[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016003306A1 - Procédé de fabrication de condensateurs ferroélectriques - Google Patents

Procédé de fabrication de condensateurs ferroélectriques Download PDF

Info

Publication number
WO2016003306A1
WO2016003306A1 PCT/RU2014/000476 RU2014000476W WO2016003306A1 WO 2016003306 A1 WO2016003306 A1 WO 2016003306A1 RU 2014000476 W RU2014000476 W RU 2014000476W WO 2016003306 A1 WO2016003306 A1 WO 2016003306A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
vacuum
dopant
temperature
barium titanate
Prior art date
Application number
PCT/RU2014/000476
Other languages
English (en)
Russian (ru)
Inventor
Игорь Владимирович ЩЕРБАКОВ
Сергей Николаевич РЯЗАНЦЕВ
Original Assignee
Общество С Ограниченной Ответственностью "Элемент 22"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Элемент 22" filed Critical Общество С Ограниченной Ответственностью "Элемент 22"
Priority to PCT/RU2014/000476 priority Critical patent/WO2016003306A1/fr
Publication of WO2016003306A1 publication Critical patent/WO2016003306A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/06Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture having a dielectric selected for the variation of its permittivity with applied voltage, i.e. ferroelectric capacitors

Definitions

  • the invention relates to a technology for manufacturing capacitors with a dielectric made of ceramic based on barium titanate coated with a metal by atomization by vacuum evaporation.
  • silver is used, which is applied to the substrate in the form of a paste.
  • the adhesion of the functional coating to the substrate is provided by heat treatment in which silver diffuses into the surface layer.
  • a more advanced technical solution is a method of manufacturing ferroceramic capacitors containing a ceramic dielectric based on barium titanate, on the metallized surfaces of which fixed electrode current collectors described in patent RU 2354632, 2007
  • the known method includes the operation of forming a ceramic plate (substrate), on the surface of which a mixture is applied in equal proportions of finely dispersed (1-50 ⁇ m) copper powder with the substrate material, and then by hot pressing a plate with a surface composite layer is formed, which serves as an adhesive for fixing copper electrodes.
  • the prepared ferroceramic plate on the surfaces of which a copper layer is deposited, is heated in vacuum, conducting photon annealing for fusion into a monolith of the electrode layer with a copper inclusion of an adhesive layer.
  • the pressure is changed to atmospheric pressure within 15 minutes, cooling the product to a temperature of 25-30 ° C without oxygen.
  • the method provides a 35-40% increase in the adhesion strength of the metal to the surface of the ceramic substrate.
  • the known method does not significantly increase the capacitance of a ferro-ceramic capacitor.
  • the technical problem to which the present invention is directed is to improve the known method for high-performance manufacturing of ferro-ceramic capacitors with increased specific capacitance and breakdown voltage.
  • the required technical result is achieved by the fact that in the method of manufacturing ferroelectric capacitors, including forming a ceramic substrate, mainly based on barium titanate, applying an alloying coating, vacuum deposition of copper electrodes and vacuum annealing of the composite material according to the invention, the alloying coating is applied in the liquid phase by condensation from the vapor stream of vacuum-evaporated metals of a series: titanium, vanadium, chromium, manganese, niobium, at a substrate temperature of 150-350 ° C, after which ku alloying with coating is subjected to vacuum annealing, and the subsequent deposition of copper electrodes carried on directly heated to a temperature not higher than 600 ° C composite substrate.
  • the differences of the proposed method provide, in comparison with existing analogues, an increase by an average of 6 times the specific capacitance of a ferro-ceramic capacitor and 3.5 times the breakdown voltage.
  • the application of the alloying metal to the substrate in the liquid phase from the vapor stream and the subsequent vacuum annealing of the composite material provide effective mass transfer (thermal diffusion) of the alloying metal (dopant) to the substrate while combining surface and bulk diffusion of the alloying metal into the ceramic substrate.
  • the dopant due to activation and mixing of the melt in the liquid bath, the dopant interacts with ferroceramics, forming solid solutions and chemical compounds.
  • the diffusion zone is 120-150 ⁇ m, which, when double-sided doping, provides through doping of the substrate volume and the achievement of maximum targets.
  • the temperature of the substrate array is maintained in the range of 150-350 ° C, while the temperature on the substrate surface reaches the melting temperature of the dopant due to the heat of condensation of the alloying material from the vapor stream, which ensures the state of the dopant on the substrate surface in the liquid phase during alloying .
  • Doping with a dopant of a ceramic plate heated to a temperature of 150-350 ° C ensures the active interaction of the alloying metal in a liquid bath with barium titanate, increasing the penetration depth of the alloying elements into the plate, that is, the combination of surface and volume diffusion of the dopant.
  • the heating temperature of the ceramic substrate during alloying is below 150 ° C, a strong adhesive bond of the alloying metal layer to the ferroceramic material is not ensured.
  • the dielectric loss in the formed capacitor sharply increases.
  • a vacuum annealing is carried out, in which the dopant penetrates deep into the ferroceramics.
  • barrier layers are formed that increase the breakdown voltage, in addition, the dopant fills the pores that cause ionization breakdown. The diffusion process continues until the chemical potentials of the components of the entire prepared structure are equalized.
  • Annealing in vacuum is combined with the application of an alloying metal to maintain the required diffusion temperature, excluding the oxidation of dopant.
  • titanium, vanadium, chromium, manganese, niobium is explained by the fact that they have an ion radius of less than 0.066 ⁇ m, close in size to the ions of the crystal lattice of barium titanate, and an ionization energy of more than 6.7 eV, which allows alloying elements diffuse into the crystal lattice of the substrate material, thereby increasing the capacitance of the capacitor material while shifting the position of the titanium ion in the lattice.
  • the higher ionization energy ensures the activation of the dopant when the barium titanate melt is mixed on the surface of the ceramic substrate when the molten bath is mixed, increasing the polarization of the domains of the composite base and the depth of diffusion, which multiply increases the purpose of the ferroelectric, in particular, breakdown voltage.
  • a feature of the proposed method is that the alloying dopant layer formed on the surface of the ceramic plate serves as an adhesive layer on which the electrode layer of copper deposited is directly formed vacuum spraying, without breaking the process stream in a vacuum chamber.
  • the temperature of the doped substrate does not exceed 600 ° C in order to exclude the interaction of copper with the material of the adhesive layer monolithically bonded to the ceramic base, thereby preventing the deterioration of the performance of the capacitor.
  • Disks with a diameter of 6 mm and a thickness of 300 ⁇ m made of molded and sintered capacitor ferroceramics based on barium titanate of the Y5V temperature stability group (according to the Russian classification of the H30 group) are applied by electron beam spraying with a 8 ⁇ m thick alloy layer.
  • a dopant - titanium (ion radius of 0.064 nm and an ionization energy of 6.82 eV) is applied to sample H30-1 at a substrate temperature of 200 ... 250 ° C
  • a dopant - vanadium (ion radius of 0.059 is applied to the NZO-2 sample nm and ionization energy of 6.71 eV) at a substrate temperature of 190 ... 230 ° C
  • a dopant - chromium (ion radius 0.35 nm and ionization energy of 6.764 eV) at a substrate temperature of 150 is applied to sample H30-3. .220 ° C.
  • a layer of dopant is applied to the second side of the ceramic discs.
  • the dopant layer on the surface of the NZO-1, N30-2, and NZO-3 samples is heated in vacuum from the thermoblock and annealed to obtain barium titanate-based material doped in bulk. Then, a double-sided copper coating is applied to the surface of the samples of the composite material doped with dopant by means of vacuum electron beam deposition at a substrate temperature of not more than 600 ° C.
  • the result is a ceramic capacitor of group H30 in the form of a plate of doped ferroceramics with copper electrodes.
  • Comparison sample NZO-4 is a ceramic capacitor made of molded and sintered capacitor ferroceramics based on barium titanate of the Y5V temperature stability group (according to the Russian classification of the NZO group) without an alloying additive and with silver electrodes deposited by thermal diffusion according to the prototype.
  • a dopant - titanium (ion radius of 0.064 nm and an ionization energy of 6.82 eV) is applied to sample H70-1 at a substrate temperature of 250 ... 300 ° C
  • a dopant - vanadium (ion radius of 0.059 is applied to sample H70-2 nm and ionization energy of 6.71 eV) at a substrate temperature of 200 ... 250 ° C
  • a dopant - chromium (ion radius 0.35 nm and ionization energy of 6.76 eV) at a substrate temperature of 170 is applied to sample H70-3 ... 250 ° C.
  • a layer of dopant is applied to the second side of the ceramic discs.
  • the dopant layer on the surface of samples H70-1, H70-2, and H70-3 is heated in vacuum from the fuser and annealed to obtain 5 barium titanate-based material doped in bulk.
  • a double-sided copper coating is applied to the surface of the samples of the composite material doped with dopant by means of vacuum electron beam deposition at a substrate temperature of not more than 600 ° C.
  • a ceramic capacitor of the H70 group is obtained in the form of a plate of doped ferroceramics with copper electrodes.
  • Comparison sample H70-4 is a ceramic capacitor made of molded and sintered capacitor ferroceramics based on 5 barium titanate of the group for temperature stability Y5V (according to the Russian classification of group H70) without alloying additive and with silver electrodes deposited by thermal diffusion according to the prototype.
  • the table shows that as a result of doping the ferroceramics of the NZO group by the proposed method, compared with the prototype, the dielectric constant (hence, capacity) increased depending on the dopant by 5.0-6.6 times with a simultaneous increase in breakdown voltage by 3.2 -3.6 times.
  • the growth in capacitance was from 5 to 6.8 times with a simultaneous increase in breakdown voltage by 3.6-4.0 times.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

L'invention concerne une technologie de fabrication de condensateurs dotés d'un diélectrique en céramique à base de titanate de baryum avec un revêtement de métal appliqué par sa pulvérisation obtenue par évaporation sous vide. Le procédé de fabrication de condensateurs ferroélectriques comprend la formation d'un substrat céramique, de préférence sur une base de titanate de baryum, l'application d'un revêtement d'alliage, la pulvérisation sous vide d'électrodes en cuivre et le recuit sous vide d'un matériau composite. La nouveauté consiste en ce que le revêtement d'alliage est appliqué en phase liquide par condensation à partir d'un flux de vapeur d'un métal vaporisé sous vide dans la série: titane, vanadium, chrome, manganèse, niobium, à une température du substrat de 150-350°C, après quoi le substrat avec le revêtement à alliage est soumis à un recuit, et l'application des électrodes en cuivre s'effectue directement sur le substrat composite chauffé à une température inférieure ou égale à 600°C. On propose une solution technique qui facilite, en comparaison aux analogues existants, une hausse moyenne de la capacité spécifique d'un condensateur ferroélectrique avec un facteur 6 et de la tension de rupture avec un facteur 3,6 sans accroître les pertes diélectriques.
PCT/RU2014/000476 2014-06-30 2014-06-30 Procédé de fabrication de condensateurs ferroélectriques WO2016003306A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU2014/000476 WO2016003306A1 (fr) 2014-06-30 2014-06-30 Procédé de fabrication de condensateurs ferroélectriques

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2014/000476 WO2016003306A1 (fr) 2014-06-30 2014-06-30 Procédé de fabrication de condensateurs ferroélectriques

Publications (1)

Publication Number Publication Date
WO2016003306A1 true WO2016003306A1 (fr) 2016-01-07

Family

ID=55019699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2014/000476 WO2016003306A1 (fr) 2014-06-30 2014-06-30 Procédé de fabrication de condensateurs ferroélectriques

Country Status (1)

Country Link
WO (1) WO2016003306A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230011A (ja) * 1990-05-31 1992-08-19 Philips Gloeilampenfab:Nv 単一層コンデンサーの製造方法
JPH06342737A (ja) * 1993-05-31 1994-12-13 Iwasaki Electric Co Ltd 非線形セラミックコンデンサの製造方法
RU2044719C1 (ru) * 1991-07-31 1995-09-27 Витебское производственное объединение "Монолит" Способ металлизации заготовок пьезокерамических элементов
RU2354632C2 (ru) * 2007-02-19 2009-05-10 Государственное образовательное учреждение высшего профессионального образования Кабардино-Балкарский государственный университет им. Х.М. Бербекова Способ металлизации керамики
RU2523000C1 (ru) * 2013-01-24 2014-07-20 Общество с ограниченной ответственностью "ЭЛЕМЕНТ-22" Способ изготовления сегнетоэлектрических конденсаторов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230011A (ja) * 1990-05-31 1992-08-19 Philips Gloeilampenfab:Nv 単一層コンデンサーの製造方法
RU2044719C1 (ru) * 1991-07-31 1995-09-27 Витебское производственное объединение "Монолит" Способ металлизации заготовок пьезокерамических элементов
JPH06342737A (ja) * 1993-05-31 1994-12-13 Iwasaki Electric Co Ltd 非線形セラミックコンデンサの製造方法
RU2354632C2 (ru) * 2007-02-19 2009-05-10 Государственное образовательное учреждение высшего профессионального образования Кабардино-Балкарский государственный университет им. Х.М. Бербекова Способ металлизации керамики
RU2523000C1 (ru) * 2013-01-24 2014-07-20 Общество с ограниченной ответственностью "ЭЛЕМЕНТ-22" Способ изготовления сегнетоэлектрических конденсаторов

Similar Documents

Publication Publication Date Title
US11328851B2 (en) Ceramic electronic component and manufacturing method therefor
KR102285241B1 (ko) 세라믹 다층 부품 및 세라믹 다층 부품의 제조 방법
RU2572840C2 (ru) Металлическая фольга с проводящим слоем и способ ее изготовления
JP6496581B2 (ja) 電圧非直線抵抗素子及びその製法
FR3020808A1 (fr) Materiau dielectrique en ceramique comportant du ccto
EP0208589A1 (fr) Cellule pour condensateur à double couche électrique, et procédé de fabrication d'une telle cellule
US20140321030A1 (en) Solid ion capacitor and method for using solid ion capacitor
CN109912304B (zh) 一种铁酸铋基三元固溶体介电薄膜材料及其制备方法
RU2523000C1 (ru) Способ изготовления сегнетоэлектрических конденсаторов
JPS6236624B2 (fr)
JP6496582B2 (ja) 電圧非直線抵抗素子及びその製法
RU2007119437A (ru) Конденсаторы с высокой плотностью энергии
JP4390456B2 (ja) 電解コンデンサーおよびその作製方法
WO2016003306A1 (fr) Procédé de fabrication de condensateurs ferroélectriques
CN110767450B (zh) 薄膜电容器
DE102010022831A1 (de) Doppelschichtkondensator
TWI719130B (zh) 電壓非線性電阻元件及其製法
JP5573362B2 (ja) 電極箔とこの電極箔を用いたコンデンサおよび電極箔の製造方法
DE102011000904A1 (de) Elektrischer Widerstand
CN110767473B (zh) 柔性储能薄膜
JPH06267785A (ja) 積層セラミック電子部品の製造方法
KR100781964B1 (ko) 내장형 커패시터 및 그 제조 방법
JP5222280B2 (ja) コンデンサ
KR830000439B1 (ko) 반도체 세라믹 재료의 소결체
Kyokane et al. Preparation and characteristics of capacitors with organic conductor as solid electrolyte by ion-assisted evaporation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 11281) EPC. EPO FORM 1205A DATED 23.05.17.

122 Ep: pct application non-entry in european phase

Ref document number: 14896601

Country of ref document: EP

Kind code of ref document: A1