WO2016020994A1 - Otical information recording device and optical information reproduction device - Google Patents
Otical information recording device and optical information reproduction device Download PDFInfo
- Publication number
- WO2016020994A1 WO2016020994A1 PCT/JP2014/070666 JP2014070666W WO2016020994A1 WO 2016020994 A1 WO2016020994 A1 WO 2016020994A1 JP 2014070666 W JP2014070666 W JP 2014070666W WO 2016020994 A1 WO2016020994 A1 WO 2016020994A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- optical information
- oscillator
- reference light
- information recording
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 238
- 238000001093 holography Methods 0.000 claims abstract description 17
- 238000001514 detection method Methods 0.000 claims description 38
- 230000001678 irradiating effect Effects 0.000 claims description 28
- 230000010287 polarization Effects 0.000 claims description 24
- 238000000034 method Methods 0.000 abstract description 80
- 230000005855 radiation Effects 0.000 abstract 4
- 238000012545 processing Methods 0.000 description 32
- 238000012986 modification Methods 0.000 description 20
- 230000004048 modification Effects 0.000 description 20
- 230000008569 process Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 11
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 8
- 238000012937 correction Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000008602 contraction Effects 0.000 description 4
- 230000000644 propagated effect Effects 0.000 description 4
- 239000003550 marker Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/10—Processes or apparatus for producing holograms using modulated reference beam
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/22—Processes or apparatus for obtaining an optical image from holograms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/26—Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
- G03H1/28—Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique superimposed holograms only
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/0065—Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
Definitions
- the present invention relates to a technique for recording information on an optical information recording medium using holography and reproducing information from the optical information recording medium.
- Patent Document 1 As a hologram recording / reproducing technique, there is, for example, WO 2004-102542 (Patent Document 1).
- light from an inner pixel is signal light
- light from an outer ring-shaped pixel is reference light
- both light beams are condensed on an optical recording medium with the same lens.
- An example is described in which a shift multiplexing method is used in which a hologram is recorded by causing signal light and reference light to interfere with each other in the vicinity of the focal plane of the lens.
- Non-Patent Document 1 “However, to detect the phase in a signal beam, the signal should interfere with an additional beam on an imager for converting the phase into intensity information.”
- ⁇ In ⁇ the DRH a signal beam with data to be recorded and a phantom beam without signal information are holographically multiplexed at the same spot of the medium, and then these holograms are read out simultaneously from the medium and the diffracted beams propagate in the same optical path toward the imager for yielding the interference fringe.
- '(double-referential holography (DRH)) There is a description of a phase recording / reproducing method in which light interferes.
- Non-Patent Document 1 In the method described in Non-Patent Document 1, one phantom light is required for reproducing one data page, and the consumption of the recording medium is large.
- an optical information recording apparatus that records information on an optical information recording medium using holography, a light source that generates reference light, signal light, and oscillator light, and a signal light modulation unit that adds information to the signal light generated by the light source
- a signal light irradiation unit that irradiates the optical information recording medium with the signal light modulated by the signal light modulation unit
- an oscillator light irradiation unit that irradiates the optical information recording medium with the oscillator light generated by the light source
- a reference light irradiation unit that irradiates the optical information recording medium with the reference light generated by the light source, the signal light emitted from the signal light irradiation unit, and the reference light emitted from the reference light irradiation unit Are recorded as a signal light hologram in a predetermined area of the optical information recording medium, the oscillator light irradiated from the oscillator light irradiation unit, and the reference light irradiation unit ir
- the present invention it is possible to greatly suppress the media consumption of the oscillator page (phantom light) compared to the consumption of the recording medium of the data page, and to realize a highly efficient phase recording / reproducing method. Become.
- Schematic diagram showing an embodiment of an optical information recording / reproducing apparatus Schematic showing an embodiment of a pickup in an optical information recording / reproducing apparatus
- Schematic showing an embodiment of a pickup in an optical information recording / reproducing apparatus Schematic showing an embodiment of the operation flow of the optical information recording / reproducing apparatus
- Schematic showing the Example of the signal generation circuit in an optical information recording / reproducing apparatus Schematic showing the Example of the signal processing circuit in an optical information recording / reproducing apparatus
- Schematic diagram showing an example of the operation flow of book recording Schematic showing an example of the operation flow of book reproduction
- Schematic representing an example of oscillator page recording Schematic representing an example of data page recording
- Schematic representing an example of the page structure in a book Schematic showing the Example of the relationship between the reference beam angle for oscillators, and the reference beam angle for pages
- Schematic representing an example of the configuration of a half mirror Schematic representing an example of the configuration of a half mirror
- FIG. 1 is a block diagram showing a recording / reproducing apparatus that performs at least one process of recording or reproducing digital information from an optical information recording medium using holography.
- the optical information recording / reproducing device 10 is connected to an external control device 91 via an input / output control circuit 90.
- the optical information recording / reproducing apparatus 10 receives the information signal to be recorded from the external control device 91 by the input / output control circuit 90.
- the optical information recording / reproducing apparatus 10 transmits the reproduced information signal to the external control apparatus 91 by the input / output control circuit 90.
- the optical information recording / reproducing apparatus 10 includes a pickup 11, a reproduction reference light optical system 12, a cure optical system 13, a disk rotation angle detection optical system 14, a position detection optical system 15, and a rotation motor 50.
- the recording medium 1 can be rotated by a rotary motor 50.
- the pickup 11 plays a role of emitting reference light and signal light to the optical information recording medium 1 and recording digital information on the recording medium using holography.
- the information signal to be recorded is sent by the controller 89 to the spatial light modulator in the pickup 11 via the signal generation circuit 86, and the signal light is modulated by the spatial light modulator.
- the reproduction reference light optical system 12 When reproducing the information recorded on the optical information recording medium 1, the reproduction reference light optical system 12 generates a light wave that causes the reference light emitted from the pickup 11 to enter the optical information recording medium in a direction opposite to that during recording. Generate. Reproduction light reproduced by the reproduction reference light is detected by a photodetector (to be described later) in the pickup 11, and a signal is reproduced by the signal processing circuit 85.
- the irradiation time of the reference light and the signal light applied to the optical information recording medium 1 can be adjusted by controlling the opening / closing time of the shutter in the pickup 11 via the shutter control circuit 87 by the controller 89.
- the cure optical system 13 plays a role of generating a light beam used for pre-cure and post-cure of the optical information recording medium 1.
- Precure is a pre-process for irradiating a predetermined light beam in advance before irradiating the desired position with reference light and signal light when recording information at a desired position in the optical information recording medium 1.
- Post-cure is a post-process for irradiating a predetermined light beam after recording information at a desired position in the optical information recording medium 1 so that additional recording cannot be performed at the desired position.
- the disk rotation angle detection optical system 14 is used to detect the rotation angle of the optical information recording medium 1.
- a signal corresponding to the rotation angle is detected by the disk rotation angle detection optical system 14, and a disk rotation motor control circuit is detected by the controller 89 using the detected signal.
- the rotation angle of the optical information recording medium 1 can be controlled via 88.
- a predetermined light source driving current is supplied from the light source driving circuit 82 to the light sources in the pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14, and each light source emits a light beam with a predetermined light amount. Can do.
- the pickup 11 and the disc cure optical system 13 are provided with a mechanism capable of sliding the position in the radial direction of the optical information recording medium 1, and the position is controlled via the access control circuit 81.
- the recording technology using the principle of angle multiplexing of holography tends to have a very small tolerance for the deviation of the reference beam angle.
- a mechanism for detecting the deviation amount of the reference beam angle is provided in the pickup 11, a servo control signal is generated by the servo signal generation circuit 83, and the deviation amount is corrected via the servo control circuit 84. It is necessary to provide a servo mechanism for this purpose in the optical information recording / reproducing apparatus 10.
- the pickup 11, the cure optical system 13, the disk rotation angle detection optical system 14, and the position detection optical system 15 may be simplified by combining several optical system configurations or all optical system configurations.
- FIG. 2 shows a recording principle in an example of a basic optical system configuration of the pickup 11 in the optical information recording / reproducing apparatus 10.
- the light beam emitted from the light source 201 passes through the collimator lens 202 and enters the shutter 203.
- the optical element 204 composed of, for example, a half-wave plate or the like adjusts the light quantity ratio of P-polarized light and S-polarized light to a desired ratio.
- the polarization direction After the polarization direction is controlled, it enters a PBS (Polarization Beam Splitter) prism 205.
- PBS Polarization Beam Splitter
- the light beam that has passed through the PBS prism 205 functions as signal light 206, and after the light beam diameter is expanded by the beam expander 208, the light beam passes through the phase mask 209, the relay lens 210, and the PBS prism 211 and passes through the spatial light modulator 212. Is incident on.
- the signal light to which at least one of phase or intensity information is added by the spatial light modulator 212 is reflected by the PBS prism 211 and propagates through the relay lens 213 and the spatial filter 214. Thereafter, the signal light is condensed on the optical information recording medium 1 by the objective lens 215.
- the light beam reflected by the PBS prism 205 works as reference light 207, and is set to a predetermined polarization direction according to recording or reproduction by the polarization direction conversion element 216, and then galvanically passed through the mirror 217 and the mirror 218. Incident on the mirror 219. Since the angle of the galvanometer mirror 219 can be adjusted by the actuator 220, the incident angle of the reference light incident on the optical information recording medium 1 after passing through the lens 221 and the lens 222 can be set to a desired angle. In order to set the incident angle of the reference light, an element that converts the wavefront of the reference light may be used instead of the galvanometer mirror.
- the signal light and the reference light are incident on the optical information recording medium 1 so as to overlap each other, whereby an interference fringe pattern is formed in the recording medium, and information is recorded by writing this pattern on the recording medium.
- the incident angle of the reference light incident on the optical information recording medium 1 can be changed by the galvanometer mirror 219, recording by angle multiplexing is possible.
- holograms corresponding to each reference beam angle are called pages, and a set of pages angle-multiplexed in the same area is called a book. .
- FIG. 3 shows a reproduction principle in an example of a basic optical system configuration of the pickup 11 in the optical information recording / reproducing apparatus 10.
- the reference beam is incident on the optical information recording medium 1 and the light beam transmitted through the optical information recording medium 1 is transmitted to the galvanometer mirror 226 via the lens 223 and the lens 224 as described above. Incident.
- the galvanometer mirror 226 adjusts the angle by the actuator 225, and the light that has passed through the lens 224 and the lens 223 enters the optical information recording medium 1 as reproduction reference light.
- the reproduction light reproduced by the reproduction reference light propagates through the objective lens 215, the relay lens 213, and the spatial filter 214. Thereafter, the reproduction light passes through the PBS prism 211 and enters the photodetector 228, and the recorded signal can be reproduced.
- FIG. 4 shows an operation flow of recording and reproduction in the optical information recording / reproducing apparatus 10.
- a flow relating to recording / reproduction using holography in particular will be described.
- FIG. 4A shows an operation flow from the insertion of the optical information recording medium 1 into the optical information recording / reproducing apparatus 10 until the preparation for recording or reproduction is completed.
- FIG. FIG. 4C shows an operation flow until information is recorded on the information recording medium 1, and
- FIG. 4C shows an operation flow until the information recorded on the optical information recording medium 1 is reproduced from the ready state.
- the optical information recording / reproducing apparatus 10 discriminates whether the inserted medium is a medium for recording or reproducing digital information using holography, for example. (402).
- the optical information recording / reproducing apparatus 10 reads control data provided on the optical information recording medium (403). ), For example, information relating to the optical information recording medium and information relating to various setting conditions during recording and reproduction, for example.
- the operation flow from the ready state to recording information is as follows. First, data to be recorded is received (411), and information corresponding to the data is received from the spatial light modulator in the pickup 11. To send.
- the access control circuit 81 is controlled to position the pickup 11 and the cure optical system 13 at predetermined positions on the optical information recording medium.
- the optical information recording medium 1 has address information, it reproduces the address information, checks whether it is positioned at the target position, and calculates the amount of deviation from the predetermined position if it is not positioned at the target position. And repeat the positioning operation.
- a predetermined region is pre-cured using the light beam emitted from the cure optical system 13 (414), and data is recorded using the reference light and signal light emitted from the pickup 11 (415).
- post cure is performed using the light beam emitted from the cure optical system 13 (416). Data may be verified as necessary.
- the operation flow from the ready state to the reproduction of the recorded information is as follows.
- the access control circuit 81 is controlled, and the pickup 11 and the reproduction reference light are reproduced.
- the position of the optical system 12 is positioned at a predetermined position on the optical information recording medium.
- the optical information recording medium 1 has address information, it reproduces the address information, checks whether it is positioned at the target position, and calculates the amount of deviation from the predetermined position if it is not positioned at the target position. And repeat the positioning operation.
- FIG. 5 is a block diagram of the signal generation circuit 86 of the optical information recording / reproducing apparatus 10.
- the input / output control circuit 90 When the input of user data to the output control circuit 90 is started, the input / output control circuit 90 notifies the controller 89 that the input of user data has started. In response to this notification, the controller 89 instructs the signal generation circuit 86 to record data for one page input from the input / output control circuit 90. A processing command from the controller 89 is notified to the sub-controller 501 in the signal generation circuit 86 via the control line 508. Upon receiving this notification, the sub-controller 501 controls each signal processing circuit via the control line 508 so that the signal processing circuits are operated in parallel. First, the memory control circuit 503 is controlled so that user data input from the input / output control circuit 90 via the data line 509 is stored in the memory 502.
- the CRC calculation circuit 504 performs control to convert the user data into CRC.
- the scramble circuit 505 scrambles the CRC-converted data by adding a pseudo-random data sequence
- the error correction encoding circuit 506 performs error correction encoding by adding a parity data sequence.
- the pickup interface circuit 507 reads out the error correction encoded data from the memory 502 in the order of the two-dimensional data on the spatial light modulator 212, adds a reference marker at the time of reproduction, Two-dimensional data is transferred to the spatial light modulator 212. This two-dimensional data is called a data page.
- FIG. 6 is a block diagram of the signal processing circuit 85 of the optical information recording / reproducing apparatus 10.
- the controller 89 instructs the signal processing circuit 85 to reproduce the data for one page input from the pickup 11.
- a processing command from the controller 89 is notified to the sub-controller 601 in the signal processing circuit 85 via the control line 611.
- the sub-controller 601 controls each signal processing circuit via the control line 611 so as to operate each signal processing circuit in parallel.
- the memory control circuit 603 is controlled to store the image data input from the pickup 11 via the pickup interface circuit 610 via the data line 612 in the memory 602.
- the image position detection circuit 609 performs control to detect a marker from the image data stored in the memory 602 and extract an effective data range.
- the image distortion correction circuit 608 uses the detected marker to perform distortion correction such as image inclination, magnification, and distortion, and controls to convert the image data into the expected two-dimensional data size.
- Each bit data of a plurality of bits constituting the size-converted two-dimensional data is decoded by the decoding circuit 607 by determining multi-value data, and control is performed so that the data is stored in the memory 602 in a sequence of output reproduction data. .
- the error correction circuit 606 corrects the error included in each data string
- the scramble release circuit 605 releases the scramble to add the pseudo random number data string
- the CRC calculation circuit 604 causes an error in the user data on the memory 602. Check not included. Thereafter, the user data is transferred from the memory 602 to the input / output control circuit 90.
- phase recording / reproducing which is a feature of this embodiment will be described.
- the data page subjected to amplitude modulation (intensity modulation and luminance modulation) shown in FIG. 31A information can be detected by the photodetector 228 as described above.
- the photodetector 228 since the amplitude is uniform, the photodetector 228 that integrates and detects light over time cannot directly obtain phase information. . Therefore, the oscillator light having uniform luminance and uniform phase shown in FIG. 31C and the reproduced data page are caused to interfere on the photodetector 228.
- phase information can be converted into intensity information and detected.
- phase multilevel modulation and amplitude phase multilevel modulation are detected as intensified and high luminance, and pixels in the opposite phase are detected as weak and low luminance.
- the problem with this method is the wavefront shift between the reproduced data page and the oscillator light. If the wavefront deviation occurs, it is impossible to determine whether the detected information is recorded information or due to the wavefront deviation, so that the reading accuracy is lowered. Research has also revealed that this wavefront shift is caused mainly by expansion and contraction due to the temperature of the recording medium.
- information is recorded as a data hologram by the interference between the data page and the data reference beam.
- the oscillator light is recorded as an oscillator page by an interference with an oscillator reference light having a reference light angle different from that of the data page.
- each hologram expands and contracts in the same manner, so that the reproduction light is distorted in the same manner. Therefore, by simultaneously reproducing the oscillator hologram and the data hologram, it is possible to cause interference by the photodetector 228 without wavefront deviation, and phase information can be detected as intensity with high accuracy.
- the angle multiplexing method is used to record a large number of data pages at the same position, it is not necessary to record the oscillator page for each data page, and the consumption of the recording medium can be extremely reduced.
- the above can be applied not only to the angle multiplexing method but also to any method that multiplexes a plurality of information at the same location, such as a phase code multiplexing method, a wavelength multiplexing method, and a polarization multiplexing method.
- This oscillator page can be generated by displaying information on the spatial light modulator 212 with uniform luminance and uniform phase.
- the uniform brightness and uniform phase are convenient for interference with the data page during reproduction, but are not limited.
- the oscillator light may be generated and recorded by another optical system.
- FIG. 7 is a processing flow of the data recording process (415)
- FIG. 9 is a schematic diagram when recording an oscillator page
- FIG. 10 is a schematic diagram when recording a data page.
- the galvanometer mirror 219 is set to the reference light incident angle for the oscillator page recording (701), and the interference fringes between the signal light 901 of the oscillator page and the reference light 902 for the oscillator are recorded on the optical information recording medium 1 as a hologram. (702).
- the galvanometer mirror 219 is set to the reference light incident angle for data page recording (703), and the interference fringes between the signal light 1001 of the data page and the data reference light 1002 are recorded on the optical information recording medium 1 as a hologram. (704).
- the processes 703 and 704 are performed on all data pages in one book (705). Through the above processing, one oscillator page and a plurality of data pages are recorded in one book.
- FIG. 8 is a processing flow of the data reproduction process (422), and FIG. 11 is a schematic diagram at the time of reproduction.
- the galvanometer mirror 219 is set to the same incident angle as that at the time of recording the oscillator page (801), and the reproduction reference beam 1101 is irradiated to the optical information recording medium 1.
- the light transmitted through the medium passes through the lens 223, is reflected by the half mirror 227, becomes 1102, and the oscillator reference light 1104 that passes through the lens 223 again irradiates the optical information recording medium 1.
- the oscillator reference light 1104 is a traveling wave in the opposite direction of the oscillator reference light 902, and the oscillator reference light 1104 is diffracted to reproduce the reproduction light 1105 of the oscillator page and propagate to the photodetector 228.
- the light 1103 transmitted through the half mirror 227 passes through the lens 224, is reflected by the galvano mirror 226, becomes 1106, and the data reference light 1107 that passes through the lenses 224 and 223 irradiates the optical information recording medium 1.
- the data reference beam 1107 is a traveling wave in the reverse direction of the data reference beam 1002, and the data reference beam 1107 is diffracted to reproduce the data page reproduction beam 1108 and propagate it to the photodetector 228. Therefore, the galvanometer mirror 226 must be controlled so that the data reference beam 1107 has the same incident angle as the data reference beam 1002 (802).
- the polarization state of the oscillator reference light 1104 and the data reference light 1107 are the same, the polarization state of the oscillator page reproduction light 1105 and the data page reproduction light 1108 propagated to the photodetector 228 is the same and interferes. Phase information can be detected as intensity. (803).
- the processes of 802 and 803 are performed on all data pages in one book (804).
- an optical information recording / reproducing apparatus capable of causing interference on the photodetector 228 without wavefront deviation between the oscillator page and the data page and capable of detecting phase information as intensity is realized. can do.
- consumption of the recording medium by the oscillator page can be suppressed extremely small.
- the same incident angle is used.
- the reference beam incident angle may be changed between recording and reproduction. May be read as “incident angle required to reproduce the oscillator page or data page”.
- FIG. 12A is the arrangement shown in FIGS. 9 and 10
- the arrangement shown in FIGS. 12B, 12C, and 12D may be used.
- the oscillator page can be arranged at an angle with low reference light angle selectivity, so that an angle adjustment accuracy margin with respect to the oscillator page can be ensured.
- the reference light angle difference between the oscillator page and the data page can be reduced, and therefore the possibility of wavefront deviation can be suppressed.
- the one-dot chain line in the figure indicates the optical axis of the reference light.
- the configuration of the half mirror 227 is shown in FIGS. As shown in the figure, the half mirror 227 is not formed of a half mirror on the entire surface, but has a reflectance of about 50% only in the region 1401 where the oscillator reference light is collected, and the data reference light is collected.
- the region 1402 to be transmitted is configured to be almost transparent. Note that the transmittance of the region 1401 may be freely changed according to the design of the optical system.
- the region where the oscillator reference light is collected depends on the incident angle of the oscillator reference light, it must be changed depending on the arrangement of the oscillator pages. If it is dynamically changed, the reflection region can be electrically changed by a device such as a dimming mirror, or mechanically moved to make it variable.
- the region 1401 in FIG. 14 is not belt-shaped, but is limited to a region as 1501 in FIG. It is also possible to multiplex in the direction perpendicular to the page.
- the phase mask 209 may not be used in order to prevent the wavefront of the oscillator light and the data page from deviating from each other.
- the signal light of the oscillator page 901 having uniform luminance and uniform phase may be used as the objective lens.
- the light is condensed at 215, local energy concentration occurs, and the consumption of the recording medium becomes uneven.
- a phase mask 209 may be inserted in this method. This is because even if the phase of the phase mask is added, the phase is added to the oscillator page and the data page in the same manner, so that there is no influence.
- two pages in which 0 and 1 are inverted as shown in FIGS. 16A and 16B can be used as an oscillator page.
- the luminance / phase is a random or periodic pattern
- the energy concentration at the focal point of the objective lens 215 can be reduced.
- two pages with at least one of luminance or phase inverted as shown in FIGS. 16A and 16B are recorded at the same location with the same reference beam angle. If this is reproduced, two pages are reproduced at the same time and interfere on the photodetector 228.
- the interference results in uniform brightness and phase distribution, and this interferes with the data page. By doing so, the phase information can be correctly detected as the intensity.
- This embodiment differs from the first embodiment in the reference light generation method during reproduction.
- the scanner optical system is arranged on the back side of the medium in order to change the data page reference light angle while fixing the oscillator reference light angle.
- the size of the optical system becomes large. Therefore, the present embodiment aims to reduce the size of the medium back surface optical system.
- FIG. 17 is a schematic diagram of the pickup 11, and FIG. 18 is an enlarged view of the periphery of the recording medium. Since the recording is the same as in the first embodiment, the description is omitted.
- the reference light whose polarization plane is inclined by 45 ° from the P-polarized light is incident on the PBS 1701 by the polarization direction conversion element 216, the reflected S-polarized component is reflected by the mirror 1702, passes through the lens 1703, is reflected by the PBS 1704, 1801 that has passed through the lens 222 irradiates the optical information recording medium 1.
- the light transmitted through the medium passes through the lens 223, is transmitted through the quarter-wave plate 1803, is reflected by the mirror 1804, and is transmitted through the quarter-wave plate 1803 again. , And becomes an oscillator reference beam 1806, which irradiates the optical information recording medium 1.
- the oscillator reference light 1806 is a traveling wave in the opposite direction of the oscillator reference light 902, and the P-polarized oscillator page reproduction light 1807 is reproduced by the diffraction of the oscillator reference light 1806 and propagates to the photodetector 228.
- the area of the quarter-wave plate 1803 may be larger than the area where the reference light for the oscillator is condensed as described in FIG.
- the P-polarized light component transmitted through the PBS 1704 is reflected by the galvanometer mirror 219 set to have the same medium incident angle as that at the time of data page recording, transmitted through the lens 221 and the PBS 1704, and 1802 transmitted through the lens 222 is light.
- the information recording medium 1 is irradiated.
- the light transmitted through the medium passes through the lens 223, is reflected by the mirror 1804, and 1808, which is P-polarized light, passes through the lens 223 and becomes data reference light 1809 to irradiate the optical information recording medium 1.
- the data reference light 1809 is a traveling wave in the reverse direction of the data reference light 1002, and the reproduction light 1810 of the P-polarized data page is reproduced by the diffraction of the data reference light 1809 and propagates to the photodetector 228. .
- phase information can be detected as intensity.
- an optical information recording / reproducing apparatus capable of causing interference on the photodetector 228 without wavefront deviation between the oscillator page and the data page and capable of detecting phase information as intensity is realized. can do.
- consumption of the recording medium by the oscillator page can be suppressed extremely small.
- the size of the medium back surface optical system can be reduced.
- the quarter wave plate 1803 is used to cause the polarization state of the reproduction light of the oscillator page and the data page to be the same and interfere with each other. If this can be realized, the configuration is limited to this configuration. Instead, the polarization state may be changed by an element using a photonic crystal.
- the roles of the reference light for the oscillator and the reference light for the data can be switched by replacing the galvanometer mirror 219 and the mirror 1702. In this way, if the output of the polarization direction conversion element 216 is S-polarized light during recording, the energy of the reference light is incident on the galvanometer mirror 219 without being branched, and the configuration of FIG. Similarly, it is possible to record an oscillator page and a data page.
- This embodiment differs from the first embodiment in an oscillator page recording method and a reference light generation method.
- the first embodiment since the reference light is branched for the oscillator and the data during reproduction, the energy utilization efficiency is poor. Therefore, the present embodiment aims to record and reproduce the oscillator page without branching the reference light.
- FIG. 19 is a schematic view of the pickup 11, and FIG. 20 is an enlarged view around the recording medium.
- the galvano mirror 219 is set to the reference light incident angle for oscillator page recording, the angle of the galvano mirror 226 is set so that the light reflected by the galvano mirror 226 becomes a traveling wave in the opposite direction, and the reference light 2001 is emitted.
- the information recording medium 1 is irradiated.
- the light transmitted through the medium passes through the lenses 223 and 224, is reflected by the galvanometer mirror 226, becomes 2002, and the oscillator reference light 2003 that passes through the lenses 224 and 223 again irradiates the optical information recording medium 1.
- Interference fringes between the signal light 2004 of the oscillator page and the oscillator reference light 2003 are recorded on the optical information recording medium 1 as a hologram.
- the data page recording method is the same as in the first embodiment.
- FIG. 21 is an enlarged view around the recording medium.
- the galvanometer mirror 219 is set to the same incident angle as that for recording the oscillator page, and the optical information recording medium 1 is irradiated with the reference light 2101 for the oscillator.
- Oscillator page reproduction light 2102 is reproduced by diffracting 2101 and propagates to the photodetector 228.
- the light transmitted through the medium passes through the lenses 223 and 224, is reflected by the galvano mirror 226 to become 2103, and the data reference light 2104 that has passed through the lenses 224 and 223 irradiates the optical information recording medium 1.
- Reference numeral 2104 denotes a traveling wave in the reverse direction of the data reference light 1002, and the reproduction light 2105 of the data page is reproduced as 2104 is diffracted and propagates to the photodetector 228. Therefore, the galvanometer mirror 226 must be controlled so that 2104 has the same incident angle as that of the data reference light 1002.
- phase information can be detected as intensity.
- an optical information recording / reproducing apparatus capable of causing interference on the photodetector 228 without wavefront deviation between the oscillator page and the data page and capable of detecting phase information as intensity is realized. can do.
- a plurality of data pages can be reproduced from one oscillator page, consumption of the recording medium by the oscillator page can be suppressed extremely small.
- the reference light is not branched, the energy utilization efficiency is high, and it is effective when the laser output is small.
- the present invention is not limited to this.
- the data reference light is recorded. You may make it the structure which injects from a medium back surface.
- This embodiment differs from the first embodiment in the phase adjustment method of the reproduced oscillator page and data page.
- the phase of the oscillator page and the data page may not match during reproduction, and phase information may not be converted into intensity information. Accordingly, an object is to adjust the phase of the reproduced oscillator page and data page.
- the data recording process in this embodiment is the same as that in the first embodiment, but recording is performed by adding the phase difference detection pattern 2501 shown in FIG. 25 to a part of the data page.
- the phase difference detection pattern 2501 is a pattern having four types of phases as shown in the figure, and 0, ⁇ / 2, ⁇ , 3 ⁇ / 2 from the reference phase plane can be used for the fringe scanning method at the time of detection. Therefore, it is convenient, but the present invention is not limited to this, and any pattern may be used as long as the reference phase can be determined.
- FIG. 22 is a schematic diagram of the pickup 11
- FIG. 23 is an enlarged view around the recording medium
- FIG. 24 is a processing flow of data reproduction processing.
- the galvanometer mirror 219 is set to the same incident angle as that at the time of recording the oscillator page (801), and the reproduction reference beam 1101 is irradiated to the optical information recording medium 1.
- the light transmitted through the medium passes through the lens 223, is reflected by the half mirror 227, becomes 1102, and the oscillator reference light 1104 that passes through the lens 223 again irradiates the optical information recording medium 1.
- the oscillator reference light 1104 is a traveling wave in the opposite direction of the oscillator reference light 902, and the oscillator reference light 1104 is diffracted to reproduce the reproduction light 1105 of the oscillator page and propagate to the photodetector 228.
- the light that has passed through the half mirror 227 passes through the lens 224 to become 2301, passes through the phase adjustment element 2201, is reflected by the galvano mirror 226, passes through the phase adjustment element 2201 again, becomes 2302, and the lenses 224 and 223.
- the data reference beam 2303 that has passed through the optical information recording medium 1 is irradiated.
- the phase adjustment element 2201 is assumed to be an element that can electrically control the amount of phase delay, but any element that can adjust the optical path length may be used.
- the galvano mirror 226 and the phase adjustment element 2201 have been described at close positions, the present invention is not limited to this, and it may be inserted into the optical path.
- the data reference light 2303 is a traveling wave in the opposite direction of the data reference light 1002, and the data reference reproduction light 2304 is diffracted to reproduce the data page reproduction light 2304 and propagate to the photodetector 228. Therefore, the galvanometer mirror 226 must be controlled so that the data reference beam 2303 has the same incident angle as the data reference beam 1002 (2401).
- the reproduction light of the oscillator page and the data page propagated to the photodetector 228 is caused to interfere with the photodetector 228 and the phase information is detected as intensity, but the two lights may not be in phase. . Therefore, in the phase difference detection circuit 2202 of FIG. 22, the phase difference ⁇ is calculated according to (Equation 1) from the detection intensities I0 to I3 of the phase difference detection pattern 2601 of FIG. 26 detected on the photodetector 228 (2402). ).
- the compensation amount calculation circuit 2203 in FIG. 22 controls the phase delay amount of the phase adjustment element 2201 based on this phase difference ⁇ (2403).
- the subsequent processing is the same as the processing of 802 to 804 in the first embodiment.
- an optical information recording / reproducing apparatus capable of causing interference on the photodetector 228 without wavefront deviation between the oscillator page and the data page and capable of detecting phase information as intensity is realized. can do.
- a plurality of data pages can be reproduced from one oscillator page, consumption of the recording medium by the oscillator page can be suppressed extremely small.
- the phase of the reproduced oscillator page and the data page coincide with each other, the phase information can be efficiently converted into intensity information.
- phase difference ⁇ is calculated from each phase difference detection pattern 2601, and each phase difference ⁇ is two-dimensionally linearly interpolated to obtain the phase difference distribution in the page. Based on this, the phase adjustment element 2201 is obtained. It is also effective to two-dimensionally control the phase delay amount.
- phase difference detection pattern 2501 is not limited to the pattern shown in FIG.
- highly accurate detection is possible by increasing the types of phases, and noise tolerance can be improved by using a result obtained by enlarging the phase difference detection pattern and averaging within the same phase.
- phase adjustment element 2201 is controlled using the phase difference detection pattern 2501
- control may be performed without using the phase difference detection pattern 2501.
- the phase difference detection circuit 2202 calculates evaluation indices such as the SNR, normalized noise, and luminance of the image, and performs feedback control so that the evaluation index becomes optimal as indicated by 2701 in FIG. Changes the phase delay amount of the phase adjustment element 2201. Thereby, the phase difference detection pattern 2501 becomes unnecessary.
- the page used for phase difference adjustment is more advantageous for the reproduction time because it is only necessary to change the reference light angle in order in the reproduction data in the first data page.
- the phase difference in the book can be reduced by adjusting the data page at the angle at the center of the book.
- phase difference adjustment method has been described with an example of performing once in a book as shown in FIG. 24, the present invention is not limited to this. Adjustments can be made on all pages, and adjustments can be made more accurately if adjustments are made once on multiple pages. Conversely, if adjustments are made once at the start of playback or on multiple books, the time required for adjustments can be shortened. It becomes possible. Further, by interpolating values adjusted for a plurality of pages or a plurality of books and applying the values to intermediate pages or books, it is possible to achieve both high accuracy of phase difference adjustment and shortening of the adjustment time.
- the phase difference adjustment is not performed at a fixed timing, but may be performed as appropriate when the possibility that a phase difference occurs becomes high.
- the medium may expand and contract when the temperature changes, and the influence of expansion and contraction can be suppressed by changing the reference light wavelength.
- changing the wavelength requires changing the delay amount, and it is better to perform the phase difference adjustment again.
- This embodiment differs from the fourth embodiment in the phase adjustment method of the reproduced oscillator page and data page.
- the phase adjustment element 2201 is used for the adjustment, but the cost is high. Therefore, an object is to adjust the phase without using the phase adjustment element 2201.
- the data recording process in the present embodiment is the same as that in the first embodiment, but a plurality of oscillator pages having different phases are recorded as shown in FIG.
- FIG. 28 shows an example in which four oscillator pages are recorded. It is assumed that each oscillator page has a phase difference of 0, ⁇ / 2, ⁇ , and 3 ⁇ / 2 from the reference phase plane. Although four types of oscillator pages are used here, it is preferable to record more types of phases because the adjustment resolution can be increased.
- FIG. 29 is a processing flow of data reproduction processing.
- the galvano mirror 219 is set to reproduce the first oscillator page (2901), and the galvano mirror 226 is set to reproduce the data page (2902).
- This processing is performed for all the oscillator pages (2903), the optimum oscillator page having the best evaluation index such as the SNR, the normalized noise, and the luminance of the image is determined (2904), and this optimum oscillator page is reproduced.
- the galvanometer mirror 219 is set (2905).
- the subsequent processing is the same as the processing of 802 to 804 in the first embodiment.
- an optical information recording / reproducing apparatus capable of causing interference on the photodetector 228 without wavefront deviation between the oscillator page and the data page and capable of detecting phase information as intensity is realized. can do.
- a plurality of data pages can be reproduced from one oscillator page, consumption of the recording medium by the oscillator page can be suppressed extremely small.
- the phase of the reproduced oscillator page and the data page can be matched without using the phase adjustment element 2201.
- the optimal oscillator page is determined so that the evaluation index is the best.
- the phase difference ⁇ can be calculated by using the phase difference detection pattern 2501, and therefore the phase difference ⁇ matches.
- An oscillator page having a phase difference may be set as the optimum oscillator page. Thereby, it is not necessary to perform reproduction for all the oscillator pages, and the reproduction time can be shortened.
- This embodiment is different from the first embodiment in the light amount ratio between the reproduced oscillator page and the data page.
- the phase information is converted into the intensity information, it is assumed that the light quantity ratio between the reproduced oscillator page and the data page is equal.
- the reproduced data page can be amplified and detected. Therefore, an object is to amplify the reproduced data page.
- FIG. 31A shows the signal point arrangement of the amplitude modulation data page (FIG. 31A)
- FIG. 30B shows the signal point arrangement of the phase modulation data page (FIG. 31B)
- FIG. 31 (c) The signal point arrangement of the oscillator page (FIG. 31 (c)) is shown.
- the signal points are arranged so that the distance between the two signals (3001 and 3002, 3004 and 3003) is equal. “I” indicates an in-phase component of the waveform, and “Q” indicates a quadrature component, and a signal is considered on the complex plane.
- the data page of FIG. 30B is converted into intensity by the oscillator page of FIG. 30C and detected by the photodetector 228, the square of the complex signal is detected.
- the signal 3004 becomes the intensity I1 from (Equation 5)
- the signal 3003 becomes the intensity I0 from (Equation 6)
- the inter-signal distance ⁇ Ib becomes (Equation 7). It is assumed that the data page signal 3004 and the oscillator page are in phase.
- One is a method for increasing the diffraction efficiency of the hologram of the oscillator page, and the other is a method for increasing the amount of the reference light for the oscillator to be irradiated. Of course, these methods may be used in combination.
- a hologram having high diffraction efficiency is formed by increasing the exposure time, which is the time for irradiating the recording medium with light, compared to the data page recording process (704). Can be realized. Further, in the oscillator page recording process (702), it can be realized by increasing the light amount of at least one signal light of the oscillator reference light or the oscillator page.
- the oscillator reference light having the same light amount as the data reference light is irradiated, the light diffracted from the hologram is larger on the oscillator page than on the data page. Further, although the consumption amount of the recording medium increases, the influence is small because the ratio of the oscillator page to the whole page is still small as described above.
- this can be realized by making the transmittance of the half mirror portion of the half mirror 227 of FIG. 11 smaller than 50%.
- it can be realized by adjusting the polarization direction conversion element 216 in FIG. 17 and using the reference light whose polarization plane is inclined from 45 ° to 90 ° from the P-polarized light.
- this can be realized by reducing the reflectance of the galvanometer mirror 226.
- this invention is not limited to said Example, Various modifications are included.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
- the following configurations can be cited.
- a light source that generates reference light, signal light, and oscillator light, and information is added to the signal light generated by the light source
- a signal light modulating unit that irradiates the optical information recording medium with the signal light modulated by the signal light modulating unit, and an oscillator that irradiates the optical information recording medium with the oscillator light generated by the light source
- a light irradiation unit and a reference light irradiation unit that irradiates the optical information recording medium with the reference light generated by the light source.
- the signal light emitted from the signal light irradiation unit, and the reference light irradiation unit Oscillator light emitted from the oscillator light irradiating unit, which records multiple interference fringes with the irradiated reference light as signal light holograms in a predetermined area of the optical information recording medium, and the reference light irradiating unit Recording the interference fringe between et irradiated reference light as the oscillator hologram, it is an optical information recording apparatus according to claim.
- the optical information recording apparatus described in the first modification when multiple information is recorded, the angle at which the reference light irradiated from the reference light irradiation unit is incident on the optical information recording medium is changed.
- an optical information recording apparatus characterized by recording while changing.
- a phase difference adjustment pattern is embedded in a part of the signal light modulated by the signal light modulation unit.
- a plurality of oscillator lights having different phases are multiplexed and recorded in the predetermined area of the optical information recording medium as the oscillator optical hologram.
- Modified example 5 is an optical information recording apparatus according to modified example 1, wherein the signal light hologram and the oscillator hologram are recorded with different diffraction efficiencies.
- an optical information reproducing apparatus that reproduces information recorded on an optical information recording medium using holography
- a light source that generates reference light and oscillator light, and an oscillator light generated by the light source
- the optical information recording medium includes an interference fringe between the signal light modulated with information added and the reference light emitted from the reference light irradiation unit as a signal light hologram.
- Interference fringes between the oscillator light irradiated from the oscillator light irradiating unit and the reference light irradiated from the reference light irradiating unit are recorded as an oscillator hologram. From the reference light that is recorded and reproduced from the signal light hologram by the reference light for signal light generated from the reference light emitted from the reference light irradiation unit, and from the reference light emitted from the reference light irradiation unit An optical information reproducing apparatus, wherein the oscillator light is reproduced from the oscillator hologram by the generated oscillator light reference light, and the reproduced signal light and the oscillator light are detected by the light detection unit.
- the signal light reference light and the oscillator light reference light are generated by branching the reference light emitted from the reference light irradiation unit.
- the optical information reproducing apparatus characterized in that.
- the reference light for signal light and the reference light for oscillator light branch off the reference light emitted from the reference light irradiating unit and branch the reference
- the polarization of light is orthogonal.
- the reference light for oscillator light is generated from the reference light emitted from the reference light irradiation unit, and the reference light for signal light is the reference
- the reference light emitted from the light irradiation unit is generated from the light transmitted through the optical information recording medium,
- an optical information reproducing apparatus characterized in that.
- the optical information reproducing apparatus includes a phase adjusting element that adjusts a phase difference between the reference light for signal light and the reference light for oscillator light, and is based on the output of the light detection unit.
- an optical information reproducing apparatus As an eleventh modification, there is an optical information reproducing apparatus according to the sixth modification, wherein the optical information recording / reproducing apparatus reproduces the signal light by changing the light amount of the reference light and the reference light for the oscillator light. .
- a light generation step for generating reference light, signal light and oscillator light, and information on the signal light generated by the light source A signal light modulation step of adding, a signal light irradiation step of irradiating the optical information recording medium with the signal light modulated in the signal light modulation step, and irradiating the optical information recording medium with the oscillator light generated by the light source
- the interference fringes with the reference light irradiated in the step are multiplexed and recorded as a signal light hologram on a predetermined area of the optical information recording medium, and the oscillator light irradiation is performed.
- a phase difference adjustment pattern is embedded in one step of the signal light modulated in the signal light modulation step.
- a plurality of oscillator lights having different phases are multiplexed and recorded in the predetermined area of the optical information recording medium as the oscillator optical hologram.
- Modified example 16 is an optical information recording method according to modified example 12, characterized in that recording is performed by changing diffraction efficiency of the signal light hologram and the oscillator hologram.
- an optical information reproducing method for reproducing information from an optical information recording medium on which information is recorded using holography a light generating step for generating reference light and oscillator light, and an oscillator generated by the light source
- the optical information recording medium includes a predetermined region of the optical information recording medium in which interference fringes between the signal light to which information is added and modulated and the reference light are signal light holograms.
- the interference fringes between the oscillator light and the reference light are recorded as an oscillator hologram and irradiated in the reference light irradiation step.
- the signal light is reproduced from the signal light hologram by the signal light reference light generated from the generated reference light, and the oscillator light reference light generated from the reference light irradiated in the reference light irradiation step is used to generate the oscillator light.
- the reference light for signal light and the reference light for oscillator light are generated by branching the reference light irradiated in the reference light irradiation step.
- the reference light for signal light and the reference light for oscillator light branch off the reference light irradiated in the reference light irradiation step and branch the reference
- the reference light for oscillator light branch off the reference light irradiated in the reference light irradiation step and branch the reference
- the polarization of light is orthogonal.
- the reference light for oscillator light is generated from the reference light emitted from the reference light irradiation step, and the reference light for signal light is the reference
- the reference light emitted from the light irradiation step is generated from the light transmitted through the optical information recording medium.
- the optical information reproducing method includes a phase adjusting element that adjusts a phase difference between the reference light for signal light and the reference light for oscillator light, and is based on the output of the light detection step.
- optical information recording medium is not limited to a recording medium using holography, and may be a DVD (Digital Versatile Disc) or a BD (Blu-ray Disc (registered trademark)), for example.
- DVD Digital Versatile Disc
- BD Blu-ray Disc (registered trademark)
- each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
- Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
- Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
- control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
- SYMBOLS 1 Optical information recording medium, 10 ... Optical information recording / reproducing apparatus, 11 ... Pickup, 12 ... Reference optical system for reproduction
- collimating lens 203 ... shutter, 204 ... 1/2 wavelength plate, 205 ... polarizing beam splitter, 206 ... Signal light, 207... Reference light, 208... Beam expander, 209... Phase (phase) mask, 210 ... Relay lens, 211 ... Polarization beam splitter, 212 ... Spatial light modulator 213 ... Relay lens, 214 ... Spatial filter, 215 ... Objective lens, 216 ... Polarization direction conversion element, 217 ... Mirror, 218 ... Mirror, 219 ... Mirror, 220 ... Actuator, 221 ... Lens, 222 ... Lens, 223 ... Lens, 224 ... Lens, 225 ... Actuator, 226 ... Mirror, 227 ...
- Half mirror 228 ..Photodetector, 1401... Half mirror region, 1402... Transmission region, 1501... Half mirror region, 1803. 1804: mirror, 2201 ... phase adjustment element, 2202 ... phase difference detection circuit, 2203 ... compensation amount calculation circuit, 2501 ... phase difference detection pattern (recording), 2601 ... phase difference Detection pattern (playback),
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Recording Or Reproduction (AREA)
- Holo Graphy (AREA)
- Optical Head (AREA)
Abstract
The present invention addresses the problem of obtaining an optical information recording/reproduction device and an optical information recording/reproduction method with which the media consumption amount of an oscillator page can be reduced significantly in comparison with the media consumption amount of a data page. To solve this problem, this optical information recording device, which uses holography to record information on an optical information recording medium, is characterized in that interference fringes of a signal light radiated from a signal light radiation unit and a reference light radiated from a reference light radiation unit are multiplex-recorded as a signal light hologram on a prescribed region of an optical information recording medium, and interference fringes of an oscillator light radiated from an oscillator light radiation unit and a reference light radiated from the reference light radiation unit are recorded as an oscillator hologram.
Description
本発明は、ホログラフィを用いて光情報記録媒体に情報を記録、光情報記録媒体から情報を再生する技術に関する。
The present invention relates to a technique for recording information on an optical information recording medium using holography and reproducing information from the optical information recording medium.
ホログラム記録再生技術として、例えばWO2004-102542号公報(特許文献1)がある。本公報には、1つの空間光変調器において内側の画素からの光を信号光、外側の輪帯状の画素からの光を参照光として、両光束を同じレンズで光記録媒体に集光し、レンズの焦点面付近で信号光と参照光を干渉させてホログラムを記録するシフト多重方式を用いた例が記述されている。
As a hologram recording / reproducing technique, there is, for example, WO 2004-102542 (Patent Document 1). In this publication, in one spatial light modulator, light from an inner pixel is signal light, light from an outer ring-shaped pixel is reference light, and both light beams are condensed on an optical recording medium with the same lens. An example is described in which a shift multiplexing method is used in which a hologram is recorded by causing signal light and reference light to interfere with each other in the vicinity of the focal plane of the lens.
さらに、例えば非特許文献1に「However, to detect the phase in a signal beam, the signal should interfere with an additional beam on an imager for converting the phase into intensity information.」と記載されるように、位相情報を検出するためには信号光と別の光を干渉させる必要があり、「In the DRH, a signal beam with data to be recorded and a phantom beam without signal information are holographically multiplexed at the same spot of the medium, and then these holograms are read out simultaneously from the medium and the diffracted beams propagate in the same optical path toward the imager for yielding the interference fringe.」(double-referential holography (DRH))と記載されるように、信号光とファントム光の干渉させる位相記録再生方法について記載がある。
Further, for example, as described in Non-Patent Document 1, “However, to detect the phase in a signal beam, the signal should interfere with an additional beam on an imager for converting the phase into intensity information." In order to detect, it is necessary to interfere with the signal light and another light, `` In 「the DRH, a signal beam with data to be recorded and a phantom beam without signal information are holographically multiplexed at the same spot of the medium, and then these holograms are read out simultaneously from the medium and the diffracted beams propagate in the same optical path toward the imager for yielding the interference fringe. '(double-referential holography (DRH)) There is a description of a phase recording / reproducing method in which light interferes.
しかし、非特許文献1に記載される方法では、1つのデータページの再生に対して1つのファントム光が必要であり、記録媒体の消費量が大きいことが課題であった。
However, in the method described in Non-Patent Document 1, one phantom light is required for reproducing one data page, and the consumption of the recording medium is large.
上記課題は、たとえば、以下の構成により解決される。
The above problem is solved by the following configuration, for example.
ホログラフィを利用して情報を光情報記録媒体に記録する光情報記録装置において、参照光、信号光およびオシレータ光を生成する光源と、前記光源が生成した信号光に情報を付加する信号光変調部と、前記信号光変調部で変調された信号光を前記光情報記録媒体に照射する信号光照射部と、前記光源が生成したオシレータ光を前記光情報記録媒体に照射するオシレータ光照射部と、前記光源が生成した参照光を前記光情報記録媒体に照射する参照光照射部と、を具備し、前記信号光照射部から照射された信号光と、前記参照光照射部から照射された参照光との干渉縞を信号光ホログラムとして、前記光情報記録媒体の所定の領域に多重記録し、前記オシレータ光照射部から照射されたオシレータ光と、前記参照光照射部から照射された参照光との干渉縞をオシレータホログラムとして記録する。
In an optical information recording apparatus that records information on an optical information recording medium using holography, a light source that generates reference light, signal light, and oscillator light, and a signal light modulation unit that adds information to the signal light generated by the light source A signal light irradiation unit that irradiates the optical information recording medium with the signal light modulated by the signal light modulation unit; an oscillator light irradiation unit that irradiates the optical information recording medium with the oscillator light generated by the light source; A reference light irradiation unit that irradiates the optical information recording medium with the reference light generated by the light source, the signal light emitted from the signal light irradiation unit, and the reference light emitted from the reference light irradiation unit Are recorded as a signal light hologram in a predetermined area of the optical information recording medium, the oscillator light irradiated from the oscillator light irradiation unit, and the reference light irradiation unit irradiated from the reference light irradiation unit Recording the interference fringes between the light as the oscillator hologram.
本発明によれば、データページの記録媒体の消費量に比べオシレータページ(ファントム光)のメディア消費量を大きく抑圧することが可能であり、高効率な位相記録再生方法を実現することが可能となる。
According to the present invention, it is possible to greatly suppress the media consumption of the oscillator page (phantom light) compared to the consumption of the recording medium of the data page, and to realize a highly efficient phase recording / reproducing method. Become.
以下、本発明の実施例について図面を用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本発明の実施形態を図面にしたがって説明する。図1はホログラフィを利用してデジタル情報を光情報記録媒体から記録または再生の少なくとも一方の処理をする記録再生装置を示すブロック図である。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a recording / reproducing apparatus that performs at least one process of recording or reproducing digital information from an optical information recording medium using holography.
光情報記録再生装置10は、入出力制御回路90を介して外部制御装置91と接続されている。記録する場合には、光情報記録再生装置10は外部制御装置91から記録する情報信号を入出力制御回路90により受信する。再生する場合には、光情報記録再生装置10は再生した情報信号を入出力制御回路90により外部制御装置91に送信する。
The optical information recording / reproducing device 10 is connected to an external control device 91 via an input / output control circuit 90. In the case of recording, the optical information recording / reproducing apparatus 10 receives the information signal to be recorded from the external control device 91 by the input / output control circuit 90. When reproducing, the optical information recording / reproducing apparatus 10 transmits the reproduced information signal to the external control apparatus 91 by the input / output control circuit 90.
光情報記録再生装置10は、ピックアップ11、再生用参照光光学系12、キュア光学系13、ディスク回転角度検出用光学系14、位置検出光学系15、及び回転モータ50を備えており、光情報記録媒体1は回転モータ50によって回転可能な構成となっている。
The optical information recording / reproducing apparatus 10 includes a pickup 11, a reproduction reference light optical system 12, a cure optical system 13, a disk rotation angle detection optical system 14, a position detection optical system 15, and a rotation motor 50. The recording medium 1 can be rotated by a rotary motor 50.
ピックアップ11は、参照光と信号光を光情報記録媒体1に出射してホログラフィを利用してデジタル情報を記録媒体に記録する役割を果たす。この際、記録する情報信号はコントローラ89によって信号生成回路86を介してピックアップ11内の空間光変調器に送り込まれ、信号光は空間光変調器によって変調される。
The pickup 11 plays a role of emitting reference light and signal light to the optical information recording medium 1 and recording digital information on the recording medium using holography. At this time, the information signal to be recorded is sent by the controller 89 to the spatial light modulator in the pickup 11 via the signal generation circuit 86, and the signal light is modulated by the spatial light modulator.
光情報記録媒体1に記録した情報を再生する場合は、ピックアップ11から出射された参照光を記録時とは逆の向きに光情報記録媒体に入射させる光波を再生用参照光光学系12にて生成する。再生用参照光によって再生される再生光をピックアップ11内の後述する光検出器によって検出し、信号処理回路85によって信号を再生する。
When reproducing the information recorded on the optical information recording medium 1, the reproduction reference light optical system 12 generates a light wave that causes the reference light emitted from the pickup 11 to enter the optical information recording medium in a direction opposite to that during recording. Generate. Reproduction light reproduced by the reproduction reference light is detected by a photodetector (to be described later) in the pickup 11, and a signal is reproduced by the signal processing circuit 85.
光情報記録媒体1に照射する参照光と信号光の照射時間は、ピックアップ11内のシャッタの開閉時間をコントローラ89によってシャッタ制御回路87を介して制御することで調整できる。
The irradiation time of the reference light and the signal light applied to the optical information recording medium 1 can be adjusted by controlling the opening / closing time of the shutter in the pickup 11 via the shutter control circuit 87 by the controller 89.
キュア光学系13は、光情報記録媒体1のプリキュアおよびポストキュアに用いる光ビームを生成する役割を果たす。プリキュアとは、光情報記録媒体1内の所望の位置に情報を記録する際、所望位置に参照光と信号光を照射する前に予め所定の光ビームを照射する前工程である。ポストキュアとは、光情報記録媒体1内の所望の位置に情報を記録した後、該所望の位置に追記不可能とするために所定の光ビームを照射する後工程である。
The cure optical system 13 plays a role of generating a light beam used for pre-cure and post-cure of the optical information recording medium 1. Precure is a pre-process for irradiating a predetermined light beam in advance before irradiating the desired position with reference light and signal light when recording information at a desired position in the optical information recording medium 1. Post-cure is a post-process for irradiating a predetermined light beam after recording information at a desired position in the optical information recording medium 1 so that additional recording cannot be performed at the desired position.
ディスク回転角度検出用光学系14は、光情報記録媒体1の回転角度を検出するために用いられる。光情報記録媒体1を所定の回転角度に調整する場合は、ディスク回転角度検出用光学系14によって回転角度に応じた信号を検出し、検出された信号を用いてコントローラ89によってディスク回転モータ制御回路88を介して光情報記録媒体1の回転角度を制御する事が出来る。
The disk rotation angle detection optical system 14 is used to detect the rotation angle of the optical information recording medium 1. When adjusting the optical information recording medium 1 to a predetermined rotation angle, a signal corresponding to the rotation angle is detected by the disk rotation angle detection optical system 14, and a disk rotation motor control circuit is detected by the controller 89 using the detected signal. The rotation angle of the optical information recording medium 1 can be controlled via 88.
光源駆動回路82からは所定の光源駆動電流がピックアップ11、キュア光学系13、ディスク回転角度検出用光学系14内の光源に供給され、各々の光源からは所定の光量で光ビームを発光することができる。
A predetermined light source driving current is supplied from the light source driving circuit 82 to the light sources in the pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14, and each light source emits a light beam with a predetermined light amount. Can do.
また、ピックアップ11、そして、ディスクキュア光学系13は、光情報記録媒体1の半径方向に位置をスライドできる機構が設けられており、アクセス制御回路81を介して位置制御がおこなわれる。
Further, the pickup 11 and the disc cure optical system 13 are provided with a mechanism capable of sliding the position in the radial direction of the optical information recording medium 1, and the position is controlled via the access control circuit 81.
ところで、ホログラフィの角度多重の原理を利用した記録技術は、参照光角度のずれに対する許容誤差が極めて小さくなる傾向がある。
By the way, the recording technology using the principle of angle multiplexing of holography tends to have a very small tolerance for the deviation of the reference beam angle.
従って、ピックアップ11内に、参照光角度のずれ量を検出する機構を設けて、サーボ信号生成回路83にてサーボ制御用の信号を生成し、サーボ制御回路84を介して該ずれ量を補正するためのサーボ機構を光情報記録再生装置10内に備えることが必要となる。
Therefore, a mechanism for detecting the deviation amount of the reference beam angle is provided in the pickup 11, a servo control signal is generated by the servo signal generation circuit 83, and the deviation amount is corrected via the servo control circuit 84. It is necessary to provide a servo mechanism for this purpose in the optical information recording / reproducing apparatus 10.
また、ピックアップ11、キュア光学系13、ディスク回転角度検出用光学系14、位置検出光学系15は、いくつかの光学系構成または全ての光学系構成をひとつに纏めて簡素化しても構わない。
Also, the pickup 11, the cure optical system 13, the disk rotation angle detection optical system 14, and the position detection optical system 15 may be simplified by combining several optical system configurations or all optical system configurations.
図2は、光情報記録再生装置10におけるピックアップ11の基本的な光学系構成の一例における記録原理を示したものである。光源201を出射した光ビームはコリメートレンズ202を透過し、シャッタ203に入射する。シャッタ203が開いている時は、光ビームはシャッタ203を通過した後、例えば1/2波長板などで構成される光学素子204によってP偏光とS偏光の光量比が所望の比になるようになど偏光方向が制御された後、PBS(Polarization Beam Splitter)プリズム205に入射する。
FIG. 2 shows a recording principle in an example of a basic optical system configuration of the pickup 11 in the optical information recording / reproducing apparatus 10. The light beam emitted from the light source 201 passes through the collimator lens 202 and enters the shutter 203. When the shutter 203 is open, after the light beam passes through the shutter 203, the optical element 204 composed of, for example, a half-wave plate or the like adjusts the light quantity ratio of P-polarized light and S-polarized light to a desired ratio. After the polarization direction is controlled, it enters a PBS (Polarization Beam Splitter) prism 205.
PBSプリズム205を透過した光ビームは、信号光206として働き、ビームエキスパンダ208によって光ビーム径が拡大された後、位相マスク209、リレーレンズ210、PBSプリズム211を透過して空間光変調器212に入射する。
The light beam that has passed through the PBS prism 205 functions as signal light 206, and after the light beam diameter is expanded by the beam expander 208, the light beam passes through the phase mask 209, the relay lens 210, and the PBS prism 211 and passes through the spatial light modulator 212. Is incident on.
空間光変調器212によって位相または強度情報の少なくとも一方が付加された信号光は、PBSプリズム211を反射し、リレーレンズ213ならびに空間フィルタ214を伝播する。その後、信号光は対物レンズ215によって光情報記録媒体1に集光する。
The signal light to which at least one of phase or intensity information is added by the spatial light modulator 212 is reflected by the PBS prism 211 and propagates through the relay lens 213 and the spatial filter 214. Thereafter, the signal light is condensed on the optical information recording medium 1 by the objective lens 215.
一方、PBSプリズム205を反射した光ビームは参照光207として働き、偏光方向変換素子216によって記録時または再生時に応じて所定の偏光方向に設定された後、ミラー217ならびにミラー218を経由してガルバノミラー219に入射する。ガルバノミラー219はアクチュエータ220によって角度を調整可能のため、レンズ221とレンズ222を通過した後に光情報記録媒体1に入射する参照光の入射角度を、所望の角度に設定することができる。なお、参照光の入射角度を設定するために、ガルバノミラーに代えて、参照光の波面を変換する素子を用いても構わない。
On the other hand, the light beam reflected by the PBS prism 205 works as reference light 207, and is set to a predetermined polarization direction according to recording or reproduction by the polarization direction conversion element 216, and then galvanically passed through the mirror 217 and the mirror 218. Incident on the mirror 219. Since the angle of the galvanometer mirror 219 can be adjusted by the actuator 220, the incident angle of the reference light incident on the optical information recording medium 1 after passing through the lens 221 and the lens 222 can be set to a desired angle. In order to set the incident angle of the reference light, an element that converts the wavefront of the reference light may be used instead of the galvanometer mirror.
このように信号光と参照光とを光情報記録媒体1において、互いに重ね合うように入射させることで、記録媒体内には干渉縞パターンが形成され、このパターンを記録媒体に書き込むことで情報を記録する。また、ガルバノミラー219によって光情報記録媒体1に入射する参照光の入射角度を変化させることができるため、角度多重による記録が可能である。
In this way, the signal light and the reference light are incident on the optical information recording medium 1 so as to overlap each other, whereby an interference fringe pattern is formed in the recording medium, and information is recorded by writing this pattern on the recording medium. To do. Moreover, since the incident angle of the reference light incident on the optical information recording medium 1 can be changed by the galvanometer mirror 219, recording by angle multiplexing is possible.
以降、同じ領域に参照光角度を変えて記録されたホログラムにおいて、1つ1つの参照光角度に対応したホログラムをページと呼び、同領域に角度多重されたページの集合をブックと呼ぶことにする。
Hereinafter, in holograms recorded in the same area with different reference beam angles, holograms corresponding to each reference beam angle are called pages, and a set of pages angle-multiplexed in the same area is called a book. .
図3は、光情報記録再生装置10におけるピックアップ11の基本的な光学系構成の一例における再生原理を示したものである。記録した情報を再生する場合は、前述したように参照光を光情報記録媒体1に入射し、光情報記録媒体1を透過した光ビームは、レンズ223とレンズ224を経由してガルバノミラー226に入射する。ガルバノミラー226はアクチュエータ225によって角度を調整し、レンズ224とレンズ223を通過した光を再生用参照光として光情報記録媒体1に入射する。
FIG. 3 shows a reproduction principle in an example of a basic optical system configuration of the pickup 11 in the optical information recording / reproducing apparatus 10. When reproducing the recorded information, the reference beam is incident on the optical information recording medium 1 and the light beam transmitted through the optical information recording medium 1 is transmitted to the galvanometer mirror 226 via the lens 223 and the lens 224 as described above. Incident. The galvanometer mirror 226 adjusts the angle by the actuator 225, and the light that has passed through the lens 224 and the lens 223 enters the optical information recording medium 1 as reproduction reference light.
この再生用参照光によって再生された再生光は、対物レンズ215、リレーレンズ213ならびに空間フィルタ214を伝播する。その後、再生光はPBSプリズム211を透過して光検出器228に入射し、記録した信号を再生することができる。光検出器228としては例えばCMOSイメージセンサーやCCDイメージセンサーなどの撮像素子を用いることができるが、データページを再生可能であれば、どのような素子であっても構わない。
The reproduction light reproduced by the reproduction reference light propagates through the objective lens 215, the relay lens 213, and the spatial filter 214. Thereafter, the reproduction light passes through the PBS prism 211 and enters the photodetector 228, and the recorded signal can be reproduced. As the photodetector 228, for example, an image sensor such as a CMOS image sensor or a CCD image sensor can be used, but any element may be used as long as the data page can be reproduced.
図4は、光情報記録再生装置10における記録、再生の動作フローを示したものである。ここでは、特にホログラフィを利用した記録再生に関するフローを説明する。
FIG. 4 shows an operation flow of recording and reproduction in the optical information recording / reproducing apparatus 10. Here, a flow relating to recording / reproduction using holography in particular will be described.
図4(a)は、光情報記録再生装置10に光情報記録媒体1を挿入した後、記録または再生の準備が完了するまでの動作フローを示し、図4(b)は準備完了状態から光情報記録媒体1に情報を記録するまでの動作フロー、図4(c)は準備完了状態から光情報記録媒体1に記録した情報を再生するまでの動作フローを示したものである。
FIG. 4A shows an operation flow from the insertion of the optical information recording medium 1 into the optical information recording / reproducing apparatus 10 until the preparation for recording or reproduction is completed. FIG. FIG. 4C shows an operation flow until information is recorded on the information recording medium 1, and FIG. 4C shows an operation flow until the information recorded on the optical information recording medium 1 is reproduced from the ready state.
図4(a)に示すように媒体を挿入すると(401)、光情報記録再生装置10は、例えば挿入された媒体がホログラフィを利用してデジタル情報を記録または再生する媒体であるかどうかディスク判別を行う(402)。
When a medium is inserted as shown in FIG. 4A (401), the optical information recording / reproducing apparatus 10 discriminates whether the inserted medium is a medium for recording or reproducing digital information using holography, for example. (402).
ディスク判別の結果、ホログラフィを利用してデジタル情報を記録または再生する光情報記録媒体であると判断されると、光情報記録再生装置10は光情報記録媒体に設けられたコントロールデータを読み出し(403)、例えば光情報記録媒体に関する情報や、例えば記録や再生時における各種設定条件に関する情報を取得する。
As a result of disc discrimination, when it is determined that the optical information recording medium records or reproduces digital information using holography, the optical information recording / reproducing apparatus 10 reads control data provided on the optical information recording medium (403). ), For example, information relating to the optical information recording medium and information relating to various setting conditions during recording and reproduction, for example.
コントロールデータの読み出し後は、コントロールデータに応じた各種調整やピックアップ11に関わる学習処理(404)を行い、光情報記録再生装置10は、記録または再生の準備が完了する(405)。
After reading the control data, various adjustments according to the control data and learning processing (404) related to the pickup 11 are performed, and the optical information recording / reproducing apparatus 10 is ready for recording or reproduction (405).
準備完了状態から情報を記録するまでの動作フローは図4(b)に示すように、まず記録するデータを受信して(411)、該データに応じた情報をピックアップ11内の空間光変調器に送り込む。
As shown in FIG. 4B, the operation flow from the ready state to recording information is as follows. First, data to be recorded is received (411), and information corresponding to the data is received from the spatial light modulator in the pickup 11. To send.
その後、光情報記録媒体に高品質の情報を記録できるように、必要に応じて例えば光源301のパワー最適化やシャッタ303による露光時間の最適化等の各種記録用学習処理を事前に行う(412)。
Thereafter, various recording learning processes such as optimization of the power of the light source 301 and optimization of exposure time by the shutter 303 are performed in advance so that high-quality information can be recorded on the optical information recording medium (412). ).
その後、シーク動作(413)ではアクセス制御回路81を制御して、ピックアップ11ならびにキュア光学系13の位置を光情報記録媒体の所定の位置に位置づけする。光情報記録媒体1がアドレス情報を持つ場合には、アドレス情報を再生し、目的の位置に位置づけされているか確認し、目的の位置に配置されていなければ、所定の位置とのずれ量を算出し、再度位置づけする動作を繰り返す。
Thereafter, in the seek operation (413), the access control circuit 81 is controlled to position the pickup 11 and the cure optical system 13 at predetermined positions on the optical information recording medium. When the optical information recording medium 1 has address information, it reproduces the address information, checks whether it is positioned at the target position, and calculates the amount of deviation from the predetermined position if it is not positioned at the target position. And repeat the positioning operation.
その後、キュア光学系13から出射する光ビームを用いて所定の領域をプリキュアし(414)、ピックアップ11から出射する参照光と信号光を用いてデータを記録する(415)。
Thereafter, a predetermined region is pre-cured using the light beam emitted from the cure optical system 13 (414), and data is recorded using the reference light and signal light emitted from the pickup 11 (415).
データを記録した後は、キュア光学系13から出射する光ビームを用いてポストキュアを行う(416)。必要に応じてデータをベリファイしても構わない。
After recording the data, post cure is performed using the light beam emitted from the cure optical system 13 (416). Data may be verified as necessary.
準備完了状態から記録された情報を再生するまでの動作フローは図4(c)に示すように、まずシーク動作(421)で、アクセス制御回路81を制御して、ピックアップ11ならびに再生用参照光光学系12の位置を光情報記録媒体の所定の位置に位置づけする。光情報記録媒体1がアドレス情報を持つ場合には、アドレス情報を再生し、目的の位置に位置づけされているか確認し、目的の位置に配置されていなければ、所定の位置とのずれ量を算出し、再度位置づけする動作を繰り返す。
As shown in FIG. 4C, the operation flow from the ready state to the reproduction of the recorded information is as follows. First, in the seek operation (421), the access control circuit 81 is controlled, and the pickup 11 and the reproduction reference light are reproduced. The position of the optical system 12 is positioned at a predetermined position on the optical information recording medium. When the optical information recording medium 1 has address information, it reproduces the address information, checks whether it is positioned at the target position, and calculates the amount of deviation from the predetermined position if it is not positioned at the target position. And repeat the positioning operation.
その後、ピックアップ11から参照光を出射し、光情報記録媒体に記録された情報を読み出し(422)、再生データを送信する(423)。
Thereafter, reference light is emitted from the pickup 11, information recorded on the optical information recording medium is read (422), and reproduction data is transmitted (423).
図5は、光情報記録再生装置10の信号生成回路86のブロック図である。
FIG. 5 is a block diagram of the signal generation circuit 86 of the optical information recording / reproducing apparatus 10.
出力制御回路90にユーザデータの入力が開始されると、入出力制御回路90はコントローラ89にユーザデータの入力が開始されたことを通知する。コントローラ89は本通知を受け、信号生成回路86に入出力制御回路90から入力される1ページ分のデータを記録処理するよう命ずる。コントローラ89からの処理命令は制御用ライン508を経由し、信号生成回路86内サブコントローラ501に通知される。本通知を受け、サブコントローラ501は各信号処理回路を並列に動作させるよう制御用ライン508を介して各信号処理回路の制御を行う。先ずメモリ制御回路503に、データライン509を介して入出力制御回路90から入力されるユーザデータをメモリ502に格納するよう制御する。メモリ502に格納したユーザデータが、ある一定量に達すると、CRC演算回路504でユーザデータをCRC化する制御を行う。次にCRC化したデータに、スクランブル回路505で擬似乱数データ列を加えるスクランブル化を施し、誤り訂正符号化回路506でパリティデータ列を加える誤り訂正符号化する制御を行う。最後にピックアップインターフェース回路507にメモリ502から誤り訂正符号化したデータを空間光変調器212上の2次元データの並び順で読み出させ、再生時に基準となるマーカーを付加した後、ピックアップ11内の空間光変調器212に2次元データを転送する。この2次元データをデータページと呼ぶ。
When the input of user data to the output control circuit 90 is started, the input / output control circuit 90 notifies the controller 89 that the input of user data has started. In response to this notification, the controller 89 instructs the signal generation circuit 86 to record data for one page input from the input / output control circuit 90. A processing command from the controller 89 is notified to the sub-controller 501 in the signal generation circuit 86 via the control line 508. Upon receiving this notification, the sub-controller 501 controls each signal processing circuit via the control line 508 so that the signal processing circuits are operated in parallel. First, the memory control circuit 503 is controlled so that user data input from the input / output control circuit 90 via the data line 509 is stored in the memory 502. When the user data stored in the memory 502 reaches a certain amount, the CRC calculation circuit 504 performs control to convert the user data into CRC. Next, the scramble circuit 505 scrambles the CRC-converted data by adding a pseudo-random data sequence, and the error correction encoding circuit 506 performs error correction encoding by adding a parity data sequence. Finally, the pickup interface circuit 507 reads out the error correction encoded data from the memory 502 in the order of the two-dimensional data on the spatial light modulator 212, adds a reference marker at the time of reproduction, Two-dimensional data is transferred to the spatial light modulator 212. This two-dimensional data is called a data page.
図6は、光情報記録再生装置10の信号処理回路85のブロック図である。
FIG. 6 is a block diagram of the signal processing circuit 85 of the optical information recording / reproducing apparatus 10.
コントローラ89はピックアップ11内の光検出器228が画像データを検出すると、信号処理回路85にピックアップ11から入力される1ページ分のデータを再生処理するよう命ずる。コントローラ89からの処理命令は制御用ライン611を経由し、信号処理回路85内サブコントローラ601に通知される。本通知を受け、サブコントローラ601は各信号処理回路を並列に動作させるよう制御用ライン611を介して各信号処理回路の制御を行う。先ず、メモリ制御回路603に、データライン612を介して、ピックアップ11からピックアップインターフェース回路610を経由して入力される画像データをメモリ602に格納するよう制御する。メモリ602に格納されたデータがある一定量に達すると、画像位置検出回路609でメモリ602に格納された画像データ内からマーカーを検出して有効データ範囲を抽出する制御を行う。次に検出されたマーカーを用いて画像歪み補正回路608で、画像の傾き・倍率・ディストーションなどの歪み補正を行い、画像データを期待される2次元データのサイズに変換する制御する。サイズ変換された2次元データを構成する複数ビットの各ビットデータを、復号回路607において多値データを判定して復号し、メモリ602上に再生データの出力の並びでデータを格納する制御を行う。次に誤り訂正回路606で各データ列に含まれる誤りを訂正し、スクランブル解除回路605で擬似乱数データ列を加えるスクランブルを解除した後、CRC演算回路604でメモリ602上のユーザデータ内に誤りが含まれない確認を行う。その後、入出力制御回路90にメモリ602からユーザデータを転送する。
When the photodetector 228 in the pickup 11 detects the image data, the controller 89 instructs the signal processing circuit 85 to reproduce the data for one page input from the pickup 11. A processing command from the controller 89 is notified to the sub-controller 601 in the signal processing circuit 85 via the control line 611. Upon receiving this notification, the sub-controller 601 controls each signal processing circuit via the control line 611 so as to operate each signal processing circuit in parallel. First, the memory control circuit 603 is controlled to store the image data input from the pickup 11 via the pickup interface circuit 610 via the data line 612 in the memory 602. When the data stored in the memory 602 reaches a certain amount, the image position detection circuit 609 performs control to detect a marker from the image data stored in the memory 602 and extract an effective data range. Next, using the detected marker, the image distortion correction circuit 608 performs distortion correction such as image inclination, magnification, and distortion, and controls to convert the image data into the expected two-dimensional data size. Each bit data of a plurality of bits constituting the size-converted two-dimensional data is decoded by the decoding circuit 607 by determining multi-value data, and control is performed so that the data is stored in the memory 602 in a sequence of output reproduction data. . Next, the error correction circuit 606 corrects the error included in each data string, the scramble release circuit 605 releases the scramble to add the pseudo random number data string, and then the CRC calculation circuit 604 causes an error in the user data on the memory 602. Check not included. Thereafter, the user data is transferred from the memory 602 to the input / output control circuit 90.
ここで、本実施例の特徴である位相記録再生原理について説明する。図31(a)に示す振幅変調(強度変調、輝度変調)されたデータページの場合、上述したように光検出器228で情報を検出することが可能である。しかし、図31(b)に示す位相変調されたデータページの場合、振幅が一様であるため光を時間的に積分して検出する光検出器228では直接的に位相情報を得ることができない。そこで、図31(c)に示す輝度一様かつ位相一様なオシレータ光と、再生したデータページを光検出器228上で干渉させる。これにより、オシレータ光と再生したデータページが同位相のピクセルは強め合い高輝度として検出され、逆位相のピクセルは弱め合い低輝度として検出される。このように位相情報を強度情報に変換して検出することが可能となる。このことは、位相多値変調や振幅位相多値変調においても同様である。
Here, the principle of phase recording / reproducing which is a feature of this embodiment will be described. In the case of the data page subjected to amplitude modulation (intensity modulation and luminance modulation) shown in FIG. 31A, information can be detected by the photodetector 228 as described above. However, in the case of the phase-modulated data page shown in FIG. 31 (b), since the amplitude is uniform, the photodetector 228 that integrates and detects light over time cannot directly obtain phase information. . Therefore, the oscillator light having uniform luminance and uniform phase shown in FIG. 31C and the reproduced data page are caused to interfere on the photodetector 228. As a result, pixels having the same phase between the oscillator light and the reproduced data page are detected as intensified and high luminance, and pixels in the opposite phase are detected as weak and low luminance. In this way, phase information can be converted into intensity information and detected. The same applies to phase multilevel modulation and amplitude phase multilevel modulation.
しかし、この方法において課題となるのが、再生したデータページとオシレータ光の波面ずれである。波面ずれを起こしていると、検出された情報が記録された情報なのか、波面ずれによるものなのかが判別できないため読み取り精度が低下する。また研究により、この波面ずれは主に記録媒体の温度等による膨張収縮が原因で発生することが明らかになっている。
However, the problem with this method is the wavefront shift between the reproduced data page and the oscillator light. If the wavefront deviation occurs, it is impossible to determine whether the detected information is recorded information or due to the wavefront deviation, so that the reading accuracy is lowered. Research has also revealed that this wavefront shift is caused mainly by expansion and contraction due to the temperature of the recording medium.
そこで、まずデータページとデータ用参照光との干渉によりデータホログラムとして情報を記録する。次に、オシレータ光をオシレータページとして、データページとは異なる参照光角度を有するオシレータ用参照光との干渉によりオシレータホログラムとして記録する。これにより、温度等による媒体の膨張収縮が生じたとしても、各ホログラムは同じように膨張収縮するため、再生光の歪み方もまた同様となる。よって、このオシレータホログラムとデータホログラムを同時に再生することにより、波面ずれなく光検出器228で干渉させることが可能となり、位相情報を高精度に強度として検出することができる。
Therefore, first, information is recorded as a data hologram by the interference between the data page and the data reference beam. Next, the oscillator light is recorded as an oscillator page by an interference with an oscillator reference light having a reference light angle different from that of the data page. As a result, even if the medium expands and contracts due to temperature or the like, each hologram expands and contracts in the same manner, so that the reproduction light is distorted in the same manner. Therefore, by simultaneously reproducing the oscillator hologram and the data hologram, it is possible to cause interference by the photodetector 228 without wavefront deviation, and phase information can be detected as intensity with high accuracy.
また、同じ位置に多数のデータページを記録する角度多重方式であるため、オシレータページの記録はデータページ毎に行う必要がなく、記録媒体の消費を極めて小さく抑えることが可能となる。以上のことは角度多重方式だけでなく、位相コード多重方式、波長多重方式、偏光多重方式など、同一箇所に複数の情報を多重する方式であれば適用することが可能である。
In addition, since the angle multiplexing method is used to record a large number of data pages at the same position, it is not necessary to record the oscillator page for each data page, and the consumption of the recording medium can be extremely reduced. The above can be applied not only to the angle multiplexing method but also to any method that multiplexes a plurality of information at the same location, such as a phase code multiplexing method, a wavelength multiplexing method, and a polarization multiplexing method.
なお、このオシレータページは空間光変調器212に輝度一様かつ位相一様な情報を表示することで生成することが可能である。輝度一様かつ位相一様であるのは、再生時にデータページと干渉させる際に都合がよいためであるが限定するものではない。また、別の光学系によってオシレータ光を生成し、記録しておいてもよい。
This oscillator page can be generated by displaying information on the spatial light modulator 212 with uniform luminance and uniform phase. The uniform brightness and uniform phase are convenient for interference with the data page during reproduction, but are not limited. Further, the oscillator light may be generated and recorded by another optical system.
本方式を用いたデータ記録処理(415)について詳細に説明する。図7はデータ記録処理(415)の処理フロー、図9はオシレータページ記録時の概略図、図10はデータページ記録時の概略図である。
The data recording process (415) using this method will be described in detail. FIG. 7 is a processing flow of the data recording process (415), FIG. 9 is a schematic diagram when recording an oscillator page, and FIG. 10 is a schematic diagram when recording a data page.
記録時には、ガルバノミラー219をオシレータページ記録用の参照光入射角度に設定し(701)、オシレータページの信号光901とオシレータ用参照光902との干渉縞をホログラムとして光情報記録媒体1に記録する(702)。次に、ガルバノミラー219をデータページ記録用の参照光入射角度に設定し(703)、データページの信号光1001とデータ用参照光1002との干渉縞をホログラムとして光情報記録媒体1に記録する(704)。703、704の処理を1ブック中の全データページに対して実施する(705)。以上の処理により、1ブック中には1つのオシレータページと複数のデータページが記録されることになる。
At the time of recording, the galvanometer mirror 219 is set to the reference light incident angle for the oscillator page recording (701), and the interference fringes between the signal light 901 of the oscillator page and the reference light 902 for the oscillator are recorded on the optical information recording medium 1 as a hologram. (702). Next, the galvanometer mirror 219 is set to the reference light incident angle for data page recording (703), and the interference fringes between the signal light 1001 of the data page and the data reference light 1002 are recorded on the optical information recording medium 1 as a hologram. (704). The processes 703 and 704 are performed on all data pages in one book (705). Through the above processing, one oscillator page and a plurality of data pages are recorded in one book.
次に、本方式を用いたデータ再生処理(422)について詳細に説明する。図8はデータ再生処理(422)の処理フロー、図11は再生時の概略図である。
Next, the data reproduction process (422) using this method will be described in detail. FIG. 8 is a processing flow of the data reproduction process (422), and FIG. 11 is a schematic diagram at the time of reproduction.
再生時には、ガルバノミラー219をオシレータページ記録時と同じ入射角度に設定し(801)、再生用参照光1101を光情報記録媒体1に照射する。媒体を透過した光はレンズ223を通過し、ハーフミラー227で反射して1102となり、再度レンズ223を通過したオシレータ用参照光1104が光情報記録媒体1を照射する。オシレータ用参照光1104はオシレータ用参照光902の逆向きの進行波であり、オシレータ用参照光1104が回折することでオシレータページの再生光1105が再生され、光検出器228に伝播する。
At the time of reproduction, the galvanometer mirror 219 is set to the same incident angle as that at the time of recording the oscillator page (801), and the reproduction reference beam 1101 is irradiated to the optical information recording medium 1. The light transmitted through the medium passes through the lens 223, is reflected by the half mirror 227, becomes 1102, and the oscillator reference light 1104 that passes through the lens 223 again irradiates the optical information recording medium 1. The oscillator reference light 1104 is a traveling wave in the opposite direction of the oscillator reference light 902, and the oscillator reference light 1104 is diffracted to reproduce the reproduction light 1105 of the oscillator page and propagate to the photodetector 228.
一方、ハーフミラー227を透過した光1103は、レンズ224を通過し、ガルバノミラー226で反射して1106となり、レンズ224、223を通過したデータ用参照光1107が光情報記録媒体1を照射する。データ用参照光1107はデータ用参照光1002の逆向きの進行波であり、データ用参照光1107が回折することでデータページの再生光1108が再生され、光検出器228に伝播する。よって、ガルバノミラー226はデータ用参照光1107がデータ用参照光1002と同じ入射角度となるように制御されなければならない(802)。
On the other hand, the light 1103 transmitted through the half mirror 227 passes through the lens 224, is reflected by the galvano mirror 226, becomes 1106, and the data reference light 1107 that passes through the lenses 224 and 223 irradiates the optical information recording medium 1. The data reference beam 1107 is a traveling wave in the reverse direction of the data reference beam 1002, and the data reference beam 1107 is diffracted to reproduce the data page reproduction beam 1108 and propagate it to the photodetector 228. Therefore, the galvanometer mirror 226 must be controlled so that the data reference beam 1107 has the same incident angle as the data reference beam 1002 (802).
オシレータ用参照光1104とデータ用参照光1107の偏光状態が同一であるため、光検出器228に伝播したオシレータページの再生光1105、データページの再生光1108の偏光状態は同一となり干渉するので、位相情報を強度として検出できる。(803)。802、803の処理を1ブック中の全データページに対して実施する(804)。
Since the polarization state of the oscillator reference light 1104 and the data reference light 1107 are the same, the polarization state of the oscillator page reproduction light 1105 and the data page reproduction light 1108 propagated to the photodetector 228 is the same and interferes. Phase information can be detected as intensity. (803). The processes of 802 and 803 are performed on all data pages in one book (804).
以上の回路構成、処理手順によれば、オシレータページとデータページの波面ずれなく光検出器228上で干渉させることができ、位相情報を強度として検出することが可能な光情報記録再生装置を実現することができる。また、1つのオシレータページから複数のデータページの再生が可能となるため、オシレータページによる記録媒体の消費を極めて小さく抑えることが可能となる。
According to the above circuit configuration and processing procedure, an optical information recording / reproducing apparatus capable of causing interference on the photodetector 228 without wavefront deviation between the oscillator page and the data page and capable of detecting phase information as intensity is realized. can do. In addition, since a plurality of data pages can be reproduced from one oscillator page, consumption of the recording medium by the oscillator page can be suppressed extremely small.
なお、ガルバノミラー219、ガルバノミラー226の制御において「同じ入射角度」としたが、媒体の膨張収縮などを補償するために参照光入射角度を記録時と再生時で変える場合があり、その場合には「オシレータページまたはデータページを再生するために必要な入射角度」と読み替えればよい。
In the control of the galvanometer mirror 219 and the galvanometer mirror 226, “the same incident angle” is used. However, in order to compensate for expansion and contraction of the medium, the reference beam incident angle may be changed between recording and reproduction. May be read as “incident angle required to reproduce the oscillator page or data page”.
また、上述の説明では、オシレータページを初めに記録する例を示したが順序を限定するものではない。図12(a)が図9、10で示した配置とすると、図12(b)(c)(d)のような配置としてもよい。図12(b)の配置によりオシレータページを参照光角度選択性の低い角度に配置できるため、オシレータページに対する角度調整精度マージンを確保することができる。図12(c)のようにオシレータページをブック中央となる角度に配置することにより、オシレータページとデータページの参照光角度差を小さくできるため、波面ずれの可能性を抑圧できる。参照光角度が違えば、媒体の膨張収縮による影響が変わり、波面ずれを生じる可能性があるためである。この観点で、図12(d)のように複数のオシレータページをブック中に記録しておけば、最も波面ずれの小さくなるオシレータページを選択して使用することも可能となる。複数のオシレータ光を記録する場合には、10ページに1つオシレータ光を挿入するなどのように、一定間隔で挿入することで各処理を簡素化することが可能である。
In the above description, an example in which the oscillator page is recorded first is shown, but the order is not limited. If FIG. 12A is the arrangement shown in FIGS. 9 and 10, the arrangement shown in FIGS. 12B, 12C, and 12D may be used. With the arrangement shown in FIG. 12B, the oscillator page can be arranged at an angle with low reference light angle selectivity, so that an angle adjustment accuracy margin with respect to the oscillator page can be ensured. By arranging the oscillator page at an angle that becomes the center of the book as shown in FIG. 12C, the reference light angle difference between the oscillator page and the data page can be reduced, and therefore the possibility of wavefront deviation can be suppressed. This is because if the reference light angle is different, the influence of the expansion and contraction of the medium changes, and there is a possibility of causing a wavefront shift. From this point of view, if a plurality of oscillator pages are recorded in the book as shown in FIG. 12D, it is possible to select and use the oscillator page with the smallest wavefront deviation. When recording a plurality of oscillator lights, it is possible to simplify each process by inserting them at regular intervals, such as inserting one oscillator light into 10 pages.
これら、図12(a)~(d)に対応する参照光入射角度と信号光入射角度の関係を図13(a)~(d)に示す。図の一点鎖線は参照光の光軸を示す。また、ハーフミラー227の構成を図14(a)~(d)に示す。図に示す通り、ハーフミラー227は全面がハーフミラーで構成されているのではなく、オシレータ用参照光が集光する領域1401に限り反射率が50%程度であり、データ用参照光が集光する領域1402はほぼ透過するように構成する。なお、領域1401の透過率は光学系の設計に応じて自由に変更しても構わない。このオシレータ用参照光が集光する領域は、オシレータ用参照光の入射角度に依存するため、オシレータページの配置によって変えなければならない。もし、動的に変えるのであれば、調光ミラーのようなデバイスにより反射領域を電気的に可変にする、または機械的に動かして可変にすることも可能である。また、図13で示した角度多重方向と直交する方向(紙面垂直方向)にも角度多重を行う場合、図14の領域1401は帯状ではなく図15の1501のように領域を限定することで、紙面垂直方向にも多重することが可能となる。
The relationship between the reference light incident angle and the signal light incident angle corresponding to FIGS. 12 (a) to 12 (d) is shown in FIGS. 13 (a) to 13 (d). The one-dot chain line in the figure indicates the optical axis of the reference light. The configuration of the half mirror 227 is shown in FIGS. As shown in the figure, the half mirror 227 is not formed of a half mirror on the entire surface, but has a reflectance of about 50% only in the region 1401 where the oscillator reference light is collected, and the data reference light is collected. The region 1402 to be transmitted is configured to be almost transparent. Note that the transmittance of the region 1401 may be freely changed according to the design of the optical system. Since the region where the oscillator reference light is collected depends on the incident angle of the oscillator reference light, it must be changed depending on the arrangement of the oscillator pages. If it is dynamically changed, the reflection region can be electrically changed by a device such as a dimming mirror, or mechanically moved to make it variable. In addition, when angle multiplexing is also performed in a direction orthogonal to the angle multiplexing direction shown in FIG. 13 (perpendicular to the paper surface), the region 1401 in FIG. 14 is not belt-shaped, but is limited to a region as 1501 in FIG. It is also possible to multiplex in the direction perpendicular to the page.
また、位相記録再生において、オシレータ光とデータページの波面がずれるのを避けるため、位相マスク209を使用しないことがあるが、輝度一様、位相一様であるオシレータページ901の信号光を対物レンズ215で集光すると局所的なエネルギー集中を生じ、記録媒体の消費が不均一となってしまう。これを避けるため、本方式においては位相マスク209を挿入してもよい。なぜなら、例え位相マスクの位相が付加されていたとしても、オシレータページとデータページに同様に付加されるため影響しないためである。
In phase recording / reproduction, the phase mask 209 may not be used in order to prevent the wavefront of the oscillator light and the data page from deviating from each other. However, the signal light of the oscillator page 901 having uniform luminance and uniform phase may be used as the objective lens. When the light is condensed at 215, local energy concentration occurs, and the consumption of the recording medium becomes uneven. In order to avoid this, a phase mask 209 may be inserted in this method. This is because even if the phase of the phase mask is added, the phase is added to the oscillator page and the data page in the same manner, so that there is no influence.
また、位相マスクを挿入する代わりに、図16(a)(b)のような0、1が反転した2つのページをオシレータページとして使用することもできる。このような輝度・位相がランダムもしくは周期的なパターンの場合、高い周波数成分を含んでいるため対物レンズ215の集光点におけるエネルギー集中を緩和することができる。但し、このままでは正しく位相情報を検出できなくなるため、図16(a)(b)のような輝度または位相の少なくとも一方が反転した2つのページを同じ参照光角度で同じ場所に記録する。これを再生すれば、2つのページが同時に再生されて光検出器228上で干渉するが、反転パターンであるため、干渉した結果一様な輝度、位相分布を有し、これとデータページが干渉することで位相情報を強度として正しく検出可能である。
Also, instead of inserting a phase mask, two pages in which 0 and 1 are inverted as shown in FIGS. 16A and 16B can be used as an oscillator page. In the case where the luminance / phase is a random or periodic pattern, since it contains a high frequency component, the energy concentration at the focal point of the objective lens 215 can be reduced. However, since phase information cannot be detected correctly in this state, two pages with at least one of luminance or phase inverted as shown in FIGS. 16A and 16B are recorded at the same location with the same reference beam angle. If this is reproduced, two pages are reproduced at the same time and interfere on the photodetector 228. However, because of the inverted pattern, the interference results in uniform brightness and phase distribution, and this interferes with the data page. By doing so, the phase information can be correctly detected as the intensity.
以上のことは他の実施例においても同様に適用可能である。
The above is similarly applicable to other embodiments.
本実施例が実施例1と異なるのは、再生時の参照光生成方法である。実施例1ではオシレータ用参照光角度を固定した上でデータページ参照光角度を変化させるために、媒体裏面にスキャナ光学系を配置していたが、光学系のサイズが大きくなる。そこで、本実施例では、媒体裏面光学系のサイズを縮小することを目的とする。
This embodiment differs from the first embodiment in the reference light generation method during reproduction. In the first embodiment, the scanner optical system is arranged on the back side of the medium in order to change the data page reference light angle while fixing the oscillator reference light angle. However, the size of the optical system becomes large. Therefore, the present embodiment aims to reduce the size of the medium back surface optical system.
本実施例におけるデータ再生処理について詳細に説明する。図17はピックアップ11の概略図、図18は記録媒体周辺の拡大図である。記録時は実施例1と同様であるので省略する。
The data reproduction process in the present embodiment will be described in detail. FIG. 17 is a schematic diagram of the pickup 11, and FIG. 18 is an enlarged view of the periphery of the recording medium. Since the recording is the same as in the first embodiment, the description is omitted.
再生時には、偏光方向変換素子216によりP偏光から偏光面を45°傾けた参照光をPBS1701に入射し、反射したS偏光成分をミラー1702で反射させ、レンズ1703を通過し、PBS1704で反射し、レンズ222を通過した1801が光情報記録媒体1を照射する。媒体を透過した光はレンズ223を通過し、1/4波長板1803を透過、ミラー1804で反射、再度1/4波長板1803を透過することでS偏光がP偏光となった1805がレンズ223を通過しオシレータ用参照光1806となり光情報記録媒体1を照射する。オシレータ用参照光1806はオシレータ用参照光902の逆向きの進行波であり、オシレータ用参照光1806が回折することでP偏光のオシレータページの再生光1807が再生され、光検出器228に伝播する。なお、1/4波長板1803の領域は、図14で説明したようにオシレータ用参照光が集光する領域以上の大きさであればよい。
At the time of reproduction, the reference light whose polarization plane is inclined by 45 ° from the P-polarized light is incident on the PBS 1701 by the polarization direction conversion element 216, the reflected S-polarized component is reflected by the mirror 1702, passes through the lens 1703, is reflected by the PBS 1704, 1801 that has passed through the lens 222 irradiates the optical information recording medium 1. The light transmitted through the medium passes through the lens 223, is transmitted through the quarter-wave plate 1803, is reflected by the mirror 1804, and is transmitted through the quarter-wave plate 1803 again. , And becomes an oscillator reference beam 1806, which irradiates the optical information recording medium 1. The oscillator reference light 1806 is a traveling wave in the opposite direction of the oscillator reference light 902, and the P-polarized oscillator page reproduction light 1807 is reproduced by the diffraction of the oscillator reference light 1806 and propagates to the photodetector 228. . Note that the area of the quarter-wave plate 1803 may be larger than the area where the reference light for the oscillator is condensed as described in FIG.
一方、PBS1704を透過したP偏光成分を、データページ記録時と同じ媒体入射角度となるように設定されたガルバノミラー219で反射させ、レンズ221、PBS1704を透過し、レンズ222を通過した1802が光情報記録媒体1を照射する。媒体を透過した光はレンズ223を通過し、ミラー1804で反射、P偏光である1808がレンズ223を通過しデータ用参照光1809となり光情報記録媒体1を照射する。データ用参照光1809はデータ用参照光1002の逆向きの進行波であり、データ用参照光1809が回折することでP偏光のデータページの再生光1810が再生され、光検出器228に伝播する。
On the other hand, the P-polarized light component transmitted through the PBS 1704 is reflected by the galvanometer mirror 219 set to have the same medium incident angle as that at the time of data page recording, transmitted through the lens 221 and the PBS 1704, and 1802 transmitted through the lens 222 is light. The information recording medium 1 is irradiated. The light transmitted through the medium passes through the lens 223, is reflected by the mirror 1804, and 1808, which is P-polarized light, passes through the lens 223 and becomes data reference light 1809 to irradiate the optical information recording medium 1. The data reference light 1809 is a traveling wave in the reverse direction of the data reference light 1002, and the reproduction light 1810 of the P-polarized data page is reproduced by the diffraction of the data reference light 1809 and propagates to the photodetector 228. .
オシレータ用参照光1806とデータ用参照光1809の偏光状態が同一であるため、光検出器228に伝播したオシレータページの再生光1807、データページの再生光1810の偏光状態は同一となり干渉するので、位相情報を強度として検出できる。
Since the polarization state of the oscillator reference light 1806 and the data reference light 1809 are the same, the polarization state of the oscillator page reproduction light 1807 and the data page reproduction light 1810 propagated to the photodetector 228 is the same and interferes. Phase information can be detected as intensity.
以上の回路構成、処理手順によれば、オシレータページとデータページの波面ずれなく光検出器228上で干渉させることができ、位相情報を強度として検出することが可能な光情報記録再生装置を実現することができる。また、1つのオシレータページから複数のデータページの再生が可能となるため、オシレータページによる記録媒体の消費を極めて小さく抑えることが可能となる。さらに、偏光を用いて光学系を構成することで、媒体裏面光学系のサイズを縮小させることが可能となる。
According to the above circuit configuration and processing procedure, an optical information recording / reproducing apparatus capable of causing interference on the photodetector 228 without wavefront deviation between the oscillator page and the data page and capable of detecting phase information as intensity is realized. can do. In addition, since a plurality of data pages can be reproduced from one oscillator page, consumption of the recording medium by the oscillator page can be suppressed extremely small. Furthermore, by configuring the optical system using polarized light, the size of the medium back surface optical system can be reduced.
なお、1/4波長板1803を用いているのは、オシレータページとデータページの再生光の偏光状態を同一にして干渉させるためであり、これを実現できるのであれば、本構成に限定するものではなく、フォトニック結晶を用いた素子により偏光状態を変えるなどしてもよい。
Note that the quarter wave plate 1803 is used to cause the polarization state of the reproduction light of the oscillator page and the data page to be the same and interfere with each other. If this can be realized, the configuration is limited to this configuration. Instead, the polarization state may be changed by an element using a photonic crystal.
また、説明で用いた偏光方向に限定するものではなく、例えばガルバノミラー219とミラー1702を入れ替え、オシレータ用参照光とデータ用参照光の役割を入れ替えることも可能である。こうすれば、記録時に偏光方向変換素子216出力がS偏光となるようにしておけば、参照光のエネルギーが分岐されることなくガルバノミラー219に入射し、図17構成のままで実施例1と同様にオシレータページおよびデータページの記録が可能となる。
Also, it is not limited to the polarization direction used in the description. For example, the roles of the reference light for the oscillator and the reference light for the data can be switched by replacing the galvanometer mirror 219 and the mirror 1702. In this way, if the output of the polarization direction conversion element 216 is S-polarized light during recording, the energy of the reference light is incident on the galvanometer mirror 219 without being branched, and the configuration of FIG. Similarly, it is possible to record an oscillator page and a data page.
また、オシレータ用参照光1806とデータ用参照光1809の光路長差が小さいほど可干渉性が高く、品質の高い再生像が得ることができる。よって、いずれか若しくは両方の光路中に位相調整素子を挿入する、ミラーなどの光学部品の配置を変更する、などの方法により光路長を調整することも可能である。
Also, the smaller the optical path length difference between the oscillator reference beam 1806 and the data reference beam 1809, the higher the coherence and the higher quality reproduced image can be obtained. Therefore, it is possible to adjust the optical path length by a method such as inserting a phase adjusting element in one or both optical paths, or changing the arrangement of optical components such as a mirror.
以上のことは他の実施例においても同様に適用可能である。
The above is similarly applicable to other embodiments.
本実施例が実施例1と異なるのは、オシレータページ記録方法ならびに参照光生成方法である。実施例1では再生時に参照光をオシレータ用とデータ用に分岐するためエネルギー利用効率が悪い。そこで、本実施例では、参照光を分岐することなくオシレータページを記録再生することを目的とする。
This embodiment differs from the first embodiment in an oscillator page recording method and a reference light generation method. In the first embodiment, since the reference light is branched for the oscillator and the data during reproduction, the energy utilization efficiency is poor. Therefore, the present embodiment aims to record and reproduce the oscillator page without branching the reference light.
本実施例におけるデータ記録処理について詳細に説明する。図19はピックアップ11の概略図、図20は記録媒体周辺の拡大図である。
The data recording process in this embodiment will be described in detail. FIG. 19 is a schematic view of the pickup 11, and FIG. 20 is an enlarged view around the recording medium.
記録時には、ガルバノミラー219をオシレータページ記録用の参照光入射角度に設定、ガルバノミラー226で反射した光が逆向きの進行波となるようにガルバノミラー226の角度を設定し、参照光2001を光情報記録媒体1に照射する。媒体を透過した光はレンズ223、224を通過し、ガルバノミラー226で反射して2002となり、再度レンズ224、223を通過したオシレータ用参照光2003が光情報記録媒体1を照射する。オシレータページの信号光2004とオシレータ用参照光2003との干渉縞をホログラムとして光情報記録媒体1に記録する。データページの記録方法は実施例1と同様である。
At the time of recording, the galvano mirror 219 is set to the reference light incident angle for oscillator page recording, the angle of the galvano mirror 226 is set so that the light reflected by the galvano mirror 226 becomes a traveling wave in the opposite direction, and the reference light 2001 is emitted. The information recording medium 1 is irradiated. The light transmitted through the medium passes through the lenses 223 and 224, is reflected by the galvanometer mirror 226, becomes 2002, and the oscillator reference light 2003 that passes through the lenses 224 and 223 again irradiates the optical information recording medium 1. Interference fringes between the signal light 2004 of the oscillator page and the oscillator reference light 2003 are recorded on the optical information recording medium 1 as a hologram. The data page recording method is the same as in the first embodiment.
次に、本実施例におけるデータ再生処理について詳細に説明する。図21は記録媒体周辺の拡大図である。
Next, the data reproduction process in this embodiment will be described in detail. FIG. 21 is an enlarged view around the recording medium.
再生時には、ガルバノミラー219をオシレータページ記録時と同じ入射角度に設定し、オシレータ用参照光2101を光情報記録媒体1に照射する。2101が回折することでオシレータページの再生光2102が再生され、光検出器228に伝播する。
During reproduction, the galvanometer mirror 219 is set to the same incident angle as that for recording the oscillator page, and the optical information recording medium 1 is irradiated with the reference light 2101 for the oscillator. Oscillator page reproduction light 2102 is reproduced by diffracting 2101 and propagates to the photodetector 228.
一方、媒体を透過した光はレンズ223、224を通過し、ガルバノミラー226で反射して2103となり、レンズ224、223を通過したデータ用参照光2104が光情報記録媒体1を照射する。2104はデータ用参照光1002の逆向きの進行波であり、2104が回折することでデータページの再生光2105が再生され、光検出器228に伝播する。よって、ガルバノミラー226は2104がデータ用参照光1002と同じ入射角度となるように制御されなければならない。
On the other hand, the light transmitted through the medium passes through the lenses 223 and 224, is reflected by the galvano mirror 226 to become 2103, and the data reference light 2104 that has passed through the lenses 224 and 223 irradiates the optical information recording medium 1. Reference numeral 2104 denotes a traveling wave in the reverse direction of the data reference light 1002, and the reproduction light 2105 of the data page is reproduced as 2104 is diffracted and propagates to the photodetector 228. Therefore, the galvanometer mirror 226 must be controlled so that 2104 has the same incident angle as that of the data reference light 1002.
オシレータ用参照光2101とデータ用参照光2104の偏光状態が同一であるため、光検出器228に伝播したオシレータページの再生光2102、データページの再生光2105の偏光状態は同一となり干渉するので、位相情報を強度として検出できる。
Since the polarization state of the oscillator reference light 2101 and the data reference light 2104 is the same, the polarization state of the reproduction light 2102 of the oscillator page and the reproduction light 2105 of the data page propagated to the photodetector 228 are the same and interfere with each other. Phase information can be detected as intensity.
以上の回路構成、処理手順によれば、オシレータページとデータページの波面ずれなく光検出器228上で干渉させることができ、位相情報を強度として検出することが可能な光情報記録再生装置を実現することができる。また、1つのオシレータページから複数のデータページの再生が可能となるため、オシレータページによる記録媒体の消費を極めて小さく抑えることが可能となる。さらに、参照光を分岐しないためエネルギー利用効率が高く、レーザ出力が小さい場合には有効である。
According to the above circuit configuration and processing procedure, an optical information recording / reproducing apparatus capable of causing interference on the photodetector 228 without wavefront deviation between the oscillator page and the data page and capable of detecting phase information as intensity is realized. can do. In addition, since a plurality of data pages can be reproduced from one oscillator page, consumption of the recording medium by the oscillator page can be suppressed extremely small. Furthermore, since the reference light is not branched, the energy utilization efficiency is high, and it is effective when the laser output is small.
なお、オシレータページを記録する場合に、オシレータ用参照光を記録媒体裏面から入射する構成で説明したがこれに限定するものではなく、逆にデータページを記録する場合に、データ用参照光を記録媒体裏面から入射する構成にしてもよい。
In the case of recording an oscillator page, the description has been given of the configuration in which the oscillator reference light is incident from the back surface of the recording medium. However, the present invention is not limited to this. Conversely, when recording a data page, the data reference light is recorded. You may make it the structure which injects from a medium back surface.
以上のことは他の実施例においても同様に適用可能である。
The above is similarly applicable to other embodiments.
本実施例が実施例1と異なるのは、再生したオシレータページとデータページの位相調整方法である。実施例1では、場合によっては再生時にオシレータページとデータページの位相が合わず、位相情報を強度情報に変換できない可能性がある。そこで、再生したオシレータページとデータページの位相を調整することを目的とする。
This embodiment differs from the first embodiment in the phase adjustment method of the reproduced oscillator page and data page. In the first embodiment, in some cases, the phase of the oscillator page and the data page may not match during reproduction, and phase information may not be converted into intensity information. Accordingly, an object is to adjust the phase of the reproduced oscillator page and data page.
本実施例におけるデータ記録処理は実施例1と同様であるが、データページの一部に図25に示す位相差検出パターン2501を加えて記録する。位相差検出パターン2501は図のように4種類の位相を有するパターンであり、基準位相面から0、π/2、π、3π/2とするのが、検出時にフリンジスキャン法を用いることができるため都合が良いが、これに限定するものではなく、基準位相が判断できるのであればどのようなパターンでもよい。
The data recording process in this embodiment is the same as that in the first embodiment, but recording is performed by adding the phase difference detection pattern 2501 shown in FIG. 25 to a part of the data page. The phase difference detection pattern 2501 is a pattern having four types of phases as shown in the figure, and 0, π / 2, π, 3π / 2 from the reference phase plane can be used for the fringe scanning method at the time of detection. Therefore, it is convenient, but the present invention is not limited to this, and any pattern may be used as long as the reference phase can be determined.
次に、本実施例におけるデータ再生処理について詳細に説明する。図22はピックアップ11の概略図、図23は記録媒体周辺の拡大図、図24はデータ再生処理の処理フローである。
Next, the data reproduction process in this embodiment will be described in detail. 22 is a schematic diagram of the pickup 11, FIG. 23 is an enlarged view around the recording medium, and FIG. 24 is a processing flow of data reproduction processing.
再生時には、ガルバノミラー219をオシレータページ記録時と同じ入射角度に設定し(801)、再生用参照光1101を光情報記録媒体1に照射する。媒体を透過した光はレンズ223を通過し、ハーフミラー227で反射して1102となり、再度レンズ223を通過したオシレータ用参照光1104が光情報記録媒体1を照射する。オシレータ用参照光1104はオシレータ用参照光902の逆向きの進行波であり、オシレータ用参照光1104が回折することでオシレータページの再生光1105が再生され、光検出器228に伝播する。
At the time of reproduction, the galvanometer mirror 219 is set to the same incident angle as that at the time of recording the oscillator page (801), and the reproduction reference beam 1101 is irradiated to the optical information recording medium 1. The light transmitted through the medium passes through the lens 223, is reflected by the half mirror 227, becomes 1102, and the oscillator reference light 1104 that passes through the lens 223 again irradiates the optical information recording medium 1. The oscillator reference light 1104 is a traveling wave in the opposite direction of the oscillator reference light 902, and the oscillator reference light 1104 is diffracted to reproduce the reproduction light 1105 of the oscillator page and propagate to the photodetector 228.
一方、ハーフミラー227を透過した光は、レンズ224を通過して2301となり、位相調整素子2201を透過した後にガルバノミラー226で反射、再び位相調整素子2201を透過して2302となり、レンズ224、223を通過したデータ用参照光2303が光情報記録媒体1を照射する。ここで、位相調整素子2201とは位相遅延量を電気的に制御可能な素子を想定しているが、光路長を調整できる素子であれば何でもよい。また、ガルバノミラー226と位相調整素子2201を近い位置で説明したが、これに限定するものではなく、光路中に挿入すればよい。
On the other hand, the light that has passed through the half mirror 227 passes through the lens 224 to become 2301, passes through the phase adjustment element 2201, is reflected by the galvano mirror 226, passes through the phase adjustment element 2201 again, becomes 2302, and the lenses 224 and 223. The data reference beam 2303 that has passed through the optical information recording medium 1 is irradiated. Here, the phase adjustment element 2201 is assumed to be an element that can electrically control the amount of phase delay, but any element that can adjust the optical path length may be used. In addition, although the galvano mirror 226 and the phase adjustment element 2201 have been described at close positions, the present invention is not limited to this, and it may be inserted into the optical path.
データ用参照光2303はデータ用参照光1002の逆向きの進行波であり、データ用参照光2303が回折することでデータページの再生光2304が再生され、光検出器228に伝播する。よって、ガルバノミラー226はデータ用参照光2303がデータ用参照光1002と同じ入射角度となるように制御されなければならない(2401)。
The data reference light 2303 is a traveling wave in the opposite direction of the data reference light 1002, and the data reference reproduction light 2304 is diffracted to reproduce the data page reproduction light 2304 and propagate to the photodetector 228. Therefore, the galvanometer mirror 226 must be controlled so that the data reference beam 2303 has the same incident angle as the data reference beam 1002 (2401).
ここで、光検出器228に伝播したオシレータページとデータページの再生光を光検出器228で干渉させ、位相情報を強度として検出するのだが、2つの光の位相が合っていない可能性がある。そこで、図22の位相差検出回路2202において、光検出器228上で検出された図26の位相差検出パターン2601の検出強度I0~I3から(数1)に従って、位相差Δφを算出する(2402)。
Here, the reproduction light of the oscillator page and the data page propagated to the photodetector 228 is caused to interfere with the photodetector 228 and the phase information is detected as intensity, but the two lights may not be in phase. . Therefore, in the phase difference detection circuit 2202 of FIG. 22, the phase difference Δφ is calculated according to (Equation 1) from the detection intensities I0 to I3 of the phase difference detection pattern 2601 of FIG. 26 detected on the photodetector 228 (2402). ).
次に、図22の補償量算出回路2203において、この位相差Δφに基づいて位相調整素子2201の位相遅延量を制御する(2403)。
Next, the compensation amount calculation circuit 2203 in FIG. 22 controls the phase delay amount of the phase adjustment element 2201 based on this phase difference Δφ (2403).
この後の処理は実施例1における、802~804の処理と同様である。
The subsequent processing is the same as the processing of 802 to 804 in the first embodiment.
以上の回路構成、処理手順によれば、オシレータページとデータページの波面ずれなく光検出器228上で干渉させることができ、位相情報を強度として検出することが可能な光情報記録再生装置を実現することができる。また、1つのオシレータページから複数のデータページの再生が可能となるため、オシレータページによる記録媒体の消費を極めて小さく抑えることが可能となる。さらに、再生したオシレータページとデータページの位相が一致するため、位相情報を効率よく強度情報に変換することが可能となる。
According to the above circuit configuration and processing procedure, an optical information recording / reproducing apparatus capable of causing interference on the photodetector 228 without wavefront deviation between the oscillator page and the data page and capable of detecting phase information as intensity is realized. can do. In addition, since a plurality of data pages can be reproduced from one oscillator page, consumption of the recording medium by the oscillator page can be suppressed extremely small. Furthermore, since the phase of the reproduced oscillator page and the data page coincide with each other, the phase information can be efficiently converted into intensity information.
なお、図25において位相差検出パターン2501が複数ある理由だが、位相差Δφがページ内で一様とは限らないためである。よって、各々の位相差検出パターン2601から位相差Δφを算出し、各々の位相差Δφを2次元的に線形補間するなどして、ページ内の位相差分布を求め、それに基づいて位相調整素子2201の位相遅延量を2次元的に制御することも有効である。
Note that there are a plurality of phase difference detection patterns 2501 in FIG. 25 because the phase difference Δφ is not always uniform within the page. Therefore, the phase difference Δφ is calculated from each phase difference detection pattern 2601, and each phase difference Δφ is two-dimensionally linearly interpolated to obtain the phase difference distribution in the page. Based on this, the phase adjustment element 2201 is obtained. It is also effective to two-dimensionally control the phase delay amount.
また、位相差検出パターン2501は図25に示したパターンに限定するものではない。例えば、位相の種類を増やすことで高精度な検出が可能となり、位相差検出パターンを大きくし、同一位相内で平均した結果を用いることで、ノイズ耐性を向上させることが可能となる。
Further, the phase difference detection pattern 2501 is not limited to the pattern shown in FIG. For example, highly accurate detection is possible by increasing the types of phases, and noise tolerance can be improved by using a result obtained by enlarging the phase difference detection pattern and averaging within the same phase.
また、位相差検出パターン2501を用いて位相調整素子2201を制御する例について説明したが、位相差検出パターン2501を用いずに制御してもよい。例えば、位相差検出回路2202において、画像のSNR、Normalized noise、輝度、などの評価指標を算出し、図27の2701のように評価指標が最良となるようにフィードバック制御により、補償量算出回路2203が位相調整素子2201の位相遅延量を可変する。これにより、位相差検出パターン2501が不要となる。
Further, although an example in which the phase adjustment element 2201 is controlled using the phase difference detection pattern 2501 has been described, control may be performed without using the phase difference detection pattern 2501. For example, the phase difference detection circuit 2202 calculates evaluation indices such as the SNR, normalized noise, and luminance of the image, and performs feedback control so that the evaluation index becomes optimal as indicated by 2701 in FIG. Changes the phase delay amount of the phase adjustment element 2201. Thereby, the phase difference detection pattern 2501 becomes unnecessary.
また、位相差調整に使用するページは再生順で初めのデータページで実施する方が参照光角度を順に変化させればよいので再生時間にとって有利である。しかし、ブック内で位相差が変化する可能性を考えると、ブック中央となる角度のデータページで調整を実施する方がブック内での位相差を小さくできる。
Also, the page used for phase difference adjustment is more advantageous for the reproduction time because it is only necessary to change the reference light angle in order in the reproduction data in the first data page. However, considering the possibility of the phase difference changing in the book, the phase difference in the book can be reduced by adjusting the data page at the angle at the center of the book.
また、以上の位相差調整方法は図24に示すようにブック中に1回実施する例で説明したが、これに限定するものではない。全ページで調整を実施、また複数ページに一度調整を実施すればより精度の高い位相差調整が可能となり、逆に再生開始時や複数ブックに一度調整を実施すれば調整に要する時間を短縮することが可能となる。また、複数ページや複数ブック毎に調整した値を補間し、途中のページまたはブックに適用すれば、位相差調整の高精度化と調整時間短縮を両立することも可能となる。
Further, although the above phase difference adjustment method has been described with an example of performing once in a book as shown in FIG. 24, the present invention is not limited to this. Adjustments can be made on all pages, and adjustments can be made more accurately if adjustments are made once on multiple pages. Conversely, if adjustments are made once at the start of playback or on multiple books, the time required for adjustments can be shortened. It becomes possible. Further, by interpolating values adjusted for a plurality of pages or a plurality of books and applying the values to intermediate pages or books, it is possible to achieve both high accuracy of phase difference adjustment and shortening of the adjustment time.
さらに、位相差調整を決まったタイミングで実施するのではなく、位相差が発生する可能性が高くなった場合に適宜実施してもよい。例えば、温度が変化した場合に媒体が膨張収縮する可能性があり、参照光波長を変化させることで膨張収縮の影響を抑圧することが可能である。しかし、波長を変えるということは遅延量も変えなければならず、位相差調整を再度実施した方がよい。
Furthermore, the phase difference adjustment is not performed at a fixed timing, but may be performed as appropriate when the possibility that a phase difference occurs becomes high. For example, the medium may expand and contract when the temperature changes, and the influence of expansion and contraction can be suppressed by changing the reference light wavelength. However, changing the wavelength requires changing the delay amount, and it is better to perform the phase difference adjustment again.
以上のことは他の実施例においても同様に適用可能である。
The above is similarly applicable to other embodiments.
本実施例が実施例4と異なるのは、再生したオシレータページとデータページの位相調整方法である。実施例4では調整に位相調整素子2201を用いていたがコストがかかる。そこで、位相調整素子2201を用いずに位相調整することを目的とする。
This embodiment differs from the fourth embodiment in the phase adjustment method of the reproduced oscillator page and data page. In the fourth embodiment, the phase adjustment element 2201 is used for the adjustment, but the cost is high. Therefore, an object is to adjust the phase without using the phase adjustment element 2201.
本実施例におけるデータ記録処理は実施例1と同様であるが、図28に示すように位相の異なる複数のオシレータページを記録する。図28には4つのオシレータページを記録した例を示しており、夫々のオシレータページは基準位相面から0、π/2、π、3π/2の位相差を有しているとする。なお、ここでは4種類のオシレータページを使用したが、この位相の種類をより多く記録した方が、調整分解能を高くすることが可能となるので好ましい。
The data recording process in the present embodiment is the same as that in the first embodiment, but a plurality of oscillator pages having different phases are recorded as shown in FIG. FIG. 28 shows an example in which four oscillator pages are recorded. It is assumed that each oscillator page has a phase difference of 0, π / 2, π, and 3π / 2 from the reference phase plane. Although four types of oscillator pages are used here, it is preferable to record more types of phases because the adjustment resolution can be increased.
次に、本実施例におけるデータ再生処理について詳細に説明する。図29はデータ再生処理の処理フローである。
Next, the data reproduction process in this embodiment will be described in detail. FIG. 29 is a processing flow of data reproduction processing.
再生時には、第1のオシレータページを再生するようガルバノミラー219を設定し(2901)、データページを再生するようガルバノミラー226を設定する(2902)。この処理を全てのオシレータページに対して実施し(2903)、画像のSNR、Normalized noise、輝度、などの評価指標が最良となる最適オシレータページを決定し(2904)、この最適オシレータページを再生するようガルバノミラー219を設定する(2905)。
At the time of reproduction, the galvano mirror 219 is set to reproduce the first oscillator page (2901), and the galvano mirror 226 is set to reproduce the data page (2902). This processing is performed for all the oscillator pages (2903), the optimum oscillator page having the best evaluation index such as the SNR, the normalized noise, and the luminance of the image is determined (2904), and this optimum oscillator page is reproduced. The galvanometer mirror 219 is set (2905).
この後の処理は実施例1における、802~804の処理と同様である。
The subsequent processing is the same as the processing of 802 to 804 in the first embodiment.
以上の回路構成、処理手順によれば、オシレータページとデータページの波面ずれなく光検出器228上で干渉させることができ、位相情報を強度として検出することが可能な光情報記録再生装置を実現することができる。また、1つのオシレータページから複数のデータページの再生が可能となるため、オシレータページによる記録媒体の消費を極めて小さく抑えることが可能となる。さらに、位相調整素子2201を用いずに、再生したオシレータページとデータページの位相を一致させることが可能となる。
According to the above circuit configuration and processing procedure, an optical information recording / reproducing apparatus capable of causing interference on the photodetector 228 without wavefront deviation between the oscillator page and the data page and capable of detecting phase information as intensity is realized. can do. In addition, since a plurality of data pages can be reproduced from one oscillator page, consumption of the recording medium by the oscillator page can be suppressed extremely small. Furthermore, the phase of the reproduced oscillator page and the data page can be matched without using the phase adjustment element 2201.
なお、説明では評価指標が最良となるよう最適オシレータページを決定したが、実施例4で説明したように、位相差検出パターン2501を用いれば位相差Δφを算出できるので、位相差Δφに一致する位相差を有するオシレータページを最適オシレータページとすればよい。これにより、全てのオシレータページに対して再生を実施する必要がなくなり、再生時間の短縮が可能となる。
In the description, the optimal oscillator page is determined so that the evaluation index is the best. However, as described in the fourth embodiment, the phase difference Δφ can be calculated by using the phase difference detection pattern 2501, and therefore the phase difference Δφ matches. An oscillator page having a phase difference may be set as the optimum oscillator page. Thereby, it is not necessary to perform reproduction for all the oscillator pages, and the reproduction time can be shortened.
以上のことは他の実施例においても同様に適用可能である。
The above is similarly applicable to other embodiments.
本実施例が実施例1と異なるのは、再生したオシレータページとデータページの光量比である。実施例1では位相情報を強度情報に変換するため、再生したオシレータページとデータページの光量比は同等とすることが前提であった。しかし、オシレータページの光量を上げれば、再生したデータページを増幅して検出することが可能となる。そこで、再生したデータページを増幅することを目的とする。
This embodiment is different from the first embodiment in the light amount ratio between the reproduced oscillator page and the data page. In the first embodiment, since the phase information is converted into the intensity information, it is assumed that the light quantity ratio between the reproduced oscillator page and the data page is equal. However, if the light quantity of the oscillator page is increased, the reproduced data page can be amplified and detected. Therefore, an object is to amplify the reproduced data page.
まず、本実施例の原理について説明する。図30(a)に振幅変調データページ(図31(a))の信号点配置、図30(b)に位相変調データページ(図31(b))の信号点配置、図30(c)にオシレータページ(図31(c))の信号点配置を示す。2つの信号間距離(3001と3002、3004と3003)が等しくなるように信号点を配置している。“I”は波形の同相(In-phase)成分、“Q”は直交位相(Quadrature)成分を示しており、複素数平面上で信号を考えている。
First, the principle of this embodiment will be described. 30A shows the signal point arrangement of the amplitude modulation data page (FIG. 31A), FIG. 30B shows the signal point arrangement of the phase modulation data page (FIG. 31B), and FIG. The signal point arrangement of the oscillator page (FIG. 31 (c)) is shown. The signal points are arranged so that the distance between the two signals (3001 and 3002, 3004 and 3003) is equal. “I” indicates an in-phase component of the waveform, and “Q” indicates a quadrature component, and a signal is considered on the complex plane.
図30(a)の信号を光検出器228で検出すると、複素信号の2乗したものが検出されることから、信号3002は(数2)から強度I1、信号3001は(数3)から強度I0となり、信号間距離ΔIaは(数4)となる。
When the signal in FIG. 30A is detected by the photodetector 228, the square of the complex signal is detected, so that the signal 3002 has the intensity I1 from (Equation 2) and the signal 3001 has the intensity from (Equation 3). I0, and the inter-signal distance ΔIa is (Expression 4).
次に、図30(b)のデータページを図30(c)のオシレータページにより強度に変換して光検出器228で検出したとすると、複素信号の2乗したものが検出されることから、信号3004は(数5)から強度I1、信号3003は(数6)から強度I0となり、信号間距離ΔIbは(数7)となる。なお、データページの信号3004とオシレータページが同位相であるとしている。
Next, assuming that the data page of FIG. 30B is converted into intensity by the oscillator page of FIG. 30C and detected by the photodetector 228, the square of the complex signal is detected. The signal 3004 becomes the intensity I1 from (Equation 5), the signal 3003 becomes the intensity I0 from (Equation 6), and the inter-signal distance ΔIb becomes (Equation 7). It is assumed that the data page signal 3004 and the oscillator page are in phase.
以上より、元の信号間距離が同じでも、位相変調されたデータページをオシレータページで再生すれば(数8)に示す増幅率αが得られる。この式が示すように、オシレータページの光量をデータページの光量よりも大きくすれば増幅率αでデータページを増幅することが可能となる。
From the above, even if the original inter-signal distance is the same, if the phase-modulated data page is reproduced on the oscillator page, the amplification factor α shown in (Equation 8) can be obtained. As shown by this equation, if the light quantity of the oscillator page is larger than the light quantity of the data page, the data page can be amplified with the amplification factor α.
これを実現するためには大きく2つの方法がある。1つはオシレータページのホログラムの回折効率を大きくする方法であり、もう1つは照射するオシレータ用参照光の光量を大きくする方法である。もちろん、これらの方法を組み合わせて使用してもよい。
There are two main ways to achieve this. One is a method for increasing the diffraction efficiency of the hologram of the oscillator page, and the other is a method for increasing the amount of the reference light for the oscillator to be irradiated. Of course, these methods may be used in combination.
初めにオシレータページのホログラムの回折効率を大きくする方法について説明する。
First, a method for increasing the diffraction efficiency of the hologram on the oscillator page will be described.
例えば、実施例1のオシレータページ記録処理(702)において、データページ記録処理(704)よりも記録媒体に光を照射する時間である露光時間を長くすることにより、回折効率が高いホログラムを形成ことで実現できる。また、オシレータページ記録処理(702)において、オシレータ用参照光またはオシレータページの少なくとも一方の信号光の光量を高くして記録することでも実現できる。
For example, in the oscillator page recording process (702) of the first embodiment, a hologram having high diffraction efficiency is formed by increasing the exposure time, which is the time for irradiating the recording medium with light, compared to the data page recording process (704). Can be realized. Further, in the oscillator page recording process (702), it can be realized by increasing the light amount of at least one signal light of the oscillator reference light or the oscillator page.
これらの方法によれば、データ用参照光と同じ光量のオシレータ用参照光を照射したとしても、ホログラムから回折される光はデータページよりもオシレータページの方が大きくなる。また、記録媒体の消費量は増加するが、前述の通りページ全体に対するオシレータページの割合は依然小さいことから影響は小さい。
According to these methods, even when the oscillator reference light having the same light amount as the data reference light is irradiated, the light diffracted from the hologram is larger on the oscillator page than on the data page. Further, although the consumption amount of the recording medium increases, the influence is small because the ratio of the oscillator page to the whole page is still small as described above.
次に、照射するオシレータ用参照光の光量を大きくする方法について説明する。
Next, a method for increasing the amount of the reference light for the oscillator to be irradiated will be described.
例えば、実施例1において、図11のハーフミラー227のハーフミラー部分の透過率を50%よりも小さくすることで実現できる。また、実施例2において、図17の偏光方向変換素子216を調整し、P偏光から偏光面を45°~90°の間になるように傾けた参照光を使用することで実現できる。また、実施例3において、ガルバノミラー226の反射率を下げることで実現できる。
For example, in the first embodiment, this can be realized by making the transmittance of the half mirror portion of the half mirror 227 of FIG. 11 smaller than 50%. Further, in the second embodiment, it can be realized by adjusting the polarization direction conversion element 216 in FIG. 17 and using the reference light whose polarization plane is inclined from 45 ° to 90 ° from the P-polarized light. In Example 3, this can be realized by reducing the reflectance of the galvanometer mirror 226.
これらの方法によれば、データページと同じ回折効率のオシレータページが記録されていたとしても、照射するオシレータ用参照光の光量が大きいのでホログラムから回折される光はデータページよりもオシレータページの方が大きくなる。また、記録媒体の消費量の増加も抑圧することが可能である。
According to these methods, even if an oscillator page having the same diffraction efficiency as that of the data page is recorded, the light diffracted from the hologram is more diffracted from the hologram page than the data page because the amount of reference light for the oscillator to be irradiated is large Becomes larger. It is also possible to suppress an increase in the consumption of the recording medium.
なお、本発明は上記の実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。変形例として、以下の構成が挙げられる。
In addition, this invention is not limited to said Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. As modifications, the following configurations can be cited.
変形例1として、ホログラフィを利用して情報を光情報記録媒体に記録する光情報記録装置において、参照光、信号光およびオシレータ光を生成する光源と、前記光源が生成した信号光に情報を付加する信号光変調部と、前記信号光変調部で変調された信号光を前記光情報記録媒体に照射する信号光照射部と、前記光源が生成したオシレータ光を前記光情報記録媒体に照射するオシレータ光照射部と、前記光源が生成した参照光を前記光情報記録媒体に照射する参照光照射部と、を具備し、前記信号光照射部から照射された信号光と、前記参照光照射部から照射された参照光との干渉縞を信号光ホログラムとして、前記光情報記録媒体の所定の領域に多重記録し、前記オシレータ光照射部から照射されたオシレータ光と、前記参照光照射部から照射された参照光との干渉縞をオシレータホログラムとして記録する、ことを特徴とする光情報記録装置がある。
As a first modification, in an optical information recording apparatus that records information on an optical information recording medium using holography, a light source that generates reference light, signal light, and oscillator light, and information is added to the signal light generated by the light source A signal light modulating unit that irradiates the optical information recording medium with the signal light modulated by the signal light modulating unit, and an oscillator that irradiates the optical information recording medium with the oscillator light generated by the light source A light irradiation unit; and a reference light irradiation unit that irradiates the optical information recording medium with the reference light generated by the light source. The signal light emitted from the signal light irradiation unit, and the reference light irradiation unit Oscillator light emitted from the oscillator light irradiating unit, which records multiple interference fringes with the irradiated reference light as signal light holograms in a predetermined area of the optical information recording medium, and the reference light irradiating unit Recording the interference fringe between et irradiated reference light as the oscillator hologram, it is an optical information recording apparatus according to claim.
変形例2として、変形例1に記載の光情報記録装置において、情報を多重記録する際には、前記参照光照射部から照射された参照光が前記光情報記録媒体に対して入射する角度を変更しながら記録する、ことを特徴とする光情報記録装置がある。
As a second modification, in the optical information recording apparatus described in the first modification, when multiple information is recorded, the angle at which the reference light irradiated from the reference light irradiation unit is incident on the optical information recording medium is changed. There is an optical information recording apparatus characterized by recording while changing.
変形例3として、変形例1に記載の光情報記録装置において、前記信号光変調部で変調された信号光の一部に位相差調整用パターンが埋め込まれている、ことを特徴とする光情報記録装置がある。
As a third modification, in the optical information recording apparatus according to the first modification, a phase difference adjustment pattern is embedded in a part of the signal light modulated by the signal light modulation unit. There is a recording device.
変形例4として、変形例1に記載の光情報記録装置において、前記光情報記録媒体の所定の領域に、位相の異なる複数のオシレータ光が前記オシレータ光ホログラムとして多重記録されている、ことを特徴とする光情報記録装置がある。
As a fourth modification, in the optical information recording apparatus according to the first modification, a plurality of oscillator lights having different phases are multiplexed and recorded in the predetermined area of the optical information recording medium as the oscillator optical hologram. There is an optical information recording apparatus.
変形例5として、変形例1に記載の光情報記録装置において、前記信号光ホログラムと前記オシレータホログラムの回折効率を変えて記録する、ことを特徴とする光情報記録装置がある。
Modified example 5 is an optical information recording apparatus according to modified example 1, wherein the signal light hologram and the oscillator hologram are recorded with different diffraction efficiencies.
変形例6として、ホログラフィを利用して光情報記録媒体に記録された情報を再生する光情報再生装置において、参照光、およびオシレータ光を生成する光源と、前記光源が生成したオシレータ光を前記光情報記録媒体に照射するオシレータ光照射部と、前記光源が生成した参照光を前記光情報記録媒体に照射する参照光照射部と、前記光情報記録媒体から再生される光を検出する光検出部と、を具備し、前記光情報記録媒体は、情報が付加され変調された信号光と、前記参照光照射部から照射された参照光との干渉縞が、信号光ホログラムとして前記光情報記録媒体の所定の領域に多重記録され、前記オシレータ光照射部から照射されたオシレータ光と、前記参照光照射部から照射された参照光との干渉縞が、オシレータホログラムとして記録されており、前記参照光照射部から照射された参照光から生成された信号光用参照光により、前記信号光ホログラムから信号光を再生し、前記参照光照射部から照射された参照光から生成されたオシレータ光用参照光により、前記オシレータホログラムからオシレータ光を再生し、前記再生された信号光とオシレータ光と、を前記光検出部で検出する、ことを特徴とする光情報再生装置。
As a sixth modification, in an optical information reproducing apparatus that reproduces information recorded on an optical information recording medium using holography, a light source that generates reference light and oscillator light, and an oscillator light generated by the light source An oscillator light irradiating unit for irradiating the information recording medium, a reference light irradiating unit for irradiating the optical information recording medium with reference light generated by the light source, and a light detecting unit for detecting light reproduced from the optical information recording medium The optical information recording medium includes an interference fringe between the signal light modulated with information added and the reference light emitted from the reference light irradiation unit as a signal light hologram. Interference fringes between the oscillator light irradiated from the oscillator light irradiating unit and the reference light irradiated from the reference light irradiating unit are recorded as an oscillator hologram. From the reference light that is recorded and reproduced from the signal light hologram by the reference light for signal light generated from the reference light emitted from the reference light irradiation unit, and from the reference light emitted from the reference light irradiation unit An optical information reproducing apparatus, wherein the oscillator light is reproduced from the oscillator hologram by the generated oscillator light reference light, and the reproduced signal light and the oscillator light are detected by the light detection unit.
変形例7として、変形例6に記載の光情報再生装置において、前記信号光用参照光と前記オシレータ光用参照光は、前記参照光照射部から照射された参照光を分岐して生成する、ことを特徴とする光情報再生装置がある。
As a modification example 7, in the optical information reproducing apparatus according to the modification example 6, the signal light reference light and the oscillator light reference light are generated by branching the reference light emitted from the reference light irradiation unit. There is an optical information reproducing apparatus characterized in that.
変形例8として、変形例6に記載の光情報再生装置において、前記信号光用参照光と前記オシレータ光用参照光は、前記参照光照射部から照射された参照光を分岐し、分岐した参照光の偏光が直交している、ことを特徴とする光情報再生装置がある。
As a modified example 8, in the optical information reproducing apparatus according to the modified example 6, the reference light for signal light and the reference light for oscillator light branch off the reference light emitted from the reference light irradiating unit and branch the reference There is an optical information reproducing apparatus characterized in that the polarization of light is orthogonal.
変形例9として、変形例6に記載の光情報再生装置において、前記オシレータ光用参照光は、前記参照光照射部から照射された参照光から生成し、前記信号光用参照光は、前記参照光照射部から照射された参照光が前記光情報記録媒体を透過した光から生成する、
ことを特徴とする光情報再生装置がある。 As Modification 9, in the optical information reproducing apparatus according to Modification 6, the reference light for oscillator light is generated from the reference light emitted from the reference light irradiation unit, and the reference light for signal light is the reference The reference light emitted from the light irradiation unit is generated from the light transmitted through the optical information recording medium,
There is an optical information reproducing apparatus characterized in that.
ことを特徴とする光情報再生装置がある。 As Modification 9, in the optical information reproducing apparatus according to Modification 6, the reference light for oscillator light is generated from the reference light emitted from the reference light irradiation unit, and the reference light for signal light is the reference The reference light emitted from the light irradiation unit is generated from the light transmitted through the optical information recording medium,
There is an optical information reproducing apparatus characterized in that.
変形例10として、変形例6に記載の光情報再生装置において、前記信号光用参照光と前記オシレータ光用参照光の位相差を調整する位相調整素子を具備し、前記光検出部出力に基づいて前記位相調整素子を制御する、ことを特徴とする光情報記録再生装置がある。
As a tenth modification, the optical information reproducing apparatus according to the sixth modification includes a phase adjusting element that adjusts a phase difference between the reference light for signal light and the reference light for oscillator light, and is based on the output of the light detection unit. There is an optical information recording / reproducing apparatus for controlling the phase adjusting element.
変形例11として、変形例6に記載の光情報記録再生装置において、前記信号光用参照光と前記オシレータ光用参照光の光量を変えて再生する、ことを特徴とする光情報再生装置がある。
As an eleventh modification, there is an optical information reproducing apparatus according to the sixth modification, wherein the optical information recording / reproducing apparatus reproduces the signal light by changing the light amount of the reference light and the reference light for the oscillator light. .
変形例12として、ホログラフィを利用して情報を光情報記録媒体に記録する光情報記録方法において、参照光、信号光およびオシレータ光を生成する光生成ステップと、前記光源が生成した信号光に情報を付加する信号光変調ステップと、前記信号光変調ステップで変調された信号光を前記光情報記録媒体に照射する信号光照射ステップと、前記光源が生成したオシレータ光を前記光情報記録媒体に照射するオシレータ光照射ステップと、前記光源が生成した参照光を前記光情報記録媒体に照射する参照光照射ステップと、を具備し、前記信号光照射ステップで照射された信号光と、前記参照光照射ステップで照射された参照光との干渉縞を信号光ホログラムとして、前記光情報記録媒体の所定の領域に多重記録し、前記オシレータ光照射ステップで照射されたオシレータ光と、前記参照光照射ステップから照射された参照光との干渉縞をオシレータホログラムとして記録する、ことを特徴とする光情報記録方法がある。
As a modified example 12, in an optical information recording method for recording information on an optical information recording medium using holography, a light generation step for generating reference light, signal light and oscillator light, and information on the signal light generated by the light source A signal light modulation step of adding, a signal light irradiation step of irradiating the optical information recording medium with the signal light modulated in the signal light modulation step, and irradiating the optical information recording medium with the oscillator light generated by the light source An oscillator light irradiating step, and a reference light irradiating step for irradiating the optical information recording medium with the reference light generated by the light source, the signal light irradiated in the signal light irradiating step, and the reference light irradiating The interference fringes with the reference light irradiated in the step are multiplexed and recorded as a signal light hologram on a predetermined area of the optical information recording medium, and the oscillator light irradiation is performed. An oscillator light emitted in step, recording the interference fringes between the irradiated reference light from said reference light irradiating step as oscillator holograms, there are optical information recording method characterized by.
変形例13として、変形例12に記載の光情報記録方法において、情報を多重記録する際には、前記参照光照射ステップで照射された参照光が前記光情報記録媒体に対して入射する角度を変更しながら記録する、ことを特徴とする光情報記録再生方法がある。
As a modified example 13, in the optical information recording method described in the modified example 12, when information is multiplexed and recorded, the angle at which the reference light irradiated in the reference light irradiation step is incident on the optical information recording medium is changed. There is an optical information recording / reproducing method characterized by recording while changing.
変形例14として、変形例12に記載の光情報記録再生方法において、前記信号光変調ステップで変調された信号光の一ステップに位相差調整用パターンが埋め込まれている、ことを特徴とする光情報記録方法がある。
As a modified example 14, in the optical information recording / reproducing method according to the modified example 12, a phase difference adjustment pattern is embedded in one step of the signal light modulated in the signal light modulation step. There is an information recording method.
変形例15として、変形例12に記載の光情報記録方法において、前記光情報記録媒体の所定の領域に、位相の異なる複数のオシレータ光が前記オシレータ光ホログラムとして多重記録されている、ことを特徴とする光情報記録方法がある。
As a modified example 15, in the optical information recording method described in the modified example 12, a plurality of oscillator lights having different phases are multiplexed and recorded in the predetermined area of the optical information recording medium as the oscillator optical hologram. There is an optical information recording method.
変形例16として、変形例12に記載の光情報記録方法において、前記信号光ホログラムと前記オシレータホログラムの回折効率を変えて記録する、ことを特徴とする光情報記録方法がある。
Modified example 16 is an optical information recording method according to modified example 12, characterized in that recording is performed by changing diffraction efficiency of the signal light hologram and the oscillator hologram.
変形例17として、ホログラフィを利用して情報が記録された光情報記録媒体から情報を再生する光情報再生方法において、参照光、およびオシレータ光を生成する光生成ステップと、前記光源が生成したオシレータ光を前記光情報記録媒体に照射するオシレータ光照射ステップと、前記光源が生成した参照光を前記光情報記録媒体に照射する参照光照射ステップと、前記光情報記録媒体から再生される光を検出する光検出ステップと、を具備し、前記光情報記録媒体は、情報が付加され変調された信号光と、前記参照光との干渉縞が、信号光ホログラムとして前記光情報記録媒体の所定の領域に多重記録され、前記オシレータ光と、前記参照光との干渉縞が、オシレータホログラムとして記録されており、前記参照光照射ステップで照射された参照光から生成された信号光用参照光により、前記信号光ホログラムから信号光を再生し、前記参照光照射ステップで照射された参照光から生成されたオシレータ光用参照光により、前記オシレータホログラムからオシレータ光を再生し、前記再生された信号光とオシレータ光と、を前記光検出ステップで検出する、ことを特徴とする光情報再生方法がある。
As a modified example 17, in an optical information reproducing method for reproducing information from an optical information recording medium on which information is recorded using holography, a light generating step for generating reference light and oscillator light, and an oscillator generated by the light source An oscillator light irradiating step for irradiating the optical information recording medium with light, a reference light irradiating step for irradiating the optical information recording medium with reference light generated by the light source, and detecting light reproduced from the optical information recording medium The optical information recording medium includes a predetermined region of the optical information recording medium in which interference fringes between the signal light to which information is added and modulated and the reference light are signal light holograms. The interference fringes between the oscillator light and the reference light are recorded as an oscillator hologram and irradiated in the reference light irradiation step. The signal light is reproduced from the signal light hologram by the signal light reference light generated from the generated reference light, and the oscillator light reference light generated from the reference light irradiated in the reference light irradiation step is used to generate the oscillator light. There is an optical information reproducing method characterized in that oscillator light is reproduced from a hologram, and the reproduced signal light and oscillator light are detected in the light detection step.
変形例18として、変形例17に記載の光情報再生方法において、前記信号光用参照光と前記オシレータ光用参照光は、前記参照光照射ステップで照射された参照光を分岐して生成する、ことを特徴とする光情報再生方法がある。
As a modified example 18, in the optical information reproducing method according to the modified example 17, the reference light for signal light and the reference light for oscillator light are generated by branching the reference light irradiated in the reference light irradiation step. There is an optical information reproducing method characterized by this.
変形例19として、変形例17に記載の光情報再生方法において、前記信号光用参照光と前記オシレータ光用参照光は、前記参照光照射ステップで照射された参照光を分岐し、分岐した参照光の偏光が直交している、ことを特徴とする光情報記録再生方法がある。
As a modified example 19, in the optical information reproducing method according to the modified example 17, the reference light for signal light and the reference light for oscillator light branch off the reference light irradiated in the reference light irradiation step and branch the reference There is an optical information recording / reproducing method characterized in that the polarization of light is orthogonal.
変形例20として、変形例17に記載の光情報再生方法において、前記オシレータ光用参照光は、前記参照光照射ステップから照射された参照光から生成し、前記信号光用参照光は、前記参照光照射ステップから照射された参照光が前記光情報記録媒体を透過した光から生成する、ことを特徴とする光情報記録再生方法がある。
As a modification 20, in the optical information reproducing method according to the modification 17, the reference light for oscillator light is generated from the reference light emitted from the reference light irradiation step, and the reference light for signal light is the reference There is an optical information recording / reproducing method characterized in that the reference light emitted from the light irradiation step is generated from the light transmitted through the optical information recording medium.
変形例21として、変形例17に記載の光情報再生方法において、前記信号光用参照光と前記オシレータ光用参照光の位相差を調整する位相調整素子を具備し、前記光検出ステップ出力に基づいて前記位相調整素子を制御する、ことを特徴とする光情報再生方法がある。
As a modified example 21, in the optical information reproducing method according to the modified example 17, the optical information reproducing method includes a phase adjusting element that adjusts a phase difference between the reference light for signal light and the reference light for oscillator light, and is based on the output of the light detection step. There is an optical information reproduction method characterized by controlling the phase adjusting element.
変形例22として、変形例17に記載の光情報再生方法において、前記信号光用参照光と前記オシレータ光用参照光の光量を変えて再生する、ことを特徴とする光情報再生方法がある。
As a modified example 22, there is an optical information reproducing method according to the modified example 17, wherein the signal light reference light and the oscillator light reference light are reproduced with different amounts of light.
また、光情報記録媒体は、ホログラフィを利用する記録媒体に限らず、たとえばDVD(Digital Versatile Disc)、または、BD(Blu-ray Disc(登録商標))などでも良い。
Further, the optical information recording medium is not limited to a recording medium using holography, and may be a DVD (Digital Versatile Disc) or a BD (Blu-ray Disc (registered trademark)), for example.
また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
Also, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
1・・・光情報記録媒体、10・・・光情報記録再生装置、11・・・ピックアップ、12・・・再生用参照光光学系、13・・・ディスクCure光学系、14・・・ディスク回転角度検出用光学系、15・・・位置検出光学系、50・・・回転モータ、81・・・アクセス制御回路、82・・・光源駆動回路、83・・・サーボ信号生成回路、84・・・サーボ制御回路、85・・・信号処理回路、86・・・信号生成回路、87・・・シャッタ制御回路、88・・・ディスク回転モータ制御回路、89・・・コントローラ、90・・・入出力制御回路、91・・・外部制御装置、201・・・光源、202・・・コリメートレンズ、203・・・シャッタ、204・・・1/2波長板、205・・・偏光ビームスプリッタ、206・・・信号光、207・・・参照光、208・・・ビームエキスパンダ、209・・フェーズ(位相)マスク、210・・・リレーレンズ、211・・・偏光ビームスプリッタ、212・・・空間光変調器、213・・・リレーレンズ、214・・・空間フィルタ、215・・・対物レンズ、216・・・偏光方向変換素子、217・・・ミラー、218・・・ミラー、219・・・ミラー、220・・・アクチュエータ、221・・・レンズ、222・・・レンズ、223・・・レンズ、224・・・レンズ、225・・・アクチュエータ、226・・・ミラー、227・・・ハーフミラー、228・・・光検出器、1401・・・ハーフミラー領域、1402・・・透過領域、1501・・・ハーフミラー領域、1803・・・1/4波長板、1804・・・ミラー、2201・・・位相調整素子、2202・・・位相差検出回路、2203・・・補償量算出回路、2501・・・位相差検出パターン(記録)、2601・・・位相差検出パターン(再生)、
DESCRIPTION OF SYMBOLS 1 ... Optical information recording medium, 10 ... Optical information recording / reproducing apparatus, 11 ... Pickup, 12 ... Reference optical system for reproduction | regeneration, 13 ... Disc Cure optical system, 14 ... Disc Rotation angle detection optical system, 15 ... position detection optical system, 50 ... rotation motor, 81 ... access control circuit, 82 ... light source drive circuit, 83 ... servo signal generation circuit, 84. ..Servo control circuit 85 ... Signal processing circuit 86 ... Signal generation circuit 87 ... Shutter control circuit 88 ... Disk rotation motor control circuit 89 ... Controller 90 ... Input / output control circuit, 91 ... external control device, 201 ... light source, 202 ... collimating lens, 203 ... shutter, 204 ... 1/2 wavelength plate, 205 ... polarizing beam splitter, 206 ... Signal light, 207... Reference light, 208... Beam expander, 209... Phase (phase) mask, 210 ... Relay lens, 211 ... Polarization beam splitter, 212 ... Spatial light modulator 213 ... Relay lens, 214 ... Spatial filter, 215 ... Objective lens, 216 ... Polarization direction conversion element, 217 ... Mirror, 218 ... Mirror, 219 ... Mirror, 220 ... Actuator, 221 ... Lens, 222 ... Lens, 223 ... Lens, 224 ... Lens, 225 ... Actuator, 226 ... Mirror, 227 ... Half mirror, 228 ..Photodetector, 1401... Half mirror region, 1402... Transmission region, 1501... Half mirror region, 1803. 1804: mirror, 2201 ... phase adjustment element, 2202 ... phase difference detection circuit, 2203 ... compensation amount calculation circuit, 2501 ... phase difference detection pattern (recording), 2601 ... phase difference Detection pattern (playback),
Claims (11)
- ホログラフィを利用して情報を光情報記録媒体に記録する光情報記録装置において、
参照光、信号光およびオシレータ光を生成する光源と、
前記光源が生成した信号光に情報を付加する信号光変調部と、
前記信号光変調部で変調された信号光を前記光情報記録媒体に照射する信号光照射部と、
前記光源が生成したオシレータ光を前記光情報記録媒体に照射するオシレータ光照射部と、
前記光源が生成した参照光を前記光情報記録媒体に照射する参照光照射部と、
を具備し、
前記信号光照射部から照射された信号光と、前記参照光照射部から照射された参照光との干渉縞を信号光ホログラムとして、前記光情報記録媒体の所定の領域に多重記録し、
前記オシレータ光照射部から照射されたオシレータ光と、前記参照光照射部から照射された参照光との干渉縞をオシレータホログラムとして記録する、
ことを特徴とする光情報記録装置。 In an optical information recording apparatus that records information on an optical information recording medium using holography,
A light source for generating reference light, signal light and oscillator light;
A signal light modulator for adding information to the signal light generated by the light source;
A signal light irradiation unit that irradiates the optical information recording medium with the signal light modulated by the signal light modulation unit;
An oscillator light irradiation unit for irradiating the optical information recording medium with the oscillator light generated by the light source;
A reference light irradiation unit that irradiates the optical information recording medium with the reference light generated by the light source;
Comprising
As a signal light hologram, interference fringes between the signal light irradiated from the signal light irradiation unit and the reference light irradiated from the reference light irradiation unit are multiplexed and recorded in a predetermined area of the optical information recording medium,
Recording interference fringes between the oscillator light irradiated from the oscillator light irradiation unit and the reference light irradiated from the reference light irradiation unit as an oscillator hologram,
An optical information recording apparatus. - 請求項1に記載の光情報記録装置において、
情報を多重記録する際には、前記参照光照射部から照射された参照光が前記光情報記録媒体に対して入射する角度を変更しながら記録する、
ことを特徴とする光情報記録装置。 The optical information recording apparatus according to claim 1,
When multiplex recording information, recording while changing the angle at which the reference light irradiated from the reference light irradiation unit is incident on the optical information recording medium,
An optical information recording apparatus. - 請求項1に記載の光情報記録装置において、
前記信号光変調部で変調された信号光の一部に位相差調整用パターンが埋め込まれている、
ことを特徴とする光情報記録装置。 The optical information recording apparatus according to claim 1,
A phase difference adjustment pattern is embedded in part of the signal light modulated by the signal light modulation unit,
An optical information recording apparatus. - 請求項1に記載の光情報記録装置において、
前記光情報記録媒体の所定の領域に、位相の異なる複数のオシレータ光が前記オシレータ光ホログラムとして多重記録する、
ことを特徴とする光情報記録装置。 The optical information recording apparatus according to claim 1,
A plurality of oscillator lights having different phases are multiplexed and recorded in the predetermined area of the optical information recording medium as the oscillator optical hologram.
An optical information recording apparatus. - 請求項1に記載の光情報記録装置において、
前記信号光ホログラムと前記オシレータホログラムの回折効率を変えて記録する、
ことを特徴とする光情報記録装置。 The optical information recording apparatus according to claim 1,
Recording the signal light hologram and the oscillator hologram with different diffraction efficiencies,
An optical information recording apparatus. - ホログラフィを利用して光情報記録媒体に記録された情報を再生する光情報再生装置において、
参照光、およびオシレータ光を生成する光源と、
前記光源が生成したオシレータ光を前記光情報記録媒体に照射するオシレータ光照射部と、
前記光源が生成した参照光を前記光情報記録媒体に照射する参照光照射部と、
前記光情報記録媒体から再生される光を検出する光検出部と、
を具備し、
前記光情報記録媒体は、情報が付加され変調された信号光と、前記参照光照射部から照射された参照光との干渉縞が、信号光ホログラムとして前記光情報記録媒体の所定の領域に多重記録され、前記オシレータ光照射部から照射されたオシレータ光と、前記参照光照射部から照射された参照光との干渉縞が、オシレータホログラムとして記録されており、
前記参照光照射部から照射された参照光から生成された信号光用参照光により、前記信号光ホログラムから信号光を再生し、
前記参照光照射部から照射された参照光から生成されたオシレータ光用参照光により、前記オシレータホログラムからオシレータ光を再生し、
前記再生された信号光とオシレータ光と、を前記光検出部で検出する、
ことを特徴とする光情報再生装置。 In an optical information reproducing apparatus for reproducing information recorded on an optical information recording medium using holography,
A light source for generating reference light and oscillator light;
An oscillator light irradiation unit for irradiating the optical information recording medium with the oscillator light generated by the light source;
A reference light irradiation unit that irradiates the optical information recording medium with the reference light generated by the light source;
A light detection unit for detecting light reproduced from the optical information recording medium;
Comprising
In the optical information recording medium, interference fringes between signal light modulated with information added and reference light emitted from the reference light irradiating unit are multiplexed as a signal light hologram on a predetermined region of the optical information recording medium. Interference fringes between the recorded oscillator light emitted from the oscillator light irradiation unit and the reference light emitted from the reference light irradiation unit are recorded as an oscillator hologram,
The signal light is reproduced from the signal light hologram by the reference light for signal light generated from the reference light emitted from the reference light irradiation unit,
With the reference light for oscillator light generated from the reference light emitted from the reference light irradiation unit, the oscillator light is reproduced from the oscillator hologram,
The reproduced signal light and oscillator light are detected by the light detection unit,
An optical information reproducing apparatus characterized by the above. - 請求項6に記載の光情報再生装置において、
前記信号光用参照光と前記オシレータ光用参照光は、前記参照光照射部から照射された参照光を分岐して生成する、
ことを特徴とする光情報再生装置。 The optical information reproducing apparatus according to claim 6,
The signal light reference light and the oscillator light reference light are generated by branching the reference light emitted from the reference light irradiation unit,
An optical information reproducing apparatus characterized by the above. - 請求項6に記載の光情報再生装置において、
前記信号光用参照光と前記オシレータ光用参照光は、前記参照光照射部から照射された参照光を分岐し、分岐した参照光の偏光が直交している、
ことを特徴とする光情報再生装置。 The optical information reproducing apparatus according to claim 6,
The reference light for signal light and the reference light for oscillator light branch off the reference light emitted from the reference light irradiation unit, and the polarization of the branched reference light is orthogonal,
An optical information reproducing apparatus characterized by the above. - 請求項6に記載の光情報再生装置において、
前記オシレータ光用参照光は、前記参照光照射部から照射された参照光から生成し、
前記信号光用参照光は、前記参照光照射部から照射された参照光が前記光情報記録媒体を透過した光から生成する、
ことを特徴とする光情報再生装置。 The optical information reproducing apparatus according to claim 6,
The reference light for oscillator light is generated from the reference light irradiated from the reference light irradiation unit,
The signal light reference light is generated from light transmitted from the optical information recording medium by the reference light irradiated from the reference light irradiation unit.
An optical information reproducing apparatus characterized by the above. - 請求項6に記載の光情報再生装置において、
前記信号光用参照光と前記オシレータ光用参照光の位相差を調整する位相調整素子を具備し、
前記光検出部出力に基づいて前記位相調整素子を制御する、
ことを特徴とする光情報再生装置。 The optical information reproducing apparatus according to claim 6,
A phase adjusting element for adjusting a phase difference between the signal light reference light and the oscillator light reference light;
Controlling the phase adjustment element based on the light detection unit output;
An optical information reproducing apparatus characterized by the above. - 請求項6に記載の光情報再生装置において、
前記信号光用参照光と前記オシレータ光用参照光の光量を変えて再生する、
ことを特徴とする光情報再生装置。 The optical information reproducing apparatus according to claim 6,
Reproducing by changing the amount of the reference light for signal light and the reference light for oscillator light,
An optical information reproducing apparatus characterized by the above.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/070666 WO2016020994A1 (en) | 2014-08-06 | 2014-08-06 | Otical information recording device and optical information reproduction device |
JP2016539728A JPWO2016020994A1 (en) | 2014-08-06 | 2014-08-06 | Optical information recording apparatus and optical information reproducing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/070666 WO2016020994A1 (en) | 2014-08-06 | 2014-08-06 | Otical information recording device and optical information reproduction device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016020994A1 true WO2016020994A1 (en) | 2016-02-11 |
Family
ID=55263300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/070666 WO2016020994A1 (en) | 2014-08-06 | 2014-08-06 | Otical information recording device and optical information reproduction device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2016020994A1 (en) |
WO (1) | WO2016020994A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005293630A (en) * | 2004-03-31 | 2005-10-20 | Sony Corp | Hologram recording device, hologram reproducing device, hologram recording method, hologram reproducing method, and hologram recording medium |
JP2008046352A (en) * | 2006-08-16 | 2008-02-28 | Optware:Kk | Optical information reproducing apparatus |
WO2011013166A1 (en) * | 2009-07-28 | 2011-02-03 | 株式会社 東芝 | Information storage device and information recording medium |
WO2013008453A1 (en) * | 2011-07-11 | 2013-01-17 | 国立大学法人北海道大学 | Holographic memory recording method and reproduction method, and holographic memory recording device and reproduction device |
JP2014002823A (en) * | 2012-06-20 | 2014-01-09 | Hitachi Consumer Electronics Co Ltd | Optical information recording/reproducing apparatus and optical information recording/reproducing method |
-
2014
- 2014-08-06 JP JP2016539728A patent/JPWO2016020994A1/en active Pending
- 2014-08-06 WO PCT/JP2014/070666 patent/WO2016020994A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005293630A (en) * | 2004-03-31 | 2005-10-20 | Sony Corp | Hologram recording device, hologram reproducing device, hologram recording method, hologram reproducing method, and hologram recording medium |
JP2008046352A (en) * | 2006-08-16 | 2008-02-28 | Optware:Kk | Optical information reproducing apparatus |
WO2011013166A1 (en) * | 2009-07-28 | 2011-02-03 | 株式会社 東芝 | Information storage device and information recording medium |
WO2013008453A1 (en) * | 2011-07-11 | 2013-01-17 | 国立大学法人北海道大学 | Holographic memory recording method and reproduction method, and holographic memory recording device and reproduction device |
JP2014002823A (en) * | 2012-06-20 | 2014-01-09 | Hitachi Consumer Electronics Co Ltd | Optical information recording/reproducing apparatus and optical information recording/reproducing method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016020994A1 (en) | 2017-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5802616B2 (en) | Optical information recording / reproducing apparatus and optical information recording / reproducing method | |
JP5753768B2 (en) | Optical information recording apparatus, optical information reproducing apparatus, optical information recording / reproducing apparatus, optical information recording method, optical information reproducing method, and optical information recording / reproducing method | |
JP2013109793A (en) | Optical information recording and reproducing device, optical information reproducing device, optical information recording and reproducing method and optical information reproducing method | |
JP5753767B2 (en) | Optical information recording / reproducing apparatus, optical information recording / reproducing method, and optical information recording medium | |
JP2008130137A (en) | Information recording device and information reproducing device | |
JP5868494B2 (en) | Optical information recording / reproducing apparatus, optical information recording / reproducing method, and reproducing apparatus | |
WO2016020994A1 (en) | Otical information recording device and optical information reproduction device | |
US9373352B2 (en) | Optical information reproduction apparatus and optical information reproduction method | |
JP6077110B2 (en) | Optical information reproducing apparatus and adjustment method | |
JP2015056194A (en) | Optical information reproducing device and reference light adjustment method | |
WO2014083619A1 (en) | Optical information recording and playback device and optical information recording and playback method | |
US9728219B2 (en) | Optical information reproduction device and optical information reproduction method | |
WO2016194155A1 (en) | Holographic memory device and optical information detecting method | |
JP5953284B2 (en) | Optical information recording medium, optical information recording apparatus, optical information recording method, optical information reproducing apparatus, and optical information reproducing method. | |
JP2015060613A (en) | Optical information recording device and optical information recording method | |
JP6078634B2 (en) | Optical information reproducing apparatus and optical information recording / reproducing apparatus | |
WO2015083246A1 (en) | Optical information reproduction device and optical information reproduction method | |
WO2016163312A1 (en) | Optical information reproduction device and optical information reproduction method | |
WO2016009546A1 (en) | Optical information recording/playback device, optical information playback device, and optical information playback method | |
WO2015083247A1 (en) | Optical information recording device and optical information recording method | |
WO2015033456A1 (en) | Optical information recording device, optical information reproduction device, optical information recording method, and optical information reproduction method | |
JP5542739B2 (en) | Holographic memory reproducing apparatus and holographic memory reproducing method | |
WO2017061020A1 (en) | Optical disc recording and reproducing device | |
JP2015082327A (en) | Optical information reproduction apparatus, optical information reproduction method, and optical information recording method | |
WO2016199229A1 (en) | Hologram record-playback device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14899252 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016539728 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14899252 Country of ref document: EP Kind code of ref document: A1 |