[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016010399A1 - 무선 통신 시스템에서 하향링크 신호 전송 방법 및 장치 - Google Patents

무선 통신 시스템에서 하향링크 신호 전송 방법 및 장치 Download PDF

Info

Publication number
WO2016010399A1
WO2016010399A1 PCT/KR2015/007458 KR2015007458W WO2016010399A1 WO 2016010399 A1 WO2016010399 A1 WO 2016010399A1 KR 2015007458 W KR2015007458 W KR 2015007458W WO 2016010399 A1 WO2016010399 A1 WO 2016010399A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
reference signal
term channel
slot
channel characteristic
Prior art date
Application number
PCT/KR2015/007458
Other languages
English (en)
French (fr)
Inventor
채혁진
김영태
김봉회
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/326,221 priority Critical patent/US10555309B2/en
Publication of WO2016010399A1 publication Critical patent/WO2016010399A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the following description relates to a wireless communication system, and more particularly, to an RS configuration, a transmission / reception method, and a downlink signal transmission method and apparatus of a base station for channel estimation in large scale MIMO.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • an RS configuration, a transmission / reception method, a channel estimation method of a base station, and a downlink signal transmission method for channel estimation in large-scale MIMO are technical problems.
  • a first technical aspect of the present invention is a method for transmitting a downlink signal by a base station in a wireless communication system, the method comprising: transmitting a DMRS (DeModulation-Reference Signal) acknowledgment; Determining a long term channel characteristic from a DMRS of a first slot of an uplink subframe received in response to the DMRS grant; Receiving a first reference signal in a second slot of the subframe based on the determined long term channel characteristic; Determining a short term channel characteristic from the first reference signal; Determining a precoding matrix from the long term channel characteristic and the short term channel characteristic; And transmitting a downlink signal through the determined precoding matrix.
  • DMRS Demod Generation-Reference Signal
  • a second technical aspect of the present invention is a base station apparatus for transmitting a downlink signal in a wireless communication system, comprising: a transmission module; And a processor, wherein the processor transmits a DeModulation-Reference Signal (DMRS) grant and determines a long term channel characteristic from a DMRS of a first slot of an uplink subframe received in response to the DMRS grant, Based on the determined long term channel characteristic, a first reference signal is received in a second slot of the subframe, a short term channel characteristic is determined from the first reference signal, and the long term channel characteristic and the short term channel are determined.
  • DMRS DeModulation-Reference Signal
  • a base station apparatus for determining a precoding matrix from a characteristic and transmitting a downlink signal through the determined precoding matrix.
  • the first technical aspect and the second technical aspect may include all or part of the following matters.
  • the DMRS grant may indicate that the terminal receiving the DMRS grant transmits the DMRS to the first slot regardless of whether uplink data to be transmitted exists.
  • the precoding matrix is Consists of, Is the precoding matrix, Is a pre-beamforming matrix determined by the long term channel characteristic, May be a precoding matrix determined from the short term channel characteristic.
  • the first reference signal may be a sounding reference signal (SRS) transmitted in a resource region other than the last OFDM symbol of the second slot.
  • SRS sounding reference signal
  • the Zadoff-Chu sequence used to generate the DMRS and the first reference signal may have a length determined according to a maximum transmission bandwidth.
  • the Zadoff-Chu sequence whose length is determined according to the maximum transmission bandwidth may be truncated according to the actual bandwidth.
  • the Zadoff-Chu sequence used to generate the SRS transmitted in the last OFDM symbol of the second slot may have a length determined according to the axial bandwidth.
  • 1 is a diagram illustrating a structure of a radio frame.
  • FIG. 2 is a diagram illustrating a resource grid in a downlink slot.
  • 3 is a diagram illustrating a structure of a downlink subframe.
  • FIG. 4 is a diagram illustrating a structure of an uplink subframe.
  • FIG. 5 is a configuration diagram of a wireless communication system having multiple antennas.
  • 6 to 7 are diagrams for explaining a large scale MIMO communication system.
  • FIGS. 8 to 9 are diagrams for explaining the RS configuration according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a configuration of a transmitting and receiving device.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • the base station has a meaning as a terminal node of the network that directly communicates with the terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point (AP), and the like.
  • the repeater may be replaced by terms such as relay node (RN) and relay station (RS).
  • the term “terminal” may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), a subscriber station (SS), and the like.
  • a base station may also be used as a meaning of a scheduling node or a cluster header. If the base station or the relay also transmits a signal transmitted by the terminal, it can be regarded as a kind of terminal.
  • the cell names described below are applied to transmission and reception points such as a base station (eNB), a sector, a remote radio head (RRH), a relay, and the like. It may be used as a generic term for identifying a component carrier.
  • eNB base station
  • RRH remote radio head
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802 system, 3GPP system, 3GPP LTE and LTE-Advanced (LTE-A) system and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced
  • WiMAX can be described by the IEEE 802.16e standard (WirelessMAN-OFDMA Reference System) and the advanced IEEE 802.16m standard (WirelessMAN-OFDMA Advanced system). For clarity, the following description focuses on 3GPP LTE and 3GPP LTE-A systems, but the technical spirit of the present invention is not limited thereto.
  • a structure of a radio frame will be described with reference to FIG. 1.
  • uplink / downlink data packet transmission is performed in units of subframes, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • a resource block (RB) is a resource allocation unit and may include a plurality of consecutive subcarriers in one block.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CP has an extended CP (normal CP) and a normal CP (normal CP).
  • normal CP normal CP
  • the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by an extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the normal CP.
  • the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the terminal moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
  • one subframe includes 14 OFDM symbols.
  • the first two or three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type 2 radio frames consist of two half frames, each of which has five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • One subframe consists of two slots.
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • one subframe consists of two slots regardless of the radio frame type.
  • the structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of symbols included in the slot may be variously changed.
  • FIG. 2 is a diagram illustrating a resource grid in a downlink slot.
  • One downlink slot includes seven OFDM symbols in the time domain and one resource block (RB) is shown to include 12 subcarriers in the frequency domain, but the present invention is not limited thereto.
  • one slot includes 7 OFDM symbols in the case of a general cyclic prefix (CP), but one slot may include 6 OFDM symbols in the case of an extended-CP (CP).
  • Each element on the resource grid is called a resource element.
  • One resource block includes 12 ⁇ 7 resource elements.
  • the number N DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 3 is a diagram illustrating a structure of a downlink subframe.
  • Up to three OFDM symbols at the front of the first slot in one subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbols correspond to data regions to which a Physical Downlink Shared Channel (PDSCH) is allocated.
  • Downlink control channels used in the 3GPP LTE / LTE-A system include, for example, a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), Physical Hybrid Automatic Repeat Request Indicator Channel (PHICH).
  • PCFICH Physical Control Format Indicator Channel
  • PDCH Physical Downlink Control Channel
  • PHICH Physical Hybrid Automatic Repeat Request Indicator Channel
  • the PHICH includes a HARQ ACK / NACK signal as a response of uplink transmission.
  • Control information transmitted through the PDCCH is referred to as downlink control information (DCI).
  • the DCI includes uplink or downlink scheduling information or an uplink transmit power control command for a certain terminal group.
  • the PDCCH is a resource allocation and transmission format of the downlink shared channel (DL-SCH), resource allocation information of the uplink shared channel (UL-SCH), paging information of the paging channel (PCH), system information on the DL-SCH, on the PDSCH Resource allocation of upper layer control messages such as random access responses transmitted to the network, a set of transmit power control commands for individual terminals in an arbitrary terminal group, transmission power control information, and activation of voice over IP (VoIP) And the like.
  • a plurality of PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted in an aggregation of one or more consecutive Control Channel Elements (CCEs).
  • CCEs Control Channel Elements
  • CCE is a logical allocation unit used to provide a PDCCH at a coding rate based on the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the number of CCEs required for the PDCCH may vary depending on the size and coding rate of the DCI. For example, any one of 1, 2, 4, and 8 CCEs (corresponding to PDCCH formats 0, 1, 2, and 3, respectively) may be used for PDCCH transmission, and when the size of DCI is large and / or channel state If a low coding rate is required due to poor quality, a relatively large number of CCEs may be used for one PDCCH transmission.
  • the base station determines the PDCCH format in consideration of the size of the DCI transmitted to the terminal, the cell bandwidth, the number of downlink antenna ports, the PHICH resource amount, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with an identifier called a Radio Network Temporary Identifier (RNTI) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the PDCCH is for a specific terminal, the cell-RNTI (C-RNTI) identifier of the terminal may be masked to the CRC.
  • a paging indicator identifier P-RNTI
  • SI-RNTI system information identifier and system information RNTI
  • RA-RNTI Random Access-RNTI
  • the uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) including uplink control information is allocated to the control region.
  • a physical uplink shared channel (PUSCH) including user data is allocated.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • one UE does not simultaneously transmit a PUCCH and a PUSCH.
  • PUCCH for one UE is allocated to an RB pair in a subframe. Resource blocks belonging to a resource block pair occupy different subcarriers for two slots. This is called a resource block pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • the transmitted packet is transmitted through a wireless channel
  • signal distortion may occur during the transmission process.
  • the distortion In order to correctly receive the distorted signal at the receiving end, the distortion must be corrected in the received signal using the channel information.
  • a method of transmitting the signal known to both the transmitting side and the receiving side and finding the channel information with the distortion degree when the signal is received through the channel is mainly used.
  • the signal is called a pilot signal or a reference signal.
  • the reference signal may be divided into an uplink reference signal and a downlink reference signal.
  • an uplink reference signal as an uplink reference signal,
  • DM-RS Demodulation-Reference Signal
  • SRS sounding reference signal
  • DM-RS Demodulation-Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • MBSFN Multimedia Broadcast Single Frequency Network
  • Reference signals can be classified into two types according to their purpose. There is a reference signal for obtaining channel information and a reference signal used for data demodulation. Since the former has a purpose for the UE to acquire channel information on the downlink, the UE should be transmitted over a wide band, and the UE should receive the reference signal even if the UE does not receive the downlink data in a specific subframe. It is also used in situations such as handover.
  • the latter is a reference signal transmitted together with a corresponding resource when the base station transmits a downlink, and the terminal can demodulate data by performing channel measurement by receiving the reference signal. This reference signal should be transmitted in the area where data is transmitted.
  • FIG. 5 is a configuration diagram of a wireless communication system having multiple antennas.
  • the theoretical ratio is proportional to the number of antennas, unlike when the transmitter or the receiver uses multiple antennas only.
  • Channel transmission capacity is increased. Therefore, the transmission rate can be improved and the frequency efficiency can be significantly improved.
  • the transmission rate can theoretically increase as the rate of increase rate R i multiplied by the maximum transmission rate R o when using a single antenna.
  • a transmission rate four times higher than a single antenna system may be theoretically obtained. Since the theoretical capacity increase of multi-antenna systems was proved in the mid 90's, various techniques to actively lead to the actual data rate improvement have been actively studied. In addition, some technologies are already being reflected in various wireless communication standards such as 3G mobile communication and next generation WLAN.
  • the research trends related to multi-antennas to date include the study of information theory aspects related to the calculation of multi-antenna communication capacity in various channel environments and multi-access environments, the study of wireless channel measurement and model derivation of multi-antenna systems, improvement of transmission reliability, and improvement of transmission rate. Research is being actively conducted from various viewpoints, such as research on space-time signal processing technology.
  • the transmission signal when there are N T transmit antennas, the maximum information that can be transmitted is N T.
  • the transmission information may be expressed as follows.
  • Each transmission information The transmit power may be different.
  • Each transmit power In this case, the transmission information whose transmission power is adjusted may be expressed as follows.
  • Weighting matrix N T transmitted signals actually applied by applying Consider the case where is configured.
  • Weighting matrix Plays a role in properly distributing transmission information to each antenna according to a transmission channel situation.
  • Vector It can be expressed as follows.
  • Received signal is received signal of each antenna when there are N R receiving antennas Can be expressed as a vector as
  • channels may be divided according to transmit / receive antenna indexes. From the transmit antenna j to the channel through the receive antenna i It is indicated by. Note that in the order of the index, the receiving antenna index is first, and the index of the transmitting antenna is later.
  • FIG. 5 (b) shows a channel from N T transmit antennas to receive antenna i .
  • the channels may be bundled and displayed in vector and matrix form.
  • a channel arriving from the total N T transmit antennas to the receive antenna i may be represented as follows.
  • AWGN Additive White Gaussian Noise
  • the received signal may be expressed as follows through the above-described mathematical modeling.
  • the channel matrix indicating the channel state The number of rows and columns of is determined by the number of transmit and receive antennas.
  • Channel matrix The number of rows is equal to the number of receive antennas N R
  • the number of columns is equal to the number of transmit antennas N T. That is, the channel matrix The matrix is N R ⁇ N T.
  • the rank of a matrix is defined as the minimum number of rows or columns that are independent of each other. Thus, the rank of the matrix cannot be greater than the number of rows or columns.
  • Channel matrix Rank of ( ) Is limited to
  • rank may be defined as the number of nonzero eigenvalues when the matrix is eigenvalue decomposition.
  • another definition of rank may be defined as the number of nonzero singular values when singular value decomposition is performed.
  • rank in the channel matrix The physical meaning of is the maximum number of different information that can be sent on a given channel.
  • 'rank' for MIMO transmission refers to the number of paths that can independently transmit signals at specific time points and specific frequency resources, and 'number of layers' denotes each path. It indicates the number of signal streams transmitted through the system. In general, since the transmitting end transmits the number of layers corresponding to the number of ranks used for signal transmission, unless otherwise specified, the rank has the same meaning as the number of layers.
  • SRS Sounding Reference Signal
  • the terminal may transmit the SRS on the SRS resources.
  • SRS transmission may be based on two trigger types: trigger type 0 in which SRS resources are indicated by higher layer signaling and trigger type 1 in which SRS resources are indicated by DCI format. If SRS transmission by trigger type 0 and trigger type 1 should be performed in the same subframe, the UE preferentially performs trigger type 1 SRS transmission.
  • the UE may be configured with SRS parameters for trigger type 0 and trigger type 1 for each serving cell.
  • SRS parameter Start physical resource block allocation Indicating the interval , SRS subframe offset , SRS cycle , for , SRS bandwidth Frequency hopping bandwidth , Circular movement , Antenna port count Etc.
  • SRS bandwidth Frequency hopping bandwidth
  • Circular movement Antenna port count Etc.
  • Detailed description of each parameter may be referred to the existing LTE standard document.
  • DCI format 4 may include an SRS request value as shown in Table 1 below, and an SRS parameter set may be determined according to each SRS request value.
  • DCI format 0 in a trigger type 1 SRS transmission a single parameter set configured by higher layer signaling is used.
  • DCI format 1A / 2B / 2C / 2D a common SRS parameter set configured by higher layer signaling is used.
  • SRS is transmitted on a subframe that satisfies Equation 12 below.
  • the terminal receiving the SRS request in subframe n And SRS may be transmitted in a first subframe that satisfies Equation 13 below.
  • each parameter may be based on Table 5 for FDD and Table 6 for TDD.
  • AAS active antenna system
  • AAS active antenna system
  • each antenna is composed of an active antenna including active circuits.
  • the AAS does not require a separate cable, connector, or other hardware for connecting the active circuit and the antenna according to the use of the active antenna, and thus has high efficiency in terms of energy and operation cost.
  • the AAS supports an electronic beam control scheme for each antenna, thereby enabling an advanced MIMO technology such as forming a precise beam pattern or a three-dimensional beam pattern in consideration of the beam direction and the beam width.
  • a large scale MIMO structure having a plurality of input / output antennas and a multi-dimensional antenna structure is considered.
  • a 3D beam pattern may be formed according to an active antenna of the AAS.
  • sector formation in a vertical direction as well as a horizontal direction of the beam may be considered.
  • the terminal can expect a signal power increase effect according to the antenna array gain when forming a reception beam by using a large reception antenna, and thus the performance requirements of the system may be satisfied with only a lower transmission power than before.
  • the base station In order to achieve the theoretically achievable gain in such a large-scale MIMO architecture, the base station must know the channel information between the base station and the terminal correctly. This requires much more channel information estimation and feedback than in the existing small scale MIMO architecture.
  • channel reciprocity since channel reciprocity is not available in an FDD system, not only a large amount of pilots are required for downlink but also a very high resolution PMI feedback for uplink. Accordingly, there is a need for a method for reducing the downlink pilot overhead and reducing the uplink channel information feedback in a large scale MIMO system while accurately acquiring channel information.
  • Equation 14 A system model applicable to an embodiment of the present invention will be described. It is assumed that the base station has M transmit antennas, and the terminal has a single receive antenna. However, the principle of the present invention is not applied only to a terminal having a single receiving antenna. The signal received from the terminal is shown in Equation 14 below.
  • Mx1 channel vector Is an Mxd downlink precoding matrix
  • Dx1 downlink transmission symbol vector Denotes an AWGN signal.
  • the precoding matrix may be represented by a double precoding structure as shown in Equation 15 below.
  • B is an M x b pre-beamforming matrix and P is a b x d precoding matrix.
  • the B matrix may be determined by the long term statistics of the channel, and when the UE is properly grouped, the UE may be grouped so that the channel is decoupled in the long term sense.
  • the B matrix may be implemented in the digital circuit of the baseband, but the B matrix reflecting the long term characteristic of the channel may be implemented by the analog circuit.
  • the AoD (angle of departure, in particular, from the base station to the UE) of the channel is similar to each other, and the AoDs are different from each other in the physically separated locations, thereby forming a B matrix orthogonal to each other.
  • a pre-beam forming matrix orthogonal to each other may be configured. If the base station can configure the pre-beamforming matrix for each terminal or terminal group as shown in the example, the base station transmits the precoded RS to which the pre-beamforming matrix is applied without having to transmit (show) the RS for the entire antenna.
  • the terminal only needs to perform channel estimation and feedback on the precoded RS. That is, since channel estimation and feedback of the UE need only be performed on the reduced dimension with respect to the pre-beamforming matrix, the burden for channel estimation and feedback in the large-scale MIMO system is considerably reduced.
  • the long term statistics of channels such as AoD and angular spread may be similar to UL bands and DL bends. Therefore, the base station proposes to perform long term statistics of channels using a UL band in a large MIMO system. That is, the UE estimates long term statistics of a channel by transmitting an uplink RS.
  • the number of antennas of the base station increases as in a large-scale MIMO system, the number of samples for estimating long term statistics of a channel must also increase in order to secure a certain level of long term statistics.
  • a base station has N antennas and requires at least N samples to estimate the nonsingular covariance matrix for N variables.
  • sample covariance matrix becomes singular if the number of samples is less than N.
  • estimation accuracy of the covariance matrix is very inaccurate, and in fact, a much larger number of samples is required.
  • a MIMO system with 64 antennas may require approximately 8 times more samples than an 8 antenna system to accurately estimate the covariance matrix.
  • SRS since the existing SRS is always transmitted only at the last symbol of SF, in order to estimate long term channel statistics in a large MIMO system, SRS should be transmitted for several tens or hundreds of subframes, which may cause excessive delay. This feature also occurs in a TDD system that estimates a downlink channel using channel reciprocity. The TDD system also needs to send more uplink reference signals before the base station can estimate long term statistics of the channel.
  • the first embodiment relates to a method of configuring uplink RS.
  • an uplink RS subframe / slot may be configured.
  • the subframe may be another time unit, for example, a slot.
  • One RS may be configured to transmit an RS in all symbols (of a predetermined frequency region) of a PUSCH region of one uplink subframe or subframe. Scheduling may be limited in such an uplink subframe.
  • the time / frequency location of the resource pool to which the RS is transmitted may be cell-specific and periodic (or aperiodic). That is, a certain RB may be periodically set as an RS transmission region in a PUSCH permanent area or a specific PUSCH resource region of a specific subframe may be set as an RS transmission region by a direct indication of a base station.
  • the period of the transmission resource, SF offset, RS sequence, repetition coefficient, time (symbol index or offset) and / or frequency resource location (eg, RB index) or offset, SRS bandwidth), all or part of the cyclic shift (CS) may be signaled to each terminal to the physical layer, and the other part may be signaled as a higher layer signal.
  • the signaling location may be reduced by setting a time location of the resource pool to which the RS is transmitted, that is, an OFDM symbol location or some of the aforementioned parameters depending on the terminal ID. For example, the number generated by modulating the RNTI with the number of OFDM symbols in a subframe may be designated as an uplink RS transmission position.
  • the frequency resource location of the resource pool to which the RS is transmitted may be used by using all of the frequency resource locations configured in each cell or by selecting only a specific part.
  • the time / frequency resource location used by each terminal may be signaled as a physical layer or higher layer signal in advance.
  • the location of time / frequency resources used by each terminal for RS transmission may be set depending on the terminal ID in order to reduce signaling overhead.
  • the uplink RS transmission resource pool may be divided into N time / frequency domains, and RS may be transmitted at a time / frequency domain position corresponding to a value obtained by modulating the terminal ID as N.
  • the location of the time frequency resource for transmitting each RS by the physical layer or higher layer signal may be signaled.
  • the base station may instruct to transmit the uplink RS to a specific terminal or a terminal group in the physical layer / upper layer signal.
  • Transmission period number of transmissions, SF offset, RS sequence, repetition coefficient, time (symbol index or offset) and / or frequency resource location (e.g., RB index or offset, SRS bandwidth), total or cyclic shift (CS)
  • CS frequency resource location
  • Some may be signaled to each terminal individually as a physical layer or higher layer signal. At this time, the remaining part may be indicated by a higher layer signal and some may be signaled together with a transmission indication signal of an eNB.
  • the RS transmitted in the above-described subframe may be SRS, DMRS, or the like. If the SRS, it may depend on the configuration and signaling method of the SRS defined in the existing LTE.
  • the SRS transmission triggering signal may be set by a higher layer or a physical layer signal, and may be cell specific or terminal (group) specific.
  • the position of a symbol for transmitting the SRS by the UE may be set in advance by a higher layer signal, and the above-described SRS parameters may also be signaled as a higher layer signal.
  • the position and transmission triggering of a symbol for transmitting the SRS may be signaled by a physical layer signal.
  • a single terminal may transmit a plurality of RSs in one uplink RS subframe, and the number of RSs that can be transmitted in one uplink RS subframe may be set by a network.
  • the frequency resource position and the transmission symbol position transmitted by each terminal may be signaled in advance as a higher layer or a physical layer signal, and the transmission triggering signal may also be signaled as a physical layer or a higher layer signal. Can be.
  • a new format of RS that is not defined as an uplink RS in existing LTE may be used.
  • the new RS refers to an increase of the available transmission comb, a transmission symbol position, and the number of CS (increase / decrease of the number of CS) in the existing uplink RS.
  • one or more of RS bandwidth (support wide bandwidth only or restrict some bandwidth) and RS sequence (not na? Ve ZC sequences, for example, truncated ZC sequences) may be different.
  • the existing SRS supports up to 2 repetition coefficients
  • the SRS transmitted in the uplink RS subframe may be transmitted by supporting a larger repetition coefficient.
  • a repetition coefficient of 4, 6, or 8 may be supported.
  • the number of CSs may be used in a smaller number of CS sets, such as 4 or 6 rather than 8 used in the existing SRS, or a CS set whose number is increased to 10 or 12.
  • the reason for reducing the number of CS sets is to reduce the number of CSs for improved reception performance in the symbol domain because the RS transmission capacity is increased in the time domain, and when the number of CS sets is increased, the total RS transmission capacity is increased.
  • the SRS configuration may use only a configuration transmitted in the widest frequency region in a given system bandwidth, or an SRS configuration using only some narrow bands of the existing SRS configuration may not be used.
  • This method has an advantage of rapidly estimating long term statistics and excluding some components from signaling, thereby reducing signaling overhead.
  • a rule may be determined to always use a narrowband SRS configuration in order to reduce RS collision between terminals.
  • DMRS and SRS may be a truncated zadoff-chu sequence (ZC sequence). More specifically, in the generation of the SRS or DMRS, the length of the ZC sequence is determined by determining the sequence length based on the maximum transmission bandwidth or a predetermined bandwidth, not the actual bandwidth, and then the actual bandwidth (or preliminary). Can be truncated according to the bandwidth specified in. Cyclic shift may be applied to the ZC sequence of the maximum transmission bandwidth length. As such, when a truncated ZC sequence is used, a larger number of ZC sequences may be generated. For example, if the maximum BW is 40RB and the axial bandwidth is 10RB, four times as many RS sequences can be generated.
  • ZC sequence truncated zadoff-chu sequence
  • the truncated ZC sequence is not completely orthogonal even if the CS is set differently within the axial bandwidth.
  • the probability of using a ZC sequence such as an adjacent cell can be reduced.
  • the base station knows which terminal transmits which RS sequence in the serving cell, even if the RS of the serving cell is quasi orthogonal, the RS reception performance can be improved through a successive interference cancellation (SIC) receiver.
  • SIC successive interference cancellation
  • the RS capacity can be increased by allowing more combinations of RSs to be transmitted.
  • the resource region through which the RS is transmitted may be as described above, or may be an area other than the region through which the existing RS is transmitted.
  • the region in which the truncated SRS is transmitted may be the remaining region except for the existing DMRS or the OFDM symbol in which the SRS is transmitted as illustrated in FIG. 9. This is to reuse the existing format in the symbol that the existing RS is transmitted for backward compatibility with legacy terminals.
  • the terminal transmits the RS through an RS grant independent of the uplink packet, and the base station receives the RS to estimate the long term statistics of the channel.
  • the RS grant may use a new form of DCI format or a DCI format defined in existing LTE. If the DCI format for uplink authorization defined in the existing LTE is used, the RA field and the RS CS field may be reused for configuring the RS and the frequency domain in which the RS is transmitted, and the remaining fields are different. Can be used for purposes. In this case, the CS of the RS may be configured and signaled so that a collision with the terminal that has received the conventional PUSCH scheduling does not occur.
  • such RS CS and RA may be signaled as an upper layer signal in advance.
  • the period in which the RS is transmitted and the SF position may also be signaled to the terminal as a higher layer signal.
  • the length is set to one of the existing DCI formats, which is advantageous in that it does not increase the number of blind decoding, for example, by reusing the DCI format 3 / 3A to a specific group of terminals. It may be implemented in a manner to instruct the RS transmission at the same time.
  • the base station may transmit an RS grant to the terminals.
  • this RS grant instructs the terminal to transmit the RS regardless of whether there is uplink data to be transmitted by the terminal that has received the RS grant.
  • the UEs can transmit a DMRS in a first slot of an uplink subframe and a first reference signal (eg, SRS) in a second slot.
  • SRS first reference signal
  • the base station may determine the long term channel characteristic through the DMRS of the first slot. Based on this channel characteristic, the SRS may be received in the second slot of the subframe, and the short term channel characteristic may be determined therefrom.
  • the precoding matrix may be determined from the long term channel characteristic and the short term channel characteristic, and the downlink signal may be transmitted through the determined precoding matrix.
  • the precoding matrix is Can be composed of Is the precoding matrix, Is a pre-beamforming matrix determined by the long term channel characteristic, May mean a precoding matrix determined from the short term channel characteristic.
  • the DMRS and / or SRS may be based on the truncated ZC sequence described above. That is, the Zadoff-Chu sequence used to generate the RSs may have a length determined according to a maximum transmission bandwidth (or a predetermined bandwidth). As described above, the Zadoff-Chu sequence whose length is determined according to the maximum transmission bandwidth may be truncated according to the actual bandwidth.
  • the SRS may be transmitted on symbols other than the last symbol of the subframe to ensure the operation of the legacy legacy terminals.
  • the Zadoff-Chu sequence used to generate the SRS transmitted in a symbol other than the last symbol of the subframe has a length determined according to the maximum transmission bandwidth, and in comparison, a character used to generate the SRS transmitted in the last symbol is compared.
  • the dope-chu sequence may be one whose length is determined according to the axial bandwidth.
  • the above descriptions are not only used for estimating long term statistics in FDD, but may also be used to reduce pilot contamination by increasing uplink RS capacity in a technique using channel reciprocity in a TDD system.
  • a time domain or frequency domain ICIC may be introduced in a region where RSs of neighbor cells are transmitted.
  • cell A may transmit an RS in a time frequency resource called A
  • cell B may transmit an RS in a time frequency resource called B (where resource A and resource B are orthogonal with each other).
  • the unit in which ICIC is performed may be a subframe unit, a symbol unit, an RB unit, or a slot unit.
  • base stations may share information on RS resource regions to be used by their own cells through a backhaul (eg, an X2 interface).
  • FIG. 10 is a diagram illustrating the configuration of a transmission point apparatus and a terminal apparatus according to an embodiment of the present invention.
  • the transmission point apparatus 10 may include a reception module 11, a transmission module 12, a processor 13, a memory 14, and a plurality of antennas 15. .
  • the plurality of antennas 15 refers to a transmission point apparatus that supports MIMO transmission and reception.
  • the receiving module 11 may receive various signals, data, and information on the uplink from the terminal.
  • the transmission module 12 may transmit various signals, data, and information on downlink to the terminal.
  • the processor 13 may control the overall operation of the transmission point apparatus 10.
  • the processor 13 of the transmission point apparatus 10 may process matters necessary in the above-described embodiments.
  • the processor 13 of the transmission point apparatus 10 performs a function of processing the information received by the transmission point apparatus 10, information to be transmitted to the outside, and the memory 14 stores the calculated information and the like. It may be stored for a predetermined time and may be replaced by a component such as a buffer (not shown).
  • the terminal device 20 may include a reception module 21, a transmission module 22, a processor 23, a memory 24, and a plurality of antennas 25. have.
  • the plurality of antennas 25 refers to a terminal device that supports MIMO transmission and reception.
  • the receiving module 21 may receive various signals, data, and information on downlink from the base station.
  • the transmission module 22 may transmit various signals, data, and information on the uplink to the base station.
  • the processor 23 may control operations of the entire terminal device 20.
  • the processor 23 of the terminal device 20 may process matters necessary in the above-described embodiments.
  • the processor 23 of the terminal device 20 performs a function of processing the information received by the terminal device 20, information to be transmitted to the outside, etc., and the memory 24 stores the calculated information and the like for a predetermined time. And may be replaced by a component such as a buffer (not shown).
  • the description of the transmission point apparatus 10 may be equally applicable to a relay apparatus as a downlink transmission entity or an uplink reception entity, and the description of the terminal device 20 is a downlink. The same may be applied to a relay apparatus as a receiving subject or an uplink transmitting subject.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Embodiments of the present invention as described above may be applied to various mobile communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 일 실시예는, 무선통신시스템에서 기지국이 하향링크 신호를 전송하는 방법에 있어서, DMRS(DeModulation-Reference Signal) 승인을 전송하는 단계; 상기 DMRS 승인에 대한 응답으로써 수신된 상향링크 서브프레임의 첫 번째 슬롯의 DMRS로부터 롱 텀 채널 특성을 결정하는 단계; 상기 결정된 롱 텀 채널 특성에 기초하여, 상기 서브프레임의 두 번째 슬롯에서 제1 참조신호를 수신하는 단계; 상기 제1 참조신호로부터 숏 텀 채널 특성을 결정하는 단계; 상기 롱 텀 채널 특성 및 상기 숏 텀 채널 특성으로부터 프리코딩 행렬을 결정하는 단계; 및 상기 결정된 프리코딩 행렬을 통해 하향링크 신호를 전송하는 단계를 포함하는, 하향링크 신호 전송 방법이다.

Description

무선 통신 시스템에서 하향링크 신호 전송 방법 및 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 상세하게는 대규모 MIMO에서 채널 추정을 위한 RS 구성, 송수신 방법, 이를 통한 기지국의 하향링크 신호 전송 방법 및 장치에 대한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
본 발명에서는 대규모 MIMO에서 채널 추정을 위한 RS 구성, 송수신 방법, 이를 통한 기지국의 채널 추정 방법, 하향링크 신호 전송 방법을 기술적 과제로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 제1 기술적인 측면은, 무선통신시스템에서 기지국이 하향링크 신호를 전송하는 방법에 있어서, DMRS(DeModulation-Reference Signal) 승인을 전송하는 단계; 상기 DMRS 승인에 대한 응답으로써 수신된 상향링크 서브프레임의 첫 번째 슬롯의 DMRS로부터 롱 텀 채널 특성을 결정하는 단계; 상기 결정된 롱 텀 채널 특성에 기초하여, 상기 서브프레임의 두 번째 슬롯에서 제1 참조신호를 수신하는 단계; 상기 제1 참조신호로부터 숏 텀 채널 특성을 결정하는 단계; 상기 롱 텀 채널 특성 및 상기 숏 텀 채널 특성으로부터 프리코딩 행렬을 결정하는 단계; 및 상기 결정된 프리코딩 행렬을 통해 하향링크 신호를 전송하는 단계를 포함하는, 하향링크 신호 전송 방법이다.
본 발명의 제2 기술적인 측면은, 무선통신시스템에서 하향링크 신호를 송신하는 기지국 장치에 있어서, 전송 모듈; 및 프로세서를 포함하고, 상기 프로세서는, DMRS(DeModulation-Reference Signal) 승인을 전송하고, 상기 DMRS 승인에 대한 응답으로써 수신된 상향링크 서브프레임의 첫 번째 슬롯의 DMRS로부터 롱 텀 채널 특성을 결정하고, 상기 결정된 롱 텀 채널 특성에 기초하여, 상기 서브프레임의 두 번째 슬롯에서 제1 참조신호를 수신하며, 상기 제1 참조신호로부터 숏 텀 채널 특성을 결정하고, 상기 롱 텀 채널 특성 및 상기 숏 텀 채널 특성으로부터 프리코딩 행렬을 결정하고, 상기 결정된 프리코딩 행렬을 통해 하향링크 신호를 전송하는, 기지국 장치이다.
상기 제1 기술적인 측면 및 제2 기술적인 측면은 다음 사항들의 전/일부를 포함할 수 있다.
상기 DMRS 승인은, 상기 DMRS 승인을 수신한 단말이 전송할 상향링크 데이터가 존재하는지 여부에 관계없이 상기 첫 번째 슬롯에 DMRS를 전송하도록 지시하는 것일 수 있다.
상기 프리코딩 행렬은
Figure PCTKR2015007458-appb-I000001
로 구성되며,
Figure PCTKR2015007458-appb-I000002
는 상기 프리코딩 행렬,
Figure PCTKR2015007458-appb-I000003
는 상기 롱 텀 채널 특성으로 결정되는 프리-빔포밍(pre-beamforming) 행렬, 상기
Figure PCTKR2015007458-appb-I000004
는 상기 숏 텀 채널 특성으로부터 결정되는 프리코딩 행렬 일 수 있다.
상기 제1 참조신호는 상기 두 번째 슬롯의 마지막 OFDM 심볼을 제외한 자원 영역에서 전송되는 사운딩 참조 신호(Sounding Reference Signal, SRS) 일 수 있다.
상기 DMRS 및 제1 참조신호의 생성에 사용되는 자도프-추 시퀀스는 최대 전송 대역폭에 따라 길이가 결정된 것 일 수 있다.
상기 최대 전송 대역폭에 따라 길이가 결정된 자도프-추 시퀀스는 액추얼(actual) 대역폭에 따라 트렁케이션(truncation)될 수 있다.
상기 두 번째 슬롯의 마지막 OFDM 심볼에서 전송되는 SRS의 생성에 사용되는 자도프-추 시퀀스는 액추얼 대역폭에 따라 길이가 결정된 것 일 수 있다.
본 발명에 따르면 효율적으로 대규모 MIMO를 구성하기 위한 참조 신호를 수신할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 무선 프레임의 구조를 나타내는 도면이다.
도 2는 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다.
도 5는 다중안테나를 갖는 무선 통신 시스템의 구성도이다.
도 6 내지 도 7은 대규모 MIMO 통신 시스템을 설명하기 위한 도면이다.
도 8 내지 도 9는 본 발명의 실시예에 의한 RS 구성을 설명하기 위한 도면이다.
도 10는 송수신 장치의 구성을 도시한 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
본 명세서에서 본 발명의 실시예들을 기지국과 단말 간의 데이터 송신 및 수신의 관계를 중심으로 설명한다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNode B(eNB), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 중계기는 Relay Node(RN), Relay Station(RS) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station), SS(Subscriber Station) 등의 용어로 대체될 수 있다. 또한, 이하의 설명에서 기지국이라 함은 스케줄링 수행 노드, 클러스터 헤더(cluster header) 등을 장치를 지칭하는 의미로써도 사용될 수 있다. 만약 기지국이나 릴레이도 단말이 전송하는 신호를 전송한다면, 일종의 단말로 간주할 수 있다.
이하에서 기술되는 셀의 명칭은 기지국(base station, eNB), 섹터(sector), 리모트라디오헤드(remote radio head, RRH), 릴레이(relay)등의 송수신 포인트에 적용되며, 또한 특정 송수신 포인트에서 구성 반송파(component carrier)를 구분하기 위한 포괄적인 용어로 사용되는 것일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다. WiMAX는 IEEE 802.16e 규격(WirelessMAN-OFDMA Reference System) 및 발전된 IEEE 802.16m 규격(WirelessMAN-OFDMA Advanced system)에 의하여 설명될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
LTE/LTE-A 자원 구조/채널
도 1을 참조하여 무선 프레임의 구조에 대하여 설명한다.
셀룰라 OFDM 무선 패킷 통신 시스템에서, 상/하향링크 데이터 패킷 전송은 서브프레임 (subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1(a)는 타입 1 무선 프레임의 구조를 나타내는 도면이다. 하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block; RB)을 포함한다. 3GPP LTE/LTE-A 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 블록(Resource Block; RB)은 자원 할당 단위이고, 하나의 블록에서 복수개의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 일반 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 일반 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 일반 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.
일반 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 2개 또는 3개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 1(b)는 타입 2 무선 프레임의 구조를 나타내는 도면이다. 타입 2 무선 프레임은 2개의 해프 프레임 (half frame)으로 구성되며, 각 해프 프레임은 5개의 서브프레임과 DwPTS (Downlink Pilot Time Slot), 보호구간(Guard Period; GP), UpPTS (Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. 한편, 무선 프레임의 타입에 관계 없이 1개의 서브프레임은 2개의 슬롯으로 구성된다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
도 2는 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다. 하나의 하향링크 슬롯은 시간 영역에서 7 개의 OFDM 심볼을 포함하고, 하나의 자원블록(RB)은 주파수 영역에서 12 개의 부반송파를 포함하는 것으로 도시되어 있지만, 본 발명이 이에 제한되는 것은 아니다. 예를 들어, 일반 CP(Cyclic Prefix)의 경우에는 하나의 슬롯이 7 OFDM 심볼을 포함하지만, 확장된 CP(extended-CP)의 경우에는 하나의 슬롯이 6 OFDM 심볼을 포함할 수 있다. 자원 그리드 상의 각각의 요소는 자원 요소(resource element)라 한다. 하나의 자원블록은 12×7 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록들의 개수(NDL)는 하향링크 전송 대역폭에 따른다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다. 하나의 서브프레임 내에서 첫 번째 슬롯의 앞 부분의 최대 3 개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 해당한다. 나머지 OFDM 심볼들은 물리하향링크공유채널(Physical Downlink Shared Channel; PDSCH)이 할당되는 데이터 영역에 해당한다. 3GPP LTE/LTE-A 시스템에서 사용되는 하향링크 제어 채널들에는, 예를 들어, 물리제어포맷지시자채널(Physical Control Format Indicator Channel; PCFICH), 물리하향링크제어채널(Physical Downlink Control Channel; PDCCH), 물리HARQ지시자채널(Physical Hybrid automatic repeat request Indicator Channel; PHICH) 등이 있다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내의 제어 채널 전송에 사용되는 OFDM 심볼의 개수에 대한 정보를 포함한다. PHICH는 상향링크 전송의 응답으로서 HARQ ACK/NACK 신호를 포함한다. PDCCH를 통하여 전송되는 제어 정보를 하향링크제어정보(Downlink Control Information; DCI)라 한다. DCI는 상향링크 또는 하향링크 스케듈링 정보를 포함하거나 임의의 단말 그룹에 대한 상향링크 전송 전력 제어 명령을 포함한다. PDCCH는 하향링크공유채널(DL-SCH)의 자원 할당 및 전송 포맷, 상향링크공유채널(UL-SCH)의 자원 할당 정보, 페이징채널(PCH)의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 임의접속응답(Random Access Response)과 같은 상위계층 제어 메시지의 자원 할당, 임의의 단말 그룹 내의 개별 단말에 대한 전송 전력 제어 명령의 세트, 전송 전력 제어 정보, VoIP(Voice over IP)의 활성화 등을 포함할 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 이상의 연속하는 제어채널요소(Control Channel Element; CCE)의 조합(aggregation)으로 전송된다. CCE는 무선 채널의 상태에 기초한 코딩 레이트로 PDCCH를 제공하기 위해 사용되는 논리 할당 단위이다. CCE는 복수개의 자원 요소 그룹에 대응한다. PDCCH를 위해 필요한 CCE의 개수는 DCI의 크기와 코딩 레이트 등에 따라 달라질 수 있다. 예를 들어, PDCCH 전송에는 CCE 개수 1, 2, 4, 8(각각 PDCCH 포맷 0, 1, 2, 3에 대응)개 중 어느 하나가 사용될 수 있으며, DCI의 크기가 큰 경우 및/또는 채널 상태가 좋지 않아 낮은 코딩 레이트가 필요한 경우 상대적으로 많은 개수의 CCE가 하나의 PDCCH 전송을 위해 사용될 수 있다. 기지국은 단말에게 전송되는 DCI의 크기, 셀 대역폭, 하향링크 안테나 포트의 개수, PHICH 자원 양 등을 고려하여 PDCCH 포맷을 결정하고, 제어 정보에 순환잉여검사(Cyclic Redundancy Check; CRC)를 부가한다. CRC는 PDCCH의 소유자 또는 용도에 따라 무선 네트워크 임시 식별자(Radio Network Temporary Identifier; RNTI)라 하는 식별자로 마스킹된다. PDCCH가 특정 단말에 대한 것이면, 단말의 cell-RNTI(C-RNTI) 식별자가 CRC에 마스킹될 수 있다. 또는, PDCCH가 페이징 메시지에 대한 것이면, 페이징 지시자 식별자(Paging Indicator Identifier; P-RNTI)가 CRC에 마스킹될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(SIB))에 대한 것이면, 시스템 정보 식별자 및 시스템 정보 RNTI(SI-RNTI)가 CRC에 마스킹될 수 있다. 단말의 임의 접속 프리앰블의 전송에 대한 응답인 임의접속응답을 나타내기 위해, 임의접속-RNTI(RA-RNTI)가 CRC에 마스킹될 수 있다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다. 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 분할될 수 있다. 제어 영역에는 상향링크 제어 정보를 포함하는 물리상향링크제어채널(Physical Uplink Control Channel; PUCCH)이 할당된다. 데이터 영역에는 사용자 데이터를 포함하는 물리상향링크공유채널(Physical Uplink Shared Channel; PUSCH)이 할당된다. 단일 반송파 특성을 유지하기 위해서, 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)에 할당된다. 자원블록 쌍에 속하는 자원블록들은 2 슬롯에 대하여 상이한 부반송파를 차지한다. 이를 PUCCH에 할당되는 자원블록 쌍이 슬롯 경계에서 주파수-호핑(frequency-hopped)된다고 한다.
참조 신호 (Reference Signal; RS)
무선 통신 시스템에서 패킷을 전송할 때, 전송되는 패킷은 무선 채널을 통해서 전송되기 때문에 전송과정에서 신호의 왜곡이 발생할 수 있다. 왜곡된 신호를 수신측에서 올바로 수신하기 위해서는 채널 정보를 이용하여 수신 신호에서 왜곡을 보정하여야 한다. 채널 정보를 알아내기 위해서, 송신측과 수신측에서 모두 알고 있는 신호를 전송하여, 상기 신호가 채널을 통해 수신될 때의 왜곡 정도를 가지고 채널 정보를 알아내는 방법을 주로 사용한다. 상기 신호를 파일럿 신호(Pilot Signal) 또는 참조신호(Reference Signal)라고 한다.
다중안테나를 사용하여 데이터를 송수신하는 경우에는 각 송신 안테나와 수신 안테나 사이의 채널 상황을 알아야 올바른 신호를 수신할 수 있다. 따라서, 각 송신 안테나 별로, 좀더 자세하게는 안테나 포트(port)별로 별도의 참조신호가 존재하여야 한다.
참조신호는 상향링크 참조신호와 하향링크 참조신호로 구분될 수 있다. 현재 LTE 시스템에는 상향링크 참조신호로써,
i) PUSCH 및 PUCCH를 통해 전송된 정보의 코히런트(coherent)한 복조를 위한 채널 추정을 위한 복조 참조신호(DeModulation-Reference Signal, DM-RS)
ii) 기지국이, 네트워크가 다른 주파수에서의 상향링크 채널 품질을 측정하기 위한 사운딩 참조신호(Sounding Reference Signal, SRS)가 있다.
한편, 하향링크 참조신호에는,
i) 셀 내의 모든 단말이 공유하는 셀-특정 참조신호(Cell-specific Reference Signal, CRS)
ii) 특정 단말만을 위한 단말-특정 참조신호(UE-specific Reference Signal)
iii) PDSCH가 전송되는 경우 코히런트한 복조를 위해 전송되는 (DeModulation-Reference Signal, DM-RS)
iv) 하향링크 DMRS가 전송되는 경우 채널 상태 정보(Channel State Information; CSI)를 전달하기 위한 채널상태정보 참조신호(Channel State Information- Reference Signal, CSI-RS)
v) MBSFN(Multimedia Broadcast Single Frequency Network) 모드로 전송되는 신호에 대한 코히런트한 복조를 위해 전송되는 MBSFN 참조신호(MBSFN Reference Signal)
vi) 단말의 지리적 위치 정보를 추정하는데 사용되는 위치 참조신호(Positioning Reference Signal)가 있다.
참조신호는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 정보 획득을 위한 목적의 참조신호와 데이터 복조를 위해 사용되는 참조신호가 있다. 전자는 UE가 하향 링크로의 채널 정보를 획득하는데 그 목적이 있으므로 광대역으로 전송되어야 하고, 특정 서브 프레임에서 하향 링크 데이터를 수신하지 않는 단말이라도 그 참조신호를 수신하여야 한다. 또한 이는 핸드오버 등의 상황에서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 리소스에 함께 보내는 참조신호로서, 단말은 해당 참조신호를 수신함으로써 채널 측정을 하여 데이터를 복조할 수 있게 된다. 이 참조신호는 데이터가 전송되는 영역에 전송되어야 한다.
다중안테나(MIMO) 시스템의 모델링
도 5는 다중안테나를 갖는 무선 통신 시스템의 구성도이다.
도 5(a)에 도시된 바와 같이 송신 안테나의 수를 N T 개로, 수신 안테나의 수를 N R 개로 늘리면, 송신기나 수신기에서만 다수의 안테나를 사용하게 되는 경우와 달리 안테나 수에 비례하여 이론적인 채널 전송 용량이 증가한다. 따라서, 전송 레이트를 향상시키고 주파수 효율을 획기적으로 향상시킬 수 있다. 채널 전송 용량이 증가함에 따라, 전송 레이트는 이론적으로 단일 안테나 이용시의 최대 전송 레이트(R o )에 레이트 증가율(R i )이 곱해진 만큼 증가할 수 있다.
수학식 1
Figure PCTKR2015007458-appb-M000001
예를 들어, 4개의 송신 안테나와 4개의 수신 안테나를 이용하는 MIMO 통신 시스템에서는 단일 안테나 시스템에 비해 이론상 4배의 전송 레이트를 획득할 수 있다. 다중안테나 시스템의 이론적 용량 증가가 90 년대 중반에 증명된 이후 이를 실질적인 데이터 전송률 향상으로 이끌어 내기 위한 다양한 기술들이 현재까지 활발히 연구되고 있다. 또한, 몇몇 기술들은 이미 3 세대 이동 통신과 차세대 무선랜 등의 다양한 무선 통신의 표준에 반영되고 있다.
현재까지의 다중안테나 관련 연구 동향을 살펴보면 다양한 채널 환경 및 다중접속 환경에서의 다중안테나 통신 용량 계산 등과 관련된 정보 이론 측면 연구, 다중안테나 시스템의 무선 채널 측정 및 모형 도출 연구, 전송 신뢰도 향상 및 전송률 향상을 위한 시공간 신호 처리 기술 연구 등 다양한 관점에서 활발히 연구가 진행되고 있다.
다중안테나 시스템에서의 통신 방법을 수학적 모델링을 이용하여 보다 구체적으로 설명한다. 상기 시스템에는 N T 개의 송신 안테나와 N R 개의 수신 안테나가 존재한다고 가정한다.
송신 신호를 살펴보면, N T 개의 송신 안테나가 있는 경우 전송 가능한 최대 정보는 N T 개이다. 전송 정보는 다음과 같이 표현될 수 있다.
수학식 2
Figure PCTKR2015007458-appb-M000002
각각의 전송 정보
Figure PCTKR2015007458-appb-I000005
는 전송 전력이 다를 수 있다. 각각의 전송 전력을
Figure PCTKR2015007458-appb-I000006
라고 하면, 전송 전력이 조정된 전송 정보는 다음과 같이 표현될 수 있다.
수학식 3
Figure PCTKR2015007458-appb-M000003
또한,
Figure PCTKR2015007458-appb-I000007
는 전송 전력의 대각행렬
Figure PCTKR2015007458-appb-I000008
를 이용해 다음과 같이 표현될 수 있다.
수학식 4
Figure PCTKR2015007458-appb-M000004
전송전력이 조정된 정보 벡터
Figure PCTKR2015007458-appb-I000009
에 가중치 행렬
Figure PCTKR2015007458-appb-I000010
가 적용되어 실제 전송되는 N T 개의 송신신호
Figure PCTKR2015007458-appb-I000011
가 구성되는 경우를 고려해 보자. 가중치 행렬
Figure PCTKR2015007458-appb-I000012
는 전송 정보를 전송 채널 상황 등에 따라 각 안테나에 적절히 분배해 주는 역할을 한다.
Figure PCTKR2015007458-appb-I000013
는 벡터
Figure PCTKR2015007458-appb-I000014
를 이용하여 다음과 같이 표현될 수 있다.
수학식 5
Figure PCTKR2015007458-appb-M000005
여기에서,
Figure PCTKR2015007458-appb-I000015
i번째 송신 안테나와 j번째 정보간의 가중치를 의미한다.
Figure PCTKR2015007458-appb-I000016
는 프리코딩 행렬이라고도 불린다.
수신신호는 N R 개의 수신 안테나가 있는 경우 각 안테나의 수신신호
Figure PCTKR2015007458-appb-I000017
은 벡터로 다음과 같이 표현될 수 있다.
수학식 6
Figure PCTKR2015007458-appb-M000006
다중안테나 무선 통신 시스템에서 채널을 모델링하는 경우, 채널은 송수신 안테나 인덱스에 따라 구분될 수 있다. 송신 안테나 j로부터 수신 안테나 i를 거치는 채널을
Figure PCTKR2015007458-appb-I000018
로 표시하기로 한다.
Figure PCTKR2015007458-appb-I000019
에서, 인덱스의 순서가 수신 안테나 인덱스가 먼저, 송신 안테나의 인덱스가 나중임에 유의한다.
한편, 도 5(b)은 N T 개의 송신 안테나에서 수신 안테나 i로의 채널을 도시한 도면이다. 상기 채널을 묶어서 벡터 및 행렬 형태로 표시할 수 있다. 도 5(b)에서, 총 N T 개의 송신 안테나로부터 수신 안테나 i로 도착하는 채널은 다음과 같이 나타낼 수 있다.
수학식 7
Figure PCTKR2015007458-appb-M000007
따라서, N T 개의 송신 안테나로부터 N R 개의 수신 안테나로 도착하는 모든 채널은 다음과 같이 표현될 수 있다.
수학식 8
Figure PCTKR2015007458-appb-M000008
실제 채널에는 채널 행렬
Figure PCTKR2015007458-appb-I000020
를 거친 후에 백색잡음(AWGN; Additive White Gaussian Noise)이 더해진다. N R 개의 수신 안테나 각각에 더해지는 백색잡음
Figure PCTKR2015007458-appb-I000021
은 다음과 같이 표현될 수 있다.
수학식 9
Figure PCTKR2015007458-appb-M000009
상술한 수식 모델링을 통해 수신신호는 다음과 같이 표현될 수 있다.
수학식 10
Figure PCTKR2015007458-appb-M000010
한편, 채널 상태를 나타내는 채널 행렬
Figure PCTKR2015007458-appb-I000022
의 행과 열의 수는 송수신 안테나의 수에 의해 결정된다. 채널 행렬
Figure PCTKR2015007458-appb-I000023
에서 행의 수는 수신 안테나의 수 N R 과 같고, 열의 수는 송신 안테나의 수 N T 와 같다. 즉, 채널 행렬
Figure PCTKR2015007458-appb-I000024
는 행렬이 N R ×N T 된다.
행렬의 랭크(rank)는 서로 독립인(independent) 행 또는 열의 개수 중에서 최소 개수로 정의된다. 따라서, 행렬의 랭크는 행 또는 열의 개수 보다 클 수 없다. 채널 행렬
Figure PCTKR2015007458-appb-I000025
의 랭크(
Figure PCTKR2015007458-appb-I000026
)는 다음과 같이 제한된다.
수학식 11
Figure PCTKR2015007458-appb-M000011
랭크의 다른 정의는 행렬을 고유치 분해(Eigen value decomposition) 하였을 때, 0이 아닌 고유치들의 개수로 정의할 수 있다. 유사하게, 랭크의 또 다른 정의는 특이치 분해(singular value decomposition) 하였을 때, 0이 아닌 특이치들의 개수로 정의할 수 있다. 따라서, 채널 행렬에서 랭크. 의 물리적인 의미는 주어진 채널에서 서로 다른 정보를 보낼 수 있는 최대 수라고 할 수 있다.
본 문서의 설명에 있어서, MIMO 전송에 대한 '랭크(Rank)' 는 특정 시점 및 특정 주파수 자원에서 독립적으로 신호를 전송할 수 있는 경로의 수를 나타내며, '레이어(layer)의 개수' 는 각 경로를 통해 전송되는 신호 스트림의 개수를 나타낸다. 일반적으로 송신단은 신호 전송에 이용되는 랭크 수에 대응하는 개수의 레이어를 전송하기 때문에 특별한 언급이 없는 한 랭크는 레이어 개수와 동일한 의미를 가진다.
사운딩 참조 신호(Sounding Reference Signal, SRS)
기지국의 상향링크 채널 추정을 위해, 단말은 SRS 자원 상에서 SRS를 전송할 수 있다. SRS 전송은 상위계층 시그널링에 의해 SRS 자원이 지시되는 트리거 타입 0, DCI 포맷에 의해 SRS 자원이 지시되는 트리거 타입 1, 두 가지 트리거 타입에 의할 수 있다. 만약, 트리거 타입 0와 트리거 타입 1에 의한 SRS 전송이 동일한 서브프레임에서 수행되어야 하는 경우, 단말은 트리거 타입 1 SRS 전송을 우선하여 수행한다.
단말에게는 각 서빙 셀에 대해 트리거 타입 0 및 트리거 타입 1을 위한 SRS 파라미터가 구성(configured)될 수 있다. SRS 파라미터로,
Figure PCTKR2015007458-appb-I000027
, 시작 물리 자원 블록 할당
Figure PCTKR2015007458-appb-I000028
, 구간을 지시하는
Figure PCTKR2015007458-appb-I000029
, SRS 서브프레임 오프셋
Figure PCTKR2015007458-appb-I000030
, SRS 주기
Figure PCTKR2015007458-appb-I000031
,
Figure PCTKR2015007458-appb-I000032
를 위한
Figure PCTKR2015007458-appb-I000033
, SRS 대역폭
Figure PCTKR2015007458-appb-I000034
, 주파수 호핑 대역폭
Figure PCTKR2015007458-appb-I000035
, 순환이동
Figure PCTKR2015007458-appb-I000036
, 안테나 포트 개수
Figure PCTKR2015007458-appb-I000037
등이 있다. 각 파라미터에 대한 상세한 설명은 기존 LTE 표준 문서가 참조될 수 있다.
트리거 타입 1 SRS 전송에서, DCI 포맷 4는 다음 표 1과 같은 SRS 요청 값을 포함할 수 있고, 각 SRS 요청 값에 따라 SRS 파라미터 세트가 결정될 수 있다.
표 1
Figure PCTKR2015007458-appb-T000001
트리거 타입 1 SRS 전송에서 DCI 포맷 0의 경우, 상위계층시그널링에 의해 구성되는 단일 파라미터 세트가 사용된다. DCI 포맷 1A/2B/2C/2D의 경우에도 상위계층시그널링에 의해 구성되는 공통 SRS 파라미터 세트가 사용된다.
트리거 타입 0에서
Figure PCTKR2015007458-appb-I000038
의 TDD 또는 FDD의 경우, 다음 수학식 12를 만족하는 서브프레임 상에서 SRS가 전송된다.
수학식 12
Figure PCTKR2015007458-appb-M000012
여기서,
Figure PCTKR2015007458-appb-I000039
,
Figure PCTKR2015007458-appb-I000040
는 FDD의 경우 표 2, TDD의 경우 표 3에 의하며,
Figure PCTKR2015007458-appb-I000041
는 다음 표 4에 의한다.
표 2
Figure PCTKR2015007458-appb-T000002
표 3
Figure PCTKR2015007458-appb-T000003
표 4
Figure PCTKR2015007458-appb-T000004
트리거 타입 1의 경우, 서브프레임 n에서 SRS 요청을 수신한 단말은
Figure PCTKR2015007458-appb-I000042
및 다음 수학식 13을 만족하는 첫 번째 서브프레임에서 SRS를 전송할 수 있다.
수학식 13
Figure PCTKR2015007458-appb-M000013
상기 수학식 13에서 각 파라미터는 FDD의 경우 표 5, TDD의 경우 표 6에 의할 수 있다.
표 5
Figure PCTKR2015007458-appb-T000005
표 6
Figure PCTKR2015007458-appb-T000006
진보된 안테나 시스템
LTE Rel-12 이후의 무선 통신 시스템에서는 능동 안테나 시스템(active antenna system: 이하 AAS)의 도입이 고려되고 있다. 신호의 위상 및 크기를 조정할 수 있는 능동 회로와 안테나가 분리되어 있는 기존의 수동 안테나 시스템과 달리, AAS는 각각의 안테나가 능동 회로를 포함하는 능동 안테나로 구성된 시스템을 의미한다. 상기 AAS는 능동 안테나 사용에 따라 능동 회로와 안테나를 연결하기 위한 별도의 케이블, 커넥터, 기타 하드웨어 등이 필요하지 않고, 따라서 에너지 및 운용비용 측면에서 효율성이 높은 특징을 갖는다. 특히 상기 AAS는 각 안테나 별 전자식 빔 제어(electronic beam control) 방식을 지원하기 때문에 빔 방향 및 빔 폭을 고려한 정교한 빔 패턴 형성 또는 3차원 빔 패턴을 형성하는 등의 진보된 MIMO 기술을 가능하게 한다.
상기 AAS 등의 진보된 안테나 시스템의 도입으로 다수의 입출력 안테나와 다차원 안테나 구조를 갖는 대규모 MIMO 구조가 고려되고 있다. 기존의 일자형 안테나 배열과 달리 2차원 안테나 배열을 형성할 경우, 도 6에 예시된 바와 같이, AAS의 능동 안테나에 따라 3차원 빔 패턴을 형성할 수 있다. 기지국 입장에서 상기 3차원 빔 패턴을 활용할 경우, 빔의 수평 방향뿐만 아니라 수직 방향으로의 섹터 형성을 고려할 수 있다. 또한 단말 입장에서는 대규모 수신 안테나를 활용하여 수신 빔을 형성할 때, 안테나 배열 이득(antenna array gain)에 따른 신호 전력 상승 효과를 기대할 수 있으며 따라서 기존보다 낮은 송신 전력만으로도 시스템의 성능 요구사항을 충족할 수 있는 장점이 있다.
이러한 대규모 MIMO구조에서 이론적으로 달성 가능한 이득을 얻기 위해서는 기지국은 기지국과 단말 사이의 채널 정보를 정확히 알아야 한다. 이를 위해서는 채널 정보 추정 및 궤환이 기존 소규모 MIMO 구조에서보다 훨씬 많이 필요로 하게 된다. 특히 FDD 시스템에서는 channel reciprocity를 이용할 수 없기 때문에 하향링크로 매우 많은 양의 파일럿뿐만 아니라 상향링크로 매우 높은 레졸루션의 PMI 피드백이 필요하다. 따라서 대규모 MIMO 시스템에서 하향링크 파일럿 오버헤드를 줄이고, 상향링크 채널 정보 궤환양을 줄이면서도 기지국이 채널 정보를 정확히 획득할 수 있는 방안이 필요하다. 또한 channel reciprocity 를 이용할 수 있는 TDD시스템에서도 다수의 단말이 간섭없이 상향링크 채널을 추정할 수 있어야 하기 때문에 상향링크 RS용량을 증가시키는 것이 필요하다.
본 발명의 실시예에 적용 가능한 시스템 모델에 대해 살펴본다. 기지국은 M개의 송신 안테나를 가지고 있고, 단말은 단일 수신 안테나를 가지고 있다고 가정한다. 하지만 본 발명의 원리가 단일 수신 안테나를 가지는 단말에서만 적용되는 것은 아니다. 단말에서 수신된 신호는 다음 수학식 14와 같다.
수학식 14
Figure PCTKR2015007458-appb-M000014
여기서
Figure PCTKR2015007458-appb-I000043
는 Mx1 채널 벡터,
Figure PCTKR2015007458-appb-I000044
는 Mxd 하향링크 프리코딩 행렬,
Figure PCTKR2015007458-appb-I000045
는 dx1 하향링크 송신 심볼 벡터,
Figure PCTKR2015007458-appb-I000046
는 AWGN 신호를 나타낸다. 프리코딩 행렬은 다음 수학식 15와 같이 이중 프리코딩 구조로 표현할 수 있다.
수학식 15
Figure PCTKR2015007458-appb-M000015
여기서 B는 M x b 프리-빔포밍(pre-beamforming) 행렬, P는 b x d 프리코딩 행렬을 나타낸다. 이때 B행렬은 채널의 long term statistics에 의해 결정될 수 있고, 단말을 적절히 그룹핑할 경우에는 long term sense에서 채널이 decouple되도록 단말을 그룹핑할 수 있다. 구현관점에서는 B행렬은 baseband의 디지털 회로에 구현될 수도 있지만, 채널의 long term 특성을 반영하는 B행렬은 아날로그 회로에 의해서 구현될 수도 있다. 물리적으로 단말이 비슷한 위치에 있을 경우에는 채널의 AoD(angle of departure, 특히 기지국에서 단말방향으로)가 서로 유사하게 되고 물리적으로 떨어진 위치의 단말들간에는 AoD가 상이하여 서로 직교하는 B 행렬을 구성할 수가 있다. 예를 들어, 도 7과 같이 단말의 위치가 멀리 떨어짐에 따라 서로 직교하는 프리-빔포밍 행렬을 구성할 수 있다. 예시와 같이 단말 또는 단말 그룹별로 기지국이 프리-빔포밍 행렬을 구성할 수 있는 경우에는 기지국은 전체 안테나에 대한 RS를 전송할(보여줄) 필요 없이 프리-빔포밍 행렬이 적용된 프리코딩된 RS를 전송하고, 단말은 프리코딩된 RS에 대한 채널 추정 및 궤환만 수행하면 된다. 즉 단말의 채널 추정 및 궤환은 프리-빔포밍 행렬에 대하여 줄어든 dimension에 대해서만 수행되면 되기 때문에 대규모 MIMO시스템에서 채널 추정 및 궤환을 위한 부담이 상당히 줄어들게 된다.
FDD 시스템에서도 AoD나 AS(angular spread) 같은 채널의 long term statistics는 UL 밴드와 DL 벤드가 유사할 수 있으므로 기지국이 대규모 MIMO시스템에서 채널의 long term statistics는 UL 밴드를 이용하여 수행하는 것을 제안한다. 즉 단말이 상향링크 RS를 전송함으로써 기지국이 채널의 long term statistics를 추정하는 것이다. 이때 대규모 MIMO 시스템에서처럼 기지국의 안테나 개수가 증가하게 될 경우 일정 수준의 long term statistics의 정확도를 확보하기 위해서 채널의 long term statistics를 추정하기 위한 샘플의 수도 함께 증가하여야 한다. 예를 들어, 기지국이 N개의 안테나를 가지고 있고 N개의 variable에 대한 singular하지 않은 covariance matrix를 추정하기 위해서는 최소 N개의 샘플이 필요하게 된다. 왜냐하면 샘플의 수가 N보다 작은 경우에는 sample covariance matrix가 singular해지기 때문이다. 또한 단순히 N개의 sample로 covariance를 추정하는 경우에는 covariance matrix의 추정 정확도가 매우 부정확하여 실제로는 훨씬 많은 샘플 수를 필요로 하게 된다. 예를 들어, 64개의 안테나를 가지고 있는 MIMO 시스템에서는 covariance matrix를 정확히 추정하기 위해서는 8개의 안테나를 가지고 있는 시스템에 비해서 대략 8배의 샘플을 추가로 필요로 할 수 있다.
기존의 LTE시스템에서 상향링크 RS를 전송하는 경우는 특정 단말이 상향링크로 전송할 패킷이 있어서 상향링크 승인(UL grant)을 받은 경우이거나, 하향링크 패킷에 대한 A/N으로 PUCCH를 전송하는 경우, 기지국으로부터 SRS를 전송하도록 지시 받은 경우로 나뉠 수 있다. 상향링크 승인을 받는 경우에는 상향링크로 전송할 데이터 패킷이 있는 경우에만 가능하며, 하향링크 패킷에 대한 A/N도 하향링크 패킷을 수신한 경우에만 PUCCH를 전송하게 된다. 상향링크/하향링크 패킷이 없는 경우에는 SRS를 서브프레임의 제일 마지막 심볼에 전송하게 된다. 하지만 기존의 SRS는 항상 SF의 마지막 심볼에만 전송되기 때문에 대규모 MIMO시스템에서 long term channel statistics를 추정하기 위해서는 수십 또는 수백 개의 서브프레임 동안 SRS를 전송해야 하고 이로 인하여 과도한 지연이 발생할 수 있다. 이러한 특징은 채널 reciprocity를 이용하여 하향링크 채널을 추정하는 TDD시스템에서도 발생하는데, TDD시스템에서도 상향링크 참조 신호를 더 많이 보내야 기지국이 채널의 long term statistics를 추정할 수 있다.
따라서 이하에서는 대규모 MIMO 시스템에서 채널의 long term statistics를 효과적으로 추정하기 위한 방법 및 이에 기초한 하향링크 신호 전송 방법들이 설명된다.
상향링크 RS의 구성
첫 번째 실시예는 상향링크 RS를 구성하는 방법에 관한 것이다. 앞서 언급된 바와 같이, 기존 LTE 시스템에서의 상향링크 RS만으로는 대규모 MIMO 시스템에서 long term statistics를 제대로 추정하기 어렵다. 이를 위해, 상향링크 RS 서브프레임/슬롯을 구성할 수 있다. 이하에서는 설명의 편의를 위해 상향링크 RS 서브프레임을 기준으로 설명하지만, 서브프레임은 다른 시간 단위, 예를 들어, 슬롯일 수도 있다.
하나의 상향링크 서브프레임 또는 서브프레임의 PUSCH 영역의 (소정 주파수 영역의) 모든 심볼에서 RS를 전송하도록 구성할 수 있다. 이러한 상향링크 서브프레임에는 스케줄링이 제한될 수 있다.
이와 같이 RS가 전송되는 자원 풀의 시간/주파수 위치는 셀-특정일 수 있으며, 주기적(또는 비주기적)일 수 있다. 즉 주기적으로 PUSCH 영억에서 일정 RB가 RS전송 영역으로 설정되거나, 기지국의 직접적인 지시에 의해 특정 서브프레임의 특정 PUSCH자원 영역이 RS전송 영역으로 설정될 수 있다.
만약 자원 풀이 도 8에 예시된 바와 같이 주기적인 경우, 경우에는 전송 자원의 주기, SF 오프셋, RS 시퀀스, 반복 계수, 시간 (심볼 인덱스 or 오프셋) 그리고/또는 주파수 자원 위치 (예를 들어, RB 인덱스 or 오프셋, SRS 대역폭), cyclic shift (CS)의 전체 또는 일부는 각 단말에게 개별적으로 물리계층으로 시그널링될 수 있고, 나머지 일부는 상위계층 신호로 시그널링될 수 있다. 또는, RS가 전송되는 자원 풀의 시간 위치, 즉 OFDM 심볼 위치 혹은 앞서 언급한 파라미터들 중 일부는 단말 ID에 종속적으로 설정함으로써, 시그널링 오버헤드를 줄일 수도 있다. 예를 들어 RNTI를 서브프레임 내 OFDM 심볼 개수로 모듈로 연산 취하여 생성된 수를 상향링크 RS 전송 위치로 지정할 수 있다.
RS가 전송되는 자원 풀의 주파수 자원 위치는 각 셀에서 구성한 주파수 자원위치를 모두 사용하거나 특정 일부만 선택하여 사용될 수도 있다. 특정 일부만 사용될 경우 각 단말이 사용하는 시간/ 주파수 자원위치가 사전에 물리계층 또는 상위계층 신호로 시그널링될 수 있다. 또는, 각 단말이 RS전송에 사용하는 시간/ 주파수 자원의 위치는 시그널링 오버헤드를 줄이기 위하여 단말 ID에 종속하게 설정될 수 있다. 예를 들어 상향링크 RS 전송 자원 풀을 N개의 시간/ 주파수 영역으로 나누고 이를 단말 ID를 N으로 모듈로 연산 취하여 나온 값에 해당하는 시간/ 주파수 영역 위치에서 RS를 송신할 수 있다. 또는 물리계층 또는 상위계층 신호로 각 단말이 RS를 전송할 시간 주파수 자원의 위치가 시그널링될 수도 있다.
만약 자원 풀이 비 주기적인 경우, 기지국이 물리계층/상위계층 신호로 특정 단말 또는 단말 그룹에게 상향링크 RS를 전송하도록 지시해 줄 수 있다. 전송 주기, 전송 횟수, SF 오프셋, RS 시퀀스, 반복 계수, 시간 (심볼 인덱스 or 오프셋) 그리고/또는 주파수 자원 위치 (예를 들어, RB 인덱스 or 오프셋, SRS 대역폭), cyclic shift (CS)의 전체 또는 일부는 각 단말에게 개별적으로 물리계층 또는 상위계층 신호로 시그널링될 수 있다. 이때 나머지 일부는 상위계층 신호로 지시되고 일부는 eNB의 전송 지시 신호와 함께 시그널링될 수도 있다.
상술한 서브프레임에서 전송되는 RS는 SRS, DMRS 등일 수 있다. 만약, SRS인 경우 기존 LTE에 정의된 SRS의 구성 및 시그널링 방법에 의존할 수 있다. SRS 전송 트리거링 신호는 상위계층 또는 물리계층 신호에 의해 설정될 수 있으며, 셀 특정한 것일 수도 있고 단말(그룹) 특정일 수도 있다. 단말이 SRS를 전송하는 심볼의 위치는 상위계층 신호에 의해 사전에 설정되어 있을 수 있으며, 앞서 설명된 SRS 파라미터들도 상위계층 신호로 시그널링 될 수 있다. 또는 SRS를 전송하는 심볼의 위치 및 전송 트리거링은 물리계층 신호에 의해 시그널링 될 수도 있다. 이때 단일 단말이 한 상향링크 RS 서브프레임에서 다수의 RS를 송신할 수도 있으며 한 상향링크 RS 서브프레임에서 전송할 수 있는 RS의 개수는 네트워크에 의해 설정될 수 있다.
RS로서 DMRS가 사용되는 경우, 각 단말이 전송하는 주파수 자원 위치와 전송 심볼 위치, DMRS CS는 사전에 상위계층 또는 물리계층 신호로 시그널링 될 수 있으며, 전송 트리거링 신호도 물리계층 또는 상위계층 신호로 시그널링 될 수 있다.
또한, 기존 LTE에 상향링크 RS로써 정의되지 않은 새로운 포맷의 RS가 사용될 수 있다. 여기서 새로운 RS라 함은 기존 상향링크 RS에서 반복 계수(increase of the available transmission comb), 전송 심볼 위치(transmission symbol position), CS의 개수(the number of CS (increase/decrease of the number of CS)), RS 대역폭 (support wide bandwidth only or restrict some bandwidth), RS 시퀀스(not na?ve ZC sequences, 예를 들어, truncated ZC sequences) 중 하나 이상이 상이하다는 것일 수 있다. 예를 들어 기존 SRS는 반복 계수가 2까지 지원하지만 상향링크 RS 서브프레임에 전송되는 SRS는 더 큰 반복 계수가 지원되어 전송될 수도 있다. 예를 들어 반복 계수가 4, 6 또는 8 등이 지원될 수 있다. 또한 CS 개수도 기존의 SRS에서 사용하는 8개가 아닌 4 또는 6개 등과 같이 더 적은 수의 CS 세트, 또는 10개 또는 12개까지 그 개수가 늘어난 CS 세트가 사용될 수 있다. CS세트 개수를 줄이는 이유는 시간 영역에서 RS전송 용량이 늘어났기 때문에 심볼 영역에서는 향상된 수신성능을 위하여 CS개수를 줄이는 것이고, CS세트 개수를 늘렸을때는 전체 RS 전송 용량이 늘어나는 특징이 있다.
한편 최소한의 RS 전송으로 최대한 빨리 AoD/AS 또는 long term statistics를 추정하기 위해서 상향링크 RS 전송 시 가능한 넓은 주파수 영역에서 전송하는 모드만 사용될 수 있다. 일례로 SRS 구성에서 주어진 시스템 대역폭에서 가장 넓은 주파수 영역에서 전송되는 구성만 사용하거나, 기존 SRS 구성중 일부 협대역만 사용하는 SRS 구성은 사용되지 않을 수 있다. 이러한 방식은 long term statistics를 빠르게 추정할 수 있고, 일부 구성을 시그널링에서 제외할 수 있어서 시그널링 오버헤드를 줄일 수 있는 장점이 있다. 혹은 RS만 전송하는 자원 영역에서는 단말간에 RS충돌을 줄이기 위해서 항상 협대역의 SRS 구성만 사용하도록 규칙이 정해질 수 있다.
또한, DMRS, SRS는 truncation된 자도프 추 시퀀스(zadoff-chu sequence, ZC 시퀀스)일 수 있다. 보다 상세히, SRS 또는 DMRS의 생성시, 시퀀스 길이를 액추얼 대역폭(actual bandwidth)가 아닌, 최대 전송 대역폭 혹은 사전에 정해진 대역폭을 기준으로 결정하여 ZC 시퀀스의 길이를 결정한 후, 액추얼 대역폭 (혹은 사전에 정해진 대역폭)에 맞게 truncation할 수 있다. 순환이동은 최대 전송 대역폭 길이의 ZC 시퀀스에 적용하는 것일 수 있다. 이와 같이, truncated ZC 시퀀스를 사용하는 경우, 더 많은 개수의 ZC 시퀀스를 생성할 수 있다. 예를 들어 최대 BW가 40RB이고 액추얼 대역폭이 10RB라면 기존보다 4배로 많은 수의 RS 시퀀스를 생성할 수 있다. 이 경우 액추얼 대역폭 이내에서는 truncated ZC 시퀀스는 CS를 다르게 설정한다고 할지라도 완벽히 orthogonal하지 않다. 하지만 기존의 ZC 시퀀스보다 더 많은 조합을 생성할 수 있기 때문에 인접셀과 같은 ZC 시퀀스를 사용할 확률을 줄일 수 있다. 또한 기지국이 서빙셀에서는 어떤 단말이 어떤 RS 시퀀스를 전송하였는지를 알고 있기 때문에 서빙 셀의 RS가 quasi orthogonal하다고 하더라도 SIC(successive interference cancellation) 리시버를 통하여 RS 수신 성능을 향상시킬 수 있다. 또한 인트라 셀 환경에서는 quasi orthogonal 하더라도 코릴레이션이 적은 ZC를 단말에게 각각 할당하거나 Comb type을 다르게 할당하여 시퀀스간의 코릴레이션으로 인한 성능 저하를 최소화 할 수 있다. 즉 인트라 셀에서는 quasi orthogonal 할 수 있지만 이는 SIC 리시버나 RS 스케줄링을 적절히 수행하여 non-orthogonal하여 발생하는 성능 저하를 해결할 수 있고, 다른 셀과 시퀀스 충돌확률을 떨어뜨려서 향상된 성능을 얻을 수 있다. 또한 더 많은 조합의 RS를 전송할 수 있게 하여 RS capacity를 증가시킬 수 있다.
이와 같이, RS가 truncated RS 또는 새로운 포맷이 사용되는 경우, RS가 전송되는 자원 영역은 앞서 설명된 바와 같을 수도 있고, 또는 기존 RS가 전송되는 영역 이외의 영역일 수 있다. 예를 들어, SRS가 사용되는 경우, truncated SRS가 전송되는 영역은 도 9에 예시된 바와 같이 기존 DMRS나 SRS가 전송되는 OFDM 심볼을 제외한 나머지 영역일 수 있다. 이는 레거시 단말들과의 후방위 호환성(backward compatibility)을 위하여 기존 RS가 전송되는 심볼에서는 기존 포맷을 그대로 재사용하는 것이다.
한편, 상향링크 패킷과 독립적인 RS 승인(RS grant)을 통해 단말이 RS를 전송하도록 하고, 기지국은 이를 수신하여 채널의 long term statistics를 추정할 수 있다. RS 승인은 새로운 형태의 DCI 포맷 또는 기존 LTE에서 정의되어 있는 DCI 포맷을 사용할 수 있다. 만약, 기존 LTE에서 정의되어 있는 상향링크 승인을 위한 DCI 포맷이 사용되는 경우, RA 필드와 RS CS 필드는 RS가 전송되는 주파수 영역과, RS CS를 설정하는 용도로 재사용될 수 있으며 나머지 필드는 다른 용도로 사용될 수 있다. 이때 RS의 CS는 기존의 PUSCH 스케줄링을 받은 단말과 충돌이 발생하지 않도록 설정되어 시그널링 될 수 있다. 또는 이러한 RS CS와 RA는 사전에 상위계층 신호로 시그널링 될 수 있다. 또한 RS가 전송되는 주기 및 SF위치 역시 상위계층 신호로 단말에게 시그널링 될 수 있다. 새로운 DCI 포맷이 정의 될 때에는 길이가 기존의 DCI 포맷중 하나로 설정되는 것이 블라인드 디코딩(blind decoding) 횟수를 증가시키지 않는다는 측면에서 유리하며, 예를 들어 DCI 포맷 3/3A를 재사용하여 특정 그룹의 단말들에게 동시에 RS 전송을 지시하는 방식으로 구현될 수도 있다.
상향링크 RS를 수신한 기지국의 채널 추정, 신호 전송
이하에서는 상술한 바와 같은 상향링크 RS를 수신한 기지국의 동작에 대해 살펴본다.
기지국은 RS 승인을 단말들에게 전송할 수 있다. 앞서 설명된 바와 같이, 이 RS 승인은 단말에게 RS 승인을 수신한 단말이 전송할 상향링크 데이터가 존재하는지 여부에 관계없이 RS를 전송하도록 지시하는 것이다. 이를 수신한 단말들은 상향링크 서브프레임의 첫 번째 슬롯에 DMRS를, 두 번째 슬롯에는 제 1 참조신호(예를 들어, SRS)를 전송할 수 있다. 다만, 이는 예시적인 것이며, 단말이 하나의 서브프레임 상에서 DMRS만을 전송할 수도 있다. 이러한 경우, 단말은 다음 번 상향링크 RS를 위한 서브프레임에서 SRS를 전송할 수 있다.
계속해서, 기지국은 첫 번째 슬롯의 DMRS를 통해 롱 텀 채널 특성을 결정할 수 있다. 그리고 이 채널 특성에 기초하여, 서브프레임의 두 번째 슬롯에서 SRS를 수신하고, 이로부터 숏 텀 채널 특성을 결정할 수 있다. 그리고, 롱 텀 채널 특성 및 상기 숏 텀 채널 특성으로부터 프리코딩 행렬을 결정하고, 결정된 프리코딩 행렬을 통해 하향링크 신호를 전송할 수 있다. 여기서 프리코딩 행렬은
Figure PCTKR2015007458-appb-I000047
로 구성될 수 있고,
Figure PCTKR2015007458-appb-I000048
는 상기 프리코딩 행렬,
Figure PCTKR2015007458-appb-I000049
는 상기 롱 텀 채널 특성으로 결정되는 프리-빔포밍(pre-beamforming) 행렬, 상기
Figure PCTKR2015007458-appb-I000050
는 상기 숏 텀 채널 특성으로부터 결정되는 프리코딩 행렬을 의미할 수 있다.
상기 DMRS 및/또는 SRS는 앞서 설명된 truncated ZC 시퀀스에 기초한 것일 수 있다. 즉, 위 RS 들의 생성에 사용되는 자도프-추 시퀀스는 최대 전송 대역폭 (혹은 사전에 정해진 대역폭)에 따라 길이가 결정된 것일 수 있다. 앞서 설명된 바와 같이, 최대 전송 대역폭에 따라 길이가 결정된 자도프-추 시퀀스는 액추얼(actual) 대역폭에 따라 트렁케이션(truncation)될 수 있다. SRS는 기존 레거시 단말들의 동작을 보장해 주기 위해 서브프레임의 마지막 심볼 이외의 심볼 상에서 전송되는 것일 수 있다. 즉, 서브프레임의 마지막 심볼 이외의 심볼에서 전송되는 SRS의 생성에 사용되는 자도프-추 시퀀스는 최대 전송 대역폭에 따라 길이가 결정된 것이고, 이와 비교해, 마지막 심볼에서 전송되는 SRS의 생성에 사용되는 자도프-추 시퀀스는 액추얼 대역폭에 따라 길이가 결정된 것일 수 있다.
상술한 설명들은 FDD에서 long term statistics를 추정하기 위해서만 사용되는 것은 아니며 TDD시스템에서 channel reciprocity를 사용하는 기법에서도 상향링크 RS capacity를 늘려서 pilot contamination을 줄이는 용도로도 사용될 수 있다.
한편 인접 셀간에 pilot contamination을 줄이기 위해서는 인접셀의 RS가 전송되는 영역에 시간 영역 또는 주파수 영역 ICIC가 도입될 수 있다. 예를 들어 cell A는 A라는 시간 주파수 자원에서 RS를 송신하고, 셀 B는 B라는 시간 주파수 자원(이때 자원 A와 자원 B는 서로 orthogonal)에서 RS를 송신할 수 있다. 이때, ICIC가 수행되는 단위는 서브프레임 단위, 심볼 단위, RB 단위 또는 슬롯 단위일 수도 있다. 이러한 동작을 위해서 기지국간에는 자신의 셀이 사용할 RS 자원 영역에 대한 정보를 백홀(예를 들어, X2 interface)을 통해 서로 공유할 수 있다.
본 발명의 실시예에 의한 장치 구성
도 10은 본 발명의 실시 형태에 따른 전송포인트 장치 및 단말 장치의 구성을 도시한 도면이다.
도 10을 참조하여 본 발명에 따른 전송포인트 장치(10)는, 수신모듈(11), 전송모듈(12), 프로세서(13), 메모리(14) 및 복수개의 안테나(15)를 포함할 수 있다. 복수개의 안테나(15)는 MIMO 송수신을 지원하는 전송포인트 장치를 의미한다. 수신모듈(11)은 단말로부터의 상향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송모듈(12)은 단말로의 하향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서(13)는 전송포인트 장치(10) 전반의 동작을 제어할 수 있다.
본 발명의 일 실시예에 따른 전송포인트 장치(10)의 프로세서(13)는, 앞서 설명된 각 실시예들에서 필요한 사항들을 처리할 수 있다.
전송포인트 장치(10)의 프로세서(13)는 그 외에도 전송포인트 장치(10)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(14)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
계속해서 도 10을 참조하면 본 발명에 따른 단말 장치(20)는, 수신모듈(21), 전송모듈(22), 프로세서(23), 메모리(24) 및 복수개의 안테나(25)를 포함할 수 있다. 복수개의 안테나(25)는 MIMO 송수신을 지원하는 단말 장치를 의미한다. 수신모듈(21)은 기지국으로부터의 하향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송모듈(22)은 기지국으로의 상향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서(23)는 단말 장치(20) 전반의 동작을 제어할 수 있다.
본 발명의 일 실시예에 따른 단말 장치(20)의 프로세서(23)는 앞서 설명된 각 실시예들에서 필요한 사항들을 처리할 수 있다.
단말 장치(20)의 프로세서(23)는 그 외에도 단말 장치(20)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(24)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
위와 같은 전송포인트 장치 및 단말 장치의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
또한, 도 10에 대한 설명에 있어서 전송포인트 장치(10)에 대한 설명은 하향링크 전송 주체 또는 상향링크 수신 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있고, 단말 장치(20)에 대한 설명은 하향링크 수신 주체 또는 상향링크 전송 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
상술한 바와 같은 본 발명의 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.

Claims (14)

  1. 무선통신시스템에서 기지국이 하향링크 신호를 전송하는 방법에 있어서,
    DMRS(DeModulation-Reference Signal) 승인을 전송하는 단계;
    상기 DMRS 승인에 대한 응답으로써 수신된 상향링크 서브프레임의 첫 번째 슬롯의 DMRS로부터 롱 텀 채널 특성을 결정하는 단계;
    상기 결정된 롱 텀 채널 특성에 기초하여, 상기 서브프레임의 두 번째 슬롯에서 제1 참조신호를 수신하는 단계;
    상기 제1 참조신호로부터 숏 텀 채널 특성을 결정하는 단계;
    상기 롱 텀 채널 특성 및 상기 숏 텀 채널 특성으로부터 프리코딩 행렬을 결정하는 단계; 및
    상기 결정된 프리코딩 행렬을 통해 하향링크 신호를 전송하는 단계;
    를 포함하는, 하향링크 신호 전송 방법.
  2. 제1항에 있어서,
    상기 DMRS 승인은, 상기 DMRS 승인을 수신한 단말이 전송할 상향링크 데이터가 존재하는지 여부에 관계없이 상기 첫 번째 슬롯에 DMRS를 전송하도록 지시하는 것인, 하향링크 신호 전송 방법.
  3. 제1항에 있어서,
    상기 프리코딩 행렬은
    Figure PCTKR2015007458-appb-I000051
    로 구성되며,
    Figure PCTKR2015007458-appb-I000052
    는 상기 프리코딩 행렬,
    Figure PCTKR2015007458-appb-I000053
    는 상기 롱 텀 채널 특성으로 결정되는 프리-빔포밍(pre-beamforming) 행렬, 상기
    Figure PCTKR2015007458-appb-I000054
    는 상기 숏 텀 채널 특성으로부터 결정되는 프리코딩 행렬인, 하향링크 신호 전송 방법.
  4. 제1항에 있어서,
    상기 제1 참조신호는 상기 두 번째 슬롯의 마지막 OFDM 심볼을 제외한 자원 영역에서 전송되는 사운딩 참조 신호(Sounding Reference Signal, SRS)인, 하향링크 신호 전송 방법.
  5. 제4항에 있어서,
    상기 DMRS 및 제1 참조신호의 생성에 사용되는 자도프-추 시퀀스는 최대 전송 대역폭에 따라 길이가 결정된 것인, 하향링크 신호 전송 방법.
  6. 제5항에 있어서,
    상기 최대 전송 대역폭에 따라 길이가 결정된 자도프-추 시퀀스는 액추얼(actual) 대역폭에 따라 트렁케이션(truncation)되는, 하향링크 신호 전송 방법.
  7. 제5항에 있어서,
    상기 두 번째 슬롯의 마지막 OFDM 심볼에서 전송되는 SRS의 생성에 사용되는 자도프-추 시퀀스는 액추얼 대역폭에 따라 길이가 결정된 것인, 하향링크 신호 전송 방법.
  8. 무선통신시스템에서 하향링크 신호를 송신하는 기지국 장치에 있어서,
    전송 모듈; 및
    프로세서를 포함하고,
    상기 프로세서는, DMRS(DeModulation-Reference Signal) 승인을 전송하고, 상기 DMRS 승인에 대한 응답으로써 수신된 상향링크 서브프레임의 첫 번째 슬롯의 DMRS로부터 롱 텀 채널 특성을 결정하고, 상기 결정된 롱 텀 채널 특성에 기초하여, 상기 서브프레임의 두 번째 슬롯에서 제1 참조신호를 수신하며, 상기 제1 참조신호로부터 숏 텀 채널 특성을 결정하고, 상기 롱 텀 채널 특성 및 상기 숏 텀 채널 특성으로부터 프리코딩 행렬을 결정하고, 상기 결정된 프리코딩 행렬을 통해 하향링크 신호를 전송하는, 기지국 장치.
  9. 제8항에 있어서,
    상기 DMRS 승인은, 상기 DMRS 승인을 수신한 단말이 전송할 상향링크 데이터가 존재하는지 여부에 관계없이 상기 첫 번째 슬롯에 DMRS를 전송하도록 지시하는 것인, 기지국 장치.
  10. 제8항에 있어서,
    상기 프리코딩 행렬은
    Figure PCTKR2015007458-appb-I000055
    로 구성되며,
    Figure PCTKR2015007458-appb-I000056
    는 상기 프리코딩 행렬,
    Figure PCTKR2015007458-appb-I000057
    는 상기 롱 텀 채널 특성으로 결정되는 프리-빔포밍(pre-beamforming) 행렬, 상기
    Figure PCTKR2015007458-appb-I000058
    는 상기 숏 텀 채널 특성으로부터 결정되는 프리코딩 행렬인, 기지국 장치.
  11. 제8항에 있어서,
    상기 제1 참조신호는 상기 두 번째 슬롯의 마지막 OFDM 심볼을 제외한 자원 영역에서 전송되는 사운딩 참조 신호(Sounding Reference Signal, SRS)인, 기지국 장치.
  12. 제11항에 있어서,
    상기 DMRS 및 제1 참조신호의 생성에 사용되는 자도프-추 시퀀스는 최대 전송 대역폭에 따라 길이가 결정된 것인, 기지국 장치.
  13. 제12항에 있어서,
    상기 최대 전송 대역폭에 따라 길이가 결정된 자도프-추 시퀀스는 액추얼(actual) 대역폭에 따라 트렁케이션(truncation)되는, 기지국 장치.
  14. 제12항에 있어서,
    상기 두 번째 슬롯의 마지막 OFDM 심볼에서 전송되는 SRS의 생성에 사용되는 자도프-추 시퀀스는 액추얼 대역폭에 따라 길이가 결정된 것인, 기지국 장치.
PCT/KR2015/007458 2014-07-17 2015-07-17 무선 통신 시스템에서 하향링크 신호 전송 방법 및 장치 WO2016010399A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/326,221 US10555309B2 (en) 2014-07-17 2015-07-17 Method and device for transmitting downlink signal in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462026011P 2014-07-17 2014-07-17
US62/026,011 2014-07-17

Publications (1)

Publication Number Publication Date
WO2016010399A1 true WO2016010399A1 (ko) 2016-01-21

Family

ID=55078802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007458 WO2016010399A1 (ko) 2014-07-17 2015-07-17 무선 통신 시스템에서 하향링크 신호 전송 방법 및 장치

Country Status (2)

Country Link
US (1) US10555309B2 (ko)
WO (1) WO2016010399A1 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3294025B1 (en) * 2015-06-04 2021-08-04 Huawei Technologies Co., Ltd. Method, device and system for information transmission
WO2017008211A1 (zh) * 2015-07-10 2017-01-19 富士通株式会社 基于重传的多用户重叠传输方法、装置和系统
KR101750656B1 (ko) * 2015-10-06 2017-06-26 한국과학기술원 매시브 안테나 기반의 패턴/편파 빔 분할 다중 접속 방법 및 이를 수행하는 장치
MX2018007853A (es) 2016-02-05 2018-08-01 Panasonic Ip Corp America Terminal y metodo de transmision.
MY194573A (en) 2016-09-26 2022-12-02 Lg Electronics Inc Uplink transmission/reception method in wireless communication system and device therefor
CN107919896B (zh) * 2016-10-09 2020-05-05 大唐移动通信设备有限公司 一种波束赋形方法及装置
US10530622B2 (en) * 2016-11-03 2020-01-07 Huawei Technologies Co., Ltd. Methods and apparatuses for transmitting and receiving uplink reference signals using non-orthogonal sequences
US11546929B2 (en) 2017-01-09 2023-01-03 Huawei Technologies Co., Ltd. Systems and methods for signaling for semi-static configuration in grant-free uplink transmissions
US10645730B2 (en) * 2017-04-06 2020-05-05 Huawei Technologies Co., Ltd. Flexible grant-free resource configuration signaling
CN109391425B (zh) * 2017-08-11 2020-10-16 电信科学技术研究院 一种信息的传输方法、终端及基站
CN107911203B (zh) * 2017-08-11 2023-11-14 华为技术有限公司 发送和接收参考信号的方法、网络设备、终端设备和系统
CN113225170A (zh) * 2017-09-30 2021-08-06 中兴通讯股份有限公司 一种无线通信方法及装置
KR20190044875A (ko) 2017-10-23 2019-05-02 삼성전자주식회사 무선 통신 시스템에서 상향링크 기준신호 또는 채널의 송수신 방법 및 장치
US10797748B2 (en) 2018-02-21 2020-10-06 Qualcomm Incorporated Pairwise cross correlation sequences for non-orthogonal multiple access wireless communications
CN110839291B (zh) * 2018-08-19 2024-02-02 华为技术有限公司 传输下行控制信息的方法和装置
KR102301131B1 (ko) * 2021-04-29 2021-09-10 세종대학교산학협력단 빔포밍을 위한 다중 안테나 채널 추정 장치 및 그 방법
CN113765643B (zh) * 2021-10-05 2023-11-14 北京遥感设备研究所 一种信道估计方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120127948A1 (en) * 2009-08-06 2012-05-24 Lg Electronics Inc. Method and apparatus for transmitting uplink signals in wireless communication system for supporting multiple antenna transmission
US20130322280A1 (en) * 2012-06-05 2013-12-05 Samsung Electronics Co., Ltd. Uplink channel sounding and channel state information estimation in mobile communication systems with multiple antennas

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101766008A (zh) * 2007-08-08 2010-06-30 松下电器产业株式会社 无线发送装置和无线通信方法
WO2011139189A1 (en) * 2010-05-04 2011-11-10 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement in a wireless communication system
US9060343B2 (en) * 2011-10-03 2015-06-16 Mediatek, Inc. Support of network based positioning by sounding reference signal
WO2013085274A1 (ko) * 2011-12-05 2013-06-13 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 신호 검출 방법 및 이를 위한 장치
US9143212B2 (en) * 2013-02-25 2015-09-22 Texas Instruments Incorporated Codebook sub-sampling for CSI feedback on PUCCH for 4Tx MIMO
CN107079307A (zh) * 2014-09-25 2017-08-18 株式会社Ntt都科摩 基站和用户装置
US9893777B2 (en) * 2014-11-17 2018-02-13 Samsung Electronics Co., Ltd. Method and apparatus for precoding channel state information reference signal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120127948A1 (en) * 2009-08-06 2012-05-24 Lg Electronics Inc. Method and apparatus for transmitting uplink signals in wireless communication system for supporting multiple antenna transmission
US20130322280A1 (en) * 2012-06-05 2013-12-05 Samsung Electronics Co., Ltd. Uplink channel sounding and channel state information estimation in mobile communication systems with multiple antennas

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON ET AL.: "Uplink DMRS Resource Configuration", R1-105688, 3GPP TSG RAN WG1 MEETING #62BIS, 5 October 2010 (2010-10-05), Xi'' An, China *
HUAWEI ET AL.: "Discussion and evaluation for DMRS overhead reduction", R1-130891, 3GPP TSG RAN WG1 MEETING #72BIS, 6 April 2013 (2013-04-06), Chicago, USA *
MITSUBISHI ELECTRIC: "Uplink DM-RS design", R1-101458, 3GPP TSG RAN WG1 #60 MEETING, 16 February 2010 (2010-02-16), San Francisco, USA *
RENESAS MOBILE EUROPE LTD.: "Performance of downlink MIMO enhancements", R1-130416, 3GPP TSG-RAN WG1 MEETING #72, 19 January 2013 (2013-01-19), St Julian's, Malta *

Also Published As

Publication number Publication date
US10555309B2 (en) 2020-02-04
US20170214442A1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
WO2016010399A1 (ko) 무선 통신 시스템에서 하향링크 신호 전송 방법 및 장치
WO2016032308A1 (ko) 무선 통신 시스템에서 otdoa 관련 동작 수행 방법
WO2016159716A1 (ko) 무선 통신 시스템에서 레인징 관련 동작 수행 방법
WO2012141513A2 (ko) 무선통신시스템에서 제어정보 전송 방법 및 장치
WO2016032202A2 (ko) 무선 통신 시스템에서 동기 신호를 송수신하는 방법 및 이를 수행하는 장치
WO2014171742A1 (ko) 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치
WO2017095095A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 단말의 qcl과 관련된 신호 송수신 방법 및 장치
WO2016072819A1 (ko) 무선 통신 시스템에서 복수의 안테나를 가진 장치의 신호 전송 방법 및 장치
WO2016171495A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 단말의 릴레이 선택 및 신호 송수신 방법 및 장치
WO2016093547A1 (ko) 무선 통신 시스템에서 디바이스들 간의 통신을 수행하는 방법 및 이를 수행하는 장치
WO2016048074A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2013191367A1 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2016182294A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 단말의 디스커버리 신호 송수신 방법 및 장치
WO2014116039A1 (ko) 무선 통신 시스템에서 기지국 간 채널 측정 방법 및 장치
WO2016060466A1 (ko) Fdr 전송을 지원하는 무선 통신 시스템에서 디바이스 간 간섭을 측정하는 방법 및 이를 위한 장치
WO2012096476A2 (ko) 무선 통신 시스템에서 하향링크 참조 신호 송수신 방법 및 장치
WO2013162321A2 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2017196129A1 (ko) 무선 통신 시스템에서 ue의 사이드링크 신호 송수신 방법
WO2016204590A1 (ko) 무선 통신 시스템에서 v2v 통신을 위한 참조 신호 설정 방법 및 이를 위한 장치
WO2017047971A1 (ko) 복조 참조 신호 송수신 방법 및 이를 이용한 장치
WO2014142571A1 (ko) 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치
WO2017034265A1 (ko) 무선 통신 시스템에서 v2x 단말의 신호 송수신 방법 및 장치
WO2019031952A1 (ko) 무선통신시스템에서 v2x 단말이 pscch 스케쥴링 정보를 수신하고 pscch를 전송하는 방법 및 장치
WO2016167635A1 (ko) 무선 통신 시스템에서 d2d 신호의 측정/릴레이 선택 방법 및 장치
WO2016175535A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 수행하는 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822381

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15326221

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822381

Country of ref document: EP

Kind code of ref document: A1