[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016023776A1 - Verfahren zur herstellung von ethylenhaltigem spaltgas und spaltrohr zur verwendung in dem verfahren - Google Patents

Verfahren zur herstellung von ethylenhaltigem spaltgas und spaltrohr zur verwendung in dem verfahren Download PDF

Info

Publication number
WO2016023776A1
WO2016023776A1 PCT/EP2015/067772 EP2015067772W WO2016023776A1 WO 2016023776 A1 WO2016023776 A1 WO 2016023776A1 EP 2015067772 W EP2015067772 W EP 2015067772W WO 2016023776 A1 WO2016023776 A1 WO 2016023776A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
canned
tube
flowed
hydrocarbon
Prior art date
Application number
PCT/EP2015/067772
Other languages
English (en)
French (fr)
Inventor
Maximilian Walter
Eric Jenne
Natalie GELDER
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2016023776A1 publication Critical patent/WO2016023776A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • C10G9/203Tube furnaces chemical composition of the tubes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours

Definitions

  • the invention relates to a process for the production of ethylene-containing cracked gas by thermal cracking of a hydrocarbon or hydrocarbon mixture in the presence of water vapor in a can at temperatures in the range of 600 to 1000 ° C and a Spaltgasaustrittstemperatur in the range of 750 to 1000 ° C.
  • the invention further relates to a can for use in a process for the production of ethylene-containing cracking gas by thermal cracking of a hydrocarbon or hydrocarbon mixture in the presence of water vapor.
  • the thermal cracking of hydrocarbons in the presence of water vapor in a canned oven finds widespread use in ethylene plants (steam crackers), in which in addition to the ethylene, other valuable unsaturated compounds such as propylene and butadiene and Pyrolysis gasoline with a high proportion of aromatic hydrocarbons such as benzene, toluene and xylene are won.
  • steam crackers in which in addition to the ethylene, other valuable unsaturated compounds such as propylene and butadiene and Pyrolysis gasoline with a high proportion of aromatic hydrocarbons such as benzene, toluene and xylene are won.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • residence times for the hydrocarbons in the cans of the can furnace of 0.1 to 0.6 seconds (s) and outlet temperatures of the cracked gases from the cans of more than 750 ° C., generally between 800 and 1000 ° C., are preferred , complied. See, e.g. D. Glietenberg et al., Ullmanns Encyklopadie der ischen Chemie, 4th ed., Volume 8,
  • the canned oven must be turned off and the crevices of the deposits, esp. The coke, freed.
  • the split tubes and associated moldings are usually freed of the deposits with a water vapor / air mixture or even only with air at temperatures of 700 to 1000 ° C, as for example. in EP 36151 A1 (BASF AG).
  • Catalytically active coatings on the inner surface of cans or canned systems which can significantly reduce carbonaceous deposits, especially coke deposits, and convert these deposits, especially coke, into CO and CO2, such as, for example, coke.
  • Camol TM Catalytically active coatings on the inner surface of cans or canned systems which can significantly reduce carbonaceous deposits, especially coke deposits, and convert these deposits, especially coke, into CO and CO2, such as, for example, coke.
  • Highly alloyed surface alumina-forming Cr, Ni and Al-containing steels i.e., Cr-Ni-Al-Fe alloys
  • castings made therefrom by centrifugal casting and molded articles preferably made by molding using the same alloys.
  • Catalytically active coatings e.g. CAMOL TM have the disadvantage of all catalytic processes of being contaminated during operation with impurities, e.g. Sulfur compounds, and indefinite operating conditions in the canned oven lose activity.
  • US 6,488,839 B1 (Inst. Francais du Petrole) relates to the thermal decomposition of hydrocarbons in the presence of steam in pipes under certain boundary conditions such as residence time t, furnace outlet temperature COT, hydraulic diameter DH and pipe length L, with 150 ms ⁇ t ⁇ 2800 ms, 858 ° C ⁇ COT ⁇ 1025 ° C, D H > 34 mm and L> 16 m.
  • the end portion of the tube may also have anti-coking coating and / or internal ribs.
  • US 2003/188850 A1 Honeywell Internat.
  • Inc. teaches a tube assembly for cooling and removing contaminants from an incoming fluid stream, wherein the tube a turbulator having elongated strips and a catalytic coating adhered to at least the strip or the inner surfaces, wherein the catalytic coating is in contact with the fluid flow flowing through the tubes.
  • the object of the present invention while overcoming disadvantages of the prior art, is to provide an improved economical process for the production of ethylene-containing cracked gas.
  • the process should make it possible, by increasing the service life of crevices, to increase the production times for fission gas, e.g. between two decoking phases, to extend.
  • the process should also be particularly advantageous if, in the inlet region of catalytic canned systems, there is a temperature range at which the catalytic coating is not or only insufficiently restored after decoking, i. not or only insufficiently regenerated, can be.
  • the inner surface of the split tube is geometrically modified in the region through which it flows first, whereby carbonaceous deposits in the tube are reduced,
  • a canned tube for use in a process for producing ethylene-containing cracking gas by thermal cracking of a hydrocarbon or hydrocarbon mixture in the presence of water vapor esp.
  • the inner surface of the split tube is geometrically modified in the first area to be flowed, whereby carbonaceous deposits are reduced in the pipe in the production process for fission gas, and the can in the thereafter to be flowed through area on the inner surface of a catalytically active coating has, which reduces carbonaceous deposits in the pipe in the production process for fission gas.
  • the canned tube according to the invention and the crevice tube used in the method according to the invention therefore does not have the catalytically active coating on the inner surface in the region to be flowed through initially, but only in the region to be flowed thereafter.
  • the inner surface of the can is geometrically not modified in the area to be flowed thereafter (in contrast to the inner surface of the can in the area to be flowed through first).
  • Suitable starting hydrocarbons for the thermal cracking are ethane, propane, butane, liquefied petroleum gas (LPG), gasoline fractions such as mineral spirits, e.g. Light gasoline having the boiling range of about 30 to 150 ° C, gasoline (full-range naphtha), e.g. Gasoline with the boiling range of about 30 to 180 ° C, heavy gasoline, e.g. Heavy gasoline with the boiling range of about 150 to 220 ° C, kerosene, e.g. Kerosene with the boiling range of about 200 to 260 ° C, gas oils such as light gas oil, e.g. light gas oil having the boiling range of about 200 to 360 ° C, heavy gas oil, e.g. heavy gas oil with the boiling range of approx. 310 to 430 ° C, and vacuum distillates. Furthermore, mixtures or combinations of the suitable starting hydrocarbons can be used for the thermal cracking.
  • LPG liquefied petroleum gas
  • gasoline fractions such as mineral spirits
  • Preferred hydrocarbons for the production of ethylene-containing cracked gases are gases such as ethane, propane and mixtures containing ethane and propane, LPG, gasoline fractions, kerosene, bionaphtha, condensates, which are e.g. are obtained from gas fields, and / or gas oils and mixtures thereof.
  • the split tubes to be modified partly geometrically and partly to be provided internally with a catalytically active coating may be straight tubes or curved tubes, such as tube coils.
  • the term 'split tube' in particular also includes molded parts connected to the split tube, such as Y-pieces, collectors, reversal bends, reducers.
  • Canned pipe plus connected moldings are also called canned system.
  • Canned systems can be provided e.g. 1 to 20 reversal bends (or even more), especially e.g. 1 to 1 1 reverse bends, and corresponding to 2 to 21 (or correspondingly more), especially 2 to 12, passports.
  • Passes in an initially traversed area can also be divided into several, e.g. 2 to 25, parallel tubes and possibly reversal bends be divided.
  • the Linde PYROCRACK® 4-2 Canned Pipe System (Fig. 2) consists of 6 passports and 5 reversing bends, with 4 passages divided into 2 parallel pipes in an initially flown-through area.
  • crevices and canned systems described herein in the previous three paragraphs are conventional, non-geometrically modified crevices and canned systems.
  • the total length of the canned pipe is measured from the crevice pipe entrance to the crevasse pipe outlet, thus also over the total length of a canned pipe system.
  • When sizing the length only one pipe counts in parallel pipes connecting later in the run (e.g., via Y-pieces or collectors).
  • the decisive factor is the shortest possible path length via the split-tube system.
  • the can is preferably heated indirectly in the canned oven, ie. the split tube is not heated directly by a flame, but indirectly via the heat radiation of a flame.
  • the thermal cleavage of the hydrocarbon or hydrocarbon mixture is preferably carried out at temperatures in the range of 600 to 1000 ° C, especially 700 to 1000 ° C.
  • the thermal cleavage of the hydrocarbon or hydrocarbon mixture is preferably carried out in the first flow-through range at temperatures in the range of 600 to 800 ° C and in the thereafter flowed through at temperatures in the range of 700 to 1000 ° C.
  • the outlet temperatures of the cracked gas from the split tube are 750 to 1000 ° C, preferably 780 to 950 ° C, in particular 800 to 900 ° C.
  • the residence times in the can are particularly 0.05 to 1 second (s), preferably 0.08 to 0.6 s, in particular 0.1 to 0.3 s.
  • the heat loads of the cans in the canned oven are preferably 64 kW / m 2 h to 128 kW / m 2 h (40,000 to 80,000 kcal / m 2 h), preferably 58 kW / m 2 h to 81 kW / m 2 h (50,000 to 70,000 kcal / m 2 h).
  • the weight ratio of water vapor to the hydrocarbon used or to the hydrocarbon mixture used is in the thermal cracking particularly in the range of 0.1 to 1, preferably in the range of 0.2 to 0.8, and more particularly in the range of 0.3 to 0th , 7th
  • the pressure in the can is in the thermal cleavage especially 1, 5 to 5 bar, especially 1, 6 to 2.5 bar.
  • the inner surface of the split tube is geometrically modified in the first area through which it flows.
  • the geometric modification causes changed flow conditions, e.g. increased turbulent flow of the gas to be split in the pipe, whereby carbonaceous deposits are reduced in the pipe.
  • This can e.g. by internals, such as baffles, spirals (e.g., uninterrupted spirals or spirals with successive breaks), ribs, coils, can be achieved in the can.
  • the geometric modification may also include additional bends, possibly in combination with internals, of the can (as compared to a conventional can). Examples of such bends are helically shaped tubes, helical shaped tubes, and wavy shaped tubes.
  • the area through which flow passes first preferably has a length in the range of 15 to 60%, in particular 20 to 55%, very particularly 25 to 50%, in each case based on the total length of the can.
  • the area through which flows thereafter directly adjoins the region through which flow has taken place.
  • This results in the preferred length of the area flowed through thereafter from the above-mentioned lengths for the area through which the first flow passes (total length 100%).
  • between the two areas is a conventional range, for example over a length of> 0 to 20% (based on the total length of the can), without geometric modification and without catalytically active coating.
  • the length of the first area flowed through increases with the residence time of the cracked gas in the can.
  • the area through which flow first flows preferably has a length in the range from 15 to 40%, in particular from 20 to 40%, very particularly from 25 to 40%, based in each case on Total length of the can, on and has at residence times in the range of> 0.60 s (eg to 1 s) of the first flow-through range preferably has a length in the range of> 40 to 60%, especially> 40 to 55%, especially> 40 up to 50%, in each case based on the total length of the can.
  • the concentration of hydrogen in the can in the location or in the region between the geometrically modified part and the catalytically active coated part is preferably in the range of 2 to 5% by volume, especially 3 to 4% by volume.
  • the inner surface of the split tube is geometrically modified in the region through which it flows first, and in the region through which it flows, it has a catalytically active coating on the inner surface.
  • the catalytically active coating which is applied in particular after the production of the can and before its use for thermal hydrocarbon cleavage on its inner surface, compared to a conventional can, a reduction of carbonaceous deposits in the pipe.
  • Such catalytic cracking tubes and canned systems also called “steam cracker furnace tubes with catalytic surface coatings" are also available on the market, see, for example, the above-mentioned Catalyzed-Assisted Manufacture of Olefin (CAMOL) systems also referred to as a "catalytic coating", “catalyst layer” or as a “catalyst”; the catalyst is present as a layer on the inner surface of the can.
  • the layer preferably has a thickness in the range of 0.05 to 5 mm, more preferably in the range from 0.1 to 3 mm, especially in the range of 0.2 to 2 mm.
  • the catalytically active coating of the can contains as active component one or more metals of subgroups VIB, VI IB, VIII of the Periodic Table (Chemical Abstracts Service group notation), e.g. Cr, Mo, W, Mn, Re, Co, Ni.
  • these metals are present in the coating in oxidized form (oxidation number is> 0, especially in the range of 1 to 8, e.g., 2 to 7).
  • Mn manganese
  • CAMOL TM coatings as e.g. in the BASF publication "CAMOL TM Catalytic Coatings for Steam cracker furnace tubes", BF-9657 3/12. These are the so-called “Low-Catalytic Gasification (LCG) Coating” and the so-called “High-Catalytic Gasification (HCG) Coating”.
  • LCG Low-Catalytic Gasification
  • HCG High-Catalytic Gasification
  • Examples Figure 1 shows schematically a canned oven including an inventive canned system with convection zone and radiation zone and quench cooler for the cracked gas.
  • the canned system is located in the radiation zone.
  • a mixture of up to 2.2 t / h of a gasoline fraction (naphtha) having a boiling range of 40 to 180 ° C and 1, 0 t / h steam were passed per canned system and at a crevice tube outlet temperature thermally split up to 840 ° C.
  • a canned system consists of 18 parallel, vertical inlet tubes, which are flowed through from top to bottom and merged into a manifold. From there, the fission gas is led out of the furnace in 2 parallel, vertical outlet pipes, which are flowed through from bottom to top.
  • the canned system is constructed analogously to a selective 2-pass canned system with the designation SRT®-V from CB & I (Lummus); see. Fig. 3.
  • SRT®-V from CB & I (Lummus); see. Fig. 3.
  • the cracked gas from each of two split-tube systems is cooled in a downstream split-gas cooler.
  • the split tubes were provided with a geometrical modification applied internally to the surface, namely an uninterrupted inner spiral in the straight tube sections, namely MERT (not a MERT), both in the front region of the can system, which was flowed through first, and in the subsequently flowed through section of the can system.
  • Modification such as sMERT, xMERT), as described in the publication M. Györffy et al., MERT Performance and technology update, 2009 AIChE Spring National Meeting (April 26-30, 2009).
  • the manually measured pipe wall temperature at the outlet of the canned system could be 930 to 960 ° C.
  • the tube wall temperature at the measured point in the last flowed through region of the crevice tube system could finally rise to up to 1100 ° C. after several months of running time, the highest tube wall temperature used for the material at this point of the canned tube system.
  • the differential pressure of the flow nozzles in the inlet of the can system could be reduced to the minimum applied differential pressure limit of 0.3 bar.
  • the hydrocarbon stream was interrupted by the canned oven and the canned systems separated from the rest of the process and freed from the coke by means of oxygen.
  • a temperature in the range of 760 to 825 ° C and a pressure of 1, 05 to 3 bar over a total period of 60 hours at the beginning of a steam / air mixture passed into the gap tubes, which in the further course by reducing the amount of steam was changed so that the amount of air in the mixture of initially 10 wt .-% increased to 70 wt .-%.
  • a canned system consists of 18 parallel, vertical inlet tubes, which are flowed through from top to bottom and merged into a manifold. From there, the fission gas is led out of the furnace in 2 parallel, vertical outlet pipes, which are flowed through from bottom to top.
  • the canned system is constructed analogously to a selective 2-pass canned system with the designation SRT®-V from CB & I (Lummus); see. Fig. 3.
  • SRT®-V from CB & I (Lummus); see. Fig. 3.
  • the cracked gas from each of two split-tube systems is cooled in a downstream split-gas cooler.
  • the split tubes were internally provided with a catalytically active coating containing manganese as described in the BASF publication "CAMOL TM catalytic coatings for steam cracker furnace tubes", BF-9657 3/12.
  • a combination of Low-Catalytic Gasification (LCG) Coating in the front, first-flow area and High-Catalytic Gasification (HCG) Coating in the rear, last-flowed area of the can system were used.
  • the manually measured pipe wall temperature at the outlet of the canned system was 940 to 980 ° C.
  • the tube wall temperature at the measured location in the canned system eventually increased to 1 100 ° C after several months running time, the highest tube wall temperature used for the material and coating of this canned system.
  • the differential pressure of the flow nozzles in the inlet of the can system could be reduced to the minimum applied differential pressure limit of 0.3 bar.
  • one of the criteria 'wall temperature' or 'differential pressure' could be decisive for the interruption of the production operation and the initiation of the decoking procedure.
  • the hydrocarbon stream was interrupted by the canned oven and the canned systems separated from the process and freed from coke by oxygen.
  • a mixture of up to 2.2 t / h of a gasoline fraction (naphtha) with a boiling range of 40 to 180 ° C and 1, 0 t / h steam are passed per canned system and at a split tube outlet temperature of up to 840 ° C thermally split.
  • a canned system consists of 18 parallel, vertical inlet tubes, which are flowed through from top to bottom and merged into a manifold. From there, the fission gas is led out of the furnace in 2 parallel, vertical outlet pipes, which are flowed through from bottom to top.
  • the canned system is constructed analogously to a selective 2-pass canned system with the designation SRT®-V from CB & I (Lummus); see. Fig. 3.
  • SRT®-V from CB & I (Lummus); see. Fig. 3.
  • the cracked gas from each of two split-tube systems is cooled in a downstream split-gas cooler.
  • the split tubes are geometrically modified in the front, first through-flow region of the can system as described above in Comparative Example 1.
  • the geometric modification of the gap tubes in the inlet area comprises a length of 30% of the total length of the can system.
  • the canned system is inside with a catalytically active coating containing manganese and tungsten, namely 'High Catalytic Gasification (HCG) Coating', as described in the BASF publication "CAMOL TM catalytic coatings for steam cracker furnace tubes", BF-9657 3/12.
  • HCG High Catalytic Gasification
  • the tube wall temperature at the measured point in the last flowed through area of the canned system can finally increase after several months running time up to 1 100 ° C, the highest applied to the material and the coating at this point of the canned pipe wall temperature.
  • the differential pressure of the flow nozzles in the inlet of the can system can be reduced to the minimum applied differential pressure limit of 0.3 bar.
  • the hydrocarbon stream is interrupted by the canned oven and the canned systems separated from the rest of the process and freed from the coke by means of oxygen.
  • the hydrocarbon stream is interrupted by the canned oven and the canned systems separated from the rest of the process and freed from the coke by means of oxygen.
  • a temperature in the range of 760 to 825 ° C and a pressure of 1, 05 to 3 bar over a total period of 60 hours at the beginning of a water vapor / air mixture passed into the gap tubes, which in the further course by reducing the amount of steam is changed so that the amount of air in the mixture of initially 10 wt .-% to 70 wt .-% increases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Verfahren zur Herstellung von ethylenhaltigem Spaltgas durch thermische Spaltung eines Kohlenwasserstoffes oder Kohlenwasserstoffgemisches in Gegenwart von Wasserdampf in einem Spaltrohr bei Temperaturen im Bereich von 600 bis 1000 °C und einer Spaltgasaustrittstemperatur im Bereich von 750 bis 1000 °C, wobei die Innenoberfläche des Spaltrohrs im zuerst durchströmten Bereich geometrisch modifiziert ist, wodurch kohlenstoffhaltige Ablagerungen im Rohr vermindert werden, und das Spaltrohr im danach durchströmten Bereich auf der Innen- oberfläche eine katalytisch aktive Beschichtung aufweist, die kohlenstoffhaltige Ablagerungen im Rohr vermindert, sowie Spaltrohr zur Verwendung in dem Verfahren.

Description

Verfahren zur Herstellung von ethylenhaltigem Spaltgas und Spaltrohr zur Verwendung in dem Verfahren
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von ethylenhaltigem Spaltgas durch thermische Spaltung eines Kohlenwasserstoffes oder Kohlenwasserstoffgemisches in Gegenwart von Wasserdampf in einem Spaltrohr bei Temperaturen im Bereich von 600 bis 1000 °C und einer Spaltgasaustrittstemperatur im Bereich von 750 bis 1000 °C.
Die Erfindung betrifft weiterhin ein Spaltrohr zur Verwendung in einem Verfahren zur Herstellung von ethylenhaltigem Spaltgas durch thermische Spaltung eines Kohlenwasserstoffes oder Kohlenwasserstoffgemisches in Gegenwart von Wasserdampf. Das thermische Spalten von Kohlenwasserstoffen in Gegenwart von Wasserdampf in einem Spaltrohrofen, in dem in der Regel die Rohre indirekt beheizt werden, findet eine weit verbreitete Anwendung in Ethylenanlagen (Steamcracker), in denen neben dem Ethylen noch weitere wertvolle ungesättigte Verbindungen wie Propylen und Butadien sowie Pyrolysebenzin mit einem hohen Anteil an aromatischen Kohlenwasserstoffen wie Benzol, Toluol und Xylol gewon- nen werden. Die Entwicklung des Verfahrens hat zu immer kürzeren Verweilzeiten in den Spaltrohren des Spaltrohrofens und zu immer höheren Spalttemperaturen geführt. Bei den modernen Verfahren werden bevorzugt Verweilzeiten für die Kohlenwasserstoffe in den Spaltrohren des Spaltrohrofens von 0,1 bis 0,6 Sekunden (s) und Austrittstemperaturen der Spaltgase aus den Spaltrohren von mehr als 750 °C, in der Regel zwischen 800 und 1000 °C, eingehalten. Siehe z.B. D. Glietenberg et al., Ullmanns Encyklopädie der technischen Chemie, 4. Aufl., Band 8,
Seiten 158 - 194 (Äthylen), Verlag Chemie, Weinheim, 1974, und L. Kniel, O. Winter, K. Stork, Ethylene: Keystone to the Petrochemical Industry, Marcel Dekker Inc., New York, 1980.
Obwohl die thermische Spaltung von Kohlenwasserstoffen in Gegenwart von Wasser-dampf einen hohen technischen Stand erreicht hat, haftet dem Verfahren ein beträchtlicher Nachteil an, nämlich die Bildung und Ablagerung von kohlenstoffhaltigen Stoffen, insb. Koks, auf den Innenwänden der Spaltrohre und den damit verbundenen, also zugehörigen, Formteilen im Spaltrohrofen, auch Verkokung genannt. Durch die isolierende Wirkung dieser Ablagerungen, insb. des Kokses, erhöht sich die Rohrwandtemperatur der Spaltrohre und der zugehörigen Formteile und der Druckverlust steigt an.
Bei diesen extremen Bedingungen findet
ohne Anwendung von ganz besonderen Werkstoffen,
ohne spezielle geometrische Veränderung der Spaltrohrinnenoberfläche zur Ablage- rungsverhindernden Manipulation der wandnahen Strömung oder
ohne spezielle Beschichtung der Innenoberfläche
eine beschleunigte starke Verkokung der Spaltrohre und zugehörigen Formteilen sowie eine Aufkohlung und damit metallurgische Veränderung des Werkstoffs der Spaltrohre und der zugehörigen Formteile
statt, die zu Einschränkungen bei der Produktion (Durchsatzmenge) und Limitierungen in der Produktionszeit (Betriebsintervall) sowie der Gesamtlebensdauer der Spaltrohre und der zugehörigen Formteile führen.
Haben die Ablagerungen, insb. Koksablagerungen, eine gewisse Stärke erreicht, muss der Spaltrohrofen abgestellt und die Spaltrohre von den Ablagerungen, insb. dem Koks, befreit werden. Die Spaltrohre und zugehörigen Formteile werden dazu in der Regel mit einem Was- serdampf-/Luft-Gemisch oder auch nur mit Luft bei Temperaturen von 700 bis 1000 °C von den Ablagerungen befreit, wie dies z.B. in EP 36151 A1 (BASF AG) beschrieben ist.
Um die Ablagerungen, insb. Koksablagerungen, wirkungsvoll zu verhindern, zumindest deutlich zu reduzieren, wurden im Laufe der Jahre zahlreiche unterschiedliche Verbesserungen entwickelt und im Markt eingeführt. Darunter befinden sich ganz besonders die folgenden:
Katalytisch aktive Beschichtungen auf der Innenoberfläche von Spaltrohren oder Spaltrohrsystemen, welche kohlenstoffhaltige Ablagerungen, insb. Koksablagerungen, erheb- lieh vermindern und diese Ablagerungen, insb. Koks, in CO und CO2 umwandeln können, wie z.B. CAMOL™.
Vgl. S. Petrone, Y. Chen, R. Deuis, L. Benum, D. Gent, R. Saunders, C. Wong: Cata- lyzed-Assisted Manufacture of Olefins (CAMOL): Realizing Novel Operational Benefits from Furnace Coil Surfaces, AIChEe 2008 Spring National Meeting, New Orleans, Louisiana (08.04.2008);
S. Petrone, R.L. Deuis, F. Kong, P. Unwinn, CAMOL: Year-(4) update on commercial furnace installations, Presentation at the 2010 AIChE Spring National Meeting, San Antonio, Texas (21.-25.03.2010),
M. Walter, S. Rech, CAMOL: Updated for use in naphtha Service, 2013 AIChE Spring
Meeting (28.04.-02.05.2013),
WO 2013/181606 A1 (BASF Corporation),
BASF-Publikation "CAMOL™ catalytic coatings for steam cracker furnace tubes", BF- 9657 3/12.
Geometrische Modifikationen von Spaltrohren oder Spaltrohrsystemen,
besonders (a) durch Einbauten in den Spaltrohren, um veränderte Strömungsbedingungen zu schaffen, welche die Verkokung reduzieren, wie z.B. Mixing Element Radiant Tube (MERT) und Modifikationen hiervon, wie sMERT und xMERT,
oder besonders (b) durch Verbiegungen des Spaltrohrs, um veränderte Strömungsbedingungen zu schaffen, welche die Verkokung reduzieren, wie z.B. Swirl Flow Tubes® (SFT®). Vgl. zu (a): M. Györffy et al., MERT Performance and technology update, 2009 AIChE Spring National Meeting (26.-30.04.2009),
S. Matsueda, Next generation MERT achieves further advance in cracking tube Performance, Hydrocarbon Asia, v 15, n 6, Seiten 40-44, Nov./Dez. 2005,
WO 2004/046277 A1 (Kubota Corp.),
und zu (b): M.W.M. Van Goethem et al., Enhanced Heat Transfer in Radiant Coils by Swirl Flow Tubes, AIChE Paper Number 94d for the Presentation at the 2014 Spring National Meeting New Orleans, LA, 30.03.-03.04.2014,
CM. Schietekat et al., Swirl flow tube reactor technology: An experimental and computa- tional fluid dynamics study, Chemical Engineering Journal 238, Seiten 56-65 (2014),
G. Zhang et al., Progress of Modern Pyrolysis Furnace Technology, Advances in Materials Physics and Chemistry 2, Seiten 169-172 (2012).
Hochlegierte, an der Oberfläche Aluminiumoxid bildende, Cr, Ni und AI haltige Stähle (d.h. Cr-Ni-Al-Fe-Legierungen), und daraus bevorzugt im Schleuderguss-Verfahren hergestellten Rohre und bevorzugt mittels Formguss-Verfahren aus den gleichartigen Legierungen hergestellte Formteile. Z.B. eine Legierung enthaltend, besonders zu > 95 Gew.-% (weiter besonders zu > 98 Gew.-%) bestehend aus, 25 - 35 Gew.-% Chrom, 25
- 55 Gew.-% Nickel, 2 - 6 Gew.-% Aluminium und 10 - 30 Gew.-% Eisen.
Vgl.: Information Data Sheet, Centrailoy® HT E, Schmidt + Clemens GmbH + Co. KG,
Sept. 2009, Rev. 01 ,
D. Jakobi et al., The High-Temperature Corrosion Resistance of Spun-Cast Meterials for Steam-Cracker Furnaces - A Comparative Study of Alumina- and Chromia-Forming Alloys, Paper No. 2287 for the NACE® Corrosion 2013 Conference & Expo,
D. Jakobi et al., Benefits from educated Selection of advanced Materials for radiant Coils
- A 10 Year Field Performance Review of Alumina forming Alloys, AIChE Paper Number 152f for the Presentation at the 2014 Spring National Meeting New Orleans, LA, 30.03.- 03.04.2014. Katalytisch aktive Beschichtungen, wie z.B. CAMOL™, haben den Nachteil aller katalytischen Prozesse, dass sie im Laufe des Betriebs durch Verunreinigungen, z.B. Schwefelverbindungen, und unbestimmte Betriebsbedingungen im Spaltrohrofen an Aktivität verlieren.
US 6,488,839 B1 (Inst. Francais du Petrole) betrifft die thermische Spaltung von Kohlenwasser- Stoffen in Gegenwart von Wasserdampf in Rohren unter bestimmten Randbedingungen wie Verweilzeit t, Ofen-Auslass-Temperatur COT, hydraulischer Durchmesser DH und Rohrlänge L, mit 150 ms < t < 2800 ms, 858 °C < COT < 1025 °C, DH > 34 mm und L > 16 m. Der Endteil des Rohrs kann auch ein anti-coking-coating und/oder innere Rippen aufweisen. US 2003/188850 A1 (Honeywell Internat. Inc.) lehrt eine Röhrenbaugruppe zum Kühlen und Entfernen von Verunreinigungen aus einem ankommenden Fluidstrom, wobei die Röhrenbau- gruppe einen Turbulator mit länglichen Streifen und eine katalytische Beschichtung, die an mindestens den Streifen oder den Innenflächen haftet, aufweist, wobei die katalytische Beschichtung mit dem durch die Rohre fließenden Fluidstrom in Kontakt steht. Die ältere Anmeldung EP 14172815.4 vom 17.06.2014 (BASF SE) beschreibt ein Verfahren zur Regenerierung einer katalytisch aktiven Beschichtung auf der Innenoberfläche eines Spaltrohres, welches zuvor in einem Spaltrohrofen zur Erzeugung von ethylenhaltigem Spaltgas eingesetzt wurde, wobei das Spaltgas durch thermische Spaltung eines Kohlenwasserstoffes oder Kohlenwasserstoffgemisches in Gegenwart von Wasserdampf im Spaltrohr bei einer Spalt- gasaustrittstemperatur im Bereich von 750 bis 1000 °C erhalten wurde, in dem zunächst bei einer Temperatur im Bereich von 600 bis 1000 °C ein sauerstoffhaltiges Gasgemisch durch das Spaltrohr geleitet wird (Schritt a), wobei eine teilweise oder vollständige Entfernung von kohlenstoffhaltigen Ablagerungen stattfindet, und danach bei einer Temperatur im Bereich von 500 bis 850 °C ein Gasgemisch enthaltend Wasserdampf und Wasserstoff bei einer Belastung im Be- reich von 0,01 bis 0,4 kg H2 / (m2 katalytisch aktive Beschichtung * h) durch das Spaltrohr geleitet wird (Schritt b).
Der vorliegenden Erfindung lag die Aufgabe zugrunde, unter Überwindung von Nachteilen des Stands der Technik, ein verbessertes wirtschaftliches Verfahren zur Herstellung von ethylenhal- tigern Spaltgas bereitzustellen.
Das Verfahren sollte es insbesondere ermöglichen, durch eine Erhöhung der Standzeit von Spaltrohren, die Produktionszeiten für Spaltgas, z.B. zwischen zwei Entkokungsphasen, zu verlängern.
Das Verfahren sollte auch besonders vorteilhaft sein, wenn im Eintrittsbereich von katalytischen Spaltrohrsystemen ein Temperaturbereich gegeben ist, bei dem die katalytische Beschichtung noch nicht die Onset-Temperatur erreicht hat. (Onset-Temperatur = Mindesttemperatur für die Wirksamkeit der katalytischen Beschichtung).
Das Verfahren sollte weiterhin auch besonders vorteilhaft sein, wenn im Eintrittsbereich von katalytischen Spaltrohrsystemen ein Temperaturbereich gegeben ist, bei dem die katalytische Beschichtung nach der Entkokung nicht oder nur unzureichend wieder hergestellt, d.h. nicht oder nur unzureichend regeneriert, werden kann.
Demgemäß wurde ein Verfahren zur Herstellung von ethylenhaltigem Spaltgas durch thermische Spaltung eines Kohlenwasserstoffes oder Kohlenwasserstoffgemisches in Gegenwart von Wasserdampf in einem Spaltrohr bei Temperaturen im Bereich von 600 bis 1000 °C und einer Spaltgasaustrittstemperatur im Bereich von 750 bis 1000 °C gefunden, welches dadurch gekennzeichnet ist, dass
die Innenoberfläche des Spaltrohrs im zuerst durchströmten Bereich geometrisch modifiziert ist, wodurch kohlenstoffhaltige Ablagerungen im Rohr vermindert werden,
und das Spaltrohr im danach durchströmten Bereich auf der Innenoberfläche eine katalytisch aktive Beschichtung aufweist, die kohlenstoffhaltige Ablagerungen im Rohr vermindert.
Weiterhin wurde demgemäß ein Spaltrohr zur Verwendung in einem Verfahren zur Herstellung von ethylenhaltigem Spaltgas durch thermische Spaltung eines Kohlenwasserstoffes oder Kohlenwasserstoffgemisches in Gegenwart von Wasserdampf, insb. in dem o.g. Verfahren, gefunden, welches dadurch gekennzeichnet ist, dass die Innenoberfläche des Spaltrohrs im zuerst zu durchströmenden Bereich geometrisch modifiziert ist, wodurch im Herstellverfahren für Spaltgas kohlenstoffhaltige Ablagerungen im Rohr vermindert werden, und das Spaltrohr im danach zu durchströmenden Bereich auf der Innenoberfläche eine katalytisch aktive Beschichtung aufweist, die im Herstellverfahren für Spaltgas kohlenstoffhaltige Ablagerungen im Rohr vermindert.
Das erfindungsgemäße Spaltrohr und das im erfindungsgemäßen Verfahren eingesetzte Spalt- rohr weist also im zuerst zu durchströmenden Bereich auf der Innenoberfläche die katalytisch aktive Beschichtung nicht auf, sondern nur im danach zu durchströmenden Bereich.
Besonders bevorzugt ist die Innenoberfläche des Spaltrohrs im danach zu durchströmenden Bereich geometrisch nicht modifiziert (im Gegensatz zur Innenoberfläche des Spaltrohrs im zuerst zu durchströmenden Bereich).
Erfindungsgemäß wurde erkannt, dass durch die anspruchsgemäße neue Kombination die o.g. Aufgabe gelöst wird.
Geeignete Ausgangskohlenwasserstoffe für die thermische Spaltung sind Ethan, Propan, Butan, Liquified Petroleum Gas (LPG), Benzinfraktionen wie Leichtbenzin, z.B. Leichtbenzin mit dem Siedebereich von ca. 30 bis 150 °C, Benzin (full-range Naphtha), z.B. Benzin mit dem Siedebereich von ca. 30 bis 180 °C, Schwerbenzin, z.B. Schwerbenzin mit dem Siedebereich von ca. 150 bis 220 °C, Kerosin, z.B. Kerosin mit dem Siedebereich von ca. 200 bis 260 °C, Gasöle wie leichtes Gasöl, z.B. leichtes Gasöl mit dem Siedebereich von ca. 200 bis 360 °C, schweres Gasöl, z.B. schweres Gasöl mit dem Siedebereich von ca. 310 bis 430 °C, und Vakuumdestilla- te. Weiterhin können Mischungen oder Kombinationen der geeigneten Ausgangskohlenwasserstoffe für die thermische Spaltung Anwendung finden.
Bevorzugte Kohlenwasserstoffe für die Erzeugung von ethylenhaltigen Spaltgasen sind Gase, wie Ethan, Propan und Gemische enthaltend Ethan und Propan, LPG, Benzinfraktionen, Kero- sin, Bionaphtha, Kondensate, die z.B. aus Gasfeldern gewonnen werden, und/oder Gasöle und deren Mischungen.
Bei den teils geometrisch zu modifizierenden und teils innen mit einer katalytisch aktiven Beschichtung zu versehenden Spaltrohren kann es sich um gerade Rohre oder auch gebogene Rohre, wie z.B. Rohrschlangen, handeln. Die Bezeichnung .Spaltrohr' umfasst im Besonderen auch mit dem Spaltrohr verbundene Formteile, wie z.B. Y-Stücke, Sammler, Umkehrbögen, Reduzierstücke.
Spaltrohr plus verbundene Formteile werden auch Spaltrohrsystem genannt. Bei Spaltrohrsystemen mit einem oder mehreren Umkehrbögen wird der durchströmte Bereich bis zum ersten Umkehrbogen auch als .erster Pass', der anschließend durchströmte Bereich .zweiter Pass' und der nach einem ggf. weiteren Umkehrbogen durchströmte Bereich .dritter Pass', und so weiter, bezeichnet. Spaltrohrsysteme können so z.B. 1 bis 20 Umkehrbögen (o- der auch noch mehr), besonders z.B. 1 bis 1 1 Umkehrbögen, und entsprechend 2 bis 21 (oder entsprechend mehr), besonders 2 bis 12, Pässe umfassen. Pässe in einem zunächst durchströmten Bereich können auch in mehrere, z.B. 2 bis 25, parallele Rohre und ggf. Umkehrbögen aufgeteilt sein. Beispiel: Das Linde Spaltrohrsystem PYROCRACK® 4-2 (Abb. 2) besteht aus 6 Pässen und 5 Umkehrbögen, wobei 4 Pässe in einem zunächst durchströmten Bereich in 2 parallele Rohre aufgeteilt ist.
Diese hier in den drei vorhergehenden Absätzen beschriebenen Spaltrohre und Spaltrohrsysteme zählen zu den konventionellen, nicht geometrisch modifizierten, Spaltrohren und Spaltrohrsystemen. Die Gesamtlänge des Spaltrohrs bemisst sich von Spaltrohreingang bis zum Spaltrohrausgang, also auch über die Gesamtlänge eines Spaltrohrsystems. Bei der Bemessung der Länge zählt von parallel verlaufenden Rohren, die sich später im Verlauf verbinden (z.B. über Y-Stücke oder Sammler), nur ein Rohr. Ausschlaggebend ist die kürzest mögliche Weglänge über das Spaltrrohrsystem.
Das Spaltrohr wird im erfindungsgemäßen Verfahren im Spaltrohrofen bevorzugt indirekt beheizt, d.h. das Spaltrohr wird nicht direkt mittels einer Flamme beheizt, sondern indirekt über die Wärmestrahlung einer Flamme. Die thermische Spaltung des Kohlenwasserstoffes oder Kohlenwasserstoffgemisches erfolgt bevorzugt bei Temperaturen im Bereich von 600 bis 1000 °C, besonders 700 bis 1000 °C.
Die thermische Spaltung des Kohlenwasserstoffes oder Kohlenwasserstoffgemisches erfolgt bevorzugt im zuerst durchströmten Bereich bei Temperaturen im Bereich von 600 bis 800 °C und im danach durchströmten Bereich bei Temperaturen im Bereich von 700 bis 1000 °C.
Die Austrittstemperaturen des Spaltgases aus dem Spaltrohr betragen 750 bis 1000 °C, vorzugsweise 780 bis 950 °C, insbesondere 800 bis 900 °C. Die Verweilzeiten im Spaltrohr betragen besonders 0,05 bis 1 Sekunde (s), vorzugsweise 0,08 bis 0,6 s, insbesondere 0,1 bis 0,3 s. Bevorzugt betragen die Wärmebelastungen der Spaltrohre im Spaltrohrofen 64 kW/m2 h bis 128 kW/m2 h (40.000 bis 80.000 kcal/m2 h), vorzugsweise 58 kW/m2 h bis 81 kW/m2 h (50 000 bis 70 000 kcal/m2 h).
Das Gewichtsverhältnis von Wasserdampf zum eingesetzten Kohlenwasserstoff bzw. zum eingesetzten Kohlenwasserstoffgemisch liegt bei der thermischen Spaltung besonders im Bereich von 0,1 bis 1 , vorzugsweise im Bereich von 0,2 bis 0,8, und ganz besonders im Bereich von 0,3 bis 0,7.
Der Druck im Spaltrohr beträgt bei der thermischen Spaltung besonders 1 ,5 bis 5 bar, ganz besonders 1 ,6 bis 2,5 bar.
Im erfindungsgemäßen Verfahren ist die Innenoberfläche des Spaltrohrs im zuerst durchström- ten Bereich geometrisch modifiziert.
Die geometrische Modifizierung bewirkt gegenüber einem konventionellen Spaltrohr veränderte Strömungsbedingungen, z.B. erhöhte turbulente Strömung des zu spaltenden Gases im Rohr, wodurch kohlenstoffhaltige Ablagerungen im Rohr vermindert werden. Dies kann z.B. durch Einbauten, wie Ablenkbleche, Spiralen (z.B. nicht unterbrochene Spiralen oder Spiralen mit aufeinanderfolgenden Unterbrechungen), Rippen, Wendeln, im Spaltrohr erreicht werden.
Die geometrische Modifizierung kann auch zusätzliche Verbiegungen, ggf. in Kombination mit Einbauten, des Spaltrohrs (gegenüber einem konventionellen Spaltrohr) umfassen. Beispiele für solche Verbiegungen sind spiralförmig geformte Rohre, helikalförmig geformte Rohre und wellenförmig geformte Rohre.
Solche geometrisch modifizierten Spaltrohre und Spaltrohrsysteme sind auch am Markt erhältlich; vgl. z.B. bezüglich Einbauten im Rohr die oben genannten Mixing Element Radiant Tubes (MERT) und Modifikationen hiervon, wie sMERT und xMERT, und bezüglich Verbiegungen des Rohrs die oben genannten Swirl Flow Tubes®. Erfindungsgemäß weist der zuerst durchströmte Bereich bevorzugt eine Länge im Bereich von 15 bis 60 %, besonders 20 bis 55 %, ganz besonders 25 bis 50 %, jeweils bezogen auf die Gesamtlänge des Spaltrohrs, auf.
Im Besonderen schließt sich erfindungsgemäß der danach durchströmte Bereich direkt an den zuerst durchströmten Bereich an. Damit ergibt sich die bevorzugte Länge des danach durch- strömten Bereichs aus den o.g. Längen für den zuerst durchströmten Bereich (Gesamtlänge = 100 %). Es ist jedoch auch möglich, dass, z.B. auch konstruktionsbedingt, sich zwischen den beiden Bereichen ein konventioneller Bereich, z.B. über eine Länge von > 0 bis 20 % (bezogen auf die Gesamtlänge des Spaltrohrs), ohne geometrische Modifizierung und ohne katalytisch aktive Beschichtung befindet. Bevorzugt steigt die Länge des zuerst durchströmten Bereichs mit der Verweilzeit des Spaltgases im Spaltrohr an.
Im Besonderen weist bei Verweilzeiten im Bereich von 0,10 bis 0,60 s der zuerst durchströmte Bereich bevorzugt eine Länge im Bereich von 15 bis 40 %, besonders 20 bis 40 %, ganz be- sonders 25 bis 40 %, jeweils bezogen auf die Gesamtlänge des Spaltrohrs, auf und weist bei Verweilzeiten im Bereich von > 0,60 s (z.B. bis 1 s) der zuerst durchströmte Bereich bevorzugt eine Länge im Bereich von > 40 bis 60 %, besonders > 40 bis 55 %, ganz besonders > 40 bis 50 %, jeweils bezogen auf die Gesamtlänge des Spaltrohrs, auf. Im erfindungsgemäßen Verfahren beträgt die Konzentration an Wasserstoff im Spaltrohr im Ort oder im Bereich zwischen dem geometrisch modifizierten Teil und dem katalytisch aktiv beschichteten Teil bevorzugt im Bereich von 2 bis 5 Vol.%, besonders 3 bis 4 Vol.%.
Im erfindungsgemäßen Verfahren ist die Innenoberfläche des Spaltrohrs im zuerst durchström- ten Bereich geometrisch modifiziert und im danach durchströmten Bereich weist es auf der Innenoberfläche eine katalytisch aktive Beschichtung auf.
Die katalytisch aktive Beschichtung, die im Besonderen nach der Herstellung des Spaltrohrs und vor seinem Einsatz zur thermischen Kohlenwasserstoff-Spaltung auf seine Innenoberfläche aufgebracht wird, bewirkt gegenüber einem konventionellen Spaltrohr eine Verminderung von kohlenstoffhaltigen Ablagerungen im Rohr.
Solche katalytischen Spaltrohre und Spaltrohrsysteme, auch„steam cracker furnace tubes with catalytic surface coatings" genannt, sind auch am Markt erhältlich; vgl. z.B. die oben genannten Catalyzed-Assisted Manufacture of Olefins (CAMOL) - Systeme. Die .katalytisch aktive Beschichtung' kann auch als .katalytische Beschichtung', .Katalysatorschicht' oder als .Katalysator' bezeichnet werden; der Katalysator befindet sich als Schicht auf der Innenoberfläche des Spaltrohrs. Die Schicht weist bevorzugt eine Dicke im Bereich von 0,05 bis 5 mm, weiter bevorzugt im Bereich von 0,1 bis 3 mm, besonders im Bereich von 0,2 bis 2 mm, auf.
Die katalytisch aktive Beschichtung des Spaltrohres enthält als Aktivkomponente ein oder mehrere Metalle der Nebengruppen VIB, VI IB, VIII des Periodensystems (Chemical Abstracts Service group notation), z.B. Cr, Mo, W, Mn, Re, Co, Ni. Bevorzugt liegen diese Metalle in der Beschichtung in oxidierter Form vor (Oxidationszahl ist > 0, besonders im Bereich von 1 bis 8, z.B. 2 bis 7).
Bevorzugt enthält die katalytisch aktive Beschichtung Mangan (Mn), besonders Mangan in einer Oxidationsstufe im Bereich von 2 bis 7, weiter besonders in Form eines Manganoxids, weiter besonders in Form von MnO, Μη2θ3, MnC"2, Mn2C und/oder MnsC , ganz besonders in Form von MnO.
Besonders bevorzugt enthält die katalytisch aktive Beschichtung Mangan (Mn), wie oben ausgeführt, und zusätzlich Wolfram (W), besonders Wolfram in einer Oxidationsstufe im Bereich von 2 bis 6, weiter besonders in Form eines Wolframoxids, weiter besonders in Form von W2O3, W02, W03, MWO4 (M = Be, Mg, Ca, Sr oder Ba) und/oder M3Y2WO9 (M = Be, Mg, Ca, Sr oder Ba), ganz besonders im Form von CaWC und/oder Ba3Y2WOg.
Ganz besonders bevorzugt sind CAMOL™-Beschichtungen, wie sie z.B. in der BASF- Publikation "CAMOL™ catalytic coatings for steam cracker furnace tubes", BF-9657 3/12, beschrieben sind. Dies sind das sog. ,Low-Catalytic Gasification (LCG) Coating' und das sog. ,High-Catalytic Gasification (HCG) Coating'.
Alle Druckangaben beziehen sich auf den Absolutdruck.
Beispiele Abbildung 1 zeigt schematisch einen Spaltrohrofen inkl. einem erfindungsgemäßem Spaltrohrsystem mit Konvektionszone und Strahlungszone und Quenchkühler für das Spaltgas. Das Spaltrohrsystem befindet sich in der Strahlungszone.
Vergleichsbeispiel 1
In einem Spaltrohrofen, der vier Spaltrohrsysteme enthält, wurden je Spaltrohrsystem eine Mischung von bis zu 2,2 t/h einer Benzinfraktion (Naphtha) mit dem Siedebereich von 40 bis 180 °C und 1 ,0 t/h Wasserdampf durchgeleitet und bei einer Spaltrohraustrittstemperatur von bis zu 840 °C thermisch gespalten.
Ein Spaltrohrsystem besteht aus 18 parallelen, vertikalen Eintrittsrohren, welche von oben nach unten durchströmt werden und in einem Sammelrohr zusammengeführt werden. Von dort wird das Spaltgas in 2 parallelen, vertikalen Austrittsrohren, welche von unten nach oben durch- strömt werden aus dem Ofen geführt. Das Spaltrohrsystem ist analog einem selektiven 2-Pass Spaltrohrsystems mit der Bezeichnung SRT®-V der Firma CB&I (Lummus) aufgebaut; vgl. Abb. 3. Das Spaltgas von je 2 Spaltrohrsystemen wird in einem nachgeschalteten Spaltgaskühler abgekühlt. Die Spaltrohre wurden sowohl im vorderen, zuerst durchströmten Bereich des Spaltrohrsystems, als auch in dem nachfolgend durchströmten Bereich des Spaltrohrsystems mit einer innen auf der Oberfläche aufgebrachten geometrischen Modifikation versehen, nämlich einer nicht unterbrochenen Innenspirale in den geraden Rohrabschnitten, nämlich MERT (nicht eine MERT-Modifikation wie sMERT, xMERT), wie beschrieben in der Publikation M. Györffy et al., MERT Performance and technology update, 2009 AIChE Spring National Meeting (26.- 30.04.2009). Zu Beginn des Betriebes mit Naphtha, bei sauberem Spaltrohrsystem, konnte die manuell gemessene Rohrwandtemperatur im Austritt des Spaltrohrsystems 930 bis 960 °C betragen. Die Rohrwandtemperatur an der gemessenen Stelle im zuletzt durchströmten Bereich des Spalt- rohrsystems konnte nach mehreren Monaten Laufzeit schließlich auf bis zu 1 100 °C ansteigen, der höchsten für den Werkstoff an dieser Stelle des Spaltrohrsystems angewandten Rohrwandtemperatur. Im Verlauf des Betriebes konnte sich auch der Differenzdruck der Strömungsdüsen im Eintritt des Spaltrohrsystems bis zu der minimal angewandten Differenzdruckgrenze von 0,3 bar reduzieren.
Jeweils eines der Kriterien .Rohrwandtemperatur' oder .Differenzdruck' konnte bestimmend sein für die Unterbrechung des Produktionsbetriebes und die Einleitung der Entkokungsprozedur.
Für die Entkokungsprozedur wurde der Kohlenwasserstoffstrom durch den Spaltrohrofen unterbrochen und die Spaltrohrsysteme vom übrigen Prozess getrennt und mittels Sauerstoff vom Koks befreit. Dazu wurde bei einer Temperatur im Bereich von 760 bis 825 °C und einem Druck von 1 ,05 bis 3 bar über einen Gesamtzeitraum von 60 Stunden zu Beginn ein Wasserdampf/Luft-Gemisch in die Spaltrohre geleitet, welches im weiteren Verlauf durch Reduzierung der Dampfmenge derart verändert wurde, dass die Luftmenge im Gemisch von zunächst 10 Gew.-% auf 70 Gew.-% anstieg.
Vergleichsbeispiel 2
In einem Spaltrohrofen, der vier Spaltrohrsysteme enthält, wurden je Spaltrohrsystem eine Mi- schung von 2,2 t/h einer Benzinfraktion (Naphtha) mit dem Siedebereich von 40 bis 180 °C und 1 ,0 t/h Wasserdampf durchgeleitet und bei einer Spaltrohraustrittstemperatur von bis zu 840 °C thermisch gespalten.
Ein Spaltrohrsystem besteht aus 18 parallelen, vertikalen Eintrittsrohren, welche von oben nach unten durchströmt werden und in einem Sammelrohr zusammengeführt werden. Von dort wird das Spaltgas in 2 parallelen, vertikalen Austrittsrohren, welche von unten nach oben durchströmt werden aus dem Ofen geführt. Das Spaltrohrsystem ist analog einem selektiven 2-Pass Spaltrohrsystems mit der Bezeichnung SRT®-V der Firma CB&I (Lummus) aufgebaut; vgl. Abb. 3. Das Spaltgas von je 2 Spaltrohrsystemen wird in einem nachgeschalteten Spaltgaskühler abgekühlt.
Die Spaltrohre waren innen mit einer katalytisch aktiven Beschichtung enthaltend Mangan versehen, wie beschrieben in der BASF-Publikation "CAMOL™ catalytic coatings for steam cracker furnace tubes", BF-9657 3/12. Zum Einsatz kam eine Kombination von ,Low-Catalytic Gasifica- tion (LCG) Coating' im vorderen, zuerst durchströmten Bereich, und .High-Catalytic Gasification (HCG) Coating' im hinteren, zuletzt durchströmten Bereich des Spaltrohrsystems. Zu Beginn des Betnebes mit Naphtha, bei sauberen Spaltrohrsystemen, betrug die manuell gemessene Rohrwandtemperatur im Austritt des Spaltrohrsystems 940 bis 980 °C. Die Rohrwandtemperatur an der gemessenen Stelle im Spaltrohrsystem stieg nach mehreren Monaten Laufzeit schließlich auf 1 100 °C an, der höchsten für den Werkstoff und die Beschichtung dieses Spaltrohrsystems angewandten Rohrwandtemperatur. Im Verlauf des Betriebes konnte sich auch der Differenzdruck der Strömungsdüsen im Eintritt des Spaltrohrsystems bis zu der minimal angewandten Differenzdruckgrenze von 0,3 bar reduzieren. Jeweils eines der Kriterien .Rohrwandtemperatur' oder .Differenzdruck' konnte bestimmend sein für die Unterbrechung des Produktionsbetriebes und die Einleitung der Entkokungsprozedur.
Für die Entkokungsprozedur wurde der Kohlenwasserstoffstrom durch den Spaltrohrofen unterbrochen und die Spaltrohrsysteme vom Prozess getrennt und mittels Sauerstoff vom Koks be- freit. Dazu wurde bei einer Temperatur im Bereich von 760 bis 825 °C und einem Druck von 1 ,05 bis 3 bar über einen Gesamtzeitraum von 60 Stunden zu Beginn ein Wasserdampf/Luft- Gemisch in die Spaltrohre geleitet, welches im weiteren Verlauf durch Reduzierung der
Dampfmenge derart verändert wurde, dass die Luftmenge im Gemisch von zunächst 10 Gew.- % auf 70 Gew.-% anstieg.
Beispiel 1
In einem Spaltrohrofen, der vier Spaltrohrsysteme enthält, werden je Spaltrohrsystem eine Mi- schung von bis zu 2,2 t/h einer Benzinfraktion (Naphtha) mit dem Siedebereich von 40 bis 180 °C und 1 ,0 t/h Wasserdampf durchgeleitet und bei einer Spaltrohraustrittstemperatur von bis zu 840 °C thermisch gespalten.
Ein Spaltrohrsystem besteht aus 18 parallelen, vertikalen Eintrittsrohren, welche von oben nach unten durchströmt werden und in einem Sammelrohr zusammengeführt werden. Von dort wird das Spaltgas in 2 parallelen, vertikalen Austrittsrohren, welche von unten nach oben durchströmt werden aus dem Ofen geführt. Das Spaltrohrsystem ist analog einem selektiven 2-Pass Spaltrohrsystems mit der Bezeichnung SRT®-V der Firma CB&I (Lummus) aufgebaut; vgl. Abb. 3. Das Spaltgas von je 2 Spaltrohrsystemen wird in einem nachgeschalteten Spaltgaskühler abgekühlt.
Die Spaltrohre sind im vorderen, zuerst durchströmten Bereich des Spaltrohrsystems geometrisch modifiziert wie oben im Vergleichsbeispiel 1 beschrieben.
Die geometrische Modifikation der Spaltrohre im Eintrittsbereich umfasst, von Eintritt ausge- hend, eine Länge von 30 % der Gesamtlänge des Spaltrohrsystems. Im verbleibenden hinteren, zuletzt durchströmten, Bereich des Spaltrohrsystems ist das Spaltrohrsystem innen mit einer katalytisch aktiven Beschichtung enthaltend Mangan und Wolfram versehen, nämlich .High- Catalytic Gasification (HCG) Coating', wie beschrieben in der BASF-Publikation "CAMOL™ ca- talytic coatings for steam cracker furnace tubes", BF-9657 3/12. Zu Beginn des Betriebes mit Naphtha, bei sauberem Spaltrohrsystem, kann die manuell gemessene Rohrwandtemperatur im Austritt des Spaltrohrsystems 940 bis 980 °C betragen. Die Rohrwandtemperatur an der gemessenen Stelle im zuletzt durchströmten Bereich des Spaltrohrsystems kann nach mehreren Monaten Laufzeit schließlich auf bis zu 1 100 °C ansteigen, der höchsten für den Werkstoff und die Beschichtung an dieser Stelle des Spaltrohrsystems angewandten Rohrwandtemperatur. Im Verlauf des Betriebes kann sich auch der Differenzdruck der Strömungsdüsen im Eintritt des Spaltrohrsystems bis zu der minimal angewandten Differenzdruckgrenze von 0,3 bar reduzieren.
Jeweils eines der Kriterien .Rohrwandtemperatur' oder .Differenzdruck' kann bestimmend sein für die Unterbrechung des Produktionsbetriebes und die Einleitung der Entkokungsprozedur.
Für die Entkokungsprozedur wird der Kohlenwasserstoffstrom durch den Spaltrohrofen unterbrochen und die Spaltrohrsysteme vom übrigen Prozess getrennt und mittels Sauerstoff vom Koks befreit. Dazu wird bei einer Temperatur im Bereich von 760 bis 825 °C und einem Druck von 1 ,05 bis 3 bar über einen Gesamtzeitraum von 60 Stunden zu Beginn ein Wasser- dampf/Luft-Gemisch in die Spaltrohre geleitet, welches im weiteren Verlauf durch Reduzierung der Dampfmenge derart verändert wird, dass die Luftmenge im Gemisch von zunächst 10 Gew.-% auf 70 Gew.-% ansteigt.
Durch die kombinierte Anwendung der beschriebenen Technologien„geometrische Modifizie- rung" und„katalytisch aktive Beschichtung" werden kohlenstoffhaltige Ablagerungen im gesamten Bereich des Spaltrohrsystems optimal reduziert, so dass um viele Tage bis einige Wochen verlängerte Produktionszeiten des Spaltrohrofens möglich sind, gegenüber der jeweiligen installierten Einzeltechnologie.

Claims

Patentansprüche
1 . Verfahren zur Herstellung von ethylenhaltigem Spaltgas durch thermische Spaltung eines Kohlenwasserstoffes oder Kohlenwasserstoffgemisches in Gegenwart von Wasserdampf in einem Spaltrohr bei Temperaturen im Bereich von 600 bis 1000 °C und einer Spaltgasaustrittstemperatur im Bereich von 750 bis 1000 °C, dadurch gekennzeichnet, dass die Innenoberfläche des Spaltrohrs im zuerst durchströmten Bereich geometrisch modifiziert ist, wodurch kohlenstoffhaltige Ablagerungen im Rohr vermindert werden, und das Spaltrohr im danach durchströmten Bereich auf der Innenoberfläche eine kataly- tisch aktive Beschichtung aufweist, die kohlenstoffhaltige Ablagerungen im Rohr vermindert.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die katalytisch aktive Beschichtung Mangan enthält.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die katalytisch aktive Beschichtung Mangan und Wolfram enthält.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die geometrische Modifizierung Einbauten im Spaltrohr umfasst.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die geometrische Modifizierung Verbiegungen des Spaltrohrs umfasst.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die thermische Spaltung des Kohlenwasserstoffes oder Kohlenwasserstoffgemisches im zuerst durchströmten Bereich bei Temperaturen im Bereich von 600 bis 800 °C und im danach durchströmten Bereich bei Temperaturen im Bereich von 700 bis 1000 °C erfolgt.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zuerst durchströmte Bereich eine Länge im Bereich von 15 bis 60 % bezogen auf die Gesamtlänge des Spaltrohrs aufweist.
8. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der zuerst durchströmte Bereich eine Länge im Bereich von 20 bis 55 % bezogen auf die Gesamtlänge des Spaltrohrs aufweist.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gewichtsverhältnis von Wasserdampf zum eingesetzten Kohlenwasserstoff bzw. zum eingesetzten Kohlenwasserstoffgemisch im Bereich von 0,05 bis 1 ,5 liegt.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die thermische Spaltung bei einem Druck im Spaltrohr im Bereich von 1 ,5 bis 5 bar durchgeführt wird.
1 1 . Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verweilzeit im Spaltrohr im Bereich von 0,05 bis 1 Sekunde liegt.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich das Spaltrohr in einem Spaltrohrofen befindet und indirekt beheizt wird.
13. Spaltrohr zur Verwendung in einem Verfahren zur Herstellung von ethylenhaltigem Spaltgas durch thermische Spaltung eines Kohlenwasserstoffes oder Kohlenwasserstoffgemisches in Gegenwart von Wasserdampf, dadurch gekennzeichnet, dass die Innenoberfläche des Spaltrohrs im zuerst zu durchströmenden Bereich geometrisch modifiziert ist, wodurch im Herstellverfahren für Spaltgas kohlenstoffhaltige Ablagerungen im Rohr vermindert werden, und das Spaltrohr im danach zu durchströmenden Bereich auf der Innenoberfläche eine katalytisch aktive Beschichtung aufweist, die im Herstellverfahren für Spaltgas kohlenstoffhaltige Ablagerungen im Rohr vermindert.
14. Spaltrohr nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die katalytisch aktive Beschichtung Mangan enthält.
15. Spaltrohr nach Anspruch 13, dadurch gekennzeichnet, dass die katalytisch aktive Beschichtung Mangan und Wolfram enthält.
16. Spaltrohr nach einem der drei vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die geometrische Modifizierung Einbauten im Spaltrohr umfasst.
17. Spaltrohr nach einem der vier vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die geometrische Modifizierung Verbiegungen des Spaltrohrs umfasst.
18. Spaltrohr nach einem der fünf vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zuerst zu durchströmende Bereich eine Länge im Bereich von 15 bis 60 % bezogen auf die Gesamtlänge des Spaltrohrs aufweist.
19. Spaltrohr nach einem der vorhergehenden Ansprüche 13 bis 17, dadurch gekennzeichnet, dass der zuerst zu durchströmende Bereich eine Länge im Bereich von 20 bis 55 % bezogen auf die Gesamtlänge des Spaltrohrs aufweist.
PCT/EP2015/067772 2014-08-13 2015-08-03 Verfahren zur herstellung von ethylenhaltigem spaltgas und spaltrohr zur verwendung in dem verfahren WO2016023776A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14180863.4 2014-08-13
EP14180863 2014-08-13

Publications (1)

Publication Number Publication Date
WO2016023776A1 true WO2016023776A1 (de) 2016-02-18

Family

ID=51302668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/067772 WO2016023776A1 (de) 2014-08-13 2015-08-03 Verfahren zur herstellung von ethylenhaltigem spaltgas und spaltrohr zur verwendung in dem verfahren

Country Status (1)

Country Link
WO (1) WO2016023776A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3490704A4 (de) * 2016-07-29 2020-03-25 BASF Qtech Inc. Katalytische beschichtungen, verfahren zur herstellung und verwendung davon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6488839B1 (en) * 1999-05-11 2002-12-03 Institut Francais Du Petrole Process and furnace for steam-cracking a feedstock that contains ethane and/or propane
US20030188850A1 (en) * 2002-04-09 2003-10-09 Honeywell International Inc., Tubular catalytic aircraft precooler
US20060102327A1 (en) * 2002-11-15 2006-05-18 Masahiro Inui Cracking tube having helical fins
US20130337999A1 (en) * 2012-06-01 2013-12-19 Basf Corporation Catalytic surfaces and coatings for the manufacture of petrochemicals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6488839B1 (en) * 1999-05-11 2002-12-03 Institut Francais Du Petrole Process and furnace for steam-cracking a feedstock that contains ethane and/or propane
US20030188850A1 (en) * 2002-04-09 2003-10-09 Honeywell International Inc., Tubular catalytic aircraft precooler
US20060102327A1 (en) * 2002-11-15 2006-05-18 Masahiro Inui Cracking tube having helical fins
US20130337999A1 (en) * 2012-06-01 2013-12-19 Basf Corporation Catalytic surfaces and coatings for the manufacture of petrochemicals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3490704A4 (de) * 2016-07-29 2020-03-25 BASF Qtech Inc. Katalytische beschichtungen, verfahren zur herstellung und verwendung davon
US10894251B2 (en) 2016-07-29 2021-01-19 Basf Qtech Inc. Catalytic coatings, methods of making and use thereof

Similar Documents

Publication Publication Date Title
EP0397853B1 (de) Verhinderung von koksablagerung bei der verdampfung von schweren kohlenwasserstoffen
DE3046412A1 (de) Verfahren zur hochtemperaturbehandlung von kohlenwasserstoffhaltigen materialien
EP0021167B1 (de) Verfahren und Vorrichtung zur thermischen Entkokung einer aus Spaltzone und nachfolgendem Spaltgaskühler bestehenden Vorrichtung zum thermischen Spalten von Kohlenwasserstoffen
DE1948635C3 (de) Entkokungsverfahren beim thermischen Cracken von Kohlenwasserstoffen
DE1643074A1 (de) Verfahren zum Umwandeln von Kohlenwasserstoffen
CA3075483C (en) Aluminum oxide forming heat transfer tube for thermal cracking
CN107881431B (zh) 一种抗结焦合金材料及其制备方法和一种抗结焦裂解炉管
US20170009151A1 (en) Process for converting hydrocarbons into olefins
WO2016023776A1 (de) Verfahren zur herstellung von ethylenhaltigem spaltgas und spaltrohr zur verwendung in dem verfahren
WO2014037311A1 (de) Verfahren zur herstellung von acetylen und synthesegas
US12024685B2 (en) High pressure ethane cracking with small diameter furnace tubes
WO2016023745A1 (de) Verfahren zur herstellung von ethylenhaltigem spaltgas und spaltrohr zur verwendung in dem verfahren
DE1443014A1 (de) Pyrolytische Umwandlung von Kohlenwasserstoffen
US11939544B2 (en) Decoking process
DE2028913C3 (de) Verfahren zur Entfernung von Kohlenstoffablagerungen bei der thermischen Spaltung von Kohlenwasserstoffen in Gegenwart von Wasserdampf
WO2015193189A1 (de) Verfahren zur regenerierung einer katalytisch aktiven beschichtung auf der innenoberfläche eines spaltrohres
DE1645732C3 (de) Verfahren zum Hydrieren von dampf gecracktem Schwerbenzin
WO2011087881A1 (en) Method for co-hydrogenating light and heavy hydrocarbons
US11981875B2 (en) Erosion resistant alloy for thermal cracking reactors
CN112585246B (zh) 用于溶剂辅助焦油转化方法的保护反应器催化剂的自硫化
DE102008053847A1 (de) Spaltrohre im Spaltofen einer Olefinanlage
DE738764C (de) Verfahren zur Dehydrierung oder Spaltung von gas- oder dampffoermigen Kohlenwasserstoffen oder solche enthaltenden Gasgemischen bei hohen Temperaturen und beliebigen Drucken in Rohrschlangen
DE2923326A1 (de) Verfahren zur thermischen entkokung einer vorrichtung zum thermischen spalten von kohlenwasserstoffen
WO2023107815A1 (en) Processes and systems for steam cracking hydrocarbon feeds
DE2140125A1 (en) Bi-metallic catalytic reaction tubes - with corrosion-resistant outer and pressure-resistant inner layers for reforming and cracking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15745484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15745484

Country of ref document: EP

Kind code of ref document: A1