으며, 많은 연구자들이 이차원 실크 피브로인 필름이 좋은 생체적합성을 제공한다고 보고 되고 있다.
아울러, 세리신은 실크의 나머지 25%를 구성하지만, 면역반응과 알레르기 반응을 일으키는 원인이 되기 때문에 보통 세리신을 제거하는 정련과정을 거친 후 사용한다. 그러나 세리신은 친수성 단백질로 강한 극성을 사슬을 가지고 있으며, 생분해 물질로써 항응고, 항산화, 항주름과 같은 다양한 이점을 제공하며, 최근에는 세리신이 세포사멸을 예방하고, 암 생성을 억제하며, 섬유아세포의 부착과 증식을 강화하고 세포 배지의 성분으로 응용할 수 있다고 연구자들이 보고하였다.
한편 상기 언급한 실크피브로인은 동결건조 후에 유기용매를 이용하여 정제한 실크피브로인을 녹인 후 캐스팅 방법으로 필름을 제작하여 조직공학에 이용되는데, 이렇게 제작된 실크피브로인 필름에 잔류 유기용매가 남아있을 가능성이 있으며, 남아있는 잔류 유기용매는 세포 및 이식 시 체내에 독성으로 작용하여 세포의 부착 및 성장에 영향을 미칠 수 있다. 이에 세포 독성이 없고, 세포 성장에 영향을 최소화하면서, 또한 이식 시 체내에 독성을 유발하지 않으며, 각막 내피 이식술 등과 같이 초박막을 요하는 곳에 이식할 수 있는 이식용 초박막 복합이식체의 필요가 제기되어 왔다.
상기한 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.
종래의 실크피브로인 용액은 정제한 실크피브로인을 동결건조하여 얻은 파우더를 유기 용매에 녹여 사용하였으나, 본 발명자들은 유기용매를 사용하지 않고, 정제된 실크피브로인 수용액 그대로를 사용함으로써 잔류 유기용매가 세포와 체내에 독성으로 작용하여 세포의 부착 및 성장, 주변 조직과의 화합에 영향을 최소화할 수 있으며, 더불어 생체재료(biomaterial)를 사용함으로써 이식세포의 부착, 증식, 및 세포 전달을 위한 구조적 환경을 제공해줄 수 있을 뿐만 아니라, 실크피브로인과 콜라겐을 혼합하여 이식체를 제작하였을 때, 콜라겐을 녹이기 위해 사용된 산 성분에 의해 초박막 제작이 가능하며, 투명도에 유의한 영향성을 미치지 않아, 각막 상피, 각막 내피, 망막, 고막 및 구강으로 구성된 군으로부터 선택되는 조직세포를 부착 및 증식하는데 더욱 우수하다는 것을 알게 되어 본 발명을 완성하였다.
따라서, 본 발명의 목적은 이식용 실크피브로인/콜라겐 복합이식체를 제공하는데 있다.
본 발명의 다른 목적은 상기 이식용 실크피브로인/콜라겐 복합이식체의 제조방법을 제공하는데 있다.
본 발명의 또 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
위와 같은 과제를 해결하기 위해, 본 발명은 실크피브로인(silk fibroin) 및 콜라겐(collagen)를 포함하는 용액을 필름으로 제조하여 초박막의 형태를 갖는 것을 특징으로 하는 실크피브로인/콜라겐 복합이식체를 제공한다.
또한 본 발명은 (i) 콜라겐을 산에 녹이는 단계; (ii) 누에고치 또는 견섬유에서 정제된 1 ~ 10 v/v% 세리신이 포함된 실크피브로인 수용액에 (i) 단계에서 제조한 콜라겐 용액을 혼합하는 단계; (iii) 실크피브로인-콜라겐 혼합용액을 캐스팅하여 필름으로 제조하고 건조하는 단계; (iv) 건조된 필름을 가교 및 결정화하는 단계; 및 (v) 가교 및 결정화된 필름을 건조시켜 초박막의 투명한 실크피브로인/콜라겐 복합이식체를 제조하는 단계;를 포함하는 것을 특징으로 하는 실크피브로인/콜라겐 복합이식체의 제조방법을 제공한다.
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(i) 본 발명은 생체재료를 이용하여 이식용 초박막의 투명한 복합이식체를 제공한다.
(ii) 또한, 본 발명은 상기 초박막 실크피브로인/콜라겐 복합이식체의 제조방법을 제공한다.
(iii) 본 발명에 따른 초박막 실크피브로인/콜라겐 복합이식체는, 초박막을 필요로 하는 다양한 이식수술에 이용할 수 있으며, 특히, 각막 내피세포를 위한 기질로서 응용하여 조직공학적 생체 각막을 제작함으로써 부족한 기증각막의 대체 가능성을 제안할 수 있는 효과를 가진다.
도 1의 (a)는 본 발명에 따른 방법으로 제조된 실크피브로인/콜라겐/젤라틴 복합이식체 필름(실시예 1-1) 및 (b)는 실크피브로인/콜라겐 복합이식체 필름(실시예 2)의 육안 관찰한 사진과 투명도를 측정한 결과이다.
도 2는 실시예 및 비교예의 복합이식체 필름의 두께 측정하기 위해 전계방출주사전자현미경을 이용하여 필름의 단면을 관찰한 사진이다.
도 3은 실시예 1-1 및 비교예 1 ~ 3의 복합이식체 필름에 대해 토끼의 각막 내피세포의 부착과 세포 형태를 관찰하기 위해 전계방출주사전자현미경을 이용하여 관찰한 사진이다.
도 4는 실시예 1-1 ~ 1-3과, 비교예 1의 복합이식체 필름의 세포 증식율(7일 동안 배양)을 비교하여 나타낸 그래프이다.
이하에서 본 발명을 하나의 구현예로서 보다 상세히 설명한다.
종래의 실크피브로인을 사용하여 제조한 복합이식체는 실크피브로인을 정제하고 동결건조 후에 유기용매에 녹인 용액을 캐스팅 방법으로 필름을 제작하여 사용하였으며, 이는 잔류 유기용매가 세포에 독성으로 작용하여 세포의 부착 및 성장에 영향을 미칠 수 있다는 한계가 있었다. 이에 본 발명자들은 이를 개선하기 위해 종래와 다른 실크피브로인을 이용한 복합이식체를 개발하고자 노력하였다.
그 결과, 실크피브로인(silk fibroin) 용액을 제조 시, 누에고치 또는 견섬유를 정제한 후, 유기용매를 사용하지 않음으로써 잔류 유기용매로 인한 상기 문제점을 극복할 수 있었다. 또한 세리신을 완전 제거되지 않은, 다시 말해 세리신이 1 ~ 10 v/v% 농도로 포함된 정제된 실크피브로인 용액을 이용하는 경우 효과적으로 세포의 부착 및 세포 재생(성장)시킬 수 있음을 확인하였다.
이에 본 발명의 일 태양에 따르면, 실크피브로인(silk fibroin) 및 콜라겐(collagen)를 포함하는 용액을 필름으로 제조하여 초박막의 형태를 갖는 것을 특징으로 하는 실크피브로인/콜라겐 복합이식체를 제공한다. 이때 상기 용액은 생체재료(biomaterial)를 더 포함할 수 있다.
본 발명에서 사용된“콜라겐(collagen)”은 오리발로부터 산 용액을 이용하여 추출하는 것이 바람직하다. 다만 콜라겐은 오리발 이외에도 쥐 꼬리, 닭, 돼지 등을 이용하여 추출하거나 시중에서 판매되는 것을 사용할 수 있으며, 반드시 이에 제한되는 것은 아니다.
상기 산 용액으로는 아세트산, 시트릭산, 및 젖산으로 이루어진 군으로부터 선택된 1 종 이상을 사용할 수 있으나, 가장 바람직하게는 아세트산이다.
그리고, 본 발명에서 사용된 용어 “생체재료(biomaterial)”는 실질적으로 인체에 독성이 없고 화학적으로 불활성이며 면역원성이 없는 천연 또는 합성 고분자를 총칭한다.
상기 생체재료는 실크피브로인과 혼합하여 이식체를 제작할 수 있는 재료로서, 폴리비닐 피롤리돈(Polyvinyl pyrrolidone, PVP), 카르복실메틸 셀룰로스(Carboxymethyl cellulose, CMC) 등과 같은 합성 물질들은 물 흡수성이 100배로 증가하기 때문에 이식용 초박막 이식체로서의 적용이 어렵다.
따라서 본 발명의 바람직한 구현예에 따르면, 상기 생체재료(bbiomaterial)는 히알루론산(hyaluronic acid)을 포함하는 뮤코다당류; 젤라틴 및 콜라겐으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 천연 단백질류; 키토산, 녹말 및 셀룰로오스로 이루어진 군으로부터 선택된 1종 이상을 포함하는 선형 다당류; 알긴산을 포함하는 해조류 유래 다당류; 젤란검 및 플루란으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 세균의 발효로부터 얻어지는 다당류; 및 시클로덱스트린을 포함하는 저분자 다당류로 이루어진 군으로부터 선택되는 1종 이상을 사용하는 것이 바람직하다.
이는 이식 세포의 부착, 성장 및 증식을 용이하게 하고 세포가 구조적으로 안정하게 위치할 수 있는 미세환경을 제공해 줄 수 있어, 이식 세포의 부착 및 증식에 효과적이며, 실크피브로인과 혼합하여 이식체를 제작하였을 때 초박막 및 투명도에 유의한 영향성을 미치치 않고 복합이식체를 제조할 수 있다는 장점이 있다.
이때 상기 실크피브로인/콜라겐 복합이식체는 초박막의 필름의 형태로서, 두께가 초박막일수록 바람직하나, 손쉽게 다룰 수 있어야 하고 이식세포를 배양 및 이식위치로 전달하기 위해서는 4 ~ 10 ㎛인 것이 바람직하다.
본 발명의 다른 양태에 따르면, 본 발명은 (i) 콜라겐을 산에 녹이는 단계;
(ii) 누에고치 또는 견섬유에서 정제하여 얻은 1 ~ 10 v/v% 세리신이 포함된 실크피브로인 수용액에 (i) 단계에서 제조한 콜라겐 용액을 혼합하는 단계;
(iii) 실크피브로인-콜라겐 혼합용액을 캐스팅하여 필름으로 제조하고 건조하는 단계;
(iv) 건조된 필름을 가교 및 결정화하는 단계; 및
(v) 가교 및 결정화된 필름을 건조시켜 초박막의 투명한 실크피브로인/콜라겐 복합이식체를 제조하는 단계;를 포함하는 것을 특징으로 하는 실크피브로인/콜라겐 복합이식체의 제조방법을 제공한다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 제조방법은 상기 (v) 단계 이후, 투명한 실크피브로인/콜라겐 복합이식체에 각막 상피, 각막 내피, 망막, 고막 및 구강으로 구성된 군으로부터 선택되는 조직세포를 파종하는 단계(vi)를 추가적으로 포함한다.
본 발명의 제조방법을 각 단계에 따라 설명하면 다음과 같다:
(i) 콜라겐을 산에 녹이는 단계
본 발명에서는 콜라겐을 0.1 ~ 1 N 산 용매에 녹여서 준비한다. 바람직하게는 0.2 ~ 0.8 N 산 용매에 녹여서 준비하며, 더욱 바람직하게는 0.4 ~ 0.6 N 산 용매에 녹여서 준비한다. 가장 바람직하게는 0.5 N 산 용매에 녹여서 준비한다.
상기 용매는 콜라겐을 녹일 수 있는 한 제한되지 않으며, 바람직하게는 아세트산, 시트릭산, 및 젖산 등을 이용할 수 있으며, 보다 바람직하게는 아세트산(Acetic Acid)을 사용하는 것이 좋다.
아울러, 상기 콜라겐은 쥐 꼬리, 닭, 돼지 등에서 추출할 수 있으며, 바람직하게는 콜라겐 함량이 우수한 오리발을 이용하는 것이 좋다.
(ii) 정제된 실크피브로인 수용액에 콜라겐을 혼합하는 단계
본 발명에서는 콜라겐을 0.5 N 산 용매, 즉, 아세트산(Acetic Acid)에 녹인 후 정제된 1 ~ 10 중량% 실크피브로인 수용액을 총 부피가 0.5 ~ 4 mL이 되도록 마이크로 튜브에 넣고 섞는다. 바람직하게는 1 ~ 3 mL 이 되도록 혼합하며, 더욱 바람직하게는 2 mL이 되도록 혼합하여 준비한다.
이때 상기 정제된 실크피브로인 수용액에는 세리신이 1 ~ 10 v/v%를 포함하며, 실크 코쿤을 끓이는 과정에서 끓이는 시간을 조절하여 제조할 수 있다. 보다 구체적으로, 상기 정제된 실크피브로인 수용액은 누에고치 또는 견섬유를 탄산나트륨 (Na2CO3)용액에 넣고 끓인 후 건조시킨 실크를, 다시 리튬 브로마이드 (LiBr) 용액에 녹인 후 3일 동안 분획분자량이 3500인 투석막을 이용하여 투석한 후 필터하여 얻은 것이다.
아울러, 이때 실크피브로인:콜라겐은 1~3:3~1의 부피 비율로 혼합하는 것이 바람직하다. 이때 실크피브로인 양이 증가할수록 초박막 두께 재현에 어려움이 있으며, 콜라겐이 너무 많은 경우 필름 제작이 용이하지 않기에 상기 부피 비율 범위 내에서 사용하는 것이 바람직하다.
또한, 상기 콜라겐은 실크피브로인 및 콜라겐을 포함하는 용액 전체 부피에 대해 25 v/v% 이상 포함하는 것이 더욱 바람직하다.
(ii-1) 실크피브로인-콜라겐 혼합용액에 생체재료를 첨가하는 단계
정제된 실크피브로인 수용액과 오리발에서 추출한 콜라겐을 혼합한 용액:생체재료(biomaterial)은 1~3:1의 부피 비율로 혼합하여 사용하는 것이 바람직하다. 상기 비율 범위 밖의 경우 필름 제작 시 필름 형태로 제형할 수 없다는 문제가 있기에 상기 범위 내에서 사용하는 것이 좋다.
(iii) 실크피브로인-콜라겐 혼합용액을 캐스팅하여 필름으로 제조하는 단계
(ii) 단계에서 준비한 실크피브로인, 콜라겐 및 생체재료를 포함하는 용액을 지름 10 ~ 100 mm 유리디쉬에 캐스팅하고, 바람직하게는 30 ~ 70 mm의 유리디쉬에, 더욱 바람직하게는 50 mm의 유리디쉬에 부은 뒤 상온에서 24 ~ 120 시간 동안 건조하였다. 바람직하게는 48 ~ 96 시간 동안 건조하며, 더욱 바람직하게는 72 시간 동안 10 ~ 35℃ 온도 범위에서 건조하며, 바람직하게는 15 ~ 30℃ 온도 범위에서, 더욱 바람직하게는 20 ~ 25℃ 온도 범위에서 건조한다.
(iv) 건조된 필름을 가교 및 결정화 하는 단계
(iii) 단계에서 제조한 필름에 0.1 ~ 3% 농도의 1-에틸-3-(3-다이메틸아미노프로필)카보다이이미드(1-ethyl-3-(3-dimethylaminopropyl) carbodiimide)를 부어 상온에서 24 시간 동안 가교시킨다. 바람직하게는 0.5 ~ 2% 농도의 1-에틸-3-(3-다이메틸아미노프로필)카보다이이미드를 사용하며, 더욱 바람직하게는 1% 농도의 1-에틸-3-(3-다이메틸아미노프로필)카보다이이미드를 사용한다. 상기 1-에틸-3-(3-다이메틸아미노프로필)카보다이이미드 외 EDC/N-하이드록시수신이미드 (N-Hydroxysuccinimide), 또는 2-클로로-1-미틸피리디니움 아이오아이드(2-chloro-1-methylpyridinium iodide)를 사용하여 가교할 수 있다.
그런 다음 콜라겐이 가교된 필름에 100% 메탄올을 하루 동안 처리하여 실크 피브로인을 결정화하였다. 또한 100% 메탄올 대신 90% 메탄올, 에탄올을 사용할 수 있다. 상온의 조건은 바람직하게는 10 ~ 35℃ 온도 범위에서 건조하며, 바람직하게는 15 ~ 30℃ 온도 범위에서, 더욱 바람직하게는 20 ~ 25℃ 온도 범위에서, 시간의 조건은 바람직하게는 12 ~ 36 시간 동안, 더욱 바람직하게는 24 시간 동안 가교시킨다.
이렇게 가교 및 결정화 된 실크피브로인/콜라겐 필름에 50 ~ 100% 메탄올을 처리하여 필름을 유리디쉬로부터 분리한다. 바람직하게는 70 ~ 100% 메탄올, 더욱 바람직하게는 100% 메탄올을 처리하며, 에탄올을 처리하여 떼어낼 수 있다. 가교하지 않고 제작한 필름은 수용액에 쉽게 녹아 없어지므로, 세포를 배양하는 최소한의 시간을 제공할 수 없게 되며, 필름을 다루는데 있어 어려움이 있다.
(v) 가교 및 결정화 된 필름을 건조시켜 초박막의 투명한 실크피브로인/콜라겐 복합이식체를 제조하는 단계
(iv) 단계에서 제작된 필름을 상온에서 24 ~ 120 시간 동안 건조한다. 바람직하게는 48 ~ 96 시간 동안 건조한다. 더욱 바람직하게는 72 시간 동안 10 ~ 35℃ 온도 범위에서 건조하며, 바람직하게는 15 ~ 30℃ 온도 범위에서, 더욱 바람직하게는 20 ~ 25℃ 온도 범위에서 건조하여 데시게이터에 보관한다. 상기 제작된 필름을 에틸렌옥사이드 가스로 멸균하여 준비하였으나, 감마선, 알코올, 클로로포름 등을 이용하여 멸균 할 수 있다.
(vi) 제작된 초박막 투명 필름에 조직세포를 파종하는 단계
상기 (v) 단계에서 제작된 멸균한 초박막 투명 필름에 각막상피세포, 피부상피세포, 섬유세포, 혈관내피세포 등의 조직세포, 대표적으로 각막 내피세포를 단위 면적당 세포밀도 50 ~ 1000 cell/mm2로 파종한다. 바람직하게는 200 ~ 700 cell/mm2로 파종하며, 더욱 바람직하게는 500 cell/mm2로 파종한다. 배양 조건은 20 ~ 40℃, 1 ~ 10% 농도의 이산화탄소 조건에서 30분 ~ 10일 동안 배양하는 것이 바람직하며, 세포밀도 500 cell/mm2로 파종 시 1일 동안 배양하는 것이 보다 바람직하다.
본 발명에 따른 과정으로 제조한 초박막 투명 필름은 각막뿐만 아니라 초박막 또는 투명성을 필요로 하는 이식부위에 응용할 수 있도록 제조될 수 있다.
이하, 본 발명을 실시예를 통하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들에 의해 한정되는 것은 아니다.
실시예 1
실시예 1-1 ~ 1-3
(i) 오리발에서 추출한 콜라겐을 산에 녹이는 단계
오리발에서 추출한 콜라겐 1 g을 0.5 N 아세트산 10 mL 에 녹여 1% 콜라겐 용액을 준비하였다.
(ii) 정제된 실크피브로인 수용액에 콜라겐을 혼합하는 단계
1% 콜라겐 용액을 정제된 6% 실크피브로인 수용액과 총 볼륨이 2 mL 이 되도록 마이크로 튜브에 넣고 섞는다. 이때 실크피브로인:콜라겐은 1~3:3~1의 부피 비율로 혼합하였다. 구체적으로 3:1, 1:1, 1:3의 비율로 하여 실시예 1-1, 1-2, 1-3로 각각 제작하기로 한다.
이때 정제된 실크피브로인 수용액은 실크 코쿤을 0.02N 탄산나트륨 (Na2CO3)용액에 넣고 끓인 후 건조시킨 실크를, 다시 9.3M 리튬 브로마이드 (LiBr) 용액에 녹인 후 12 시간 마다 물을 교체하면서 3일 동안 분획분자량이 3500인 투석막을 이용하여 투석한 후 필터하여 얻은 것을 사용하였다.
(ii -1) 실크피브로인/콜라겐 혼합용액에 생체재료를 첨가하여 혼합용액을 만드는 단계
(ii) 단계의 2 mL의 1% 콜라겐/6% 실크피브로인 수용액에서 1 mL을 얻어 각각 젤라틴 1 mL을 섞어 1:1 비율로 혼합하여 총 볼륨이 2 mL이 되도록 마이크로 튜브에 넣고 섞었다.
(iii) 실크피브로인/콜라겐/생체재료 혼합용액을 필름으로 제조하는 단계
실크피브로인/콜라겐/젤라틴 혼합용액을 지름 50mm 유리디쉬에 부어 준 후, 상온에서 48 시간 동안 건조시켰다.
(iv) 건조된 필름을 가교 및 결정화하는 단계
건조된 실크피브로인/콜라겐/젤라틴 필름에 1% 1-에틸-3-[3-다이메틸아미노프로필]카보다이이미드 용액을 부어 상온에서 하루 동안 가교시켰다. 이렇게 가교된 실크피브로인-콜라겐-젤라틴 필름에 100% 메탄올을 처리하여 필름을 유리디쉬로부터 분리하였다.
(v) 가교 및 결정화된 필름을 건조시켜 초박막의 투명한 복합이식체를 제조하는 단계
실크피브로인/콜라겐/젤라틴 필름을 상온에서 72 시간 동안 건조하여 최종적으로 초박막의 투명한 실크피브로인/콜라겐 복합이식체를 제조하였다. 상기 제작된 필름을 에틸렌옥사이드 가스로 멸균하여 준비하였다.
(vi) 각막 내피세포를 파종하는 단계
에틸렌옥사이드 가스로 멸균하여 준비한 상기 제작된 필름에 토끼로부터 분리한 각막 내피세포를 500 cells/mm2의 밀도로 파종하였으며, 1일 동안 배양하였다. 이 때, 파종된 세포를 37℃, 이산화탄소 농도가 5 %인 조건에서 배양하였다.
실시예 2
실시예와 동일한 방법으로 제조하되, (ii-1) 단계를 수행하지 않고 실크피브로인/콜라겐 복합이식체 필름을 제조하였다.
비교예 1
상기 (ii) 단계에서 사용한 실크피브로인 용액은 유기용매(hexa-fluoro-isopropanol)로 정제한 실크피브로인을 녹여서 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 실크피브로인/콜라겐/생체재료 복합 이식체 필름을 제조하였다. 구체적으로, 비교예 1에서 사용한 실크피브로인 용액의 제조방법은 다음과 같다. 실크 코쿤을 0.02N 탄산나트륨 (Na2CO3)용액에 넣고 끓인 후 건조시킨 실크를, 다시 9.3M 리튬 브로마이드 (LiBr) 용액에 녹인 후 12시간 마다 물을 교체하면서 3일 동안 분획분자량이 3500인 투석막을 이용하여 투석한 후 필터하여 얻은 것을, 다시 투석 후 플라스틱 디쉬에 거즈로 필터 한 실크 수용액을 부어 24시간 동안 -80℃에서 처리한 후 완전 건조될 때까지 동결 건조한 후, 이를 유기용액인 헥사플루오르아이소프로판올(hexa-fluoro-isopropanol)에 녹인 용액을 사용하였다.
비교예 2
실시예 1과 동일한 방법으로 제조하되, 상기 (ii) 단계의 콜라겐 수용액과 (ii-1)의 생체재료의 혼합 없이 실크피브로인 필름을 제조하였다.
비교예 3
미국 식품의약청 (FDA) 승인을 받은 합성된 생체재료인 폴리락타이드글리콜라이드 공중합체 (PLGA)를 이용하여, 투명한 PLGA 필름을 제작하였다.
실험예 1: 투명도 확인- 육안관찰
실시예 1-1에서 제조된 실크피브로인/콜라겐/젤라틴 복합이식체 필름과 실시예 2에서 제조된 실크피브로인/콜라겐 복합이식체 필름의 투명도를 육안관찰로 확인하여 이를 도 1의 (a) 및 (b)에 나타내었다. 육안으로 관찰하였을 경우, 두 필름은 매우 투명함을 확인할 수 있었으며, 콜라겐이나 젤라틴의 유무에 상관없이 육안관찰상 투명도는 잘 유지되는 것을 관찰하였다.
실험예 2: 복합이식체 (필름) 두께 측정
필름의 두께를 측정하기 위해서 각 필름을 완전히 건조시켰다. 필름에 오스뮴으로 코팅한 후 전계방출주사전자현미경(Field Emission Scanning Electron Microscope, FE-SEM, SUPRA 40VP, Carl Zeiss, Germany)으로 관찰하였으며, 관찰 결과를 도 2에 나타내었다.
도 2에 나타낸 바와 같이, 실시예 1-1에서 제작된 필름은 4 ~ 7 ㎛ (5.53 ± 0.45 ㎛) 범위의 두께를 가졌으며, 실시예 2에서 제작된 필름은 5 ~ 10 ㎛ (8.0 ± 0.3 ㎛) 범위의 두께를 가짐을 확인하였다.
반면 비교예 1의 경우 40 ~ 100 ㎛ (50.0 ± 0.3 ㎛), 비교예 2의 경우 15 ~ 20 ㎛ (17.50 ±0.5 ㎛), 비교예 3의 경우 90 ~ 120 ㎛ (105.0 ± 4.5 ㎛) 두께를 갖는다는 것을 확인하였다.
또한, 제작된 필름의 단면을 관찰한 결과, 실시예 1-1 및 2는 많은 다공과 층상 구조를 이루는 것을 확인하였으나, 비교예 1 의 경우에는 다공이 있으나 실시예와 비교하였을 때 작은 다공을 가지고 있으며 층상 구조가 없는 것을 확인하였으며, 비교예 2의 경우에는 작은 다공 구조를 확인할 수 있었으나, 층상 구조가 나타나지 않음을 확인할 수 있고, 비교예 3의 경우에는 다공이 없고 옆면이 매끄러운 것을 확인할 수 있다. 이러한 필름의 단면 구조의 관찰 결과를 통해, 실시예의 필름 투과성이 가장 높다는 것을 간접적으로 확인할 수 있었다.
실험예 3: 생체적합성 및 증식평가
실험예 3-1: 토끼의 각막 내피세포의 부착과 세포 형태 관찰(생체 적합성)
초박막으로 제작된 이식체와 세포와의 관계를 확인하기 위하여 토끼로부터 분리한 1 세대 각막 내피세포를 단위 면적당 500 세포 밀도(500 cells/mm2)로 파종하여 1일 동안 37℃, 이산화탄소 농도가 5% 인 조건에서 배양하여 세포와의 관계를 확인하였다. 이를 위해 토끼의 각막 내피세포의 부착과 세포 형태를 전계방출주사전자현미경으로 관찰하여 도 3에 나타내었다. 도 3의 (a)는 실시예 1-1에서 제조한 초박막 실크피브로인/콜라겐 복합이식체 필름의 세포 증식 결과를 나타낸 것으로, 세포가 왕성하게 증식함을 확인할 수 있으며, 각막 내피세포의 형태적 특이성을 잘 유지했음을 관찰하였다.
반면 비교예 1 ~ 3의 필름의 경우 세포가 잘 자랐으나 세포 크기가 다소 커진 것을 확인하였다. 체내에서 각막내피세포는 평균 10 ㎛ 의 크기를 유지하며, 주변 환경 조건이 변하거나 맞지 않는 경우, 또는 여러 가지 원인에 의해 각막내피세포는 커지며, 육각형의 형태를 잃어버리게 된다. 비교예 1 ~ 3의 경우, 각 필름에서 배양된 각막내피세포들은 콜라겐이 포함된 실시예 1, 2의 경우와 비교하였을 때, 세포의 부착 및 증식, 특성 유지함에 있어서 능력이 떨어지는 것을 확인하였다. 반면, 실시예 1-1에서 보여준 결과는 체내에 위치한 각막내피세포의 크기와 특성이 유사하였으며, 잘 유지되는 것을 관찰하였다. 이를 통해, 본 발명에 따른 복합 필름은 생체 적합성이 있는 것으로 확인할 수 있다.
실험예 3-2: 광학 강도(optical intensity) 측정 2(증식평가)
파종된 세포의 증식률을 평가하기 위해 실시예 1-1 ~ 1-3 및 비교예 1, 양성대조군(TCP)의 필름에 실험예 3-1에서 이식한 각막내피세포의 증식을 최대 7일까지 관찰하였다. 구체적으로 증식률을 평가하기 위해, 광학 강도(optical intensity)를 570nm 에서 측정하여 그 결과를 도 4에 나타냈다. 이때 TCP(Tissue culture polystylene)는 세포의 증식이 잘 되는 양성대조군에 해당된다. 이러한 실험을 통해 필름에 파종된 세포가 얼마나 빨리 증식하는지 확인할 수 있다.
도 4의 결과를 통해, 본 발명에 따른 실시예의 필름이, 유기용매를 이용하여 정제한 실크피브로인을 녹여 제조한 실크피브로인 용액을 사용한 비교예 1의 필름과 대비하여 세포 성장이 우수함을 확인할 수 있었다. 그리고 콜라겐 함량이 증가함에 따라 세포 증식률이 증가하였으며, 유기용매 기반 실크 피브로인 필름보다 더 좋은 증식률을 가짐을 관찰할 수 있었다.
따라서, 본 발명의 실크피브로인/콜라겐 복합이식체는 필름의 형태로서 투명하고, 4 ~ 10 ㎛ 정도의 매우 얇은 두께의 초박막을 가지고 있으며, 세포와의 상호관계에 있어 능력이 우수함을 확인함에 따라 각막 내피세포를 포함한 다양한 조직세포를 이식할 수 있는 이식체로서 적합함을 확인할 수 있다.
즉, 본 발명은 종래의 정제된 실크피브로인을 유기용매에 녹이지 않고 사용함으로써 잔류 유기용매가 세포에 독성으로 작용하여 세포의 부착 및 성장에 영향을 주는 것을 최소화할 수 있으며, 더불어 생체재료(biomaterial)를 사용함으로써 이식세포의 부착, 증식, 및 세포 전달을 위한 구조적 환경을 제공해 줄 수 있다. 또한 실크피브로인과 콜라겐이 혼합하여 이식체를 제작하였을 때, 초박막 및 투명도에 유의한 영향성을 미치지 않으며, 이식체로서 4 ~ 10 ㎛ 의 두께를 필요로 하는 각막 상피, 각막 내피, 망막, 고막 및 구강으로 구성된 군으로부터 선택되는 조직세포를 부착 및 증식시키는데 유리하다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
Claims (16)
- 실크피브로인(silk fibroin) 및 콜라겐(collagen)를 포함하는 용액을 필름으로 제조하여 초박막의 형태를 갖는 것을 특징으로 하는 실크피브로인/콜라겐 복합이식체.
- 제 1 항에 있어서, 상기 실크피브로인:콜라겐은 1~3:3~1의 부피 비율로 혼합하여 제작한 것을 특징으로 하는 실크피브로인/콜라겐 복합이식체.
- 제 1 항에 있어서, 상기 용액은 생체재료(biomaterial)를 더 포함하는 것을 특징으로 하는 실크피브로인/콜라겐 복합이식체.
- 제 3 항에 있어서, 실크피브로인(silk fibroin) 및 콜라겐(collagen)를 포함하는 용액:생체재료(biomaterial)는 1~3:1의 부피 비율로 혼합하는 것을 특징으로 하는 실크피브로인/콜라겐 복합이식체.
- 제 1 항에 있어서, 상기 실크피브로인(silk fibroin)은 누에고치 또는 견섬유를 Na2CO3용액이 투명해질 때 넣어 끓인 후 건조시킨 실크를, LiBr 용액에 녹인 후 3일 동안 투석하고 필터하여 얻어 정제된, 세리신 1 ~ 10 v/v%을 포함된 실크피브로인 수용액인 것을 특징으로 하는 실크피브로인/콜라겐 복합이식체
- 제 1 항에 있어서, 상기 콜라겐(collagen)은 오리발에서 추출한 것을 특징으로 하는 실크피브로인/콜라겐 복합이식체.
- 제 3 항에 있어서, 상기 생체재료(biomaterial)는
히알루론산(hyaluronic acid)을 포함하는 뮤코다당류;
젤라틴 및 콜라겐으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 천연 단백질류;
키토산, 녹말 및 셀룰로오스로 이루어진 군으로부터 선택된 1종 이상을 포함하는 선형 단당류;
알긴산을 포함하는 해조류 유래 다당류;
젤란검 및 플루란으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 세균의 발효로부터 얻어지는 다당류; 및
시클로덱스트린을 포함하는 저분자 다당류;
로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 실크피브로인/콜라겐 복합이식체. - 제 1 항에 있어서, 상기 초박막은 평균 두께가 4 ~ 10 ㎛인 것을 특징으로 하는 실크피브로인/콜라겐 복합이식체.
- 제 1 항 내지 제 8 항 중에서 선택된 어느 한 항에 있어서, 상기 실크피브로인/콜라겐 복합이식체는 각막 상피, 각막 내피, 망막, 고막 및 구강으로 구성된 군으로부터 선택되는 조직세포를 부착 및 증식시킬 수 있는 실크피브로인/콜라겐 복합이식체.
- (i) 콜라겐을 산에 녹이는 단계;
(ii) 누에고치 또는 견섬유에서 정제된 1 ~ 10 v/v% 세리신이 포함된 실크피브로인 수용액에 (i) 단계에서 제조한 콜라겐 용액을 혼합하는 단계;
(iii) 실크피브로인-콜라겐 혼합용액을 캐스팅하여 필름으로 제조하고 건조하는 단계;
(iv) 건조된 필름을 가교 및 결정화하는 단계; 및
(v) 가교 및 결정화 된 필름을 건조시켜 초박막의 투명한 실크피브로인/콜라겐 복합이식체를 제조하는 단계;
를 포함하는 것을 특징으로 하는 실크피브로인/콜라겐 복합이식체의 제조방법. - 제 10 항에 있어서, 상기 (ii) 단계는 실크피브로인 수용액:콜라겐 용액 = 1~3:3~1의 부피 비율로 혼합하는 것을 특징으로 하는 실크피브로인/콜라겐 복합이식체의 제조방법.
- 제 10 항에 있어서, 상기 실크피브로인(silk fibroin)은 누에고치 또는 견섬유를 Na2CO3용액이 투명해질 때 넣어 끓인 후 건조시킨 실크를, LiBr 용액에 녹인 후 3일 동안 투석하고 필터하여 얻어 정제된, 세리신 1 ~ 10 v/v%을 포함된 실크피브로인 수용액인 것을 특징으로 하는 실크피브로인/콜라겐 복합이식체의 제조방법.
- 제 10 항에 있어서, 상기 (ii) 단계는
히알루론산(hyaluronic acid)을 포함하는 뮤코다당류;
젤라틴 및 콜라겐으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 천연 단백질류;
키토산, 녹말 및 셀룰로오스로 이루어진 군으로부터 선택된 1종 이상을 포함하는 선형 단당류;
알긴산을 포함하는 해조류 유래 다당류;
젤란검 및 플루란으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 세균의 발효로부터 얻어지는 다당류; 및
시클로덱스트린을 포함하는 저분자 다당류;
로 이루어진 군으로부터 선택되는 1종 이상의 생체재료(biomaterial)를 더 포함하는 것을 특징으로 하는 실크피브로인/콜라겐 복합이식체의 제조방법. - 제 13 항에 있어서, (ii) 단계의 실크피브로인(silk fibroin) 및 콜라겐(collagen)를 포함하는 용액:생체재료(biomaterial)은 1~3:1의 부피 비율로 혼합하여 제작한 것을 특징으로 하는 실크피브로인/콜라겐 복합이식체의 제조방법.
- 제 10 항에 있어서, 상기 (iv) 단계의 가교는 0.1 ~ 3% 농도의 1-에틸-3-(3-다이메틸아미노프로필)카보다이이미드(1-ethyl-3-(3-dimethylaminopropyl) carbodiimide) 또는 EDC/N-하이드록시수신이미드(N-Hydroxysuccinimide) 또는 2-클로로-1-메틸피리디니움 아이오아이드(2-chloro-1-methylpyridinium iodide) 용액을 이용하는 것을 특징으로 하는 실크피브로인/콜라겐 복합이식체의 제조방법.
- 제 10 항에 있어서, 상기 (v) 단계 이후, 투명한 실크피브로인/콜라겐 복합이식체에 각막 상피, 각막 내피, 망막, 고막 및 구강으로 구성된 군으로부터 선택되는 조직세포를 파종하는 단계(vi)를 추가적으로 더 포함하는 것을 특징으로 하는 실크피브로인/콜라겐 복합이식체의 제조방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/505,054 US10434216B2 (en) | 2014-08-19 | 2015-07-10 | Ultra-thin film silk fibroin/collagen composite implant and manufacturing method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0107440 | 2014-08-19 | ||
KR1020140107440A KR101629204B1 (ko) | 2014-08-19 | 2014-08-19 | 초박막 실크피브로인/콜라겐 복합이식체 및 이의 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016027988A1 true WO2016027988A1 (ko) | 2016-02-25 |
Family
ID=55350900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/007210 WO2016027988A1 (ko) | 2014-08-19 | 2015-07-10 | 초박막 실크피브로인/콜라겐 복합이식체 및 이의 제조방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10434216B2 (ko) |
KR (1) | KR101629204B1 (ko) |
WO (1) | WO2016027988A1 (ko) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105903071A (zh) * | 2016-04-18 | 2016-08-31 | 青岛三帝生物科技有限公司 | 角膜支架材料及其制备方法和角膜支架的3d打印方法 |
CN106039416A (zh) * | 2016-06-27 | 2016-10-26 | 华中科技大学同济医学院附属协和医院 | 壳聚糖—丝胶蛋白复合生物支架及其制备方法和应用 |
WO2018090341A1 (zh) * | 2016-11-18 | 2018-05-24 | 深圳市成农生物材料有限公司 | 人工复合膜、制备方法及其应用 |
CN114081991A (zh) * | 2021-11-12 | 2022-02-25 | 重庆医科大学 | 基于丝素/海藻纤维的具有生物活性的复合透明水胶体敷料及其制备方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102070269B1 (ko) * | 2017-07-07 | 2020-03-02 | 한림대학교 산학협력단 | 지혈용 다공성 스펀지 및 그 제조방법 |
KR102017948B1 (ko) * | 2017-10-30 | 2019-09-03 | 단국대학교 천안캠퍼스 산학협력단 | 콜라겐 및 실크 피브로인을 포함하는 세포 캡슐화용 복합 하이드로겔 및 이의 제조방법 |
CN109833294B (zh) * | 2019-04-19 | 2020-06-09 | 江苏远恒药业有限公司 | 一种盐酸洛美沙星滴眼液及其制备工艺 |
US20220313590A1 (en) * | 2019-06-06 | 2022-10-06 | Evolved By Nature, Inc. | Silk stimulated collagen production and methods of use thereof |
CN111320767B (zh) * | 2020-03-04 | 2023-01-10 | 西南交通大学 | 一种用于3d生物打印的可触变性水凝胶的制备方法 |
CN111821514B (zh) * | 2020-08-06 | 2021-12-24 | 苏州大学 | 一种丝素丝胶蛋白复合膜及其制备方法 |
CN112043875B (zh) * | 2020-08-06 | 2022-05-31 | 苏州大学 | 一种原位内膜再生的血管支架覆膜及其制备方法 |
TWI777347B (zh) * | 2020-12-31 | 2022-09-11 | 財團法人工業技術研究院 | 非纖維形式薄膜與細胞層片 |
CN113679883A (zh) * | 2021-09-17 | 2021-11-23 | 吉林省七维生物科技有限公司 | 一种含丝素蛋白凝胶敷料的制备方法 |
CN115637533A (zh) * | 2022-10-20 | 2023-01-24 | 上海大学 | 一种用于微生物培养的碳纤维熔融直写丝素蛋白复合材料及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110127324A (ko) * | 2010-05-19 | 2011-11-25 | 한림대학교 산학협력단 | 실크 피브로인으로부터 제조되는 인공 뇌경막 및 그 제조방법 |
EP2447055A1 (en) * | 2002-06-24 | 2012-05-02 | Tufts University | Silk biomaterials and methods of use thereof |
KR20120067831A (ko) * | 2010-12-16 | 2012-06-26 | 대한민국(농촌진흥청장) | 실크단백질을 이용한 치주 골조직유도 재생용 차폐막 및 그 제조방법 |
KR20130006834A (ko) * | 2011-06-24 | 2013-01-18 | 주식회사 바이오알파 | 피부 및 상처 보호를 위한 실크 필름의 제조방법 |
WO2014011644A1 (en) * | 2012-07-09 | 2014-01-16 | Trustees Of Tufts College | High molecular weight silk fibroin and uses thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5002582A (en) * | 1982-09-29 | 1991-03-26 | Bio-Metric Systems, Inc. | Preparation of polymeric surfaces via covalently attaching polymers |
US5863984A (en) * | 1995-12-01 | 1999-01-26 | Universite Laval, Cite Universitaire | Biostable porous material comprising composite biopolymers |
JP2002128691A (ja) * | 2000-10-24 | 2002-05-09 | National Institute Of Agrobiological Sciences | セリシン含有素材、その製造方法およびその使用方法 |
WO2007043255A1 (ja) * | 2005-09-13 | 2007-04-19 | Arblast Co., Ltd. | 培養角膜内皮シート及びその作製方法 |
KR101060910B1 (ko) | 2009-05-08 | 2011-08-30 | 대한민국(관리부서:농촌진흥청장) | 실크단백질을 이용한 인공고막 및 그 제조방법 |
CN101716375B (zh) * | 2009-11-20 | 2014-10-22 | 深圳齐康医疗器械有限公司 | 由纯天然原料制备的具有梯度孔结构和性能的人工皮肤 |
KR101151358B1 (ko) | 2010-03-17 | 2012-06-08 | 동국대학교 산학협력단 | 실크 및 콜라겐을 포함하는 복합 지지체 및 그 제조방법 |
WO2011130335A2 (en) * | 2010-04-12 | 2011-10-20 | Tufts University | Silk electronic components |
-
2014
- 2014-08-19 KR KR1020140107440A patent/KR101629204B1/ko active IP Right Grant
-
2015
- 2015-07-10 WO PCT/KR2015/007210 patent/WO2016027988A1/ko active Application Filing
- 2015-07-10 US US15/505,054 patent/US10434216B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2447055A1 (en) * | 2002-06-24 | 2012-05-02 | Tufts University | Silk biomaterials and methods of use thereof |
KR20110127324A (ko) * | 2010-05-19 | 2011-11-25 | 한림대학교 산학협력단 | 실크 피브로인으로부터 제조되는 인공 뇌경막 및 그 제조방법 |
KR20120067831A (ko) * | 2010-12-16 | 2012-06-26 | 대한민국(농촌진흥청장) | 실크단백질을 이용한 치주 골조직유도 재생용 차폐막 및 그 제조방법 |
KR20130006834A (ko) * | 2011-06-24 | 2013-01-18 | 주식회사 바이오알파 | 피부 및 상처 보호를 위한 실크 필름의 제조방법 |
WO2014011644A1 (en) * | 2012-07-09 | 2014-01-16 | Trustees Of Tufts College | High molecular weight silk fibroin and uses thereof |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105903071A (zh) * | 2016-04-18 | 2016-08-31 | 青岛三帝生物科技有限公司 | 角膜支架材料及其制备方法和角膜支架的3d打印方法 |
CN106039416A (zh) * | 2016-06-27 | 2016-10-26 | 华中科技大学同济医学院附属协和医院 | 壳聚糖—丝胶蛋白复合生物支架及其制备方法和应用 |
CN106039416B (zh) * | 2016-06-27 | 2019-05-17 | 华中科技大学同济医学院附属协和医院 | 壳聚糖—丝胶蛋白复合生物支架及其制备方法和应用 |
WO2018090341A1 (zh) * | 2016-11-18 | 2018-05-24 | 深圳市成农生物材料有限公司 | 人工复合膜、制备方法及其应用 |
CN108778353A (zh) * | 2016-11-18 | 2018-11-09 | 深圳市金新农科技股份有限公司 | 人工复合膜、制备方法及其应用 |
CN114081991A (zh) * | 2021-11-12 | 2022-02-25 | 重庆医科大学 | 基于丝素/海藻纤维的具有生物活性的复合透明水胶体敷料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101629204B1 (ko) | 2016-06-10 |
US20170266345A1 (en) | 2017-09-21 |
US10434216B2 (en) | 2019-10-08 |
KR20160021987A (ko) | 2016-02-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101629204B1 (ko) | 초박막 실크피브로인/콜라겐 복합이식체 및 이의 제조방법 | |
Naahidi et al. | Biocompatibility of hydrogel-based scaffolds for tissue engineering applications | |
Fornasari et al. | Natural-based biomaterials for peripheral nerve injury repair | |
Anton-Sales et al. | Opportunities of bacterial cellulose to treat epithelial tissues | |
Aldana et al. | Current advances in electrospun gelatin-based scaffolds for tissue engineering applications | |
Bacakova et al. | Polysaccharides as cell carriers for tissue engineering: the use of cellulose in vascular wall reconstruction | |
Kim et al. | Chitosan and its derivatives for tissue engineering applications | |
US10729804B2 (en) | Nanofibrillar cellulose composition | |
Ha et al. | Naturally derived biomaterials: preparation and application | |
CN108310467B (zh) | 一种组装型细胞衍生细胞外基质膜复合骨修复材料及其制备方法和应用 | |
CN104892962B (zh) | 一种巯基/二硫键可控自交联透明质酸水凝胶的制备方法及其应用 | |
Feng et al. | Review of alternative carrier materials for ocular surface reconstruction | |
EP2180906B1 (fr) | Prothese destinee a promouvoir la reconstruction in vivo d'un organe creux ou d'une partie d'organe creux | |
US20150246163A1 (en) | Method for Preparing Porous Scaffold for Tissue Engineering | |
Kim et al. | Engineering retinal pigment epithelial cells regeneration for transplantation in regenerative medicine using PEG/Gellan gum hydrogels | |
Dutta et al. | Chitosan: A promising biomaterial for tissue engineering scaffolds | |
Nakayama | In vitro biofabrication of tissues and organs | |
CN105688274A (zh) | 一种聚己内酯/明胶电纺复合支架的制备工艺 | |
CN109125808A (zh) | 一种可生物降解的胶原基角膜替代物及其制备方法 | |
WO2021012677A1 (zh) | 一种仿生的预脉管化材料及其制备方法和应用 | |
Costa et al. | Bacterial cellulose towards functional medical materials | |
Huang et al. | An active artificial cornea with the function of inducing new corneal tissue generation in vivo—A new approach to corneal tissue engineering | |
KR101655333B1 (ko) | 표면개질된 생체적합성 실크피브로인 필름과 그 제조방법 | |
Niknezhad et al. | Enhancing volumetric muscle loss (VML) recovery in a rat model using super durable hydrogels derived from bacteria | |
CN111214703B (zh) | 一种iPS来源心肌细胞复合补片及其制备和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15833165 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15505054 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15833165 Country of ref document: EP Kind code of ref document: A1 |