WO2016027813A1 - Inspection/sorting system - Google Patents
Inspection/sorting system Download PDFInfo
- Publication number
- WO2016027813A1 WO2016027813A1 PCT/JP2015/073158 JP2015073158W WO2016027813A1 WO 2016027813 A1 WO2016027813 A1 WO 2016027813A1 JP 2015073158 W JP2015073158 W JP 2015073158W WO 2016027813 A1 WO2016027813 A1 WO 2016027813A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inspection
- inspection object
- distribution
- article
- reference position
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/04—Sorting according to size
- B07C5/10—Sorting according to size measured by light-responsive means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/36—Sorting apparatus characterised by the means used for distribution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G47/00—Article or material-handling devices associated with conveyors; Methods employing such devices
- B65G47/34—Devices for discharging articles or materials from conveyor
- B65G47/46—Devices for discharging articles or materials from conveyor and distributing, e.g. automatically, to desired points
Definitions
- the present invention relates to an inspection distribution system that inspects an article and distributes an article to be conveyed based on an inspection result.
- the present invention relates to an inspection distribution system for inspecting / sorting irregular shaped articles.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2002-362729
- an article conveyed by a conveyor is inspected, and air is injected to the article conveyed on the conveyor based on the inspection result.
- a sorting inspection distribution system is disclosed.
- the inspection target is indefinite, depending on the shape of the article, even if a force is applied to the article by the sorting mechanism, the article does not move as desired and a sorting error may occur. In such a case, it is necessary for the worker to take necessary measures such as sorting the articles with the sorting error by hand.
- An object of the present invention is an inspection distribution system for inspecting and distributing an irregularly shaped article, and a highly reliable inspection distribution system that can easily distribute an article regardless of the outer shape of the article Is to provide.
- the inspection distribution system inspects an irregularly shaped article and distributes the article based on the inspection result.
- the inspection distribution system includes a transport mechanism, an imaging mechanism, a distribution mechanism, a determination unit, and a distribution mechanism control unit.
- the conveying means conveys the article.
- the imaging mechanism images an article conveyed by the conveyance mechanism and acquires a captured image of the article.
- the sorting mechanism sorts the articles.
- the determination unit extracts the outer shape of the article from the captured image, and determines a reference position to which the distribution mechanism distributes the article based on the outer shape of the article.
- the distribution mechanism control unit controls the distribution mechanism so that the distribution mechanism applies a force to the reference position.
- the reference position at which the distribution mechanism applies a force to the article is determined based on the outer shape extracted from the captured image of the irregular article. Therefore, it is easy to accurately move and distribute an article regardless of the outer shape of the article, and a highly reliable inspection distribution system can be realized.
- An inspection distribution system is the inspection distribution system according to the first aspect, wherein the determining unit calculates the centroid of the article based on the outer shape of the article, and the distribution mechanism is The reference position is determined so as to exert a force toward the heart.
- the distribution mechanism applies a force toward the centroid of the article, it is easy to accurately distribute the article regardless of the outer shape of the article, and a highly reliable inspection distribution system. Minute system can be realized.
- the inspection distribution system is the inspection distribution system according to the first aspect, and the imaging mechanism acquires an X-ray image of an article as a captured image.
- the determination unit calculates the center of gravity of the article based on the outer shape of the article, and determines the reference position so that the distribution mechanism exerts a force toward the center of gravity.
- the distribution mechanism applies a force toward the center of gravity of the article, it is easy to accurately distribute the article regardless of the outer shape of the article, and the inspection distribution with high reliability. A system can be realized.
- the inspection distribution system is the inspection distribution system according to the third aspect, and further includes a weight estimation unit that estimates the weight of the article based on the captured image.
- the distribution mechanism distributes the article by applying force to the article by injecting air onto the article.
- the distribution mechanism control unit further controls the distribution mechanism so that at least one of the air injection time and the injection pressure of the distribution mechanism is adjusted based on the weight of the article estimated by the weight estimation unit.
- the inspection distribution system in addition to determining the reference position for distributing the article, at least one of the air injection time and the injection pressure is adjusted based on the weight of the article. Therefore, it is easier to accurately distribute the articles, and a highly reliable inspection distribution system can be realized.
- the inspection distribution system is the inspection distribution system according to the third aspect or the fourth aspect, and further includes a metal detection unit that detects a metal contained in the article.
- the sorting mechanism sorts the articles based on the inspection result based on the X-ray image of the article and the detection result of the metal detection unit.
- an article containing metal as a foreign object can be accurately moved and distributed regardless of the outer shape of the article.
- the distribution mechanism since the distribution mechanism applies a force toward the center of gravity of the article, it is easy to accurately distribute an article containing a metal as a foreign object regardless of the outer shape of the article.
- the inspection distribution system is configured to sort the article based on the result of the foreign object inspection based on the X-ray image of the article and the detection result of the metal detection unit, for example, in the X-ray inspection of aluminum or iron powder Even when foreign objects that are difficult to detect are mixed in the article, it is easy to detect these foreign substances by the metal detection unit and accurately sort the articles mixed with foreign substances by the sorting mechanism.
- the inspection distribution system according to the sixth aspect of the present invention is the inspection distribution system according to any one of the first to fifth aspects, and the article is a natural object.
- the article is a natural product unlike an industrial product, the individual difference in the outer shape of the article is generally large. However, here, since the part where the sorting mechanism applies force to the article is adjusted based on the outer shape extracted from the captured image of the article, it is easy to accurately sort the article even if it is a natural object. .
- the inspection distribution system according to the seventh aspect of the present invention is an inspection distribution system according to any one of the first to sixth aspects, and the inspection distribution system determines the rank of the article by inspection.
- the distribution mechanism distributes articles according to rank.
- the inspection distribution system is the inspection distribution system according to the first aspect, and the imaging mechanism acquires X-ray images of a plurality of articles as captured images.
- the determining unit calculates a combined center of gravity of the plurality of articles, and determines a reference position so that the distribution mechanism exerts a force toward the combined center of gravity.
- the inspection distribution system it is easy to accurately distribute the distribution object even when the distribution object includes a plurality of articles.
- the reference position at which the distribution mechanism exerts a force on the article is determined based on the outline extracted from the captured image of the irregular article. It is easy to accurately move and distribute articles, and a highly reliable inspection distribution system can be realized.
- FIG. 1 is a schematic diagram of an inspection distribution system according to a first embodiment of the present invention. It is an external appearance perspective view of the X-ray inspection apparatus contained in the inspection distribution system of FIG. It is a simple block diagram inside the shield box of the X-ray inspection apparatus of FIG. It is a block diagram of the inspection distribution system of FIG. It is a graph which shows the example of the detection amount (transmission amount) of the X-ray detected by the X-ray detection element of the X-ray inspection apparatus of FIG. It is a figure for demonstrating the calculation method of the gravity center of the to-be-inspected object by the inspection distribution system of FIG. 1, and the determination method of a reference position.
- the inspection distribution system 100 is a system that inspects the inspection object P (article) being conveyed and distributes the inspection object P based on the inspection result.
- the inspection object P here is indefinite.
- the inspection object P has a different shape for each inspection object P.
- the inspection object P is a natural product including agricultural products such as fruits and vegetables and marine products such as seafood.
- the present invention is not limited to this, and the inspection object P may be an industrial product having a different shape for each inspection object P.
- the inspection distribution system 100 is a system that performs rank inspection of the inspection object P and distributes the inspection object P according to rank based on the inspection result. More specifically, the inspection distribution system 100 estimates the weight of the inspection object P, performs rank determination according to the estimated weight, and distributes the inspection object P by rank.
- the inspection distribution system 100 mainly includes a transfer device 10, an X-ray inspection device 20, and a distribution device 40 (see FIG. 1).
- the conveying apparatus 10 receives the inspection object P conveyed by the upstream conveyor unit 60 and conveys the received inspection object P.
- An arrow in FIG. 1 indicates the transport direction D of the transport device 10.
- the X-ray inspection apparatus 20 estimates the weight of the inspection object P and classifies the inspection object P into a plurality of ranks (here, three ranks) according to the weight. It should be noted that the rank stage is an example, and is not limited to this. Based on the inspection result of the X-ray inspection apparatus 20, the sorting apparatus 40 distributes the inspection object P transported by the transport apparatus 10 by rank.
- the transport device 10 is an example of a transport mechanism that transports the inspection object P.
- the conveying device 10 receives the inspection object P conveyed by the upstream conveyor unit 60 and conveys the inspection object P so as to pass through a shield box 21 described later of the X-ray inspection apparatus 20. Further, the transport apparatus 10 transports the inspection object P that has passed through the shield box 21 to the sorting apparatus 40 on the downstream side of the X-ray inspection apparatus 20. More specifically, the transport device 10 transports the inspection object P that has passed through the shield box 21 so as to pass in the vicinity of a sorting mechanism 41 of the sorting device 40 described later.
- the transport apparatus 10 mainly includes an endless conveyor belt 11 (see FIG. 3), a driving roller (not shown), and a conveyor motor 12 (see FIG. 4).
- the driving roller (not shown) is driven by the conveyor motor 12. By driving the driving roller, the conveyor belt 11 rotates, and the inspection object P placed on the conveyor belt 11 is conveyed.
- the conveyor motor 12 is a motor capable of inverter control.
- the conveyor motor 12 is inverter-controlled by a command from the controller 30 of the X-ray inspection apparatus 20 described later, and the rotational speed of the drive roller is adjusted. As a result, the conveyance speed of the inspection object P placed on the conveyor belt 11 is finely controlled.
- the conveyor motor 12 is equipped with an encoder 13 that detects the rotational speed of the conveyor motor 12 and transmits it to the controller 30 of the X-ray inspection apparatus 20 and the controller 50 of the sorting apparatus 40 (see FIG. 4). .
- the conveying apparatus 10 may have one each of the conveyor belt 11, the driving roller, and the conveyor motor 12, or any one or all of the conveyor belt 11, the driving roller, and the conveyor motor 12, You may have more than one.
- the X-ray inspection device 20 irradiates the inspection object P continuously transported by the transport device 10 with X-rays and based on the X-ray dose transmitted through the inspection object P.
- the weight of the inspection object P is estimated.
- the X-ray inspection apparatus 20 classifies the inspection object P into three ranks based on the weight estimation result of the inspection object P. Further, the X-ray inspection apparatus 20 determines a reference position F to which the sorting mechanism 41 of the sorting apparatus 40 described later sorts the inspection object P, and transmits information on the reference position F to the controller 50 of the sorting apparatus 40. .
- the reference position F is a position where the sorting mechanism 41 of the sorting device 40 applies a force to the inspection object P.
- the X-ray inspection apparatus 20 mainly includes a shield box 21 (see FIG. 2), an X-ray irradiator 22 (see FIG. 3), a line sensor 23 (see FIG. 3), and a monitor 25 (see FIG. 2). And a controller 30 (see FIG. 4).
- the shield box 21 is a housing that houses therein the X-ray irradiator 22, the line sensor 23, the controller 30, and the like. Further, in addition to the monitor 25, a key insertion port, a power switch, and the like are disposed on the upper front portion of the shield box 21 (see FIG. 2). Openings 21a are formed on the left and right side surfaces of the shield box 21 (see FIG. 2).
- the conveyor belt 11 of the transfer device 10 is arranged inside the shield box 21, the conveyor belt 11 of the transfer device 10 is arranged. Specifically, the conveyor belt 11 is disposed so as to penetrate through the openings 21 a formed on both side surfaces of the shield box 21.
- the opening 21 a on the upstream side in the transport direction D of the transport device 10 functions as a carry-in entrance to the shield box 21 for the inspection object P transported on the conveyor belt 11.
- the opening 21 a on the downstream side in the transport direction D of the transport device 10 functions as a carry-out port from the shield box 21 for the inspection object P transported on the conveyor belt 11.
- the opening 21a is closed by a shield noren 26 in order to prevent leakage of X-rays to the outside of the shield box 21 (see FIG. 2).
- the shielding nolen 26 is made of rubber containing lead, tungsten and the like. The shield noren 26 is pushed away by the inspection object P when the inspection object P is carried in and out through the opening 21a.
- the X-ray irradiator 22 is disposed above the conveyor belt 11 in the shield box 21 (see FIG. 3).
- the X-ray irradiator 22 irradiates the fan-shaped irradiation range Y with X-rays toward the line sensor 23 disposed below the conveying surface of the conveyor belt 11 (see the hatched portion in FIG. 3).
- the X-ray irradiation range Y of the X-ray irradiator 22 extends so as to be orthogonal to the conveyance surface of the inspection object P of the conveyor belt 11. Further, the irradiation range Y extends in a fan shape in a direction intersecting the transport direction D of the transport device 10. In other words, the X-rays irradiated from the X-ray irradiator 22 spread in the width direction of the conveyor belt 11.
- the line sensor 23 is disposed below the conveying surface of the conveyor belt 11.
- the line sensor 23 detects X-rays that pass through the inspection object P and the conveyor belt 11.
- the line sensor 23 mainly has a large number of X-ray detection elements 23a.
- the X-ray detection elements 23 a are horizontally arranged in a straight line in a direction orthogonal to the transport direction D of the transport device 10, in other words, in the width direction of the conveyor belt 11.
- Each X-ray detection element 23a detects X-rays transmitted through the inspection object P and the conveyor belt 11, and outputs an X-ray transmission signal based on the detected X-ray transmission amount (X-ray intensity).
- the X-ray transmission signal is transmitted to the controller 30 and used to create an X-ray image of the inspection object P.
- the controller 30 performs weight estimation of the inspection object P based on an X-ray image created based on the X-ray transmission signal, in other words, based on the X-ray transmission amount.
- FIG. 5 is a graph showing an example of an X-ray detection amount (X-ray transmission amount) detected by the X-ray detection element 23 a of the line sensor 23.
- the horizontal axis of the graph corresponds to the position of each X-ray detection element 23a.
- the horizontal axis of the graph corresponds to the distance in the direction orthogonal to the transport direction D of the transport device 10.
- the vertical axis of the graph indicates the detected amount of X-rays (X-ray transmission amount) detected by the X-ray detection element 23a.
- a portion with a large detection amount is displayed as a bright (light) pixel, and a portion with a small detection amount is displayed as a dark (dark) pixel.
- the amount of X-ray transmission decreases as the thickness of the article through which X-rays pass and increases as the thickness of the article through which X-rays pass through increases. Therefore, the brightness (darkness) of the X-ray image is determined by the object P to be inspected. Can be associated with the weight of
- the line sensor 23 also functions as a sensor for detecting the timing when the inspection object P passes through the fan-shaped X-ray irradiation range Y (see FIG. 3). Specifically, when the inspection object P conveyed on the conveyor belt 11 comes to an upper position (irradiation range Y) of the line sensor 23, the line sensor 23 transmits X-rays indicating a voltage equal to or lower than a predetermined threshold value. A signal (first signal) is output. On the other hand, when the inspection object P does not pass through the irradiation range Y, the line sensor 23 outputs an X-ray transmission signal (second signal) indicating a voltage exceeding a predetermined threshold. By inputting the first signal and the second signal to the controller 30, the presence or absence of the inspection object P in the irradiation range Y is detected.
- the predetermined threshold is a value appropriately set for determining the presence or absence of the inspection object P.
- the monitor 25 is a liquid crystal display.
- the monitor 25 displays an X-ray image of the inspection object P, an inspection result of the inspection object P, and the like.
- the monitor 25 also has a touch panel function and accepts input of inspection parameters and the like by the operator.
- the controller 30 is a computer that controls each part of the X-ray inspection apparatus 20.
- the controller 30 mainly includes a central processing unit (CPU) that performs calculation and control, a read only memory (ROM) that stores information, a random access memory (RAM), and a hard disk.
- the controller 30 also includes a display control circuit, a key input circuit, and the like (not shown).
- the display control circuit is a circuit that controls data display on the monitor 25.
- the key input circuit is a circuit that captures key input data input by an operator via the touch panel of the monitor 25.
- the controller 30 is electrically connected to the X-ray irradiator 22, the line sensor 23, and the monitor 25.
- the controller 30 is also electrically connected to the conveyor motor 12 and the encoder 13 of the transport apparatus 10 (see FIG. 4).
- the controller 30 acquires data related to the rotational speed of the conveyor motor 12 from the encoder 13 and grasps the transport distance and transport speed of the inspection object P based on the acquired data.
- the controller 30 is connected to the controller 50 of the distribution device 40 via a communication line 90 such as the Internet or a dedicated line in order to transmit distribution information to be described later to the distribution device 40.
- the controller 30 includes a distribution information transmission unit 31 that transmits distribution information described later to the controller 50 of the distribution device 40 described later (see FIG. 4). Moreover, the controller 30 has the memory
- the control unit 33 is mainly configured by a CPU, and executes a program stored in the storage unit 32 to generate an X-ray image, and estimate the weight and rank of the inspection object P based on the generated X-ray image. Make a decision.
- the control unit 33 controls the operation of each component of the X-ray inspection apparatus 20 such as the X-ray irradiator 22 and the line sensor 23.
- the storage unit 32 stores various inspection parameters used for weight estimation, rank inspection, and the like.
- the storage unit 32 stores a weight conversion table for converting the gray value of the X-ray image into a weight value, a threshold value for determining the rank of the inspection object P according to the weight, and the inspection object P.
- An injection time table is stored to determine the time for injecting air.
- the distribution information transmitting unit 31 transmits distribution information to the controller 50 of the distribution device 40.
- the distribution information is information used to operate a distribution mechanism 41 of the distribution device 40 (to be described later) and distribute the inspection object P conveyed by the conveyance device 10 to three conveyors (not shown).
- the distribution information includes information related to the rank of the inspection object P, information related to the reference position F to which the distribution mechanism 41 distributes the inspection object P, and information related to the air injection time for the inspection object P.
- the rank of the inspection object P is determined based on the weight of the inspection object P by a rank determination unit 33c of the control unit 33 described later. Based on the information about the rank of the inspection object P as the distribution information, any one of the first to third air distribution mechanisms 41a, 41b, 41c of the distribution mechanism 41 described later is operated, and the inspection object P It is decided whether or not to distribute.
- the reference position F is a position where the distribution mechanism 41 applies a force to the inspection object P.
- the reference position F is determined by a reference position determination unit 33e of the control unit 33 described later.
- the information on the reference position F is information on the distance L in the transport direction D from the downstream end E in the transport direction D of the inspection object P to the reference position F (see FIG. 6).
- the jetting time is information regarding how many seconds the sorting mechanism 41 jets air to the inspection object P.
- the injection time is determined by an injection time determination unit 33d of the control unit 33 described later.
- the storage unit 32 stores various programs to be executed by the control unit 33 and inspection parameters.
- the storage unit 32 mainly includes an X-ray image storage area 32a, a weight conversion information storage area 32b, a rank threshold storage area 32c, and an ejection time information storage area 32d (see FIG. 4).
- the X-ray image storage area 32a stores an X-ray image of the inspection object P generated by an X-ray image generation unit 33a described later.
- the weight conversion information storage area 32b stores a weight conversion table used by the weight estimation unit 33b to be described later when estimating the weight of the inspection object P. Yes.
- the weight conversion table is information that correlates one-to-one the gray value (shading level) of a pixel and the weight value corresponding to the pixel of the gray value. Note that, when the gray value of the pixel is larger than a predetermined threshold value (the pixel is bright), it is considered that the X-rays reach the line sensor 23 without passing through the inspection object P, and thus the weight conversion table. Then, the weight value is set to 0 for the gray value larger than the threshold value.
- the weight conversion table is information stored in the weight conversion information storage area 32b in advance. Further, for example, the weight conversion table may be information input from the outside via the monitor 25 having a touch panel function. In addition, for example, the weight conversion table generates an X-ray image for a sample whose thickness, weight, etc. are known at the time of a trial run, etc. ).
- the rank threshold value storage area 32c stores a threshold value used by the rank determination unit 33c described later for determining the rank of the inspection object.
- threshold values Q1 and Q2 ( ⁇ Q1) are stored in the rank threshold value storage area 32c.
- the threshold values Q1 and Q2 are information stored in advance in the rank threshold value storage area 32c. Further, for example, the threshold values Q1 and Q2 may be information input from the outside through the monitor 25 having a touch panel function.
- injection time information storage area 32d In the injection time information storage area 32d, an injection time determination unit 33d, which will be described later, distributes the inspection mechanism P to the inspection object P (first to third air).
- the injection time determination table used when determining the air injection time of the distribution mechanism 41a, 41b, 41c) is stored.
- the injection time determination table is information that associates a plurality of weight ranges with air injection times corresponding to the weight ranges on a one-to-one basis.
- the injection time determination table is information stored in advance in the injection time information storage area 32d.
- the injection time determination table may be information input from the outside via the monitor 25 having a touch panel function.
- the control unit 33 mainly executes an X-ray image generation unit 33a, a weight estimation unit 33b, a rank determination unit 33c, by executing a program stored in the storage unit 32. It functions as an injection time determination unit 33d and a reference position determination unit 33e.
- the X-ray image generation unit 33a and the line sensor 23 capture an image of the inspection object P conveyed by the conveyance device 10, and X-rays of the inspection object P It functions as an imaging mechanism that acquires an image as a captured image of the inspection object P.
- the X-ray image generation unit 33 a creates an X-ray image based on the X-ray intensity detected by the line sensor 23.
- the X-ray image generation unit 33a uses the X-ray transmission signal output based on the X-ray transmission amount (X-ray intensity) detected by the X-ray detection element 23a of the line sensor 23 as a captured image. An X-ray image is generated.
- the X-ray image generation unit 33a outputs the X-ray detection element 23a of the line sensor 23 when the inspection object P passes through the fan-shaped X-ray irradiation range Y (see FIG. 3).
- X-ray transmission signals are acquired at fine time intervals.
- the timing at which the inspection object P passes through the fan-shaped X-ray irradiation range Y is determined by a signal from the line sensor 23. That is, the presence / absence of the inspection object P in the irradiation range Y is determined based on the signal output from the line sensor 23.
- the X-ray image generation unit 33a generates an X-ray image based on the acquired X-ray transmission signal. Specifically, the X-ray image generation unit 33a connects the data for each minute time interval related to the brightness of the X-ray obtained from each X-ray detection element 23a of the line sensor 23 in a matrix form in time series. An X-ray image for the inspection object P is generated. The generated X-ray image is stored in the X-ray image storage area 32a.
- the weight estimation unit 33b estimates the weight of the inspection object P based on the X-ray image of the inspection object P.
- the weight estimation unit 33b creates information on the gray value of the X-ray image based on the X-ray image of the inspection object P stored in the X-ray image storage area 32a. Specifically, the weight estimation unit 33b classifies all pixels constituting the X-ray image into grayscale values (tones) having a predetermined width, and counts the number of pixels having each grayscale value. Thereby, a histogram indicating the number of pixels for each gray value is created. Next, the weight estimation unit 33b uses the weight conversion table stored in the weight conversion information storage area 32b to read all the gray values included in the histogram into weight values.
- the weight estimation unit 33b calculates, for the gray value included in the histogram, the product of the weight value corresponding to the gray value and the number of pixels of the gray value indicated by the histogram. The weight estimation unit 33b calculates the product for all the gray values included in the histogram, and adds these to estimate the weight of the inspection object P (calculates the estimated weight).
- the rank determination unit 33c determines the rank of the inspection object P based on the estimated weight of the inspection object P calculated by the weight estimation unit 33b. Specifically, the rank determination unit 33c uses the threshold values Q1 and Q2 stored in the rank threshold value storage area 32c, and if the estimated weight is equal to or less than the threshold value Q1, the rank is larger than the first rank, the threshold value Q1, and the threshold value Q2 or less. If there is, the second rank is determined. If it is larger than the threshold value Q2, the third rank and the rank of the inspection object P are determined.
- the rank of the inspection object P determined by the rank determination unit 33c is transmitted by the distribution information transmission unit 31 to the controller 50 of the distribution device 40 as part of the distribution information.
- the injection time determination unit 33d is a distribution mechanism 41 for the inspection object P based on the estimated weight of the inspection object P calculated by the weight estimation unit 33b.
- the air injection time of the (first to third air distribution mechanisms 41a, 41b, 41c) is determined.
- the injection time determination unit 33d uses the injection time determination table stored in the injection time information storage area 32d, and the estimated weight of the inspection object P is any of the plurality of weight ranges of the injection time determination table.
- the injection time corresponding to the determined weight range is determined as the air injection time for the object P to be inspected.
- the air injection time for the inspection object P determined by the injection time determination unit 33d is transmitted by the distribution information transmission unit 31 to the controller 50 of the distribution device 40 as part of the distribution information.
- the reference position determination unit 33e is an example of a determination unit.
- the reference position determination unit 33e extracts the outer shape of the inspection object P from the X-ray image, and determines the reference position F to which the distribution mechanism 41 distributes the inspection object P based on the outer shape of the inspection object P.
- the reference position determination unit 33e calculates the center of gravity G of the inspection object P based on the outer shape of the inspection object P, and distributes the distribution mechanism 41 (first to third air distribution mechanisms 41a, 41b, The distribution mechanism 41 determines the reference position F to which the inspection object P is distributed so that 41c) exerts a force toward the center of gravity G of the inspection object P.
- the reference position determination unit 33e first projects the position of the center of gravity G of the inspection object P, more specifically, when the inspection object P is projected onto the transport surface of the conveyor belt 11 as follows. The position of the center of gravity G of the inspection object P is determined.
- the reference position determination unit 33e sets the conveyance direction D of the inspection object P as the X-axis direction and the conveyance direction of the inspection object P.
- a coordinate system is set in which the direction perpendicular to the width (the width direction of the conveyor belt 11) is the Y-axis direction (see FIG. 6). The position of the origin of the coordinate system may be determined arbitrarily.
- the reference position determination unit 33e specifies the coordinates of each pixel in the coordinate system. Here, it is assumed that an image obtained by imaging the inspection object P exists at a position surrounded by a dotted line in FIG.
- Each pixel of the X-ray image has a gray value as described above, and the gray value can be read as a weight value using the weight conversion table in the weight conversion information storage area 32b.
- the weight value corresponding to is expressed as mk.
- the reference position determination unit 33e calculates the coordinates (Xg, Yg) of the center of gravity G of the inspection object P when the inspection object P is projected onto the transport surface of the conveyor belt 11, using the following Expression 1 and Expression 2.
- M is the estimated weight of the inspection object P calculated by the weight estimation unit 33b.
- the reference position determination unit 33e thus determines the center of gravity (mass center) in consideration of not only the outer shape of the figure but also the weight of each pixel.
- the reference position determination unit 33e is configured so that the distribution mechanism 41 (first to third air distribution mechanisms 41a, 41b, 41c) exerts a force on the inspection object P toward the determined center of gravity G.
- a reference position F for distributing the inspection object P is determined.
- the first to third air distribution mechanisms 41a, 41b, and 41c eject air in a direction orthogonal to the conveyance direction of the conveyance device 10 as will be described later. That is, the first to third air distribution mechanisms 41a, 41b, and 41c are coordinate systems set by the reference position determination unit 33e in the direction along the Y-axis direction, particularly from below in FIG. A force is applied to the inspection object P.
- a position where a straight line is drawn downward from the center of gravity G as shown in FIG. 6 and the straight line intersects with a pixel corresponding to the inspection object P (a pixel having a weight value) is determined as a reference position F of the inspection object P.
- the reference position determination unit 33e generates information on the reference position F that the distribution information transmission unit 31 transmits to the controller 50 of the distribution device 40. Specifically, the reference position determination unit 33e determines a distance L in the transport direction D from the most downstream end E of the inspection object P in the transport direction D of the transport apparatus 10 to the reference position F as the reference position F. It generates as information about. The reference position determination unit 33e determines the coordinates of the pixel having the smallest X coordinate value among the pixels that are determined to have the inspection object P from the gray value of the pixel in the X-ray image of the inspection object P for which coordinates are set. And the distance L is calculated based on the coordinates of the center of gravity G.
- the information (distance L) related to the reference position F generated by the reference position determination unit 33e is transmitted by the distribution information transmission unit 31 to the controller 50 of the distribution device 40 as part of the distribution information.
- the sorting device 40 sorts the inspection object P based on the result of the rank inspection performed by the X-ray inspection device 20. Specifically, the distribution device 40 distributes the inspection object P to three conveyors (not shown) according to rank based on the result of the rank inspection of the X-ray inspection device 20.
- the sorting apparatus 40 mainly includes a sorting mechanism 41 (see FIG. 1), a photoelectric sensor 43 (see FIG. 1), and a controller 50 (see FIG. 4).
- Distribution Mechanism 41 distributes the inspection object P conveyed by the conveyance device 10.
- the distribution mechanism 41 includes first to third air distribution mechanisms 41a, 41b, and 41c (see FIG. 1).
- the first to third air distribution mechanisms 41a, 41b, 41c cause the inspection object P to move by applying a force by injecting air onto the inspection object P conveyed on the conveyor belt 11. Distribute.
- the operations of the first to third air distribution mechanisms 41a, 41b, and 41c are controlled by the distribution mechanism control unit 53 of the controller 50 independently of the operations of the other air distribution mechanisms 41a, 41b, and 41c, respectively.
- the in particular, here, the first to third air distribution mechanisms 41a, 41b, and 41c distribute the inspection object P by rank based on the result of the rank inspection of the X-ray inspection apparatus 20.
- the first air distribution mechanism 41a includes a first nozzle 42a (see FIG. 1) and an electromagnetic valve (not shown) that opens and closes an air path for supplying air (high-pressure air) to the first nozzle 42a.
- the 2nd air distribution mechanism 41b has the 2nd nozzle 42b (refer FIG. 1) and the solenoid valve (not shown) which opens and closes the air path which supplies air to the 2nd nozzle 42b.
- the third air distribution mechanism 41c includes a third nozzle 42c (see FIG. 1) and an electromagnetic valve (not shown) that opens and closes an air path for supplying air to the third nozzle 42c.
- the first to third nozzles 42a, 42b, 42c are attached obliquely above the conveying surface of the conveyor belt 11 of the conveying device 10.
- the first to third nozzles 42a, 42b, and 42c are attached so as to inject high-pressure air in a direction that intersects the transport direction D of the transport device 10 in a plan view, in particular, a direction that is orthogonal to the transport direction D. Yes.
- the first to third nozzles 42a, 42b, and 42c are installed in this order from the upstream side to the downstream side in the transport direction D of the transport apparatus 10 (see FIG. 1).
- the first to third nozzles 42a, 42b, and 42c are separated from the detection position of the photoelectric sensor 43 described later in the transport direction D of the transport device 10 by a distance B1, a distance B2, and a distance B3, respectively (see FIG. 1). .
- the electromagnetic valve of the first air distribution mechanism 41a, the second air distribution mechanism 41b, or the third air distribution mechanism 41c is opened by a command from the distribution mechanism control unit 53, the first nozzle 42a, High-pressure air blows out from the second nozzle 42b and the third nozzle 42c.
- Each air distribution mechanism is arranged below the conveyor belt 11 because air is blown to the inspection object P on the conveyor belt 11 so that a force acts on the position where the air of the inspection object P is blown.
- the inspection object P is distributed to conveyors (not shown) corresponding to 41a, 41b, and 41c.
- the photoelectric sensor 43 is configured such that the first to third nozzles 42a, 42b, and 42c of the first to third air distribution mechanisms 41a, 41b, and 41c are in the transport direction D of the transport device 10. It arrange
- the photoelectric sensor 43 includes a pair of light projectors 43a and light receivers 43b arranged with the conveyor belt 11 interposed therebetween (see FIG. 1). Whether or not the photoelectric sensor 43 has detected the inspection object P, in other words, whether or not the light receiver 43b has detected the light emitted from the projector 43a is continuously transmitted to the controller 50.
- the controller 50 is a computer that controls each part of the sorting apparatus 40.
- the controller 50 includes a CPU that performs calculation and control, a ROM that stores information, a RAM, a hard disk, and the like.
- the controller 50 is connected to the controller 30 of the X-ray inspection apparatus 20 via a communication line 90 (see FIG. 4).
- the controller 50 includes a distribution information receiving unit 51 that receives distribution information transmitted by the controller 30 of the X-ray inspection apparatus 20 (see FIG. 4).
- the controller 50 has the memory
- the distribution mechanism control unit 53 is mainly configured by a CPU, executes a program stored in the storage unit 52, and distributes the inspection object P to the first to third air distribution mechanisms 41a, 41b, 41c. Execute the minute operation.
- the storage unit 52 stores various information in addition to the program executed by the distribution mechanism control unit 53.
- the controller 50 is electrically connected to the first to third air distribution mechanisms 41a, 41b, 41c and the photoelectric sensor 43.
- the controller 50 is also electrically connected to the encoder 13 of the transport apparatus 10 (see FIG. 4).
- the controller 50 acquires data related to the rotation speed of the conveyor motor 12 from the encoder 13 and grasps the transport distance and transport speed of the inspection object P based on the acquired data.
- the distribution information receiving unit 51 transmits the distribution information of the inspection object P transmitted from the distribution information transmitting unit 31 of the controller 30 of the X-ray inspection apparatus 20. Receive.
- the distribution information includes information regarding the rank of the inspection object P, information regarding the reference position F to which the distribution mechanism 41 distributes the inspection object P, and the distribution mechanism 41 injects air onto the inspection object P. Information on the injection time. How each information is used for controlling the operation of the distribution mechanism 41 will be described later.
- the storage unit 52 stores various information in addition to the program executed by the distribution mechanism control unit 53.
- the storage unit 52 includes a distribution information storage area 52a and a nozzle position storage area 52b.
- Distribution Information Storage Area stores distribution information received by the distribution information receiving unit 51.
- the distribution information receiving unit 51 receives the distribution information, the received distribution information is written in the distribution information storage area 52a.
- Nozzle position storage area In the nozzle position storage area 52b, the detection position of the photoelectric sensor 43 and the first to third nozzles 42a, 42b, The distances B1, B2 and B3 (see FIG. 1) with respect to 42c are stored. The values of the distances B1, B2, and B3 may be stored in the nozzle position storage area 52b in advance, or may be written from the outside via an input device (not shown) or the like.
- the distribution mechanism control unit 53 uses the distribution information stored in the distribution information storage area 52a to determine whether the distribution mechanism 41 is a reference for the inspection object P.
- the distribution mechanism 41 is controlled to apply a force to the position F.
- the distribution mechanism control unit 53 grasps the timing when the inspection object P passes the detection position of the photoelectric sensor 43 between the projector 43a and the light receiver 43b based on the detection result of the photoelectric sensor 43. And if the distribution mechanism control part 53 detects that the to-be-inspected object P started passing the detection position of the photoelectric sensor 43, it will be the oldest among the distribution information memorize
- each distribution information includes information about rank, information about reference position F, and information about injection time.
- the distribution mechanism control unit 53 determines which of the first to third air distribution mechanisms 41a, 41b, and 41c is to inject air using information about the rank. For example, the distribution mechanism control unit 53 determines the first air distribution mechanism 41a if the rank of the inspection object P is the first rank, and the second air distribution if the rank of the inspection object P is the second rank. If the rank of the inspection object P is the third rank, the mechanism 41b is determined to be the third air distribution mechanism 41c to be controlled.
- the distribution mechanism control unit 53 determines the inspection object in front of the nozzles 42a, 42b, 42c of the air distribution mechanisms 41a, 41b, 41c to be controlled at any timing based on the information about the reference position F. It is calculated whether the reference position F of P passes. Specifically, the distribution mechanism control unit 53 determines the first to third nozzles 42a from the information regarding the reference position F to which the inspection object P is distributed and the detection position of the photoelectric sensor 43 stored in the nozzle position storage area 52b. , 42b, 42c, the air distribution mechanism 41a to be controlled based on the distance information in the conveyance direction D of the conveyance device 10 and the conveyance speed V of the conveyance device 10 based on the data transmitted from the encoder 13.
- the timing at which the reference position F of the inspection object P passes through the nozzles 42a, 42b, 42c of 41b, 41c is calculated. Note that the information regarding the reference position F for distributing the inspection object P is the distance L in the conveyance direction from the downstream end E in the conveyance direction of the conveyance apparatus 10 to the center of gravity G of the inspection object P as described above. is there.
- the distribution mechanism control unit 53 uses the distance L, the distance B1 from the detection position of the photoelectric sensor 43 to the first nozzle 42a, and the transport speed V to check the detection position of the photoelectric sensor 43. It is calculated that the reference position F of the inspection object P to be distributed passes in front of the first nozzle 42a after a time of (B1 + L) / V has elapsed after the object P starts to pass.
- the distribution mechanism control unit 53 determines the timing at which the air distribution mechanisms 41a, 41b, 41c to be controlled start the air injection and the timing at which the air injection stops based on the information about the injection time. And decide.
- the distribution mechanism control unit 53 when half of the air injection time has passed, passes the front of the nozzles 42a, 42b, 42c of the air distribution mechanisms 41a, 41b, 41c to be controlled to the inspection object P.
- the injection start timing and the injection stop timing of the air distribution mechanisms 41a, 41b, 41c to be controlled are determined so that the reference position F is passed.
- the distribution mechanism control unit 53 sets the time for ⁇ (B1 + L) / VT ⁇ 2 ⁇ after the first air distribution mechanism 41a starts passing the detection position of the photoelectric sensor 43. It is determined that the air injection is started when the time elapses, and the air injection is stopped when the time of ⁇ (B1 + L) / V + T / 2 ⁇ has elapsed.
- the distribution mechanism control unit 53 determines the air distribution mechanisms 41a, 41b, and 41c to be controlled and the timing of the start and stop of the air injection, the distribution mechanism control unit 53 starts the air injection at the determined timing.
- a control command for the air distribution mechanisms 41a, 41b, 41c to be controlled is generated so as to be stopped.
- step S1 based on the output of the X-ray transmission signal of the line sensor 23, it is determined whether or not the inspection object P has started to pass through the X-ray irradiation range Y.
- the line sensor 23 detects the presence of the inspection object P in the X-ray irradiation range Y
- the process proceeds to step S2.
- Step S1 is repeated until the presence of the inspection object P in the X-ray irradiation range Y is detected.
- step S2 the X-ray image generation unit 33a generates an X-ray image based on the X-ray transmission amount of the X-ray detected by the line sensor 23 (based on the X-ray transmission signal output from the X-ray detection element 23a). create.
- the X-ray image generated by the X-ray image generation unit 33a is stored in the X-ray image storage area 32a.
- the weight estimation unit 33b estimates the weight of the inspection object P based on the X-ray image of the inspection object P stored in the X-ray image storage area 32a. Specifically, the weight estimation unit 33b creates a histogram indicating the number of pixels for each gray value for the X-ray image, and uses the weight conversion table in the weight conversion information storage area 32b to display all the gray values included in the histogram. , The product of the weight value corresponding to the gray value and the number of pixels of the gray value indicated by the histogram is calculated. The weight estimation unit 33b estimates the weight of the inspection object P by adding the calculated product values for all the gray values included in the histogram.
- step S4 the rank determination unit 33c determines the rank of the inspection object P based on the weight of the inspection object P estimated in step S3. Specifically, the rank determination unit 33c determines the rank of the inspection object P by comparing the estimated weight of the inspection object P with the threshold values Q1 and Q2 stored in the rank threshold value storage area 32c.
- step S5 the injection time determination unit 33d determines the air injection time of the sorting mechanism 41 for the inspection object P based on the weight of the inspection object P estimated in step S3. Specifically, the injection time determination unit 33d determines the injection time corresponding to the estimated weight as the air injection time for the inspection object P using the injection time determination table stored in the injection time information storage area 32d. To do.
- the reference position determination unit 33e generates information on the reference position F to which the distribution mechanism 41 distributes the inspection object P. Specifically, the reference position determination unit 33e sets, in the X-ray image, a coordinate system in which the transport direction D of the transport apparatus 10 is the X-axis direction, and the direction orthogonal to the transport direction D is the Y-axis direction.
- the object to be inspected when the object P is projected onto the conveying surface of the conveyor belt 11 based on the coordinates and gray value information of each pixel of the image and the weight of the object to be inspected estimated in step S3.
- the coordinates (Xg, Yg) of the center of gravity G of P are calculated.
- the reference position determination unit 33e further determines the reference position F using the coordinates of the center of gravity G. Further, the reference position determination unit 33e uses the distance L in the transport direction D from the end E of the object P on the most downstream side in the transport direction D to the reference position F as information on the reference position F of the test object P. Calculate as
- step S7 distribution information including information related to the rank of the inspection object P, the air injection time for the inspection object P, and the reference position F, calculated in steps S4 to S6, is allocated to the distribution information.
- the transmission unit 31 transmits to the controller 50 of the sorting device 40. Then, it returns to step S1.
- step S4, step S5, and step S6 are performed in this order.
- the process is not limited to this, and may be performed in another order.
- the process of step S4, step S5, and step S6 may perform any two steps or all the steps in parallel.
- step S ⁇ b> 11 it is determined from the detection result of the photoelectric sensor 43 whether or not the inspection object P has started to pass the detection position of the photoelectric sensor 43. If it is determined that the inspection object P has started to pass the detection position of the photoelectric sensor 43, the process proceeds to step S12. Step S ⁇ b> 11 is repeated until it is determined that the inspection object P has started to pass through the detection position of the photoelectric sensor 43.
- step S12 the distribution mechanism control unit 53 controls any of the first to third air distribution mechanisms 41a, 41b, 41c based on the earliest distribution information stored in the distribution information storage area 52a. It is determined whether it is a target (which of the first to third air distribution mechanisms 41a, 41b, 41c is to inject air). Specifically, the distribution mechanism control unit 53 determines which air distribution mechanism 41a, 41b, 41c is to be controlled based on the rank of the inspection object P included in the distribution information.
- the distribution mechanism control unit 53 calculates the timing at which the reference position F passes in front of the nozzles 42a, 42b, 42c of the air distribution mechanisms 41a, 41b, 41c to be controlled. Specifically, the distribution mechanism control unit 53 includes information on the reference position F included in the earliest distribution information stored in the distribution information storage area 52a, and the control target stored in the nozzle position storage area 52b. Air distribution mechanism 41a, 41b, 41c, and the air distribution mechanism 41a, the control object, based on the information about the nozzle position of the air distribution mechanism 41a, the conveyance speed of the conveyance device 10 based on the data transmitted by the encoder 13 of the conveyance device 10. The timing at which the reference position F passes in front of the nozzles 42a, 42b, 42c of 41b, 41c is calculated.
- step S14 the distribution mechanism control unit 53 determines the air injection start timing and the injection stop timing of the air distribution mechanisms 41a, 41b, 41c to be controlled. Specifically, the distribution mechanism control unit 53 calculates the timing at which the reference position F passes in front of the nozzles 42a, 42b, 42c of the air distribution mechanisms 41a, 41b, 41c to be controlled, calculated in step S13. Based on the injection time for the inspection object P included in the earliest distribution information stored in the distribution information storage area 52a, the injection start and injection of the air distribution mechanisms 41a, 41b, 41c to be controlled Determine the stop timing.
- step S15 the distribution mechanism control unit 53 controls the control target air distribution mechanisms 41a, 41b, and 41c so that the air injection mechanisms 41a, 41b, and 41c are operated at the timings of starting and stopping the air injection determined in step S14.
- Control commands for the air distribution mechanisms 41a, 41b and 41c are generated.
- the earliest distribution information stored in the distribution information storage area 52a used for generating the control command is deleted. Then, it returns to step S11.
- the inspection distribution system 100 inspects an inspected object P, and distributes the inspection object P based on the inspection result.
- the inspection distribution system 100 includes a conveyance device 10 as an example of a conveyance mechanism, a line sensor 23 and an X-ray image generation unit 33a as an example of an imaging mechanism, a distribution mechanism 41, and a reference position as an example of a determination unit.
- a determination unit 33e and a distribution mechanism control unit 53 are provided.
- the transport device 10 transports the inspection object P.
- the line sensor 23 included in the imaging mechanism images the inspection object P transported by the transport device 10, and the X-ray image generation unit 33a included in the imaging mechanism captures the captured image (X-ray image) of the inspection object P. get.
- the distribution mechanism 41 distributes the inspection object P.
- the reference position determination unit 33e extracts the outer shape of the inspection object P from the X-ray image, and determines the reference position F to which the distribution mechanism 41 distributes the inspection object P based on the outer shape of the inspection object P.
- the distribution mechanism control unit 53 controls the distribution mechanism 41 so that the distribution mechanism 41 applies a force to the reference position F.
- the reference position F at which the distribution mechanism 41 applies a force to the inspection object P is determined based on the outer shape extracted from the captured image of the indefinite inspection object P. Therefore, it is easy to accurately move and distribute the inspection object P regardless of the outer shape of the inspection object P, and the inspection distribution system 100 with high reliability can be realized.
- the line sensor 23 and the X-ray image generation unit 33a as an example of an imaging mechanism acquire an X-ray image of the inspection object P as a captured image.
- the reference position determination unit 33e calculates the center of gravity G of the inspection object P based on the outer shape of the inspection object P, and determines the reference position F so that the distribution mechanism 41 exerts a force toward the center of gravity G.
- the distribution mechanism 41 applies a force toward the center of gravity G of the inspection object P, it is easy to accurately distribute the inspection object P regardless of the outer shape of the inspection object P.
- a highly reliable inspection distribution system 100 can be realized.
- the inspection distribution system 100 includes a weight estimation unit 33b that estimates the weight of the inspection object P based on a captured image (X-ray image).
- the distribution mechanism 41 (first to third air distribution mechanisms 41a, 41b, 41c) distributes the inspection object P by applying a force by injecting air onto the inspection object P.
- the distribution mechanism control unit 53 further controls the distribution mechanism so that the air injection time of the distribution mechanism 41 is adjusted based on the weight of the inspection object P estimated by the weight estimation unit 33b.
- the first to third air distribution mechanisms 41a, 41b, and 41c determine the reference position F to which the inspection object P is distributed, and in addition, the air injection based on the weight of the inspection object P Time is adjusted. Therefore, it is easier to accurately distribute the inspection object P, and the inspection distribution system 100 with high reliability can be realized.
- the inspection object P is a natural product such as an agricultural product or a marine product.
- the object P to be inspected is a natural object, unlike an industrial product, the individual difference in the outer shape of the object P to be inspected is generally large. However, here, since the portion where the distribution mechanism 41 applies a force to the inspection object P is adjusted based on the outer shape extracted from the captured image of the inspection object P, the inspection object even if it is a natural object It is easy to assign P accurately.
- the inspection distribution system 100 determines the rank of the inspection object P by inspection.
- the distribution mechanism 41 distributes the inspection object P according to rank.
- the inspection distribution system 100 it is easy to rank-sort the irregularly shaped inspection objects P and accurately distribute the inspection objects P according to the ranks.
- the inspection distribution system 200 also inspects an indefinite object P (article) being conveyed.
- the inspection object P is distributed based on the inspection result.
- the inspection object P is a natural object, but may be an industrial product.
- the inspection distribution system 200 mainly includes a transfer device 10, a near infrared inspection device 220, and a distribution device 240 (see FIG. 9).
- the inspection apparatus is not an X-ray inspection apparatus but a near infrared inspection apparatus 220.
- the near-infrared inspection apparatus 220 acquires a captured image of the inspection object P conveyed by the conveying apparatus 10, and ranks the inspection object P in a plurality of ranks (in accordance with the size of the inspection object P grasped from the captured image). Here, it is assigned to three ranks).
- the sorting device 240 sorts the inspection object P transported by the transport device 10 according to rank based on the inspection result of the near-infrared inspection device 220.
- the transport apparatus 10 is the transport apparatus 10 according to the first embodiment, except that a gap O is formed between the conveyor belts 11 for the passage of the light beam emitted by the light beam irradiator 222 of the near-infrared inspection apparatus 220 described later. Since this is the same, the description is omitted.
- the near-infrared inspection apparatus 220 captures the inspection object P that is continuously conveyed by the conveying apparatus 10 and determines the size of the inspection object P based on the captured image of the inspection object P. It is divided into three ranks according to Further, the near-infrared inspection apparatus 220 determines a reference position F ′ to which the sorting mechanism 41 of the sorting apparatus 240 (to be described later) sorts the inspection object P, and sends information related to the reference position F ′ to the controller 250 of the sorting apparatus 240. Send.
- the reference position F ′ is a position where the sorting mechanism 41 of the sorting device 240 applies a force to the inspection object P.
- the near-infrared inspection apparatus 220 mainly includes a light beam irradiator 222 (see FIG. 10), a camera 223 (see FIG. 10), a monitor 225 (see FIG. 9), and a controller 230 (see FIG. 11).
- the beam irradiator 222 is disposed above the conveyor belt 11 (see FIG. 10).
- the beam irradiator 222 has a plurality of LEDs (Light Emitting Diodes) (not shown) that irradiate near infrared rays.
- the LEDs are horizontally arranged in a straight line in a direction crossing the transport direction D of the transport device 10, in particular, in a direction orthogonal to the transport direction D of the transport device 10 here.
- the LED of the beam irradiator 222 is installed so that the beam is irradiated on the entire width of the conveyor belt 11.
- the light beam irradiator 222 is arranged so that the light beam to be irradiated passes through the gap O between the two conveyor belts 11 (see FIG. 10). Specifically, the LED of the light beam irradiator 222 is arranged directly above the gap O between the conveyor belts 11 so that the light beam is irradiated downward.
- the camera 223 detects a light ray that has passed through the inspection object P, in particular, a near infrared ray (light ray having a wavelength of about 700 to 2500 nanometers) that has passed through the inspection object P here. It is a sensor camera.
- the camera 223 is disposed below the conveying surface of the conveyor belt 11 (see FIG. 10). Further, the camera 223 is disposed at a position where it can detect near-infrared rays that have passed through the inspection object P and passed through the gap O of the divided conveyor belt 11. Specifically, the camera 223 is arranged below the LED (not shown) of the light irradiator 222 so that the detection unit of the camera 223 faces the LED of the light irradiator 222.
- the camera 223 detects near infrared rays over the entire width of the conveyor belt 11 in a direction orthogonal to the transport direction D of the transport device 10.
- the camera 223 detects a near infrared ray by assigning a predetermined number of pixels in a direction orthogonal to the transport direction D of the transport device 10. That is, for each detection, the camera 223 divides the near-infrared transmission amount (near-infrared transmission amount) into a predetermined number of pixels over the entire width of the conveyor belt 11 in a direction orthogonal to the conveyance direction D of the conveyance device 10. To detect.
- the camera 223 detects the near-infrared transmission amount that has passed through the inspection object P, and outputs a transmission signal based on the near-infrared transmission amount (according to the intensity of the transmitted near-infrared ray) for each pixel.
- the transmission signal is transmitted to the controller 230 and used to generate a captured image of the inspection object P.
- the brightness (lightness value) of the captured image is determined by the transmission signal.
- a portion with a large amount of near-infrared transmission is displayed as a bright (light) pixel, and a portion with a small amount of near-infrared transmission is displayed as a dark (dark) pixel. That is, the brightness (darkness) of the transmission image corresponds to the near-infrared transmission amount.
- the camera 223 also functions as a sensor for detecting the timing when the inspection object P passes over the gap between the two conveyor belts 11 divided. Specifically, when the inspection object P conveyed on the conveyor belt 11 comes to an upper position of the camera 223 (an upper position of the gap O of the conveyor belt 11), the camera 223 applies a voltage equal to or lower than a predetermined threshold value. A transmitted signal (first signal) is output. On the other hand, when the inspection object P has not passed the upper position of the camera 223, the camera 223 outputs a transmission signal (second signal) indicating a voltage exceeding a predetermined threshold. By inputting the first signal and the second signal to the controller 230, the presence or absence of the inspection object P in the irradiation range Y is detected.
- the predetermined threshold is a value appropriately set for determining the presence or absence of the inspection object P.
- the controller 230 is a computer that controls each part of the near-infrared inspection apparatus 220.
- the controller 230 mainly includes a CPU that performs calculation and control, a ROM that stores information, a RAM, a hard disk, and the like.
- the controller 230 also includes a display control circuit, a key input circuit, and the like (not shown).
- the display control circuit is a circuit that controls data display on the monitor 225.
- the key input circuit is a circuit that captures key input data input by an operator via the touch panel of the monitor 225.
- the controller 230 is electrically connected to the beam irradiator 222, the camera 223, and the monitor 225.
- the controller 230 is also electrically connected to the conveyor motor 12 and the encoder 13 of the transport apparatus 10 (see FIG. 4).
- the controller 230 acquires data regarding the rotation speed of the conveyor motor 12 from the encoder 13 and grasps the transport distance and transport speed of the inspection object P based on the acquired data.
- the controller 230 is connected to the controller 250 of the distribution device 240 via a communication line 90 such as the Internet or a dedicated line in order to transmit distribution information to be described later to the distribution device 240.
- the controller 230 has a distribution information transmission unit 231 that transmits distribution information described later to the controller 250 of the distribution device 240 described later (see FIG. 4). Further, the controller 230 includes a storage unit 232 and a control unit 233 (see FIG. 4).
- the control unit 233 is mainly configured by a CPU, and executes a program stored in the storage unit 232 to generate a captured image, determine the rank of the inspection object P based on the generated captured image, and the like. .
- the control unit 233 controls the operation of each component of the near-infrared inspection apparatus 220 such as the light beam irradiator 222 and the camera 223.
- the storage unit 232 stores various inspection parameters used for rank inspection. For example, the storage unit 232 stores a threshold value for determining the rank of the inspection object P according to the size.
- the distribution information transmission unit 231 transmits distribution information to the controller 250 of the distribution device 240.
- the distribution information is information used to operate a distribution mechanism 41 of a distribution device 240 (to be described later) and distribute the inspection object P conveyed by the conveyance device 10 to three conveyors (not shown).
- the distribution information includes information regarding the rank of the inspection object P and information regarding the reference position F ′ to which the distribution mechanism 41 distributes the inspection object P.
- the rank of the inspection object P is determined based on the size of the inspection object P by a rank determination unit 233c of the control unit 233 described later. Based on the information about the rank of the inspection object P as distribution information, any one of the first to third air distribution mechanisms 41a, 41b, 41c of the distribution mechanism 41 described later is operated, and the inspection object P is moved. It is decided whether to distribute.
- the reference position F ′ is a position where the distribution mechanism 41 applies a force to the inspection object P.
- the reference position F ′ is determined by a reference position determination unit 233e of the control unit 233 described later.
- the information on the reference position F ′ is information on the distance L ′ from the downstream end E in the transport direction D of the inspection object P to the reference position F ′ (see FIG. 12).
- the storage unit 232 stores various programs to be executed by the control unit 233 and inspection parameters.
- the storage unit 232 mainly includes an image storage area 232a and a rank threshold storage area 232c.
- the image storage area 232a stores a captured image of the inspection object P generated by the image generation unit 233a described later.
- the rank threshold value storage area 232c stores a threshold value used by the rank determination unit 233c, which will be described later, for determining the rank of the inspection object.
- threshold values R1, R2 ( ⁇ R1) are stored in the rank threshold value storage area 232c.
- the threshold values R1 and R2 are information stored in advance in the rank threshold value storage area 232c. Further, for example, the threshold values R1 and R2 may be information input from the outside via a monitor 225 having a touch panel function.
- control unit 233 executes the program stored in the storage unit 232, thereby mainly as an image generation unit 233a, a rank determination unit 233c, and a reference position determination unit 233e. Function.
- the image generation unit 233a and the camera 223 capture an image of the inspection object P transported by the transport device 10 and acquire an image captured of the inspection object P. Function as.
- the image generation unit 233a creates a captured image based on the transmitted near-infrared ray amount detected by the camera 223.
- the image generation unit 233a transmits the transmission signal for each pixel output from the camera 223 when the inspection object P passes over the camera 223 (on the gap O of the divided conveyor belt 11). Get at intervals. Note that the timing at which the inspection object P passes over the camera 223 is determined by a transmission signal from the camera 223. That is, the presence or absence of the inspection object P on the camera 223 is determined based on the transmission signal output from the camera 223.
- the image generation unit 233a generates a captured image based on the acquired transmission signal. Specifically, the image generation unit 233a connects a captured image of the object P to be inspected by connecting data in fine time intervals related to the brightness of the light beam obtained from the camera 223 in a matrix in time series. Generate. The generated captured image is stored in the image storage area 232a.
- the rank determination unit 233c calculates the size of the inspection object P using the captured image of the inspection object P stored in the image storage area 232a. Based on the calculation result, the rank of the inspection object P is determined.
- the rank determination unit 233c calculates, as the size of the inspection object P, the maximum distance between pixels corresponding to the position where the inspection object P exists in the captured image, for example.
- a certain pixel in the captured image is a pixel corresponding to the position where the inspection object P exists can be determined as follows.
- the near infrared rays emitted from the light irradiator 222 reach the camera 223 directly.
- the amount of transmitted near-infrared rays reaching the camera 223 is large, and pixels based on the amount of transmitted near-infrared rays are bright.
- the light irradiated from the light irradiator 222 may be blocked by the inspection object P and may not reach the camera 223.
- the rank determination unit 233c determines the rank of the inspection object P using the calculated size of the inspection object P. Specifically, the rank determination unit 233c uses the thresholds R1 and R2 stored in the rank threshold storage area 232c, and is larger than the first rank and the threshold R1 if the size of the inspection object P is equal to or smaller than the threshold R1. If it is less than or equal to the threshold value R2, the rank of the inspection object P is determined as the second rank.
- the rank of the inspection object P determined by the rank determination unit 233c is transmitted by the distribution information transmission unit 231 to the controller 250 of the distribution device 240 as part of the distribution information.
- the reference position determination unit 233e is an example of a determination unit.
- the reference position determination unit 233e extracts the outer shape of the inspection object P from the captured image, and determines the reference position F ′ to which the distribution mechanism 41 distributes the inspection object P based on the outer shape of the inspection object P.
- the reference position determination unit 233e calculates the centroid Z of the inspection object P based on the outer shape of the inspection object P, and distributes the distribution mechanism 41 (first to third air distribution mechanisms 41a and 41b).
- 41c) determines the reference position F ′ to which the sorting mechanism 41 distributes the inspection object P so that the force acts toward the centroid Z of the inspection object P.
- the reference position determining unit 233e first projects the position of the centroid Z of the inspection object P, more specifically, the inspection object P onto the conveyance surface of the conveyor belt 11 as follows. The position of the centroid Z of the inspection object P at the time is determined.
- the reference position determination unit 233e uses a captured image of the inspection object P stored in the image storage area 232a as a pixel corresponding to the inspection object P (a pixel whose brightness is greater than a predetermined threshold) and a background portion. And a binarized image (pixels whose brightness is smaller than a predetermined threshold).
- the reference position determination unit 233e sets the transport direction D of the inspection object P in the X-axis direction and the direction orthogonal to the transport direction D (the width direction of the conveyor belt 11) in the Y-axis.
- a coordinate system as a direction is set (see FIG. 12). The position of the origin of the coordinate system may be determined arbitrarily.
- the reference position determination unit 233e specifies the coordinates of each pixel Ui (see FIG. 12) corresponding to the inspection object P.
- a pixel corresponding to the inspection object P exists at a position surrounded by a dotted line in FIG.
- the area of one pixel of the captured image is represented by a unit area s.
- the reference position determination unit 233e calculates the position (Xz, Yz) of the centroid Z of the inspection object P when the inspection object P is projected onto the transport surface of the conveyor belt 11 using the following Expression 3 and Expression 4. .
- the reference position determination unit 233e causes the distribution mechanism 41 (first to third air distribution mechanisms 41a, 41b, 41c) to exert a force on the inspection object P toward the determined centroid Z.
- the reference position F ′ to which the inspection object P is distributed is determined.
- the first to third air distribution mechanisms 41a, 41b, and 41c eject air in a direction orthogonal to the transport direction of the transport apparatus 10. That is, the first to third air distribution mechanisms 41a, 41b, and 41c are coordinate systems set by the reference position determination unit 233e, and in the direction along the Y-axis direction, in particular, from below in FIG. A force is applied to the inspection object P. Therefore, as shown in FIG. 12, a straight line is drawn downward from the centroid Z, and the position where the straight line intersects the corresponding pixel of the inspection object P is determined as the reference position F ′ of the inspection object P.
- the reference position determination unit 233e generates information on the reference position F ′ that the distribution information transmission unit 231 transmits to the controller 250 of the distribution device 240. Specifically, the reference position determining unit 233e uses the distance L ′ in the transport direction D from the most downstream end E of the inspection object P in the transport direction D of the transport apparatus 10 to the reference position F ′ as a reference. It generates as information regarding the position F ′.
- the reference position determination unit 233e includes the coordinates of the pixel of the binarized X-ray image having the smallest X coordinate value among the pixels determined to have the inspection object P, the coordinates of the centroid Z, Based on the above, the distance L is calculated.
- the information (distance L ′) related to the reference position F ′ generated by the reference position determination unit 233 e is transmitted to the controller 250 of the distribution device 240 as part of the distribution information by the distribution information transmission unit 231.
- the distribution device 240 distributes the inspection object P based on the result of the rank inspection by the near infrared inspection device 220. Specifically, the sorting device 240 sorts the inspection object P into three conveyors (not shown) according to rank based on the result of the rank inspection performed by the near-infrared inspection device 220.
- the sorting apparatus 240 mainly includes a sorting mechanism 41 (see FIG. 9), a photoelectric sensor 43 (see FIG. 9), and a controller 250 (see FIG. 11) (see FIG. 11).
- distribution mechanism 41 and the photoelectric sensor 43 are the same as the distribution mechanism 41 and the photoelectric sensor 43 of the first embodiment, description thereof is omitted.
- the controller 250 is a computer that controls each part of the sorting device 240.
- the controller 250 includes a CPU that performs calculation and control, a ROM that stores information, a RAM, a hard disk, and the like.
- the controller 250 is connected to the controller 230 of the near-infrared inspection apparatus 220 via the communication line 90 in order to receive the distribution information (see FIG. 11).
- the controller 250 includes a distribution information receiving unit 251 that receives distribution information transmitted by the controller 230 of the near-infrared inspection apparatus 220 (see FIG. 11).
- the controller 250 includes a storage unit 252 and a distribution mechanism control unit 253 (see FIG. 11).
- the distribution mechanism control unit 253 is mainly configured by a CPU, executes a program stored in the storage unit 252, and distributes the inspection object P to the first to third air distribution mechanisms 41a, 41b, and 41c. Execute the minute operation.
- the storage unit 252 stores various information in addition to the program executed by the distribution mechanism control unit 253.
- the controller 250 is electrically connected to the first to third air distribution mechanisms 41a, 41b, 41c and the photoelectric sensor 43.
- the controller 250 is also electrically connected to the encoder 13 of the transport apparatus 10 (see FIG. 11).
- the controller 250 acquires data related to the rotation speed of the conveyor motor 12 from the encoder 13 and grasps the transport distance and transport speed of the inspection object P based on the acquired data.
- the distribution information receiving unit 251 transmits the distribution information of the inspection object P transmitted from the distribution information transmission unit 231 of the controller 230 of the near-infrared inspection apparatus 220. Receive.
- the distribution information includes information regarding the rank of the inspection object P and information regarding the reference position F ′ to which the distribution mechanism 41 distributes the inspection object P.
- the storage unit 252 stores various information in addition to the program executed by the distribution mechanism control unit 253.
- the storage unit 252 includes a distribution information storage area 52a, a nozzle position storage area 52b, and an ejection time storage area 252c. Since the distribution information storage area 52a and the nozzle position storage area 52b are the same as those in the inspection distribution system 100 of the first embodiment, description thereof is omitted here.
- injection time storage area 252c In the injection time storage area 252c, the injection time Tf for the first to third air distribution mechanisms 41a, 41b, 41c to inject the air into the inspection object P Is remembered.
- the injection time Tf is common to the first to third air distribution mechanisms 41a, 41b, 41c.
- the present invention is not limited to this, and different injection times may be stored for each of the air distribution mechanisms 41a, 41b, and 41c.
- the ejection time Tf may be stored in advance, or may be written from the outside via an input device (not shown) or the like.
- the distribution mechanism control unit 253 is configured so that the distribution mechanism 41 uses the reference of the inspection object P based on the distribution information stored in the distribution information storage area 52a.
- the distribution mechanism 41 is controlled to apply a force to the position F ′.
- the distribution mechanism control unit 253 is different from the distribution mechanism control unit 53 of the first embodiment only in the method for determining the timing of the start and stop of the air injection of the distribution mechanism 41. Specifically, in the distribution mechanism control unit 53 of the first embodiment, the timing of the start and stop of the air injection of the distribution mechanism 41 is determined using the injection time included in the distribution information. On the other hand, the distribution mechanism control unit 253 determines the timing of starting and stopping the injection of air by the distribution mechanism 41 using the injection time Tf stored in the injection time storage area 252c. In other respects, the distribution mechanism control unit 253 is the same as the distribution mechanism control unit 53 of the first embodiment, and a description thereof will be omitted.
- step S201 based on the transmission signal output from the camera 223, it is determined whether or not the inspection object P has started to pass over the camera 223 (on the gap O between the divided conveyor belts 11).
- the process proceeds to step S202.
- Step S201 is repeated until the presence of the inspection object P on the camera 223 is detected.
- step S202 the image generation unit 233a creates a transmission image based on the transmitted near-infrared amount detected by the camera 223 (based on the transmission signal output from the camera 223).
- the transmission image generated by the image generation unit 233a is stored in the image storage area 232a.
- the rank determination unit 233c determines the rank of the inspection object P. Specifically, the rank determination unit 233c first calculates, as the size of the inspection object P, the maximum distance between pixels corresponding to the position of the inspection object P in the captured image. Next, the rank determination unit 233c determines the rank of the inspection object P by comparing the calculated size of the inspection object P with the threshold values R1 and R2 stored in the rank threshold value storage area 232c.
- the reference position determination unit 233e generates information regarding the reference position F 'to which the inspection object P is distributed. Specifically, the reference position determination unit 233e first uses the transmission image of the inspection object P stored in the image storage area 232a as a predetermined threshold value in order to identify the pixel corresponding to the inspection object P in the captured image. To binarize. Next, the reference position determination unit 233e sets, in the binarized captured image, a coordinate system in which the transport direction D of the transport apparatus 10 is the X-axis direction and the direction orthogonal to the transport direction D is the Y-axis direction.
- the reference position determination unit 233e based on the coordinates of the pixel corresponding to the inspection object P, the position of the centroid Z of the inspection object P when the inspection object P is projected onto the conveying surface of the conveyor belt 11. (Xz, Yz) is calculated. Further, the reference position determination unit 233e calculates a distance L ′ from the end E of the object P on the most downstream side in the transport direction D to the reference position F ′ as information on the reference position F ′ of the object P. To do.
- step S205 the distribution information transmission unit 231 uses the controller of the distribution device 240 for the distribution information including the information about the rank of the inspection object P and the reference position F ′ calculated in steps S203 and S204. 250. Thereafter, the process returns to step S201.
- step S203 and step S204 are performed in this order, but the present invention is not limited to this, and the order may be reversed. Further, the processes of step S203 and step S204 may be executed in parallel.
- the inspection distribution system 200 of the second embodiment has the same features as (4-1), (4-4), and (4-5) of the first embodiment.
- the inspection distribution system 200 of the second embodiment has the following features.
- the reference position determination unit 233e calculates the centroid Z of the inspection object P based on the outer shape of the inspection object P, and the distribution mechanism 41 moves to the centroid Z.
- the reference position F ′ is determined so as to exert a force toward it.
- the distribution mechanism 41 applies a force toward the centroid Z of the inspection object P, it is easy to accurately distribute the articles regardless of the outer shape of the inspection object P, and a highly reliable inspection vibration.
- the minute system 200 can be realized.
- the X-ray inspection apparatus 20 and the near-infrared inspection apparatus 220 which are inspection apparatuses, execute rank inspection for determining the rank of the inspection object P. It is not limited.
- the X-ray inspection apparatus 20 and the near-infrared inspection apparatus 220 may execute a foreign substance inspection or the like instead of the rank inspection or in addition to the rank inspection.
- the sorting devices of the inspection distribution systems 100 and 200 are to be inspected based on the quality of the inspection object P obtained as a result of the foreign matter inspection of the X-ray inspection device 20 and the near-infrared inspection device 220. The thing P may be distributed.
- the first to third air distribution mechanisms 41a, 41b, and 41c inject air from the direction orthogonal to the conveyance direction of the conveyance apparatus 10, but the air injection direction Is not limited to this.
- the first to third air distribution mechanisms 41a, 41b, and 41c may inject air in a direction W that intersects the transport direction D of the transport apparatus 10 (a direction that is not orthogonal to the transport direction D) (FIG. 14). reference).
- the reference position F ′′ may be determined so that the distribution mechanism 41 exerts a force toward the center of gravity G.
- the side on which the first to third nozzles 42a, 42b, 42c are arranged may be determined as the reference position F ′′.
- the sorting devices 40 and 240 are the sorting mechanisms 41 (the first to third air sorting mechanisms 41a, 41b, and 41c spray the air to sort the inspection object P.
- the minute mechanism is not limited to a mechanism that distributes the inspection object P by air.
- the distribution mechanism may be configured to distribute the inspection object P by driving an arm driven by a motor, an air cylinder, or the like.
- the arm of the distribution mechanism may be configured to contact the reference positions F and F ′ and apply a force to the inspection object P.
- the information on the reference positions F and F ′ is the distances L and L ′ in the transport direction D from the end E of the inspection object P on the most downstream side in the transport direction D to the reference positions F and F ′.
- the present invention is not limited to this.
- the information regarding the reference positions F and F ′ is calculated by further using the transport speed information of the transport device 10, and the detection position of the photoelectric sensor 43 of the sorting devices 40 and 240 is the most downstream side in the transport direction D. May be information on the time from when the end E of the inspection object P passes through until the reference positions F and F ′ pass through.
- the X-ray inspection apparatus 20 has the controller 30, and the sorting apparatus 40 has the controller 50.
- the near-infrared inspection apparatus 220 has the controller 230
- the sorting apparatus 240 has the controller 250.
- the inspection distribution system 100 has one controller that controls both the X-ray inspection apparatus 20 and the distribution apparatus 40
- the inspection distribution system 200 controls both the near-infrared inspection apparatus 220 and the distribution apparatus 240. You may have one controller.
- the sorting devices 40 and 240 do not need to have the photoelectric sensor 43, and the inspection object P starts to pass through the X-ray irradiation range Y or the camera 223 and then the inspection object.
- the time until the reference positions F and F ′ of the object P pass in front of the nozzles 42a, 42b and 42c of the air distribution mechanisms 41a, 41b and 41c to be controlled is calculated, and the air distribution mechanisms 41a, 41b, 41c may be controlled.
- the controller 50 of the sorting device 40 executes a part of the processing executed by the controller 30 of the X-ray inspection apparatus 20 in the first embodiment and / or the controller 50 of the sorting apparatus 40 executes.
- the controller 30 of the X-ray inspection apparatus 20 may be configured to execute part of the processing that has been performed.
- the injection time determination part 33d of the controller 30 determines the injection time of the air of the distribution mechanism 41, it replaces with this and the controller 50 is information of the estimated weight of the to-be-inspected object P. May be obtained from the controller 30, and the air injection time of the distribution mechanism 41 may be determined according to the estimated weight.
- the distribution mechanism 41 has three air distribution mechanisms 41a, 41b, and 41c.
- the present invention is not limited to this, and the quantity of the air distribution mechanisms 41a, 41b, and 41c is as required. May be determined appropriately.
- the injection time determination unit 33d determines the injection time for the inspection object P according to the estimated weight of the inspection object P, and transmits the determined injection time to the controller 50 of the sorting device 40.
- the present invention is not limited to this.
- the injection time for the inspection object P may be constant regardless of the estimated weight. However, it is easier to accurately distribute the inspection object P by determining the injection time according to the estimated weight of the inspection object P.
- the distribution mechanism 41 may control the distribution mechanism so that the air injection pressure increases as the estimated weight of the inspection object P increases.
- the center of gravity G is calculated based on the outer shape of one inspection object P, and the reference position of the inspection object P is determined so that the distribution mechanism 41 exerts a force toward the center of gravity G.
- the present invention is not limited to this.
- the line sensor 23 and the X-ray image generation unit 33a as an imaging mechanism are X-ray images transmitted through a plurality of inspection objects P may be acquired as captured images.
- the container A is a deformable container such as a plastic net or bag.
- the reference position determination unit 33e calculates the combined center of gravity Gc of the plurality of inspection objects P that have entered the container A, and the reference position F ′ ′′ so that the distribution mechanism 41 exerts a force toward the combined center of gravity Gc. May be determined (see FIG. 15).
- the air distribution mechanisms 41a, 41b, and 41c are arranged according to the position of the inspection object P on the conveyor belt 11, and particularly according to the position of the inspection object P in the width direction of the conveyor belt 11. It may be configured to change the ejection timing.
- the width direction of the conveyor belt 11 from the nozzles 42a, 42b, 42c of the air distribution mechanisms 41a, 41b, 41c to the position of the centroid Z or the center of gravity G of the inspection object P (the conveyor belt 11
- the air ejection timing of the air distribution mechanisms 41a, 41b, and 41c may be set earlier than usual.
- the air ejection timing of the air distribution mechanisms 41a, 41b, and 41c may be configured to be delayed than usual.
- the inspection distribution systems 100 and 200 of the embodiment may include a metal detection device as an example of a metal detection unit that detects a metal contained in the inspection object P.
- the inspection distribution system 100 may further include a metal detection device 70 as shown in FIG.
- the metal detection device 70 has one transmission coil (not shown) and two reception coils (not shown) as metal detection means, and the inspection object P passes through a magnetic field generated by the transmission coil. In doing so, metal as a foreign substance contained in the inspection object P is detected based on the difference in magnetic field received by the receiving coil.
- the metal detection apparatus 70 may be configured such that, for example, the entire apparatus or metal detection means is arranged in the shield box 21 of the X-ray inspection apparatus 20. Further, for example, the metal detection device 70 may be provided on the upstream conveyor unit 60 on the upstream side of the X-ray inspection device 20 independently of the X-ray inspection device 20.
- the distribution mechanism 41 may be configured to distribute the inspection object P based on the inspection result based on the X-ray image of the inspection object P and the detection result of the metal detection device 70.
- the inspection object P containing metal as a foreign object is accurately moved and distributed regardless of the outer shape of the inspection object P. be able to.
- the distribution mechanism 41 applies a force toward the center of gravity G of the inspection object P, the inspection object P containing a metal as a foreign object can be used regardless of the outer shape of the inspection object P. It is easy to sort accurately.
- the inspection distribution system 100 replaces the rank inspection or in addition to the rank inspection, the result of the foreign matter inspection based on the X-ray image of the inspection object P and the detection result of the metal detection device 70 (foreign matter inspection). If the inspection object P is configured to be distributed based on the result), the metal detection device, for example, even when foreign matter that is difficult to detect in the X-ray inspection such as aluminum or iron powder is mixed in the inspection object P. It is easy to detect these foreign matters by 70 and accurately sort the inspection object P in which the foreign matters are mixed by the distribution mechanism 41.
- the present invention is an inspection distribution system for inspecting and distributing irregularly shaped articles, and is useful as a highly reliable inspection distribution system that can easily distribute articles accurately regardless of the outer shape of the article. It is.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Discharge Of Articles From Conveyors (AREA)
- Sorting Of Articles (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Provided is an inspection/sorting system for inspecting and sorting articles of irregular shape, wherein it is easy to correctly sort articles irrespective of the contours of the articles, making the inspection/sorting system highly reliable. This inspection/sorting system (100) for inspecting inspected articles of irregular shape and sorting the inspected articles on the basis of the inspection results is provided with a conveyor device (10) for conveying the inspected articles, a line sensor (23) and an X-ray image generator (33a) that serve as an imaging mechanism, a sorting mechanism (41) for sorting conveyed articles, a reference position determination unit (33e), and a sorting mechanism control unit (53). The line sensor captures images of inspected articles conveyed by the conveyor device, and the X-ray image generation unit acquires X-ray images of the inspected articles. The reference position determination unit extracts the contours of inspected articles from the X-ray images, and on the basis of the contours of the inspected articles, determines a reference position for sorting of the inspected articles by the sorting mechanism. The sorting mechanism controller controls the sorting mechanism such that the force of the sorting mechanism acts on the reference position.
Description
本発明は、物品を検査し、検査結果に基づいて搬送される物品を振り分ける、検査振分システムに関する。特に、本発明は、不定形な物品を検査/振り分けの対象とする検査振分システムに関する。
The present invention relates to an inspection distribution system that inspects an article and distributes an article to be conveyed based on an inspection result. In particular, the present invention relates to an inspection distribution system for inspecting / sorting irregular shaped articles.
従来、搬送される物品の検査を行い、検査結果に基づいて振分機構で物品を振り分ける検査振分システムが知られている。
2. Description of the Related Art Conventionally, an inspection distribution system that inspects conveyed articles and distributes articles by a distribution mechanism based on inspection results is known.
例えば、特許文献1(特開2002-362729号公報)には、搬送コンベアで搬送される物品の検査を行い、検査結果に基づいて搬送コンベア上を搬送される物品にエアーを噴射して物品を振り分ける検査振分システムが開示されている。
For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-362729), an article conveyed by a conveyor is inspected, and air is injected to the article conveyed on the conveyor based on the inspection result. A sorting inspection distribution system is disclosed.
ところで、このような検査振分システムには、外形が同一の物品ばかりではなく、不定形な(物品毎に外形の異なる)物品を検査対象とすることが求められる場合がある。
By the way, in such an inspection distribution system, it is sometimes required to inspect not only articles having the same outer shape but also indefinite shapes (different outer shapes for each article).
検査対象が不定形である場合には、物品の形状等によっては、振分機構により物品に力を作用させても、物品が所望の動きをせず、振り分けエラーが発生する場合がある。このような場合には、例えば作業員が振り分けエラーの物品を手で振り分ける等の必要な対応を行う必要がある。
When the inspection target is indefinite, depending on the shape of the article, even if a force is applied to the article by the sorting mechanism, the article does not move as desired and a sorting error may occur. In such a case, it is necessary for the worker to take necessary measures such as sorting the articles with the sorting error by hand.
本発明の課題は、不定形な物品を検査、振り分けの対象とする検査振分システムであって、物品の外形によらず正確に物品を振り分けることが容易な、信頼性の高い検査振分システムを提供することにある。
An object of the present invention is an inspection distribution system for inspecting and distributing an irregularly shaped article, and a highly reliable inspection distribution system that can easily distribute an article regardless of the outer shape of the article Is to provide.
本発明の第1観点に係る検査振分システムは、不定形の物品を検査し、検査結果に基づいて物品を振り分ける。検査振分システムは、搬送機構と、撮像機構と、振分機構と、決定部と、振分機構制御部と、を備える。搬送手段は、物品を搬送する。撮像機構は、搬送機構により搬送される物品を撮像し、物品の撮像画像を取得する。振分機構は、物品を振り分ける。決定部は、撮像画像から物品の外形を抽出し、物品の外形に基づいて、振分機構が物品を振り分ける基準位置を決定する。振分機構制御部は、振分機構が、基準位置に力を作用させるよう、振分機構を制御する。
The inspection distribution system according to the first aspect of the present invention inspects an irregularly shaped article and distributes the article based on the inspection result. The inspection distribution system includes a transport mechanism, an imaging mechanism, a distribution mechanism, a determination unit, and a distribution mechanism control unit. The conveying means conveys the article. The imaging mechanism images an article conveyed by the conveyance mechanism and acquires a captured image of the article. The sorting mechanism sorts the articles. The determination unit extracts the outer shape of the article from the captured image, and determines a reference position to which the distribution mechanism distributes the article based on the outer shape of the article. The distribution mechanism control unit controls the distribution mechanism so that the distribution mechanism applies a force to the reference position.
第1観点に係る検査振分システムでは、不定形な物品の撮像画像から抽出された外形に基づいて、振分機構が物品に力を作用させる基準位置が決定される。そのため、物品の外形によらず正確に物品を移動させて振り分けることが容易で、信頼性の高い検査振分システムを実現できる。
In the inspection distribution system according to the first aspect, the reference position at which the distribution mechanism applies a force to the article is determined based on the outer shape extracted from the captured image of the irregular article. Therefore, it is easy to accurately move and distribute an article regardless of the outer shape of the article, and a highly reliable inspection distribution system can be realized.
本発明の第2観点に係る検査振分システムは、第1観点に係る検査振分システムであって、決定部は、物品の外形に基づいて物品の図心を算出し、振分機構が図心に向かって力を及ぼすように基準位置を決定する。
An inspection distribution system according to a second aspect of the present invention is the inspection distribution system according to the first aspect, wherein the determining unit calculates the centroid of the article based on the outer shape of the article, and the distribution mechanism is The reference position is determined so as to exert a force toward the heart.
第2観点に係る検査振分システムでは、振分機構が物品の図心に向かって力を作用させるため、物品の外形によらず正確に物品を振り分けることが容易で、信頼性の高い検査振分システムを実現できる。
In the inspection distribution system according to the second aspect, since the distribution mechanism applies a force toward the centroid of the article, it is easy to accurately distribute the article regardless of the outer shape of the article, and a highly reliable inspection distribution system. Minute system can be realized.
本発明の第3観点に係る検査振分システムは、第1観点に係る検査振分システムであって、撮像機構は、物品のX線画像を撮像画像として取得する。決定部は、物品の外形に基づいて物品の重心を算出し、振分機構が重心に向かって力を及ぼすように基準位置を決定する。
The inspection distribution system according to the third aspect of the present invention is the inspection distribution system according to the first aspect, and the imaging mechanism acquires an X-ray image of an article as a captured image. The determination unit calculates the center of gravity of the article based on the outer shape of the article, and determines the reference position so that the distribution mechanism exerts a force toward the center of gravity.
第3観点に係る検査振分システムでは、振分機構が物品の重心に向かって力を作用させるため、物品の外形によらず正確に物品を振り分けることが容易で、信頼性の高い検査振分システムを実現できる。
In the inspection distribution system according to the third aspect, since the distribution mechanism applies a force toward the center of gravity of the article, it is easy to accurately distribute the article regardless of the outer shape of the article, and the inspection distribution with high reliability. A system can be realized.
本発明の第4観点に係る検査振分システムは、第3観点に係る検査振分システムであって、撮像画像に基づいて物品の重量を推定する重量推定部を更に備える。振分機構は、物品にエアーを噴射することで、物品に力を作用させて振り分ける。振分機構制御部は、重量推定部が推定した物品の重量に基づいて、振分機構のエアーの噴射時間および噴射圧の少なくとも一方が調整されるよう、振分機構を更に制御する。
The inspection distribution system according to the fourth aspect of the present invention is the inspection distribution system according to the third aspect, and further includes a weight estimation unit that estimates the weight of the article based on the captured image. The distribution mechanism distributes the article by applying force to the article by injecting air onto the article. The distribution mechanism control unit further controls the distribution mechanism so that at least one of the air injection time and the injection pressure of the distribution mechanism is adjusted based on the weight of the article estimated by the weight estimation unit.
第4観点に係る検査振分システムでは、物品を振り分ける基準位置が決定されるのに加え、物品の重量に基づいてエアーの噴射時間および噴射圧の少なくとも一方が調整される。そのため、物品を正確に振り分けることが更に容易であり、信頼性の高い検査振分システムを実現できる。
In the inspection distribution system according to the fourth aspect, in addition to determining the reference position for distributing the article, at least one of the air injection time and the injection pressure is adjusted based on the weight of the article. Therefore, it is easier to accurately distribute the articles, and a highly reliable inspection distribution system can be realized.
本発明の第5観点に係る検査振分システムは、第3観点又は第4観点に係る検査振分システムであって、物品に含まれる金属を検出する金属検出部を更に備える。振分機構は、物品のX線画像に基づく検査の結果、および、金属検出部の検出結果に基づいて物品を振り分ける。
The inspection distribution system according to the fifth aspect of the present invention is the inspection distribution system according to the third aspect or the fourth aspect, and further includes a metal detection unit that detects a metal contained in the article. The sorting mechanism sorts the articles based on the inspection result based on the X-ray image of the article and the detection result of the metal detection unit.
第5観点に係る検査振分システムでは、金属を異物として含む物品を、物品の外形によらず、正確に物品を移動させ振り分けることができる。特に、検査振分システムでは、振分機構が物品の重心に向かって力を作用させるため、金属を異物に含む物品を、物品の外形によらず正確に振り分けることが容易である。
In the inspection distribution system according to the fifth aspect, an article containing metal as a foreign object can be accurately moved and distributed regardless of the outer shape of the article. In particular, in the inspection distribution system, since the distribution mechanism applies a force toward the center of gravity of the article, it is easy to accurately distribute an article containing a metal as a foreign object regardless of the outer shape of the article.
さらに、検査振分システムが、物品のX線画像に基づく異物検査の結果、および、金属検出部の検出結果に基づいて物品を振り分けるよう構成されれば、例えばアルミや鉄粉等X線検査では検出しにくい異物が物品に混入している場合であっても、金属検出部によってこれらの異物を検知し、異物の混入している物品を振分機構により正確に振り分けることが容易である。
Furthermore, if the inspection distribution system is configured to sort the article based on the result of the foreign object inspection based on the X-ray image of the article and the detection result of the metal detection unit, for example, in the X-ray inspection of aluminum or iron powder Even when foreign objects that are difficult to detect are mixed in the article, it is easy to detect these foreign substances by the metal detection unit and accurately sort the articles mixed with foreign substances by the sorting mechanism.
本発明の第6観点に係る検査振分システムは、第1観点から第5観点のいずれかに係る検査振分システムであって、物品は自然物である。
The inspection distribution system according to the sixth aspect of the present invention is the inspection distribution system according to any one of the first to fifth aspects, and the article is a natural object.
ここでは、物品が工業製品等とは異なり、自然物であるため、物品の外形の個体差が一般に大きい。しかし、ここでは、物品の撮像画像から抽出された外形に基づいて、振分機構が物品に力を作用させる部分が調整されるため、自然物であっても物品を正確に振り分けることが容易である。
Here, since the article is a natural product unlike an industrial product, the individual difference in the outer shape of the article is generally large. However, here, since the part where the sorting mechanism applies force to the article is adjusted based on the outer shape extracted from the captured image of the article, it is easy to accurately sort the article even if it is a natural object. .
本発明の第7観点に係る検査振分システムは、第1観点から第6観点のいずれかに係る検査振分システムであって、当該検査振分システムは、検査により物品のランクを決定する。振分機構は、ランク別に物品を振り分ける。
The inspection distribution system according to the seventh aspect of the present invention is an inspection distribution system according to any one of the first to sixth aspects, and the inspection distribution system determines the rank of the article by inspection. The distribution mechanism distributes articles according to rank.
本発明の第7観点に係る検査振分システムでは、外形の異なる物品をランク選別し、ランクに応じて物品を正確に振り分けることが容易である。
In the inspection distribution system according to the seventh aspect of the present invention, it is easy to rank select articles having different external shapes and accurately distribute the articles according to the rank.
本発明の第8観点に係る検査振分システムは、第1観点に係る検査振分システムであって、撮像機構は、複数の物品のX線画像を撮像画像として取得する。決定部は、複数の物品の合成重心を算出し、振分機構が合成重心に向かって力を及ぼすように基準位置を決定する。
The inspection distribution system according to the eighth aspect of the present invention is the inspection distribution system according to the first aspect, and the imaging mechanism acquires X-ray images of a plurality of articles as captured images. The determining unit calculates a combined center of gravity of the plurality of articles, and determines a reference position so that the distribution mechanism exerts a force toward the combined center of gravity.
本発明の第8観点に係る検査振分システムでは、振分対象物が複数の物品からなる場合にも、振分対象物を正確に振り分けることが容易である。
In the inspection distribution system according to the eighth aspect of the present invention, it is easy to accurately distribute the distribution object even when the distribution object includes a plurality of articles.
本発明に係る検査振分システムでは、不定形な物品の撮像画像から抽出された外形に基づいて、振分機構が物品に力を作用させる基準位置が決定されるため、物品の外形によらず正確に物品を移動させて振り分けることが容易で、信頼性の高い検査振分システムを実現できる。
In the inspection distribution system according to the present invention, the reference position at which the distribution mechanism exerts a force on the article is determined based on the outline extracted from the captured image of the irregular article. It is easy to accurately move and distribute articles, and a highly reliable inspection distribution system can be realized.
以下、図面を参照して、本発明に係る検査振分システムの実施形態について説明する。なお、下記の実施形態は具体例にすぎず、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
Hereinafter, an embodiment of an inspection distribution system according to the present invention will be described with reference to the drawings. The following embodiment is merely a specific example, and can be appropriately changed without departing from the gist of the present invention.
<第1実施形態>
本発明の第1実施形態に係る検査振分システム100について説明する。 <First Embodiment>
Theinspection distribution system 100 according to the first embodiment of the present invention will be described.
本発明の第1実施形態に係る検査振分システム100について説明する。 <First Embodiment>
The
(1)全体構成
第1実施形態に係る検査振分システム100は、搬送中の被検査物P(物品)の検査を行い、検査結果に基づいて被検査物Pを振り分けるシステムである。ここでの被検査物Pは、不定形である。言い換えれば、被検査物Pは、被検査物P毎に形状が異なる。特に、ここでは、被検査物Pは、果物や野菜等の農産物や、魚介類等の水産物を含む自然物である。ただし、これに限定されるものではなく、被検査物Pは、被検査物P毎に形状が異なる工業製品であってもよい。 (1) Overall Configuration Theinspection distribution system 100 according to the first embodiment is a system that inspects the inspection object P (article) being conveyed and distributes the inspection object P based on the inspection result. The inspection object P here is indefinite. In other words, the inspection object P has a different shape for each inspection object P. In particular, here, the inspection object P is a natural product including agricultural products such as fruits and vegetables and marine products such as seafood. However, the present invention is not limited to this, and the inspection object P may be an industrial product having a different shape for each inspection object P.
第1実施形態に係る検査振分システム100は、搬送中の被検査物P(物品)の検査を行い、検査結果に基づいて被検査物Pを振り分けるシステムである。ここでの被検査物Pは、不定形である。言い換えれば、被検査物Pは、被検査物P毎に形状が異なる。特に、ここでは、被検査物Pは、果物や野菜等の農産物や、魚介類等の水産物を含む自然物である。ただし、これに限定されるものではなく、被検査物Pは、被検査物P毎に形状が異なる工業製品であってもよい。 (1) Overall Configuration The
検査振分システム100は、具体的には、被検査物Pのランク検査を行い、検査結果に基づいて、ランク別に被検査物Pを振り分けるシステムである。より具体的には、検査振分システム100は、被検査物Pの重量推定を行い、推定した重量に応じてランク判定を行い、ランク別に被検査物Pを振り分ける。
Specifically, the inspection distribution system 100 is a system that performs rank inspection of the inspection object P and distributes the inspection object P according to rank based on the inspection result. More specifically, the inspection distribution system 100 estimates the weight of the inspection object P, performs rank determination according to the estimated weight, and distributes the inspection object P by rank.
検査振分システム100は、搬送装置10と、X線検査装置20と、振分装置40と、を主に備える(図1参照)。
The inspection distribution system 100 mainly includes a transfer device 10, an X-ray inspection device 20, and a distribution device 40 (see FIG. 1).
搬送装置10は、上流コンベアユニット60により搬送されてくる被検査物Pを受け取り、受け取った被検査物Pを搬送する。図1中の矢印が、搬送装置10の搬送方向Dを示す。X線検査装置20は、被検査物Pの重量推定を行い、重量に応じて被検査物Pを複数のランク(ここでは3段階のランク)に区分する。なお、ランクの段階は例示であって、これに限定されるものではない。振分装置40は、X線検査装置20の検査結果に基づき、搬送装置10により搬送される被検査物Pをランク別に振り分ける。
The conveying apparatus 10 receives the inspection object P conveyed by the upstream conveyor unit 60 and conveys the received inspection object P. An arrow in FIG. 1 indicates the transport direction D of the transport device 10. The X-ray inspection apparatus 20 estimates the weight of the inspection object P and classifies the inspection object P into a plurality of ranks (here, three ranks) according to the weight. It should be noted that the rank stage is an example, and is not limited to this. Based on the inspection result of the X-ray inspection apparatus 20, the sorting apparatus 40 distributes the inspection object P transported by the transport apparatus 10 by rank.
(2)詳細構成
検査振分システム100の搬送装置10、X線検査装置20、および振分装置40について詳細に説明する。 (2) Detailed Configuration Theconveyance device 10, the X-ray inspection device 20, and the distribution device 40 of the inspection distribution system 100 will be described in detail.
検査振分システム100の搬送装置10、X線検査装置20、および振分装置40について詳細に説明する。 (2) Detailed Configuration The
(2-1)搬送装置
搬送装置10は、被検査物Pを搬送する搬送機構の一例である。搬送装置10は、上流コンベアユニット60が搬送してくる被検査物Pを受け取り、被検査物PがX線検査装置20の後述するシールドボックス21内を通過するように搬送する。また、搬送装置10は、シールドボックス21内を通過した被検査物Pを、X線検査装置20の下流側の振分装置40へと搬送する。より具体的には、搬送装置10は、シールドボックス21内を通過した被検査物Pを、後述する振分装置40の振分機構41の近傍を通過するよう搬送する。 (2-1) Transport Device Thetransport device 10 is an example of a transport mechanism that transports the inspection object P. The conveying device 10 receives the inspection object P conveyed by the upstream conveyor unit 60 and conveys the inspection object P so as to pass through a shield box 21 described later of the X-ray inspection apparatus 20. Further, the transport apparatus 10 transports the inspection object P that has passed through the shield box 21 to the sorting apparatus 40 on the downstream side of the X-ray inspection apparatus 20. More specifically, the transport device 10 transports the inspection object P that has passed through the shield box 21 so as to pass in the vicinity of a sorting mechanism 41 of the sorting device 40 described later.
搬送装置10は、被検査物Pを搬送する搬送機構の一例である。搬送装置10は、上流コンベアユニット60が搬送してくる被検査物Pを受け取り、被検査物PがX線検査装置20の後述するシールドボックス21内を通過するように搬送する。また、搬送装置10は、シールドボックス21内を通過した被検査物Pを、X線検査装置20の下流側の振分装置40へと搬送する。より具体的には、搬送装置10は、シールドボックス21内を通過した被検査物Pを、後述する振分装置40の振分機構41の近傍を通過するよう搬送する。 (2-1) Transport Device The
搬送装置10は、主に、無端状のコンベアベルト11(図3参照)と、図示しない駆動ローラと、コンベアモータ12(図4参照)と、を有する。
The transport apparatus 10 mainly includes an endless conveyor belt 11 (see FIG. 3), a driving roller (not shown), and a conveyor motor 12 (see FIG. 4).
駆動ローラ(図示せず)は、コンベアモータ12により駆動される。駆動ローラが駆動されることで、コンベアベルト11が回転し、コンベアベルト11上に戴置される被検査物Pが搬送される。
The driving roller (not shown) is driven by the conveyor motor 12. By driving the driving roller, the conveyor belt 11 rotates, and the inspection object P placed on the conveyor belt 11 is conveyed.
コンベアモータ12は、インバータ制御可能なモータである。コンベアモータ12は、後述するX線検査装置20のコントローラ30からの指令でインバータ制御され、駆動ローラの回転速度が調整される。その結果、コンベアベルト11上に戴置される被検査物Pの搬送速度が細かく制御される。コンベアモータ12には、コンベアモータ12の回転数を検出し、X線検査装置20のコントローラ30、および、振分装置40のコントローラ50へと送信するエンコーダ13が装着されている(図4参照)。
The conveyor motor 12 is a motor capable of inverter control. The conveyor motor 12 is inverter-controlled by a command from the controller 30 of the X-ray inspection apparatus 20 described later, and the rotational speed of the drive roller is adjusted. As a result, the conveyance speed of the inspection object P placed on the conveyor belt 11 is finely controlled. The conveyor motor 12 is equipped with an encoder 13 that detects the rotational speed of the conveyor motor 12 and transmits it to the controller 30 of the X-ray inspection apparatus 20 and the controller 50 of the sorting apparatus 40 (see FIG. 4). .
なお、搬送装置10は、コンベアベルト11、駆動ローラ、およびコンベアモータ12を、それぞれ1つ有するものであってもよいし、コンベアベルト11、駆動ローラ、およびコンベアモータ12のいずれか又は全てを、複数有するものであってもよい。
In addition, the conveying apparatus 10 may have one each of the conveyor belt 11, the driving roller, and the conveyor motor 12, or any one or all of the conveyor belt 11, the driving roller, and the conveyor motor 12, You may have more than one.
(2-2)X線検査装置
X線検査装置20は、搬送装置10により連続的に搬送される被検査物Pに対してX線を照射し、被検査物Pを透過したX線量に基づいて被検査物Pの重量推定を行う。また、X線検査装置20は、被検査物Pの重量推定結果に基づき、被検査物Pを3段階のランクに区分する。また、X線検査装置20は、後述する振分装置40の振分機構41が被検査物Pを振り分ける基準位置Fを決定し、基準位置Fに関する情報を振分装置40のコントローラ50に送信する。基準位置Fは、振分装置40の振分機構41が被検査物Pに力を作用させる位置である。 (2-2) X-ray Inspection Device TheX-ray inspection device 20 irradiates the inspection object P continuously transported by the transport device 10 with X-rays and based on the X-ray dose transmitted through the inspection object P. The weight of the inspection object P is estimated. The X-ray inspection apparatus 20 classifies the inspection object P into three ranks based on the weight estimation result of the inspection object P. Further, the X-ray inspection apparatus 20 determines a reference position F to which the sorting mechanism 41 of the sorting apparatus 40 described later sorts the inspection object P, and transmits information on the reference position F to the controller 50 of the sorting apparatus 40. . The reference position F is a position where the sorting mechanism 41 of the sorting device 40 applies a force to the inspection object P.
X線検査装置20は、搬送装置10により連続的に搬送される被検査物Pに対してX線を照射し、被検査物Pを透過したX線量に基づいて被検査物Pの重量推定を行う。また、X線検査装置20は、被検査物Pの重量推定結果に基づき、被検査物Pを3段階のランクに区分する。また、X線検査装置20は、後述する振分装置40の振分機構41が被検査物Pを振り分ける基準位置Fを決定し、基準位置Fに関する情報を振分装置40のコントローラ50に送信する。基準位置Fは、振分装置40の振分機構41が被検査物Pに力を作用させる位置である。 (2-2) X-ray Inspection Device The
X線検査装置20は、主に、シールドボックス21(図2参照)と、X線照射器22(図3参照)と、ラインセンサ23(図3参照)と、モニタ25(図2参照)と、コントローラ30(図4参照)と、を有する。
The X-ray inspection apparatus 20 mainly includes a shield box 21 (see FIG. 2), an X-ray irradiator 22 (see FIG. 3), a line sensor 23 (see FIG. 3), and a monitor 25 (see FIG. 2). And a controller 30 (see FIG. 4).
以下に、X線検査装置20の各構成について説明する。なお、以下のX線検査装置20の説明では、位置関係等を説明する際に「前(正面)」、「後(背面)」、「左」、「右」、「上」、「下」等の表現を用いる場合があるが、特記無き場合には、図2中の矢印に従って「前(正面)」、「後(背面)」、「左」、「右」、「上」、「下」等を表現する。
Hereinafter, each component of the X-ray inspection apparatus 20 will be described. In the following description of the X-ray inspection apparatus 20, “front (front)”, “rear (back)”, “left”, “right”, “up”, and “down” are used when explaining the positional relationship. In the case where there is no special mention, “front (front)”, “rear (back)”, “left”, “right”, “up”, “bottom” are indicated according to the arrows in FIG. ".
(2-2-1)シールドボックス
シールドボックス21は、内部にX線照射器22、ラインセンサ23、コントローラ30等を収容する筐体である。また、シールドボックス21の正面上部には、モニタ25の他、キーの差込口および電源スイッチ等が配置されている(図2参照)。シールドボックス21の左右の側面には、開口21aが形成されている(図2参照)。 (2-2-1) Shield Box Theshield box 21 is a housing that houses therein the X-ray irradiator 22, the line sensor 23, the controller 30, and the like. Further, in addition to the monitor 25, a key insertion port, a power switch, and the like are disposed on the upper front portion of the shield box 21 (see FIG. 2). Openings 21a are formed on the left and right side surfaces of the shield box 21 (see FIG. 2).
シールドボックス21は、内部にX線照射器22、ラインセンサ23、コントローラ30等を収容する筐体である。また、シールドボックス21の正面上部には、モニタ25の他、キーの差込口および電源スイッチ等が配置されている(図2参照)。シールドボックス21の左右の側面には、開口21aが形成されている(図2参照)。 (2-2-1) Shield Box The
シールドボックス21の内部には、搬送装置10のコンベアベルト11が配置されている。具体的には、コンベアベルト11は、シールドボックス21の両側面に形成された開口21aを貫通するように配置されている。搬送装置10の搬送方向Dの上流側の開口21aは、コンベアベルト11上を搬送される被検査物Pのシールドボックス21への搬入口として機能する。搬送装置10の搬送方向Dの下流側の開口21aは、コンベアベルト11上を搬送される被検査物Pのシールドボックス21からの搬出口として機能する。なお、開口21aは、シールドボックス21の外部へのX線の漏洩を防止するために、遮蔽ノレン26によって塞がれている(図2参照)。遮蔽ノレン26は、鉛やタングステン等を含むゴム製である。遮蔽ノレン26は、開口21aを通過して被検査物Pが搬出入される時に、被検査物Pによって押しのけられる。
Inside the shield box 21, the conveyor belt 11 of the transfer device 10 is arranged. Specifically, the conveyor belt 11 is disposed so as to penetrate through the openings 21 a formed on both side surfaces of the shield box 21. The opening 21 a on the upstream side in the transport direction D of the transport device 10 functions as a carry-in entrance to the shield box 21 for the inspection object P transported on the conveyor belt 11. The opening 21 a on the downstream side in the transport direction D of the transport device 10 functions as a carry-out port from the shield box 21 for the inspection object P transported on the conveyor belt 11. Note that the opening 21a is closed by a shield noren 26 in order to prevent leakage of X-rays to the outside of the shield box 21 (see FIG. 2). The shielding nolen 26 is made of rubber containing lead, tungsten and the like. The shield noren 26 is pushed away by the inspection object P when the inspection object P is carried in and out through the opening 21a.
(2-2-2)X線照射器
X線照射器22は、シールドボックス21内の、コンベアベルト11の上方に配置されている(図3参照)。X線照射器22は、コンベアベルト11の搬送面の下方に配置されるラインセンサ23に向かって、扇形状の照射範囲YにX線を照射する(図3のハッチング部参照)。X線照射器22のX線の照射範囲Yは、コンベアベルト11の被検査物Pの搬送面に対して直交するように延びる。また、照射範囲Yは、搬送装置10の搬送方向Dに対して交差する方向に扇形状に広がる。言い換えれば、X線照射器22から照射されるX線は、コンベアベルト11の幅方向に広がる。 (2-2-2) X-ray irradiator TheX-ray irradiator 22 is disposed above the conveyor belt 11 in the shield box 21 (see FIG. 3). The X-ray irradiator 22 irradiates the fan-shaped irradiation range Y with X-rays toward the line sensor 23 disposed below the conveying surface of the conveyor belt 11 (see the hatched portion in FIG. 3). The X-ray irradiation range Y of the X-ray irradiator 22 extends so as to be orthogonal to the conveyance surface of the inspection object P of the conveyor belt 11. Further, the irradiation range Y extends in a fan shape in a direction intersecting the transport direction D of the transport device 10. In other words, the X-rays irradiated from the X-ray irradiator 22 spread in the width direction of the conveyor belt 11.
X線照射器22は、シールドボックス21内の、コンベアベルト11の上方に配置されている(図3参照)。X線照射器22は、コンベアベルト11の搬送面の下方に配置されるラインセンサ23に向かって、扇形状の照射範囲YにX線を照射する(図3のハッチング部参照)。X線照射器22のX線の照射範囲Yは、コンベアベルト11の被検査物Pの搬送面に対して直交するように延びる。また、照射範囲Yは、搬送装置10の搬送方向Dに対して交差する方向に扇形状に広がる。言い換えれば、X線照射器22から照射されるX線は、コンベアベルト11の幅方向に広がる。 (2-2-2) X-ray irradiator The
(2-2-3)ラインセンサ
ラインセンサ23は、コンベアベルト11の搬送面の下方に配置されている。ラインセンサ23は、被検査物Pやコンベアベルト11を透過してくるX線を検出する。ラインセンサ23は、主に多数のX線検出素子23aを有する。X線検出素子23aは、搬送装置10の搬送方向Dに直交する向きに、言い換えればコンベアベルト11の幅方向に、一直線に水平配置されている。 (2-2-3) Line Sensor Theline sensor 23 is disposed below the conveying surface of the conveyor belt 11. The line sensor 23 detects X-rays that pass through the inspection object P and the conveyor belt 11. The line sensor 23 mainly has a large number of X-ray detection elements 23a. The X-ray detection elements 23 a are horizontally arranged in a straight line in a direction orthogonal to the transport direction D of the transport device 10, in other words, in the width direction of the conveyor belt 11.
ラインセンサ23は、コンベアベルト11の搬送面の下方に配置されている。ラインセンサ23は、被検査物Pやコンベアベルト11を透過してくるX線を検出する。ラインセンサ23は、主に多数のX線検出素子23aを有する。X線検出素子23aは、搬送装置10の搬送方向Dに直交する向きに、言い換えればコンベアベルト11の幅方向に、一直線に水平配置されている。 (2-2-3) Line Sensor The
各X線検出素子23aは、被検査物Pやコンベアベルト11を透過したX線を検出し、検出したX線透過量(X線の強度)に基づくX線透過信号を出力する。X線透過信号は、コントローラ30に送信され、被検査物PのX線画像を作成するために用いられる。コントローラ30は、X線透過信号に基づいて作成される、言い換えればX線透過量に基づいて作成されるX線画像に基づいて、被検査物Pの重量推定を行う。
Each X-ray detection element 23a detects X-rays transmitted through the inspection object P and the conveyor belt 11, and outputs an X-ray transmission signal based on the detected X-ray transmission amount (X-ray intensity). The X-ray transmission signal is transmitted to the controller 30 and used to create an X-ray image of the inspection object P. The controller 30 performs weight estimation of the inspection object P based on an X-ray image created based on the X-ray transmission signal, in other words, based on the X-ray transmission amount.
なお、X線透過信号に基づいて作成されるX線画像では、X線透過信号によって、X線画像の明るさ(濃淡値)が決定される。図5は、ラインセンサ23のX線検出素子23aによって検出されるX線の検出量(X線透過量)の例を示すグラフである。グラフの横軸は、各X線検出素子23aの位置に対応する。また、グラフの横軸は、搬送装置10の搬送方向Dに直交する方向の距離に対応する。また、グラフの縦軸は、X線検出素子23aで検出されたX線の検出量(X線透過量)を示す。X線画像では、検出量の多いところが明るい(淡い)画素として表示され、検出量が少ないところが暗い(濃い)画素として表示される。X線透過量は、X線が通過した物品の厚みが厚いほど減少し、X線が通過した物品の厚みが薄いほど増加することから、X線画像の明暗(濃淡)は、被検査物Pの重量と対応づけできる。
In addition, in the X-ray image created based on the X-ray transmission signal, the brightness (gray value) of the X-ray image is determined by the X-ray transmission signal. FIG. 5 is a graph showing an example of an X-ray detection amount (X-ray transmission amount) detected by the X-ray detection element 23 a of the line sensor 23. The horizontal axis of the graph corresponds to the position of each X-ray detection element 23a. The horizontal axis of the graph corresponds to the distance in the direction orthogonal to the transport direction D of the transport device 10. The vertical axis of the graph indicates the detected amount of X-rays (X-ray transmission amount) detected by the X-ray detection element 23a. In an X-ray image, a portion with a large detection amount is displayed as a bright (light) pixel, and a portion with a small detection amount is displayed as a dark (dark) pixel. The amount of X-ray transmission decreases as the thickness of the article through which X-rays pass and increases as the thickness of the article through which X-rays pass through increases. Therefore, the brightness (darkness) of the X-ray image is determined by the object P to be inspected. Can be associated with the weight of
ラインセンサ23は、被検査物Pが扇状のX線の照射範囲Y(図3参照)を通過するタイミングを検知するためのセンサとしても機能する。具体的には、コンベアベルト11上で搬送される被検査物Pがラインセンサ23の上方位置(照射範囲Y)に来た時、ラインセンサ23は、所定の閾値以下の電圧を示すX線透過信号(第1信号)を出力する。一方、被検査物Pが照射範囲Yを通過していない場合には、ラインセンサ23は、所定の閾値を上回る電圧を示すX線透過信号(第2信号)を出力する。第1信号および第2信号がコントローラ30に入力されることで、照射範囲Yにおける被検査物Pの有無が検出される。なお、所定の閾値は、被検査物Pの有無を判定するために適切に設定された値である。
The line sensor 23 also functions as a sensor for detecting the timing when the inspection object P passes through the fan-shaped X-ray irradiation range Y (see FIG. 3). Specifically, when the inspection object P conveyed on the conveyor belt 11 comes to an upper position (irradiation range Y) of the line sensor 23, the line sensor 23 transmits X-rays indicating a voltage equal to or lower than a predetermined threshold value. A signal (first signal) is output. On the other hand, when the inspection object P does not pass through the irradiation range Y, the line sensor 23 outputs an X-ray transmission signal (second signal) indicating a voltage exceeding a predetermined threshold. By inputting the first signal and the second signal to the controller 30, the presence or absence of the inspection object P in the irradiation range Y is detected. The predetermined threshold is a value appropriately set for determining the presence or absence of the inspection object P.
(2-2-4)モニタ
モニタ25は、液晶ディスプレイである。モニタ25は、被検査物PのX線画像や、被検査物Pの検査結果等を表示する。モニタ25は、タッチパネル機能も有しており、オペレータによる検査パラメータ等の入力を受け付ける。 (2-2-4) Monitor Themonitor 25 is a liquid crystal display. The monitor 25 displays an X-ray image of the inspection object P, an inspection result of the inspection object P, and the like. The monitor 25 also has a touch panel function and accepts input of inspection parameters and the like by the operator.
モニタ25は、液晶ディスプレイである。モニタ25は、被検査物PのX線画像や、被検査物Pの検査結果等を表示する。モニタ25は、タッチパネル機能も有しており、オペレータによる検査パラメータ等の入力を受け付ける。 (2-2-4) Monitor The
(2-2-5)コントローラ
コントローラ30は、X線検査装置20の各部を制御するコンピュータである。コントローラ30は、演算や制御を行うCPU(Central Processing Unit)や、情報を記憶するROM(Read Only Memory)、RAM(Random Access Memory)、およびハードディスク等を主に有する。また、コントローラ30は、図示しない表示制御回路、キー入力回路等も備えている。表示制御回路は、モニタ25でのデータ表示を制御する回路である。キー入力回路は、モニタ25のタッチパネルを介してオペレータにより入力されたキー入力データを取り込む回路である。 (2-2-5) Controller Thecontroller 30 is a computer that controls each part of the X-ray inspection apparatus 20. The controller 30 mainly includes a central processing unit (CPU) that performs calculation and control, a read only memory (ROM) that stores information, a random access memory (RAM), and a hard disk. The controller 30 also includes a display control circuit, a key input circuit, and the like (not shown). The display control circuit is a circuit that controls data display on the monitor 25. The key input circuit is a circuit that captures key input data input by an operator via the touch panel of the monitor 25.
コントローラ30は、X線検査装置20の各部を制御するコンピュータである。コントローラ30は、演算や制御を行うCPU(Central Processing Unit)や、情報を記憶するROM(Read Only Memory)、RAM(Random Access Memory)、およびハードディスク等を主に有する。また、コントローラ30は、図示しない表示制御回路、キー入力回路等も備えている。表示制御回路は、モニタ25でのデータ表示を制御する回路である。キー入力回路は、モニタ25のタッチパネルを介してオペレータにより入力されたキー入力データを取り込む回路である。 (2-2-5) Controller The
コントローラ30は、X線照射器22、ラインセンサ23、およびモニタ25と電気的に接続されている。また、コントローラ30は、搬送装置10のコンベアモータ12およびエンコーダ13とも電気的に接続されている(図4参照)。コントローラ30は、エンコーダ13からコンベアモータ12の回転数に関するデータを取得し、取得したデータに基づき被検査物Pの搬送距離や搬送速度を把握する。また、コントローラ30は、振分装置40に対して後述する振分情報を送信するために、振分装置40のコントローラ50と、インターネットや専用回線等の通信回線90により接続されている。
The controller 30 is electrically connected to the X-ray irradiator 22, the line sensor 23, and the monitor 25. The controller 30 is also electrically connected to the conveyor motor 12 and the encoder 13 of the transport apparatus 10 (see FIG. 4). The controller 30 acquires data related to the rotational speed of the conveyor motor 12 from the encoder 13 and grasps the transport distance and transport speed of the inspection object P based on the acquired data. In addition, the controller 30 is connected to the controller 50 of the distribution device 40 via a communication line 90 such as the Internet or a dedicated line in order to transmit distribution information to be described later to the distribution device 40.
コントローラ30は、後述する振分装置40のコントローラ50に、後述する振分情報を送信する振分情報送信部31を有する(図4参照)。また、コントローラ30は、記憶部32および制御部33を有する(図4参照)。制御部33は、主にCPUにより構成され、記憶部32に記憶されたプログラムを実行することで、X線画像の生成や、生成したX線画像に基づいた被検査物Pの重量推定およびランク判定等を行う。また、制御部33は、X線照射器22やラインセンサ23等の、X線検査装置20の各構成の動作を制御する。記憶部32には、制御部33により実行されるプログラムの他、重量推定やランク検査等に用いられる各種検査パラメータが記憶される。例えば、記憶部32には、X線画像の濃淡値を重量値に変換するための重量変換テーブルや、重量に応じて被検査物Pのランクを判定するための閾値や、被検査物Pにエアーを噴射する時間を決定するため噴射時間テーブルが記憶されている。
The controller 30 includes a distribution information transmission unit 31 that transmits distribution information described later to the controller 50 of the distribution device 40 described later (see FIG. 4). Moreover, the controller 30 has the memory | storage part 32 and the control part 33 (refer FIG. 4). The control unit 33 is mainly configured by a CPU, and executes a program stored in the storage unit 32 to generate an X-ray image, and estimate the weight and rank of the inspection object P based on the generated X-ray image. Make a decision. The control unit 33 controls the operation of each component of the X-ray inspection apparatus 20 such as the X-ray irradiator 22 and the line sensor 23. In addition to the program executed by the control unit 33, the storage unit 32 stores various inspection parameters used for weight estimation, rank inspection, and the like. For example, the storage unit 32 stores a weight conversion table for converting the gray value of the X-ray image into a weight value, a threshold value for determining the rank of the inspection object P according to the weight, and the inspection object P. An injection time table is stored to determine the time for injecting air.
(2-2-5-1)振分情報送信部
振分情報送信部31は、振分装置40のコントローラ50に振分情報を送信する。振分情報は、後述する振分装置40の振分機構41を動作させ、搬送装置10により搬送される被検査物Pを、図示しない3つのコンベアに振り分けるために使用される情報である。 (2-2-5-1) Distribution Information Transmitting Unit The distributioninformation transmitting unit 31 transmits distribution information to the controller 50 of the distribution device 40. The distribution information is information used to operate a distribution mechanism 41 of the distribution device 40 (to be described later) and distribute the inspection object P conveyed by the conveyance device 10 to three conveyors (not shown).
振分情報送信部31は、振分装置40のコントローラ50に振分情報を送信する。振分情報は、後述する振分装置40の振分機構41を動作させ、搬送装置10により搬送される被検査物Pを、図示しない3つのコンベアに振り分けるために使用される情報である。 (2-2-5-1) Distribution Information Transmitting Unit The distribution
振分情報には、被検査物Pのランクに関する情報と、振分機構41が被検査物Pを振り分ける基準位置Fに関する情報と、被検査物Pに対するエアーの噴射時間に関する情報と、を含む。
The distribution information includes information related to the rank of the inspection object P, information related to the reference position F to which the distribution mechanism 41 distributes the inspection object P, and information related to the air injection time for the inspection object P.
被検査物Pのランクは、後述する制御部33のランク判定部33cにより、被検査物Pの重量に基づいて判定される。振分情報としての被検査物Pのランクに関する情報に基づいて、後述する振分機構41の第1~第3エアー振分機構41a,41b,41cのいずれを動作させて、その被検査物Pを振り分けるかが決定される。
The rank of the inspection object P is determined based on the weight of the inspection object P by a rank determination unit 33c of the control unit 33 described later. Based on the information about the rank of the inspection object P as the distribution information, any one of the first to third air distribution mechanisms 41a, 41b, 41c of the distribution mechanism 41 described later is operated, and the inspection object P It is decided whether or not to distribute.
基準位置Fは、振分機構41が被検査物Pに力を作用させる位置である。基準位置Fは、後述する制御部33の基準位置決定部33eにより決定される。基準位置Fに関する情報は、被検査物Pの搬送方向Dにおける下流側の端部Eから基準位置Fまでの、搬送方向Dにおける距離Lに関する情報である(図6参照)。
The reference position F is a position where the distribution mechanism 41 applies a force to the inspection object P. The reference position F is determined by a reference position determination unit 33e of the control unit 33 described later. The information on the reference position F is information on the distance L in the transport direction D from the downstream end E in the transport direction D of the inspection object P to the reference position F (see FIG. 6).
噴射時間は、被検査物Pに対して、振分機構41がエアーを何秒間噴射するかに関する情報である。噴射時間は、後述する制御部33の噴射時間決定部33dにより決定される。
The jetting time is information regarding how many seconds the sorting mechanism 41 jets air to the inspection object P. The injection time is determined by an injection time determination unit 33d of the control unit 33 described later.
(2-2-5-2)記憶部
記憶部32は、制御部33に実行させる各種プログラムや検査パラメータを記憶する。記憶部32は、主として、X線画像記憶領域32a、重量変換情報記憶領域32b、ランク閾値記憶領域32c、噴射時間情報記憶領域32dを有する(図4参照)。 (2-2-5-2) Storage Unit Thestorage unit 32 stores various programs to be executed by the control unit 33 and inspection parameters. The storage unit 32 mainly includes an X-ray image storage area 32a, a weight conversion information storage area 32b, a rank threshold storage area 32c, and an ejection time information storage area 32d (see FIG. 4).
記憶部32は、制御部33に実行させる各種プログラムや検査パラメータを記憶する。記憶部32は、主として、X線画像記憶領域32a、重量変換情報記憶領域32b、ランク閾値記憶領域32c、噴射時間情報記憶領域32dを有する(図4参照)。 (2-2-5-2) Storage Unit The
(2-2-5-2-1)X線画像記憶領域
X線画像記憶領域32aには、後述するX線画像生成部33aによって生成された被検査物PのX線画像が記憶される。 (2-2-5-2-1) X-ray image storage area The X-rayimage storage area 32a stores an X-ray image of the inspection object P generated by an X-ray image generation unit 33a described later.
X線画像記憶領域32aには、後述するX線画像生成部33aによって生成された被検査物PのX線画像が記憶される。 (2-2-5-2-1) X-ray image storage area The X-ray
(2-2-5-2-2)重量変換情報記憶領域
重量変換情報記憶領域32bは、後述する重量推定部33bが被検査物Pの重量推定の際に用いる、重量変換テーブルが記憶されている。重量変換テーブルは、画素の濃淡値(濃淡レベル)と、その濃淡値の画素に対応する重量値とを一対一で対応付ける情報である。なお、画素の濃淡値が所定の閾値より大きい(画素が明るい)場合には、X線が被検査物Pを透過せずにラインセンサ23に到達していると考えられることから、重量変換テーブルでは、閾値より大きい濃淡値については、重量値は0と設定されている。 (2-2-5-2-2) Weight Conversion Information Storage Area The weight conversioninformation storage area 32b stores a weight conversion table used by the weight estimation unit 33b to be described later when estimating the weight of the inspection object P. Yes. The weight conversion table is information that correlates one-to-one the gray value (shading level) of a pixel and the weight value corresponding to the pixel of the gray value. Note that, when the gray value of the pixel is larger than a predetermined threshold value (the pixel is bright), it is considered that the X-rays reach the line sensor 23 without passing through the inspection object P, and thus the weight conversion table. Then, the weight value is set to 0 for the gray value larger than the threshold value.
重量変換情報記憶領域32bは、後述する重量推定部33bが被検査物Pの重量推定の際に用いる、重量変換テーブルが記憶されている。重量変換テーブルは、画素の濃淡値(濃淡レベル)と、その濃淡値の画素に対応する重量値とを一対一で対応付ける情報である。なお、画素の濃淡値が所定の閾値より大きい(画素が明るい)場合には、X線が被検査物Pを透過せずにラインセンサ23に到達していると考えられることから、重量変換テーブルでは、閾値より大きい濃淡値については、重量値は0と設定されている。 (2-2-5-2-2) Weight Conversion Information Storage Area The weight conversion
例えば、重量変換テーブルは、予め重量変換情報記憶領域32bに記憶されている情報である。また例えば、重量変換テーブルは、タッチパネル機能を有するモニタ25等を介して外部から入力される情報であってもよい。また例えば、重量変換テーブルは、試運転時等に、厚みや重量等が既知のサンプルについてX線画像を生成し、生成されたX線画像の画素の濃淡値と、既知の情報(厚みや重量等)とに基づいて生成されてもよい。
For example, the weight conversion table is information stored in the weight conversion information storage area 32b in advance. Further, for example, the weight conversion table may be information input from the outside via the monitor 25 having a touch panel function. In addition, for example, the weight conversion table generates an X-ray image for a sample whose thickness, weight, etc. are known at the time of a trial run, etc. ).
(2-2-5-2-3)ランク閾値記憶領域
ランク閾値記憶領域32cには、後述するランク判定部33cが用いる、被検査物のランクを判定するための閾値が記憶されている。ここでは、閾値Q1,Q2(<Q1)が、ランク閾値記憶領域32cに記憶されている。 (2-2-5-2-3) Rank threshold value storage area The rank thresholdvalue storage area 32c stores a threshold value used by the rank determination unit 33c described later for determining the rank of the inspection object. Here, threshold values Q1 and Q2 (<Q1) are stored in the rank threshold value storage area 32c.
ランク閾値記憶領域32cには、後述するランク判定部33cが用いる、被検査物のランクを判定するための閾値が記憶されている。ここでは、閾値Q1,Q2(<Q1)が、ランク閾値記憶領域32cに記憶されている。 (2-2-5-2-3) Rank threshold value storage area The rank threshold
例えば、閾値Q1,Q2は、予めランク閾値記憶領域32cに記憶されている情報である。また例えば、閾値Q1,Q2は、タッチパネル機能を有するモニタ25等を介して外部から入力される情報であってもよい。
For example, the threshold values Q1 and Q2 are information stored in advance in the rank threshold value storage area 32c. Further, for example, the threshold values Q1 and Q2 may be information input from the outside through the monitor 25 having a touch panel function.
(2-2-5-2-4)噴射時間情報記憶領域
噴射時間情報記憶領域32dには、後述する噴射時間決定部33dが、被検査物Pに対する振分機構41(第1~第3エアー振分機構41a,41b,41c)のエアーの噴射時間を決定する際に用いる噴射時間決定テーブルが記憶されている。噴射時間決定テーブルは、複数の重量範囲と、その重量範囲に対応するエアーの噴射時間とを一対一で対応付ける情報である。 (2-2-5-2-4) Injection time information storage area In the injection timeinformation storage area 32d, an injection time determination unit 33d, which will be described later, distributes the inspection mechanism P to the inspection object P (first to third air). The injection time determination table used when determining the air injection time of the distribution mechanism 41a, 41b, 41c) is stored. The injection time determination table is information that associates a plurality of weight ranges with air injection times corresponding to the weight ranges on a one-to-one basis.
噴射時間情報記憶領域32dには、後述する噴射時間決定部33dが、被検査物Pに対する振分機構41(第1~第3エアー振分機構41a,41b,41c)のエアーの噴射時間を決定する際に用いる噴射時間決定テーブルが記憶されている。噴射時間決定テーブルは、複数の重量範囲と、その重量範囲に対応するエアーの噴射時間とを一対一で対応付ける情報である。 (2-2-5-2-4) Injection time information storage area In the injection time
例えば、噴射時間決定テーブルは、予め噴射時間情報記憶領域32dに記憶されている情報である。また例えば、噴射時間決定テーブルは、タッチパネル機能を有するモニタ25等を介して外部から入力される情報であってもよい。
For example, the injection time determination table is information stored in advance in the injection time information storage area 32d. For example, the injection time determination table may be information input from the outside via the monitor 25 having a touch panel function.
(2-2-5-3)制御部
制御部33は、記憶部32に記憶されたプログラムを実行することにより、主に、X線画像生成部33a、重量推定部33b、ランク判定部33c、噴射時間決定部33d、基準位置決定部33e、として機能する。 (2-2-5-3) Control Unit Thecontrol unit 33 mainly executes an X-ray image generation unit 33a, a weight estimation unit 33b, a rank determination unit 33c, by executing a program stored in the storage unit 32. It functions as an injection time determination unit 33d and a reference position determination unit 33e.
制御部33は、記憶部32に記憶されたプログラムを実行することにより、主に、X線画像生成部33a、重量推定部33b、ランク判定部33c、噴射時間決定部33d、基準位置決定部33e、として機能する。 (2-2-5-3) Control Unit The
(2-2-5-3-1)X線画像生成部
X線画像生成部33aおよびラインセンサ23は、搬送装置10により搬送される被検査物Pを撮像し、被検査物PのX線画像を、被検査物Pの撮像画像として取得する撮像機構として機能する。 (2-2-5-3-1) X-ray image generation unit The X-rayimage generation unit 33a and the line sensor 23 capture an image of the inspection object P conveyed by the conveyance device 10, and X-rays of the inspection object P It functions as an imaging mechanism that acquires an image as a captured image of the inspection object P.
X線画像生成部33aおよびラインセンサ23は、搬送装置10により搬送される被検査物Pを撮像し、被検査物PのX線画像を、被検査物Pの撮像画像として取得する撮像機構として機能する。 (2-2-5-3-1) X-ray image generation unit The X-ray
X線画像生成部33aは、ラインセンサ23によって検出されたX線の強度に基づいてX線画像を作成する。言い換えれば、X線画像生成部33aは、ラインセンサ23のX線検出素子23aが検出したX線透過量(X線の強度)に基づいて出力するX線透過信号に基づいて、撮像画像としてのX線画像を生成する。
The X-ray image generation unit 33 a creates an X-ray image based on the X-ray intensity detected by the line sensor 23. In other words, the X-ray image generation unit 33a uses the X-ray transmission signal output based on the X-ray transmission amount (X-ray intensity) detected by the X-ray detection element 23a of the line sensor 23 as a captured image. An X-ray image is generated.
具体的には、X線画像生成部33aは、扇状のX線の照射範囲Y(図3参照)を被検査物Pが通過する時、ラインセンサ23の各X線検出素子23aから出力されるX線透過信号を細かい時間間隔で取得する。なお、被検査物Pが扇状のX線の照射範囲Yを通過するタイミングは、ラインセンサ23からの信号により判断される。すなわち、ラインセンサ23が出力する信号により照射範囲Yにおける被検査物Pの有無が判断される。
Specifically, the X-ray image generation unit 33a outputs the X-ray detection element 23a of the line sensor 23 when the inspection object P passes through the fan-shaped X-ray irradiation range Y (see FIG. 3). X-ray transmission signals are acquired at fine time intervals. The timing at which the inspection object P passes through the fan-shaped X-ray irradiation range Y is determined by a signal from the line sensor 23. That is, the presence / absence of the inspection object P in the irradiation range Y is determined based on the signal output from the line sensor 23.
X線画像生成部33aは、取得したX線透過信号に基づいてX線画像を生成する。具体的には、X線画像生成部33aは、ラインセンサ23の各X線検出素子23aから得られるX線の明るさに関する細かい時間間隔毎のデータをマトリクス状に時系列につなぎ合わせることにより、被検査物Pを対象とするX線画像を生成する。生成されたX線画像は、X線画像記憶領域32aに記憶される。
The X-ray image generation unit 33a generates an X-ray image based on the acquired X-ray transmission signal. Specifically, the X-ray image generation unit 33a connects the data for each minute time interval related to the brightness of the X-ray obtained from each X-ray detection element 23a of the line sensor 23 in a matrix form in time series. An X-ray image for the inspection object P is generated. The generated X-ray image is stored in the X-ray image storage area 32a.
(2-2-5-3-2)重量推定部
重量推定部33bは、被検査物PのX線画像に基づいて、その被検査物Pの重量を推定する。 (2-2-5-3-2) Weight Estimation Unit Theweight estimation unit 33b estimates the weight of the inspection object P based on the X-ray image of the inspection object P.
重量推定部33bは、被検査物PのX線画像に基づいて、その被検査物Pの重量を推定する。 (2-2-5-3-2) Weight Estimation Unit The
重量推定部33bは、X線画像記憶領域32aに記憶された被検査物PのX線画像に基づき、X線画像の濃淡値に関する情報を作成する。具体的には、重量推定部33bは、X線画像を構成する全画素を所定幅の濃淡値(階調)に分類し、各濃淡値を有する画素数をカウントする。これにより、濃淡値毎の画素数を示すヒストグラムを作成する。次に、重量推定部33bは、重量変換情報記憶領域32bに記憶された重量変換テーブルを用いて、ヒストグラムに含まれる全ての濃淡値を重量値に読み替える。そして、重量推定部33bは、ヒストグラムに含まれる濃淡値ついて、その濃淡値に対応する重量値と、ヒストグラムが示す、その濃淡値の画素数との積を算出する。重量推定部33bは、ヒストグラムに含まれる全ての濃淡値について積を算出し、これらを足し合わせることで、被検査物Pの重量を推定する(推定重量を算出する)。
The weight estimation unit 33b creates information on the gray value of the X-ray image based on the X-ray image of the inspection object P stored in the X-ray image storage area 32a. Specifically, the weight estimation unit 33b classifies all pixels constituting the X-ray image into grayscale values (tones) having a predetermined width, and counts the number of pixels having each grayscale value. Thereby, a histogram indicating the number of pixels for each gray value is created. Next, the weight estimation unit 33b uses the weight conversion table stored in the weight conversion information storage area 32b to read all the gray values included in the histogram into weight values. Then, the weight estimation unit 33b calculates, for the gray value included in the histogram, the product of the weight value corresponding to the gray value and the number of pixels of the gray value indicated by the histogram. The weight estimation unit 33b calculates the product for all the gray values included in the histogram, and adds these to estimate the weight of the inspection object P (calculates the estimated weight).
(2-2-5-3-3)ランク判定部
ランク判定部33cは、重量推定部33bが算出した被検査物Pの推定重量に基づいて、その被検査物Pのランクを判定する。具体的には、ランク判定部33cは、ランク閾値記憶領域32cに記憶された閾値Q1,Q2を用いて、推定重量が、閾値Q1以下であれば第1ランク、閾値Q1より大きく閾値Q2以下であれば第2ランク、閾値Q2より大きければ第3ランクと、被検査物Pのランクを判定する。 (2-2-5-3-3) Rank Determination Unit Therank determination unit 33c determines the rank of the inspection object P based on the estimated weight of the inspection object P calculated by the weight estimation unit 33b. Specifically, the rank determination unit 33c uses the threshold values Q1 and Q2 stored in the rank threshold value storage area 32c, and if the estimated weight is equal to or less than the threshold value Q1, the rank is larger than the first rank, the threshold value Q1, and the threshold value Q2 or less. If there is, the second rank is determined. If it is larger than the threshold value Q2, the third rank and the rank of the inspection object P are determined.
ランク判定部33cは、重量推定部33bが算出した被検査物Pの推定重量に基づいて、その被検査物Pのランクを判定する。具体的には、ランク判定部33cは、ランク閾値記憶領域32cに記憶された閾値Q1,Q2を用いて、推定重量が、閾値Q1以下であれば第1ランク、閾値Q1より大きく閾値Q2以下であれば第2ランク、閾値Q2より大きければ第3ランクと、被検査物Pのランクを判定する。 (2-2-5-3-3) Rank Determination Unit The
ランク判定部33cにより判定された被検査物Pのランクは、振分情報送信部31により、振分情報の一部として振分装置40のコントローラ50に送信される。
The rank of the inspection object P determined by the rank determination unit 33c is transmitted by the distribution information transmission unit 31 to the controller 50 of the distribution device 40 as part of the distribution information.
(2-2-5-3-4)噴射時間決定部
噴射時間決定部33dは、重量推定部33bが算出した被検査物Pの推定重量に基づいて、その被検査物Pに対する振分機構41(第1~第3エアー振分機構41a,41b,41c)のエアーの噴射時間を決定する。具体的には、噴射時間決定部33dは、噴射時間情報記憶領域32dに記憶された噴射時間決定テーブルを用いて、被検査物Pの推定重量が、噴射時間決定テーブルの複数の重量範囲のいずれの中に含まれるかを判定し、判定した重量範囲に対応する噴射時間を、被検査物Pに対するエアーの噴射時間と決定する。 (2-2-5-3-4) Injection Time Determination Unit The injectiontime determination unit 33d is a distribution mechanism 41 for the inspection object P based on the estimated weight of the inspection object P calculated by the weight estimation unit 33b. The air injection time of the (first to third air distribution mechanisms 41a, 41b, 41c) is determined. Specifically, the injection time determination unit 33d uses the injection time determination table stored in the injection time information storage area 32d, and the estimated weight of the inspection object P is any of the plurality of weight ranges of the injection time determination table. The injection time corresponding to the determined weight range is determined as the air injection time for the object P to be inspected.
噴射時間決定部33dは、重量推定部33bが算出した被検査物Pの推定重量に基づいて、その被検査物Pに対する振分機構41(第1~第3エアー振分機構41a,41b,41c)のエアーの噴射時間を決定する。具体的には、噴射時間決定部33dは、噴射時間情報記憶領域32dに記憶された噴射時間決定テーブルを用いて、被検査物Pの推定重量が、噴射時間決定テーブルの複数の重量範囲のいずれの中に含まれるかを判定し、判定した重量範囲に対応する噴射時間を、被検査物Pに対するエアーの噴射時間と決定する。 (2-2-5-3-4) Injection Time Determination Unit The injection
なお、噴射時間決定部33dにより決定された被検査物Pに対するエアーの噴射時間は、振分情報送信部31により、振分情報の一部として振分装置40のコントローラ50に送信される。
The air injection time for the inspection object P determined by the injection time determination unit 33d is transmitted by the distribution information transmission unit 31 to the controller 50 of the distribution device 40 as part of the distribution information.
(2-2-5-3-5)基準位置決定部
基準位置決定部33eは、決定部の一例である。基準位置決定部33eは、X線画像から被検査物Pの外形を抽出し、被検査物Pの外形に基づいて、振分機構41が被検査物Pを振り分ける基準位置Fを決定する。具体的には、基準位置決定部33eは、被検査物Pの外形に基づいて被検査物Pの重心Gを算出し、振分機構41(第1~第3エアー振分機構41a,41b,41c)が被検査物Pの重心Gに向かって力を及ぼすように、振分機構41が被検査物Pを振り分ける基準位置Fを決定する。 (2-2-5-3-5) Reference Position Determination Unit The referenceposition determination unit 33e is an example of a determination unit. The reference position determination unit 33e extracts the outer shape of the inspection object P from the X-ray image, and determines the reference position F to which the distribution mechanism 41 distributes the inspection object P based on the outer shape of the inspection object P. Specifically, the reference position determination unit 33e calculates the center of gravity G of the inspection object P based on the outer shape of the inspection object P, and distributes the distribution mechanism 41 (first to third air distribution mechanisms 41a, 41b, The distribution mechanism 41 determines the reference position F to which the inspection object P is distributed so that 41c) exerts a force toward the center of gravity G of the inspection object P.
基準位置決定部33eは、決定部の一例である。基準位置決定部33eは、X線画像から被検査物Pの外形を抽出し、被検査物Pの外形に基づいて、振分機構41が被検査物Pを振り分ける基準位置Fを決定する。具体的には、基準位置決定部33eは、被検査物Pの外形に基づいて被検査物Pの重心Gを算出し、振分機構41(第1~第3エアー振分機構41a,41b,41c)が被検査物Pの重心Gに向かって力を及ぼすように、振分機構41が被検査物Pを振り分ける基準位置Fを決定する。 (2-2-5-3-5) Reference Position Determination Unit The reference
具体的には、基準位置決定部33eは、まず以下のようにして、被検査物Pの重心Gの位置、より具体的には、被検査物Pをコンベアベルト11の搬送面に投影した時の被検査物Pの重心Gの位置を決定する。
More specifically, the reference position determination unit 33e first projects the position of the center of gravity G of the inspection object P, more specifically, when the inspection object P is projected onto the transport surface of the conveyor belt 11 as follows. The position of the center of gravity G of the inspection object P is determined.
初めに、基準位置決定部33eは、X線画像記憶領域32aに記憶された被検査物PのX線画像において、被検査物Pの搬送方向DをX軸方向、被検査物Pの搬送方向と直交する方向(コンベアベルト11の幅方向)をY軸方向とする座標系を設定する(図6参照)。座標系の原点の位置は任意に定められればよい。基準位置決定部33eは、その座標系における各画素の座標を特定する。ここでは、図6の点線で囲まれた位置に被検査物Pを撮像した画像が存在するものとする。X線画像の各画素は上記のように濃淡値を有しており、その濃淡値は重量変換情報記憶領域32bの重量変換テーブルを用いて重量値に読み替えることができる。ここでは、被検査物PのX線画像がN個の画素Ck(k=1~N)からなるものとし、各画素Ckの座標が(Xk,Yk)で表され、その画素Ckの濃淡値に対応する重量値がmkと表されるとする。基準位置決定部33eは、被検査物Pをコンベアベルト11の搬送面に投影した時の被検査物Pの重心Gの座標(Xg,Yg)を、以下の数式1および数式2により算出する。なお、数式1および数式2中の、Mは、重量推定部33bにより算出されるその被検査物Pの推定重量である。
First, in the X-ray image of the inspection object P stored in the X-ray image storage area 32a, the reference position determination unit 33e sets the conveyance direction D of the inspection object P as the X-axis direction and the conveyance direction of the inspection object P. A coordinate system is set in which the direction perpendicular to the width (the width direction of the conveyor belt 11) is the Y-axis direction (see FIG. 6). The position of the origin of the coordinate system may be determined arbitrarily. The reference position determination unit 33e specifies the coordinates of each pixel in the coordinate system. Here, it is assumed that an image obtained by imaging the inspection object P exists at a position surrounded by a dotted line in FIG. Each pixel of the X-ray image has a gray value as described above, and the gray value can be read as a weight value using the weight conversion table in the weight conversion information storage area 32b. Here, it is assumed that the X-ray image of the inspection object P is composed of N pixels Ck (k = 1 to N), the coordinates of each pixel Ck are represented by (Xk, Yk), and the gray value of the pixel Ck. The weight value corresponding to is expressed as mk. The reference position determination unit 33e calculates the coordinates (Xg, Yg) of the center of gravity G of the inspection object P when the inspection object P is projected onto the transport surface of the conveyor belt 11, using the following Expression 1 and Expression 2. In Equations 1 and 2, M is the estimated weight of the inspection object P calculated by the weight estimation unit 33b.
基準位置決定部33eは、このようにして、図形の外形だけではなく、各画素の重量も考慮した、重心(質量中心)を決定する。
The reference position determination unit 33e thus determines the center of gravity (mass center) in consideration of not only the outer shape of the figure but also the weight of each pixel.
さらに、基準位置決定部33eは、決定された重心Gに向かって、振分機構41(第1~第3エアー振分機構41a,41b,41c)が被検査物Pに力を及ぼすように、被検査物Pを振り分ける基準位置Fを決定する。ここでは、第1~第3エアー振分機構41a,41b,41cは、後述するように搬送装置10の搬送方向に直交する向きにエアーを噴出する。つまり、第1~第3エアー振分機構41a,41b,41cは、基準位置決定部33eが設定した座標系で、Y軸方向に沿った方向に、特に、ここでは図6における下方から、被検査物Pに力を作用させる。そのため、図6のように重心Gから下方に直線を下ろし、その直線が被検査物Pに対応する画素(重量値を有する画素)と交わる位置が、被検査物Pの基準位置Fと決定される。
Further, the reference position determination unit 33e is configured so that the distribution mechanism 41 (first to third air distribution mechanisms 41a, 41b, 41c) exerts a force on the inspection object P toward the determined center of gravity G. A reference position F for distributing the inspection object P is determined. Here, the first to third air distribution mechanisms 41a, 41b, and 41c eject air in a direction orthogonal to the conveyance direction of the conveyance device 10 as will be described later. That is, the first to third air distribution mechanisms 41a, 41b, and 41c are coordinate systems set by the reference position determination unit 33e in the direction along the Y-axis direction, particularly from below in FIG. A force is applied to the inspection object P. Therefore, a position where a straight line is drawn downward from the center of gravity G as shown in FIG. 6 and the straight line intersects with a pixel corresponding to the inspection object P (a pixel having a weight value) is determined as a reference position F of the inspection object P. The
また、基準位置決定部33eは、振分情報送信部31が振分装置40のコントローラ50に送信する基準位置Fに関する情報を生成する。具体的には、基準位置決定部33eは、搬送装置10の搬送方向Dにおける被検査物Pの最下流側の端部Eから、基準位置Fまでの、搬送方向Dにおける距離Lを基準位置Fに関する情報として生成する。基準位置決定部33eは、座標を設定した被検査物PのX線画像の、画素の濃淡値から被検査物Pが存在すると判定される画素の中でX座標の値が最も小さい画素の座標と、重心Gの座標と、に基づいて、距離Lを算出する。
Further, the reference position determination unit 33e generates information on the reference position F that the distribution information transmission unit 31 transmits to the controller 50 of the distribution device 40. Specifically, the reference position determination unit 33e determines a distance L in the transport direction D from the most downstream end E of the inspection object P in the transport direction D of the transport apparatus 10 to the reference position F as the reference position F. It generates as information about. The reference position determination unit 33e determines the coordinates of the pixel having the smallest X coordinate value among the pixels that are determined to have the inspection object P from the gray value of the pixel in the X-ray image of the inspection object P for which coordinates are set. And the distance L is calculated based on the coordinates of the center of gravity G.
基準位置決定部33eにより生成された基準位置Fに関する情報(距離L)は、振分情報送信部31により、振分情報の一部として、振分装置40のコントローラ50に送信される。
The information (distance L) related to the reference position F generated by the reference position determination unit 33e is transmitted by the distribution information transmission unit 31 to the controller 50 of the distribution device 40 as part of the distribution information.
(2-3)振分装置
振分装置40は、X線検査装置20でのランク検査の結果に基づいて、被検査物Pの振り分けを行う。具体的には、振分装置40は、X線検査装置20のランク検査の結果に基づいて、被検査物Pを図示しない3つのコンベアにランク別に振り分ける。 (2-3) Sorting Device Thesorting device 40 sorts the inspection object P based on the result of the rank inspection performed by the X-ray inspection device 20. Specifically, the distribution device 40 distributes the inspection object P to three conveyors (not shown) according to rank based on the result of the rank inspection of the X-ray inspection device 20.
振分装置40は、X線検査装置20でのランク検査の結果に基づいて、被検査物Pの振り分けを行う。具体的には、振分装置40は、X線検査装置20のランク検査の結果に基づいて、被検査物Pを図示しない3つのコンベアにランク別に振り分ける。 (2-3) Sorting Device The
振分装置40は、振分機構41(図1参照)と、光電センサ43(図1参照)と、コントローラ50(図4参照)と、を主に有する。
The sorting apparatus 40 mainly includes a sorting mechanism 41 (see FIG. 1), a photoelectric sensor 43 (see FIG. 1), and a controller 50 (see FIG. 4).
(2-3-1)振分機構
振分機構41は、搬送装置10により搬送される被検査物Pを振り分ける。 (2-3-1) Distribution Mechanism Thedistribution mechanism 41 distributes the inspection object P conveyed by the conveyance device 10.
振分機構41は、搬送装置10により搬送される被検査物Pを振り分ける。 (2-3-1) Distribution Mechanism The
振分機構41は、第1~第3エアー振分機構41a,41b,41cを有する(図1参照)。第1~第3エアー振分機構41a,41b,41cは、コンベアベルト11上を搬送されてくる被検査物Pにエアーを噴射することで力を作用させて動かすことで、被検査物Pを振り分ける。第1~第3エアー振分機構41a,41b,41cの動作は、コントローラ50の振分機構制御部53により、それぞれ他のエアー振分機構41a,41b,41cの動作とは独立して制御される。特に、ここでは、第1~第3エアー振分機構41a,41b,41cは、X線検査装置20のランク検査の結果に基づいて、被検査物Pをランク別に振り分ける。
The distribution mechanism 41 includes first to third air distribution mechanisms 41a, 41b, and 41c (see FIG. 1). The first to third air distribution mechanisms 41a, 41b, 41c cause the inspection object P to move by applying a force by injecting air onto the inspection object P conveyed on the conveyor belt 11. Distribute. The operations of the first to third air distribution mechanisms 41a, 41b, and 41c are controlled by the distribution mechanism control unit 53 of the controller 50 independently of the operations of the other air distribution mechanisms 41a, 41b, and 41c, respectively. The In particular, here, the first to third air distribution mechanisms 41a, 41b, and 41c distribute the inspection object P by rank based on the result of the rank inspection of the X-ray inspection apparatus 20.
第1エアー振分機構41aは、第1ノズル42a(図1参照)と、第1ノズル42aにエアー(高圧空気)を供給するエアー経路を開閉する電磁弁(図示せず)と、を有する。第2エアー振分機構41bは、第2ノズル42b(図1参照)と、第2ノズル42bにエアーを供給するエアー経路を開閉する電磁弁(図示せず)と、を有する。第3エアー振分機構41cは、第3ノズル42c(図1参照)と、第3ノズル42cにエアーを供給するエアー経路を開閉する電磁弁(図示せず)と、を有する。
The first air distribution mechanism 41a includes a first nozzle 42a (see FIG. 1) and an electromagnetic valve (not shown) that opens and closes an air path for supplying air (high-pressure air) to the first nozzle 42a. The 2nd air distribution mechanism 41b has the 2nd nozzle 42b (refer FIG. 1) and the solenoid valve (not shown) which opens and closes the air path which supplies air to the 2nd nozzle 42b. The third air distribution mechanism 41c includes a third nozzle 42c (see FIG. 1) and an electromagnetic valve (not shown) that opens and closes an air path for supplying air to the third nozzle 42c.
第1~第3ノズル42a,42b,42cは、搬送装置10のコンベアベルト11の搬送面の斜め上方に取り付けられている。第1~第3ノズル42a,42b,42cは、平面視において、搬送装置10の搬送方向Dと交差する方向、特には搬送方向Dと直交する方向に高圧のエアーを噴射するように取り付けられている。第1~第3ノズル42a,42b,42cは、搬送装置10の搬送方向Dの上流側から下流側に向かって、この順番に設置されている(図1参照)。第1~第3ノズル42a,42b,42cは、後述する光電センサ43の検知位置から、搬送装置10の搬送方向Dに、それぞれ、距離B1、距離B2、距離B3離れている(図1参照)。振分機構制御部53からの指令により第1エアー振分機構41a、第2エアー振分機構41b、又は第3エアー振分機構41cの電磁弁が開かれると、それぞれ、第1ノズル42a、第2ノズル42b、第3ノズル42cから高圧のエアーが吹き出す。コンベアベルト11上の被検査物Pにエアーが吹き付けられることで、被検査物Pのエアーが吹きつけられた位置に力が作用し、コンベアベルト11の下方に配置された、各エアー振分機構41a,41b,41cに対応する図示しないコンベアに、被検査物Pが振り分けられる。
The first to third nozzles 42a, 42b, 42c are attached obliquely above the conveying surface of the conveyor belt 11 of the conveying device 10. The first to third nozzles 42a, 42b, and 42c are attached so as to inject high-pressure air in a direction that intersects the transport direction D of the transport device 10 in a plan view, in particular, a direction that is orthogonal to the transport direction D. Yes. The first to third nozzles 42a, 42b, and 42c are installed in this order from the upstream side to the downstream side in the transport direction D of the transport apparatus 10 (see FIG. 1). The first to third nozzles 42a, 42b, and 42c are separated from the detection position of the photoelectric sensor 43 described later in the transport direction D of the transport device 10 by a distance B1, a distance B2, and a distance B3, respectively (see FIG. 1). . When the electromagnetic valve of the first air distribution mechanism 41a, the second air distribution mechanism 41b, or the third air distribution mechanism 41c is opened by a command from the distribution mechanism control unit 53, the first nozzle 42a, High-pressure air blows out from the second nozzle 42b and the third nozzle 42c. Each air distribution mechanism is arranged below the conveyor belt 11 because air is blown to the inspection object P on the conveyor belt 11 so that a force acts on the position where the air of the inspection object P is blown. The inspection object P is distributed to conveyors (not shown) corresponding to 41a, 41b, and 41c.
(2-3-2)光電センサ
光電センサ43は、第1~第3エアー振分機構41a,41b,41cの第1~第3ノズル42a,42b,42cの、搬送装置10の搬送方向Dにおける上流側に配置されている(図1参照)。光電センサ43は、コンベアベルト11を挟んで配置される一対の投光器43aおよび受光器43bから構成されている(図1参照)。光電センサ43が被検査物Pを検知したか否か、言い換えれば、投光器43aが発した光を受光器43bが検出したか否かは、連続的にコントローラ50に送信される。 (2-3-2) Photoelectric Sensor Thephotoelectric sensor 43 is configured such that the first to third nozzles 42a, 42b, and 42c of the first to third air distribution mechanisms 41a, 41b, and 41c are in the transport direction D of the transport device 10. It arrange | positions upstream (refer FIG. 1). The photoelectric sensor 43 includes a pair of light projectors 43a and light receivers 43b arranged with the conveyor belt 11 interposed therebetween (see FIG. 1). Whether or not the photoelectric sensor 43 has detected the inspection object P, in other words, whether or not the light receiver 43b has detected the light emitted from the projector 43a is continuously transmitted to the controller 50.
光電センサ43は、第1~第3エアー振分機構41a,41b,41cの第1~第3ノズル42a,42b,42cの、搬送装置10の搬送方向Dにおける上流側に配置されている(図1参照)。光電センサ43は、コンベアベルト11を挟んで配置される一対の投光器43aおよび受光器43bから構成されている(図1参照)。光電センサ43が被検査物Pを検知したか否か、言い換えれば、投光器43aが発した光を受光器43bが検出したか否かは、連続的にコントローラ50に送信される。 (2-3-2) Photoelectric Sensor The
(2-3-3)コントローラ
コントローラ50は、振分装置40の各部を制御するコンピュータである。コントローラ50は、演算や制御を行うCPUや、情報を記憶するROM、RAM、およびハードディスク等を有する。 (2-3-3) Controller Thecontroller 50 is a computer that controls each part of the sorting apparatus 40. The controller 50 includes a CPU that performs calculation and control, a ROM that stores information, a RAM, a hard disk, and the like.
コントローラ50は、振分装置40の各部を制御するコンピュータである。コントローラ50は、演算や制御を行うCPUや、情報を記憶するROM、RAM、およびハードディスク等を有する。 (2-3-3) Controller The
コントローラ50は、X線検査装置20のコントローラ30と通信回線90により接続されている(図4参照)。コントローラ50は、X線検査装置20のコントローラ30が送信する振分情報を受信する振分情報受信部51を有する(図4参照)。また、コントローラ50は、記憶部52および振分機構制御部53を有する(図4参照)。振分機構制御部53は、主にCPUにより構成され、記憶部52に記憶されたプログラムを実行して、第1~第3エアー振分機構41a,41b,41cに被検査物Pを振り分ける振分動作を実行させる。記憶部52は、振分機構制御部53が実行するプログラムの他、各種情報を記憶する。
The controller 50 is connected to the controller 30 of the X-ray inspection apparatus 20 via a communication line 90 (see FIG. 4). The controller 50 includes a distribution information receiving unit 51 that receives distribution information transmitted by the controller 30 of the X-ray inspection apparatus 20 (see FIG. 4). Moreover, the controller 50 has the memory | storage part 52 and the distribution mechanism control part 53 (refer FIG. 4). The distribution mechanism control unit 53 is mainly configured by a CPU, executes a program stored in the storage unit 52, and distributes the inspection object P to the first to third air distribution mechanisms 41a, 41b, 41c. Execute the minute operation. The storage unit 52 stores various information in addition to the program executed by the distribution mechanism control unit 53.
コントローラ50は、第1~第3エアー振分機構41a,41b,41c、光電センサ43と電気的に接続されている。また、コントローラ50は、搬送装置10のエンコーダ13とも電気的に接続されている(図4参照)。コントローラ50は、エンコーダ13からコンベアモータ12の回転数に関するデータを取得し、取得したデータに基づき被検査物Pの搬送距離や搬送速度を把握する。
The controller 50 is electrically connected to the first to third air distribution mechanisms 41a, 41b, 41c and the photoelectric sensor 43. The controller 50 is also electrically connected to the encoder 13 of the transport apparatus 10 (see FIG. 4). The controller 50 acquires data related to the rotation speed of the conveyor motor 12 from the encoder 13 and grasps the transport distance and transport speed of the inspection object P based on the acquired data.
(2-3-3-1)振分情報受信部
振分情報受信部51は、X線検査装置20のコントローラ30の振分情報送信部31が送信する、被検査物Pの振分情報を受信する。 (2-3-3-1) Distribution Information Receiving Unit The distributioninformation receiving unit 51 transmits the distribution information of the inspection object P transmitted from the distribution information transmitting unit 31 of the controller 30 of the X-ray inspection apparatus 20. Receive.
振分情報受信部51は、X線検査装置20のコントローラ30の振分情報送信部31が送信する、被検査物Pの振分情報を受信する。 (2-3-3-1) Distribution Information Receiving Unit The distribution
振分情報には、被検査物Pのランクに関する情報と、振分機構41がその被検査物Pを振り分ける基準位置Fに関する情報と、その被検査物Pに振分機構41がエアーを噴射する噴射時間に関する情報と、を含む。各情報が、振分機構41の動作の制御にどのように利用されるかについては後述する。
The distribution information includes information regarding the rank of the inspection object P, information regarding the reference position F to which the distribution mechanism 41 distributes the inspection object P, and the distribution mechanism 41 injects air onto the inspection object P. Information on the injection time. How each information is used for controlling the operation of the distribution mechanism 41 will be described later.
(2-3-3-2)記憶部
記憶部52は、振分機構制御部53が実行するプログラムの他、各種情報を記憶する。記憶部52には、振分情報記憶領域52aと、ノズル位置記憶領域52bとを含む。 (2-3-3-2) Storage Unit Thestorage unit 52 stores various information in addition to the program executed by the distribution mechanism control unit 53. The storage unit 52 includes a distribution information storage area 52a and a nozzle position storage area 52b.
記憶部52は、振分機構制御部53が実行するプログラムの他、各種情報を記憶する。記憶部52には、振分情報記憶領域52aと、ノズル位置記憶領域52bとを含む。 (2-3-3-2) Storage Unit The
(2-3-3-2-1)振分情報記憶領域
振分情報記憶領域52aは、振分情報受信部51が受信した振分情報を記憶する。振分情報受信部51が振分情報を受信すると、受信した振分情報が、振分情報記憶領域52aに書き込まれる。 (2-3-3-2-1) Distribution Information Storage Area The distributioninformation storage area 52a stores distribution information received by the distribution information receiving unit 51. When the distribution information receiving unit 51 receives the distribution information, the received distribution information is written in the distribution information storage area 52a.
振分情報記憶領域52aは、振分情報受信部51が受信した振分情報を記憶する。振分情報受信部51が振分情報を受信すると、受信した振分情報が、振分情報記憶領域52aに書き込まれる。 (2-3-3-2-1) Distribution Information Storage Area The distribution
(2-3-3-2-2)ノズル位置記憶領域
ノズル位置記憶領域52bには、搬送装置10の搬送方向Dにおける、光電センサ43の検知位置と、第1~第3ノズル42a,42b,42cとの距離B1,B2,B3(図1参照)が記憶されている。距離B1,B2,B3の値は、予めノズル位置記憶領域52bに記憶されていてもよいし、図示しない入力装置等を介して外部から書き込まれてもよい。 (2-3-3-2-2) Nozzle position storage area In the nozzleposition storage area 52b, the detection position of the photoelectric sensor 43 and the first to third nozzles 42a, 42b, The distances B1, B2 and B3 (see FIG. 1) with respect to 42c are stored. The values of the distances B1, B2, and B3 may be stored in the nozzle position storage area 52b in advance, or may be written from the outside via an input device (not shown) or the like.
ノズル位置記憶領域52bには、搬送装置10の搬送方向Dにおける、光電センサ43の検知位置と、第1~第3ノズル42a,42b,42cとの距離B1,B2,B3(図1参照)が記憶されている。距離B1,B2,B3の値は、予めノズル位置記憶領域52bに記憶されていてもよいし、図示しない入力装置等を介して外部から書き込まれてもよい。 (2-3-3-2-2) Nozzle position storage area In the nozzle
(2-3-3-3)振分機構制御部
振分機構制御部53は、振分情報記憶領域52aに記憶された振分情報に基づいて、振分機構41が被検査物Pの基準位置Fに力を作用させるよう、振分機構41を制御する。 (2-3-3-3) Distribution Mechanism Control Unit The distributionmechanism control unit 53 uses the distribution information stored in the distribution information storage area 52a to determine whether the distribution mechanism 41 is a reference for the inspection object P. The distribution mechanism 41 is controlled to apply a force to the position F.
振分機構制御部53は、振分情報記憶領域52aに記憶された振分情報に基づいて、振分機構41が被検査物Pの基準位置Fに力を作用させるよう、振分機構41を制御する。 (2-3-3-3) Distribution Mechanism Control Unit The distribution
振分機構制御部53は、光電センサ43の検知結果により、被検査物Pが投光器43aと受光器43bとの間の光電センサ43の検知位置を通過したタイミングを把握する。そして、振分機構制御部53は、光電センサ43の検知位置を被検査物Pが通過し始めたことを検知すると、振分情報記憶領域52aに記憶された振分情報のうち、最も古い(最先に振分情報記憶領域52aに書き込まれた)振分情報に基づいて、第1~第3エアー振分機構41a,41b,41cのいずれかにエアーの噴射を指示する。
The distribution mechanism control unit 53 grasps the timing when the inspection object P passes the detection position of the photoelectric sensor 43 between the projector 43a and the light receiver 43b based on the detection result of the photoelectric sensor 43. And if the distribution mechanism control part 53 detects that the to-be-inspected object P started passing the detection position of the photoelectric sensor 43, it will be the oldest among the distribution information memorize | stored in the distribution information storage area 52a ( Based on the distribution information (written first in the distribution information storage area 52a), the air injection is instructed to one of the first to third air distribution mechanisms 41a, 41b, 41c.
振分機構制御部53が、振分情報に基づいて、どのように第1~第3エアー振分機構41a,41b,41cを制御するかを説明する。
How the distribution mechanism control unit 53 controls the first to third air distribution mechanisms 41a, 41b, and 41c based on the distribution information will be described.
各振分情報には、上記のように、ランクに関する情報と、基準位置Fに関する情報と、噴射時間に関する情報と、が含まれている。
As described above, each distribution information includes information about rank, information about reference position F, and information about injection time.
まず、振分機構制御部53は、ランクに関する情報を用いて、第1~第3エアー振分機構41a,41b,41cのいずれにエアーを噴射させるのかを決定する。振分機構制御部53は、例えば、被検査物Pのランクが第1ランクであれば第1エアー振分機構41aを、被検査物Pのランクが第2ランクであれば第2エアー振分機構41bを、被検査物Pのランクが第3ランクであれば第3エアー振分機構41cを、制御対象と決定する。
First, the distribution mechanism control unit 53 determines which of the first to third air distribution mechanisms 41a, 41b, and 41c is to inject air using information about the rank. For example, the distribution mechanism control unit 53 determines the first air distribution mechanism 41a if the rank of the inspection object P is the first rank, and the second air distribution if the rank of the inspection object P is the second rank. If the rank of the inspection object P is the third rank, the mechanism 41b is determined to be the third air distribution mechanism 41c to be controlled.
次に、振分機構制御部53は、基準位置Fに関する情報に基づいて、どのタイミングで、制御対象となるエアー振分機構41a,41b,41cのノズル42a,42b,42cの前を被検査物Pの基準位置Fが通過するかを算出する。具体的には、振分機構制御部53は、被検査物Pを振り分ける基準位置Fに関する情報と、ノズル位置記憶領域52bに記憶されている光電センサ43の検知位置から第1~第3ノズル42a,42b,42cまでの搬送装置10の搬送方向Dにおける距離の情報と、エンコーダ13から送信されるデータに基づく搬送装置10の搬送速度Vと、に基づき、制御対象となるエアー振分機構41a,41b,41cのノズル42a,42b,42cの前を被検査物Pの基準位置Fが通過するタイミングを算出する。なお、被検査物Pを振り分ける基準位置Fに関する情報は、前述のように、搬送装置10の搬送方向の下流側の端部Eから被検査物Pの重心Gまでの、搬送方向における距離Lである。
Next, the distribution mechanism control unit 53 determines the inspection object in front of the nozzles 42a, 42b, 42c of the air distribution mechanisms 41a, 41b, 41c to be controlled at any timing based on the information about the reference position F. It is calculated whether the reference position F of P passes. Specifically, the distribution mechanism control unit 53 determines the first to third nozzles 42a from the information regarding the reference position F to which the inspection object P is distributed and the detection position of the photoelectric sensor 43 stored in the nozzle position storage area 52b. , 42b, 42c, the air distribution mechanism 41a to be controlled based on the distance information in the conveyance direction D of the conveyance device 10 and the conveyance speed V of the conveyance device 10 based on the data transmitted from the encoder 13. The timing at which the reference position F of the inspection object P passes through the nozzles 42a, 42b, 42c of 41b, 41c is calculated. Note that the information regarding the reference position F for distributing the inspection object P is the distance L in the conveyance direction from the downstream end E in the conveyance direction of the conveyance apparatus 10 to the center of gravity G of the inspection object P as described above. is there.
具体例を上げて説明する。例えば第1ノズル42aが制御対象であると仮定する。この場合、振分機構制御部53は、この距離Lと、光電センサ43の検知位置から第1ノズル42aまでの距離B1と、搬送速度Vとを用いて、光電センサ43の検知位置を被検査物Pが通過し始めてから、(B1+L)/Vだけ時間が経過した後に、振分対象の被検査物Pの基準位置Fが第1ノズル42aの前を通過することを算出する。
* Explain with specific examples. For example, it is assumed that the first nozzle 42a is a control target. In this case, the distribution mechanism control unit 53 uses the distance L, the distance B1 from the detection position of the photoelectric sensor 43 to the first nozzle 42a, and the transport speed V to check the detection position of the photoelectric sensor 43. It is calculated that the reference position F of the inspection object P to be distributed passes in front of the first nozzle 42a after a time of (B1 + L) / V has elapsed after the object P starts to pass.
次に、振分機構制御部53は、噴射時間に関する情報に基づいて、制御対象となるエアー振分機構41a,41b,41cが、エアーの噴射を開始するタイミングと、エアーの噴射を停止するタイミングと、を決定する。ここでは、振分機構制御部53は、エアーの噴射時間の半分が経過した時点で、制御対象のエアー振分機構41a,41b,41cのノズル42a,42b,42cの前を、被検査物Pの基準位置Fが通過するよう、制御対象のエアー振分機構41a,41b,41cの噴射開始および噴射停止のタイミングを決定する。
Next, the distribution mechanism control unit 53 determines the timing at which the air distribution mechanisms 41a, 41b, 41c to be controlled start the air injection and the timing at which the air injection stops based on the information about the injection time. And decide. Here, the distribution mechanism control unit 53, when half of the air injection time has passed, passes the front of the nozzles 42a, 42b, 42c of the air distribution mechanisms 41a, 41b, 41c to be controlled to the inspection object P. The injection start timing and the injection stop timing of the air distribution mechanisms 41a, 41b, 41c to be controlled are determined so that the reference position F is passed.
具体例を上げて説明する。例えば第1ノズル42aが制御対象であり、振分時間に含まれていた噴射時間がTであると仮定する。この場合、振分機構制御部53は、第1エアー振分機構41aが、光電センサ43の検知位置を被検査物Pが通過し始めてから、{(B1+L)/V-T/2}だけ時間が経過した時点でエアーの噴射を開始し、{(B1+L)/V+T/2}だけ時間が経過した時点でエアーの噴射を停止すると決定する。
* Explain with specific examples. For example, it is assumed that the first nozzle 42a is a control target and the injection time included in the distribution time is T. In this case, the distribution mechanism control unit 53 sets the time for {(B1 + L) / VT−2} after the first air distribution mechanism 41a starts passing the detection position of the photoelectric sensor 43. It is determined that the air injection is started when the time elapses, and the air injection is stopped when the time of {(B1 + L) / V + T / 2} has elapsed.
振分機構制御部53は、制御対象のエアー振分機構41a,41b,41cと、エアーの噴射開始および噴射停止のタイミングと、が決定されると、決定されたタイミングでエアーの噴射を開始/中止するよう、制御対象のエアー振分機構41a,41b,41cに対する制御指令を生成する。
When the distribution mechanism control unit 53 determines the air distribution mechanisms 41a, 41b, and 41c to be controlled and the timing of the start and stop of the air injection, the distribution mechanism control unit 53 starts the air injection at the determined timing. A control command for the air distribution mechanisms 41a, 41b, 41c to be controlled is generated so as to be stopped.
なお、このようにして制御指令が生成されると、制御指令の生成のために利用された振分情報は、振分情報記憶領域52aから消去される。
When the control command is generated in this way, the distribution information used for generating the control command is deleted from the distribution information storage area 52a.
(3)検査振分システムの動作
(3-1)X線検査装置の動作
以下、図7を参照して、X線検査装置20の動作を説明する。 (3) Operation of Inspection Distribution System (3-1) Operation of X-ray Inspection Apparatus Hereinafter, the operation of theX-ray inspection apparatus 20 will be described with reference to FIG.
(3-1)X線検査装置の動作
以下、図7を参照して、X線検査装置20の動作を説明する。 (3) Operation of Inspection Distribution System (3-1) Operation of X-ray Inspection Apparatus Hereinafter, the operation of the
まず、ステップS1では、ラインセンサ23のX線透過信号の出力に基づいて、X線の照射範囲Yを被検査物Pが通過し始めたか否かが判断される。ラインセンサ23がX線の照射範囲Yにおける被検査物Pの存在を検知すると、ステップS2に進む。ステップS1は、X線の照射範囲Yにおける被検査物Pの存在が検知されるまで繰り返される。
First, in step S1, based on the output of the X-ray transmission signal of the line sensor 23, it is determined whether or not the inspection object P has started to pass through the X-ray irradiation range Y. When the line sensor 23 detects the presence of the inspection object P in the X-ray irradiation range Y, the process proceeds to step S2. Step S1 is repeated until the presence of the inspection object P in the X-ray irradiation range Y is detected.
ステップS2では、X線画像生成部33aが、ラインセンサ23によって検出されたX線のX線透過量に基づいて(X線検出素子23aが出力するX線透過信号に基づいて)X線画像を作成する。X線画像生成部33aによって生成されたX線画像は、X線画像記憶領域32aに記憶される。
In step S2, the X-ray image generation unit 33a generates an X-ray image based on the X-ray transmission amount of the X-ray detected by the line sensor 23 (based on the X-ray transmission signal output from the X-ray detection element 23a). create. The X-ray image generated by the X-ray image generation unit 33a is stored in the X-ray image storage area 32a.
次に、ステップS3では、重量推定部33bが、X線画像記憶領域32aに記憶された被検査物PのX線画像に基づいて、被検査物Pの重量を推定する。具体的には、重量推定部33bは、X線画像について濃淡値毎の画素数を示すヒストグラムを作成し、重量変換情報記憶領域32bの重量変換テーブルを用いて、ヒストグラムに含まれる全ての濃淡値について、濃淡値に対応する重量値と、ヒストグラムが示す、その濃淡値の画素数と、の積を算出する。重量推定部33bは、ヒストグラムに含まれる全ての濃淡値について、算出された積の値を足し合わせることで、被検査物Pの重量を推定する。
Next, in step S3, the weight estimation unit 33b estimates the weight of the inspection object P based on the X-ray image of the inspection object P stored in the X-ray image storage area 32a. Specifically, the weight estimation unit 33b creates a histogram indicating the number of pixels for each gray value for the X-ray image, and uses the weight conversion table in the weight conversion information storage area 32b to display all the gray values included in the histogram. , The product of the weight value corresponding to the gray value and the number of pixels of the gray value indicated by the histogram is calculated. The weight estimation unit 33b estimates the weight of the inspection object P by adding the calculated product values for all the gray values included in the histogram.
次に、ステップS4では、ランク判定部33cが、ステップS3で推定された被検査物Pの重量に基づいて、被検査物Pのランクを判定する。具体的には、ランク判定部33cは、被検査物Pの推定重量と、ランク閾値記憶領域32cに記憶された閾値Q1,Q2とを比較することで、被検査物Pのランクを判定する。
Next, in step S4, the rank determination unit 33c determines the rank of the inspection object P based on the weight of the inspection object P estimated in step S3. Specifically, the rank determination unit 33c determines the rank of the inspection object P by comparing the estimated weight of the inspection object P with the threshold values Q1 and Q2 stored in the rank threshold value storage area 32c.
次に、ステップS5では、噴射時間決定部33dが、ステップS3で推定された被検査物Pの重量に基づいて、その被検査物Pに対する振分機構41のエアーの噴射時間を決定する。具体的には、噴射時間決定部33dは、噴射時間情報記憶領域32dに記憶された噴射時間決定テーブルを用いて、推定重量に対応する噴射時間を、被検査物Pに対するエアーの噴射時間と決定する。
Next, in step S5, the injection time determination unit 33d determines the air injection time of the sorting mechanism 41 for the inspection object P based on the weight of the inspection object P estimated in step S3. Specifically, the injection time determination unit 33d determines the injection time corresponding to the estimated weight as the air injection time for the inspection object P using the injection time determination table stored in the injection time information storage area 32d. To do.
次に、ステップS6では、基準位置決定部33eは、振分機構41が被検査物Pを振り分ける基準位置Fに関する情報を生成する。具体的には、基準位置決定部33eは、X線画像に、搬送装置10の搬送方向DをX軸方向、搬送方向Dと直交する方向をY軸方向とする座標系を設定し、X線画像の各画素の、座標および濃淡値の情報と、ステップS3で推定された被検査物の重量と、に基づいて、被検査物Pをコンベアベルト11の搬送面に投影した時の被検査物Pの重心Gの座標(Xg,Yg)を算出する。基準位置決定部33eは、更に重心Gの座標を用いて、基準位置Fを決定する。さらに、基準位置決定部33eは、搬送方向Dにおける最下流側の被検査物Pの端部Eから基準位置Fまでの、搬送方向Dにおける距離Lを、被検査物Pの基準位置Fに関する情報として算出する。
Next, in step S6, the reference position determination unit 33e generates information on the reference position F to which the distribution mechanism 41 distributes the inspection object P. Specifically, the reference position determination unit 33e sets, in the X-ray image, a coordinate system in which the transport direction D of the transport apparatus 10 is the X-axis direction, and the direction orthogonal to the transport direction D is the Y-axis direction. The object to be inspected when the object P is projected onto the conveying surface of the conveyor belt 11 based on the coordinates and gray value information of each pixel of the image and the weight of the object to be inspected estimated in step S3. The coordinates (Xg, Yg) of the center of gravity G of P are calculated. The reference position determination unit 33e further determines the reference position F using the coordinates of the center of gravity G. Further, the reference position determination unit 33e uses the distance L in the transport direction D from the end E of the object P on the most downstream side in the transport direction D to the reference position F as information on the reference position F of the test object P. Calculate as
次に、ステップS7では、ステップS4からステップS6で算出された、被検査物Pのランク、被検査物Pに対するエアーの噴射時間、および基準位置Fに関する情報を含む振分情報を、振分情報送信部31が振分装置40のコントローラ50に送信する。その後、ステップS1に戻る。
Next, in step S7, distribution information including information related to the rank of the inspection object P, the air injection time for the inspection object P, and the reference position F, calculated in steps S4 to S6, is allocated to the distribution information. The transmission unit 31 transmits to the controller 50 of the sorting device 40. Then, it returns to step S1.
なお、以上の処理では、ステップS4、ステップS5、ステップS6の処理がこの順番で実施されたが、これに限定されるものではなく、他の順番で実行されてもよい。また、ステップS4、ステップS5、ステップS6の処理は、いずれか2つのステップ、あるいは、全てのステップが、並列で実行されてもよい。
In the above process, the processes of step S4, step S5, and step S6 are performed in this order. However, the process is not limited to this, and may be performed in another order. Moreover, the process of step S4, step S5, and step S6 may perform any two steps or all the steps in parallel.
(3-2)振分装置の動作
以下、図8を参照して、振分装置40の動作を説明する。 (3-2) Operation of Sorting Device Hereinafter, the operation of thesorting device 40 will be described with reference to FIG.
以下、図8を参照して、振分装置40の動作を説明する。 (3-2) Operation of Sorting Device Hereinafter, the operation of the
まず、ステップS11では、光電センサ43の検知結果により、被検査物Pが光電センサ43の検知位置を通過し始めたか否かが判断される。被検査物Pが光電センサ43の検知位置を通過し始めたと判断されると、ステップS12に進む。ステップS11は、被検査物Pが光電センサ43の検知位置を通過し始めたと判断されるまで繰り返される。
First, in step S <b> 11, it is determined from the detection result of the photoelectric sensor 43 whether or not the inspection object P has started to pass the detection position of the photoelectric sensor 43. If it is determined that the inspection object P has started to pass the detection position of the photoelectric sensor 43, the process proceeds to step S12. Step S <b> 11 is repeated until it is determined that the inspection object P has started to pass through the detection position of the photoelectric sensor 43.
ステップS12では、振分機構制御部53が、振分情報記憶領域52aに記憶された最先の振分情報に基づいて、第1~第3エアー振分機構41a,41b,41cのいずれを制御対象とするか(第1~第3エアー振分機構41a,41b,41cのいずれからエアーを噴射させるか)を決定する。具体的には、振分機構制御部53が、振分情報に含まれる被検査物Pのランクに基づいて、いずれのエアー振分機構41a,41b,41cを制御対象とするかを決定する。
In step S12, the distribution mechanism control unit 53 controls any of the first to third air distribution mechanisms 41a, 41b, 41c based on the earliest distribution information stored in the distribution information storage area 52a. It is determined whether it is a target (which of the first to third air distribution mechanisms 41a, 41b, 41c is to inject air). Specifically, the distribution mechanism control unit 53 determines which air distribution mechanism 41a, 41b, 41c is to be controlled based on the rank of the inspection object P included in the distribution information.
次に、ステップS13では、振分機構制御部53が、制御対象となるエアー振分機構41a,41b,41cのノズル42a,42b,42cの前を基準位置Fが通過するタイミングを算出する。具体的には、振分機構制御部53は、振分情報記憶領域52aに記憶された最先の振分情報に含まれる基準位置Fに関する情報と、ノズル位置記憶領域52bに記憶された制御対象のエアー振分機構41a,41b,41cのノズル位置に関する情報と、搬送装置10のエンコーダ13が送信するデータに基づく搬送装置10の搬送速度と、に基づき、制御対象となるエアー振分機構41a,41b,41cのノズル42a,42b,42cの前を基準位置Fが通過するタイミングを算出する。
Next, in step S13, the distribution mechanism control unit 53 calculates the timing at which the reference position F passes in front of the nozzles 42a, 42b, 42c of the air distribution mechanisms 41a, 41b, 41c to be controlled. Specifically, the distribution mechanism control unit 53 includes information on the reference position F included in the earliest distribution information stored in the distribution information storage area 52a, and the control target stored in the nozzle position storage area 52b. Air distribution mechanism 41a, 41b, 41c, and the air distribution mechanism 41a, the control object, based on the information about the nozzle position of the air distribution mechanism 41a, the conveyance speed of the conveyance device 10 based on the data transmitted by the encoder 13 of the conveyance device 10. The timing at which the reference position F passes in front of the nozzles 42a, 42b, 42c of 41b, 41c is calculated.
次にステップS14では、振分機構制御部53は、制御対象のエアー振分機構41a,41b,41cのエアーの噴射開始タイミングと、噴射停止タイミングとを決定する。具体的には、振分機構制御部53は、ステップS13で算出された制御対象となるエアー振分機構41a,41b,41cのノズル42a,42b,42cの前を基準位置Fが通過するタイミングと、振分情報記憶領域52aに記憶された最先の振分情報に含まれる被検査物Pに対する噴射時間と、に基づいて、制御対象のエアー振分機構41a,41b,41cの噴射開始および噴射停止のタイミングを決定する。
Next, in step S14, the distribution mechanism control unit 53 determines the air injection start timing and the injection stop timing of the air distribution mechanisms 41a, 41b, 41c to be controlled. Specifically, the distribution mechanism control unit 53 calculates the timing at which the reference position F passes in front of the nozzles 42a, 42b, 42c of the air distribution mechanisms 41a, 41b, 41c to be controlled, calculated in step S13. Based on the injection time for the inspection object P included in the earliest distribution information stored in the distribution information storage area 52a, the injection start and injection of the air distribution mechanisms 41a, 41b, 41c to be controlled Determine the stop timing.
次にステップS15では、振分機構制御部53は、制御対象のエアー振分機構41a,41b,41cが、ステップS14で決定されたエアーの噴射開始および噴射停止のタイミングで動作するよう、制御対象のエアー振分機構41a,41b,41cに対する制御指令を生成する。この時、制御指令を生成するために用いられた、振分情報記憶領域52aに記憶された最先の振分情報は消去される。その後、ステップS11に戻る。
Next, in step S15, the distribution mechanism control unit 53 controls the control target air distribution mechanisms 41a, 41b, and 41c so that the air injection mechanisms 41a, 41b, and 41c are operated at the timings of starting and stopping the air injection determined in step S14. Control commands for the air distribution mechanisms 41a, 41b and 41c are generated. At this time, the earliest distribution information stored in the distribution information storage area 52a used for generating the control command is deleted. Then, it returns to step S11.
(4)特徴
(4-1)
第1実施形態に係る検査振分システム100は、不定形の被検査物Pを検査し、検査結果に基づいて被検査物Pを振り分ける。検査振分システム100は、搬送機構の一例としての搬送装置10と、撮像機構の一例としてのラインセンサ23およびX線画像生成部33aと、振分機構41と、決定部の一例としての基準位置決定部33eと、振分機構制御部53と、を備える。搬送装置10は、被検査物Pを搬送する。撮像機構に含まれるラインセンサ23は、搬送装置10により搬送される被検査物Pを撮像し、撮像機構に含まれるX線画像生成部33aは被検査物Pの撮像画像(X線画像)を取得する。振分機構41は、被検査物Pを振り分ける。基準位置決定部33eは、X線画像から被検査物Pの外形を抽出し、被検査物Pの外形に基づいて、振分機構41が被検査物Pを振り分ける基準位置Fを決定する。振分機構制御部53は、振分機構41が、基準位置Fに力を作用させるよう、振分機構41を制御する。 (4) Features (4-1)
Theinspection distribution system 100 according to the first embodiment inspects an inspected object P, and distributes the inspection object P based on the inspection result. The inspection distribution system 100 includes a conveyance device 10 as an example of a conveyance mechanism, a line sensor 23 and an X-ray image generation unit 33a as an example of an imaging mechanism, a distribution mechanism 41, and a reference position as an example of a determination unit. A determination unit 33e and a distribution mechanism control unit 53 are provided. The transport device 10 transports the inspection object P. The line sensor 23 included in the imaging mechanism images the inspection object P transported by the transport device 10, and the X-ray image generation unit 33a included in the imaging mechanism captures the captured image (X-ray image) of the inspection object P. get. The distribution mechanism 41 distributes the inspection object P. The reference position determination unit 33e extracts the outer shape of the inspection object P from the X-ray image, and determines the reference position F to which the distribution mechanism 41 distributes the inspection object P based on the outer shape of the inspection object P. The distribution mechanism control unit 53 controls the distribution mechanism 41 so that the distribution mechanism 41 applies a force to the reference position F.
(4-1)
第1実施形態に係る検査振分システム100は、不定形の被検査物Pを検査し、検査結果に基づいて被検査物Pを振り分ける。検査振分システム100は、搬送機構の一例としての搬送装置10と、撮像機構の一例としてのラインセンサ23およびX線画像生成部33aと、振分機構41と、決定部の一例としての基準位置決定部33eと、振分機構制御部53と、を備える。搬送装置10は、被検査物Pを搬送する。撮像機構に含まれるラインセンサ23は、搬送装置10により搬送される被検査物Pを撮像し、撮像機構に含まれるX線画像生成部33aは被検査物Pの撮像画像(X線画像)を取得する。振分機構41は、被検査物Pを振り分ける。基準位置決定部33eは、X線画像から被検査物Pの外形を抽出し、被検査物Pの外形に基づいて、振分機構41が被検査物Pを振り分ける基準位置Fを決定する。振分機構制御部53は、振分機構41が、基準位置Fに力を作用させるよう、振分機構41を制御する。 (4) Features (4-1)
The
検査振分システム100では、不定形な被検査物Pの撮像画像から抽出された外形に基づいて、振分機構41が被検査物Pに力を作用させる基準位置Fが決定される。そのため、被検査物Pの外形によらず正確に被検査物Pを移動させて振り分けることが容易で、信頼性の高い検査振分システム100を実現できる。
In the inspection distribution system 100, the reference position F at which the distribution mechanism 41 applies a force to the inspection object P is determined based on the outer shape extracted from the captured image of the indefinite inspection object P. Therefore, it is easy to accurately move and distribute the inspection object P regardless of the outer shape of the inspection object P, and the inspection distribution system 100 with high reliability can be realized.
(4-2)
第1実施形態に係る検査振分システム100では、撮像機構の一例としてのラインセンサ23およびX線画像生成部33aは、被検査物PのX線画像を撮像画像として取得する。基準位置決定部33eは、被検査物Pの外形に基づいて被検査物Pの重心Gを算出し、振分機構41が重心Gに向かって力を及ぼすように基準位置Fを決定する。 (4-2)
In theinspection distribution system 100 according to the first embodiment, the line sensor 23 and the X-ray image generation unit 33a as an example of an imaging mechanism acquire an X-ray image of the inspection object P as a captured image. The reference position determination unit 33e calculates the center of gravity G of the inspection object P based on the outer shape of the inspection object P, and determines the reference position F so that the distribution mechanism 41 exerts a force toward the center of gravity G.
第1実施形態に係る検査振分システム100では、撮像機構の一例としてのラインセンサ23およびX線画像生成部33aは、被検査物PのX線画像を撮像画像として取得する。基準位置決定部33eは、被検査物Pの外形に基づいて被検査物Pの重心Gを算出し、振分機構41が重心Gに向かって力を及ぼすように基準位置Fを決定する。 (4-2)
In the
検査振分システム100では、振分機構41が被検査物Pの重心Gに向かって力を作用させるため、被検査物Pの外形によらず正確に被検査物Pを振り分けることが容易で、信頼性の高い検査振分システム100を実現できる。
In the inspection distribution system 100, since the distribution mechanism 41 applies a force toward the center of gravity G of the inspection object P, it is easy to accurately distribute the inspection object P regardless of the outer shape of the inspection object P. A highly reliable inspection distribution system 100 can be realized.
(4-3)
第1実施形態に係る検査振分システム100では、撮像画像(X線画像)に基づいて被検査物Pの重量を推定する重量推定部33bを備える。振分機構41(第1~第3エアー振分機構41a,41b,41c)は、被検査物Pにエアーを噴射することで、被検査物Pに力を作用させて振り分ける。振分機構制御部53は、重量推定部33bが推定した被検査物Pの重量に基づいて、振分機構41のエアーの噴射時間が調整されるよう、振分機構を更に制御する。 (4-3)
Theinspection distribution system 100 according to the first embodiment includes a weight estimation unit 33b that estimates the weight of the inspection object P based on a captured image (X-ray image). The distribution mechanism 41 (first to third air distribution mechanisms 41a, 41b, 41c) distributes the inspection object P by applying a force by injecting air onto the inspection object P. The distribution mechanism control unit 53 further controls the distribution mechanism so that the air injection time of the distribution mechanism 41 is adjusted based on the weight of the inspection object P estimated by the weight estimation unit 33b.
第1実施形態に係る検査振分システム100では、撮像画像(X線画像)に基づいて被検査物Pの重量を推定する重量推定部33bを備える。振分機構41(第1~第3エアー振分機構41a,41b,41c)は、被検査物Pにエアーを噴射することで、被検査物Pに力を作用させて振り分ける。振分機構制御部53は、重量推定部33bが推定した被検査物Pの重量に基づいて、振分機構41のエアーの噴射時間が調整されるよう、振分機構を更に制御する。 (4-3)
The
検査振分システム100では、第1~第3エアー振分機構41a,41b,41cが被検査物Pを振り分ける基準位置Fを決定するのに加え、被検査物Pの重量に基づいてエアーの噴射時間が調整される。そのため、被検査物Pを正確に振り分けることが更に容易であり、信頼性の高い検査振分システム100を実現できる。
In the inspection distribution system 100, the first to third air distribution mechanisms 41a, 41b, and 41c determine the reference position F to which the inspection object P is distributed, and in addition, the air injection based on the weight of the inspection object P Time is adjusted. Therefore, it is easier to accurately distribute the inspection object P, and the inspection distribution system 100 with high reliability can be realized.
(4-4)
第1実施形態に係る検査振分システム100では、被検査物Pは、農産物や水産物等の自然物である。 (4-4)
In theinspection distribution system 100 according to the first embodiment, the inspection object P is a natural product such as an agricultural product or a marine product.
第1実施形態に係る検査振分システム100では、被検査物Pは、農産物や水産物等の自然物である。 (4-4)
In the
ここでは、被検査物Pが工業製品等とは異なり、自然物であるため、被検査物Pの外形の個体差が一般に大きい。しかし、ここでは、被検査物Pの撮像画像から抽出された外形に基づいて、振分機構41が被検査物Pに力を作用させる部分が調整されるため、自然物であっても被検査物Pを正確に振り分けることが容易である。
Here, since the object P to be inspected is a natural object, unlike an industrial product, the individual difference in the outer shape of the object P to be inspected is generally large. However, here, since the portion where the distribution mechanism 41 applies a force to the inspection object P is adjusted based on the outer shape extracted from the captured image of the inspection object P, the inspection object even if it is a natural object It is easy to assign P accurately.
(4-5)
第1実施形態に係る検査振分システム100は、検査により被検査物Pのランクを決定する。振分機構41は、ランク別に被検査物Pを振り分ける。 (4-5)
Theinspection distribution system 100 according to the first embodiment determines the rank of the inspection object P by inspection. The distribution mechanism 41 distributes the inspection object P according to rank.
第1実施形態に係る検査振分システム100は、検査により被検査物Pのランクを決定する。振分機構41は、ランク別に被検査物Pを振り分ける。 (4-5)
The
検査振分システム100では、不定形の被検査物Pをランク選別し、ランクに応じて被検査物Pを正確に振り分けることが容易である。
In the inspection distribution system 100, it is easy to rank-sort the irregularly shaped inspection objects P and accurately distribute the inspection objects P according to the ranks.
<第2実施形態>
本発明の第2実施形態に係る検査振分システム200について説明する。 Second Embodiment
Aninspection distribution system 200 according to the second embodiment of the present invention will be described.
本発明の第2実施形態に係る検査振分システム200について説明する。 Second Embodiment
An
(1)全体構成
第2実施形態に係る検査振分システム200も、第1実施形態に係る検査振分システム100と同様に、搬送中の不定形の被検査物P(物品)の検査を行い、検査結果に基づいて被検査物Pを振り分けるシステムである。被検査物Pは自然物であるが、工業製品であってもよい。 (1) Overall Configuration Similarly to theinspection distribution system 100 according to the first embodiment, the inspection distribution system 200 according to the second embodiment also inspects an indefinite object P (article) being conveyed. In this system, the inspection object P is distributed based on the inspection result. The inspection object P is a natural object, but may be an industrial product.
第2実施形態に係る検査振分システム200も、第1実施形態に係る検査振分システム100と同様に、搬送中の不定形の被検査物P(物品)の検査を行い、検査結果に基づいて被検査物Pを振り分けるシステムである。被検査物Pは自然物であるが、工業製品であってもよい。 (1) Overall Configuration Similarly to the
検査振分システム200は、搬送装置10と、近赤外線検査装置220と、振分装置240と、を主に備える(図9参照)。検査振分システム200では、検査装置がX線検査装置ではなく、近赤外線検査装置220である。
The inspection distribution system 200 mainly includes a transfer device 10, a near infrared inspection device 220, and a distribution device 240 (see FIG. 9). In the inspection distribution system 200, the inspection apparatus is not an X-ray inspection apparatus but a near infrared inspection apparatus 220.
近赤外線検査装置220は、搬送装置10により搬送される被検査物Pの撮像画像を取得し、撮像画像から把握される被検査物Pの大きさに応じて被検査物Pを複数のランク(ここでは3段階のランク)に振り分ける。振分装置240は、近赤外線検査装置220の検査結果に基づき、搬送装置10により搬送される被検査物Pをランク別に振り分ける。
The near-infrared inspection apparatus 220 acquires a captured image of the inspection object P conveyed by the conveying apparatus 10, and ranks the inspection object P in a plurality of ranks (in accordance with the size of the inspection object P grasped from the captured image). Here, it is assigned to three ranks). The sorting device 240 sorts the inspection object P transported by the transport device 10 according to rank based on the inspection result of the near-infrared inspection device 220.
(2)詳細構成
検査振分システム200の近赤外線検査装置220および振分装置240について詳細を説明する。搬送装置10は、後述する近赤外線検査装置220の光線照射器222が照射する光線が通過するための隙間Oがコンベアベルト11間に形成されている点を除き第1実施形態に係る搬送装置10と同様であるので、説明は省略する。 (2) Detailed Configuration Details of the near-infrared inspection device 220 and the distribution device 240 of the inspection distribution system 200 will be described. The transport apparatus 10 is the transport apparatus 10 according to the first embodiment, except that a gap O is formed between the conveyor belts 11 for the passage of the light beam emitted by the light beam irradiator 222 of the near-infrared inspection apparatus 220 described later. Since this is the same, the description is omitted.
検査振分システム200の近赤外線検査装置220および振分装置240について詳細を説明する。搬送装置10は、後述する近赤外線検査装置220の光線照射器222が照射する光線が通過するための隙間Oがコンベアベルト11間に形成されている点を除き第1実施形態に係る搬送装置10と同様であるので、説明は省略する。 (2) Detailed Configuration Details of the near-
(2-1)近赤外線検査装置
近赤外線検査装置220は、搬送装置10により連続的に搬送される被検査物Pを撮像し、被検査物Pの撮像画像に基づき、被検査物Pのサイズに応じて3段階のランクに区分する。また、近赤外線検査装置220は、後述する振分装置240の振分機構41が被検査物Pを振り分ける基準位置F'を決定し、基準位置F'に関する情報を振分装置240のコントローラ250に送信する。基準位置F’は、振分装置240の振分機構41が被検査物Pに力を作用させる位置である。 (2-1) Near-infrared inspection apparatus The near-infrared inspection apparatus 220 captures the inspection object P that is continuously conveyed by the conveying apparatus 10 and determines the size of the inspection object P based on the captured image of the inspection object P. It is divided into three ranks according to Further, the near-infrared inspection apparatus 220 determines a reference position F ′ to which the sorting mechanism 41 of the sorting apparatus 240 (to be described later) sorts the inspection object P, and sends information related to the reference position F ′ to the controller 250 of the sorting apparatus 240. Send. The reference position F ′ is a position where the sorting mechanism 41 of the sorting device 240 applies a force to the inspection object P.
近赤外線検査装置220は、搬送装置10により連続的に搬送される被検査物Pを撮像し、被検査物Pの撮像画像に基づき、被検査物Pのサイズに応じて3段階のランクに区分する。また、近赤外線検査装置220は、後述する振分装置240の振分機構41が被検査物Pを振り分ける基準位置F'を決定し、基準位置F'に関する情報を振分装置240のコントローラ250に送信する。基準位置F’は、振分装置240の振分機構41が被検査物Pに力を作用させる位置である。 (2-1) Near-infrared inspection apparatus The near-
近赤外線検査装置220は、光線照射器222(図10参照)と、カメラ223(図10参照)と、モニタ225(図9参照)と、コントローラ230(図11参照)と、を主に有する。
The near-infrared inspection apparatus 220 mainly includes a light beam irradiator 222 (see FIG. 10), a camera 223 (see FIG. 10), a monitor 225 (see FIG. 9), and a controller 230 (see FIG. 11).
(2-1-1)光線照射器
光線照射器222は、コンベアベルト11の上方に配置されている(図10参照)。光線照射器222は、近赤外線を照射する複数の図示しないLED(Light Emitting Diode)を有する。LEDは、搬送装置10の搬送方向Dと交差する向き、特にここでは、搬送装置10の搬送方向Dと直交する向きに、一直線に水平配置されている。光線照射器222のLEDは、コンベアベルト11の幅方向全体に、光線が照射されるよう設置されている。 (2-1-1) Beam Irradiator Thebeam irradiator 222 is disposed above the conveyor belt 11 (see FIG. 10). The beam irradiator 222 has a plurality of LEDs (Light Emitting Diodes) (not shown) that irradiate near infrared rays. The LEDs are horizontally arranged in a straight line in a direction crossing the transport direction D of the transport device 10, in particular, in a direction orthogonal to the transport direction D of the transport device 10 here. The LED of the beam irradiator 222 is installed so that the beam is irradiated on the entire width of the conveyor belt 11.
光線照射器222は、コンベアベルト11の上方に配置されている(図10参照)。光線照射器222は、近赤外線を照射する複数の図示しないLED(Light Emitting Diode)を有する。LEDは、搬送装置10の搬送方向Dと交差する向き、特にここでは、搬送装置10の搬送方向Dと直交する向きに、一直線に水平配置されている。光線照射器222のLEDは、コンベアベルト11の幅方向全体に、光線が照射されるよう設置されている。 (2-1-1) Beam Irradiator The
光線照射器222は、照射する光線が、分割された2つのコンベアベルト11間の隙間Oを通過するように配置されている(図10参照)。具体的には、光線照射器222のLEDは、コンベアベルト11間の隙間Oの直上に、光線が下方に照射されるように配置されている。
The light beam irradiator 222 is arranged so that the light beam to be irradiated passes through the gap O between the two conveyor belts 11 (see FIG. 10). Specifically, the LED of the light beam irradiator 222 is arranged directly above the gap O between the conveyor belts 11 so that the light beam is irradiated downward.
(2-1-2)カメラ
カメラ223は、被検査物Pを透過した光線、特にここでは被検査物Pを透過した近赤外線(波長が700~2500ナノメートル程度の光線)を検出する、ラインセンサカメラである。 (2-1-2) Camera Thecamera 223 detects a light ray that has passed through the inspection object P, in particular, a near infrared ray (light ray having a wavelength of about 700 to 2500 nanometers) that has passed through the inspection object P here. It is a sensor camera.
カメラ223は、被検査物Pを透過した光線、特にここでは被検査物Pを透過した近赤外線(波長が700~2500ナノメートル程度の光線)を検出する、ラインセンサカメラである。 (2-1-2) Camera The
カメラ223は、コンベアベルト11の搬送面の下方に配置されている(図10参照)。また、カメラ223は、被検査物Pを透過し、分割されたコンベアベルト11の隙間Oを通過した近赤外線を検出可能な位置に配置されている。具体的には、カメラ223は、光線照射器222のLED(図示せず)の下方に、カメラ223の検出部が光線照射器222のLEDと対向するように配置されている。
The camera 223 is disposed below the conveying surface of the conveyor belt 11 (see FIG. 10). Further, the camera 223 is disposed at a position where it can detect near-infrared rays that have passed through the inspection object P and passed through the gap O of the divided conveyor belt 11. Specifically, the camera 223 is arranged below the LED (not shown) of the light irradiator 222 so that the detection unit of the camera 223 faces the LED of the light irradiator 222.
カメラ223は、搬送装置10の搬送方向Dに直交する向きに、コンベアベルト11の幅全体にわたって近赤外線を検出する。カメラ223は、搬送装置10の搬送方向Dに直交する向きに、所定の画素数を割りつけて近赤外線を検出する。つまり、カメラ223は、検出毎に、搬送装置10の搬送方向Dに直交する向きに、コンベアベルト11の幅全体にわたって、所定の画素数に分けて近赤外線透過量(近赤外線の透過量)を検出する。カメラ223は、被検査物Pを透過した近赤外線透過量を検出し、近赤外線透過量に基づく(透過した近赤外線の強度に応じた)透過信号を画素毎に出力する。透過信号は、コントローラ230に送信され、被検査物Pの撮像画像を生成するために用いられる。
The camera 223 detects near infrared rays over the entire width of the conveyor belt 11 in a direction orthogonal to the transport direction D of the transport device 10. The camera 223 detects a near infrared ray by assigning a predetermined number of pixels in a direction orthogonal to the transport direction D of the transport device 10. That is, for each detection, the camera 223 divides the near-infrared transmission amount (near-infrared transmission amount) into a predetermined number of pixels over the entire width of the conveyor belt 11 in a direction orthogonal to the conveyance direction D of the conveyance device 10. To detect. The camera 223 detects the near-infrared transmission amount that has passed through the inspection object P, and outputs a transmission signal based on the near-infrared transmission amount (according to the intensity of the transmitted near-infrared ray) for each pixel. The transmission signal is transmitted to the controller 230 and used to generate a captured image of the inspection object P.
なお、生成される撮像画像では、透過信号により、撮像画像の明るさ(濃淡値)が決定される。撮像画像では、近赤外線透過量の多いところが明るい(淡い)画素として表示され、近赤外線透過量が少ないところが暗い(濃い)画素として表示される。すなわち、透過画像の明暗(濃淡)は、近赤外線透過量に対応する。
In the generated captured image, the brightness (lightness value) of the captured image is determined by the transmission signal. In the captured image, a portion with a large amount of near-infrared transmission is displayed as a bright (light) pixel, and a portion with a small amount of near-infrared transmission is displayed as a dark (dark) pixel. That is, the brightness (darkness) of the transmission image corresponds to the near-infrared transmission amount.
また、カメラ223は、被検査物Pが分割された2つのコンベアベルト11の隙間の上方を通過するタイミングを検知するためのセンサとしても機能する。具体的には、コンベアベルト11上で搬送される被検査物Pがカメラ223の上方位置(コンベアベルト11の隙間Oの上方位置)に来た時、カメラ223は、所定の閾値以下の電圧を示す透過信号(第1信号)を出力する。一方、被検査物Pがカメラ223の上方位置を通過していない場合には、カメラ223は、所定の閾値を上回る電圧を示す透過信号(第2信号)を出力する。第1信号および第2信号がコントローラ230に入力されることにより、照射範囲Yにおける被検査物Pの有無が検出される。なお、所定の閾値は、被検査物Pの有無を判定するために適切に設定された値である。
The camera 223 also functions as a sensor for detecting the timing when the inspection object P passes over the gap between the two conveyor belts 11 divided. Specifically, when the inspection object P conveyed on the conveyor belt 11 comes to an upper position of the camera 223 (an upper position of the gap O of the conveyor belt 11), the camera 223 applies a voltage equal to or lower than a predetermined threshold value. A transmitted signal (first signal) is output. On the other hand, when the inspection object P has not passed the upper position of the camera 223, the camera 223 outputs a transmission signal (second signal) indicating a voltage exceeding a predetermined threshold. By inputting the first signal and the second signal to the controller 230, the presence or absence of the inspection object P in the irradiation range Y is detected. The predetermined threshold is a value appropriately set for determining the presence or absence of the inspection object P.
(2-1-3)モニタ
モニタ225は、第1実施形態のX線検査装置20のモニタ25と同様であるので、説明は省略する。 (2-1-3) Monitor Since themonitor 225 is the same as the monitor 25 of the X-ray inspection apparatus 20 of the first embodiment, description thereof is omitted.
モニタ225は、第1実施形態のX線検査装置20のモニタ25と同様であるので、説明は省略する。 (2-1-3) Monitor Since the
(2-1-4)コントローラ
コントローラ230は、近赤外線検査装置220の各部を制御するコンピュータである。コントローラ230は、演算や制御を行うCPUや、情報を記憶するROM、RAM、およびハードディスク等を主に有する。また、コントローラ230は、図示しない表示制御回路、キー入力回路等も備えている。表示制御回路は、モニタ225でのデータ表示を制御する回路である。キー入力回路は、モニタ225のタッチパネルを介してオペレータにより入力されたキー入力データを取り込む回路である。 (2-1-4) Controller Thecontroller 230 is a computer that controls each part of the near-infrared inspection apparatus 220. The controller 230 mainly includes a CPU that performs calculation and control, a ROM that stores information, a RAM, a hard disk, and the like. The controller 230 also includes a display control circuit, a key input circuit, and the like (not shown). The display control circuit is a circuit that controls data display on the monitor 225. The key input circuit is a circuit that captures key input data input by an operator via the touch panel of the monitor 225.
コントローラ230は、近赤外線検査装置220の各部を制御するコンピュータである。コントローラ230は、演算や制御を行うCPUや、情報を記憶するROM、RAM、およびハードディスク等を主に有する。また、コントローラ230は、図示しない表示制御回路、キー入力回路等も備えている。表示制御回路は、モニタ225でのデータ表示を制御する回路である。キー入力回路は、モニタ225のタッチパネルを介してオペレータにより入力されたキー入力データを取り込む回路である。 (2-1-4) Controller The
コントローラ230は、光線照射器222、カメラ223、およびモニタ225と電気的に接続されている。また、コントローラ230は、搬送装置10のコンベアモータ12およびエンコーダ13とも電気的に接続されている(図4参照)。コントローラ230は、エンコーダ13からコンベアモータ12の回転数に関するデータを取得し、取得したデータに基づき被検査物Pの搬送距離や搬送速度を把握する。また、コントローラ230は、振分装置240に対して後述する振分情報を送信するために、振分装置240のコントローラ250と、インターネットや専用回線等の通信回線90により接続されている。
The controller 230 is electrically connected to the beam irradiator 222, the camera 223, and the monitor 225. The controller 230 is also electrically connected to the conveyor motor 12 and the encoder 13 of the transport apparatus 10 (see FIG. 4). The controller 230 acquires data regarding the rotation speed of the conveyor motor 12 from the encoder 13 and grasps the transport distance and transport speed of the inspection object P based on the acquired data. In addition, the controller 230 is connected to the controller 250 of the distribution device 240 via a communication line 90 such as the Internet or a dedicated line in order to transmit distribution information to be described later to the distribution device 240.
コントローラ230は、後述する振分装置240のコントローラ250に、後述する振分情報を送信する振分情報送信部231を有する(図4参照)。また、コントローラ230は、記憶部232および制御部233を有する(図4参照)。制御部233は、主にCPUにより構成され、記憶部232に記憶されたプログラムを実行することで、撮像画像の生成や、生成した撮像画像に基づいた被検査物Pのランクの判定等を行う。また、制御部233は、光線照射器222やカメラ223等の、近赤外線検査装置220の各構成の動作を制御する。記憶部232には、制御部233により実行されるプログラムの他、ランクの検査に用いられる各種検査パラメータが記憶される。例えば、記憶部232には、サイズに応じて被検査物Pのランクを判定するための閾値が記憶されている。
The controller 230 has a distribution information transmission unit 231 that transmits distribution information described later to the controller 250 of the distribution device 240 described later (see FIG. 4). Further, the controller 230 includes a storage unit 232 and a control unit 233 (see FIG. 4). The control unit 233 is mainly configured by a CPU, and executes a program stored in the storage unit 232 to generate a captured image, determine the rank of the inspection object P based on the generated captured image, and the like. . In addition, the control unit 233 controls the operation of each component of the near-infrared inspection apparatus 220 such as the light beam irradiator 222 and the camera 223. In addition to the program executed by the control unit 233, the storage unit 232 stores various inspection parameters used for rank inspection. For example, the storage unit 232 stores a threshold value for determining the rank of the inspection object P according to the size.
(2-1-4-1)振分情報送信部
振分情報送信部231は、振分装置240のコントローラ250に振分情報を送信する。振分情報は、後述する振分装置240の振分機構41を動作させ、搬送装置10により搬送される被検査物Pを、図示しない3つのコンベアに振り分けるために使用される情報である。 (2-1-4-1) Distribution Information Transmission Unit The distributioninformation transmission unit 231 transmits distribution information to the controller 250 of the distribution device 240. The distribution information is information used to operate a distribution mechanism 41 of a distribution device 240 (to be described later) and distribute the inspection object P conveyed by the conveyance device 10 to three conveyors (not shown).
振分情報送信部231は、振分装置240のコントローラ250に振分情報を送信する。振分情報は、後述する振分装置240の振分機構41を動作させ、搬送装置10により搬送される被検査物Pを、図示しない3つのコンベアに振り分けるために使用される情報である。 (2-1-4-1) Distribution Information Transmission Unit The distribution
振分情報には、被検査物Pのランクに関する情報と、振分機構41がその被検査物Pを振り分ける基準位置F’に関する情報とを含む。
The distribution information includes information regarding the rank of the inspection object P and information regarding the reference position F ′ to which the distribution mechanism 41 distributes the inspection object P.
被検査物Pのランクは、後述する制御部233のランク判定部233cにより、被検査物Pのサイズに基づいて判定される。振分情報として被検査物Pのランクに関する情報に基づいて、後述する振分機構41の第1~第3エアー振分機構41a,41b,41cのいずれを動作させて、その被検査物Pを振り分けるかが決定される。
The rank of the inspection object P is determined based on the size of the inspection object P by a rank determination unit 233c of the control unit 233 described later. Based on the information about the rank of the inspection object P as distribution information, any one of the first to third air distribution mechanisms 41a, 41b, 41c of the distribution mechanism 41 described later is operated, and the inspection object P is moved. It is decided whether to distribute.
基準位置F’は、振分機構41が被検査物Pに力を作用させる位置である。基準位置F’は、後述する制御部233の基準位置決定部233eにより決定される。基準位置F’に関する情報は、被検査物Pの搬送方向Dにおける下流側の端部Eから基準位置F'までの距離L'に関する情報である(図12参照)。
The reference position F ′ is a position where the distribution mechanism 41 applies a force to the inspection object P. The reference position F ′ is determined by a reference position determination unit 233e of the control unit 233 described later. The information on the reference position F ′ is information on the distance L ′ from the downstream end E in the transport direction D of the inspection object P to the reference position F ′ (see FIG. 12).
(2-1-4-2)記憶部
記憶部232は、制御部233に実行させる各種プログラムや検査パラメータを記憶する。記憶部232は、主として、画像記憶領域232aおよびランク閾値記憶領域232cを有する。 (2-1-4-2) Storage Unit Thestorage unit 232 stores various programs to be executed by the control unit 233 and inspection parameters. The storage unit 232 mainly includes an image storage area 232a and a rank threshold storage area 232c.
記憶部232は、制御部233に実行させる各種プログラムや検査パラメータを記憶する。記憶部232は、主として、画像記憶領域232aおよびランク閾値記憶領域232cを有する。 (2-1-4-2) Storage Unit The
(2-1-4-2-1)画像記憶領域
画像記憶領域232aには、後述する画像生成部233aによって生成された被検査物Pの撮像画像が記憶される。 (2-1-4-2-1) Image Storage Area Theimage storage area 232a stores a captured image of the inspection object P generated by the image generation unit 233a described later.
画像記憶領域232aには、後述する画像生成部233aによって生成された被検査物Pの撮像画像が記憶される。 (2-1-4-2-1) Image Storage Area The
(2-1-4-2-2)ランク閾値記憶領域
ランク閾値記憶領域232cには、後述するランク判定部233cが用いる、被検査物のランクを判定するための閾値が記憶されている。ここでは、閾値R1,R2(<R1)がランク閾値記憶領域232cに記憶されている。 (2-1-4-2-2) Rank threshold value storage area The rank thresholdvalue storage area 232c stores a threshold value used by the rank determination unit 233c, which will be described later, for determining the rank of the inspection object. Here, threshold values R1, R2 (<R1) are stored in the rank threshold value storage area 232c.
ランク閾値記憶領域232cには、後述するランク判定部233cが用いる、被検査物のランクを判定するための閾値が記憶されている。ここでは、閾値R1,R2(<R1)がランク閾値記憶領域232cに記憶されている。 (2-1-4-2-2) Rank threshold value storage area The rank threshold
例えば、閾値R1,R2は、予めランク閾値記憶領域232cに記憶されている情報である。また例えば、閾値R1,R2は、タッチパネル機能を有するモニタ225等を介して外部から入力される情報であってもよい。
For example, the threshold values R1 and R2 are information stored in advance in the rank threshold value storage area 232c. Further, for example, the threshold values R1 and R2 may be information input from the outside via a monitor 225 having a touch panel function.
(2-1-4-3)制御部
制御部233は、記憶部232に記憶されたプログラムを実行することにより、主に、画像生成部233a、ランク判定部233c、基準位置決定部233e、として機能する。 (2-1-4-3) Control Unit Thecontrol unit 233 executes the program stored in the storage unit 232, thereby mainly as an image generation unit 233a, a rank determination unit 233c, and a reference position determination unit 233e. Function.
制御部233は、記憶部232に記憶されたプログラムを実行することにより、主に、画像生成部233a、ランク判定部233c、基準位置決定部233e、として機能する。 (2-1-4-3) Control Unit The
(2-1-4-3-1)画像生成部
画像生成部233aおよびカメラ223は、搬送装置10により搬送される被検査物Pを撮像し、被検査物Pの撮像画像を取得する撮像機構として機能する。 (2-1-4-3-1) Image Generation Unit Theimage generation unit 233a and the camera 223 capture an image of the inspection object P transported by the transport device 10 and acquire an image captured of the inspection object P. Function as.
画像生成部233aおよびカメラ223は、搬送装置10により搬送される被検査物Pを撮像し、被検査物Pの撮像画像を取得する撮像機構として機能する。 (2-1-4-3-1) Image Generation Unit The
画像生成部233aは、カメラ223によって検出された透過近赤外線量に基づいて撮像画像を作成する。
The image generation unit 233a creates a captured image based on the transmitted near-infrared ray amount detected by the camera 223.
具体的には、画像生成部233aは、カメラ223上(分割されたコンベアベルト11の隙間O上)を被検査物Pが通過する時、カメラ223から出力される画素別の透過信号を細かい時間間隔で取得する。なお、被検査物Pがカメラ223上を通過するタイミングは、カメラ223からの透過信号により判断される。すなわち、カメラ223が出力する透過信号によりカメラ223上の被検査物Pの有無が判断される。
Specifically, the image generation unit 233a transmits the transmission signal for each pixel output from the camera 223 when the inspection object P passes over the camera 223 (on the gap O of the divided conveyor belt 11). Get at intervals. Note that the timing at which the inspection object P passes over the camera 223 is determined by a transmission signal from the camera 223. That is, the presence or absence of the inspection object P on the camera 223 is determined based on the transmission signal output from the camera 223.
画像生成部233aは、取得した透過信号に基づいて撮像画像を生成する。具体的には、画像生成部233aは、カメラ223から得られる光線の明るさに関する細かい時間間隔毎のデータをマトリクス状に時系列につなぎ合わせることにより、被検査物Pを対象とする撮像画像を生成する。生成された撮像画像は画像記憶領域232aに記憶される。
The image generation unit 233a generates a captured image based on the acquired transmission signal. Specifically, the image generation unit 233a connects a captured image of the object P to be inspected by connecting data in fine time intervals related to the brightness of the light beam obtained from the camera 223 in a matrix in time series. Generate. The generated captured image is stored in the image storage area 232a.
(2-1-4-3-2)ランク判定部
ランク判定部233cは、画像記憶領域232aに記憶されている被検査物Pの撮像画像を用いて、その被検査物Pのサイズを算出し、算出結果に基づいて、その被検査物Pのランクを判定する。 (2-1-4-3-3-2) Rank determination unit Therank determination unit 233c calculates the size of the inspection object P using the captured image of the inspection object P stored in the image storage area 232a. Based on the calculation result, the rank of the inspection object P is determined.
ランク判定部233cは、画像記憶領域232aに記憶されている被検査物Pの撮像画像を用いて、その被検査物Pのサイズを算出し、算出結果に基づいて、その被検査物Pのランクを判定する。 (2-1-4-3-3-2) Rank determination unit The
具体的には、ランク判定部233cは、例えば、撮像画像の、被検査物Pの存在位置に対応する画素間の最大距離を、被検査物Pのサイズとして算出する。
Specifically, for example, the rank determination unit 233c calculates, as the size of the inspection object P, the maximum distance between pixels corresponding to the position where the inspection object P exists in the captured image, for example.
なお、撮像画像中のある画素が、被検査物Pの存在する位置に対応する画素であるか否かは、以下のようにして決定できる。被検査物Pが存在しない部分では、光線照射器222から照射された近赤外線は、カメラ223に直接到達する。そのため、被検査物Pが存在しない部分では、カメラ223に到達する透過近赤外線量が大きく、その透過近赤外線量に基づく画素は明るい。一方、被検査物Pが存在する部分では、光線照射器222から照射される光線は、被検査物Pにより遮られ、カメラ223に到達しない場合がある。また、光線が被検査物Pを透過する場合にも、光線照射器222から照射される光線の一部しかカメラ223には到達しない。そのため、被検査物Pが存在する部分では、カメラ223に到達する透過近赤外線量が比較的小さく、その透過近赤外線量に基づく画素は比較的暗い。そこで、画素の明るさ(濃淡値)が所定の閾値よりも大きいか否かにより、その部分に被検査物Pが存在しているのか、あるいは、被検査物Pが存在していないのか(背景なのか)を決定できる。
It should be noted that whether or not a certain pixel in the captured image is a pixel corresponding to the position where the inspection object P exists can be determined as follows. In a portion where the inspection object P does not exist, the near infrared rays emitted from the light irradiator 222 reach the camera 223 directly. For this reason, in the portion where the inspection object P does not exist, the amount of transmitted near-infrared rays reaching the camera 223 is large, and pixels based on the amount of transmitted near-infrared rays are bright. On the other hand, in a portion where the inspection object P exists, the light irradiated from the light irradiator 222 may be blocked by the inspection object P and may not reach the camera 223. Even when the light beam passes through the inspection object P, only a part of the light beam irradiated from the light beam irradiator 222 reaches the camera 223. Therefore, in the portion where the inspection object P exists, the amount of transmitted near infrared rays reaching the camera 223 is relatively small, and the pixels based on the amount of transmitted near infrared rays are relatively dark. Therefore, depending on whether or not the brightness (shading value) of the pixel is larger than a predetermined threshold value, whether the inspection object P exists in that portion or whether the inspection object P does not exist (background) It can be decided.
次に、ランク判定部233cは、算出した被検査物Pのサイズを用いて、その被検査物Pのランクを判定する。具体的には、ランク判定部233cは、ランク閾値記憶領域232cに記憶された閾値R1,R2を用いて、被検査物Pのサイズが、閾値R1以下であれば第1ランク、閾値R1より大きく閾値R2以下であれば第2ランク、閾値R2より大きければ第3ランクと、被検査物Pのランクを判定する。
Next, the rank determination unit 233c determines the rank of the inspection object P using the calculated size of the inspection object P. Specifically, the rank determination unit 233c uses the thresholds R1 and R2 stored in the rank threshold storage area 232c, and is larger than the first rank and the threshold R1 if the size of the inspection object P is equal to or smaller than the threshold R1. If it is less than or equal to the threshold value R2, the rank of the inspection object P is determined as the second rank.
なお、ランク判定部233cにより判定された被検査物Pのランクは、振分情報送信部231により、振分情報の一部として振分装置240のコントローラ250に送信される。
Note that the rank of the inspection object P determined by the rank determination unit 233c is transmitted by the distribution information transmission unit 231 to the controller 250 of the distribution device 240 as part of the distribution information.
(2-1-4-3-3)基準位置決定部
基準位置決定部233eは、決定部の一例である。基準位置決定部233eは、撮像画像から被検査物Pの外形を抽出し、被検査物Pの外形に基づいて、振分機構41が被検査物Pを振り分ける基準位置F’を決定する。具体的には、基準位置決定部233eは、被検査物Pの外形に基づいて被検査物Pの図心Zを算出し、振分機構41(第1~第3エアー振分機構41a,41b,41c)が被検査物Pの図心Zに向かって力を及ぼすように、振分機構41が被検査物Pを振り分ける基準位置F’を決定する。 (2-1-4-3-3) Reference Position Determination Unit The referenceposition determination unit 233e is an example of a determination unit. The reference position determination unit 233e extracts the outer shape of the inspection object P from the captured image, and determines the reference position F ′ to which the distribution mechanism 41 distributes the inspection object P based on the outer shape of the inspection object P. Specifically, the reference position determination unit 233e calculates the centroid Z of the inspection object P based on the outer shape of the inspection object P, and distributes the distribution mechanism 41 (first to third air distribution mechanisms 41a and 41b). , 41c) determines the reference position F ′ to which the sorting mechanism 41 distributes the inspection object P so that the force acts toward the centroid Z of the inspection object P.
基準位置決定部233eは、決定部の一例である。基準位置決定部233eは、撮像画像から被検査物Pの外形を抽出し、被検査物Pの外形に基づいて、振分機構41が被検査物Pを振り分ける基準位置F’を決定する。具体的には、基準位置決定部233eは、被検査物Pの外形に基づいて被検査物Pの図心Zを算出し、振分機構41(第1~第3エアー振分機構41a,41b,41c)が被検査物Pの図心Zに向かって力を及ぼすように、振分機構41が被検査物Pを振り分ける基準位置F’を決定する。 (2-1-4-3-3) Reference Position Determination Unit The reference
具体的には、基準位置決定部233eは、まず以下のようにして、被検査物Pの図心Zの位置、より具体的には、被検査物Pをコンベアベルト11の搬送面に投影した時の被検査物Pの図心Zの位置を決定する。
Specifically, the reference position determining unit 233e first projects the position of the centroid Z of the inspection object P, more specifically, the inspection object P onto the conveyance surface of the conveyor belt 11 as follows. The position of the centroid Z of the inspection object P at the time is determined.
初めに、基準位置決定部233eは、画像記憶領域232aに記憶された被検査物Pの撮像画像を、被検査物Pに対応する画素(明るさが所定の閾値より大きい画素)と、背景部分の画素(明るさが所定の閾値より小さい画素)と、に二値化した画像を生成する。
First, the reference position determination unit 233e uses a captured image of the inspection object P stored in the image storage area 232a as a pixel corresponding to the inspection object P (a pixel whose brightness is greater than a predetermined threshold) and a background portion. And a binarized image (pixels whose brightness is smaller than a predetermined threshold).
次に、基準位置決定部233eは、二値化された撮像画像において、被検査物Pの搬送方向DをX軸方向、搬送方向Dと直交する方向(コンベアベルト11の幅方向)をY軸方向とする座標系を設定する(図12参照)。座標系の原点の位置は任意に定められればよい。そして、基準位置決定部233eは、被検査物Pに対応する各画素Ui(図12参照)の座標を特定する。ここでは、図12の点線で囲まれた位置に被検査物Pに対応する画素が存在するものとする。また、被検査物Pの二値化された撮像画像の中で、被検査物Pに対応する画素Ui(i=1~H)の数はH個であり、各画素Uiの座標が(Xi,Yi)で表されるとする。また、撮像画像の1つの画素の面積は、単位面積sで表されるとする。基準位置決定部233eは、被検査物Pをコンベアベルト11の搬送面に投影した時の被検査物Pの図心Zの位置(Xz,Yz)を、以下の数式3および数式4により算出する。
Next, in the binarized captured image, the reference position determination unit 233e sets the transport direction D of the inspection object P in the X-axis direction and the direction orthogonal to the transport direction D (the width direction of the conveyor belt 11) in the Y-axis. A coordinate system as a direction is set (see FIG. 12). The position of the origin of the coordinate system may be determined arbitrarily. Then, the reference position determination unit 233e specifies the coordinates of each pixel Ui (see FIG. 12) corresponding to the inspection object P. Here, it is assumed that a pixel corresponding to the inspection object P exists at a position surrounded by a dotted line in FIG. In the binarized captured image of the inspection object P, the number of pixels Ui (i = 1 to H) corresponding to the inspection object P is H, and the coordinates of each pixel Ui are (Xi). , Yi). In addition, the area of one pixel of the captured image is represented by a unit area s. The reference position determination unit 233e calculates the position (Xz, Yz) of the centroid Z of the inspection object P when the inspection object P is projected onto the transport surface of the conveyor belt 11 using the following Expression 3 and Expression 4. .
さらに、基準位置決定部233eは、決定された図心Zに向かって、振分機構41(第1~第3エアー振分機構41a,41b,41c)が被検査物Pに力を及ぼすように、被検査物Pを振り分ける基準位置F’を決定する。ここでは、第1~第3エアー振分機構41a,41b,41cは、搬送装置10の搬送方向に直交する向きにエアーを噴出する。つまり、第1~第3エアー振分機構41a,41b,41cは、基準位置決定部233eが設定した座標系で、Y軸方向に沿った方向に、特に、ここでは図12における下方から、被検査物Pに力を作用させる。そのため、図12のように、図心Zから下方に直線を下ろし、その直線が被検査物Pの対応する画素と交わる位置が、被検査物Pの基準位置F’と決定される。
Further, the reference position determination unit 233e causes the distribution mechanism 41 (first to third air distribution mechanisms 41a, 41b, 41c) to exert a force on the inspection object P toward the determined centroid Z. The reference position F ′ to which the inspection object P is distributed is determined. Here, the first to third air distribution mechanisms 41a, 41b, and 41c eject air in a direction orthogonal to the transport direction of the transport apparatus 10. That is, the first to third air distribution mechanisms 41a, 41b, and 41c are coordinate systems set by the reference position determination unit 233e, and in the direction along the Y-axis direction, in particular, from below in FIG. A force is applied to the inspection object P. Therefore, as shown in FIG. 12, a straight line is drawn downward from the centroid Z, and the position where the straight line intersects the corresponding pixel of the inspection object P is determined as the reference position F ′ of the inspection object P.
また、基準位置決定部233eは、振分情報送信部231が振分装置240のコントローラ250に送信する基準位置F’に関する情報を生成する。具体的には、基準位置決定部233eは、搬送装置10の搬送方向Dにおける被検査物Pの最下流側の端部Eから、基準位置F’までの、搬送方向Dにおける距離L’を基準位置F’に関する情報として生成する。基準位置決定部233eは、二値化されたX線画像の、被検査物Pが存在すると判定される画素の中でX座標の値が最も小さい画素の座標と、図心Zの座標と、に基づいて、距離Lを算出する。
Also, the reference position determination unit 233e generates information on the reference position F ′ that the distribution information transmission unit 231 transmits to the controller 250 of the distribution device 240. Specifically, the reference position determining unit 233e uses the distance L ′ in the transport direction D from the most downstream end E of the inspection object P in the transport direction D of the transport apparatus 10 to the reference position F ′ as a reference. It generates as information regarding the position F ′. The reference position determination unit 233e includes the coordinates of the pixel of the binarized X-ray image having the smallest X coordinate value among the pixels determined to have the inspection object P, the coordinates of the centroid Z, Based on the above, the distance L is calculated.
基準位置決定部233eにより生成された基準位置F’に関する情報(距離L’)は、振分情報送信部231により、振分情報の一部として、振分装置240のコントローラ250に送信される。
The information (distance L ′) related to the reference position F ′ generated by the reference position determination unit 233 e is transmitted to the controller 250 of the distribution device 240 as part of the distribution information by the distribution information transmission unit 231.
(2-2)振分装置
振分装置240は、近赤外線検査装置220でのランク検査の結果に基づいて、被検査物Pの振り分けを行う。具体的には、振分装置240は、近赤外線検査装置220のランク検査の結果に基づいて、被検査物Pを図示しない3つのコンベアにランク別に振り分ける。 (2-2) Distribution Device Thedistribution device 240 distributes the inspection object P based on the result of the rank inspection by the near infrared inspection device 220. Specifically, the sorting device 240 sorts the inspection object P into three conveyors (not shown) according to rank based on the result of the rank inspection performed by the near-infrared inspection device 220.
振分装置240は、近赤外線検査装置220でのランク検査の結果に基づいて、被検査物Pの振り分けを行う。具体的には、振分装置240は、近赤外線検査装置220のランク検査の結果に基づいて、被検査物Pを図示しない3つのコンベアにランク別に振り分ける。 (2-2) Distribution Device The
振分装置240は、振分機構41(図9参照)と、光電センサ43(図9参照)と、コントローラ250(図11参照)と、を主に有する(図11参照)。
The sorting apparatus 240 mainly includes a sorting mechanism 41 (see FIG. 9), a photoelectric sensor 43 (see FIG. 9), and a controller 250 (see FIG. 11) (see FIG. 11).
振分機構41および光電センサ43は、第1実施形態の振分機構41および光電センサ43と同様であるので説明は省略する。
Since the distribution mechanism 41 and the photoelectric sensor 43 are the same as the distribution mechanism 41 and the photoelectric sensor 43 of the first embodiment, description thereof is omitted.
(2-2-1)コントローラ
コントローラ250は、振分装置240の各部を制御するコンピュータである。コントローラ250は、演算や制御を行うCPUや、情報を記憶するROM、RAM、およびハードディスク等を有する。 (2-2-1) Controller Thecontroller 250 is a computer that controls each part of the sorting device 240. The controller 250 includes a CPU that performs calculation and control, a ROM that stores information, a RAM, a hard disk, and the like.
コントローラ250は、振分装置240の各部を制御するコンピュータである。コントローラ250は、演算や制御を行うCPUや、情報を記憶するROM、RAM、およびハードディスク等を有する。 (2-2-1) Controller The
コントローラ250は、振分情報を受信するため、近赤外線検査装置220のコントローラ230と通信回線90により接続されている(図11参照)。コントローラ250は、近赤外線検査装置220のコントローラ230が送信する振分情報を受信する振分情報受信部251を有する(図11参照)。また、コントローラ250は、記憶部252および振分機構制御部253を有する(図11参照)。振分機構制御部253は、主にCPUにより構成され、記憶部252に記憶されたプログラムを実行して、第1~第3エアー振分機構41a,41b,41cに被検査物Pを振り分ける振分動作を実行させる。記憶部252は、振分機構制御部253が実行するプログラムの他、各種情報を記憶する。
The controller 250 is connected to the controller 230 of the near-infrared inspection apparatus 220 via the communication line 90 in order to receive the distribution information (see FIG. 11). The controller 250 includes a distribution information receiving unit 251 that receives distribution information transmitted by the controller 230 of the near-infrared inspection apparatus 220 (see FIG. 11). Further, the controller 250 includes a storage unit 252 and a distribution mechanism control unit 253 (see FIG. 11). The distribution mechanism control unit 253 is mainly configured by a CPU, executes a program stored in the storage unit 252, and distributes the inspection object P to the first to third air distribution mechanisms 41a, 41b, and 41c. Execute the minute operation. The storage unit 252 stores various information in addition to the program executed by the distribution mechanism control unit 253.
コントローラ250は、第1~第3エアー振分機構41a,41b,41c、光電センサ43と電気的に接続されている。また、コントローラ250は、搬送装置10のエンコーダ13とも電気的に接続されている(図11参照)。コントローラ250は、エンコーダ13からコンベアモータ12の回転数に関するデータを取得し、取得したデータに基づき被検査物Pの搬送距離や搬送速度を把握する。
The controller 250 is electrically connected to the first to third air distribution mechanisms 41a, 41b, 41c and the photoelectric sensor 43. The controller 250 is also electrically connected to the encoder 13 of the transport apparatus 10 (see FIG. 11). The controller 250 acquires data related to the rotation speed of the conveyor motor 12 from the encoder 13 and grasps the transport distance and transport speed of the inspection object P based on the acquired data.
(2-2-1-1)振分情報受信部
振分情報受信部251は、近赤外線検査装置220のコントローラ230の振分情報送信部231が送信する、被検査物Pの振分情報を受信する。 (2-2-1-1) Distribution Information Receiving Unit The distributioninformation receiving unit 251 transmits the distribution information of the inspection object P transmitted from the distribution information transmission unit 231 of the controller 230 of the near-infrared inspection apparatus 220. Receive.
振分情報受信部251は、近赤外線検査装置220のコントローラ230の振分情報送信部231が送信する、被検査物Pの振分情報を受信する。 (2-2-1-1) Distribution Information Receiving Unit The distribution
振分情報には、被検査物Pのランクに関する情報と、振分機構41がその被検査物Pを振り分ける基準位置F’に関する情報と、を含む。
The distribution information includes information regarding the rank of the inspection object P and information regarding the reference position F ′ to which the distribution mechanism 41 distributes the inspection object P.
(2-2-1-2)記憶部
記憶部252は、振分機構制御部253が実行するプログラムの他、各種情報を記憶する。記憶部252には、振分情報記憶領域52aと、ノズル位置記憶領域52bと、噴射時間記憶領域252cとを含む。振分情報記憶領域52aおよびノズル位置記憶領域52bは、第1実施形態の検査振分システム100と同様であるので、ここでは説明を省略する。 (2-2-1-2) Storage Unit Thestorage unit 252 stores various information in addition to the program executed by the distribution mechanism control unit 253. The storage unit 252 includes a distribution information storage area 52a, a nozzle position storage area 52b, and an ejection time storage area 252c. Since the distribution information storage area 52a and the nozzle position storage area 52b are the same as those in the inspection distribution system 100 of the first embodiment, description thereof is omitted here.
記憶部252は、振分機構制御部253が実行するプログラムの他、各種情報を記憶する。記憶部252には、振分情報記憶領域52aと、ノズル位置記憶領域52bと、噴射時間記憶領域252cとを含む。振分情報記憶領域52aおよびノズル位置記憶領域52bは、第1実施形態の検査振分システム100と同様であるので、ここでは説明を省略する。 (2-2-1-2) Storage Unit The
(2-2-1-2-1)噴射時間記憶領域
噴射時間記憶領域252cには、第1~第3エアー振分機構41a,41b,41cが被検査物Pにエアーを噴射する噴射時間Tfが記憶されている。ここでは、噴射時間Tfは、第1~第3エアー振分機構41a,41b,41cに共通である。ただし、これに限定されるものではなく、各エアー振分機構41a,41b,41cに対してそれぞれ異なる噴射時間が記憶されてもよい。ノズル位置記憶領域52bには、予め噴射時間Tfが記憶されていてもよいし、図示しない入力装置等を介して外部から書き込まれてもよい。 (2-2-1-2-1) Injection time storage area In the injectiontime storage area 252c, the injection time Tf for the first to third air distribution mechanisms 41a, 41b, 41c to inject the air into the inspection object P Is remembered. Here, the injection time Tf is common to the first to third air distribution mechanisms 41a, 41b, 41c. However, the present invention is not limited to this, and different injection times may be stored for each of the air distribution mechanisms 41a, 41b, and 41c. In the nozzle position storage area 52b, the ejection time Tf may be stored in advance, or may be written from the outside via an input device (not shown) or the like.
噴射時間記憶領域252cには、第1~第3エアー振分機構41a,41b,41cが被検査物Pにエアーを噴射する噴射時間Tfが記憶されている。ここでは、噴射時間Tfは、第1~第3エアー振分機構41a,41b,41cに共通である。ただし、これに限定されるものではなく、各エアー振分機構41a,41b,41cに対してそれぞれ異なる噴射時間が記憶されてもよい。ノズル位置記憶領域52bには、予め噴射時間Tfが記憶されていてもよいし、図示しない入力装置等を介して外部から書き込まれてもよい。 (2-2-1-2-1) Injection time storage area In the injection
(2-2-1-3)振分機構制御部
振分機構制御部253は、振分情報記憶領域52aに記憶された振分情報に基づいて、振分機構41が被検査物Pの基準位置F’に力を作用させるよう、振分機構41を制御する。 (2-2-1-3) Distribution Mechanism Control Unit The distributionmechanism control unit 253 is configured so that the distribution mechanism 41 uses the reference of the inspection object P based on the distribution information stored in the distribution information storage area 52a. The distribution mechanism 41 is controlled to apply a force to the position F ′.
振分機構制御部253は、振分情報記憶領域52aに記憶された振分情報に基づいて、振分機構41が被検査物Pの基準位置F’に力を作用させるよう、振分機構41を制御する。 (2-2-1-3) Distribution Mechanism Control Unit The distribution
振分機構制御部253は、振分機構41のエアーの噴射開始および噴射停止のタイミングの決定方法だけが、第1実施形態の振分機構制御部53と異なる。具体的には、第1実施形態の振分機構制御部53では、振分情報に含まれる噴射時間を用いて振分機構41のエアーの噴射開始および噴射停止のタイミングが決定される。一方、振分機構制御部253では、噴射時間記憶領域252cに記憶されている噴射時間Tfを用いて、振分機構41のエアーの噴射開始および噴射停止のタイミングが決定される。その他の点について、振分機構制御部253は第1実施形態の振分機構制御部53と同様であるので、説明は省略する。
The distribution mechanism control unit 253 is different from the distribution mechanism control unit 53 of the first embodiment only in the method for determining the timing of the start and stop of the air injection of the distribution mechanism 41. Specifically, in the distribution mechanism control unit 53 of the first embodiment, the timing of the start and stop of the air injection of the distribution mechanism 41 is determined using the injection time included in the distribution information. On the other hand, the distribution mechanism control unit 253 determines the timing of starting and stopping the injection of air by the distribution mechanism 41 using the injection time Tf stored in the injection time storage area 252c. In other respects, the distribution mechanism control unit 253 is the same as the distribution mechanism control unit 53 of the first embodiment, and a description thereof will be omitted.
(3)検査振分システムの動作
検査振分システム200の動作について説明する。なお、振分装置240の動作については、振分機構41のエアーの噴射開始および噴射停止のタイミングの決定のために用いられる噴射時間Tfが、噴射時間記憶領域252cから読み出される点を除いて第1実施形態の振分装置40の動作と同様であるので、ここでは説明を省略する。 (3) Operation of Inspection Distribution System The operation of theinspection distribution system 200 will be described. Note that the operation of the sorting device 240 is the same except that the injection time Tf used for determining the timing of starting and stopping the air injection of the distribution mechanism 41 is read from the injection time storage area 252c. Since it is the same as that of the distribution apparatus 40 of 1 embodiment, description is abbreviate | omitted here.
検査振分システム200の動作について説明する。なお、振分装置240の動作については、振分機構41のエアーの噴射開始および噴射停止のタイミングの決定のために用いられる噴射時間Tfが、噴射時間記憶領域252cから読み出される点を除いて第1実施形態の振分装置40の動作と同様であるので、ここでは説明を省略する。 (3) Operation of Inspection Distribution System The operation of the
(3-1)近赤外線検査装置の動作
以下、図13を参照して、近赤外線検査装置220の動作を説明する。 (3-1) Operation of Near Infrared Inspection Device Hereinafter, the operation of the nearinfrared inspection device 220 will be described with reference to FIG.
以下、図13を参照して、近赤外線検査装置220の動作を説明する。 (3-1) Operation of Near Infrared Inspection Device Hereinafter, the operation of the near
まず、ステップS201では、カメラ223の透過信号の出力に基づいて、カメラ223上(分割されたコンベアベルト11の隙間O上)を被検査物Pが通過し始めたか否かが判断される。カメラ223が、カメラ223上の被検査物Pの存在を検知すると、ステップS202に進む。ステップS201は、カメラ223上の被検査物Pの存在が検知されるまで繰り返される。
First, in step S201, based on the transmission signal output from the camera 223, it is determined whether or not the inspection object P has started to pass over the camera 223 (on the gap O between the divided conveyor belts 11). When the camera 223 detects the presence of the inspection object P on the camera 223, the process proceeds to step S202. Step S201 is repeated until the presence of the inspection object P on the camera 223 is detected.
ステップS202では、画像生成部233aが、カメラ223によって検出された透過近赤外線量に基づいて(カメラ223が出力する透過信号に基づいて)透過画像を作成する。画像生成部233aによって生成された透過画像は、画像記憶領域232aに記憶される。
In step S202, the image generation unit 233a creates a transmission image based on the transmitted near-infrared amount detected by the camera 223 (based on the transmission signal output from the camera 223). The transmission image generated by the image generation unit 233a is stored in the image storage area 232a.
次に、ステップS203では、ランク判定部233cが、被検査物Pのランクを判定する。具体的には、ランク判定部233cは、まず、撮像画像の、被検査物Pの存在位置に対応する画素間の最大距離を、被検査物Pのサイズとして算出する。次に、ランク判定部233cは、算出した被検査物Pのサイズと、ランク閾値記憶領域232cに記憶された閾値R1,R2とを比較することで、被検査物Pのランクを判定する。
Next, in step S203, the rank determination unit 233c determines the rank of the inspection object P. Specifically, the rank determination unit 233c first calculates, as the size of the inspection object P, the maximum distance between pixels corresponding to the position of the inspection object P in the captured image. Next, the rank determination unit 233c determines the rank of the inspection object P by comparing the calculated size of the inspection object P with the threshold values R1 and R2 stored in the rank threshold value storage area 232c.
次に、ステップS204では、基準位置決定部233eは、被検査物Pを振り分ける基準位置F’に関する情報を生成する。具体的には、基準位置決定部233eは、まず、撮像画像内の被検査物Pに対応する画素を特定するため、画像記憶領域232aに記憶された被検査物Pの透過画像を所定の閾値で二値化する。次に、基準位置決定部233eは、二値化した撮像画像に、搬送装置10の搬送方向DをX軸方向、搬送方向Dと直交する方向をY軸方向とする座標系を設定する。次に、基準位置決定部233eは、被検査物Pに対応する画素の座標に基づいて、被検査物Pをコンベアベルト11の搬送面に投影した時の被検査物Pの図心Zの位置(Xz,Yz)を算出する。さらに、基準位置決定部233eは、搬送方向Dにおける最下流側の被検査物Pの端部Eから基準位置F’までの距離L’を、被検査物Pの基準位置F'に関する情報として算出する。
Next, in step S204, the reference position determination unit 233e generates information regarding the reference position F 'to which the inspection object P is distributed. Specifically, the reference position determination unit 233e first uses the transmission image of the inspection object P stored in the image storage area 232a as a predetermined threshold value in order to identify the pixel corresponding to the inspection object P in the captured image. To binarize. Next, the reference position determination unit 233e sets, in the binarized captured image, a coordinate system in which the transport direction D of the transport apparatus 10 is the X-axis direction and the direction orthogonal to the transport direction D is the Y-axis direction. Next, the reference position determination unit 233e, based on the coordinates of the pixel corresponding to the inspection object P, the position of the centroid Z of the inspection object P when the inspection object P is projected onto the conveying surface of the conveyor belt 11. (Xz, Yz) is calculated. Further, the reference position determination unit 233e calculates a distance L ′ from the end E of the object P on the most downstream side in the transport direction D to the reference position F ′ as information on the reference position F ′ of the object P. To do.
次に、ステップS205では、ステップS203およびステップS204で算出された、被検査物Pのランクおよび基準位置F'に関する情報を含む振分情報を、振分情報送信部231が振分装置240のコントローラ250に送信する。その後、ステップS201に戻る。
Next, in step S205, the distribution information transmission unit 231 uses the controller of the distribution device 240 for the distribution information including the information about the rank of the inspection object P and the reference position F ′ calculated in steps S203 and S204. 250. Thereafter, the process returns to step S201.
なお、以上の処理では、ステップS203およびステップS204の処理がこの順番で実施されるが、これに限定されるものではなく、順番は逆であってもよい。また、ステップS203およびステップS204の処理は並列で実行されてもよい。
In the above process, the processes of step S203 and step S204 are performed in this order, but the present invention is not limited to this, and the order may be reversed. Further, the processes of step S203 and step S204 may be executed in parallel.
(4)特徴
第2実施形態の検査振分システム200は、第1実施形態の(4-1)、(4-4)、および(4-5)と同様の特徴を有する。その他、第2実施形態の検査振分システム200は、以下の特徴を有する。 (4) Features Theinspection distribution system 200 of the second embodiment has the same features as (4-1), (4-4), and (4-5) of the first embodiment. In addition, the inspection distribution system 200 of the second embodiment has the following features.
第2実施形態の検査振分システム200は、第1実施形態の(4-1)、(4-4)、および(4-5)と同様の特徴を有する。その他、第2実施形態の検査振分システム200は、以下の特徴を有する。 (4) Features The
(4-1)
第2実施形態に係る検査振分システム200では、基準位置決定部233eは、被検査物Pの外形に基づいて被検査物Pの図心Zを算出し、振分機構41が図心Zに向かって力を及ぼすように基準位置F'を決定する。 (4-1)
In theinspection distribution system 200 according to the second embodiment, the reference position determination unit 233e calculates the centroid Z of the inspection object P based on the outer shape of the inspection object P, and the distribution mechanism 41 moves to the centroid Z. The reference position F ′ is determined so as to exert a force toward it.
第2実施形態に係る検査振分システム200では、基準位置決定部233eは、被検査物Pの外形に基づいて被検査物Pの図心Zを算出し、振分機構41が図心Zに向かって力を及ぼすように基準位置F'を決定する。 (4-1)
In the
ここでは、振分機構41が被検査物Pの図心Zに向かって力を作用させるため、被検査物Pの外形によらず正確に物品を振り分けることが容易で、信頼性の高い検査振分システム200を実現できる。
Here, since the distribution mechanism 41 applies a force toward the centroid Z of the inspection object P, it is easy to accurately distribute the articles regardless of the outer shape of the inspection object P, and a highly reliable inspection vibration. The minute system 200 can be realized.
<変形例>
以下に上記実施形態の変形例を示す。なお、変形例は、互いに矛盾のない範囲で適宜組み合わされてもよい。 <Modification>
The modification of the said embodiment is shown below. Note that the modified examples may be appropriately combined within a range that is consistent with each other.
以下に上記実施形態の変形例を示す。なお、変形例は、互いに矛盾のない範囲で適宜組み合わされてもよい。 <Modification>
The modification of the said embodiment is shown below. Note that the modified examples may be appropriately combined within a range that is consistent with each other.
(1)変形例A
上記実施形態の検査振分システム100,200は、いずれも検査装置であるX線検査装置20および近赤外線検査装置220が、被検査物Pのランクを決定するランク検査を実行するが、これに限定されるものではない。例えば、X線検査装置20および近赤外線検査装置220は、ランク検査に代えて、あるいは、ランク検査に加えて、異物検査等を実行するものであってもよい。そして、検査振分システム100,200の振分装置は、X線検査装置20および近赤外線検査装置220の異物検査等の結果得られた、被検査物Pの良/不良に基づいて、被検査物Pを振り分けるものであってもよい。 (1) Modification A
In the inspection distribution systems 100 and 200 of the above embodiment, the X-ray inspection apparatus 20 and the near-infrared inspection apparatus 220, which are inspection apparatuses, execute rank inspection for determining the rank of the inspection object P. It is not limited. For example, the X-ray inspection apparatus 20 and the near-infrared inspection apparatus 220 may execute a foreign substance inspection or the like instead of the rank inspection or in addition to the rank inspection. The sorting devices of the inspection distribution systems 100 and 200 are to be inspected based on the quality of the inspection object P obtained as a result of the foreign matter inspection of the X-ray inspection device 20 and the near-infrared inspection device 220. The thing P may be distributed.
上記実施形態の検査振分システム100,200は、いずれも検査装置であるX線検査装置20および近赤外線検査装置220が、被検査物Pのランクを決定するランク検査を実行するが、これに限定されるものではない。例えば、X線検査装置20および近赤外線検査装置220は、ランク検査に代えて、あるいは、ランク検査に加えて、異物検査等を実行するものであってもよい。そして、検査振分システム100,200の振分装置は、X線検査装置20および近赤外線検査装置220の異物検査等の結果得られた、被検査物Pの良/不良に基づいて、被検査物Pを振り分けるものであってもよい。 (1) Modification A
In the
(2)変形例B
上記実施形態の検査振分システム100,200では、第1~第3エアー振分機構41a,41b,41cは、搬送装置10の搬送方向に直交する方向からエアーを噴射するが、エアーの噴射方向はこれに限定されるものではない。 (2) Modification B
In the inspection distribution systems 100 and 200 of the above-described embodiment, the first to third air distribution mechanisms 41a, 41b, and 41c inject air from the direction orthogonal to the conveyance direction of the conveyance apparatus 10, but the air injection direction Is not limited to this.
上記実施形態の検査振分システム100,200では、第1~第3エアー振分機構41a,41b,41cは、搬送装置10の搬送方向に直交する方向からエアーを噴射するが、エアーの噴射方向はこれに限定されるものではない。 (2) Modification B
In the
例えば、第1~第3エアー振分機構41a,41b,41cは、搬送装置10の搬送方向Dに交差する方向W(搬送方向Dに直交しない方向)にエアーを噴射してもよい(図14参照)。この場合には、例えば重心Gを算出する検査振分システム100であれば、振分機構41が重心Gに向かって力を及ぼすように基準位置F’’が決定されればよい。つまり、図14のように、重心Gを通過する方向Wに平行に延びる直線と、被検査物Pとが交わる位置であって、第1~第3エアー振分機構41a,41b,41cの第1~第3ノズル42a,42b,42cが配置された側が、基準位置F’’として決定されればよい。
For example, the first to third air distribution mechanisms 41a, 41b, and 41c may inject air in a direction W that intersects the transport direction D of the transport apparatus 10 (a direction that is not orthogonal to the transport direction D) (FIG. 14). reference). In this case, for example, in the inspection distribution system 100 that calculates the center of gravity G, the reference position F ″ may be determined so that the distribution mechanism 41 exerts a force toward the center of gravity G. In other words, as shown in FIG. 14, the straight line extending in parallel with the direction W passing through the center of gravity G and the inspection object P intersect with each other, and the first to third air distribution mechanisms 41a, 41b, 41c The side on which the first to third nozzles 42a, 42b, 42c are arranged may be determined as the reference position F ″.
(3)変形例C
上記実施形態では、振分装置40,240は、振分機構41(第1~第3エアー振分機構41a,41b,41cがエアーを噴射して被検査物Pを振り分けるものであるが、振分機構はエアーにより被検査物Pを振り分ける機構に限定されるものではない。 (3) Modification C
In the above embodiment, the sorting devices 40 and 240 are the sorting mechanisms 41 (the first to third air sorting mechanisms 41a, 41b, and 41c spray the air to sort the inspection object P. The minute mechanism is not limited to a mechanism that distributes the inspection object P by air.
上記実施形態では、振分装置40,240は、振分機構41(第1~第3エアー振分機構41a,41b,41cがエアーを噴射して被検査物Pを振り分けるものであるが、振分機構はエアーにより被検査物Pを振り分ける機構に限定されるものではない。 (3) Modification C
In the above embodiment, the
例えば、振分機構は、モータやエアシリンダ等により駆動されるアームを駆動して、被検査物Pを振り分けるものであってもよい。この場合には、振分機構のアームが、基準位置F,F’に接触して、被検査物Pに力を作用させるよう構成されればよい。
For example, the distribution mechanism may be configured to distribute the inspection object P by driving an arm driven by a motor, an air cylinder, or the like. In this case, the arm of the distribution mechanism may be configured to contact the reference positions F and F ′ and apply a force to the inspection object P.
(4)変形例D
上記実施形態では、基準位置F,F'に関する情報は、搬送方向Dにおける最下流側の被検査物Pの端部Eから基準位置F,F'までの、搬送方向Dにおける距離L,L'であるが、これに限定されるものではない。例えば、基準位置F,F'に関する情報は、搬送装置10の搬送速度の情報を更に用いて算出される、振分装置40,240の光電センサ43の検知位置を、搬送方向Dにおける最下流側の被検査物Pの端部Eが通過してから、基準位置F,F'が通過するまでの時間の情報であってもよい。 (4) Modification D
In the above embodiment, the information on the reference positions F and F ′ is the distances L and L ′ in the transport direction D from the end E of the inspection object P on the most downstream side in the transport direction D to the reference positions F and F ′. However, the present invention is not limited to this. For example, the information regarding the reference positions F and F ′ is calculated by further using the transport speed information of thetransport device 10, and the detection position of the photoelectric sensor 43 of the sorting devices 40 and 240 is the most downstream side in the transport direction D. May be information on the time from when the end E of the inspection object P passes through until the reference positions F and F ′ pass through.
上記実施形態では、基準位置F,F'に関する情報は、搬送方向Dにおける最下流側の被検査物Pの端部Eから基準位置F,F'までの、搬送方向Dにおける距離L,L'であるが、これに限定されるものではない。例えば、基準位置F,F'に関する情報は、搬送装置10の搬送速度の情報を更に用いて算出される、振分装置40,240の光電センサ43の検知位置を、搬送方向Dにおける最下流側の被検査物Pの端部Eが通過してから、基準位置F,F'が通過するまでの時間の情報であってもよい。 (4) Modification D
In the above embodiment, the information on the reference positions F and F ′ is the distances L and L ′ in the transport direction D from the end E of the inspection object P on the most downstream side in the transport direction D to the reference positions F and F ′. However, the present invention is not limited to this. For example, the information regarding the reference positions F and F ′ is calculated by further using the transport speed information of the
(5)変形例E
上記第1実施形態では、X線検査装置20がコントローラ30を有し、振分装置40がコントローラ50を有している。また、上記第2実施形態では、近赤外線検査装置220がコントローラ230を有し、振分装置240がコントローラ250を有している。ただし、これに限定されるものではない。検査振分システム100は、X線検査装置20および振分装置40の両方を制御する1つのコントローラを有し、検査振分システム200は、近赤外線検査装置220および振分装置240の両方を制御する1つのコントローラを有してもよい。このように構成される場合には、振分装置40,240は光電センサ43を有する必要はなく、X線の照射範囲Y又はカメラ223の上方を被検査物Pが通過し始めてから、被検査物Pの基準位置F,F’が制御対象のエアー振分機構41a,41b,41cのノズル42a,42b,42cの前を通過するまでの時間を算出して、エアー振分機構41a,41b,41cを制御してもよい。 (5) Modification E
In the first embodiment, theX-ray inspection apparatus 20 has the controller 30, and the sorting apparatus 40 has the controller 50. In the second embodiment, the near-infrared inspection apparatus 220 has the controller 230, and the sorting apparatus 240 has the controller 250. However, it is not limited to this. The inspection distribution system 100 has one controller that controls both the X-ray inspection apparatus 20 and the distribution apparatus 40, and the inspection distribution system 200 controls both the near-infrared inspection apparatus 220 and the distribution apparatus 240. You may have one controller. In the case of such a configuration, the sorting devices 40 and 240 do not need to have the photoelectric sensor 43, and the inspection object P starts to pass through the X-ray irradiation range Y or the camera 223 and then the inspection object. The time until the reference positions F and F ′ of the object P pass in front of the nozzles 42a, 42b and 42c of the air distribution mechanisms 41a, 41b and 41c to be controlled is calculated, and the air distribution mechanisms 41a, 41b, 41c may be controlled.
上記第1実施形態では、X線検査装置20がコントローラ30を有し、振分装置40がコントローラ50を有している。また、上記第2実施形態では、近赤外線検査装置220がコントローラ230を有し、振分装置240がコントローラ250を有している。ただし、これに限定されるものではない。検査振分システム100は、X線検査装置20および振分装置40の両方を制御する1つのコントローラを有し、検査振分システム200は、近赤外線検査装置220および振分装置240の両方を制御する1つのコントローラを有してもよい。このように構成される場合には、振分装置40,240は光電センサ43を有する必要はなく、X線の照射範囲Y又はカメラ223の上方を被検査物Pが通過し始めてから、被検査物Pの基準位置F,F’が制御対象のエアー振分機構41a,41b,41cのノズル42a,42b,42cの前を通過するまでの時間を算出して、エアー振分機構41a,41b,41cを制御してもよい。 (5) Modification E
In the first embodiment, the
(6)変形例F
また、上記第1実施形態でX線検査装置20のコントローラ30の実行していた処理の一部を振分装置40のコントローラ50が実行し、および/又は、振分装置40のコントローラ50が実行していた処理の一部をX線検査装置20のコントローラ30が実行するように構成されてもよい。例えば、上記第1実施形態では、コントローラ30の噴射時間決定部33dが振分機構41のエアーの噴射時間を決定するが、これに代えて、コントローラ50が、被検査物Pの推定重量の情報をコントローラ30から得て、推定重量に応じて振分機構41のエアーの噴射時間を決定するよう構成されてもよい。 (6) Modification F
In addition, thecontroller 50 of the sorting device 40 executes a part of the processing executed by the controller 30 of the X-ray inspection apparatus 20 in the first embodiment and / or the controller 50 of the sorting apparatus 40 executes. The controller 30 of the X-ray inspection apparatus 20 may be configured to execute part of the processing that has been performed. For example, in the said 1st Embodiment, although the injection time determination part 33d of the controller 30 determines the injection time of the air of the distribution mechanism 41, it replaces with this and the controller 50 is information of the estimated weight of the to-be-inspected object P. May be obtained from the controller 30, and the air injection time of the distribution mechanism 41 may be determined according to the estimated weight.
また、上記第1実施形態でX線検査装置20のコントローラ30の実行していた処理の一部を振分装置40のコントローラ50が実行し、および/又は、振分装置40のコントローラ50が実行していた処理の一部をX線検査装置20のコントローラ30が実行するように構成されてもよい。例えば、上記第1実施形態では、コントローラ30の噴射時間決定部33dが振分機構41のエアーの噴射時間を決定するが、これに代えて、コントローラ50が、被検査物Pの推定重量の情報をコントローラ30から得て、推定重量に応じて振分機構41のエアーの噴射時間を決定するよう構成されてもよい。 (6) Modification F
In addition, the
第2実施形態についても同様である。
The same applies to the second embodiment.
(7)変形例G
上記実施形態では、振分機構41は、エアー振分機構41a,41b,41cを3つ有するが、これに限定されるものではなく、エアー振分機構41a,41b,41cの数量は必要に応じて適宜決定されればよい。 (7) Modification G
In the above-described embodiment, thedistribution mechanism 41 has three air distribution mechanisms 41a, 41b, and 41c. However, the present invention is not limited to this, and the quantity of the air distribution mechanisms 41a, 41b, and 41c is as required. May be determined appropriately.
上記実施形態では、振分機構41は、エアー振分機構41a,41b,41cを3つ有するが、これに限定されるものではなく、エアー振分機構41a,41b,41cの数量は必要に応じて適宜決定されればよい。 (7) Modification G
In the above-described embodiment, the
(8)変形例H
上記第1実施形態では、噴射時間決定部33dが、被検査物Pの推定重量に応じて被検査物Pに対する噴射時間を決定し、決定した噴射時間を振分装置40のコントローラ50に送信するが、これに限定されるものではない。例えば、第2実施形態のように、被検査物Pに対する噴射時間は、推定重量によらず一定としてもよい。ただし、被検査物Pの推定重量に応じて噴射時間を決定することで、被検査物Pを正確に振り分けることが、より容易である。 (8) Modification H
In the first embodiment, the injectiontime determination unit 33d determines the injection time for the inspection object P according to the estimated weight of the inspection object P, and transmits the determined injection time to the controller 50 of the sorting device 40. However, the present invention is not limited to this. For example, as in the second embodiment, the injection time for the inspection object P may be constant regardless of the estimated weight. However, it is easier to accurately distribute the inspection object P by determining the injection time according to the estimated weight of the inspection object P.
上記第1実施形態では、噴射時間決定部33dが、被検査物Pの推定重量に応じて被検査物Pに対する噴射時間を決定し、決定した噴射時間を振分装置40のコントローラ50に送信するが、これに限定されるものではない。例えば、第2実施形態のように、被検査物Pに対する噴射時間は、推定重量によらず一定としてもよい。ただし、被検査物Pの推定重量に応じて噴射時間を決定することで、被検査物Pを正確に振り分けることが、より容易である。 (8) Modification H
In the first embodiment, the injection
また、上記第1実施形態では、被検査物Pの推定重量に基づいて振分機構41のエアーの噴出時間が変更されているが、これに代えて、又は、これに加えて、振分機構制御部53は、被検査物Pの推定重量が重いほどエアーの噴射圧が大きくなるように、振分機構を制御するものであってもよい。
Moreover, in the said 1st Embodiment, although the ejection time of the air of the distribution mechanism 41 is changed based on the estimated weight of the to-be-inspected object P, it replaces with this or in addition to this, the distribution mechanism The control unit 53 may control the distribution mechanism so that the air injection pressure increases as the estimated weight of the inspection object P increases.
(9)変形例I
上記第1実施形態では、1の被検査物Pの外形に基づいて重心Gを算出し、振分機構41が重心Gに向かって力を及ぼすように被検査物Pの基準位置が決定されるが、これに限定されるものではない。 (9) Modification I
In the first embodiment, the center of gravity G is calculated based on the outer shape of one inspection object P, and the reference position of the inspection object P is determined so that thedistribution mechanism 41 exerts a force toward the center of gravity G. However, the present invention is not limited to this.
上記第1実施形態では、1の被検査物Pの外形に基づいて重心Gを算出し、振分機構41が重心Gに向かって力を及ぼすように被検査物Pの基準位置が決定されるが、これに限定されるものではない。 (9) Modification I
In the first embodiment, the center of gravity G is calculated based on the outer shape of one inspection object P, and the reference position of the inspection object P is determined so that the
例えば、容器Aに複数の被検査物Pが入れられているような場合(例えば、袋に入れられた農水産物等)には、撮像機構としてのラインセンサ23およびX線画像生成部33aは、複数の被検査物Pを透過したX線画像を撮像画像して取得してもよい。容器Aは、例えば、プラスチック製のネットや袋等の変形する容器である。そして、基準位置決定部33eは、容器Aに入った複数の被検査物Pの合成重心Gcを算出し、振分機構41が合成重心Gcに向かって力を及ぼすように基準位置F’’’を決定してもよい(図15参照)。このように構成されることで、振分対象物が複数の被検査物Pからなる場合にも、振分対象物を正確に振り分けることが容易である。
For example, when a plurality of inspection objects P are put in the container A (for example, agricultural and fishery products put in a bag), the line sensor 23 and the X-ray image generation unit 33a as an imaging mechanism are X-ray images transmitted through a plurality of inspection objects P may be acquired as captured images. The container A is a deformable container such as a plastic net or bag. Then, the reference position determination unit 33e calculates the combined center of gravity Gc of the plurality of inspection objects P that have entered the container A, and the reference position F ′ ″ so that the distribution mechanism 41 exerts a force toward the combined center of gravity Gc. May be determined (see FIG. 15). By being configured in this way, even when the distribution target is composed of a plurality of inspection objects P, it is easy to accurately distribute the distribution target.
(10)変形例J
上記実施形態において、エアー振分機構41a,41b,41cは、被検査物Pのコンベアベルト11上の位置に応じて、特に被検査物Pのコンベアベルト11の幅方向における位置に応じて、エアーの噴出タイミングを変更するように構成されてもよい。 (10) Modification J
In the above-described embodiment, the air distribution mechanisms 41a, 41b, and 41c are arranged according to the position of the inspection object P on the conveyor belt 11, and particularly according to the position of the inspection object P in the width direction of the conveyor belt 11. It may be configured to change the ejection timing.
上記実施形態において、エアー振分機構41a,41b,41cは、被検査物Pのコンベアベルト11上の位置に応じて、特に被検査物Pのコンベアベルト11の幅方向における位置に応じて、エアーの噴出タイミングを変更するように構成されてもよい。 (10) Modification J
In the above-described embodiment, the
例えば、具体的には、エアー振分機構41a,41b,41cのノズル42a,42b,42cから被検査物Pの図心Z又は重心Gの位置までの、コンベアベルト11の幅方向(コンベアベルト11の搬送方向Dと直交する方向)の距離が所定距離より長い場合には、エアー振分機構41a,41b,41cのエアーの噴出タイミングを通常より早めるよう構成されてもよい。また、逆に、エアー振分機構41a,41b,41cのノズル42a,42b,42cから被検査物Pの図心Z又は重心Gの位置までの、コンベアベルト11の幅方向(コンベアベルト11の搬送方向Dと直交する方向)の距離が所定距離より短い場合には、エアー振分機構41a,41b,41cのエアーの噴出タイミングを通常より遅らせるよう構成されてもよい。
For example, specifically, the width direction of the conveyor belt 11 from the nozzles 42a, 42b, 42c of the air distribution mechanisms 41a, 41b, 41c to the position of the centroid Z or the center of gravity G of the inspection object P (the conveyor belt 11 If the distance in the direction orthogonal to the transport direction D is longer than a predetermined distance, the air ejection timing of the air distribution mechanisms 41a, 41b, and 41c may be set earlier than usual. Conversely, the width direction of the conveyor belt 11 (conveyance of the conveyor belt 11) from the nozzles 42a, 42b, 42c of the air distribution mechanisms 41a, 41b, 41c to the position of the centroid Z or the center of gravity G of the object P to be inspected. When the distance in the direction orthogonal to the direction D is shorter than a predetermined distance, the air ejection timing of the air distribution mechanisms 41a, 41b, and 41c may be configured to be delayed than usual.
これにより、被検査物Pがノズル42a,42b,42cの近くに戴置されているか、あるいは、遠くに戴置されているかによらず、被検査物Pにエアーを吹き付けて、被検査物Pを振り分けることが容易である。
Thus, regardless of whether the inspection object P is placed near the nozzles 42a, 42b, and 42c or placed far away, air is blown to the inspection object P, and the inspection object P It is easy to sort.
(11)変形例K
上記実施形態の検査振分システム100,200は、被検査物Pに含まれる金属を検出する金属検出部の一例としての金属検出装置を備えるものであってもよい。 (11) Modification K
The inspection distribution systems 100 and 200 of the embodiment may include a metal detection device as an example of a metal detection unit that detects a metal contained in the inspection object P.
上記実施形態の検査振分システム100,200は、被検査物Pに含まれる金属を検出する金属検出部の一例としての金属検出装置を備えるものであってもよい。 (11) Modification K
The
例えば、具体的には、検査振分システム100は、図16のように、金属検出装置70を更に備えるものであってもよい。例えば、金属検出装置70は、金属検出手段としての1つの発信コイル(図示せず)および2つの受信コイル(図示せず)を有し、発信コイルの発生させる磁界中を被検査物Pが通過する際に、受信コイルが受信する磁界の差に基づいて被検査物Pに含まれる異物としての金属を検出する。金属検出装置70は、例えば、X線検査装置20のシールドボックス21内に、装置全体が、あるいは金属検出手段が、配置されるよう構成されてもよい。また、例えば、金属検出装置70は、X線検査装置20の上流側の上流コンベアユニット60に、X線検査装置20とは独立して設けられてもよい。振分機構41は、被検査物PのX線画像に基づく検査の結果、および、金属検出装置70の検出結果に基づいて被検査物Pを振り分けるよう構成されてもよい。
For example, specifically, the inspection distribution system 100 may further include a metal detection device 70 as shown in FIG. For example, the metal detection device 70 has one transmission coil (not shown) and two reception coils (not shown) as metal detection means, and the inspection object P passes through a magnetic field generated by the transmission coil. In doing so, metal as a foreign substance contained in the inspection object P is detected based on the difference in magnetic field received by the receiving coil. The metal detection apparatus 70 may be configured such that, for example, the entire apparatus or metal detection means is arranged in the shield box 21 of the X-ray inspection apparatus 20. Further, for example, the metal detection device 70 may be provided on the upstream conveyor unit 60 on the upstream side of the X-ray inspection device 20 independently of the X-ray inspection device 20. The distribution mechanism 41 may be configured to distribute the inspection object P based on the inspection result based on the X-ray image of the inspection object P and the detection result of the metal detection device 70.
この様に構成されることで、図16の検査振分システム100では、金属を異物として含む被検査物Pを、被検査物Pの外形によらず、正確に被検査物Pを移動させ振り分けることができる。特に、検査振分システム100では、振分機構41が被検査物Pの重心Gに向かって力を作用させるため、金属を異物に含む被検査物Pを、被検査物Pの外形によらず正確に振り分けることが容易である。
With this configuration, in the inspection distribution system 100 of FIG. 16, the inspection object P containing metal as a foreign object is accurately moved and distributed regardless of the outer shape of the inspection object P. be able to. In particular, in the inspection distribution system 100, since the distribution mechanism 41 applies a force toward the center of gravity G of the inspection object P, the inspection object P containing a metal as a foreign object can be used regardless of the outer shape of the inspection object P. It is easy to sort accurately.
さらに、検査振分システム100が、ランク検査に代えて、あるいは、ランク検査に加えて、被検査物PのX線画像に基づく異物検査の結果、および、金属検出装置70の検出結果(異物検査結果)に基づいて被検査物Pを振り分けるよう構成されれば、例えばアルミや鉄粉等X線検査では検出しにくい異物が被検査物Pに混入している場合であっても、金属検出装置70によってこれらの異物を検知し、異物の混入している被検査物Pを振分機構41により正確に振り分けることが容易である。
Further, the inspection distribution system 100 replaces the rank inspection or in addition to the rank inspection, the result of the foreign matter inspection based on the X-ray image of the inspection object P and the detection result of the metal detection device 70 (foreign matter inspection). If the inspection object P is configured to be distributed based on the result), the metal detection device, for example, even when foreign matter that is difficult to detect in the X-ray inspection such as aluminum or iron powder is mixed in the inspection object P. It is easy to detect these foreign matters by 70 and accurately sort the inspection object P in which the foreign matters are mixed by the distribution mechanism 41.
本発明は、不定形な物品を検査、振り分けの対象とする検査振分システムであって、物品の外形によらず正確に物品を振り分けることが容易な、信頼性の高い検査振分システムとして有用である。
INDUSTRIAL APPLICABILITY The present invention is an inspection distribution system for inspecting and distributing irregularly shaped articles, and is useful as a highly reliable inspection distribution system that can easily distribute articles accurately regardless of the outer shape of the article. It is.
10 搬送装置(搬送機構)
23 ラインセンサ(撮像機構)
33a X線画像生成部(撮像機構)
33b 重量推定部
33e 基準位置決定部(決定部)
41 振分機構
53,253 振分機構制御部
70 金属検出装置(金属検出部)
100,200 検査振分システム
223 カメラ(撮像機構)
233a 画像生成部(撮像機構)
F,F’,F’’,F’’’ 基準位置
G 重心
Gc 合成重心
P 被検査物(物品)
Z 図心 10 Conveying device (conveying mechanism)
23 Line sensor (imaging mechanism)
33a X-ray image generation unit (imaging mechanism)
33bWeight estimation unit 33e Reference position determination unit (determination unit)
41 Distributing Mechanism 53, 253 Distributing Mechanism Control Unit 70 Metal Detection Device (Metal Detection Unit)
100, 200Inspection distribution system 223 Camera (imaging mechanism)
233a Image generation unit (imaging mechanism)
F, F ′, F ″, F ′ ″ Reference position G Center of gravity Gc Composite center of gravity P Inspection object (article)
Z centroid
23 ラインセンサ(撮像機構)
33a X線画像生成部(撮像機構)
33b 重量推定部
33e 基準位置決定部(決定部)
41 振分機構
53,253 振分機構制御部
70 金属検出装置(金属検出部)
100,200 検査振分システム
223 カメラ(撮像機構)
233a 画像生成部(撮像機構)
F,F’,F’’,F’’’ 基準位置
G 重心
Gc 合成重心
P 被検査物(物品)
Z 図心 10 Conveying device (conveying mechanism)
23 Line sensor (imaging mechanism)
33a X-ray image generation unit (imaging mechanism)
33b
41
100, 200
233a Image generation unit (imaging mechanism)
F, F ′, F ″, F ′ ″ Reference position G Center of gravity Gc Composite center of gravity P Inspection object (article)
Z centroid
Claims (8)
- 不定形の物品を検査し、検査結果に基づいて前記物品を振り分ける検査振分システムであって、
前記物品を搬送する搬送機構と、
前記搬送機構により搬送される前記物品を撮像し、前記物品の撮像画像を取得する撮像機構と、
前記物品を振り分ける振分機構と、
前記撮像画像から前記物品の外形を抽出し、前記物品の前記外形に基づいて、前記振分機構が前記物品を振り分ける基準位置を決定する決定部と、
前記振分機構が、前記基準位置に力を作用させるよう、前記振分機構を制御する振分機構制御部と、
を備えた、検査振分システム。 An inspection distribution system that inspects irregularly shaped articles and distributes the articles based on inspection results,
A transport mechanism for transporting the article;
An imaging mechanism that images the article conveyed by the conveyance mechanism and acquires a captured image of the article;
A sorting mechanism for sorting the articles;
A determination unit that extracts an outer shape of the article from the captured image, and determines a reference position to which the distribution mechanism distributes the article based on the outer shape of the article;
A distribution mechanism control unit that controls the distribution mechanism so that the distribution mechanism applies a force to the reference position;
Inspection distribution system with - 前記決定部は、前記物品の前記外形に基づいて前記物品の図心を算出し、前記振分機構が前記図心に向かって力を及ぼすように前記基準位置を決定する、
請求項1に記載の検査振分システム。 The determining unit calculates a centroid of the article based on the outer shape of the article, and determines the reference position so that the distribution mechanism exerts a force toward the centroid;
The inspection distribution system according to claim 1. - 前記撮像機構は、前記物品のX線画像を前記撮像画像として取得し、
前記決定部は、前記物品の前記外形に基づいて前記物品の重心を算出し、前記振分機構が前記重心に向かって力を及ぼすように前記基準位置を決定する、
請求項1に記載の検査振分システム。 The imaging mechanism acquires an X-ray image of the article as the captured image,
The determining unit calculates the center of gravity of the article based on the outer shape of the article, and determines the reference position so that the distribution mechanism exerts a force toward the center of gravity.
The inspection distribution system according to claim 1. - 前記撮像画像に基づいて前記物品の重量を推定する重量推定部、
を更に備え、
前記振分機構は、前記物品にエアーを噴射することで、前記物品に力を作用させて振り分け、
前記振分機構制御部は、前記重量推定部が推定した前記物品の前記重量に基づいて、前記振分機構のエアーの噴射時間および噴射圧の少なくとも一方が調整されるよう、前記振分機構を更に制御する、
請求項3に記載の検査振分システム。 A weight estimation unit for estimating the weight of the article based on the captured image;
Further comprising
The distribution mechanism distributes by applying force to the article by injecting air to the article,
The distribution mechanism control unit controls the distribution mechanism so that at least one of air injection time and injection pressure of the distribution mechanism is adjusted based on the weight of the article estimated by the weight estimation unit. Further control,
The inspection distribution system according to claim 3. - 前記物品に含まれる金属を検出する金属検出部、
を更に備え、
前記振分機構は、前記物品のX線画像に基づく検査の結果、および、前記金属検出部の検出結果に基づいて前記物品を振り分ける、
請求項3又は4に記載の検査振分システム。 A metal detection unit for detecting a metal contained in the article,
Further comprising
The distribution mechanism distributes the article based on a result of an inspection based on an X-ray image of the article and a detection result of the metal detection unit,
The inspection distribution system according to claim 3 or 4. - 前記物品は自然物である、
請求項1から5のいずれか1項に記載の検査振分システム。 The article is a natural object,
The inspection distribution system according to any one of claims 1 to 5. - 当該検査振分システムは、検査により前記物品のランクを決定し、
前記振分機構は、前記ランク別に前記物品を振り分ける、
請求項1から6のいずれか1項に記載の検査振分システム。 The inspection distribution system determines the rank of the article by inspection,
The sorting mechanism sorts the articles by rank.
The inspection distribution system according to any one of claims 1 to 6. - 前記撮像機構は、複数の前記物品のX線画像を前記撮像画像として取得し、
前記決定部は、複数の前記物品の合成重心を算出し、前記振分機構が前記合成重心に向かって力を及ぼすように前記基準位置を決定する、
請求項1に記載の検査振分システム。 The imaging mechanism acquires X-ray images of a plurality of the articles as the captured images,
The determining unit calculates a composite gravity center of the plurality of articles, and determines the reference position so that the distribution mechanism exerts a force toward the composite gravity center;
The inspection distribution system according to claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014167004A JP2017176896A (en) | 2014-08-19 | 2014-08-19 | Inspection distribution system |
JP2014-167004 | 2014-08-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016027813A1 true WO2016027813A1 (en) | 2016-02-25 |
Family
ID=55350757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/073158 WO2016027813A1 (en) | 2014-08-19 | 2015-08-18 | Inspection/sorting system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017176896A (en) |
WO (1) | WO2016027813A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017167083A (en) * | 2016-03-18 | 2017-09-21 | 株式会社イシダ | Article inspection system |
CN113671891A (en) * | 2021-08-03 | 2021-11-19 | 合肥友高物联网标识设备有限公司 | Online detection rejection control method |
CN114769145A (en) * | 2022-04-27 | 2022-07-22 | 合肥名德光电科技股份有限公司 | MDX multiple-radiation-source sorting system |
JP2022117578A (en) * | 2021-02-01 | 2022-08-12 | アンリツ株式会社 | Article removal device and article inspection system |
EP3600702B1 (en) | 2017-03-28 | 2023-10-18 | Huron Valley Steel Corporation | System and method for sorting scrap materials |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7306158B2 (en) * | 2019-08-27 | 2023-07-11 | 株式会社サタケ | Optical granular material sorter |
JP2021156759A (en) * | 2020-03-27 | 2021-10-07 | キヤノン株式会社 | Identification apparatus |
JP7397016B2 (en) * | 2021-02-18 | 2023-12-12 | アンリツ株式会社 | Article conveyance equipment, article sorting equipment, and article inspection equipment |
JP7386196B2 (en) * | 2021-02-19 | 2023-11-24 | アンリツ株式会社 | Article removal device and article inspection system |
JP7420758B2 (en) | 2021-02-19 | 2024-01-23 | アンリツ株式会社 | Article removal device and article inspection system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5898180A (en) * | 1981-12-08 | 1983-06-10 | 三菱電機株式会社 | Selector |
JPH0810717A (en) * | 1994-06-30 | 1996-01-16 | Ishida Co Ltd | Selector |
JP2000157937A (en) * | 1998-11-26 | 2000-06-13 | Nkk Corp | High speed sorting device |
JP2000197855A (en) * | 1998-11-04 | 2000-07-18 | Satake Eng Co Ltd | Method and apparatus for color-selecting grain |
JP2008039495A (en) * | 2006-08-03 | 2008-02-21 | Ishida Co Ltd | X-ray inspection system |
-
2014
- 2014-08-19 JP JP2014167004A patent/JP2017176896A/en active Pending
-
2015
- 2015-08-18 WO PCT/JP2015/073158 patent/WO2016027813A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5898180A (en) * | 1981-12-08 | 1983-06-10 | 三菱電機株式会社 | Selector |
JPH0810717A (en) * | 1994-06-30 | 1996-01-16 | Ishida Co Ltd | Selector |
JP2000197855A (en) * | 1998-11-04 | 2000-07-18 | Satake Eng Co Ltd | Method and apparatus for color-selecting grain |
JP2000157937A (en) * | 1998-11-26 | 2000-06-13 | Nkk Corp | High speed sorting device |
JP2008039495A (en) * | 2006-08-03 | 2008-02-21 | Ishida Co Ltd | X-ray inspection system |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017167083A (en) * | 2016-03-18 | 2017-09-21 | 株式会社イシダ | Article inspection system |
EP3600702B1 (en) | 2017-03-28 | 2023-10-18 | Huron Valley Steel Corporation | System and method for sorting scrap materials |
JP2022117578A (en) * | 2021-02-01 | 2022-08-12 | アンリツ株式会社 | Article removal device and article inspection system |
JP7403484B2 (en) | 2021-02-01 | 2023-12-22 | アンリツ株式会社 | Article removal device and article inspection system |
CN113671891A (en) * | 2021-08-03 | 2021-11-19 | 合肥友高物联网标识设备有限公司 | Online detection rejection control method |
CN114769145A (en) * | 2022-04-27 | 2022-07-22 | 合肥名德光电科技股份有限公司 | MDX multiple-radiation-source sorting system |
CN114769145B (en) * | 2022-04-27 | 2024-03-26 | 合肥名德光电科技股份有限公司 | MDX multi-source sorting system |
Also Published As
Publication number | Publication date |
---|---|
JP2017176896A (en) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016027813A1 (en) | Inspection/sorting system | |
WO2016021623A1 (en) | Inspection and sorting system | |
US6816571B2 (en) | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner | |
US11977036B2 (en) | Inspection device | |
JP5340717B2 (en) | X-ray inspection equipment | |
CN104338684B (en) | Feed appliance speed detector and feed appliance | |
CN103827626B (en) | Three-dimensional measuring apparatus | |
JP6920988B2 (en) | Inspection equipment | |
US8780358B2 (en) | Inspection apparatus, system, and method | |
WO2016063380A1 (en) | Package inspecting apparatus | |
CN111757783B (en) | Identification of articles that cannot be transported | |
WO2021155506A1 (en) | Intelligent photoelectric sorting machine and product separation method thereof | |
CN110850493A (en) | Linear array high-speed security inspection machine for visual image judgment of scanning imaging machine | |
KR20190011198A (en) | System for defect inspection and method for defect inspection | |
GB2451076A (en) | Inspection apparatus and method using penetrating radiation | |
JP2002228761A (en) | X-ray foreign mater detector and method of detecting defective in the detector | |
JP2016156647A (en) | Inspection device using electromagnetic wave | |
CN105049700B (en) | Feed appliance image processing apparatus and feed appliance | |
JP6346753B2 (en) | Package inspection equipment | |
US11079344B2 (en) | Radiation detection device, radiation image acquisition device, and radiation image acquisition method | |
JP2015137858A (en) | Inspection device | |
JP2014048177A (en) | X-ray inspection apparatus | |
JP2015158454A (en) | Inspection device using inspection wave | |
JP5875878B2 (en) | Density calculation device | |
JP2009222580A (en) | Inspection apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15834058 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15834058 Country of ref document: EP Kind code of ref document: A1 |