[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016010400A1 - 에틸렌 -1-핵센 -1-부텐 3원 공중합체 및 이를 포함하는 필름 - Google Patents

에틸렌 -1-핵센 -1-부텐 3원 공중합체 및 이를 포함하는 필름 Download PDF

Info

Publication number
WO2016010400A1
WO2016010400A1 PCT/KR2015/007459 KR2015007459W WO2016010400A1 WO 2016010400 A1 WO2016010400 A1 WO 2016010400A1 KR 2015007459 W KR2015007459 W KR 2015007459W WO 2016010400 A1 WO2016010400 A1 WO 2016010400A1
Authority
WO
WIPO (PCT)
Prior art keywords
nuxene
ethylene
molecular weight
butene
carrier
Prior art date
Application number
PCT/KR2015/007459
Other languages
English (en)
French (fr)
Inventor
승유택
권헌용
홍대식
이승미
이기수
정동훈
신은영
장창환
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150100965A external-priority patent/KR101705339B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP15821944.4A priority Critical patent/EP3141566B1/en
Priority to US15/320,193 priority patent/US10253122B2/en
Priority to CN201580038904.6A priority patent/CN106661159B/zh
Publication of WO2016010400A1 publication Critical patent/WO2016010400A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms

Definitions

  • the present application is the Korean Patent Application No. 10-2014-0091055 dated July 18, 2014 and
  • the present invention relates to an ethylene-1-nuxene-1-butene ternary co-polymer and a film comprising the same. More specifically, the present invention relates to an ethylene-1-nuxene-1-butene ternary copolymer suitable for stretch films having excellent physical properties such as adhesiveness and falling layer stratification strength, and a film comprising the same.
  • a polymer film refers to a non-fibrous flat plastic molding having a thickness of 0.25 mm (l / 100 inch) or less.
  • Polymer is light, good barrier property, excellent transparency and relatively low price. It is used in almost all fields such as packaging materials, household goods, automobiles, electronic devices, aircraft, etc. It is easy to process and easy to make into film.
  • Synthetic polymers such as polyethylene, polypropylene, polyvinyl chloride, and polyethylene terephthalate have been developed at home and abroad, and are widely used as polymer films. Currently, many synthetic polymers are used alone or as a blending material.
  • PE polyethylene
  • high density polyethylene high density polyethylene
  • linear low density polyethylene according to density, copolymerization, and branching type
  • various polyethylene products have been introduced in the metallocene catalyst system which has been commercialized recently.
  • Low-density polyethylene is one of general purpose resins that was used as an insulating material for military radars because of its excellent electrical properties, after being successfully synthesized by ICI in 1933.
  • the main uses are general packaging, agriculture, shrink film, paper coating, etc. Excellent melt tension, suitable for coating applications.
  • Linear low density polyethylene is prepared by copolymerizing ethylene and alpha olefin at low pressure using a polymerization catalyst, and has a narrow molecular weight distribution, a short length branch of a constant length, and a long chain branch.
  • Linear low density polyethylene film has high fracture strength and elongation as well as characteristics of general polyethylene, and it is excellent in tear strength and fall stratification strength, so it is not suitable for use of stretch film or overlap film that is difficult to apply to existing low density polyethylene or high density polyethylene. It is increasing.
  • the breaking strength, tear strength, and falling layer strength which are important properties of the film, are largely influenced by alpha olepin used as comonomer, and alpha olepin used as 1-butene, 1 -Nuxene, 1-octene and the like.
  • the physical properties of the linear low density polyethylene film are known to be excellent when 1-octene is used, but the price of 1-octene comonomer is expensive and disadvantageous in terms of economics.
  • the price of 1-octene comonomer is expensive and disadvantageous in terms of economics.
  • the slurry loop process which is one of general polymerization processes of polyethylene, is known to use 1-butene as a comonomer to obtain polyethylene of low density.
  • 1-butene the physical properties are lower than that of other comonomers, and thus, low-density linear polyethylene products using low-density linear polyethylene products other than 1-butene are industrially demanded technologies.
  • the present invention is to solve the problems of the prior art as described above, to provide an ethylene-1-nuxene-1-butene terpolymer having an excellent balance of physical properties. '
  • Still another object of the present invention is to provide a film comprising the ethylene ⁇ 1-nuxene -1-butene terpolymer.
  • CI (C 0 -mon 0 m er Incorporation) Index of 0.5 to 5; Density is 0.900 to 0.916 g / cm 3 ; Melt flow index (Ml) measured at 190 ° C., 2.16 kg loading conditions in accordance with ASTM D1238; 2.0 to 5.0 g / 10 min; An ethylene-1-nuxene-1-butene terpolymer is provided wherein the weight ratio of 1-nuxene to 1-butene is 1-5.
  • a second aspect of the present invention for achieving the above object provides a film comprising the ethylene-1-nuxene-1_butene terpolymer.
  • Ethylene-1-nuxene-1′butene terpolymer according to the present invention has an optimized range of CI Index, density and melt index, and includes 1-nuxene and 1-butene as comonomers, and between comonomers by adjusting the content ratio in a predetermined range. It is possible to provide a polymer having low density and excellent physical properties. Therefore, the film produced using the same has excellent adhesiveness, processability, and dart impact strength characteristics, particularly suitable for stretch films, and thus can be usefully used.
  • 1 is a graph illustrating an example of a method of measuring a CI index using a molecular weight distribution curve.
  • CI Co-monomer Incorporation
  • Ethylene-1-nuxene-1-butene terpolymer of the present invention has a Co-monomer Incorporation (CI) Index calculated from the formula 1 of about 0.5 to about 5, or about 1.0 to about 5, or about 1.5 to about 5 Can be.
  • CI Co-monomer Incorporation
  • the CI structure is a structure in which the content of comonomers such as alpha olepin is concentrated in the high molecular weight main chain, that is, a new structure in which the content of short chain branch (SCB) increases toward the higher molecular weight. Means.
  • the CI Index can measure the molecular weight, molecular weight distribution and SCB content simultaneously using the GPC-FTIR apparatus, and the log value (log M) of the molecular weight (M) is the X-axis, and the molecular weight of the log.
  • the SCB Short Chain Branch
  • the high molecular weight side SCB content and the low molecular weight side SCB content mean the SCB content values at the right boundary and the left boundary in the middle 60% range except for the left and right ends 20%.
  • FIG. 1 An example of a measurement method of such a CI index is shown in FIG. 1.
  • the CI Index is 0 or less, it is not a polymer of CI structure, and if it is larger than 0, it can be regarded as a polymer of CI structure.
  • Ternary copolymers according to the invention together with ethylene, are comonomers of
  • the weight ratio of 1-nuxene to 1-butene in the comonomer may be about 1 to about 5, preferably about 1.5 to about 3.5, more preferably about 2.0 to about 3.5.
  • the ethylene-1-nuxene-1-butene 3-membered The content of 1-butene and 1-haeksen from about 5 to about 15 parts by weight 0/0 of the total weight of the copolymer, preferably from about 8 to about 13% by weight.
  • low density polyethylene can be obtained by lowering the density of the copolymer without deteriorating other physical properties, and excellent adhesion of about 8 kgf / mm or more can be realized.
  • Terpolymers according to the invention have a density ranging from about 0.900 to about 0.916 g / cm 3 , preferably from about 0.900 to about 0.915 g / cm 3 , more preferably from about 0.905 to about 0.915 g / cm 3 .
  • a density ranging from about 0.900 to about 0.916 g / cm 3 , preferably from about 0.900 to about 0.915 g / cm 3 , more preferably from about 0.905 to about 0.915 g / cm 3 .
  • the density of the ethylene-1-nuxene-1-butene ternary copolymer is in the above range, it may exhibit excellent adhesive strength and falling layer stratification strength.
  • the density of polyolefins is affected by the amount of alpha olepin comonomer used.
  • the density decreases, and when the amount of the alpha olefin comonomer is small, the density increases.
  • alpha olepin comonomer comprising 1-nuxene and 1-butene
  • the physical properties suitable for the film such as low density, excellent processability, adhesion and fall impact strength.
  • melt flow index (Ml) at 190 ° C. and 2.16 kg loading conditions of the ethylene-1-nuxene-1-butene terpolymer of the present invention is about 2.0 to about 5.0 g / 10 min, preferably Can be from about 2.5 to about 4.5 g / 10 minutes, more preferably from about 2.5 to about 3.5 g / 10 minutes.
  • melt flow index is in the above range, it may be preferable as an optimum point capable of harmonizing molding processability and mechanical properties.
  • the weight average molecular weight of the terpolymer of the invention is about 50,000 to about 150,000 g / mol, preferably about 60,000 to about 120,000 g / mol, more preferably about 60,000 to about 100,000 g / md, but is not limited thereto.
  • the molecular weight distribution (weight average molecular weight / number average molecular weight) of the terpolymer of the present invention is about 1.5 to about 5, preferably about 2.5 to about 4, more preferably about 2.5 To about 3.5, but is not limited thereto. It is not.
  • the ethylene-1-nuxene-1-butene ternary copolymer according to the present invention is suitable for film applications such as low density, excellent workability, adhesion and fall stratification strength, and can be particularly useful for producing stretch films.
  • Ternary copolymers according to the present invention may be prepared according to, for example, the production method described below, but are not limited thereto.
  • the ethylene-1-nuxene-1-butene terpolymer can be prepared in the presence of a supported metallocene catalyst. More specifically, when the carrier catalyst particles are cut in cross section, an outer layer comprising up to one third of the total diameter of the particles from each surface towards the center, and the remainder from one third of the particles to the inner center
  • a silica carrier composed of an inner layer comprising a portion, wherein the alkylaluminoxane is supported on the inside and the surface of the carrier; At least one metallocene compound supported on the silica carrier, wherein the Al / Si element content ratio (weight%) of the inner layer is at least 65% of the Al / Si element content ratio (weight%) of the outer layer ,
  • a supported metallocene catalyst by copolymerizing ethylene, 1-nuxene, and 1-butene.
  • the supported catalyst particles include a silica carrier on which an alkylaluminoxane as a promoter is supported.
  • one third of the total diameter of the particles from each surface toward the center is A portion including up to the point where defined is defined as the outer layer, and the remaining portion from one third of the particle to the inner center, that is, a portion including two thirds of the remaining inner center is defined as the inner layer.
  • the inner layer comprises a portion 70% of the longest radius from the center of the silica carrier in the supported metallocene catalyst and the outer layer comprises the remaining outer portion of the silica carrier.
  • the inside of the silica carrier mentioned in the present invention includes pores.
  • water content of a carrier is defined as the percentage of the weight of water contained in the carrier relative to the total weight of the carrier.
  • the supported metallocene catalyst refers to a catalyst on which one or more metallocene compounds are supported.
  • the supported metallocene catalyst of the present invention may further include a borate-based compound as a second cocatalyst.
  • the supported metallocene catalyst has a large amount of alkylaluminoxane penetrated into the inside of the silica carrier and pores to be chemically bonded, and a considerable amount of alkylaluminoxane is physically bonded to the surface. In other words, the alkyl aluminoxane that penetrates into the carrier and is chemically bonded is small.
  • the supported metallocene catalyst is to allow the promoter to be supported on the inner layer more than before. Therefore, the supported metallocene catalyst contains a large amount of alkylaluminoxane in the inner layer in the configuration consisting of the inner layer and the outer layer, thereby improving the apparent density and controlling the catalyst activity easily.
  • the Al / Si element content ratio (wt%) of the inner layer is the Al / Si element content of the outer layer when elemental analysis of an alkyl aluminoxane-supported silica carrier is performed. It becomes 65% or more of ratio (weight%), Preferably it is 90 to 150%. This means that the amount of aluminum penetrated deeply into the inner layer of the silica carrier is large.
  • the metallocene compound is a metallocene compound well known in the art of one or more of the following. ⁇ "Available.
  • the method for producing the supported metallocene catalyst includes the steps of preparing a silica carrier; Contacting the silica carrier with an alkylaluminoxane as a promoter component to support the alkylaluminoxane on the inside and the surface of the silica carrier; And sequentially supporting one or more metallocene compounds on the silica carrier on which the alkylaluminoxane is supported, wherein the alkali aluminoxane may be supported on the silica carrier by a split dosing method at different temperatures.
  • the preparation method of the supported metallocene catalyst is characterized in that, when preparing the supported metallocene catalyst, the promoter is divided into the silica carrier so that the promoter is distributed in a relatively large amount, and the temperature range is varied. have.
  • the supported metallocene catalyst has an outer layer comprising a point that, when the carrier catalyst particles are cut cross-sectionally, from each surface to a point that is one third of the total diameter of the particles, and a third point of the particles.
  • a silica carrier comprising an inner layer comprising the remainder from the inner to the inner center, wherein the alkyl aluminoxane is supported on the inside and the surface of the carrier;
  • the silica One or more metallocene compounds supported on the carrier, wherein the Al / Si element content ratio (weight%) of the inner layer is at least 65% of the Al / Si element content ratio (weight%) of the outer layer.
  • Metallocene catalysts can be provided.
  • a step of preparing a silica carrier is performed.
  • a silica carrier having a morphology suitable for the Philips loop slurry process can be selected.
  • the firing temperature of the silica can range from the temperature at which moisture disappears from the surface of the silica to the silver range from which the OH groups are completely removed from the surface.
  • the firing conditions of the silica carrier is preferably baked at a temperature of 100 to 700 ° C.
  • the water content of the silica carrier is preferably 0.1 to 7 weight 0 /.
  • the carrier may include 0.5 to 5 mmol / g of hydroxyl group, preferably () .7 to 2 mmol / g of hydroxyl group, on the surface of the carrier.
  • Such a carrier may be at least one member selected from the group consisting of silica, silica-alumina and silica-magnesia, preferably silica.
  • any carrier that satisfies the above water content range can be used without limitation.
  • the surface of the carrier may be surface treated with a small amount of trialkylaluminum to exhibit more enhanced activity.
  • the trialkylaluminum may be at least one selected from the group consisting of trimethylaluminum (TMA1), triethylaluminum (TEA1) and tributylaluminum (TBA1), preferably triethylaluminum (TEA1). have.
  • TMA1 trimethylaluminum
  • TEA1 triethylaluminum
  • TSA1 tributylaluminum
  • TEA1 triethylaluminum
  • the solvent includes aliphatic hydrocarbons such as nucleic acids, pentane and heptane; Aromatic hydrocarbons such as toluene and benzene; Hydrocarbons substituted with chlorine atoms such as dichloromethane; Ethers such as diethyl ether and tetrahydrofuran (THF); Most organic solvents such as acetone and ethyl acetate can be used.
  • a nucleic acid, heptane, toluene or dichloromethane may be used as the solvent.
  • the surface treatment step of the carrier may be carried out at a temperature condition of 0 to 120 ° C, preferably 10 to 100 ° C, more preferably 30 to 9 (C in terms of process efficiency improvement.
  • the amount of trialkylaluminum reacted on the surface of the carrier by the above step is not particularly limited, but in relation to the alkylaluminoxane described later, the molar ratio of alkylaluminoxane to trialkylaluminum is 1:10 to 1:20. , Preferably 1:12 to 1:18. That is, the molar ratio of alkylaluminoxane to trialkylaluminum is preferably 1: 10 or more, in order to be able to properly react with water on the surface of the carrier, and silanol groups on the surface of the carrier to react with alkylaluminoxane. In order not to be removed, the molar ratio is preferably 1:20 or less.
  • the additional surface treatment step of the carrier is added to the solvent and the carrier in the reactor, and then mixed, trialkylaluminum is added to react with stirring for 30 minutes to 3 hours in the above-described temperature range It can be done by the method.
  • the present invention is not limited thereto.
  • the method for preparing the supported metallocene catalyst includes contacting the silica carrier with alkylaluminoxane, which is a promoter component, to support the alkylaluminoxane on the silica carrier and the surface.
  • the method for preparing a supported metallocene catalyst according to one embodiment of the present invention is characterized by splitting the temperature while changing the temperature from high temperature to low temperature when the alkylaluminoxane is supported on a silica carrier.
  • the alkylaluminoxane is a primary at a high temperature of a part of the total charge It is added to the silica carrier by the divided addition method, which is added and the remaining content of the total amount is added at a low temperature secondly.
  • the high temperature may include a range of 50 ° C or more, preferably 50 to 150 ° C.
  • the low temperature may include a range of 40 ° C or less, or -10 to 40 ° C.
  • the alkylaluminoxane is divided into 5 parts of the total input amount in the first input in the silver of rc or more, and the second content in the second input in the silver content of 40 ° C or less. It can be supported on the silica carrier by the addition method.
  • the said alkyl aluminoxane silica carrier-supported, 50 ° C to amount of 50 to 90 parts by weight 0/0 of the total alkyl aluminoxane at 150 ° C of the present invention the silica support It can be obtained by a method of carrying out the first reaction by carrying out the first reaction, and supporting the remaining alkylaluminoxane at -KTC to 40 ° C with a second addition to the silica carrier to carry out the second reaction.
  • the contact a 'to obtain a silica in the above step and the co-catalyst component is an alkyl aluminoxane.
  • the contacting method according to an embodiment of the present invention by contacting the alkyl aluminoxane by dividing the alkyl aluminoxane in two parts as described above in the silica carrier, as described above, the alkylaluminoxane in a larger amount than the conventional It is allowed to penetrate, and also a considerable amount of alkylaluminoxane is supported on the surface.
  • the alkylaluminoxane is pore-filled into the silica carrier composed of the inner layer of the silica carrier supported on the inside and the surface and the outer layer surrounding it.
  • the method for preparing the supported metallocene catalyst in order to increase the content of the promoter in the silica, chemical attachment is superior, and the viscosity of the reactant is lowered to increase the pore inside the silica.
  • the promoter component is supported by physical adsorption on the silica surface. Therefore, according to one embodiment of the present invention, the walk density and the catalytic activity of the polymer can be adjusted according to the amount of alkylaluminoxane and the contact silver as well as the dosing method.
  • alkylaluminoxanes as described above. At least two or more split-injections are used at high and low temperatures.
  • the alkylaluminoxane may be divided into two inputs, and the first injection may be performed in a range of a minimum temperature of 50 ° C to a maximum temperature of 150 ° C.
  • the second addition in the range of -KTC to 40 ° C, the alkylaluminoxane is supported while being dividedly added to carry out post-reaction.
  • the alkyl aluminoxane is added to the first input when the first bearing and the second input during the remaining residual amount was added to 50 to 90 parts by weight 0/0 of the total amount of the alkyl aluminoxane is supported secondary.
  • the alkyl aluminoxane which is the cocatalyst
  • the aluminum alumina is excessively present on the surface of the carrier because the alkyl aluminoxane is unevenly supported on the carrier.
  • metallocene compounds with small molecules are uniformly supported inside and outside. Therefore, due to the batch of the alkylaluminoxane, the metallocene compound supported therein cannot be activated to reduce the total catalyst activity, and thus the polymerization by the catalyst activated only on the outside proceeds to lower the density. There is a problem.
  • alkyl aluminoxane (alkylaliminoxane) is a cocatalyst component to assist the activity of the metallocene compound to be described later.
  • the step may be carried out by mixing the carrier and the alkylaluminoxane in the presence or absence of a solvent and reacting with stirring.
  • the alkyl aluminoxane may be at least one selected from the group consisting of methyl aluminoxane, ethyl aluminoxane, butyl aluminoxane and isobutyl aluminoxane.
  • the amount of the alkylaluminoxane supported on the silica carrier by the above step may be 5 to 15 mmol / g based on the carrier lg. That is, within the supported amount range, by dividing at high temperature and low temperature to support the alkylaluminoxane on the silica carrier, the above-described linear reaction and post reaction of the alkylaluminoxane can be performed.
  • a solvent may be used to induce a smooth reaction reaction between the carrier and the alkylaluminoxane, or may be repeated without a solvent.
  • the solvent includes aliphatic hydrocarbons such as nucleic acids, pentane and heptane; Aromatic hydrocarbons such as toluene, benzene; Hydrocarbons substituted with chlorine atoms such as dichloromethane; Ethers such as diethyl ether and tetrahydrofuran (THF); Acetone, Most organic solvents such as ethyl acetate can be used.
  • nucleic acid, heptane, toluene or dichloromethane may be used as the solvent.
  • a silica carrier in which a larger amount of a promoter (alkylaluminoxane) penetrates into the silica carrier than before, and a considerable amount of a promoter (alkylaluminoxane) is bound to the outside of the silica carrier.
  • the method for producing a supported metallocene catalyst according to an embodiment of the present invention includes the step of supporting two or more metallocene compounds on the silica carrier on which the alkylaluminoxane is supported.
  • the catalyst is supported by sequentially supporting one or more metallocene catalysts on the silica carrier on which the alkylaluminoxane is supported, thereby interacting with the supported promoters according to the reaction conditions of the respective metallocene compounds. Allow this to be adjusted.
  • the supported metallocene catalyst prepared in this manner can be seen by controlling the depth profile in the carrier of the catalyst by SEM / EDS analysis, thereby controlling the amount of external support in the silica of the alkylaluminoxane.
  • the supported metallocene catalyst it is possible to greatly improve the productivity of polyolefin when the polyolefin is prepared using the improved density and catalytic activity.
  • the metallocene compound is a main moiety component capable of exhibiting activity as a catalyst together with the aforementioned alkylaluminoxane.
  • the step may be carried out by mixing the carrier and the metallocene compound in the presence of a solvent and reacting with stirring.
  • the amount of the metallocene compound supported on the silica carrier by the above step may be 0.01 to lmmol / g based on the carrier lg. That is, in consideration of the contribution effect of the catalyst activity by the metallocene compound, it is preferable to fall within the above-described supporting amount range.
  • the temperature condition in the supporting step of the metallocene compound is not particularly limited.
  • the metallocene compound may include 1) a metallocene compound comprising a combination of non-bridged Cp and Cp-based compounds, 2) Metallocene compound comprising a combination of Si bridge Cp and Cp system, 3) Metallocene compound comprising a combination of C bridge Cp and Cp system, 4) Si bridge Cp ( Si bridge Cp) and a metallocene compound comprising a combination of an amine, 5) a metallocene compound comprising a combination of an ethylene bridge Cp and a Cp system, 6) a phenylene bridge Cp ) And metallocene compounds containing a combination of amine-based, 7) a metallocene compound containing a CC, Si-C, or Si-Si bridge and the like can be used.
  • the Cp may be cyclopentadienyl, indenyl, fluorenyl, indenoindole (Mn), or the like, and the structure thereof is not limited.
  • the Si-based bridge t _ appendix when - may include haeksil substituents and the like structures, if it contains the structure-inden-tetrahydro- may include indene structure.
  • the metallocene compound of the present invention includes a low molecular metallocene compound (Cp-based) and a high molecular metallocene compound (eg, CGC type or ansa type).
  • the metallocene compound may be at least one selected from the group consisting of the following Chemical Formulas 1 to 5:
  • M 1 is a Group 4 transition metal
  • Cp 1 and Cp 2 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals One, they may be substituted with a hydrocarbon of 1 to 20 carbon atoms;
  • R a and R b are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 Alkenyl to C20, alkylaryl of C7 to C40, arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
  • Z 1 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene , Substituted or unsubstituted amino group, C2 Alkylalkoxy to C20, or arylalkoxy of C7 to C40;
  • n 1 or 0;
  • ⁇ 2 is a Group 4 transition metal
  • Cp 3 and Cp 4 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals They may be substituted with a hydrocarbon having 1 to 20 carbon atoms;
  • R c and R d are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 Alkenyl to C20, alkylaryl of C7 to C40, arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
  • Z 2 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene , A substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
  • B 1 cross-links the Cp 3 R c ring and the Cp 4 R d ring, or one Cp 4 R d ring
  • n 1 or 0;
  • M 3 is a Group 4 transition metal
  • Cp 5 is any one selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals, which may be substituted with hydrocarbons having 1 to 20 carbon atoms Can be;
  • R e is hydrogen, alkyl of C1 to C20, alkoxy of C1 to C10, alkoxyalkyl of C2 to C20, aryl of C6 to C20, aryloxy of C6 to C10, alkenyl of C2 to C20, alkylaryl of C7 to C40 C7-C40 arylalkyl, C8-C40 arylalkenyl, or C2-C10 alkynyl;
  • Z 3 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene Or a substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or ' C7 to C40 arylalkoxy;
  • B 2 is at least one or a combination of carbon, germanium, silicon, phosphorus or nitrogen atom containing radicals which crosslink the Cp 5 R e ring and J;
  • J is any one selected from the group consisting of NR f , O, PR f and S, wherein R f is C1 to C20 alkyl, aryl, substituted alkyl or substituted aryl,
  • R10 to R13 and R10 'to R13' are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, C7 An arylalkyl group of C20 to C20 or an amine group of C1 to C20, and two or more adjacent ones of R10 to R13 and R10 'to R13' may be connected to each other to form one or more aliphatic rings, aromatic rings, or hetero rings.
  • Z1 and Z2 are the same as or different from each other, and each independently hydrogen, C1 to
  • C20 alkyl group C3 to C20 cycloalkyl group, C1 to C20 alkoxy group, C6 to An aryl group of C20, an aryloxy group of C6 to C10, an alkenyl group of C2 to C20, an alkylaryl group of C7 to C40, or an arylalkyl group of C7 to C40;
  • Q is C1 to C20 alkylene group, C3 to C20 cycloalkylene group, C6 to C20 arylene group, C7 to C40 alkylarylene group, or C7 to C40 arylalkylene group;
  • M 2 is a Group 4 transition metal
  • X3 and X4 are the same as or different from each other, and each independently halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, nitro group, amido group, C1 to C20 alkylsilyl group, C1 To C20 alkoxy group, or C1 to C20 sulfonate group;
  • R 1 and R 2 are each independently hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, silyl having 6 to 20 carbon atoms, alkylaryl having 7 to 20 carbon atoms, and having 7 carbon atoms. Substituted with 20 to 20 arylalkyl or hydrocarbyl
  • R 1 and R 2 or two R 2 may be connected to each other by an alkylidine including alkyl having 1 to 20 carbon atoms or aryl having 6 to 20 carbon atoms to form a ring;
  • R 3 is each independently hydrogen, a halogen atom, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, alkylaryl having 7 to 20 carbon atoms, arylalkyl having 7 to 20 carbon atoms, and carbon atoms. Alkoxy of 1 to 20, aryloxy or amido of 6 to 20 carbon atoms; Two or more R 3 in the R 3 increase may be connected to each other to form an aliphatic ring or an aromatic ring;
  • CY 1 is a substituted or unsubstituted aliphatic or aromatic ring
  • Substituents substituted in CY 1 are a halogen atom, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, alkylaryl having 7 to 20 carbon atoms, arylalkyl having 7 to 20 carbon atoms, and 1 carbon atom.
  • two or more substituents in the substituents may be linked to each other to form an aliphatic or aromatic ring;
  • M is a Group 4 transition metal
  • Q 1 and Q 2 are each independently halogen, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, alkylaryl having 7 to 20 carbon atoms, arylalkyl having 7 to 20 carbon atoms, and carbon atoms.
  • the metallocene compound including a combination of the non-bridged Cp and the Cp-based may include the compound represented by Chemical Formula 1.
  • a metallocene compound comprising a combination of the Si bridge Cp and a Cp system and a metallocene compound including a combination of a C bridge Cp and a Cp system are represented by Formula 2 above. It may include a compound.
  • the metallocene compound including a combination of the Si bridge Cp and the amine may include a compound represented by Chemical Formula 3.
  • the metallocene compound including a combination of the ethylene bridge Cp and the Cp-based may include the compound represented by Chemical Formula 4.
  • hydrocarbyl as defined in Formula 5, is a monovalent group in a form in which hydrogen atoms are removed from hydrocarbons, and includes ethyl, phenyl, and the like.
  • the metalloid is a metalloid and an element showing intermediate properties between metal and nonmetal, and include arsenic, boron, silicon, tellurium, and the like.
  • specific examples of the compound represented by Chemical Formula 1 may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto.
  • specific examples of the compound represented by Chemical Formula 2 may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto.
  • specific examples of the compound represented by Chemical Formula 3 may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto.
  • Q in Formula 4 is an alkylene group of C1 to C20
  • Z1 and Z2 are each independently hydrogen, an alkyl group of C1 to C20 or an alkoxy group of C1 to C20
  • X3 and X4 are It may be a halogen, but is not limited thereto.
  • the compound represented by Formula 5 may include a compound represented by one of the following structural formula, but the present invention is not limited thereto.
  • Each R 7 is independently hydrogen or methyl; Q 5 and Q 6 may each independently be methyl, dimethylamido or chloride.
  • the metallocene compound represented by Chemical Formula 5 has a narrow Cp-MN structure due to the metal site being linked by a cyclopentadienyl ligand in which an amido group is linked to a phenylene bridge in a ring form.
  • the Q i ⁇ MQ 2 angle approaching can be kept wide.
  • preparation method of the supported metallocene catalyst may be performed by further including, in addition to the above-described steps, steps that may be conventionally performed in the art to which the present invention pertains before or after each step, The above-mentioned steps do not limit the polymerization process of the present invention.
  • one or more metallocene compounds when one or more metallocene compounds are used, one or more metallocene compounds may be sequentially supported on the silica carrier.
  • a borate-based The compound may be further supported. That is, the method may further include supporting a borate-based compound as a crab cocatalyst on a silica carrier on which an alkylaluminoxane and at least one metallocene compound are supported.
  • the carrier may be supported with an alkylaluminoxane as a first cocatalyst, a borate compound as a second cocatalyst, and at least one metallocene compound.
  • the second catalyst is included in the supported metallocene catalyst, the polymerization activity of the final prepared catalyst may be improved.
  • the second cocatalyst, the borate compound may include a borate compound in the form of a trisubstituted ammonium salt, a borate compound in the form of a dialkyl ammonium salt, or a borate compound in the form of a trisubstituted phosphonium salt.
  • Such a second catalyst include trimethylammonium tetraphenylborate, methyldioctadecylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate , Methyltetracyclooctadecylammonium tetraphenylborate, ⁇ , ⁇ -dimethylanilium tetraphenylborate, diethylanilium tetraphenylborate ,
  • ⁇ , ⁇ -dimethyl (2,4,6-trimethylaninynium) tetraphenylborate trimethylammonium tetrakis (pentafluorophenyl) borate, methylditetradecylammonium tetrakis (pentaphenyl) borate, methyldioctadecylammonium Tetrakis (pentafluorophenyl) borate, triethylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis (pentafluorophenyl) borate, tri ( ⁇ -butyl) ammonium tetrakis (pentafluorophenyl Brate,
  • the borate compound may be supported in an amount of 0.01 to 1 mmol / g based on the silica carrier lg.
  • the supporting order is not particularly limited.
  • the present invention can support the borate-based compound last on the silica carrier after supporting one or more metallocene compounds.
  • the present invention can optionally be carried out in the order of supporting b) alkyl aluminoxane on a silica carrier, then carrying a borate compound, followed by one or more metallocene compounds.
  • the ethylene-1-nuxene-1-butene terpolymer of the present invention can be prepared by copolymerizing ethylene, 1-nuxene, and 1-butene in the presence of the supported metallocene catalyst.
  • the method for preparing the ethylene-1-nuxene-1-butene terpolymer may include preparing the supported metallocene catalyst; And polymerizing reaction of ethylene, 1-nuxene, and 1-butene in the presence of the catalyst.
  • the supported metallocene catalyst may itself be used in the polymerization reaction.
  • the supported metallocene catalyst may be prepared and used as a prepolymerized catalyst by contacting with an olefinic monomer.
  • the supported metallocene catalyst may be separately contacted with an ethylene, 1-butene, or 1-nuxene monomer to prepare a prepolymerized catalyst. It can also manufacture and use.
  • the supported metallocene catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms (for example, pentane, nucleic acid, heptane, nonane, decane and isomer thereof), aromatic hydrocarbon solvent such as toluene, benzene, dichloromethane, Chlorine, such as chlorobenzene Dilution may be carried out by dilution with a hydrocarbon solvent substituted with an atom. At this time, it is preferable to use after removing a small amount of water or air which can act as a catalyst poison by adding a small amount of alkylaluminum to the solvent.
  • the polymerization reaction may be performed using one continuous slurry polymerization reactor, a loop slurry reaction vessel, or a gas reaction reactor.
  • the polymerization can be carried out by reacting at a temperature of about 25 to about 500 ° C and about 1 to about 100 kgf / cm 2 for about 1 to about 24 hours. Specifically, the polymerization may be carried out at a temperature of about 25 to about 500 ° C, preferably about 25 to about 200 ° C, more preferably about 50 to about 100 ° C.
  • the reaction pressure may also be carried out at about 1 to about 100 kgf / cm 2 , preferably at about 1 to about 50 kgf / cm 2 , more preferably at about 5 to about 40 kgf / cm 2 .
  • the ethylene-1-nuxene—1-butene terpolymer prepared according to the above method may be obtained as a terpolymer having the above-described physical properties while maintaining high activity ( equivalent or higher than the conventional one).
  • a film comprising the ethylene-1-nuxene-1-butene terpolymer.
  • the film has the above-described characteristics, that is, a CI (Co-monomer Incorporation) Index represented by the following Formula 1 is 0.5 to 5; Density is 0.900 to 0.916 g / cm 3 ; Melt flow index (Ml) measured at 190 ° C., 2.16 kg loading conditions in accordance with ASTM D1238; 2.0 to 5.0 g / 10 min; Ethylene-1'nucleene-1-butene terpolymer having a weight ratio of 1-nuxene to 1-butene in the range of 1 to 5, and prepared using the same.
  • CI Co-monomer Incorporation Index represented by the following Formula 1 is 0.5 to 5; Density is 0.900 to 0.916 g / cm 3 ; Melt flow index (Ml) measured at 190 ° C., 2.16 kg loading conditions in accordance with ASTM D1238; 2.0 to 5.0 g / 10 min; Ethylene-1'nucleene-1-buten
  • the film according to the present invention may be prepared according to a method of inflation molding a ethylene-1-nuxene-1-butene ternary copolymer peltiff into a single thickness extruder so as to have a constant thickness, but is not limited thereto. In the technology belonging It may be prepared according to the method commonly used.
  • the film of the present invention thus prepared has excellent fall-off layer strength and adhesion.
  • the film of the present invention has a fall fall strength measured by ASTM D 1709 [Method A] of 600 g or more, for example, about 600 to about 1,500 g, preferably about 700 to About 1,200 g.
  • the film may have an adhesive force of 7 or more, for example, about 7 to about 20, preferably about 7 to about 15, measured according to ASTM D 3330.
  • Silica manufactured by Grace Davision, product name: Sylopol 952 was prepared as a carrier, which was calcined at 100 ° C. for 30 minutes.
  • toluene and 10 g of the silica were dispersed in a glass reaction vessel, and a portion of methylaluminoxane (MAO) solution was added by dividing with a cocatalyst, and the shelf was stirred at 80 ° C. Then, at a low temperature, the remaining content of methylaluminoxane was added and then reacted. Subsequently, washing with a sufficient amount of toluene to remove unreacted methylaluminoxane (MAO supported amount: 5 mmol / g carrier (line reaction), 3 mmol carrier (post reaction)).
  • MAO supported amount 5 mmol / g carrier (line reaction), 3 mmol carrier (post reaction)
  • Toluene solution in which nyl) -titanium dichloride) was dissolved was added, and stirred at 40 ° C. for 1 hour to react. This was washed with a layered amount of toluene and dried under vacuum to obtain a solid powder yarn supported metallocene catalyst.
  • the amount of the metallocene compound supported is 0.1 mmol / g of the metallocene of Formula 1, 0.1 mmol / g of the metallocene of Formula 3, and the Al / Si content of the supported metallocene catalyst is
  • the inner layer had 29.5 weight 0 /.
  • the outer layer had 43.5 weight%. Comparative Production Example 1
  • Silica manufactured by Grace Davision, product name: Sylopol 948 was prepared as a carrier, which was calcined at 100 ° C. for 30 minutes.
  • bis (n-butylcyclopentadienyl) -zirconium dichloride (Bis (n-butylcyclopentadienyl) -zirconium dichloride) ° 1 is dissolved in a metallocene compound represented by Chemical Formula 1 on silica loaded with methylaluminoxane. The solution was added and stirred to react.
  • t-butoxynuxylmethylsilyl Nt-butylamido (2,3,4,5-tetramethylcyclopentadienyl) -titanium dichlorolay H (t-butoxyhexylmethylsilyl Toluene was dissolved by adding a solution of toluene containing (Nt-buthylamido) (2,3,4,5-tetramethylcyclopentadie nyl) -titanium dichloride). This was washed with a layered amount of toluene and dried in vacuo to obtain a supported metallocene catalyst as a solid powder.
  • the supported amount of the metallocene compound was 0.1 mmol / g-carrier of the metallocene of formula (1), and 0.1 mmol / ⁇ carrier of the metallocene of formula (3).
  • Example 2 The catalyst of Preparation Example 1 was added to a single loop slurry polymerization process and Linear low density polyethylene was prepared. 1-butene and 1-nuxene were used as comonomers.
  • Example 2 The catalyst of Preparation Example 1 was added to a single loop slurry polymerization process and Linear low density polyethylene was prepared. 1-butene and 1-nuxene were used as comonomers.
  • Example 2
  • Linear low density polyethylene was prepared in the same manner as 1.
  • a linear low density polyethylene was prepared in the same manner as in Example 1 except that the contents of comonomers 1-butene and 1-nuxene were changed.
  • Example 4
  • a linear low density polyethylene was prepared in the same manner as in Example 1 except that the contents of comonomers 1-butene and 1-nuxene were changed. Comparative Example 1
  • MI Melt Index
  • Weight average molecular weight and molecular weight distribution The number average molecular weight, the weight 'average molecular weight, and the Z average molecular weight were measured using a measurement temperature of 160 ° C. and gel permeation chromatography-FTIA (GPC-FTIR). Molecular weight distribution was shown by the ratio of a weight average molecular weight and a number average molecular weight.
  • Falling layer striking strength 20 drops or more per film sample based on ASTM D 1709 [Method A] was measured to determine the fall impact strength.
  • Adhesive force was obtained by measuring 10 times or more per film sample based on ASTM D 3330.
  • the high molecular weight side SCB content and the low molecular weight side SCB content mean SCB content values at the right and left boundary of 60% range, respectively, and the sample contains BHT 0.0125% using PL-SP260.
  • the sample contains BHT 0.0125% using PL-SP260.
  • Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comonomer 1 -Butene 2.7 2.7 2.9 3.2
  • Examples 1 to 4 of the present invention showed a low density while including 1-nuxene and 1-butene as a comonomer in a constant weight ratio, showing high fall impact strength and adhesion. Therefore, it can be usefully used for applications such as stretch films requiring such physical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 에틸렌—1—핵센— 1—부텐 3원 공중합체 및 이를 포함하는 필름에 관한 것이다. 본 발명에 따른 에틸렌—1—핵센 -1-부텐 3원 공중합체는 최적화된 범위의 밀도, 용융 지수를 가지며, 공단량체로 1-핵센 및 1-부텐을 포함하며, 상기 공단량체간의 함량 비율을 일정 범위로 조절함으로써, 물성이 우수한 고분자를 제공할 수 있다. 따라서, 이를 이용하여 제조되는 필름은, 특히 스트레치 필름 (stretch film)에 적합하도록 우수한 점착성, 가공성 및 낙추 충격 강도 (dart impact strength) 특성을 지녀 유용하게 사용가능하다.

Description

【명세서】
【발명의 명칭】
에틸렌 -1-핵센 -1-부텐 3원 공중합체 및 이를 포함하는 필름
【관련 출원 (들)과의 상호 인용】
본 출원은 2014년 7월 18일자 한국 특허 출원 제 10-2014-0091055호 및
2015년 7월 16일자 한국 특허 출원 제 10-2015-0100965호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
【기술분야]
본 발명은 에틸렌 -1-핵센 -1-부텐 3원 공증합체 및 이를 포함하는 필름에 관한 것이다. 보다, 상세하게는, 점착성 및 낙추 층격 강도 특성 등 제반 물성이 우수하여 스트레치 필름에 적합한 에틸렌 -1-핵센 -1-부텐 3원 공중합체 및 이를 포함하는 필름에 관한 것이다.
【배경기술】
일반적으로 고분자 필름은 두께가 0.25 mm(l/100 inch) 이하의 비섬유형 평판상의 플라스틱 성형물을 말한다. 고분자는 가볍고 차단성이 좋으며 투명성도 뛰어나고 가격도 상대적으로 저렴하여 포장재, 생활용품, 자동차, 전자기기, 항공기 등 거의 모든 분야에서 사용되고 있으며 가공이 용이하여 필름으로 만들기 쉽다. 국내외에서 폴리에틸렌, 폴리프로필렌, 폴리염화비닐, 폴리에틸렌테레프탈레이트 등의 합성 고분자가 개발되어 고분자 필름으로서 널리 사용되고 있으며, 현재는 수많은 합성 고분자를 단독으로 또는 블렌딩하여 필름용 재료로 이용하고 있다.
특히 폴리에틸렌 (PE)의 경우는 밀도와 공중합, 분지 종류에 따라 저밀도 폴리에틸렌, 고밀도 폴리에틸렌, 선형저밀도 폴리에틸렌으로 나누며, 최근에 상용화가 진행된 메탈로센 촉매계에서도 다양한 폴리에틸렌 제품들이 나오고 있다.
저밀도 폴리에틸렌은 1933년 ICI사에서 합성에 성공한 후, 뛰어난 전기적 성질이 주목되어 군사용 레이더의 절연재료로서 사용되다가 각종 포장재를 중심으로 용도가 확대된 범용수지 중의 하나이다. 주요 용도로는 일반 포장용, 농업용, 수축필름용, 종이코팅용 등이 있으며, 특히 장쇄 분지를 가지고 있어 용융장력이 뛰어나 코팅 용도에 적합하다.
선형 저밀도 폴리에틸렌은 중합촉매를 사용하여 저압에서 에틸렌과 알파 올레핀을 공중합하여 제조되어, 분자량 분포가 좁고 일정한 길이의 단쇄분지를 가지며, 장쇄분지가 없는 수지이다. 선형 저밀도 폴리에틸렌 필름은 일반 플리에틸렌의 특성과 더불어 파단강도와 신율이 높고, 인열강도, 낙추층격강도 등이 우수하여 기존의 저밀도 폴리에틸렌이나 고밀도 폴리에틸렌의 적용이 어려운 스트레치 필름, 오버랩 필름 등에의 사용이 증가하고 있다.
이러한 선형 저밀도 폴리에틸렌에 있어, 필름의 중요 요구 물성인 파단강도, 인열강도, 낙추층격강도 등은 공단량체로 사용되는 알파 을레핀의 영향이 크며, 사용되는 알파 을레핀으로는 1-부텐, 1-핵센, 1-옥텐 등이 있다.
일반적으로 선형 저밀도 폴리에틸렌 필름의 물성은 1-옥텐을 사용하였을 경우 우수하다고 알려져 있으나, 1-옥텐 공단량체의 가격이 비싸 경제적인 측면에서는 불리하다. 한편, 점착력이 요구되는 스트레치 필름의 경우 상당히 저밀도의 폴리에틸렌을 사용할 것이 요구된다. 한편, 일반적인 폴리에틸렌의 중합 공정 중의 하나인 슬러리 루프 (slurry loop) 공정은 공단량체로 1-부텐을 사용하는 것이 낮은 밀도의 폴리에틸렌을 얻는데 가장 유리하다고 알려져 있다. 하지만 1-부텐의 경우 다른 공단량체에 비하여 물성이 떨어져 1-부텐 외에 다른 공단량체를 이용하여 밀도가 낮은 저밀도 선형 폴리에틸렌 제품을 제조하는 것을 산업적으로 많은 요구가 있는 기술이다.
따라서, 이러한 배경에서 제반 물성과 경제성 간의 균형이 이루어진 보다 우수한 제품의 제조가 끊임없이 요구되고 있으며 이에 대한 개선이 더욱 필요한 상태이다.
【발명의 내용】
【해결하고자 하는 과제】
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로, 우수한 물성 밸런스를 갖는 에틸렌 -1-핵센 -1-부텐 3원 공중합체를 제공하는 것이다. '
본 발명의 또 다른 목적은 상기 에틸렌ᅳ1-핵센 -1-부텐 3원 공중합체를 포함하는 필름을 제공하는 것이다.
【과제의 해결 수단】 상기 목적을 달성하기 위한 본 발명의 일 측면은, CI(C0-mon0mer Incorporation) Index가 0.5 내지 5이고; 밀도가 0.900 내지 0.916 g/cm3 이고; ASTM D1238에 따라 190 °C , 2.16 kg 하중 조건에서 측정한 용융 흐름 지수 (Ml)가 2.0 내지 5.0 g/10분이며; 1-부텐에 대한 1-핵센의 중량비가 1 내지 5인 에틸렌 -1-핵센 -1-부텐 3원 공중합체를 제공한다.
상기 목적을 달성하기 위한 본 발명의 두 번째 측면은, 상기 에틸렌 -1-핵센 -1_부텐 3원 공중합체를 포함하는 필름을 제공한다.
【발명의 효과】
본 발명에 따른 에틸렌 -1-핵센 -1ᅳ부텐 3원 공중합체는 최적화된 범위의 CI Index, 밀도, 용융 지수를 가지며, 공단량체로 1-핵센 및 1-부텐을 포함하며, 상기 공단량체간의 함량 비율을 일정 범위로 조절함으로써, .저밀도아면서 물성이 우수한 고분자를 제공할 수 있다. 따라서, 이를 이용하여 제조되는 필름은, 특히 스트레치 필름 (stretch film)에 적합하도록 우수한 점착성, 가공성 및 낙추 충격 강도 (dart impact strength) 특성을 지녀 유용하게 사용가능하다.
【도면의 간단한 설명】
도 1은 분자량 분포곡선을 이용한 CI Index의 측정방법의 일 예를 나타내는 그래프이다.
【발명을 실시하기 위한 구체적인 내용】
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 본 발명을 더욱 구체적으로 설명한다.
본 발명의 일 측면은, 하기 식 1로 표시되는 CI(Co-monomer Incorporation)
Index가 0.5 내지 5이고; ¾도가 0.900 내지 0.916 g/cm3 이고; ASTM D1238에 따라 190 °C, 2.16 kg 하중 조건에서 측정한 용융 흐름 지수 (Ml)가 2.0 내지 5.0 g/10분이며; 1-부텐에 대한 1-핵센의 중량비가 1 내지 5인 에틸렌 -1-핵센 -1-부텐 3원 공중합체를 제공한다:
[식 1] (고분자량쪽 SCB함량-저분자량쪽 SCB함 ST)
Q Index = — —
(저분자¾촉5(:8 ¾량)
본 발명의 에틸렌 -1-핵센 -1-부텐 3원 중합체는 상기 식 1로 계산되는 CI(Co-monomer Incorporation) Index가 약 0.5 내지 약 5, 또는 약 1.0 내지 약 5, 또는 약 1.5 내지 약 5일 수 있다.
본 명세서에서 사용되는 CI 구조란, 알파 을레핀과 같은 공단량체의 함량이 고분자량 주쇄에 집중되어 있는 구조, 즉, 짧은 사슬 가지 (Short Chain Branch, SCB) 함량이 고분자량 쪽으로 갈수록 많아지는 새로운 구조를 의미한다.
CI Index는 GPC-FTIR 장치를 이용하여 분자량, 분자량 분포 및 SCB 함량을 동시에 연속적으로 측정할 수 있으며, 분자량 (M)의 로그값 (log M)을 X축으로 하고, 상기 로.그값에 대한 분자량 분포 (dwt/dlog M)를 y축으로 하여 분자량 분포 곡선을 그렸을 때, 전체 면적 대비 좌우 끝 20%를 제외한 가운데 60%의 좌측 및 우측 경계에서 SCB(Short Chain Branch) 함량 (탄소 1,000 개당의 탄소수 2 내지 7개의 곁가지 (branch) 함량, 단위: 개 /1,000C)을 측정하여 하기 식 1로 그 값을 계산하여 구할 수 있다. 이 때, 고분자량쪽 SCB 함량과, 저분자량쪽 SCB 함량은 좌우 끝 20%를 제외한 가운데 60% 범위에서 각각 우측 경계 및 및 좌측의 경계에서의 SCB 함량값을 의미한다.
이러한 CI Index의 측정방법의 일 예는 도 1에 도시된 바와 같다.
[식 1]
(고분자량쪽 SC&항량 -저분자량쪽 SCB함량)
Q Index =—— — ——
(저분자 i쪽 see함량 }
이 때, CI Index가 0 이하인 경우 CI 구조의 고분자가 아니고, 0 보다 큰 경우 CI 구조의 고분자라고 볼 수 있는데, 그 값이 클수록 CI 특성이 우수한 것으로 평가할 수 있다.
본 발명에 따른 3원 공중합체는 에틸렌과 함께, 공단량체로 1-핵센 및
1-부텐을 모두 포함한다.
상기 공단량체 중, 1-부텐에 대한 1-핵센의 중량비는 약 1 내지 약 5이며, 바람직하게는 약 1.5 내지 약 3.5, 보다 바람직하게는 약 2.0 내지 약 3.5일 수 있다.
또한, 본 발명의 일 실시예예 따르면, 상기 에틸렌 -1-핵센 -1-부텐 3원 공중합체의 총 중량에 대한 상기 1-부텐 및 1-핵센의 함량이 약 5 내지 약 15 중량0 /0이며, 바람직하게는 약 8 내지 약 13 중량 %일 수 있다.
1-부텐에 대한 1-핵센의 총 함량 및 증량비가 상기 범위일 경우, 다른 물성의 저하없이 공중합체의 밀도를 낮추어 저밀도 폴리에틸렌을 얻을 수 있으며, 약 8 kgf/mm 이상의 우수한 점착력을 구현할 수 있다.
본 발명에 따른 3원 공중합체는 밀도가 약 0.900 내지 약 0.916 g/cm3, 바람직하게는 약 0.900 내지 약 0.915 g/cm3, 보다 바람직하게는 약 0.905 내지 약 0.915 g/cm3인 범위를 갖는다. 상기 에틸렌 -1-핵센 -1-부텐 3원 공중합체의 밀도가 상기 범위일 때, 우수한 점착력 및 낙추 층격 강도를 나타낼 수 있다.
일반적으로 폴리올레핀의 밀도는 알파 을레핀 공단량체 사용량의 영향을 받는다. 즉, 알파 을레핀 공단량체의 사용량이 많으면 밀도가 낮아지고, 알파 올레핀 공단량체 사용량이 적으면 밀도가 높아진다. 그러나, 단일 공단량체의 사용량만으로 밀도를 비롯하여, 스트레치 필름에 적합한 제반 물성을 구현하는 것은 쉽지 않다.
이에, 본 발명은, 알파 을레핀 공단량체로 1-핵센 및 1-부텐을 포함하는
3원 공중합체를 제공하며, 상기 1-핵센 및 1-부텐의 함량 및 각각의 상대적인 중량비를 상술한 바와 같이 최적화함으로써, 저밀도, 우수한 가공성, 점착력 및 낙추 충격 강도 등 필름에 적합한 물성을 구현하였다.
또한, 본 발명에 따른 에틸렌 -1-핵센 -1-부텐 3원 공중합체의 190°C, 2.16 kg 하중 조건에서의 용융 흐름 지수 (Ml)는 약 2.0 내지 약 5.0 g/10분이며, 바람직하게는 약 2.5 내지 약 4.5 g/10분, 보다 바람직하게는 약 2.5 내지 약 3.5 g/10분일 수 있다. 용융 흐름 지수가 상기 범위인 경우 성형 가공성과 기계적 물성을 조화시킬 수 있는 최적점으로서 바람직할 수 있다.
본 발명의 일 실시예예 따르면, 본 발명의 3원 공중합체의 중량 평균 분자량은 약 50,000 내지 약 150,000 g/mol, 바람직하게는 약 60,000 내지 약 120,000 g/mol, 보다 바람직하게는 약 60,000 내지 약 100,000 g/md일 수 있으나, 이에만 한정되는 것은 아니다.
또한 본 발명의 일 실시예예 따르면, 본 발명의 3원 공중합체의 분자량 분포 (중량 평균 분자량 /수 평균 분자량)가 약 1.5 내지 약 5, 바람직하게는 약 2.5 내지 약 4, 보다 바람직하게는 약 2.5 내지 약 3.5일 수 있으나, 이에만 한정되는 것은 아니다.
본 발명에 따른 에틸렌 -1-핵센 -1-부텐 3원 공중합체는, 저밀도, 우수한 가공성, 점착력 및 낙추 층격 강도 등 필름 용도에 적절하며, 특히 스트레치 필름을 생산하는데 유용하게 사용할 수 있다.
본 발명에 따른 3원 공중합체는 예를 들어 하기에 기술된 제조방법에 따라 제조될 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 따르면, 상기 에틸렌 -1-핵센 -1-부텐 3원 공중합체는 담지 메탈로센 촉매의 존재 하에 제조될 수 있다. 보다 구체적으로, 담체 촉매 입자를 횡단면으로 잘랐을 때, 각 표면으로부터 중심부쪽으로 입자의 전체 지름의 1/3이 되는 지점까지를 포함하는 외부층, 및 상기 입자의 1/3 지점으로부터 내부 중심까지의 나머지 부분을 포함하는 내부층으로 이루어지고, 알킬알루미녹산이 담체의 내부 및 표면에 담지된 실리카 담체와; 상기 실리카 담체에 담지된 1종 이상의 메탈로센 화합물을 포함하며, 상기 내부층의 Al/Si 원소 함량비 (중량 %)가 상기 외부층의 Al/Si 원소 함량비 (중량 %)의 65% 이상인, 담지 메탈로센 촉매의 존재 하에, 에틸렌 , 1-핵센, 및 1-부텐을 공중합함으로써 제조될 수 있다.
본 발명의 명세서에서 담지 촉매 입자는 조촉매인 알킬알루미녹산이 담지된 실리카 담체를 포함한다ᅳ 또한, 이러한 담지 촉매 입자를 횡단면으로 잘랐을 때, 각 표면으로부터 중심부쪽으로 입자의 전체 지름의 1/3이 되는 지점까지를 포함하는 부분을 외부층으로 정의하고, 상기 입자의 1/3지점으로부터 내부 중심까지의 나머지 부분, 즉 나머지 내부 중심의 2/3를 포함하는 부분을 내부층으로 정의한다. 따라서, 상기 내부층은 담지 메탈로센 촉매에서 실리카 담체의 중심으로부터, 최장 반경의 70% 안쪽에 있는 부분을 포함하고, 외부층은 실리카 담체의 나머지 외각 부분을 포함한다.
또한 본 발명에서 언급하는 실리카 담체의 내부는 기공을 포함한다.
또한, 본 명세서 전체에서 명시적인 언급이 없는 한, 담체의 '함수율'이라 함은 담체의 전체 중량에 대하여 담체 내에 포함되어 있는 수분의 중량을 백분율로 나타낸 것으로 정의한다.
또한, 본 발명에서 상기 담지 메탈로센 촉매는 1종 이상의 메탈로센 화합물이 담지되는 촉매를 의미한다. 그리고, 본 발명의 담지 메탈로센 촉매는 보레이트계 화합물을 제 2조촉매로 더 포함할 수 있다. 상기 담지 메탈로센 촉매는, 실리카 담체의 내부 및 기공에 전체적으로 기존보다 많은 양의 알킬알루미녹산이 침투하여 화학적 결합되어 있고, 표면에도 상당량의 알킬알루미녹산이 물리적 결합되어 있는 특징이 있다. 즉, 가존에는 담체 내부에 침투하여 화학적 결합이 되어 있는 알킬알루미녹산이 작다. 하지만, 상기 담지 메탈로센 촉매는 종래보다 내부층에 조촉매가 더 담지되도록 하는 것이다. 따라서, 상기 담지 메탈로센 촉매는 내부층 및 외부층으로 이루어진 구성에서 내부층에 많은 양의 알킬알루미녹산이 포함되어 있고, 이에 따라 기존 대비 겉보기 밀도를 향상시키고 촉매 활성 조절이 용이하다.
이러한 특징을 갖는 상기 담지 메탈로센 촉매는, 알킬알루미녹산이 담지된 실리카 담체를 원소 분석하였을 때, 상기 내부층의 Al/Si 원소 함량비 (중량%)가 상기 외부층의 Al/Si 원소 함량비 (중량 %)의 65% 이상이 되고, 바람직하게는 90 내지 150%가 된다. 이는 알킬알루미녹산의 알루미늄이 실리카 담체의 내부층부까지 깊게 침투한 양이 많음을 의미한다.
상기 메탈로센 화합물은 후술하는 1종 이상의 이 분야에 잘 알려진 메탈로센 화합물을. ^ "용할 수 있다.
이러한 상기 담지 메탈로센 촉매의 제조방법은, 실리카 담체를 준비하는 단계; 상기 실리카 담체를 조촉매 성분인 알킬알루미녹산과 접촉시켜 실리카 담체의 내부 및 표면에 알킬알루미녹산을 담지시키는 단계; 및 상기 알킬알루미녹산이 담지된 실리카 담체에 1종 이상의 메탈로센 화합물을 순차적으로 담지시키는 단계를 포함하며, 상기 알칼알루미녹산은 서로 다른 온도에서 분할 투입 방법에 의해 실리카 담체에 담지될 수 있다.
즉, 상기 담지 메탈로센 촉매의 제조방법은 담지 메탈로센 촉매 제조시, 실리카 담체에 조촉매가 내부에 상대적으로 많이 분포되도록 조촉매를 분할 투입하되, 온도 범위를 다르게 하여 투입하는데에 특징이 있다.
이러한 방법에 따라, 담체에서 Al/Si의 함량에 대하여 특정 파라미터를 갖는 담지 메탈로센 촉매를 제공할 수 있다. 바람직하게, 상기 담지 메탈로센 촉매는 담체 촉매 입자를 횡단면으로 잘랐을 때, 각 표면으로부터 중심부쪽으로 입자의 전체 지름의 1/3이 되는 지점까지를 포함하는 외부층, 및 상기 입자의 1/3 지점으로부터 내부 중심까지의 나머지 부분을 포함하는 내부층으로 이루어지고, 알킬알루미녹산이 담체의 내부 및 표면에 담지된 실리카 담체와; 상기 실리카 담체에 담지된 1종 이상의 메탈로센 화합물을 포함하며, 상기 내부층의 Al/Si 원소 함량비 (중량 %)가 상기 외부층의 Al/Si 원소 함량비 (중량 %)의 65% 이상인, 담지 메탈로센 촉매를 제공할 수 있다.
이하, 상기 방법에 포함될 수 있는 각 단계에 대하여 보다 상세히 설명한다.
먼저, 실리카 담체를 준비하는 단계를 진행한다. 일 구현예에 따르면, 필립스 루프 슬러리 공정에 적합한 몰폴로지를 가지는 실리카 담체를 선택할 수 있다. 소성 (calcinations) 조건을 통해 선택적으로 실리카 담체의 실란을기 및 실록산기 양을 조절함으로써 담지되는 메탈로센 촉매 및 조촉매인 알킬알루미녹산의 결합을 최적화한다.
또한, 상기 실리카의 OH기의 화학적 결합과 조촉매 (예를 들면, MAO)의 고은에서의 점도 저하로 내부까지 침투 후 화학 반웅이 진행되게 한 후, 실리카 표면에서 물리적 흡착이 이루어지도록 하기 위해, 실리카의 소성 온도는 실리카의 표면에서 수분이 없어지는 온도에서부터 그 표면에서 OH기가 완전히 없어지는 은도 범위까지 진행 가능하다. 바람직한 일 구현예에 따른, 상기 실리카 담체의 소성 조건은 100 내지 700°C의 온도에서 소성하는 것이 바람직하다. 상기 소성을 통해, 실리카 담체의 함수율은 0.1 내지 7 중량0 /。가 되는 것이 바람직하다.
또한, 상기 담체는 전술한 범위의 함수율을 나타냄에 따라, 담체의 표면에 0.5 내지 5 mmol/g의 하이드록시기, 바람직하게 ().7 내지 2 mmol/g의 하이드록시기를 포함할 수 있다.
이와 같은 담체는 실리카, 실리카-알루미나 및 실리카-마그네시아로 이루어진 군에서 선택되는 1 종 이상일 수 있으며, 바람직하게는 실리카일 수 있다. 이 밖에도, 상기 함수율 범위를 만족하는 담체라면 그 구성에 제한없이 사용할 수 있다.
또한, 필요에 따라, 상기 담체의 표면을 소량의 트리알킬알루미늄으로 표면 처리함으로써, 보다 향상된 활성을 나타낼 수 있다.
상기 트리알킬알루미늄 (trialkylaluminum)은 트리메틸알루미늄 (TMA1), 트리에틸알루미늄 (TEA1) 및 트리부틸알루미늄 (TBA1)으로 이루어진 군에서 선택되는 1 종 이상일 수 있으며, 바람직하게는 트리에틸알루미늄 (TEA1)일 수 있다. 또한, 상기 담체의 표면 처리 단계는 담체와 트리알킬알투미늄의 원활한 접촉반웅을 유도하기 위하여 용매가 사용될 수 있으며, 용매 없이 반웅시킬 수도 있다.
상기 용매로는 핵산, 펜탄, 헵탄과 같은 지방족 탄화수소; 를루엔, 벤젠과 같은 방향상 탄화수소; 디클로로메탄과 같은 염소원자로 치환된 탄화수소; 디에틸에테르, 테트라하이드로퓨란 (THF)과 같은 에테르계; 아세톤, 에틸아세테이트 등 대부분의 유기용매를 사용할 수 있다. 바람직하게는, 상기 용매로 핵산, 헵탄, 를루엔 또는 디클로로메탄을 사용할 수 있다. 또한, 상기 담체의 표면 처리 단계는 공정 효율 향상의 측면에서 0 내지 120 °C, 바람직하게는 10 내지 100°C , 보다 바람직하게는 30 내지 9( C의 온도 조건에서 수행될 수 있다.
또한, 상기 단계에 의해 담체의 표면에 반응한 트리알킬알루미늄의 양은 특별히 제한되지 않으나, 후술할 알킬알루미녹산과의 관계에서, 트리알킬알루미늄에 대한 알킬알루미녹산의 몰비는 1 :10 내지 1 :20, 바람직하게는 1 :12 내지 1 :18이 되도록 수행할 수 있다. 즉, 담체 표면의 수분과 적절하게 반웅할 수 있도톡 하기 위하여 트리알킬알루미늄에 대한 알킬알루미녹산의 몰비는 1 :10 이상인 것이 바람직하고, 알킬알루미녹산과 반웅하는 담체 표면의 실라놀기 (silanol group)가 제거되지 않도록 하기 위하여 상기 몰비는 1:20 이하인 것이 바람직하다.
본 발명의 일 구현예에 따르면, 상기 담체의 추가적인 표면 처리 단계는 반응기에 용매 및 담체를 첨가하고 흔합한 후, 트리알킬알루미늄을 첨가하여 전술한 온도 범위에서 30 분 내지 3 시간 동안 교반하면서 반웅시키는 방법으로 수행할 수 있다. 다만, 본 발명을 이로 한정하는 것은 아니다.
한편, 상기 담지 메탈로센 촉매의 제조 방법은, 상기 실리카 담체를 조촉매 성분인 알킬알루미녹산과 접촉시켜 실리카 담체 및 표면에 알킬알루미녹산을 담지시키는 단계를 포함한다.
특히, 본 발명의 일 실시예에 따른 담지 메탈로센 촉매의 제조방법은 알킬알루미녹산을 실리카 담체에 담지시 고온에서 저온으로 온도를 변경하면서, 분할 투입하는 특징이 있다.
즉, 상기 알킬알루미녹산은 전체 투입량 중의 일부를 고온에서 1차 투입하고, 전체 투입량 중의 나머지 함량을 저온에서 2차 투입하는, 분할 투입방법에 의해 실리카 담체에 담지된다. 상기 고온은 50 °C 이상, 바람직하게 50 내지 150°C의 범위를 포함할 수 있고, 저온은 40 °C 이하, 혹은 -10 내지 40°C의 범위를 포함할 수 있다.
따라서, 본 발명의 일 구현예에 따라, 상기 알킬알루미녹산은 전체 투입량 중의 일부를 5(rc 이상의 은도에서 1차 투입하고, 전체 투입량 중의 나머지 함량을 40°C 이하의 은도에서 2차 투입하는 분할 투입방법에 의해 실리카 담체에 담지할 수 있다.
또한, 본 발명의 가장 바람직한 일 구현예에 따라, 상기 알킬알루미녹산이 담지된 실리카 담체는, 50°C 내지 150°C에서 전체 알킬알루미녹산의 투입량의 50 내지 90 중량0 /0를 실리카 담체에 1차 담지하여 선반응을 진행하고, -KTC 내지 40°C에서 나머지의 알킬알루미녹산을 실리카 담체에 2차 투입하면서 담지하여 후반웅을 진행하는 방법으로 얻어질 수 있다.
보다 구체적으로 설명하면, 상기 단계에서 '수득한 실리카를 조촉매 성분인 알킬알루미녹산과 접촉한다. 이때, 본 발명의 일 실시예에 따른 접촉방법은 상기와 같이 알킬알루미녹산을 2차에 걸쳐 실리카 담체에 분할 투입하여 접촉함으로써, 상술한 바와 같이 실리카 담체의 내부에 기존보다 많은 양의 알킬알루미녹산이 침투되도록 하고, 또한 표면에도 상당량의 알킬알루미녹산이 담지되도록 한다. 이러한 방법에 따라, 알킬알루미녹산이 내부 및 표면에 담지된 실리카 담체의 내부층과 이를 둘러싼 외부층으로 이루어진 실리카 담체를 체공하게 된다.
본 발명의 일 실시예에 따른 상기 담지 메탈로센 촉매의 제조방법에서는, 실리카 내부에 조촉매 함유량을 증가시키기 위해, 화학적 결합 (chemical attachment)이 우세하고, 반응물의 점도를 낮추어 실리카의 내부의 기공까지 확산이 용이한 조건인 고온에서 알킬알루미녹산과 실리카 담체를 미리 접촉하고, 저온에서 추가적으로 알킬알루미녹산을 접촉시킴으로써 실리카 표면에서 물리적 흡착 (physical adsorption)으로 조촉매 성분이 담지되게 하는 특징이 있다. 따라서, 본 발명의 일 실시예에 따르면, 알킬알루미녹산 양과 접촉 은도뿐 아니라 투입 방법에 따라 중합체의 걸보기 밀도와 촉매 활성을 조절할 수 있다.
이러한 알킬알루미녹산의 담지 조건은, 상술한 바대로, 알킬알루미녹산을 적어도 두 번 이상 고온 및 저은에서 분할투입하는 방법을 사용한다. 예를 들어, 알킬알루미녹산은 두번 분할 투입될 수 있고, 상기 1차 투입시는 최저온도 최저온도 50°C에서 최고온도 150°C의 범위에서 선반웅을 진행할 수 있다. 또한, 2차 투입시는 -KTC 내지 40°C의 범위에서, 알킬알루미녹산을 분할 투입하면서 담지하여 후반응을 진행한다. 또한 상기 알킬알루미녹산은 1차 투입시 전체 알킬알루미녹산의 투입량의 50 내지 90 중량0 /0를 가하여 1차 담지하고, 2차 투입시 나머지 잔량을 가하여 2차 담지한다.
이때, 상기 조촉매인 알킬알투미녹산이 분할 투입되지 않고 한꺼번에 투입되면, 담지체에 알킬알루미녹산이 불균일하게 담지되어 담체 표면에는 과다하게 알루미늄이 존재하게 된다. 반면, 분자의 크기가 작은 메탈로센 화합물은 내외부에서 균일하게 담지되어 있다. 따라서, 상기 알킬알루미녹산이 일괄 투입됨으로 인해, 내부에 담지된 메탈로센 화합물은 활성화되지 못하여 전체 촉매 활성이 감소하고, 이에 따라 외부에만 활성화된 촉매에 의한 중합이 진행되어 걸보기 밀도가 낮아지는 문제점이 있다.
한편, 상기 알킬알루미녹산 (alkylaliminoxane)은 후술할 메탈로센 화합물의 활성을 보조하는 조촉매 성분이다.
상기 단계는 용매의 존재 또는 부재 하에 상기 담체와 알킬알루미녹산을 흔합하여 교반하면서 반웅시키는 방법으로 수행할 수 있다.
여기서, 상기 알킬알루미녹산은 메틸알루미녹산, 에틸알루미녹산, 부틸알루미녹산 및 이소부틸알루미녹산으로 이루어진 군에서 선택되는 1 종 이상일 수 있다.
상기 단계에 의해 실리카 담체에 담지되는 알킬알루미녹산의 담지량은 담체 lg을 기준으로 5 내지 15 mmol/g일 수 있다. 즉, 상기 담지량 범위 내에서, 고온 및 저온에서 분할하여 알킬알루미녹산을 실리카 담체에 담지시킴으로써, 상술한 알킬알루미녹산의 선반응 및 후반웅을 진행할 수 있다.
이때, 상기 단계는 담체와 알킬알루미녹산의 원활한 접촉반웅을 유도하기 위하여 용매가사용될 수 있으며, 용매 없이 반웅시킬 수도 있다.
상기 용매로는 핵산, 펜탄, 헵탄과 같은 지방족 탄화수소; 를루엔, 벤젠과 같은 방향상 탄화수소; 디클로로메탄과 같은 염소원자로 치환된 탄화수소; 디에틸에테르, 테트라하이드로퓨란 (THF)과 같은 에테르계; 아세톤, 에틸아세테이트 등 대부분의 유기용매를 사용할 수 있다. 바람직하게는, 상기 용매로 핵산, 헵탄, 를루엔 또는 디클로로메탄을 사용할 수 있다.
이러한 과정으로, 실리카 담체의 내부에 기존보다 많은 양의 조촉매 (알킬알루미녹산)가 침투되어 있고, 그 외부에도 상당량의 조촉매 (알킬알루미녹산)가 결합된 실리카 담체를 제공할 수 있다.
한편, 본 발명의 일 실시예에 따른 담지 메탈로센 촉매의 제조방법은, 상기 알킬알루미녹산이 담지된 실리카 담체에 2종 이상의 메탈로센 화합물을 담지시키는 단계를 포함한다.
본 발명은 상기 방법으로 알킬알루미녹산이 담지된 실리카 담체에 1종 이상의 메탈로센 촉매를 순차적으로 담지하여 각 메탈로센 화합물의 반웅 조건에 따라 기 담지된 조촉매와 상호작용이 최적화되어 촉매 특성이 조절되도록 한다. 이러한 방법으로 제조된 담지 메탈로센 촉매는 SEM/EDS 분석법을 이용하여 촉매의 담체내 깊이 프로파일 (depth profile)을 살펴봄으로써, 알킬알루미녹산의 실리카 내, 외부 담지량이 조절됨을 확인할 수 있다.
또한, 상기 담지 메탈로센 촉매에 따르면 걸보기 밀도의 향상 및 촉매 활성이 증가되므로 이를 이용하여 폴리을레핀을 제조하는 경우, 폴리을레핀의 생산성을 크게 향상시킬 수 있다.
상기 메탈로센 화합물은 전술한 알킬알루미녹산과 함께 촉매로써의 활성을 나타낼 수 있도록 하는 주촉쩨 성분이다.
상기 단계는 용매의 존재 하에 상기 담체와 메탈로센 화합물을 흔합하여 교반하면서 반웅시키는 방법으로 수행할 수 있다.
이때, 상기 단계에 의해 실리카 담체에 담지되는 메탈로센 화합물의 담지량은 담체 lg을 기준으로 0.01 내지 lmmol/g일 수 있다. 즉, 상기 메탈로센 화합물에 의한 촉매 활성의 기여 효과를 감안하여 전술한 담지량 범위에 해당되도록 하는 것이 바람직하다.
또한, 상기 메탈로센 화합물의 담지 단계에서 그 온도 조건은 특별히 제한되지 않는다.
한편/상기 메탈로센 화합물로는 본 발명에 속하는 기술분야에서 통상적인 것을 제한 없이 1종 이상 사용할 수 있다. 예를 들면, 상기 메탈로센 화합물은 1) 브릿지되지 않은 Cp(non bridge Cp)와 Cp계의 조합을 포함하는 메탈로센 화합물 , 2) Si 브릿지 Cp(Si bridge Cp)와 Cp계의 조합을 포함하는 메탈로센 화합물, 3) C 브릿지 Cp(C bridge Cp)와 Cp계의 조합을 포함하는 메탈로센 화합물, 4) Si 브릿지 Cp(Si bridge Cp)와 아민계의 조합을 포함하는 메탈로센 화합물, 5) 에틸렌 브릿지 Cp(ethylene bridge Cp)와 Cp계의 조합을 포함하는 메탈로센 화합물, 6) 페닐렌 브릿지 Cp(phenylene bridge Cp)와 아민계의 조합을 포함하는 메탈로센 화합물, 7) C-C, Si-C, 또는 Si-Si 브릿지를 포함하는 메탈로센 화합물 등을 모두 사용 가능하다. 상기 Cp는 사이클로펜타디에닐, 인데닐, 플루오레닐, 인데노인돌 (Mn)계 등일 수 있고, 그 구조가 제한되지 않는다. 또한, 상기 Si계 브릿지의 경우 t_부록시 -핵실 치환기와 그 유사 구조를 포함할 수 있고, 인덴 구조를 포함하는 경우 테트라하이드로 -인덴 구조를 포함할 수 있다. 또한, 본 발명의 메탈로센 화합물은 저분자 메탈로센 화합물 (Cp계)과 고분자 메탈로센 화합물 (예를 들면, CGC타입 또는 ansa타입)을 포함한다.
이러한 메탈로센 화합물의 바람직한 일 구현예를 들면, 하기 화학식 1 내지 5로 이루어진 군에서 선택되는 1종 이상일 수 있다:
[화학식 1]
Figure imgf000015_0001
상기 화학식 1에서,
M1은 4족 전이금속이고;
Cp1 및 Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z1은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시 , 또는 C7 내지 C40의 아릴알콕시이고;
n은 1 또는 0 이고;
[화학식 2]
^ρ Β^ρ4ί^)Μ2Ζ2 3-ιη
상기 화학식 2에서,
Μ2는 4족 전이 금속이고;
Cp3 및 Cp4는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z2는 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시,또는 C7 내지 C40의 아릴알콕시이고;
B1은 Cp3Rc 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를
M2에 가교 결합시키는, 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이들의 조합이고;
m은 1 또는 0 이고;
[화학식 3]
(Cp5Re)B2(J)M3Z3 2
상기 화학식 3에서,
M3은 4족 전이 금속이고;
Cp5는 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Re는 수소, CI 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z3은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시 , 또는' C7 내지 C40의 아릴알콕시이고;
B2는 Cp5Re 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고;
J는 NRf, O, PRf 및 S로 이루어진 군에서 선택된 어느 하나이고, 상기 Rf는 C1 내지 C20의 알킬, 아릴, 치환된 알킬 또는 치환된 아릴이고,
[화학식 4]
Figure imgf000017_0001
상기 화학식 4에서,
R10 내지 R13 및 R10' 내지 R13'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, 또는 C1 내지 C20의 아민기이고, 상기 R10 내지 R13 및 R10' 내지 R13' 중 인접하는 2개 이상이 서로 연결되어 1개 이상의 지방족 고리, 방향족 고리, 또는 헤테로 고리를 형성할 수 있고;
Z1 및 Z2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지
C20의 알킬기, C3 내지 C20의 시클로알킬기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C6 내지 C10의 아릴옥시기, C2 내지 C20의 알케닐기, C7 내지 C40의 알킬아릴기, 또는 C7 내지 C40의 아릴알킬기이고;
Q는 C1 내지 C20의 알킬렌기, C3 내지 C20의 시클로알킬렌기, C6 내지 C20의 아릴렌기, C7 내지 C40의 알킬아릴렌기, 또는 C7 내지 C40의 아릴알킬렌기이고;
M2는 4족 전이금속이며;
X3 및 X4는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고;
[
Figure imgf000018_0001
상기 화학식 5에서,
R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 실릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬 또는 하이드로카르빌로 치환된
4족 금속의 메탈로이드이고; 상기 R1과 R2 또는 2개의 R2가 탄소수 1 내지 20의 알킬 또는 탄소수 6 내지 20의 아릴을 포함하는 알킬리딘에 의해 서로 연결되어 고리를 형성할 수 있으며;
R3는 각각 독립적으로 수소, 할로겐 원자, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알콕시, 탄소수 6 내지 20의 아릴옥시 또는 아미도이고; 상기 R3 증에서 2개 이상의 R3는 서로 연결되어 지방족 고리 또는 방향족 고리를 형성할 수 있으며;
CY1은 치환 또는 치환되지 않은 지방족 또는 방향족 고리이고, 상기 CY1에서 치환되는 치환기는 할로겐 원자, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알콕시, 탄소수 6 내지 20의 아릴옥시, 아미도이고; 상기 치환기가 복수 개일 경우에는 상기 치환기 중에서 2개 이상의 치환기가 서로 연결되어 지방족 또는 방향족 고리를 형성할 수 있으며;
M은 4족 전이금속이고;
Q1 및 Q2는 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알킬아미도, 탄소수 6 내지 20의 아릴아미도 또는 탄소수 1 내지 20의 알킬리덴이다.
이때, 상기 브릿지되지 않은 Cp(non bridge Cp)와 Cp계의 조합을 포함하는 메탈로센 화합물은, 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
상기 Si 브릿지 Cp(Si bridge Cp)와 Cp계의 조합을 포함하는 메탈로센 화합물과 C 브릿지 Cp(C bridge Cp)와 Cp계의 조합을 포함하는 메탈로센 화합물은, 상기 화학식 2로 표시되는 화합물을 포함할 수 있다.
상기 Si 브릿지 Cp(Si bridge Cp)와 아민계의 조합을 포함하는 메탈로센 화합물은, 상기 화학식 3으로 표시되는 화합물을 포함할 수 있다.
상기 에틸렌 브릿지 Cp(ethylene bridge Cp)와 Cp계의 조합을 포함하는 메탈로센 화합물은, 상기 화학식 4로 표시되는 화합물을 포함할 수 있다.
또한, 상기 화학식 5에 정의된, 하이드로카르빌은 하이드로카르본으로부터 수소 원자를 제거한 형태의 1가 기로서, 에틸, 페닐 등을 포함한다. 또한, 상기 메탈로이드는 준금속으로 금속과 비금속의 중간적 성질을 보이는 원소로서, 비소, 붕소, 규소, 텔루르 등을 포함한다.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure imgf000020_0001
Figure imgf000020_0002
본 발명의 일 실시예에 따르면, 상기 화학식 2로 표시되는 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure imgf000021_0001
본 발명의 일 실시예에 따르면, 상기 화학식 3으로 표시되는 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure imgf000022_0001
상기 담지 메탈로센 촉매에 있어서, 상기 화학식 4의 Q는 C1 내지 C20의 알킬렌기고, Z1 및 Z2는 각각 독립적으로 수소, C1 내지 C20의 알킬기 또는 C1 내지 C20의 알콕시기이며, X3 및 X4는 할로겐일 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 화학식 5로 표시되는 화합물은 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다ᅳ .
Figure imgf000023_0001
상기 구조식에서,
R7은 각각 독립적으로 수소 또는 메틸이며; Q5 및 Q6은 각각 독립적으로 메틸, 디메틸아미도 또는 클로라이드일 수 있다.
상기 화학식 5로 표시되는 메탈로센 화합물은 페닐렌 브릿지에 고리 형태로 연결되어 있는 아미도 그룹이 도입된 시클로펜타디에닐 리간드에 의해 금속 자리가 연결되어 있어 구조적으로 Cp-M-N 각도는 좁고, 단량체가 접근하는 Qiᅳ M-Q2 각도는 넓게 유지할 수 있다.
또한, 상기 담지 메탈로센 촉매의 제조방법은, 전술한 단계들 이외에도, 상기 각 단계의 이전 또는 이후에 본 발명이 속하는 기술분야에서 통상적으로 수행될 수 있는 단계를 더욱 포함하여 수행될 수 있으며, 상술한 단계들에 의해 본 발명의 중합 방법이 한정되는 것은 아니다.
또한, 본 발명의 바람직한 구현예에 따르면, 1종 또는 그 이상의 메탈로센 화합물이 사용되는 경우, 상기 실리카 담체에 1종 또는 1종 이상의 메탈로센 화합물이 순차적으로 담지될 수 있다.
한편, 본 발명의 일 구현예에 따르면 제 2 조촉매로서, 보레이트계 화합물을 추가로 담지할 수 있다. 즉, 알킬알루미녹산 및 1종 이상의 메탈로센 화합물이 담지된 실리카 담체에, 게 2조촉매로서 보레이트계 화합물을 담지시키는 단계를 더 포함할 수 있다.
따라서, 본 발명의 바람직한 일 구현예에 따르면, 담체에 제 1 조촉매로서 알킬알루미녹산이 담지되고, 제 2 조촉매로서 보레이트 화합물이 담지되고, 1종 이상의 메탈로센 화합물이 담지될 수 있다. 상기 담지 메탈로센 촉매에서 제 2조 촉매가 포함되면, 최종 제조된 촉매의 중합 활성이 향상될 수 있다.
상기 제 2 조촉매인 보레이트계 화합물은, 삼치환된 암모늄염 형태의 보레이트계 화합물, 디알킬 암모늄염 형태의 보레이트계 화합물 또는 삼치환된 포스포늄염 형태의 보레이트계 화합물을 포함할 수 있다. 이러한 제 2조촉매의 구체적인 예로는, 트리메틸암모늄 테트라페닐보네이트, 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리 (n-부틸)암모늄 테트라페닐보레이트, 메틸테트라데사이클로옥타데실암모늄 테트라페닐보레이트, Ν,Ν-디메틸아닐륨 테트라페닐보레이트, 디에틸아닐륨 테트라페닐보레이트,
Ν,Ν-디메틸 (2,4,6-트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스 (펜타플루오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스 (펜타페닐)보레이트, 메틸디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리에틸암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리프로필암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리 (η-부틸)암모늄 테트라키스 (펜타플루오로페닐)보레이트,
트리 (2급-부틸)암모늄테트라키스 (펜타플루오로페닐)보레이트, Ν,Ν-디메틸아닐늄 테트라키스 (펜타플루오로페닐)보레이트,
Ν,Ν-디에틸아닐륨테트라키스 (펜타플루오로페닐)보레이트,
Ν,Ν-디메틸 (2,4,6-트리메틸아닐륨)테트라키스 (펜타플루오로페닐)보레이트,
트리메틸암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, 트리에틸암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, 트리프로필암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, 트리 (η-부틸)암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, Ν,Ν_디메틸아닐륨 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, Ν,Ν-디에틸아닐륨 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, 또는 Ν,Ν-디메틸 -(2,4,6-트리메틸아닐늄) 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트 등의 삼치환된 암모늄염 형태의 보레이트계 화합물; 디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 디테트라데실암모늄 테트라키스 (펜타플루오로페닐)보레이트 또는 디사이클로핵실암모늄 테트라키스 (펜타플루오로페닐)보레이트 등의 디알킬암모늄염 형태의 보레이트계 화합물; 또는 트리페닐포스포늄 테트라키스 (펜타플루오로페닐)보레이트, 메틸다옥타데실포스포늄 테트라키스 (펜타플루오로페닐)보레이트 또는 트리 (2,6-디메틸페닐)포스포늄 테트라키스 (펜타플루오로페닐)보레이트 등의 삼치환된 포스포늄염 형태의 보레이트계 화합물 등을 들 수 있다.
또한, 상기 보레이트계 화합물은 실리카 담체 lg을 기준으로 0.01 내지 1 mmol/g의 함량으로 담지될 수 있다. 또한 본 발명의 방법에서 보레이트계 화합물을 제 2 조촉매로 사용하는 경우, 그 담지 순서가 특별히 한정되지 않는다. 예를 들어, 본 발명은 1종 이상의 메탈로센 화합물의 담지 후에 실리카 담체에 보레이트계 화합물을 마지막에 담지할 수 있다. 또한, 본 발명은 선택적으로 b) 알킬알루미녹산을 실리카 담체에 담지한 후, 보레이트계 화합물올 담지하고, 그 뒤에 1종 이상의 메탈로센 화합물을 담지하는 순서로 따라 진행할 수 있다.
본 발명의 에틸렌 -1-핵센 -1-부텐 3원 공중합체는, 상기 담지 메탈로센 촉매의 존재 하에 에틸렌 , 1-핵센, 및 1-부텐을 공중합하여 제조될 수 있다.
상기 에틸렌 -1-핵센 -1-부텐 3원 공중합체의 제조방법은, 상기 담지 메탈로센 촉매를 준비하는 단계; 및 상기 촉매의 존재 하에서 에틸렌, 1-핵센, 및 1-부텐를 중합 반웅시키는 단계를 포함하는 방법으로 수행할 수 있다.
상기 담지 메탈로센 촉매는 그 자체로서 중합 반웅에 사용될 수 있다. 또한, 상기 담지 메탈로센 촉매는 올레핀계 단량체와 접촉 반웅시켜 예비 중합된 촉매로 제조하여 사용할 수도 있으며, 예컨대 촉매를 별도로 에틸렌, 1-부텐, 또는 1-핵센 단량체와 접촉시켜 예비 중합된 촉매로 제조하여 사용할 수도 있다.
또한, 상기 담지 메탈로센 촉매는 탄소수 5 내지 12의 지방족 탄화수소 용매 (예를 들면, 펜탄, 핵산, 헵탄, 노난, 데칸 및 이들의 이성질체)와 를루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소 원자로 치환된 탄화수소 용매 등에 희석시켜 반웅기에 주입할 수 있다. 이때, 상기 용매에 소량의 알킬알루미늄을 첨가함으로써 촉매 독 (catalyst poison)으로 작용할 수 있는 소량의 물 또는 공기 등을 제거한 후에 사용하는 것이 바람직하다.
상기 중합 반웅은 하나의 연속식 슬러리 중합 반응기, 루프 슬러리 반웅기 기상 반웅기 또는 용액 반웅기를 이용하여 진행할 수 있다.
또한 상기 중합은 약 25 내지 약 500 °C의 온도 및 약 1 내지 약 100 kgf/cm2에서 약 1 내지 약 24시간 동안 반응시켜 수행할 수 있다. 구체적으로, 상기 중합은 약 25 내지 약 500 °C, 바람직하게는 약 25 내지 약 200°C, 보다 바람직하게는 약 50 내지 약 100°C의 온도에서 수행할 수 있다. 또한 반웅 압력은 약 1 내지 약 100 kgf/cm2, 바람직하게는 약 1 내지 약 50 kgf/cm2, 보다 바람직하게는 약 5 내지 약 40 kgf/cm2에서 수행할 수 있다.
상기 방법에 따라 제조된 에틸렌 -1-핵센— 1-부텐 3원 공중합체는 기존과 동등 이상의 고활성 (을 유지하면서 상술한 물성을 갖는 3원 공중합체로 수득할 수 있다.
본 발명의 다른 일 측면에 따르면, 상기 에틸렌 -1-핵센 -1-부텐 3원 공중합체를 포함하는 필름을 제공한다.
상기 필름은 상술한 특성, 즉, 하기 식 1로 표시되는 CI(Co-monomer Incorporation) Index가 0.5 내지 5이고; 밀도가 0.900 내지 0.916 g/cm3 이고; ASTM D1238에 따라 190°C , 2.16 kg 하중 조건에서 측정한 용융 흐름 지수 (Ml)가 2.0 내지 5.0 g/10분이며; 1-부텐에 대한 1-핵센의 중량비가 1 내지 5인 에틸렌 -1ᅳ핵센 -1-부텐 3원 공중합체를 포함하며, 이를 이용하여 제조된다.
[식 1]
분자량쪽 s 함량 -저분자량쪽 scB함량
CI Index = — ————
(저분자량쪽 ¾량)
상기 식 1에 대한 보다 구체적인 설명과, 에틸렌 -1-핵센 -1-부텐 3원 공중합체의 다른 특성은 상술한 바와 같다.
본 발명에 따른 필름은 에틸렌 -1-핵센 -1-부텐 3원 공중합체 펠뻣을 단축압출기에 투입하여 일정한 두께가 되도록 인플레이션 성형하는 방법에 따라 제조될 수 있으나, 이에 한정되지는 않으며, 본 발명이 속하는 기술에서 통상적으로 사용되는 방법에 따라 제조될 수 있다ᅳ
이와 같이 제조된 본 발명의 필름은 우수한 낙추 층격 강도 및 점착력을 갖는다.
본 발명의 일 실시예예 따르면, 본 발명의 필름은 ASTM D 1709 [Method A]를 기준으로 측장한 낙추 층격 강도가 600 g 이상, 예를 들어, 약 600 내지 약 1,500 g, 바람직하게는 약 700 내지 약 1,200 g일 수 있다.
또한, 본 발명의 일 실시예예 따르면, 상기 필름은 ASTM D 3330 에 따라 측정한 점착력이 7 이상, 예를 들어, 약 7 내지 약 20, 바람직하게는 약 7 내지 약 15일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다.
<실시예 >
담지 촉매의 제조예
제조예 1
담체로는 실리카 (제조사: Grace Davision, 제품명: Sylopol 952)를 준비하였고, 이를 100°C에서 30분간 소성하였다.
이후, 유리 반웅기에 를루엔 100ml 및 상기 실리카 10 g을 넣고 분산한 후, 조촉매로 메틸알루미녹산 (MAO) 용액을 일부를 분할하여 가하고 80°C에서 선반웅시켰다. 그런 다음, 저온에서 나머지 함량의 메틸알루미녹산을 추가하여 후 반웅시켰다. 이어서, 층분한 양의 를루엔으로 세척하여 반웅하지 않은 메틸알루미녹산을 제거하였다 (MAO 담지량: 5mmol/g 담체 (선 반웅), 3mmol 담체 (후 반응)) .
상기와 같이 메틸알루미녹산이 담지된 실리카에 화학식 1의 메탈로센 화합물로
비스 (n-부틸시클로펜타디에닐) -지르코늄디클로라이드 (Bis(n-butylcyclopentadienyl)-zirc onium dichloride)이 녹아 있는 를루엔 용액을 가하여 40°C에서 1시간 동안 교반하여 반웅시켰다. 그 후 화학식 3의 메탈로센 화합물로 t-부특시핵실메틸실릴 (N-t-부틸아미도) (2,3,4,5-테트라메틸시클로펜타디에닐) -티타늄 디클로라이드 (t-butoxyhexylmethylsilyl(^-t-buthylamido)(2,3,4,5-tet ^
nyl)-titanium dichloride)이 녹아있는 를루엔 용액을 가하여 40°C에서 1시간 동안 교반하여 반웅시켰다. 이를 층분한 양의 를루엔으로 세척한 후 진공 건조하여 고체 분말얀 담지 메탈로센 촉매를 얻었다.
이때, 상기 메탈로센 화합물의 담지량은 화학식 1의 메탈로센이 0.1 mmol/g.담체, 화학식 3의 메탈로센이 0.1 mmol/g담체이고, 담지 메탈로센 촉매에서의 Al/Si 함량은 내부층이 29.5 중량0 /。, 외부층이 43.5 중량 %이었다. 비교 제조예 1
담체로는 실리카 (제조사: Grace Davision, 제품명: Sylopol 948)를 준비하였고, 이를 100°C에서 30분간 소성하였다.
이후, 유리 반응기에 를루엔 100ml 및 상기 실리카 10 g을 넣고 분산한 후, 조촉매로 메틸알루미녹산 (MAO) 용액을. 가하고 40°C에서 교반하며 천천히 반웅시켰다. 이어서, 충분한 양의 를루엔으로 세척하여 반웅하지 않은 메틸알루미녹산을 제거하였다 (MAO 담지량: 8mtnol/g 담체).
상기와 같이 메틸알루미녹산이 담지된 실리카에 화학식 1의 메탈로센 화합물로 비스 (n-부틸시클로펜타디에닐) -지르코늄 디클로라이드 (Bis(n-butylcyclopentadienyl)-zirconium dichloride) °1 녹아 있는 를루엔 용액을 가하여 교반하여 반웅시켰다. 그 후 화학식 3의 메탈로센 화합물로 t-부톡시핵실메틸실릴 (N-t-부틸아미도) (2,3 ,4,5-테트라메틸시클로펜타디에닐) -티타늄 디클로라이 H(t-butoxyhexylmethylsilyl(N-t-buthylamido)(2,3,4,5-tetramethylcyclopentadie nyl)-titanium dichloride)이 녹아있는 를루엔 용액을 가하여 교반하여 반웅시켰다. 이를 층분한 양의 를루엔으로 세척한 후 진공 건조하여 고체 분말인 담지 메탈로센 촉매를 얻었다.
이때, 상기 메탈로센 화합물의 담지량은 화학식 1의 메탈로센이 0.1 mmol/g-담체, 화학식 3의 메탈로센이 0.1 mmol/^담체이었다. 중합 실시예
실시예 1
제조예 1의 촉매를 단일 루프 슬러리 중합 공정에 투입하여 정법에 따라 선형 저밀도 폴리에틸렌을 제조하였다. 공단량체로 1-부텐 및 1-핵센을 이용하였다. 실시예 2
공단량체인 1-부텐 및 1-핵센의 함량을 다르게 한 것을 제외하고는 실시예
1과 동일한 방법으로 선형 저밀도 폴리에틸렌을 제조하였다. 실시예 3
공단량체인 1-부텐 및 1-핵센의 함량을 다르게 한 것을 제외하고는 실시예 1과 동일한 방법으로 선형 저밀도 폴리에틸렌을 제조하였다. 실시예 4
공단량체인 1-부텐 및 1-핵센의 함량을 다르게 한 것을 제외하고는 실시예 1과 동일한 방법으로 선형 저밀도 폴리에틸렌을 제조하였다. 비교예 1
비교 제조예 1의. 촉매를 단일 루프 슬러리 중합 공정에 투입하여 정법에 따라 선형 저밀도 폴리에틸렌을 제조하였다. 공단량체로 1-핵센을 이용하였다. <실험예>
물성 측정
실시예 및 비교예에서 얻어진 폴리을레핀 공중합체는 산화방지제 (Iganox 1010 + Igafos 168, CIBA사) 처방 후 이축압출기 (W&P Twin Screw Extruder, 75 파이, L/D=36)를 사용하여 180 내지 210°C의 압출온도에서 제립하였다. 필름 성형은 단축압출기 (신화공업 Single Screw Extruder, Blown Film M/C, 50 파이, L/D=20)를 이용하고 압출온도 165 내지 200°C에서 0.05 mm의 두께가 되도록 인플레이션 성형하였다. 이때 다이갭 (Die Gap)은 2.0 mm, 팽창비 (Blown-Up Ratio)는 2.3으로 하였다.
폴리을레핀 공중합체의 물성 및 필름 물성은 하기의 평가방법에 따라 측정하였으며 그 결과는 하기 표 1에 나타내었다. 1 ) 밀도: ASTM 1505
2) 용융지수 (MI, 2.16 kg/10 분): ASTM D1238, 2.16 kg, 190 °C
3) 중량 평균 분자량 및 분자량 분포: 측정 온도 160 °C , 겔투과 크로마토그라피-에프티아이알 (GPC-FTIR)을 이용하여 수 평균 분자량, 중량'평균 분자량, Z 평균 분자량을 측정하였다. 분자량 분포는 중량 평균 분자량과 수 평균 분자량의 비로 나타내었다.
4) 낙추 층격 강도: ASTM D 1709 [Method A]를 기준으로 한 필름 시료 당 20희 이상 측정하여 낙추 충격 강도를 구하였다.
5) 점착력: ASTM D 3330을 기준으로 한 필름 시료당 10회 이상 측정하여 점착력을 구하였다.
6) CI Index: 분자량 (M)의 로그값 (log M)을 x축으로 하고, 상기 로그값에 대한 분자량 분포 (dwt/dlog M)를 y축으로 하여 분자량 분포 곡선을 그렸을 때, 전체 면적 대비 좌우 끝 20%를 제외한 가운데 60%의 좌측 및 우측 경계에서 SCB(Short Chain Branch) 함량 (탄소 1 ,000 개당의 탄소수 2 내지 7개의 결가지 (branch) 함량, 단위: 개 /1 ,000C)을 측정하여 하기 식 1을 바탕으로 CI Index를 산출하였다.
이 때, 고분자량쪽 SCB 함량과, 저분자량쪽 SCB 함량은 각각 가운데 60% 범위의 우측 및 좌측의 경계에서의 SCB 함량값을 의미하고, 시료를 PL-SP260을 이용하여 BHT 0.0125%가 포함된 1 , 2, 4-Trichlorobenzene에서 160 °C , 10시간 동안 녹여 전처리한 후, 고온 GPC(PL-GPC220)와 연결된 PerkinElmer Spectrum 100 FT-IR을 이용하여 160 °C에서 측정하였다.
[식 1 ]
(고분자량쪽 SCS함량-저분자 SCB함 ¾
Q Index = ^^^―—— — —
(저 자랑쪽 5CB함
【표 1】
실시예 1 실시예 2 실시예 3 실시예 4 비교예 1 공단량체 1 -부텐 2.7 2.7 2.9 3.2 -
(중량 %)
1 -핵센 6.9 7.2 7.9 8.3 10.3
(중량 %)
Figure imgf000031_0001
상기 표 1을 참조하면, 본 발명의 실시예 1 내지 4는 공단량체로 1-핵센 및 1-부텐을 일정한 중량비로 포함하면서 저밀도를 나타내어 높은 낙추 충격 강도 및 점착력을 나타내었다. 따라서, 이와 같은 물성을 요하는 스트레치 필름 등의 용도로 유용하게 사용될 수 있다.

Claims

【특허청구범위】 【청구항 1】 하기 식 1로 표시되는 CI(Co-monomer Incorporation) Index가 0.5 내지 5이고; 밀도가 0.900 내지 0.916 g/cm3 이고; ASTM D1238에 따라 190 °C, 2.16 kg 하중 조건에서 측정한 용융 흐름 지수 (Ml)가 2.0 내지 5.0 g/10분이며; 1-부텐에 대한 1-핵센의 중량비가 1 내지 5인 에틸렌 -1-핵센 -1-부텐 3원 공중합체:
[식 1]
(고분자향쪽 SCB함량-저분자량쪽 SCB¾ )
Q Index =■ — ― ~
(저분자 ¾ 8 ¾¾ 식 1에서,
SCB(Short Chain Branch) 함량은 탄소 1,000 개당의 탄소수 2 내지 7개의 결가지 (branch) 함량 (단위 : 개 /1,000C)을 뜻하고,
저분자량쪽 SCB 함량 및 고분자량쪽 SCB 함량은, 에틸렌 -1-핵센 -1-부텐 3원 공중합체의 분자량 (M)의 로그값 (log M)을 X축으로 하고, 상기 로그값에 대한 분자량 분포 (dwt/dlog M)를 y축으로 하여 분자량 분포 곡선을 그렸을 때, 전체 면적 대비 좌우 끝 20%를 제외한 가운데 60%의 좌측 경계 (저분자량쪽 SCB함량) 및 우측 경계 (고분자량쪽 SCB함량)에서의 SCB .함량을 각각 의미한다.
【청구항 2】
제 1항에 있어서,
중량 평균 분자량이 50,000 내지 150,000 g/m이인, 에틸렌 -1-핵센 -1-부텐 3원 공중합체.
【청구항 3】
거 U항에 있어서,
분자량 분포 (중량 평균 분자량 /수 평균 분자량)가 1.5 내지 5인 에틸렌 -1-핵센 -1-부텐 3원 공중합체.
【청구항 4]
제 1항에 있어서,
상기 에틸렌 -1-핵센 -1-부텐 3원 공중합체의 총 중량에 대한 1-부텐 및 1-핵센의 함량이 5 내지 15 중량%인 에틸렌 -1-핵센 -1-부텐 3원 공중합체.
【청구항 5】
제 1항에 있어서,
담체 촉매 입자를 횡단면으로 잘랐을 때, 각 표면으로부터 중심부쪽으로 입자의 전체 지름의 1/3이 되는 지점까지를 포함하는 외부층, 및 상기 입자의 1/3 지점으로부터 내부 중심까지의 나머지 부분을 포함하는 내부층으로 이루어지고, 알킬알루미녹산이 담체의 내부 및 표면에 담지된 실리카 담체와; 상기 실리카 담체에 담지된 1종 이상의 메탈로센 화합물을 포함하며,
상기 내부층의 Al/Si 원소 함량비 (중량 %)가 상기 외부층의 Al/Si 원소 함량비 (중량 %)의 65% 이상인, 담지 메탈로센 촉매의 존재 하에,
에틸렌, 1-핵센, 및 1-부텐을 공중합하여 제조되는 에틸렌 -1-핵센 -1-부텐 3원 공중합체.
【청구항 6】
게 5항에 있어서,
상기 내부층의 Al/Si 원소 함량비 (중량 %)가 상기 외부층의 Al/Si 원소 함량비 (중량 %)의 90 내지 150%인 에틸렌 -1-핵센 -1-부텐 3원 공중합체.
【청구항 7]
제 5항에 있어서,
. 상기 메탈로센 화합물은 브릿지되지 않은 Cp(non bridge Cp)와 Cp계의 조합을 포함하는 메탈로센 화합물, Si 브릿지 Cp(Si bridge Cp)와 Cp계의 조합을 포함하는 메탈로센 화합물; C 브릿지 Cp(C bridge Cp)와 Cp계의 조합을 포함하는 메탈로센 화합물, Si 브릿지 Cp(Si bridge Cp)와 아민계의 조합을 포함하는 메탈로센 화합물, 에틸렌 브릿지 Cp(ethylene bridge Cp)와 Cp계의 조합을 포함하는 메탈로센 화합물, 페닐렌 브릿지 Cp(phenylene bridge Cp)와 아민계의 조합을 포함하는 메탈로센 화합물 및 C-C, Si-C, 또는 Si-Si 브릿지를 포함하는 메탈로센 화합물로 이루어진 군에서 선택되는 1종 이상인, 에틸렌 -1-핵센 -1-부텐 3원 공중합체.
【청구항 8]
제 5항에 있어서,
상기 실리카 담체는 실리카, 실리카-알루미나 및 실리카-마그네시아로 이루어진 군에서 선택되는 1 종 이상인, 에틸렌 -1-핵센 -1-부텐 3원 공중합체.
【청구항 9
제 5항에 있어서,
상기 알킬알루미녹산은 메틸알루미녹산, 에틸알루미녹산, 부틸알루미녹산 및 이소부틸알루미녹산으로 이루어진 군에서 선택되는 1 종 이상인, 에틸렌 -1-핵센 -1-부텐 3원 공중합체.
【청구항 10】
제 5항에 있어서,
상기 실리카 담체에 대한 메탈로센 화합물의 담지량은 0.01 내지 1 mmol/g인 에틸렌 -1-핵센 -1-부텐 3원 공중합체.
[청구항 11】
제 1항의 에틸렌 -1-핵센 -1-부텐 3원 공중합체를 포함하는 필름.
【청구항 12】 ·
제 11항에 있어서,
ASTM D 1709 [Method A]를 기준으로 측정한 낙추층격강도가 600 내지 l,500g인 필름.'
【청구항 13】
제 11항에 있어서,
ASTM D 3330 에 따라 측정한 점착력이 7 이상인 필름.
PCT/KR2015/007459 2014-07-18 2015-07-17 에틸렌 -1-핵센 -1-부텐 3원 공중합체 및 이를 포함하는 필름 WO2016010400A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15821944.4A EP3141566B1 (en) 2014-07-18 2015-07-17 Ethylene-1-hexene-1-butene terpolymer and film comprising same
US15/320,193 US10253122B2 (en) 2014-07-18 2015-07-17 Ethylene-1-hexene-1-butene terpolymer and a film including the same
CN201580038904.6A CN106661159B (zh) 2014-07-18 2015-07-17 乙烯-1-己烯-1-丁烯三元共聚物及包含该三元共聚物的膜

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140091055 2014-07-18
KR10-2014-0091055 2014-07-18
KR10-2015-0100965 2015-07-16
KR1020150100965A KR101705339B1 (ko) 2014-07-18 2015-07-16 에틸렌-1-헥센-1-부텐 3원 공중합체 및 이를 포함하는 필름

Publications (1)

Publication Number Publication Date
WO2016010400A1 true WO2016010400A1 (ko) 2016-01-21

Family

ID=55078803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007459 WO2016010400A1 (ko) 2014-07-18 2015-07-17 에틸렌 -1-핵센 -1-부텐 3원 공중합체 및 이를 포함하는 필름

Country Status (1)

Country Link
WO (1) WO2016010400A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR870002013B1 (ko) * 1981-11-03 1987-11-30 에드워어드 지. 그리어 저압, 저밀도 이종원소 에틸렌 공중합체의 층을 갖는 다층필름
US6197909B1 (en) * 1988-12-19 2001-03-06 Curwood, Inc. Heat shrinkable C2C4C6 terpolymer film
US6204328B1 (en) * 1997-05-26 2001-03-20 Chisso Corporation Polyolefin resin composition
KR20110043464A (ko) * 2009-10-19 2011-04-27 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
KR20130051467A (ko) * 2013-04-30 2013-05-20 주식회사 엘지화학 낙추 충격강도와 투명도가 우수한 필름용 폴리에틸렌 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR870002013B1 (ko) * 1981-11-03 1987-11-30 에드워어드 지. 그리어 저압, 저밀도 이종원소 에틸렌 공중합체의 층을 갖는 다층필름
US6197909B1 (en) * 1988-12-19 2001-03-06 Curwood, Inc. Heat shrinkable C2C4C6 terpolymer film
US6204328B1 (en) * 1997-05-26 2001-03-20 Chisso Corporation Polyolefin resin composition
KR20110043464A (ko) * 2009-10-19 2011-04-27 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
KR20130051467A (ko) * 2013-04-30 2013-05-20 주식회사 엘지화학 낙추 충격강도와 투명도가 우수한 필름용 폴리에틸렌 및 이의 제조방법

Similar Documents

Publication Publication Date Title
CN108137747B (zh) 多峰和宽分子量高密度聚乙烯
EP3056524B1 (en) Ethylene/1-butene copolymer having excellent processibility and environmental stress cracking resistance
KR101592436B1 (ko) 내환경 응력 균열성이 우수한 폴리올레핀
KR102260362B1 (ko) 올레핀 공중합체
KR100886681B1 (ko) 선형 저밀도 폴리에틸렌의 제조방법
KR101705339B1 (ko) 에틸렌-1-헥센-1-부텐 3원 공중합체 및 이를 포함하는 필름
KR102065719B1 (ko) 혼성 담지 촉매
KR101485566B1 (ko) 저온 실링성이 우수한 필름용 폴리에틸렌, 및 이의 제조방법
CN111344316A (zh) 聚乙烯组合物和由其制成的制品
WO2016167568A1 (ko) 가공성이 우수한 에틸렌 /알파-올레핀 공중합체
CN111448223A (zh) 聚乙烯组合物及其制造的制品
CN107207661B (zh) 具有优异的加工性能和表面特性的乙烯/α-烯烃共聚物
US20220064344A1 (en) Catalyst for Olefin Polymerization and Polyolefin Prepared Using the Same
CN111511783B (zh) 具有优异加工性的乙烯/1-丁烯共聚物
KR20180071853A (ko) 폴리올레핀계 필름
CN115850552B (zh) 催化剂体系和使用其的聚合方法
KR102211603B1 (ko) 올레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법
WO2015194813A1 (ko) 내환경 응력 균열성이 우수한 폴리올레핀
US20240043588A1 (en) Olefinic polymer, and method for preparing same
US20230416427A1 (en) Olefin-based polymer, film prepared therefrom, and preparation methods therefor
KR20190073264A (ko) 올레핀 중합체, 이의 제조 방법, 그리고 이를 이용한 필름
WO2016010400A1 (ko) 에틸렌 -1-핵센 -1-부텐 3원 공중합체 및 이를 포함하는 필름
KR20180043898A (ko) 용융강도가 높은 멀티모달 폴리올레핀 수지 제조를 위한 촉매 조성물 및 이를 이용한 멀티모달 폴리올레핀 공중합체
KR20210038328A (ko) 올레핀 공중합체를 포함하는 필름
WO2015080523A1 (ko) 담지 메탈로센 촉매의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821944

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015821944

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015821944

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15320193

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE