WO2016098215A1 - Electrical device - Google Patents
Electrical device Download PDFInfo
- Publication number
- WO2016098215A1 WO2016098215A1 PCT/JP2014/083481 JP2014083481W WO2016098215A1 WO 2016098215 A1 WO2016098215 A1 WO 2016098215A1 JP 2014083481 W JP2014083481 W JP 2014083481W WO 2016098215 A1 WO2016098215 A1 WO 2016098215A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- electrode active
- positive electrode
- negative electrode
- material layer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an electrical device.
- the electric device according to the present invention is used, for example, as a secondary battery, a capacitor or the like as a driving power source or auxiliary power source for motors of vehicles such as electric vehicles, fuel cell vehicles, and hybrid electric vehicles.
- Motor drive secondary batteries are required to have extremely high output characteristics and high energy compared to consumer lithium ion secondary batteries used in mobile phones and notebook computers. Therefore, lithium ion secondary batteries having the highest theoretical energy among all the batteries are attracting attention, and are currently being developed rapidly.
- a lithium ion secondary battery includes a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector using a binder, and a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector using a binder.
- a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector using a binder
- a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector using a binder.
- it has the structure connected through an electrolyte layer and accommodated in a battery case.
- a battery using a material that is alloyed with Li for the negative electrode is expected as a negative electrode material for vehicle use because the energy density is improved as compared with a conventional carbon / graphite negative electrode material.
- a lithium ion secondary battery using a material that is alloyed with Li for the negative electrode has a large expansion and contraction in the negative electrode during charge and discharge.
- the volume expansion is about 1.2 times in graphite materials
- Si materials when Si and Li are alloyed, transition from the amorphous state to the crystalline state causes a large volume change. (Approximately 4 times), there was a problem of reducing the cycle life of the electrode.
- the capacity and the cycle durability are in a trade-off relationship, and there is a problem that it is difficult to improve the cycle durability while exhibiting a high capacity.
- an invention that aims to provide a non-aqueous electrolyte secondary battery having a negative electrode pellet having a high capacity and excellent cycle life is disclosed.
- a silicon-containing alloy obtained by mixing silicon powder and titanium powder by a mechanical alloying method and wet-pulverizing the first phase mainly composed of silicon and a silicide of titanium (such as TiSi 2 ) ) Containing a second phase containing) is disclosed as a negative electrode active material.
- a silicon-containing alloy obtained by mixing silicon powder and titanium powder by a mechanical alloying method and wet-pulverizing the first phase mainly composed of silicon and a silicide of titanium (such as TiSi 2 ) ) Containing a second phase containing) is disclosed as a negative electrode active material.
- at least one of these two phases is amorphous or low crystalline.
- the present invention provides sufficient cycle durability while fully utilizing the high capacity characteristics that are characteristic of a solid solution cathode active material in an electrical device such as a lithium ion secondary battery having a cathode using a solid solution cathode active material.
- An object is to provide means that can be realized.
- the present inventors have conducted intensive research to solve the above problems. As a result, the inventors have found that the above problem can be solved by using a combination of a negative electrode containing a predetermined Si-containing alloy as a negative electrode active material and a positive electrode containing a predetermined solid solution positive electrode active material, and completed the present invention. I came to let you.
- the present invention includes a positive electrode in which a positive electrode active material layer including a positive electrode active material is formed on the surface of a positive electrode current collector, and a negative electrode active material layer including a negative electrode active material on the surface of the negative electrode current collector.
- the present invention relates to an electric device having a power generation element including a negative electrode and a separator.
- the negative electrode active material layer has the following formula (1):
- ⁇ represents the weight percent of each component in the negative electrode active material layer, and 40 ⁇ ⁇ 98.
- the negative electrode active material represented by these is contained.
- the positive electrode active material layer has the following formula (2):
- e represents the weight percent of each component in the positive electrode active material layer, and 80 ⁇ e ⁇ 98.
- the positive electrode active material represented by these is contained.
- the Si-containing alloy has a structure in which a silicide phase containing a silicide of a transition metal is dispersed in a parent phase mainly composed of amorphous or low crystalline silicon.
- A is an inevitable impurity
- M is one or more transition metal elements
- the solid solution positive electrode active material has the following formula (3):
- FIG. 1 is a schematic cross-sectional view showing the basic configuration of a non-aqueous electrolyte lithium ion secondary battery that is not a flat type (stacked type) bipolar type, which is an embodiment of the electrical device according to the present invention. It is a perspective view showing the appearance of a flat lithium ion secondary battery which is a typical embodiment of an electric device according to the present invention. It is a chart which shows the X-ray-diffraction pattern of the solid solution positive electrode active material C0 which does not contain Ti. 2 is a chart showing an X-ray diffraction pattern of the solid solution positive electrode active material C1 obtained in Example 1.
- a positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on the surface of a positive electrode current collector;
- a negative electrode in which a negative electrode active material layer containing a negative electrode active material is formed on the surface of the negative electrode current collector;
- a separator An electrical device having a power generation element comprising:
- the negative electrode active material layer has the following formula (1):
- ⁇ represents the weight percent of each component in the negative electrode active material layer, and 40 ⁇ ⁇ 98. Containing a negative electrode active material represented by The positive electrode active material layer has the following formula (2):
- e represents the weight percent of each component in the positive electrode active material layer, and 80 ⁇ e ⁇ 98.
- a positive electrode active material represented by In this case, the Si-containing alloy has a structure in which a silicide phase containing a silicide of a transition metal is dispersed in a parent phase mainly composed of amorphous or low crystalline silicon. I):
- A is an inevitable impurity
- M is one or more transition metal elements
- the value (B / A) of the diffraction peak intensity B of the transition metal silicide in the range of ⁇ 45 ° is 0.41 or more
- the said solid solution positive electrode active material is following formula (3):
- An electrical device comprising a solid solution having a composition represented by: According to the present invention having such a configuration, when the value of B / A in the negative electrode active material (Si-containing alloy) is a value within the above-described range, an amorphous state when Si and Li are alloyed is obtained.
- Crystal phase transition (crystallization to Li 15 Si 4 ) is suppressed.
- contraction of the Si containing alloy which comprises the negative electrode active material in the charge / discharge process of an electrical device are suppressed.
- the electrical device according to the present invention can realize sufficient cycle durability while fully utilizing the high capacity characteristics that are characteristic of the solid solution positive electrode active material.
- a lithium ion secondary battery will be described as an example of an electric device.
- the lithium ion secondary battery using the electric device according to the present invention the voltage of the cell (single cell layer) is large, and high energy density and high output density can be achieved. Therefore, the lithium ion secondary battery of the present embodiment is excellent as a vehicle driving power source or an auxiliary power source. As a result, it can be suitably used as a lithium ion secondary battery for a vehicle driving power source or the like. In addition to this, the present invention can be sufficiently applied to lithium ion secondary batteries for portable devices such as mobile phones.
- the lithium ion secondary battery When the lithium ion secondary battery is distinguished by its form / structure, it can be applied to any conventionally known form / structure such as a stacked (flat) battery or a wound (cylindrical) battery. Is. By adopting a stacked (flat) battery structure, long-term reliability can be secured by a sealing technique such as simple thermocompression bonding, which is advantageous in terms of cost and workability.
- a solution electrolyte type battery using a solution electrolyte such as a nonaqueous electrolyte solution for the electrolyte layer, a polymer battery using a polymer electrolyte for the electrolyte layer, etc. It can be applied to any conventionally known electrolyte layer type.
- the polymer battery is further divided into a gel electrolyte type battery using a polymer gel electrolyte (also simply referred to as gel electrolyte) and a solid polymer (all solid) type battery using a polymer solid electrolyte (also simply referred to as polymer electrolyte). It is done.
- FIG. 1 schematically shows the overall structure of a flat (stacked) lithium ion secondary battery (hereinafter also simply referred to as “stacked battery”), which is a typical embodiment of the electrical device of the present invention.
- stacked battery a flat (stacked) lithium ion secondary battery
- the stacked battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminate sheet 29 that is an exterior body.
- the positive electrode in which the positive electrode active material layer 13 is disposed on both surfaces of the positive electrode current collector 11, the electrolyte layer 17, and the negative electrode active material layer 15 is disposed on both surfaces of the negative electrode current collector 12. It has a configuration in which a negative electrode is laminated. Specifically, the negative electrode, the electrolyte layer, and the positive electrode are laminated in this order so that one positive electrode active material layer 13 and the negative electrode active material layer 15 adjacent thereto face each other with the electrolyte layer 17 therebetween. .
- the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10 shown in FIG. 1 has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel.
- the positive electrode current collector 13 on the outermost layer located on both outermost layers of the power generating element 21 is provided with the positive electrode active material layer 13 only on one side, but the active material layer may be provided on both sides. . That is, instead of using a current collector dedicated to the outermost layer provided with an active material layer only on one side, a current collector having an active material layer on both sides may be used as it is as an outermost current collector.
- the outermost negative electrode current collector is positioned on both outermost layers of the power generation element 21, and one side of the outermost negative electrode current collector or A negative electrode active material layer may be disposed on both sides.
- the positive electrode current collector 11 and the negative electrode current collector 12 are attached to a positive electrode current collector plate 25 and a negative electrode current collector plate 27 that are electrically connected to the respective electrodes (positive electrode and negative electrode), and are sandwiched between end portions of the laminate sheet 29. Thus, it has a structure led out of the laminate sheet 29.
- the positive electrode current collector plate 25 and the negative electrode current collector plate 27 are ultrasonically welded to the positive electrode current collector 11 and the negative electrode current collector 12 of each electrode via a positive electrode lead and a negative electrode lead (not shown), respectively, as necessary. Or resistance welding or the like.
- the lithium ion secondary battery according to this embodiment is characterized by the configuration of the positive electrode and the negative electrode.
- main components of the battery including the positive electrode and the negative electrode will be described.
- the active material layers (13, 15) contain an active material, and further contain other additives as necessary.
- the positive electrode active material layer 13 includes at least a positive electrode active material (also referred to as “solid solution positive electrode active material” in the present specification) made of a solid solution material.
- Solid solution positive electrode active material A solid solution positive electrode active material consists of a solid solution which has a composition represented by following formula (3).
- this solid solution positive electrode active material was measured at 20-23 °, 35-40 ° (101), 42-45 ° (104) and 64-65 (108) / 65-66 (X-ray diffraction (XRD) measurement).
- 110) preferably has a diffraction peak indicating a rock salt type layered structure. At this time, in order to surely obtain the effect of improving the cycle characteristics, those having substantially no peak attributed to other than the diffraction peak of the rock salt type layered structure are preferable. More preferably, one having three diffraction peaks at 35-40 ° (101) and one diffraction peak at 42-45 ° (104) is suitable.
- the X-ray diffraction measurement shall employ the measurement method described in the examples described later.
- the notation of 64-65 (108) / 65-66 (110) has two peaks close to 64-65 and 65-66.
- one peak is broadly separated without being clearly separated. It is meant to include.
- the solid solution positive electrode active material having the composition represented by the composition formula (3) preferably has a plurality of specific diffraction peaks in the X-ray diffraction (XRD) measurement.
- the solid solution positive electrode active material having the above composition formula is a solid solution system of Li 2 MnO 3 and LiMnO 2.
- the diffraction peak at 20-23 ° is characteristic of Li 2 MnO 3 .
- the diffraction peaks of 36.5-37.5 ° (101), 44-45 ° (104) and 64-65 (108) / 65-66 (110) are usually in the rock salt type layered structure of LiMnO 2. It is characteristic.
- the solid solution positive electrode active material of the present embodiment does not include those having a peak other than a diffraction peak showing a rock salt type layered structure, for example, other peaks derived from impurities or the like, in these angular ranges.
- a structure other than the rock salt type layered structure is included in the positive electrode active material. If the structure other than the rock salt type layered structure is not included, the effect of improving the cycle characteristics can be surely obtained.
- the solid solution positive electrode active material at least one of Ti, Zr, and Nb is dissolved in a transition metal layer made of Ni, Co, and Mn by substituting Mn 4+ to form a rock salt type It is considered that a layered structure is formed. Since at least one kind of Ti, Zr and Nb is dissolved, the crystal structure is stabilized, so that it is considered that elution of transition metals including Mn is suppressed during charging and discharging. As a result, even if charging / discharging is repeated, a reduction in battery capacity can be prevented, and excellent cycle characteristics can be achieved. In addition, battery performance itself and durability can be improved.
- the diffraction peak showing the rock salt type layered structure in this embodiment is shifted to the low angle side. That is, the solid solution positive electrode active material according to the present embodiment is 20-23 °, 35.5-36.5 ° (101), 43.5-44.5 ° (104) in X-ray diffraction (XRD) measurement. And preferably have diffraction peaks at 64-65 (108) / 65-66 (110).
- the shift of the diffraction peak to the lower angle side indicates that Ti and the like are more solid-dissolved in the positive electrode active material and substitutes Mn, which is considered to have a greater effect of suppressing Mn elution.
- a + b + c + e satisfies 1.1 ⁇ [a + b + c + e] ⁇ 1.4.
- nickel (Ni), cobalt (Co), and manganese (Mn) are known to contribute to capacity characteristics and output characteristics from the viewpoint of improving the purity of the material and improving the electronic conductivity.
- Ti or the like partially substitutes Mn in the crystal lattice.
- a is preferably 0 ⁇ a ⁇ 1.5, and more preferably 0.1 ⁇ a ⁇ 0.75.
- a is in the above range, a secondary battery having a better capacity retention rate can be obtained.
- a is not a ⁇ 0.75, the crystal structure is not stabilized because nickel is contained in the positive electrode active material within the above range d on condition that nickel (Ni) is divalent. There is.
- a ⁇ 0.75 the crystal structure of the positive electrode active material tends to be a rock salt type layered structure.
- b is preferably 0 ⁇ b ⁇ 1.5, and more preferably 0.2 ⁇ b ⁇ 0.9.
- b is in the above range, an electric device having a better capacity retention rate can be obtained.
- b does not satisfy b ⁇ 0.9, manganese is contained in the positive electrode active material within the above range d, provided that manganese is tetravalent, and nickel (Ni ), The crystal structure may not be stabilized.
- b ⁇ 0.9 the crystal structure of the positive electrode active material tends to be a rock salt type layered structure.
- c is preferably 0 ⁇ c ⁇ 1.5.
- nickel and manganese are contained in the positive electrode active material within the above range d on condition that cobalt is trivalent.
- cobalt (Co) is contained in the positive electrode active material within the above range d on condition that nickel (Ni) is divalent and manganese (Mn) is tetravalent. Therefore, the crystal structure of the positive electrode active material may not be stabilized.
- c ⁇ 0.6 the crystal structure of the positive electrode active material tends to be a rock salt type layered structure.
- composition formula (3) 0.1 ⁇ d ⁇ 0.4.
- d is not 0.1 ⁇ d ⁇ 0.4, the crystal structure of the positive electrode active material may not be stabilized.
- the positive electrode active material tends to have a rock salt type layered structure.
- the range of d is more preferably 0.15 ⁇ d ⁇ 0.35.
- d is 0.1 or more, the composition is less likely to be close to Li 2 MnO 3 and charge / discharge is facilitated, which is preferable.
- e 0.01 ⁇ e ⁇ 0.4.
- the element cannot be uniformly dissolved in the crystal structure, and the crystal structure cannot be stabilized.
- at least one of Ti, Zr, and Nb can sufficiently substitute Mn 4+ so that elution is suppressed. More preferably, e satisfies 0.02 ⁇ e ⁇ 0.3, more preferably 0.025 ⁇ e ⁇ 0.25, and particularly preferably 0.03 ⁇ e ⁇ 0.2.
- the ionic radius of each element is Mn 4+ 0.540.5, Mn 4+ 0.54 ⁇ , Ti 4+ 0.61 ⁇ , Zr 4+ 0.72 ⁇ , Nb 5+ 0.64 ⁇ , and Ti, Zr and Nb are larger than Mn. ing. Therefore, as Mn 4+ in the positive electrode active material is replaced with Ti or the like, the crystal lattice expands, and the diffraction peak indicating the rock salt type layered structure shifts to a lower angle side. On the contrary, if the diffraction peak is shifted to a lower angle side, the substitution amount of Mn 4+ such as Ti is larger, and the crystal structure is easily stabilized. That is, elution of Mn at the time of charging / discharging is further suppressed, and the capacity reduction of the electric device can be more effectively prevented.
- the specific surface area of the positive electrode active material is preferably 0.2 to 0.6 m 2 / g, and more preferably 0.25 to 0.5 m 2 / g.
- a specific surface area of 0.2 m 2 / g or more is preferable because sufficient battery output can be obtained.
- the specific surface area is 0.6 m 2 / g or less because elution of manganese can be further suppressed.
- the value measured by the method of an Example shall be employ
- the average particle diameter of the positive electrode active material is preferably 10 to 20 ⁇ m, and more preferably 12 to 18 ⁇ m. It is preferable that the average particle size is 10 ⁇ m or more because elution of manganese can be suppressed. On the other hand, when the average particle size is 20 ⁇ m or less, it is preferable that foil breakage, clogging, and the like can be suppressed in the application step to the current collector during the production of the positive electrode.
- the average particle diameter is measured by a laser diffraction / scattering particle size distribution measuring device. The average particle diameter can be measured, for example, using a particle size distribution analyzer (model LA-920) manufactured by Horiba.
- the solid solution positive electrode active material as described above can be prepared, for example, by the following method. That is, a first step of mixing at least one citrate of Ti, Zr and Nb with an organic acid salt of a transition metal having a melting point of 100 ° C. to 350 ° C., and a mixture obtained in the first step at 100 ° C. A second step of melting at ⁇ 350 ° C., a third step of pyrolyzing the melt obtained in the second step at a temperature higher than the melting point, and a second step of firing the pyrolyzate obtained in the third step. 4 steps. Hereinafter, each step will be described.
- At least one citrate of Ti, Zr and Nb and an organic acid salt of a transition metal having a melting point of 100 ° C. to 350 ° C. are mixed.
- At least one citrate of Ti, Zr and Nb is preferably mixed in the form of an aqueous citric acid complex solution.
- the aqueous solution of at least one kind of citrate complex of Ti, Zr and Nb is not limited to the following, but it can be preferably prepared as follows.
- anhydrous citric acid is dissolved in an organic solvent such as acetone, and at least one alkoxide of Ti, Zr and Nb is added to the solution.
- the molar ratio of at least one of Ti, Zr and Nb to citric acid is preferably (at least one of Ti, Zr and Nb) / citric acid being 1/1 to 1/2.
- the amount of water is appropriately added so that the concentration of the aqueous citric acid complex is 1 to 10% by mass in terms of at least one of Ti, Zr and Nb.
- This aqueous solution is allowed to stand for one day, and the precipitate is filtered to obtain an aqueous solution of at least one citrate complex of Ti, Zr and Nb as a filtrate.
- an organic acid salt of a transition metal having a melting point of 100 ° C. to 350 ° C. is added to the obtained aqueous solution of at least one kind of citric acid complex of Ti, Zr and Nb to obtain a mixture.
- the organic acid salt of transition metal having a melting point of 100 ° C. to 350 ° C. preferably includes nickel acetate, manganese acetate, cobalt acetate, manganese citrate and the like.
- an alkali metal organic acid salt is further mixed with the above-described aqueous solution of at least one kind of citric acid complex of Ti, Zr and Nb.
- Preferred examples of the organic acid salt of alkali metal include lithium acetate and lithium citrate. It is preferable to mix an alkali metal organic acid salt at this stage because the production method is simple.
- Second Step The mixture obtained in the first step is melted at 100 to 350 ° C., preferably 200 to 300 ° C.
- the heated melt (slurry) obtained in the second step is pyrolyzed at a temperature equal to or higher than the melting point of the organic acid salt of the transition metal used in the first step to obtain a pyrolyzate that is a dry powder.
- the melting points of the organic acid salts of a plurality of transition metals are different from each other, they are thermally decomposed at a temperature higher than the highest melting point. More specifically, the melt can be heated and sprayed at 200 to 600 ° C., more preferably 200 to 400 ° C., with a spray device.
- the pyrolyzate obtained in the third step is calcined at 600 to 1200 ° C., more preferably 800 to 1100 ° C., for 5 to 20 hours, preferably 10 to 15 hours.
- Temporary baking may be performed before baking, in which case the temporary baking may be performed at 200 to 700 ° C., more preferably 300 to 600 ° C. for 1 to 10 hours, more preferably 2 to 6 hours.
- the positive electrode active material of this embodiment is obtained.
- a positive electrode active material other than the solid solution positive electrode active material described above may be used in combination.
- a lithium-transition metal composite oxide is used in combination as the positive electrode active material from the viewpoint of capacity and output characteristics.
- other positive electrode active materials may be used.
- the optimum particle size is different for expressing the unique effect of each active material, the optimum particle size may be blended and used for expressing each unique effect. It is not always necessary to make the particle diameter uniform.
- the average particle diameter of the positive electrode active material contained in the positive electrode active material layer 13 is not particularly limited, but is preferably 1 to 30 ⁇ m and more preferably 5 to 20 ⁇ m from the viewpoint of increasing the output.
- the “particle diameter” refers to the outline of the active material particles (observation surface) observed using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It means the maximum distance among any two points.
- the value of “average particle diameter” is the value of particles observed in several to several tens of fields using observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The value calculated as the average value of the particle diameter shall be adopted.
- the particle diameters and average particle diameters of other components can be defined in the same manner.
- the positive electrode active material layer contains a positive electrode active material (solid solution positive electrode active material) represented by the following formula (2).
- e represents mass% of each component in the positive electrode active material layer, and 80 ⁇ e ⁇ 98.
- the content of the solid solution positive electrode active material in the positive electrode active material layer is essential to be 80 to 98% by mass, but preferably 84 to 98% by mass.
- the positive electrode active material layer preferably contains a binder and a conductive aid in addition to the solid solution positive electrode active material described above. Further, if necessary, it further contains other additives such as an electrolyte (polymer matrix, ion-conductive polymer, electrolyte solution, etc.) and a lithium salt for increasing the ion conductivity.
- a binder and a conductive aid in addition to the solid solution positive electrode active material described above. Further, if necessary, it further contains other additives such as an electrolyte (polymer matrix, ion-conductive polymer, electrolyte solution, etc.) and a lithium salt for increasing the ion conductivity.
- Binder Although it does not specifically limit as a binder used for a positive electrode active material layer, for example, the following materials are mentioned. Polyethylene, polypropylene, polyethylene terephthalate (PET), polyether nitrile, polyacrylonitrile, polyimide, polyamide, cellulose, carboxymethyl cellulose (CMC) and its salts, ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene-butadiene rubber (SBR) ), Isoprene rubber, butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene copolymer, styrene / butadiene / styrene block copolymer and hydrogenated product thereof, styrene / isoprene / styrene block copolymer and hydrogenated product thereof.
- Thermoplastic polymers such as products, polyvinylidene fluoride (P
- the binder content in the positive electrode active material layer is preferably 1 to 10% by mass, more preferably 1 to 8% by mass.
- the conductive assistant refers to an additive that is blended in order to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer.
- Examples of the conductive assistant include carbon black such as ketjen black and acetylene black.
- the content of the conductive additive in the positive electrode active material layer is preferably 1 to 10% by mass, more preferably 1 to 8% by mass.
- electrolyte salt examples include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.
- Examples of the ion conductive polymer include polyethylene oxide (PEO) and polypropylene oxide (PPO) polymers.
- the positive electrode (positive electrode active material layer) can be applied by any one of a kneading method, a sputtering method, a vapor deposition method, a CVD method, a PVD method, an ion plating method, and a thermal spraying method in addition to a method of applying (coating) a normal slurry. Can be formed.
- the negative electrode active material layer 15 essentially contains a Si-containing alloy as a negative electrode active material.
- the Si-containing alloy as the negative electrode active material has a structure in which a silicide phase containing a transition metal silicide is dispersed in a parent phase mainly composed of amorphous or low crystalline silicon. And having a predetermined composition.
- the Si-containing alloy constituting the negative electrode active material in the present embodiment is first provided with a parent phase mainly composed of amorphous or amorphous silicon.
- a parent phase mainly composed of amorphous or amorphous silicon.
- the parent phase constituting the silicon-containing alloy is a phase containing silicon as a main component, and is preferably a Si single phase (phase consisting of only Si).
- This parent phase (phase containing Si as a main component) is a phase involved in occlusion / release of lithium ions during operation of the electrical device (lithium ion secondary battery) of the present embodiment, and electrochemically reacts with Li. It is a possible phase.
- the Si single phase it is possible to occlude and release a large amount of Li per weight and per volume.
- the parent phase may contain a small amount of additive elements such as phosphorus and boron, transition metals, and the like.
- this parent phase (phase containing Si as a main component) is made amorphousr than a silicide phase described later.
- the negative electrode active material silicon-containing alloy
- the parent phase is more amorphous than the silicide phase can be confirmed by electron beam diffraction analysis. Specifically, according to the electron diffraction analysis, a net pattern (lattice spot) of a two-dimensional dot arrangement is obtained for a single crystal phase, and a Debye-Scherrer ring (diffraction ring) is obtained for a polycrystalline phase, A halo pattern is obtained for the amorphous phase. By using this, the above confirmation becomes possible.
- the silicon-containing alloy constituting the negative electrode active material in the present embodiment also includes a silicide phase containing a transition metal silicide (also referred to as silicide) dispersed in the parent phase in addition to the parent phase. It is out.
- This silicide phase contains a transition metal silicide (eg, TiSi 2 ), so that it has excellent affinity with the parent phase, and can particularly suppress cracking at the crystal interface due to volume expansion during charging.
- the silicide phase is superior in terms of electron conductivity and hardness compared to the parent phase. For this reason, the silicide phase plays a role of improving the low electron conductivity of the parent phase and maintaining the shape of the active material against the stress during expansion.
- a plurality of phases may exist in the silicide phase.
- two or more phases for example, MSi 2 and MSi
- two or more phases may exist by including a silicide with different transition metal elements.
- the type of transition metal contained in the silicide phase is not particularly limited, but is preferably at least one selected from the group consisting of Ti, Zr, Ni, Cu, and Fe, and more preferably Ti or Zr. Yes, particularly preferably Ti.
- These elements have a higher electron conductivity and higher strength than silicides of other elements when silicides are formed.
- TiSi 2 which is silicide when the transition metal element is Ti is preferable because it exhibits very excellent electron conductivity.
- the silicide phase is 50 mass% or more, preferably 80 mass% or more, More preferably, 90% by mass or more, particularly preferably 95% by mass or more, and most preferably 100% by mass is the TiSi 2 phase.
- the size of the silicide phase is not particularly limited, but in a preferred embodiment, the size of the silicide phase is 50 nm or less. With such a configuration, the negative electrode active material (silicon-containing alloy) can have a higher capacity.
- the silicon-containing alloy constituting the negative electrode active material has a composition represented by the following chemical formula (I).
- A is an inevitable impurity
- M is one or more transition metal elements
- the “inevitable impurities” means an Si-containing alloy that exists in a raw material or is inevitably mixed in a manufacturing process. The inevitable impurities are originally unnecessary impurities, but are a very small amount and do not affect the characteristics of the Si alloy.
- Ti is selected as an additive element (M; transition metal) to the negative electrode active material (silicon-containing alloy), and Sn is added as a second additive element as necessary.
- M transition metal
- Sn is added as a second additive element as necessary.
- M is preferably titanium (Ti)
- M is a ternary system of Si—Sn—Ti containing titanium. More preferably.
- the amorphous-crystal phase transition is suppressed because, in the Si material, when Si and Li are alloyed, the amorphous state transitions to the crystalline state and a large volume change (about 4 times) occurs. This is because the particles themselves are broken and the function as an active material is lost. Therefore, by suppressing the amorphous-crystal phase transition, it is possible to suppress the collapse of the particles themselves, maintain the function as the active material (high capacity), and improve the cycle life. By selecting such an additive element, a Si alloy negative electrode active material having a high capacity and high cycle durability can be provided.
- the composition ratio z of the transition metal M (particularly Ti) is preferably 7 ⁇ z ⁇ 100, more preferably 10 ⁇ z ⁇ 100, and 15 ⁇ z ⁇ 100. It is more preferable that 20 ⁇ z ⁇ 100.
- the x, y, and z in the chemical formula (I) are represented by the following formula (1) or (2):
- the content of the transition metal M is preferably in the range of more than 7% by mass. That is, the x, y, and z are represented by the following formula (3) or (4):
- the x, y, and z are represented by the following formula (5) or (6):
- the x, y, and z are expressed by the following formula (7):
- A is an impurity (unavoidable impurity) other than the above three components derived from the raw materials and the manufacturing method.
- the a is 0 ⁇ a ⁇ 0.5, and preferably 0 ⁇ a ⁇ 0.1.
- the X-ray diffraction analysis for calculating the intensity ratio of the diffraction peaks is performed using the method described in the column of Examples described later.
- a line segment ab is defined as a base line
- the silicide of the transition metal is TiSi 2
- diffraction peak intensity A of the Si (111) plane and the diffraction peak intensity B of the transition metal silicide are not particularly limited, but the diffraction peak intensity A of the Si (111) plane is not particularly limited. Is preferably 6000 to 25000 (cps), more preferably 6000 to 15000.
- the diffraction peak intensity B of the transition metal silicide is preferably 9000 to 46000 (cps), more preferably 25000 to 46000 (cps).
- the particle diameter of the silicon-containing alloy constituting the negative electrode active material in the present embodiment is not particularly limited, but the average particle diameter is preferably 0.1 to 20 ⁇ m, more preferably 0.2 to 10 ⁇ m.
- a process for obtaining a mixed powder by mixing raw materials of a silicon-containing alloy is performed.
- raw materials for the alloy are mixed.
- the raw material of the alloy is not particularly limited as long as the ratio of elements necessary as the negative electrode active material can be realized.
- raw materials in a powder state are mixed. Thereby, the mixed powder which consists of a raw material is obtained.
- the intensity ratio (B / A) of the diffraction peak can be controlled by adjusting the composition ratio between silicon (Si) and titanium (Ti) in the raw material. For example, when the composition ratio of Ti to Si is increased, the strength ratio (B / A) can be increased.
- Examples of alloying methods include a solid phase method, a liquid phase method, and a gas phase method.
- a mechanical alloy method for example, a mechanical alloy method, an arc plasma melting method, a casting method, a gas atomizing method, a liquid quenching method, an ion beam sputtering method, a vacuum method, and the like.
- Examples include vapor deposition, plating, and gas phase chemical reaction.
- a step of melting the raw material and a step of rapidly cooling and solidifying the molten material may be included.
- the alloying process described above is performed. Thereby, it can be set as the structure which consists of a mother phase / silicide phase as mentioned above.
- a negative electrode active material Si-containing alloy
- the alloying treatment time is preferably 30 hours or more, more preferably 36 hours or more, still more preferably 42 hours or more, and particularly preferably 48 hours or more.
- the diffraction peak intensity ratio (B / A) can also be increased by increasing the time required for the alloying treatment.
- the upper limit of the time for alloying process is not set in particular, it may usually be 72 hours or less.
- the alloying treatment by the method described above is usually performed in a dry atmosphere, but the particle size distribution after the alloying treatment may be very large or small. For this reason, it is preferable to perform the grinding
- the predetermined alloy included in the negative electrode active material layer has been described, but the negative electrode active material layer may contain other negative electrode active materials.
- the negative electrode active material other than the predetermined alloy include natural graphite, artificial graphite, carbon black, activated carbon, carbon fiber, coke, soft carbon, carbon such as hard carbon, pure metal such as Si and Sn, and the predetermined composition.
- Alloy-based active material out of ratio or metal oxide such as TiO, Ti 2 O 3 , TiO 2 , SiO 2 , SiO, SnO 2 , lithium such as Li 4/3 Ti 5/3 O 4 or Li 7 MnN And transition metal complex oxides (composite nitrides), Li—Pb alloys, Li—Al alloys, Li, and the like.
- the content of the predetermined alloy in the total amount of 100% by mass of the negative electrode active material is preferably It is 50 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, particularly preferably 95 to 100% by mass, and most preferably 100% by mass.
- the negative electrode active material layer contains a negative electrode active material represented by the following formula (1).
- ⁇ represents the weight percent of each component in the negative electrode active material layer, and 40 ⁇ ⁇ 98.
- the content of the negative electrode active material made of the Si-containing alloy in the negative electrode active material layer is more than 40 mass% and 98 mass% or less.
- the negative electrode active material layer preferably contains a binder and a conductive additive in addition to the negative electrode active material described above. Further, if necessary, it further contains other additives such as an electrolyte (polymer matrix, ion conductive polymer, electrolytic solution, etc.) and a lithium salt for increasing the ion conductivity.
- an electrolyte polymer matrix, ion conductive polymer, electrolytic solution, etc.
- a lithium salt for increasing the ion conductivity.
- each active material layer (active material layer on one side of the current collector) is not particularly limited, and conventionally known knowledge about the battery can be appropriately referred to.
- the thickness of each active material layer is usually about 1 to 500 ⁇ m, preferably 2 to 100 ⁇ m, taking into consideration the intended use of the battery (emphasis on output, energy, etc.) and ion conductivity.
- the current collectors (11, 12) are made of a conductive material.
- the size of the current collector is determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used.
- the thickness of the current collector is usually about 1 to 100 ⁇ m.
- the shape of the current collector is not particularly limited.
- a mesh shape (such as an expanded grid) can be used.
- the negative electrode active material is formed directly on the negative electrode current collector 12 by sputtering or the like, it is preferable to use a current collector foil.
- a metal or a resin in which a conductive filler is added to a conductive polymer material or a non-conductive polymer material can be employed.
- examples of the metal include aluminum, nickel, iron, stainless steel, titanium, and copper.
- a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals can be preferably used.
- covered on the metal surface may be sufficient.
- aluminum, stainless steel, copper, and nickel are preferable from the viewpoints of electronic conductivity, battery operating potential, and adhesion of the negative electrode active material by sputtering to the current collector.
- examples of the conductive polymer material include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. Since such a conductive polymer material has sufficient conductivity without adding a conductive filler, it is advantageous in terms of facilitating the manufacturing process or reducing the weight of the current collector.
- Non-conductive polymer materials include, for example, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA) , Polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), or polystyrene (PS).
- PE polyethylene
- HDPE high density polyethylene
- LDPE low density polyethylene
- PP polypropylene
- PET polyethylene terephthalate
- PEN polyether nitrile
- PI polyimide
- PAI polyamideimide
- PA polyamide
- PTFE polytetraflu
- a conductive filler may be added to the conductive polymer material or the non-conductive polymer material as necessary.
- a conductive filler is inevitably necessary to impart conductivity to the resin.
- the conductive filler can be used without particular limitation as long as it has a conductivity.
- metals, conductive carbon, etc. are mentioned as a material excellent in electroconductivity, electric potential resistance, or lithium ion barrier
- the metal is not particularly limited, but at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, Sb, and K, or these metals It is preferable to contain an alloy or metal oxide containing.
- it includes at least one selected from the group consisting of acetylene black, vulcan, black pearl, carbon nanofiber, ketjen black, carbon nanotube, carbon nanohorn, carbon nanoballoon, and fullerene.
- the amount of the conductive filler added is not particularly limited as long as it is an amount capable of imparting sufficient conductivity to the current collector, and is generally about 5 to 35% by weight.
- the separator has a function of holding an electrolyte and ensuring lithium ion conductivity between the positive electrode and the negative electrode, and a function as a partition wall between the positive electrode and the negative electrode.
- separator examples include a separator made of a porous sheet made of a polymer or fiber that absorbs and holds the electrolyte and a nonwoven fabric separator.
- a microporous (microporous film) can be used as the separator of the porous sheet made of polymer or fiber.
- the porous sheet made of the polymer or fiber include polyolefins such as polyethylene (PE) and polypropylene (PP); a laminate in which a plurality of these are laminated (for example, three layers of PP / PE / PP) And a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
- PE polyethylene
- PP polypropylene
- a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
- the thickness of the microporous (microporous membrane) separator cannot be uniquely defined because it varies depending on the intended use. For example, in applications such as secondary batteries for driving motors such as electric vehicles (EV), hybrid electric vehicles (HEV), and fuel cell vehicles (FCV), it is 4 to 60 ⁇ m in a single layer or multiple layers. Is desirable.
- the fine pore diameter of the microporous (microporous membrane) separator is desirably 1 ⁇ m or less (usually a pore diameter of about several tens of nm).
- nonwoven fabric separator cotton, rayon, acetate, nylon, polyester; polyolefins such as PP and PE; conventionally known ones such as polyimide and aramid are used alone or in combination.
- the bulk density of the nonwoven fabric is not particularly limited as long as sufficient battery characteristics can be obtained by the impregnated polymer gel electrolyte.
- the thickness of the nonwoven fabric separator may be the same as that of the electrolyte layer, and is preferably 5 to 200 ⁇ m, particularly preferably 10 to 100 ⁇ m.
- the separator includes an electrolyte.
- the electrolyte is not particularly limited as long as it can exhibit such a function, but a liquid electrolyte or a gel polymer electrolyte is used.
- a gel polymer electrolyte By using the gel polymer electrolyte, the distance between the electrodes is stabilized, the occurrence of polarization is suppressed, and the durability (cycle characteristics) is improved.
- the liquid electrolyte functions as a lithium ion carrier.
- the liquid electrolyte constituting the electrolytic solution layer has a form in which a lithium salt as a supporting salt is dissolved in an organic solvent as a plasticizer.
- organic solvent include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate.
- EC ethylene carbonate
- PC propylene carbonate
- DMC dimethyl carbonate
- DEC diethyl carbonate
- ethyl methyl carbonate ethyl methyl carbonate.
- Li (CF 3 SO 2) 2 N Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF such 6, LiCF 3 SO 3
- a compound that can be added to the active material layer of the electrode can be similarly employed.
- the liquid electrolyte may further contain additives other than the components described above.
- additives include, for example, vinylene carbonate, methyl vinylene carbonate, dimethyl vinylene carbonate, phenyl vinylene carbonate, diphenyl vinylene carbonate, ethyl vinylene carbonate, diethyl vinylene carbonate, vinyl ethylene carbonate, 1,2-divinyl ethylene carbonate.
- vinylene carbonate, methyl vinylene carbonate, and vinyl ethylene carbonate are preferable, and vinylene carbonate and vinyl ethylene carbonate are more preferable.
- These cyclic carbonates may be used alone or in combination of two or more.
- the gel polymer electrolyte has a configuration in which the above liquid electrolyte is injected into a matrix polymer (host polymer) made of an ion conductive polymer.
- a gel polymer electrolyte as the electrolyte is superior in that the fluidity of the electrolyte is lost and the ion conductivity between the layers is easily cut off.
- ion conductive polymer used as the matrix polymer (host polymer) examples include polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene glycol (PEG), polyacrylonitrile (PAN), polyvinylidene fluoride-hexafluoropropylene ( PVdF-HEP), poly (methyl methacrylate (PMMA), and copolymers thereof.
- PEO polyethylene oxide
- PPO polypropylene oxide
- PEG polyethylene glycol
- PAN polyacrylonitrile
- PVdF-HEP polyvinylidene fluoride-hexafluoropropylene
- PMMA methyl methacrylate
- the matrix polymer of gel electrolyte can express excellent mechanical strength by forming a crosslinked structure.
- thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte using an appropriate polymerization initiator.
- a polymerization treatment may be performed.
- the separator is preferably a separator in which a heat-resistant insulating layer is laminated on a porous substrate (a separator with a heat-resistant insulating layer).
- the heat resistant insulating layer is a ceramic layer containing inorganic particles and a binder.
- a highly heat-resistant separator having a melting point or a heat softening point of 150 ° C. or higher, preferably 200 ° C. or higher is used.
- the separator is less likely to curl in the battery manufacturing process due to the effect of suppressing thermal shrinkage and high mechanical strength.
- the inorganic particles in the heat resistant insulating layer contribute to the mechanical strength and heat shrinkage suppressing effect of the heat resistant insulating layer.
- the material used as the inorganic particles is not particularly limited. Examples thereof include silicon, aluminum, zirconium, titanium oxides (SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 ), hydroxides and nitrides, and composites thereof. These inorganic particles may be derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine and mica, or may be artificially produced. Moreover, only 1 type may be used individually for these inorganic particles, and 2 or more types may be used together. Of these, silica (SiO 2 ) or alumina (Al 2 O 3 ) is preferably used, and alumina (Al 2 O 3 ) is more preferably used from the viewpoint of cost.
- the basis weight of the heat-resistant particles is not particularly limited, but is preferably 5 to 15 g / m 2 . If it is this range, sufficient ion conductivity will be acquired and it is preferable at the point which maintains heat resistant strength.
- the binder in the heat-resistant insulating layer has a role of adhering the inorganic particles and the inorganic particles to the resin porous substrate layer.
- the heat resistant insulating layer is stably formed, and peeling between the porous substrate layer and the heat resistant insulating layer is prevented.
- the binder used for the heat-resistant insulating layer is not particularly limited.
- a compound such as butadiene rubber, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), or methyl acrylate can be used as the binder.
- PVDF polyvinylidene fluoride
- PTFE polytetrafluoroethylene
- PVF polyvinyl fluoride
- methyl acrylate methyl acrylate
- PVDF polyvinylidene fluoride
- these compounds only 1 type may be used independently and 2 or more types may be used together.
- the binder content in the heat-resistant insulating layer is preferably 2 to 20% by weight with respect to 100% by weight of the heat-resistant insulating layer.
- the binder content is 2% by weight or more, the peel strength between the heat-resistant insulating layer and the porous substrate layer can be increased, and the vibration resistance of the separator can be improved.
- the binder content is 20% by weight or less, the gap between the inorganic particles is appropriately maintained, so that sufficient lithium ion conductivity can be ensured.
- the thermal contraction rate of the separator with a heat-resistant insulating layer is preferably 10% or less for both MD and TD after holding for 1 hour at 150 ° C. and 2 gf / cm 2 .
- a current collector plate (tab) electrically connected to a current collector is taken out of a laminate film as an exterior material for the purpose of taking out current outside the battery.
- the material constituting the current collector plate is not particularly limited, and a known highly conductive material conventionally used as a current collector plate for a lithium ion secondary battery can be used.
- a constituent material of the current collector plate for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable. Note that the same material may be used for the positive electrode current collector plate (positive electrode tab) and the negative electrode current collector plate (negative electrode tab), or different materials may be used.
- the tabs 58 and 59 shown in FIG. 2 are not particularly limited.
- the positive electrode tab 58 and the negative electrode tab 59 may be drawn out from the same side, or the positive electrode tab 58 and the negative electrode tab 59 may be divided into a plurality of parts and taken out from each side, as shown in FIG. It is not limited to.
- a terminal may be formed using a cylindrical can (metal can).
- the seal portion is a member unique to the serially stacked battery and has a function of preventing leakage of the electrolyte layer. In addition to this, it is possible to prevent current collectors adjacent in the battery from coming into contact with each other and a short circuit due to a slight unevenness at the end of the laminated electrode.
- the constituent material of the seal part is not particularly limited, but polyolefin resin such as polyethylene and polypropylene, epoxy resin, rubber, polyimide and the like can be used. Among these, it is preferable to use a polyolefin resin from the viewpoints of corrosion resistance, chemical resistance, film-forming property, economy, and the like.
- ⁇ Positive terminal lead and negative terminal lead> As a material for the negative electrode and the positive electrode terminal lead, a lead used in a known laminated secondary battery can be used.
- the parts removed from the battery exterior material should be heat-insulating so that they do not affect products (for example, automobile parts, especially electronic devices) by touching peripheral devices or wiring and causing leakage. It is preferable to coat with a heat shrinkable tube or the like.
- Laminate film A conventionally known metal can case can be used as the exterior material.
- the power generation element 17 may be packed using a laminate film 22 as shown in FIG.
- the laminate film can be configured as a three-layer structure in which, for example, polypropylene, aluminum, and nylon are laminated in this order.
- the manufacturing method in particular of a lithium ion secondary battery is not restrict
- a lithium ion secondary battery is not limited to this.
- the electrode (positive electrode and negative electrode) is prepared, for example, by preparing an active material slurry (positive electrode active material slurry or negative electrode active material slurry) and applying the active material slurry onto a current collector. It can be made by drying, then pressing.
- the active material slurry includes the above-described active material (positive electrode active material or negative electrode active material), a binder, a conductive additive, and a solvent.
- the solvent is not particularly limited, and N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylformamide, cyclohexane, hexane, water and the like can be used.
- NMP N-methyl-2-pyrrolidone
- the method for applying the active material slurry to the current collector is not particularly limited, and examples thereof include a screen printing method, a spray coating method, an electrostatic spray coating method, an ink jet method, and a doctor blade method.
- the method for drying the coating film formed on the surface of the current collector is not particularly limited as long as at least a part of the solvent in the coating film is removed.
- An example of the drying method is heating. Drying conditions (drying time, drying temperature, etc.) can be appropriately set according to the volatilization rate of the solvent contained in the applied active material slurry, the coating amount of the active material slurry, and the like. A part of the solvent may remain. The remaining solvent can be removed by a press process described later.
- the pressing means is not particularly limited, and for example, a calendar roll, a flat plate press, or the like can be used.
- the single cell layer can be produced by laminating the electrodes (positive electrode and negative electrode) produced in (1) via an electrolyte layer.
- the power generation element can be produced by laminating the single cell layers in consideration of the output and capacity of the single cell layer, the output and capacity required for the battery, and the like.
- the structure of the battery various shapes such as a rectangular shape, a paper shape, a laminated shape, a cylindrical shape, and a coin shape can be adopted.
- the current collector and insulating plate of the component parts are not particularly limited, and may be selected according to the above shape.
- a stacked battery is preferable.
- a lead is joined to the current collector of the power generation element obtained above, and the positive electrode lead or the negative electrode lead is joined to the positive electrode tab or the negative electrode tab.
- a power generation element is placed in a laminate sheet so that the positive electrode tab and the negative electrode tab are exposed to the outside of the battery, and an electrolytic solution is injected with a liquid injector and then sealed in a vacuum to produce a stacked battery. sell.
- the initial charge treatment, gas removal treatment and activation treatment are further performed under the following conditions.
- it is done (see Example 1).
- the three sides of the laminate sheet (exterior material) are completely sealed in a rectangular shape by thermocompression when sealing in the production of the laminated battery of (4) so that the gas removal treatment can be performed. Stop (main sealing), and the remaining one side is temporarily sealed by thermocompression bonding.
- the remaining one side may be freely opened and closed by, for example, clip fastening, but from the viewpoint of mass production (production efficiency), it is preferable to temporarily seal the side by thermocompression bonding.
- thermocompression it is only necessary to adjust the temperature and pressure for pressure bonding.
- it can be opened by lightly applying force, and after degassing, it may be sealed again by thermocompression, or finally completely sealed by thermocompression ( Main sealing).
- the battery aging treatment is preferably performed as follows. At 25 ° C., a constant current charging method is used for 0.05 C for 4 hours (SOC approximately 20%). Next, after charging to 4.45 V at a 0.1 C rate at 25 ° C., the charging is stopped, and the state (SOC is about 70%) is maintained for about 2 days (48 hours).
- thermocompression bonding Next, the following process is performed as the first (first) gas removal process. First, one side temporarily sealed by thermocompression bonding is opened, gas is removed at 10 ⁇ 3 hPa for 5 minutes, and then thermocompression bonding is performed again to perform temporary sealing. Further, pressurization with a roller (surface pressure 0.5 ⁇ 0.1 MPa) is performed, and the electrode and the separator are sufficiently adhered.
- the battery is charged at 25 ° C. by a constant current charging method until the voltage reaches 4.45 V at 0.1 C, and then discharged twice to 2.0 V at 0.1 C.
- a cycle of discharging to 2.0 V at 0.1 C once is 4.65 V at 0.1 C.
- the battery is charged until it reaches 0, and then discharged once at 0.1 C to 2.0 V.
- a cycle of charging at 0.1 C to 4.75 V by a constant current charging method at 25 ° C. and then discharging to 0.1 V at 0.1 C may be performed once.
- the constant current charging method is used as the activation processing method, and the electrochemical pretreatment method when the voltage is set as the termination condition is described as an example, but the charging method is a constant current constant voltage charging method. You may use. Further, as the termination condition, a charge amount or time may be used in addition to the voltage.
- thermocompression bonding Next, the following process is performed as the first (first) gas removal process. First, one side temporarily sealed by thermocompression bonding is opened, gas is removed at 10 ⁇ 3 hPa for 5 minutes, and then thermocompression bonding is performed again to perform main sealing. Further, pressurization with a roller (surface pressure 0.5 ⁇ 0.1 MPa) is performed, and the electrode and the separator are sufficiently adhered.
- the performance and durability of the obtained battery can be improved by performing the initial charging process, the gas removal process, and the activation process described above.
- the assembled battery is configured by connecting a plurality of batteries. Specifically, at least two or more are used, and are configured by serialization, parallelization, or both. Capacitance and voltage can be freely adjusted by paralleling in series.
- a small assembled battery that can be attached and detached by connecting a plurality of batteries in series or in parallel. Then, a plurality of small assembled batteries that can be attached and detached are connected in series or in parallel to provide a large capacity and large capacity suitable for vehicle drive power supplies and auxiliary power supplies that require high volume energy density and high volume output density.
- An assembled battery having an output can also be formed. How many batteries are connected to make an assembled battery, and how many small assembled batteries are stacked to make a large-capacity assembled battery depends on the battery capacity of the mounted vehicle (electric vehicle) It may be determined according to the output.
- the electric device of the present invention including the lithium ion secondary battery according to the present embodiment maintains a discharge capacity even when used for a long time, and has good cycle characteristics. Furthermore, the volume energy density is high. Vehicle applications such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles require higher capacity, larger size, and longer life than electric and portable electronic devices. . Therefore, the lithium ion secondary battery (electric device) can be suitably used as a vehicle power source, for example, as a vehicle driving power source or an auxiliary power source.
- a battery or an assembled battery formed by combining a plurality of these batteries can be mounted on the vehicle.
- a plug-in hybrid electric vehicle having a long EV mileage or an electric vehicle having a long charge mileage can be formed by mounting such a battery.
- a car a hybrid car, a fuel cell car, an electric car (four-wheeled vehicles (passenger cars, trucks, buses, commercial vehicles, light cars, etc.) This is because it can be used for motorcycles (including motorcycles) and tricycles) to provide a long-life and highly reliable automobile.
- the application is not limited to automobiles.
- it can be applied to various power sources for moving vehicles such as other vehicles, for example, trains, and power sources for mounting such as uninterruptible power supplies. It is also possible to use as.
- Example 1 Solid solution positive electrode active material C1 (Preparation of aqueous solution of titanium citrate complex) 60 g (0.3 mol) of anhydrous citric acid (molecular weight 192.12 g / mol) was added to 400 ml of acetone and heated to 60 ° C. to dissolve. Next, 56 g (0.2 mol) of titanium tetraisopropoxide (molecular weight 284.22 g / mol) was added to form a precipitate. This liquid was subjected to suction filtration to obtain a precipitate (light yellow).
- Ti concentration was 5.0% by weight as TiO 2 (molecular weight 79.87 g / mol).
- the obtained melted solution (slurry) was sprayed by heating at 200 ° C. to 400 ° C. and dried.
- the obtained dry powder was vacuum-dried at 140 ° C. to 250 ° C. for 12 hours and then calcined at 450 ° C. for 12 hours. Thereafter, the main baking was performed at 900 ° C. for 12 hours.
- Cu-K ⁇ rays were used as the X-ray source, and the measurement conditions were a tube voltage of 40 KV, a tube current of 20 mA, a scanning speed of 2 ° / min, a divergence slit width of 0.5 °, and a light receiving slit width of 0.15 °.
- FIG. 3 shows a positive electrode active material C0 having the following composition that does not contain Ti for comparison.
- the X-ray diffraction pattern of is shown.
- FIG. 4 shows an X-ray diffraction pattern of the solid solution positive electrode active material C1.
- 3 and 4 show a peak attributed to the superlattice structure characteristic of the solid solution system at 20-23 °. Furthermore, in FIG. 4, the peaks at 36.5-37.5 (101) and 44-45 ° (104) and 64-65 ° (108) / 65-66 (110) are slightly shifted to the lower angle side. It was observed. Further, no diffraction peak attributed to the spinel phase was observed in any sample.
- composition of slurry for positive electrode had the following composition.
- Cathode active material Ti-substituted solid solution cathode active material C1 obtained above 9.4 parts by weight
- Conductive aid flake graphite 0.15 parts by weight
- Acetylene black 0.15 parts by weight
- Binder Polyvinylidene fluoride (PVDF) 0 .3 parts by weight
- Solvent 8.2 parts by weight of N-methyl-2-pyrrolidone (NMP).
- a positive electrode slurry having the above composition was prepared as follows. First, 4.0 parts by weight of a solvent (NMP) is added to 2.0 parts by weight of a 20% binder solution obtained by dissolving a binder in a solvent (NMP) into a 50 ml disposable cup, and a stirring defoaming machine (spinning revolving mixer: Awatori) A binder diluted solution was prepared by stirring for 1 minute with Rentaro AR-100).
- NMP solvent
- NMP spinning revolving mixer
- the positive electrode slurry was applied to one side of an aluminum current collector with a thickness of 20 ⁇ m using an automatic coating apparatus (Doctor blade manufactured by Tester Sangyo: PI-1210 automatic coating apparatus). Subsequently, the current collector coated with the positive electrode slurry was dried on a hot plate (100 ° C. to 110 ° C., drying time 30 minutes), and the amount of NMP remaining in the positive electrode active material layer was 0.02 wt%.
- a sheet-like positive electrode was formed as follows.
- the sheet-like positive electrode was compression-molded with a roller press and cut to produce a positive electrode. At this time, the coating amount was adjusted in consideration of the discharge capacity of the positive electrode active material and the positive electrode slurry composition so that the discharge capacity of the positive electrode C1 was 5.55 mAh / cm 2 (the same applies to the following negative electrodes C2 to C12). .
- Si-containing alloy Si 80 Sn 10 Ti 10 (unit: mass%, hereinafter the same) was used as the Si-containing alloy as the negative electrode active material.
- the Si-containing alloy was produced by a mechanical alloy method. Specifically, using a planetary ball mill device P-6 manufactured by Fricht, Germany, zirconia pulverized balls and alloy raw material powders were put into a zirconia pulverized pot and alloyed at 600 rpm for 24 hours (alloying treatment). ), And then pulverization was performed at 400 rpm for 1 hour. The average particle size of the obtained Si-containing alloy (negative electrode active material) powder was 0.3 ⁇ m.
- composition of slurry for negative electrode The negative electrode slurry had the following composition.
- Negative electrode active material Si-containing alloy (Si 80 Sn 10 Ti 10 ) 80 parts by weight
- Conductive auxiliary agent SuperP 5 parts by weight
- Binder Polyimide 15 parts by weight
- Solvent N-methyl-2-pyrrolidone (NMP) Appropriate amount.
- a negative electrode slurry having the above composition was prepared as follows. First, a binder solution in which a binder was dissolved was added to a solvent (NMP), and the mixture was stirred for 1 minute with a stirring deaerator to prepare a binder diluted solution. A conductive additive, negative electrode active material powder, and a solvent (NMP) were added to the binder dilution, and the mixture was stirred for 3 minutes with a stirring deaerator to obtain a negative electrode slurry.
- NMP solvent
- the negative electrode slurry was applied to one side of a 10 ⁇ m thick electrolytic copper current collector using an automatic coating apparatus. Subsequently, the current collector coated with the negative electrode slurry was dried on a hot plate (100 ° C. to 110 ° C., drying time 30 minutes), and the amount of NMP remaining in the negative electrode active material layer was 0.02 wt% or less. A sheet-like negative electrode was formed.
- ethylene carbonate (EC) and diethyl carbonate (DEC) 1 in a mixed nonaqueous solvent were mixed at a volume ratio, the concentration of LiPF 6 a (lithium hexafluorophosphate) 1M What was dissolved so that it might become was used.
- LiPF 6 a lithium hexafluorophosphate
- the positive electrode C1 obtained above was cut out so as to have an active material layer area of 2.5 cm in length and 2.0 cm in width, and the two current collectors faced each other, so that the uncoated surface (aluminum current collector)
- the current collector portion was spot welded together with the surface not coated with the foil slurry.
- an aluminum positive electrode tab positive electrode current collector plate
- the negative electrode A1 obtained above was cut out so as to have an active material layer area of 2.7 cm in length and 2.2 cm in width, and then a negative electrode tab of electrolytic copper was further welded to the current collector portion to form a negative electrode A11.
- the negative electrode A11 has a structure in which a negative electrode active material layer is formed on one surface of a current collector.
- a porous polypropylene separator (S) (length 3.0 cm ⁇ width 2.5 cm, thickness 25 ⁇ m, porosity 55%) is sandwiched between the negative electrode A11 to which these tabs are welded and the positive electrode C11.
- a laminated power generation element was produced.
- the structure of the stacked type power generation element is the structure of negative electrode (single side) / separator / positive electrode (both sides) / separator / negative electrode (single side), that is, A11- (S) -C11- (S) -A11. The configuration.
- both sides of the power generation element were sandwiched with an aluminum laminate film exterior material (length 3.5 cm ⁇ width 3.5 cm), and the above power generation element was accommodated by thermocompression sealing at three sides.
- LiPF 6 electrolyzed ethylene carbonate
- DEC diethyl carbonate
- lithium lithium fluorophosphate LiPO 2 F 2
- MMDS methylenemethane disulfonic acid
- Example 1 a positive electrode and a negative electrode were produced according to Example 1. That is, a positive electrode and a negative electrode were produced in the same manner as in Example 1 described above except as otherwise noted below.
- positive electrodes C2 to C12 were prepared in the same manner as the positive electrode C1, except that the composition of the solid solution positive electrode active material was changed as shown in Table 1 below.
- Ni-containing electrode A2 A negative electrode active material and a negative electrode were produced in the same manner as the negative electrode A1 described above, except that the composition of the Si-containing alloy (negative electrode active material) was changed to Si 70 Sn 15 Ti 15 .
- the average particle size of the obtained Si-containing alloy (negative electrode active material) powder was 0.3 ⁇ m.
- a negative electrode active material and a negative electrode were prepared in the same manner as described above.
- the average particle size of the obtained Si-containing alloy (negative electrode active material) powder was 0.3 ⁇ m.
- Ni-containing electrode A4 A negative electrode active material and a negative electrode were prepared by the same method as that of the negative electrode A3 described above, except that the time of alloying treatment for preparing the Si-containing alloy (negative electrode active material) was changed to 50 hours.
- the average particle size of the obtained Si-containing alloy (negative electrode active material) powder was 0.3 ⁇ m.
- a negative electrode active material and a negative electrode were prepared in the same manner as the negative electrode A1 described above, except that the composition of the Si-containing alloy was changed to Si 90 Ti 10 .
- the average particle diameter of the obtained silicon-containing alloy (negative electrode active material) powder was 0.3 ⁇ m.
- each of the negative electrode active materials (Si-containing alloys) used for the production of the negative electrodes A1 to A5 described above was analyzed by an X-ray diffraction measurement method.
- the apparatus and conditions used for the X-ray diffraction measurement method are as follows.
- X-ray diffractometer SmartLab9kW manufactured by Rigaku Corporation Voltage / Current: 45kV / 200mA
- X-ray wavelength CuK ⁇ 1
- X-ray diffraction spectra obtained for the respective negative electrode active materials (Si-containing alloys) are shown in FIGS. 5A to 5E.
- the ratio values (B / A) are shown in Tables 2 to 6 below.
- This X-ray diffraction analysis also confirmed that all Ti contained in the silicon-containing alloy was present as a silicide (TiSi 2 ) phase.
- the power generation element of each battery obtained above was set on an evaluation cell mounting jig, and a positive electrode lead and a negative electrode lead were attached to each tab end of the power generation element, and a test was performed.
- the battery aging treatment was performed as follows. At 25 ° C., the battery was charged at a constant current charging method of 0.05 C for 4 hours (SOC approximately 20%). Next, after charging to 4.45 V at a 0.1 C rate at 25 ° C., the charging was stopped and the state (SOC about 70%) was maintained for about 2 days (48 hours).
- thermocompression bonding One side temporarily sealed by thermocompression bonding was opened, gas was removed at 10 ⁇ 3 hPa for 5 minutes, and then thermocompression bonding was performed again to perform temporary sealing. Further, pressurization with a roller (surface pressure 0.5 ⁇ 0.1 MPa) was performed, and the electrode and the separator were sufficiently adhered.
- thermocompression bonding One side temporarily sealed by thermocompression bonding was opened, gas was removed at 10 ⁇ 3 hPa for 5 minutes, and then thermocompression bonding was performed again to perform main sealing. Further, pressurization with a roller (surface pressure 0.5 ⁇ 0.1 MPa) was performed, and the electrode and the separator were sufficiently adhered.
- the evaluation cell is set to the constant current / constant voltage mode in the charging process (referring to the Li insertion process to the evaluation electrode) in the thermostat set to the above evaluation temperature using a charge / discharge tester.
- the battery was charged from 2 V to 10 mV at 0.1 mA.
- a discharge process referring to a Li desorption process from the electrode for evaluation
- a constant current mode was set and discharge was performed from 0.3 C, 10 mV to 2 V.
- the charge / discharge test was conducted from the initial cycle (1 cycle) to 100 cycles under the same charge / discharge conditions with the above charge / discharge cycle as one cycle.
- the results of determining the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the first cycle are shown in Tables 2 to 6 below.
- the lithium ion secondary batteries of Examples 1 to 48 which are electrical devices according to the present invention, have excellent cycle characteristics (100 cycles) compared to Comparative Examples 1 to 12. It can be seen that the eye capacity retention ratio has been achieved.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
[Problem] To provide a means that makes achieving sufficient cycle durability possible, while taking sufficient advantage of the high capacity properties characteristic of solid-solution positive electrode materials, in an electrical device such as a lithium-ion secondary battery having a positive electrode using a solid-solution positive electrode active material. [Solution] As the Si-containing alloy to be contained in the negative electrode active material layer, the present invention uses an alloy which has a prescribed composition and a structure obtained by dispersing a silicide phase containing a transition metal silicide in a parent phase having amorphous or low-crystalline silicon as the principal component thereof, and also has prescribed peak intensity characteristics when measured using X-ray diffraction. As the solid-solution positive electrode active material to be included in the positive electrode active material layer, the present invention uses a solid-solution positive electrode active material having a substituent element such as Ti.
Description
本発明は、電気デバイスに関する。本発明に係る電気デバイスは、例えば、二次電池やキャパシタ等として電気自動車、燃料電池車およびハイブリッド電気自動車等の車両のモータ等の駆動用電源や補助電源に用いられる。
The present invention relates to an electrical device. The electric device according to the present invention is used, for example, as a secondary battery, a capacitor or the like as a driving power source or auxiliary power source for motors of vehicles such as electric vehicles, fuel cell vehicles, and hybrid electric vehicles.
近年、地球温暖化に対処するため、二酸化炭素量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池などの電気デバイスの開発が盛んに行われている。
In recent years, a reduction in the amount of carbon dioxide has been strongly desired in order to cope with global warming. In the automobile industry, there is a great expectation for reducing carbon dioxide emissions by introducing electric vehicles (EV) and hybrid electric vehicles (HEV). Electric devices such as secondary batteries for motor drive that hold the key to their practical application. Is being actively developed.
モータ駆動用二次電池としては、携帯電話やノートパソコン等に使用される民生用リチウムイオン二次電池と比較して極めて高い出力特性、および高いエネルギーを有することが求められている。従って、全ての電池の中で最も高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。
Motor drive secondary batteries are required to have extremely high output characteristics and high energy compared to consumer lithium ion secondary batteries used in mobile phones and notebook computers. Therefore, lithium ion secondary batteries having the highest theoretical energy among all the batteries are attracting attention, and are currently being developed rapidly.
リチウムイオン二次電池は、一般に、バインダを用いて正極活物質等を正極集電体の両面に塗布した正極と、バインダを用いて負極活物質等を負極集電体の両面に塗布した負極とが、電解質層を介して接続され、電池ケースに収納される構成を有している。
Generally, a lithium ion secondary battery includes a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector using a binder, and a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector using a binder. However, it has the structure connected through an electrolyte layer and accommodated in a battery case.
従来、リチウムイオン二次電池の負極には充放電サイクルの寿命やコスト面で有利な炭素・黒鉛系材料が用いられてきた。しかし、炭素・黒鉛系の負極材料ではリチウムイオンの黒鉛結晶中への吸蔵・放出により充放電がなされるため、最大リチウム導入化合物であるLiC6から得られる理論容量372mAh/g以上の充放電容量が得られないという欠点がある。このため、炭素・黒鉛系負極材料で車両用途の実用化レベルを満足する容量、エネルギー密度を得るのは困難である。
Conventionally, carbon / graphite-based materials that are advantageous in terms of charge / discharge cycle life and cost have been used for negative electrodes of lithium ion secondary batteries. However, since carbon / graphite-based negative electrode materials are charged / discharged by occlusion / release of lithium ions into / from graphite crystals, the charge / discharge capacity of the theoretical capacity 372 mAh / g or more obtained from LiC 6 which is the maximum lithium-introduced compound. There is a disadvantage that cannot be obtained. For this reason, it is difficult to obtain a capacity and energy density that satisfy the practical use level of the vehicle application with the carbon / graphite negative electrode material.
これに対し、負極にLiと合金化する材料を用いた電池は、従来の炭素・黒鉛系負極材料と比較しエネルギー密度が向上するため、車両用途における負極材料として期待されている。例えば、Si材料は、充放電において下記の反応式(A)のように1molあたり3.75molのリチウムイオンを吸蔵放出し、Li15Si4(=Li3.75Si)においては理論容量3600mAh/gである。
On the other hand, a battery using a material that is alloyed with Li for the negative electrode is expected as a negative electrode material for vehicle use because the energy density is improved as compared with a conventional carbon / graphite negative electrode material. For example, the Si material occludes and releases 3.75 mol of lithium ions per mol as shown in the following reaction formula (A) in charge / discharge, and the theoretical capacity is 3600 mAh / liter in Li 15 Si 4 (= Li 3.75 Si). g.
しかしながら、負極にLiと合金化する材料を用いたリチウムイオン二次電池は、充放電時の負極での膨張収縮が大きい。例えば、Liイオンを吸蔵した場合の体積膨張は、黒鉛材料では約1.2倍であるのに対し、Si材料ではSiとLiが合金化する際、アモルファス状態から結晶状態へ転移し大きな体積変化(約4倍)を起こすため、電極のサイクル寿命を低下させる問題があった。また、Si負極活物質の場合、容量とサイクル耐久性とはトレードオフの関係であり、高容量を示しつつサイクル耐久性を向上させることが困難であるといった問題があった。
However, a lithium ion secondary battery using a material that is alloyed with Li for the negative electrode has a large expansion and contraction in the negative electrode during charge and discharge. For example, when Li ions are occluded, the volume expansion is about 1.2 times in graphite materials, whereas in Si materials, when Si and Li are alloyed, transition from the amorphous state to the crystalline state causes a large volume change. (Approximately 4 times), there was a problem of reducing the cycle life of the electrode. In the case of the Si negative electrode active material, the capacity and the cycle durability are in a trade-off relationship, and there is a problem that it is difficult to improve the cycle durability while exhibiting a high capacity.
ここで、国際公開第2006/129415号パンフレットでは、高容量で、かつサイクル寿命に優れた負極ペレットを有する非水電解質二次電池を提供することを課題とした発明が開示されている。具体的には、ケイ素粉末とチタン粉末とをメカニカルアロイング法により混合し、湿式粉砕して得られるケイ素含有合金であって、ケイ素を主体とする第1相とチタンのケイ化物(TiSi2など)を含む第2相とを含むものを負極活物質として用いることが開示されている。この際、これらの2つの相の少なくとも一方を非晶質または低結晶性とすることも開示されている。
Here, in the pamphlet of International Publication No. 2006/129415, an invention that aims to provide a non-aqueous electrolyte secondary battery having a negative electrode pellet having a high capacity and excellent cycle life is disclosed. Specifically, a silicon-containing alloy obtained by mixing silicon powder and titanium powder by a mechanical alloying method and wet-pulverizing the first phase mainly composed of silicon and a silicide of titanium (such as TiSi 2 ) ) Containing a second phase containing) is disclosed as a negative electrode active material. At this time, it is also disclosed that at least one of these two phases is amorphous or low crystalline.
ここで、高い容量特性を有する固溶体正極活物質を用いた正極に、国際公開第2006/129415号パンフレットに記載されたような負極を組み合わると、負極も高容量であるために固溶体正極活物質の特徴である高い容量特性を活かすことができ、セルとしても優れた容量プロファイルを実現することが可能である。しかしながら、本発明者らの検討によれば、これらの正負極の組み合わせによると、十分なサイクル耐久性が得られないという問題があることが判明した。
Here, when a negative electrode as described in International Publication No. 2006/129415 is combined with a positive electrode using a solid solution positive electrode active material having high capacity characteristics, the negative electrode also has a high capacity, so the solid solution positive electrode active material It is possible to make use of the high capacity characteristics that are characteristic of the above, and it is possible to realize an excellent capacity profile as a cell. However, according to the study by the present inventors, it has been found that there is a problem that sufficient cycle durability cannot be obtained by the combination of these positive and negative electrodes.
そこで、本発明は、固溶体正極活物質を用いた正極を有するリチウムイオン二次電池等の電気デバイスにおいて、固溶体正極活物質の特徴である高い容量特性を十分に活かしつつ、十分なサイクル耐久性を実現することができる手段を提供することを目的とする。
Therefore, the present invention provides sufficient cycle durability while fully utilizing the high capacity characteristics that are characteristic of a solid solution cathode active material in an electrical device such as a lithium ion secondary battery having a cathode using a solid solution cathode active material. An object is to provide means that can be realized.
本発明者らは、上記課題を解決するため、鋭意研究を行った。その結果、所定のSi含有合金を負極活物質として含有する負極と、所定の固溶体正極活物質を含有する正極とを組み合わせて用いることによって、上記課題が解決されうることを見出し、本発明を完成させるに至った。
The present inventors have conducted intensive research to solve the above problems. As a result, the inventors have found that the above problem can be solved by using a combination of a negative electrode containing a predetermined Si-containing alloy as a negative electrode active material and a positive electrode containing a predetermined solid solution positive electrode active material, and completed the present invention. I came to let you.
すなわち、本発明は、正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、セパレータとを含む発電要素を有する電気デバイスに関するものである。
That is, the present invention includes a positive electrode in which a positive electrode active material layer including a positive electrode active material is formed on the surface of a positive electrode current collector, and a negative electrode active material layer including a negative electrode active material on the surface of the negative electrode current collector. The present invention relates to an electric device having a power generation element including a negative electrode and a separator.
そして、前記負極活物質層は、下記式(1):
The negative electrode active material layer has the following formula (1):
上記(1)式において、αは負極活物質層における各成分の重量%を表し、40<α≦98である、
で表される負極活物質を含有する。また、前記正極活物質層は、下記式(2): In the above formula (1), α represents the weight percent of each component in the negative electrode active material layer, and 40 <α ≦ 98.
The negative electrode active material represented by these is contained. The positive electrode active material layer has the following formula (2):
で表される負極活物質を含有する。また、前記正極活物質層は、下記式(2): In the above formula (1), α represents the weight percent of each component in the negative electrode active material layer, and 40 <α ≦ 98.
The negative electrode active material represented by these is contained. The positive electrode active material layer has the following formula (2):
上記式(2)において、eは正極活物質層における各成分の重量%を表し、80≦e≦98である、
で表される正極活物質を含有する。 In the above formula (2), e represents the weight percent of each component in the positive electrode active material layer, and 80 ≦ e ≦ 98.
The positive electrode active material represented by these is contained.
で表される正極活物質を含有する。 In the above formula (2), e represents the weight percent of each component in the positive electrode active material layer, and 80 ≦ e ≦ 98.
The positive electrode active material represented by these is contained.
この際、前記Si含有合金は、非晶質または低結晶性のケイ素を主成分とする母相中に、遷移金属のケイ化物を含むシリサイド相が分散されてなる構造を有し、下記化学式(I):
In this case, the Si-containing alloy has a structure in which a silicide phase containing a silicide of a transition metal is dispersed in a parent phase mainly composed of amorphous or low crystalline silicon. I):
上記化学式(I)において、
Aは、不可避不純物であり、
Mは、1または2以上の遷移金属元素であり、
x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0≦y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。)
で表される組成を有し、前記Si含有合金のCuKα1線を用いたX線回折測定において、2θ=24~33°の範囲におけるSiの(111)面の回折ピーク強度Aに対する、2θ=37~45°の範囲における遷移金属のケイ化物の回折ピーク強度Bの比の値(B/A)が0.41以上である点に特徴がある。 In the above chemical formula (I),
A is an inevitable impurity,
M is one or more transition metal elements,
x, y, z, and a represent mass% values, where 0 <x <100, 0 ≦ y <100, 0 <z <100, and 0 ≦ a <0.5, and x + y + z + a = 100. )
In the X-ray diffraction measurement using the CuKα1 line of the Si-containing alloy, 2θ = 37 with respect to the diffraction peak intensity A of the (111) plane of Si in the range of 2θ = 24 to 33 °. It is characterized in that the value (B / A) of the diffraction peak intensity B of the transition metal silicide in the range of ˜45 ° is 0.41 or more.
Aは、不可避不純物であり、
Mは、1または2以上の遷移金属元素であり、
x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0≦y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。)
で表される組成を有し、前記Si含有合金のCuKα1線を用いたX線回折測定において、2θ=24~33°の範囲におけるSiの(111)面の回折ピーク強度Aに対する、2θ=37~45°の範囲における遷移金属のケイ化物の回折ピーク強度Bの比の値(B/A)が0.41以上である点に特徴がある。 In the above chemical formula (I),
A is an inevitable impurity,
M is one or more transition metal elements,
x, y, z, and a represent mass% values, where 0 <x <100, 0 ≦ y <100, 0 <z <100, and 0 ≦ a <0.5, and x + y + z + a = 100. )
In the X-ray diffraction measurement using the CuKα1 line of the Si-containing alloy, 2θ = 37 with respect to the diffraction peak intensity A of the (111) plane of Si in the range of 2θ = 24 to 33 °. It is characterized in that the value (B / A) of the diffraction peak intensity B of the transition metal silicide in the range of ˜45 ° is 0.41 or more.
そして、前記固溶体正極活物質は、下記式(3):
The solid solution positive electrode active material has the following formula (3):
上記式(3)において、Xは、Ti、ZrおよびNbからなる群から選択される少なくとも1種であり、0.01≦e≦0.4、a+b+c+d+e=1.5、0.1≦d≦0.4、1.1≦[a+b+c+e]≦1.4であり、zは、原子価を満足する酸素数を表す、
で表される組成を有する固溶体からなる点に特徴がある。 In the above formula (3), X is at least one selected from the group consisting of Ti, Zr and Nb, and 0.01 ≦ e ≦ 0.4, a + b + c + d + e = 1.5, 0.1 ≦ d ≦ 0.4, 1.1 ≦ [a + b + c + e] ≦ 1.4, and z represents the number of oxygen satisfying the valence,
It is characterized in that it consists of a solid solution having a composition represented by:
で表される組成を有する固溶体からなる点に特徴がある。 In the above formula (3), X is at least one selected from the group consisting of Ti, Zr and Nb, and 0.01 ≦ e ≦ 0.4, a + b + c + d + e = 1.5, 0.1 ≦ d ≦ 0.4, 1.1 ≦ [a + b + c + e] ≦ 1.4, and z represents the number of oxygen satisfying the valence,
It is characterized in that it consists of a solid solution having a composition represented by:
本発明の一形態によれば、正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、
負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、
セパレータと、
を含む発電要素を有する電気デバイスであって、
前記負極活物質層が、下記式(1): According to one aspect of the present invention, a positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on the surface of a positive electrode current collector;
A negative electrode in which a negative electrode active material layer containing a negative electrode active material is formed on the surface of the negative electrode current collector;
A separator;
An electrical device having a power generation element comprising:
The negative electrode active material layer has the following formula (1):
負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、
セパレータと、
を含む発電要素を有する電気デバイスであって、
前記負極活物質層が、下記式(1): According to one aspect of the present invention, a positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on the surface of a positive electrode current collector;
A negative electrode in which a negative electrode active material layer containing a negative electrode active material is formed on the surface of the negative electrode current collector;
A separator;
An electrical device having a power generation element comprising:
The negative electrode active material layer has the following formula (1):
上記式(1)において、αは負極活物質層における各成分の重量%を表し、40<α≦98である、
で表される負極活物質を含有し、
前記正極活物質層が、下記式(2): In the above formula (1), α represents the weight percent of each component in the negative electrode active material layer, and 40 <α ≦ 98.
Containing a negative electrode active material represented by
The positive electrode active material layer has the following formula (2):
で表される負極活物質を含有し、
前記正極活物質層が、下記式(2): In the above formula (1), α represents the weight percent of each component in the negative electrode active material layer, and 40 <α ≦ 98.
Containing a negative electrode active material represented by
The positive electrode active material layer has the following formula (2):
上記式(2)において、eは正極活物質層における各成分の重量%を表し、80≦e≦98である、
で表される正極活物質を含有し、
この際、前記Si含有合金は、非晶質または低結晶性のケイ素を主成分とする母相中に、遷移金属のケイ化物を含むシリサイド相が分散されてなる構造を有し、下記化学式(I): In the above formula (2), e represents the weight percent of each component in the positive electrode active material layer, and 80 ≦ e ≦ 98.
A positive electrode active material represented by
In this case, the Si-containing alloy has a structure in which a silicide phase containing a silicide of a transition metal is dispersed in a parent phase mainly composed of amorphous or low crystalline silicon. I):
で表される正極活物質を含有し、
この際、前記Si含有合金は、非晶質または低結晶性のケイ素を主成分とする母相中に、遷移金属のケイ化物を含むシリサイド相が分散されてなる構造を有し、下記化学式(I): In the above formula (2), e represents the weight percent of each component in the positive electrode active material layer, and 80 ≦ e ≦ 98.
A positive electrode active material represented by
In this case, the Si-containing alloy has a structure in which a silicide phase containing a silicide of a transition metal is dispersed in a parent phase mainly composed of amorphous or low crystalline silicon. I):
上記化学式(I)において、Aは、不可避不純物であり、Mは、1または2以上の遷移金属元素であり、x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0≦y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である、
で表される組成を有し、前記Si含有合金のCuKα1線を用いたX線回折測定において、2θ=24~33°の範囲におけるSiの(111)面の回折ピーク強度Aに対する、2θ=37~45°の範囲における遷移金属のケイ化物の回折ピーク強度Bの比の値(B/A)が0.41以上であり、
かつ、前記固溶体正極活物質は、下記式(3): In the above chemical formula (I), A is an inevitable impurity, M is one or more transition metal elements, and x, y, z, and a represent mass% values, where 0 <X <100, 0 ≦ y <100, 0 <z <100, and 0 ≦ a <0.5, and x + y + z + a = 100.
In the X-ray diffraction measurement using the CuKα1 line of the Si-containing alloy, 2θ = 37 with respect to the diffraction peak intensity A of the (111) plane of Si in the range of 2θ = 24 to 33 °. The value (B / A) of the diffraction peak intensity B of the transition metal silicide in the range of ˜45 ° is 0.41 or more,
And the said solid solution positive electrode active material is following formula (3):
で表される組成を有し、前記Si含有合金のCuKα1線を用いたX線回折測定において、2θ=24~33°の範囲におけるSiの(111)面の回折ピーク強度Aに対する、2θ=37~45°の範囲における遷移金属のケイ化物の回折ピーク強度Bの比の値(B/A)が0.41以上であり、
かつ、前記固溶体正極活物質は、下記式(3): In the above chemical formula (I), A is an inevitable impurity, M is one or more transition metal elements, and x, y, z, and a represent mass% values, where 0 <X <100, 0 ≦ y <100, 0 <z <100, and 0 ≦ a <0.5, and x + y + z + a = 100.
In the X-ray diffraction measurement using the CuKα1 line of the Si-containing alloy, 2θ = 37 with respect to the diffraction peak intensity A of the (111) plane of Si in the range of 2θ = 24 to 33 °. The value (B / A) of the diffraction peak intensity B of the transition metal silicide in the range of ˜45 ° is 0.41 or more,
And the said solid solution positive electrode active material is following formula (3):
上記式(3)において、Xは、Ti、ZrおよびNbからなる群から選択される少なくとも1種であり、0.01≦e≦0.4、a+b+c+d+e=1.5、0.1≦d≦0.4、1.1≦[a+b+c+e]≦1.4であり、zは、原子価を満足する酸素数を表す、
で表される組成を有する固溶体からなる、電気デバイスが提供される。かような構成を有する本発明によれば、負極活物質(Si含有合金)におけるB/Aの値が上述した範囲内の値であることで、SiとLiとが合金化する際のアモルファス-結晶の相転移(Li15Si4への結晶化)が抑制される。これにより、電気デバイスの充放電過程における負極活物質を構成するSi含有合金の膨張収縮が抑制される。その結果、本発明に係る電気デバイスは、固溶体正極活物質の特徴である高い容量特性を十分に活かしつつ、十分なサイクル耐久性を実現することが可能となる。 In the above formula (3), X is at least one selected from the group consisting of Ti, Zr and Nb, and 0.01 ≦ e ≦ 0.4, a + b + c + d + e = 1.5, 0.1 ≦ d ≦ 0.4, 1.1 ≦ [a + b + c + e] ≦ 1.4, and z represents the number of oxygen satisfying the valence,
An electrical device comprising a solid solution having a composition represented by: According to the present invention having such a configuration, when the value of B / A in the negative electrode active material (Si-containing alloy) is a value within the above-described range, an amorphous state when Si and Li are alloyed is obtained. Crystal phase transition (crystallization to Li 15 Si 4 ) is suppressed. Thereby, the expansion | contraction and shrinkage | contraction of the Si containing alloy which comprises the negative electrode active material in the charge / discharge process of an electrical device are suppressed. As a result, the electrical device according to the present invention can realize sufficient cycle durability while fully utilizing the high capacity characteristics that are characteristic of the solid solution positive electrode active material.
で表される組成を有する固溶体からなる、電気デバイスが提供される。かような構成を有する本発明によれば、負極活物質(Si含有合金)におけるB/Aの値が上述した範囲内の値であることで、SiとLiとが合金化する際のアモルファス-結晶の相転移(Li15Si4への結晶化)が抑制される。これにより、電気デバイスの充放電過程における負極活物質を構成するSi含有合金の膨張収縮が抑制される。その結果、本発明に係る電気デバイスは、固溶体正極活物質の特徴である高い容量特性を十分に活かしつつ、十分なサイクル耐久性を実現することが可能となる。 In the above formula (3), X is at least one selected from the group consisting of Ti, Zr and Nb, and 0.01 ≦ e ≦ 0.4, a + b + c + d + e = 1.5, 0.1 ≦ d ≦ 0.4, 1.1 ≦ [a + b + c + e] ≦ 1.4, and z represents the number of oxygen satisfying the valence,
An electrical device comprising a solid solution having a composition represented by: According to the present invention having such a configuration, when the value of B / A in the negative electrode active material (Si-containing alloy) is a value within the above-described range, an amorphous state when Si and Li are alloyed is obtained. Crystal phase transition (crystallization to Li 15 Si 4 ) is suppressed. Thereby, the expansion | contraction and shrinkage | contraction of the Si containing alloy which comprises the negative electrode active material in the charge / discharge process of an electrical device are suppressed. As a result, the electrical device according to the present invention can realize sufficient cycle durability while fully utilizing the high capacity characteristics that are characteristic of the solid solution positive electrode active material.
以下、本発明に係る電気デバイスの基本的な構成を説明する。本実施形態では、電気デバイスとしてリチウムイオン二次電池を例示して説明する。
Hereinafter, the basic configuration of the electric device according to the present invention will be described. In the present embodiment, a lithium ion secondary battery will be described as an example of an electric device.
まず、本発明に係る電気デバイスを用いてなるリチウムイオン二次電池では、セル(単電池層)の電圧が大きく、高エネルギー密度、高出力密度が達成できる。そのため本実施形態のリチウムイオン二次電池は、車両の駆動電源用や補助電源用として優れている。その結果、車両の駆動電源用等のリチウムイオン二次電池として好適に利用できる。このほかにも、携帯電話などの携帯機器向けのリチウムイオン二次電池にも十分に適用可能である。
First, in the lithium ion secondary battery using the electric device according to the present invention, the voltage of the cell (single cell layer) is large, and high energy density and high output density can be achieved. Therefore, the lithium ion secondary battery of the present embodiment is excellent as a vehicle driving power source or an auxiliary power source. As a result, it can be suitably used as a lithium ion secondary battery for a vehicle driving power source or the like. In addition to this, the present invention can be sufficiently applied to lithium ion secondary batteries for portable devices such as mobile phones.
上記リチウムイオン二次電池を形態・構造で区別した場合には、例えば、積層型(扁平型)電池、巻回型(円筒型)電池など、従来公知のいずれの形態・構造にも適用し得るものである。積層型(扁平型)電池構造を採用することで簡単な熱圧着などのシール技術により長期信頼性を確保でき、コスト面や作業性の点では有利である。
When the lithium ion secondary battery is distinguished by its form / structure, it can be applied to any conventionally known form / structure such as a stacked (flat) battery or a wound (cylindrical) battery. Is. By adopting a stacked (flat) battery structure, long-term reliability can be secured by a sealing technique such as simple thermocompression bonding, which is advantageous in terms of cost and workability.
また、リチウムイオン二次電池内の電気的な接続形態(電極構造)で見た場合、非双極型(内部並列接続タイプ)電池および双極型(内部直列接続タイプ)電池のいずれにも適用しうるものである。
Moreover, when viewed in terms of electrical connection form (electrode structure) in a lithium ion secondary battery, it can be applied to both non-bipolar (internal parallel connection type) batteries and bipolar (internal series connection type) batteries. Is.
リチウムイオン二次電池内の電解質層の種類で区別した場合には、電解質層に非水系の電解液等の溶液電解質を用いた溶液電解質型電池、電解質層に高分子電解質を用いたポリマー電池など従来公知のいずれの電解質層のタイプにも適用しうるものである。該ポリマー電池は、さらに高分子ゲル電解質(単にゲル電解質ともいう)を用いたゲル電解質型電池、高分子固体電解質(単にポリマー電解質ともいう)を用いた固体高分子(全固体)型電池に分けられる。
When distinguished by the type of electrolyte layer in the lithium ion secondary battery, a solution electrolyte type battery using a solution electrolyte such as a nonaqueous electrolyte solution for the electrolyte layer, a polymer battery using a polymer electrolyte for the electrolyte layer, etc. It can be applied to any conventionally known electrolyte layer type. The polymer battery is further divided into a gel electrolyte type battery using a polymer gel electrolyte (also simply referred to as gel electrolyte) and a solid polymer (all solid) type battery using a polymer solid electrolyte (also simply referred to as polymer electrolyte). It is done.
したがって、以下の説明では、本実施形態のリチウムイオン二次電池の例として、非双極型(内部並列接続タイプ)リチウムイオン二次電池について図面を用いてごく簡単に説明する。ただし、本発明に係る電気デバイスおよび本実施形態に係るリチウムイオン二次電池の技術的範囲が、これらに制限されるべきではない。
Therefore, in the following description, a non-bipolar (internal parallel connection type) lithium ion secondary battery will be described very simply with reference to the drawings as an example of the lithium ion secondary battery of the present embodiment. However, the technical scope of the electric device according to the present invention and the lithium ion secondary battery according to the present embodiment should not be limited to these.
<電池の全体構造>
図1は、本発明の電気デバイスの代表的な一実施形態である、扁平型(積層型)のリチウムイオン二次電池(以下、単に「積層型電池」ともいう)の全体構造を模式的に表した断面概略図である。 <Overall battery structure>
FIG. 1 schematically shows the overall structure of a flat (stacked) lithium ion secondary battery (hereinafter also simply referred to as “stacked battery”), which is a typical embodiment of the electrical device of the present invention. FIG.
図1は、本発明の電気デバイスの代表的な一実施形態である、扁平型(積層型)のリチウムイオン二次電池(以下、単に「積層型電池」ともいう)の全体構造を模式的に表した断面概略図である。 <Overall battery structure>
FIG. 1 schematically shows the overall structure of a flat (stacked) lithium ion secondary battery (hereinafter also simply referred to as “stacked battery”), which is a typical embodiment of the electrical device of the present invention. FIG.
図1に示すように、本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装体であるラミネートシート29の内部に封止された構造を有する。ここで、発電要素21は、正極集電体11の両面に正極活物質層13が配置された正極と、電解質層17と、負極集電体12の両面に負極活物質層15が配置された負極とを積層した構成を有している。具体的には、1つの正極活物質層13とこれに隣接する負極活物質層15とが、電解質層17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。
As shown in FIG. 1, the stacked battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminate sheet 29 that is an exterior body. . Here, in the power generation element 21, the positive electrode in which the positive electrode active material layer 13 is disposed on both surfaces of the positive electrode current collector 11, the electrolyte layer 17, and the negative electrode active material layer 15 is disposed on both surfaces of the negative electrode current collector 12. It has a configuration in which a negative electrode is laminated. Specifically, the negative electrode, the electrolyte layer, and the positive electrode are laminated in this order so that one positive electrode active material layer 13 and the negative electrode active material layer 15 adjacent thereto face each other with the electrolyte layer 17 therebetween. .
これにより、隣接する正極、電解質層、および負極は、1つの単電池層19を構成する。したがって、図1に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。なお、発電要素21の両最外層に位置する最外層の正極集電体には、いずれも片面のみに正極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層の負極集電体が位置するようにし、該最外層の負極集電体の片面または両面に負極活物質層が配置されているようにしてもよい。
Thereby, the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10 shown in FIG. 1 has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel. The positive electrode current collector 13 on the outermost layer located on both outermost layers of the power generating element 21 is provided with the positive electrode active material layer 13 only on one side, but the active material layer may be provided on both sides. . That is, instead of using a current collector dedicated to the outermost layer provided with an active material layer only on one side, a current collector having an active material layer on both sides may be used as it is as an outermost current collector. Further, by reversing the arrangement of the positive electrode and the negative electrode as compared with FIG. 1, the outermost negative electrode current collector is positioned on both outermost layers of the power generation element 21, and one side of the outermost negative electrode current collector or A negative electrode active material layer may be disposed on both sides.
正極集電体11および負極集電体12は、各電極(正極および負極)と導通される正極集電板25および負極集電板27がそれぞれ取り付けられ、ラミネートシート29の端部に挟まれるようにしてラミネートシート29の外部に導出される構造を有している。正極集電板25および負極集電板27は、それぞれ必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体11および負極集電体12に超音波溶接や抵抗溶接等により取り付けられていてもよい。
The positive electrode current collector 11 and the negative electrode current collector 12 are attached to a positive electrode current collector plate 25 and a negative electrode current collector plate 27 that are electrically connected to the respective electrodes (positive electrode and negative electrode), and are sandwiched between end portions of the laminate sheet 29. Thus, it has a structure led out of the laminate sheet 29. The positive electrode current collector plate 25 and the negative electrode current collector plate 27 are ultrasonically welded to the positive electrode current collector 11 and the negative electrode current collector 12 of each electrode via a positive electrode lead and a negative electrode lead (not shown), respectively, as necessary. Or resistance welding or the like.
本実施形態に係るリチウムイオン二次電池は、正極および負極の構成に特徴を有する。以下、当該正極および負極を含めた電池の主要な構成部材について説明する。
The lithium ion secondary battery according to this embodiment is characterized by the configuration of the positive electrode and the negative electrode. Hereinafter, main components of the battery including the positive electrode and the negative electrode will be described.
<活物質層>
活物質層(13、15)は活物質を含み、必要に応じてその他の添加剤をさらに含む。 <Active material layer>
The active material layers (13, 15) contain an active material, and further contain other additives as necessary.
活物質層(13、15)は活物質を含み、必要に応じてその他の添加剤をさらに含む。 <Active material layer>
The active material layers (13, 15) contain an active material, and further contain other additives as necessary.
[正極活物質層]
正極活物質層13は、少なくとも固溶体材料からなる正極活物質(本明細書中、「固溶体正極活物質」とも称する)を含む。 [Positive electrode active material layer]
The positive electrodeactive material layer 13 includes at least a positive electrode active material (also referred to as “solid solution positive electrode active material” in the present specification) made of a solid solution material.
正極活物質層13は、少なくとも固溶体材料からなる正極活物質(本明細書中、「固溶体正極活物質」とも称する)を含む。 [Positive electrode active material layer]
The positive electrode
(固溶体正極活物質)
固溶体正極活物質は、下記式(3)で表される組成を有する固溶体からなる。 (Solid solution positive electrode active material)
A solid solution positive electrode active material consists of a solid solution which has a composition represented by following formula (3).
固溶体正極活物質は、下記式(3)で表される組成を有する固溶体からなる。 (Solid solution positive electrode active material)
A solid solution positive electrode active material consists of a solid solution which has a composition represented by following formula (3).
式(3)において、Xは、Ti、ZrおよびNbからなる群から選択される少なくとも1種であり、0.01≦e≦0.4、a+b+c+d+e=1.5、0.1≦d≦0.4、1.1≦[a+b+c+e]≦1.4であり、zは、原子価を満足する酸素数を表す。
In the formula (3), X is at least one selected from the group consisting of Ti, Zr and Nb, and 0.01 ≦ e ≦ 0.4, a + b + c + d + e = 1.5, 0.1 ≦ d ≦ 0 .4, 1.1 ≦ [a + b + c + e] ≦ 1.4, and z represents the number of oxygens satisfying the valence.
さらに、この固溶体正極活物質は、X線回折(XRD)測定において、20-23°、35-40°(101)、42-45°(104)および64-65(108)/65-66(110)に、岩塩型層状構造を示す回折ピークを有することが好ましい。この際、サイクル特性向上の効果を確実に得るためには、岩塩型層状構造の回折ピーク以外に帰属されるピークを実質的に有していないものが好ましい。より好ましくは、35-40°(101)に3つの回折ピークを有し、42-45°(104)に1つの回折ピークを有するものが好適である。しかしながら、岩塩型層状構造の回折ピークに帰属されるものであれば、必ずしもそれぞれが3つおよび1つのピークに数えられなくてもよい。X線回折測定は、後述する実施例で記載する測定方法を採用するものとする。なお、64-65(108)/65-66(110)の表記は、64-65と65-66に近接する2つのピークがあり、組成によっては明確に分離されずにブロードに一つのピークとなる場合も含むことを意味する。
Further, this solid solution positive electrode active material was measured at 20-23 °, 35-40 ° (101), 42-45 ° (104) and 64-65 (108) / 65-66 (X-ray diffraction (XRD) measurement). 110) preferably has a diffraction peak indicating a rock salt type layered structure. At this time, in order to surely obtain the effect of improving the cycle characteristics, those having substantially no peak attributed to other than the diffraction peak of the rock salt type layered structure are preferable. More preferably, one having three diffraction peaks at 35-40 ° (101) and one diffraction peak at 42-45 ° (104) is suitable. However, as long as it belongs to a diffraction peak of a rock salt type layered structure, it does not necessarily have to be counted as three and one peak, respectively. The X-ray diffraction measurement shall employ the measurement method described in the examples described later. In addition, the notation of 64-65 (108) / 65-66 (110) has two peaks close to 64-65 and 65-66. Depending on the composition, one peak is broadly separated without being clearly separated. It is meant to include.
組成式(3)で表される組成を有する固溶体正極活物質は、X線回折(XRD)測定において、特定の複数の回折ピークを有していることが好ましい。上記組成式の固溶体正極活物質は、Li2MnO3とLiMnO2の固溶体系であり、上記で特定した複数の回折ピークのうち、20-23°の回折ピークは、Li2MnO3に特徴的な超格子回折ピークである。また、通常、36.5-37.5°(101)、44-45°(104)および64-65(108)/65-66(110)の回折ピークは、LiMnO2の岩塩型層状構造に特徴的なものである。また、本実施形態では、岩塩型層状構造を示す回折ピークの一部として、35-40°(101)に3つ、42-45°(104)に1つの回折ピークを有することが好ましい。本実施形態の固溶体正極活物質には、これらの角度範囲に、岩塩型層状構造を示す回折ピーク以外のピーク、例えば不純物等に由来する他のピークが存在するものは含まれないことが好ましい。このような他のピークが存在する場合には、岩塩型層状構造以外の構造が正極活物質に含まれることを意味している。岩塩型層状構造以外の構造は含まれない方が、サイクル特性向上の効果を確実に得られる。
The solid solution positive electrode active material having the composition represented by the composition formula (3) preferably has a plurality of specific diffraction peaks in the X-ray diffraction (XRD) measurement. The solid solution positive electrode active material having the above composition formula is a solid solution system of Li 2 MnO 3 and LiMnO 2. Of the plurality of diffraction peaks specified above, the diffraction peak at 20-23 ° is characteristic of Li 2 MnO 3 . Superlattice diffraction peak. Also, the diffraction peaks of 36.5-37.5 ° (101), 44-45 ° (104) and 64-65 (108) / 65-66 (110) are usually in the rock salt type layered structure of LiMnO 2. It is characteristic. Further, in the present embodiment, it is preferable that three diffraction peaks at 35-40 ° (101) and one diffraction peak at 42-45 ° (104) are present as a part of diffraction peaks showing a rock salt type layered structure. It is preferable that the solid solution positive electrode active material of the present embodiment does not include those having a peak other than a diffraction peak showing a rock salt type layered structure, for example, other peaks derived from impurities or the like, in these angular ranges. When such other peaks exist, it means that a structure other than the rock salt type layered structure is included in the positive electrode active material. If the structure other than the rock salt type layered structure is not included, the effect of improving the cycle characteristics can be surely obtained.
本実施形態に係る固溶体正極活物質においては、Ti、ZrおよびNbからなる少なくとも1種が、Ni、Co、Mnからなる遷移金属層中で、Mn4+を置換することにより固溶し、岩塩型層状構造を形成していると考えられる。Ti、ZrおよびNbからなる少なくとも1種が固溶することにより結晶構造が安定化されるため、充放電の際にMnをはじめとする遷移金属の溶出が抑制されると考えられる。その結果、充放電を繰り返しても電池の容量低下が防止でき、優れたサイクル特性が達成されうる。加えて、電池性能そのものの向上および耐久性の向上も図ることができる。Mnの溶出により岩塩型層状構造が変化すると、通常はスピネル相が形成され、正極活物質のX線回折(XRD)測定における回折ピークは、スピネル相を表すものとなる。スピネル相は、35-36°(101)および42.5-43.5°(104)に回折ピークが現れる。本実施形態に係る固溶体正極活物質では、充放電の繰り返しの後にもスピネル相は形成されず、岩塩型層状構造が維持されていると考えられる。しかしながら、本実施形態は、以上の考察には限定されない。
In the solid solution positive electrode active material according to the present embodiment, at least one of Ti, Zr, and Nb is dissolved in a transition metal layer made of Ni, Co, and Mn by substituting Mn 4+ to form a rock salt type It is considered that a layered structure is formed. Since at least one kind of Ti, Zr and Nb is dissolved, the crystal structure is stabilized, so that it is considered that elution of transition metals including Mn is suppressed during charging and discharging. As a result, even if charging / discharging is repeated, a reduction in battery capacity can be prevented, and excellent cycle characteristics can be achieved. In addition, battery performance itself and durability can be improved. When the rock salt type layered structure is changed by elution of Mn, a spinel phase is usually formed, and the diffraction peak in the X-ray diffraction (XRD) measurement of the positive electrode active material represents the spinel phase. In the spinel phase, diffraction peaks appear at 35-36 ° (101) and 42.5-43.5 ° (104). In the solid solution positive electrode active material according to the present embodiment, it is considered that a spinel phase is not formed even after repeated charge and discharge, and a rock salt type layered structure is maintained. However, the present embodiment is not limited to the above consideration.
さらに、本実施形態における岩塩型層状構造を示す回折ピークは、低角度側にシフトしていることが好ましい。すなわち、本実施形態に係る固溶体正極活物質は、X線回折(XRD)測定において、20-23°、35.5-36.5°(101)、43.5-44.5°(104)および64-65(108)/65-66(110)に回折ピークを有することが好ましい。回折ピークの低角度側へのシフトは、Ti等が正極活物質中により多く固溶し、Mnを置換していることを示し、Mn溶出抑制の効果がより大きいと考えられる。
Furthermore, it is preferable that the diffraction peak showing the rock salt type layered structure in this embodiment is shifted to the low angle side. That is, the solid solution positive electrode active material according to the present embodiment is 20-23 °, 35.5-36.5 ° (101), 43.5-44.5 ° (104) in X-ray diffraction (XRD) measurement. And preferably have diffraction peaks at 64-65 (108) / 65-66 (110). The shift of the diffraction peak to the lower angle side indicates that Ti and the like are more solid-dissolved in the positive electrode active material and substitutes Mn, which is considered to have a greater effect of suppressing Mn elution.
さらに、正極活物質の遷移金属層中にTi等がMn4+を置換して固溶することにより、置換元素と酸素との共有結合が強くなり、遷移金属の酸化に伴う結晶格子中の酸素の離脱も低減し得る。このことにより、酸素ガスの発生を抑制し、結晶構造内の酸素欠陥が減少しうる。
Furthermore, when Ti or the like substitutes Mn 4+ in the transition metal layer of the positive electrode active material and solid-dissolves, the covalent bond between the substitution element and oxygen becomes stronger, and the oxygen in the crystal lattice accompanying the oxidation of the transition metal becomes stronger. Separation can also be reduced. As a result, generation of oxygen gas can be suppressed and oxygen defects in the crystal structure can be reduced.
ここで、組成式(3)において、a+b+c+eは、1.1≦[a+b+c+e]≦1.4を満たす。一般に、ニッケル(Ni)、コバルト(Co)およびマンガン(Mn)は、材料の純度向上および電子伝導性向上という観点から、容量特性および出力特性に寄与することが知られている。Ti等は、結晶格子中のMnを一部置換するものである。そして、1.1≦[a+b+c+e]≦1.2であることにより、各元素の最適化を図り、容量及び出力特性をより向上させることができる。したがって、この関係を満足する正極活物質をリチウムイオン二次電池等の電気デバイスに用いた場合、高い可逆容量を維持することにより、高容量を維持しつつ、優れた初期充放電効率を発揮することが可能となる。
Here, in the composition formula (3), a + b + c + e satisfies 1.1 ≦ [a + b + c + e] ≦ 1.4. Generally, nickel (Ni), cobalt (Co), and manganese (Mn) are known to contribute to capacity characteristics and output characteristics from the viewpoint of improving the purity of the material and improving the electronic conductivity. Ti or the like partially substitutes Mn in the crystal lattice. When 1.1 ≦ [a + b + c + e] ≦ 1.2, each element can be optimized and the capacity and output characteristics can be further improved. Therefore, when a positive electrode active material that satisfies this relationship is used in an electrical device such as a lithium ion secondary battery, it exhibits excellent initial charge / discharge efficiency while maintaining a high capacity by maintaining a high reversible capacity. It becomes possible.
なお、組成式(3)において、a+b+c+d+e=1.5、1.1≦[a+b+c+e]≦1.4の関係を満足すれば、a、bおよびcの値は特に限定されない。ただし、aは、0<a<1.5であることが好ましく、0.1≦a≦0.75であることがより好ましい。aが上記範囲であると、より容量維持率の優れた二次電池が得られる。なお、aがa≦0.75でない場合は、ニッケル(Ni)が2価であることを条件として上記dの範囲内において正極活物質中にニッケルを含有するため、結晶構造が安定化しないことがある。一方、a≦0.75である場合は、正極活物質の結晶構造が岩塩型層状構造となり易い。
In the composition formula (3), the values of a, b, and c are not particularly limited as long as the relationship of a + b + c + d + e = 1.5 and 1.1 ≦ [a + b + c + e] ≦ 1.4 is satisfied. However, a is preferably 0 <a <1.5, and more preferably 0.1 ≦ a ≦ 0.75. When a is in the above range, a secondary battery having a better capacity retention rate can be obtained. When a is not a ≦ 0.75, the crystal structure is not stabilized because nickel is contained in the positive electrode active material within the above range d on condition that nickel (Ni) is divalent. There is. On the other hand, when a ≦ 0.75, the crystal structure of the positive electrode active material tends to be a rock salt type layered structure.
さらに、組成式(3)において、bは、0<b<1.5であることが好ましく、より好ましくは0.2≦b≦0.9である。bが上記範囲であると、より容量維持率の優れた電気デバイスが得られる。ただし、bがb≦0.9を満たさない場合は、マンガンが4価であることを条件として上記dの範囲内において正極活物質中にマンガンを含有し、さらに正極活物質中にニッケル(Ni)を含有するため、結晶構造が安定化しないことがある。一方、b≦0.9である場合は、正極活物質の結晶構造が岩塩型層状構造となり易い。
Furthermore, in the composition formula (3), b is preferably 0 <b <1.5, and more preferably 0.2 ≦ b ≦ 0.9. When b is in the above range, an electric device having a better capacity retention rate can be obtained. However, when b does not satisfy b ≦ 0.9, manganese is contained in the positive electrode active material within the above range d, provided that manganese is tetravalent, and nickel (Ni ), The crystal structure may not be stabilized. On the other hand, when b ≦ 0.9, the crystal structure of the positive electrode active material tends to be a rock salt type layered structure.
また、組成式(3)において、cは、0≦c<1.5であることが好ましい。ただし、cがc≦0.6でない場合は、コバルトが3価であることを条件として上記dの範囲内において正極活物質中にニッケルおよびマンガンを含有する。さらに、ニッケル(Ni)が2価、マンガン(Mn)が4価であることを条件として上記dの範囲内において正極活物質中にコバルト(Co)を含有する。そのため、正極活物質の結晶構造が安定化しないことがある。一方、c≦0.6である場合は、正極活物質の結晶構造が岩塩型層状構造となり易い。
In the composition formula (3), c is preferably 0 ≦ c <1.5. However, when c is not c ≦ 0.6, nickel and manganese are contained in the positive electrode active material within the above range d on condition that cobalt is trivalent. Further, cobalt (Co) is contained in the positive electrode active material within the above range d on condition that nickel (Ni) is divalent and manganese (Mn) is tetravalent. Therefore, the crystal structure of the positive electrode active material may not be stabilized. On the other hand, when c ≦ 0.6, the crystal structure of the positive electrode active material tends to be a rock salt type layered structure.
また、組成式(3)においては、a+b+c+d+e=1.5である。この式を満たすことにより、正極活物質の結晶構造を安定化させることができる。
In the composition formula (3), a + b + c + d + e = 1.5. By satisfying this formula, the crystal structure of the positive electrode active material can be stabilized.
また、組成式(3)においては、0.1≦d≦0.4である。dが0.1≦d≦0.4でない場合は、正極活物質の結晶構造が安定化しないことがある。逆に、dが0.1≦d≦0.4の場合は、正極活物質が岩塩型層状構造となり易い。dの範囲は、より好ましくは、0.15≦d≦0.35である。dが0.1以上の場合は、組成がLi2MnO3に近くなり難く、充放電が容易となるため好ましい。
In the composition formula (3), 0.1 ≦ d ≦ 0.4. When d is not 0.1 ≦ d ≦ 0.4, the crystal structure of the positive electrode active material may not be stabilized. On the contrary, when d is 0.1 ≦ d ≦ 0.4, the positive electrode active material tends to have a rock salt type layered structure. The range of d is more preferably 0.15 ≦ d ≦ 0.35. When d is 0.1 or more, the composition is less likely to be close to Li 2 MnO 3 and charge / discharge is facilitated, which is preferable.
また、組成式(3)においては、0.01≦e≦0.4である。eが0.01≦e≦0.4でない場合は、該元素が結晶構造に均一に固溶できず結晶構造の安定化が図れない。一方、eが0.01≦e≦0.4であれば、Ti、ZrおよびNbの少なくとも一種が、Mn4+を溶出が抑制される程度に十分に置換できる。より好ましくはeは、0.02≦e≦0.3であり、さらに好ましくは0.025≦e≦0.25であり、特に好ましくは0.03≦e≦0.2である。
In the composition formula (3), 0.01 ≦ e ≦ 0.4. When e is not 0.01 ≦ e ≦ 0.4, the element cannot be uniformly dissolved in the crystal structure, and the crystal structure cannot be stabilized. On the other hand, if e is 0.01 ≦ e ≦ 0.4, at least one of Ti, Zr, and Nb can sufficiently substitute Mn 4+ so that elution is suppressed. More preferably, e satisfies 0.02 ≦ e ≦ 0.3, more preferably 0.025 ≦ e ≦ 0.25, and particularly preferably 0.03 ≦ e ≦ 0.2.
各元素のイオン半径は、Mn4+ 0.54Å、Mn4+ 0.54Å、Ti4+ 0.61Å、Zr4+ 0.72Å、Nb5+ 0.64Åであり、Ti、ZrおよびNbがMnよりも大きくなっている。そのため、正極活物質中のMn4+がTi等に置換されるにつれて、結晶格子が膨張し、岩塩型層状構造を示す回折ピークは低角度側にシフトする。逆に、回折ピークがより低角度側にシフトしていれば、Ti等のMn4+の置換量がより大きく、結晶構造が安定しやすいということになる。すなわち、充放電の際のMnの溶出がより抑制され、電気デバイスの容量低下をより効果的に防止しうる。
The ionic radius of each element is Mn 4+ 0.540.5, Mn 4+ 0.54Å, Ti 4+ 0.61Å, Zr 4+ 0.72Å, Nb 5+ 0.64Å, and Ti, Zr and Nb are larger than Mn. ing. Therefore, as Mn 4+ in the positive electrode active material is replaced with Ti or the like, the crystal lattice expands, and the diffraction peak indicating the rock salt type layered structure shifts to a lower angle side. On the contrary, if the diffraction peak is shifted to a lower angle side, the substitution amount of Mn 4+ such as Ti is larger, and the crystal structure is easily stabilized. That is, elution of Mn at the time of charging / discharging is further suppressed, and the capacity reduction of the electric device can be more effectively prevented.
正極活物質の比表面積としては、0.2~0.6m2/gであることが好ましく、0.25~0.5m2/gであることがより好ましい。比表面積が0.2m2/g以上であると、十分な電池の出力が得られうることから好ましい。一方、比表面積が0.6m2/g以下であると、マンガンの溶出がより抑制されうることから好ましい。なお、本明細書において、比表面積の値は、特に断りがない限り、実施例の方法で測定された値を採用するものとする。
The specific surface area of the positive electrode active material is preferably 0.2 to 0.6 m 2 / g, and more preferably 0.25 to 0.5 m 2 / g. A specific surface area of 0.2 m 2 / g or more is preferable because sufficient battery output can be obtained. On the other hand, it is preferable that the specific surface area is 0.6 m 2 / g or less because elution of manganese can be further suppressed. In addition, in this specification, the value measured by the method of an Example shall be employ | adopted as the value of a specific surface area unless there is particular notice.
正極活物質の平均粒径としては、10~20μmであることが好ましく、12~18μmであることがより好ましい。平均粒径が10μm以上であると、マンガンの溶出が抑制されうることから好ましい。一方、平均粒径が20μm以下であると、正極の製造時における集電体への塗布工程において、箔切れや詰まり等が抑制されうることから好ましい。なお、平均粒径は、レーザー回折・散乱法の粒度分布測定装置により計測されたものを採用する。平均粒径は、例えば、堀場製作所製の粒度分布分析装置(型式LA-920)を用いて測定することができる。
The average particle diameter of the positive electrode active material is preferably 10 to 20 μm, and more preferably 12 to 18 μm. It is preferable that the average particle size is 10 μm or more because elution of manganese can be suppressed. On the other hand, when the average particle size is 20 μm or less, it is preferable that foil breakage, clogging, and the like can be suppressed in the application step to the current collector during the production of the positive electrode. The average particle diameter is measured by a laser diffraction / scattering particle size distribution measuring device. The average particle diameter can be measured, for example, using a particle size distribution analyzer (model LA-920) manufactured by Horiba.
上述したような固溶体正極活物質は、例えば、以下のような方法で調製することができる。すなわち、Ti、ZrおよびNbの少なくとも一種のクエン酸塩と、融点が100℃~350℃の遷移金属の有機酸塩とを混合する第1工程と、第1工程で得られた混合物を100℃~350℃で融解する第2工程と、第2工程で得られた溶融物を、前記融点より高い温度で熱分解する第3工程と、第3工程で得られた熱分解物を焼成する第4工程と、を含む。以下、各工程について説明する。
The solid solution positive electrode active material as described above can be prepared, for example, by the following method. That is, a first step of mixing at least one citrate of Ti, Zr and Nb with an organic acid salt of a transition metal having a melting point of 100 ° C. to 350 ° C., and a mixture obtained in the first step at 100 ° C. A second step of melting at ˜350 ° C., a third step of pyrolyzing the melt obtained in the second step at a temperature higher than the melting point, and a second step of firing the pyrolyzate obtained in the third step. 4 steps. Hereinafter, each step will be described.
第1工程
第1工程では、Ti、ZrおよびNbの少なくとも一種のクエン酸塩および融点が100℃~350℃の遷移金属の有機酸塩とを混合する。Ti、ZrおよびNbの少なくとも一種のクエン酸塩は、好ましくは、クエン酸錯体水溶液の形態で混合する。Ti、ZrおよびNbの少なくとも一種のクエン酸錯体水溶液は、以下に限定はされないが、好ましくは以下のように調製できる。 First Step In the first step, at least one citrate of Ti, Zr and Nb and an organic acid salt of a transition metal having a melting point of 100 ° C. to 350 ° C. are mixed. At least one citrate of Ti, Zr and Nb is preferably mixed in the form of an aqueous citric acid complex solution. The aqueous solution of at least one kind of citrate complex of Ti, Zr and Nb is not limited to the following, but it can be preferably prepared as follows.
第1工程では、Ti、ZrおよびNbの少なくとも一種のクエン酸塩および融点が100℃~350℃の遷移金属の有機酸塩とを混合する。Ti、ZrおよびNbの少なくとも一種のクエン酸塩は、好ましくは、クエン酸錯体水溶液の形態で混合する。Ti、ZrおよびNbの少なくとも一種のクエン酸錯体水溶液は、以下に限定はされないが、好ましくは以下のように調製できる。 First Step In the first step, at least one citrate of Ti, Zr and Nb and an organic acid salt of a transition metal having a melting point of 100 ° C. to 350 ° C. are mixed. At least one citrate of Ti, Zr and Nb is preferably mixed in the form of an aqueous citric acid complex solution. The aqueous solution of at least one kind of citrate complex of Ti, Zr and Nb is not limited to the following, but it can be preferably prepared as follows.
すなわち、無水クエン酸をアセトン等の有機溶媒に溶解し、この溶解液に、Ti、ZrおよびNbの少なくとも一種のアルコキシドを加える。この際、Ti、ZrおよびNbの少なくとも一種とクエン酸とのモル比は、(Ti、ZrおよびNbの少なくとも一種)/クエン酸が1/1~1/2であることが好ましい。アルコキシドを添加すると、溶解液中に沈殿が生じるため、沈殿物を吸引濾過する。次いで、得られた沈殿物に水を加え、50~60℃に加温しながら撹拌し、溶解させる。水の量は、最終的にTi、ZrおよびNbの少なくとも一種の酸化物換算で1~10質量%のクエン酸錯体水溶液濃度になるように適宜加える。この水溶液を一日静置し、沈殿物を濾過して、濾液としてTi、ZrおよびNbの少なくとも一種のクエン酸錯体水溶液が得られる。
That is, anhydrous citric acid is dissolved in an organic solvent such as acetone, and at least one alkoxide of Ti, Zr and Nb is added to the solution. At this time, the molar ratio of at least one of Ti, Zr and Nb to citric acid is preferably (at least one of Ti, Zr and Nb) / citric acid being 1/1 to 1/2. When alkoxide is added, precipitation occurs in the solution, and the precipitate is filtered with suction. Next, water is added to the resulting precipitate, and the mixture is stirred and heated to 50 to 60 ° C. to dissolve. The amount of water is appropriately added so that the concentration of the aqueous citric acid complex is 1 to 10% by mass in terms of at least one of Ti, Zr and Nb. This aqueous solution is allowed to stand for one day, and the precipitate is filtered to obtain an aqueous solution of at least one citrate complex of Ti, Zr and Nb as a filtrate.
Ti、ZrおよびNbの少なくとも一種のアルコキシドとしては、チタンテトライソプロポキシド、ジルコニウムテトライソプロポキシド、ニオブイソプロポキシド、チタンエトキシド、チタンn-プロポキシド、チタンブトキシド、ジルコニウムエトキシド、ジルコニウムn-プロポキシド、ジルコニウムブトキシド、ニオブエトキシド、ニオブブトキシドが挙げられる。
As at least one alkoxide of Ti, Zr and Nb, titanium tetraisopropoxide, zirconium tetraisopropoxide, niobium isopropoxide, titanium ethoxide, titanium n-propoxide, titanium butoxide, zirconium ethoxide, zirconium n- Examples thereof include propoxide, zirconium butoxide, niobium ethoxide, and niobium butoxide.
次に、得られたTi、ZrおよびNbの少なくとも一種のクエン酸錯体水溶液に、融点が100℃~350℃の遷移金属の有機酸塩を添加し、混合物とする。融点が100℃~350℃の遷移金属の有機酸塩としては、好ましくは、酢酸ニッケル、酢酸マンガン、酢酸コバルト、クエン酸マンガン等が挙げられる。
Next, an organic acid salt of a transition metal having a melting point of 100 ° C. to 350 ° C. is added to the obtained aqueous solution of at least one kind of citric acid complex of Ti, Zr and Nb to obtain a mixture. The organic acid salt of transition metal having a melting point of 100 ° C. to 350 ° C. preferably includes nickel acetate, manganese acetate, cobalt acetate, manganese citrate and the like.
好ましくは、上記のTi、ZrおよびNbの少なくとも一種のクエン酸錯体水溶液に、さらにアルカリ金属の有機酸塩を混合する。アルカリ金属の有機酸塩としては、好ましくは、酢酸リチウム、クエン酸リチウム、等が挙げられる。アルカリ金属の有機酸塩をこの段階で混合すると、製造方法が簡便であり好ましい。
Preferably, an alkali metal organic acid salt is further mixed with the above-described aqueous solution of at least one kind of citric acid complex of Ti, Zr and Nb. Preferred examples of the organic acid salt of alkali metal include lithium acetate and lithium citrate. It is preferable to mix an alkali metal organic acid salt at this stage because the production method is simple.
第2工程
第1工程で得られた混合物を、100℃~350℃、好ましくは200~300℃で融解する。 Second Step The mixture obtained in the first step is melted at 100 to 350 ° C., preferably 200 to 300 ° C.
第1工程で得られた混合物を、100℃~350℃、好ましくは200~300℃で融解する。 Second Step The mixture obtained in the first step is melted at 100 to 350 ° C., preferably 200 to 300 ° C.
第3工程
第2工程で得られた加熱溶融物(スラリー)を、第1工程で使用した遷移金属の有機酸塩の融点以上の温度で熱分解し、乾燥粉末である熱分解物を得る。複数の遷移金属の有機酸塩の融点がそれぞれ異なる場合には、最も高い融点以上の温度で熱分解する。より詳細には、溶融物をスプレー装置で、200~600℃、より好ましくは200~400℃で加熱噴霧することができる。 Third Step The heated melt (slurry) obtained in the second step is pyrolyzed at a temperature equal to or higher than the melting point of the organic acid salt of the transition metal used in the first step to obtain a pyrolyzate that is a dry powder. When the melting points of the organic acid salts of a plurality of transition metals are different from each other, they are thermally decomposed at a temperature higher than the highest melting point. More specifically, the melt can be heated and sprayed at 200 to 600 ° C., more preferably 200 to 400 ° C., with a spray device.
第2工程で得られた加熱溶融物(スラリー)を、第1工程で使用した遷移金属の有機酸塩の融点以上の温度で熱分解し、乾燥粉末である熱分解物を得る。複数の遷移金属の有機酸塩の融点がそれぞれ異なる場合には、最も高い融点以上の温度で熱分解する。より詳細には、溶融物をスプレー装置で、200~600℃、より好ましくは200~400℃で加熱噴霧することができる。 Third Step The heated melt (slurry) obtained in the second step is pyrolyzed at a temperature equal to or higher than the melting point of the organic acid salt of the transition metal used in the first step to obtain a pyrolyzate that is a dry powder. When the melting points of the organic acid salts of a plurality of transition metals are different from each other, they are thermally decomposed at a temperature higher than the highest melting point. More specifically, the melt can be heated and sprayed at 200 to 600 ° C., more preferably 200 to 400 ° C., with a spray device.
第4工程
第3工程で得られた熱分解物を、600~1200℃、より好ましくは800~1100℃で、5~20時間、好ましくは10~15時間焼成する。焼成の前に仮焼成を行ってもよく、その場合は、200~700℃、より好ましくは300~600℃で、1~10時間、より好ましくは2~6時間仮焼成することができる。このようにして、本実施形態の正極活物質が得られる。 Fourth Step The pyrolyzate obtained in the third step is calcined at 600 to 1200 ° C., more preferably 800 to 1100 ° C., for 5 to 20 hours, preferably 10 to 15 hours. Temporary baking may be performed before baking, in which case the temporary baking may be performed at 200 to 700 ° C., more preferably 300 to 600 ° C. for 1 to 10 hours, more preferably 2 to 6 hours. Thus, the positive electrode active material of this embodiment is obtained.
第3工程で得られた熱分解物を、600~1200℃、より好ましくは800~1100℃で、5~20時間、好ましくは10~15時間焼成する。焼成の前に仮焼成を行ってもよく、その場合は、200~700℃、より好ましくは300~600℃で、1~10時間、より好ましくは2~6時間仮焼成することができる。このようにして、本実施形態の正極活物質が得られる。 Fourth Step The pyrolyzate obtained in the third step is calcined at 600 to 1200 ° C., more preferably 800 to 1100 ° C., for 5 to 20 hours, preferably 10 to 15 hours. Temporary baking may be performed before baking, in which case the temporary baking may be performed at 200 to 700 ° C., more preferably 300 to 600 ° C. for 1 to 10 hours, more preferably 2 to 6 hours. Thus, the positive electrode active material of this embodiment is obtained.
場合によっては、上述した固溶体正極活物質以外の正極活物質が併用されてもよい。この場合、好ましくは、容量、出力特性の観点から、リチウム-遷移金属複合酸化物が正極活物質として併用される。これ以外の正極活物質が用いられてもよいことは勿論である。活物質それぞれの固有の効果を発現する上で最適な粒子径が異なる場合には、それぞれの固有の効果を発現する上で最適な粒子径同士をブレンドして用いればよく、全ての活物質の粒子径を必ずしも均一化させる必要はない。
In some cases, a positive electrode active material other than the solid solution positive electrode active material described above may be used in combination. In this case, preferably, a lithium-transition metal composite oxide is used in combination as the positive electrode active material from the viewpoint of capacity and output characteristics. Of course, other positive electrode active materials may be used. When the optimum particle size is different for expressing the unique effect of each active material, the optimum particle size may be blended and used for expressing each unique effect. It is not always necessary to make the particle diameter uniform.
正極活物質層13に含まれる正極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1~30μmであり、より好ましくは5~20μmである。なお、本明細書において、「粒子径」とは、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用いて観察される活物質粒子(観察面)の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。また、本明細書において、「平均粒子径」の値は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。他の構成成分の粒子径や平均粒子径も同様に定義することができる。
The average particle diameter of the positive electrode active material contained in the positive electrode active material layer 13 is not particularly limited, but is preferably 1 to 30 μm and more preferably 5 to 20 μm from the viewpoint of increasing the output. In the present specification, the “particle diameter” refers to the outline of the active material particles (observation surface) observed using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It means the maximum distance among any two points. In this specification, the value of “average particle diameter” is the value of particles observed in several to several tens of fields using observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The value calculated as the average value of the particle diameter shall be adopted. The particle diameters and average particle diameters of other components can be defined in the same manner.
上述したように、正極活物質層は、下記式(2)で表される正極活物質(固溶体正極活物質)を含有する。
As described above, the positive electrode active material layer contains a positive electrode active material (solid solution positive electrode active material) represented by the following formula (2).
式(2)において、eは正極活物質層における各成分の質量%を表し、80≦e≦98である。
In the formula (2), e represents mass% of each component in the positive electrode active material layer, and 80 ≦ e ≦ 98.
式(2)から明らかなように、正極活物質層における固溶体正極活物質の含有量は、80~98質量%であることが必須であるが、好ましくは84~98質量%である。
As is clear from the formula (2), the content of the solid solution positive electrode active material in the positive electrode active material layer is essential to be 80 to 98% by mass, but preferably 84 to 98% by mass.
また、正極活物質層は上述した固溶体正極活物質のほか、バインダおよび導電助剤を含むことが好ましい。さらに、必要に応じて、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。
The positive electrode active material layer preferably contains a binder and a conductive aid in addition to the solid solution positive electrode active material described above. Further, if necessary, it further contains other additives such as an electrolyte (polymer matrix, ion-conductive polymer, electrolyte solution, etc.) and a lithium salt for increasing the ion conductivity.
(バインダ)
正極活物質層に用いられるバインダとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル、ポリアクリロニトリル、ポリイミド、ポリアミド、セルロース、カルボキシメチルセルロース(CMC)およびその塩、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。これらのバインダは、単独で用いてもよいし、2種以上を併用してもよい。 (Binder)
Although it does not specifically limit as a binder used for a positive electrode active material layer, For example, the following materials are mentioned. Polyethylene, polypropylene, polyethylene terephthalate (PET), polyether nitrile, polyacrylonitrile, polyimide, polyamide, cellulose, carboxymethyl cellulose (CMC) and its salts, ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene-butadiene rubber (SBR) ), Isoprene rubber, butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene copolymer, styrene / butadiene / styrene block copolymer and hydrogenated product thereof, styrene / isoprene / styrene block copolymer and hydrogenated product thereof Thermoplastic polymers such as products, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (F P), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), ethylene / tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE) ), Fluororesin such as polyvinyl fluoride (PVF), vinylidene fluoride-hexafluoropropylene fluororubber (VDF-HFP fluoropolymer), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluororubber (VDF-HFP) -TFE fluorine rubber), vinylidene fluoride-pentafluoropropylene fluorine rubber (VDF-PFP fluorine rubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene Fluorine rubber (VDF-PFP-TFE fluorine rubber), vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene fluorine rubber (VDF-PFMVE-TFE fluorine rubber), vinylidene fluoride-chlorotrifluoroethylene fluorine Examples thereof include vinylidene fluoride type fluoro rubber such as rubber (VDF-CTFE type fluoro rubber), epoxy resin and the like. These binders may be used independently and may use 2 or more types together.
正極活物質層に用いられるバインダとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル、ポリアクリロニトリル、ポリイミド、ポリアミド、セルロース、カルボキシメチルセルロース(CMC)およびその塩、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。これらのバインダは、単独で用いてもよいし、2種以上を併用してもよい。 (Binder)
Although it does not specifically limit as a binder used for a positive electrode active material layer, For example, the following materials are mentioned. Polyethylene, polypropylene, polyethylene terephthalate (PET), polyether nitrile, polyacrylonitrile, polyimide, polyamide, cellulose, carboxymethyl cellulose (CMC) and its salts, ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene-butadiene rubber (SBR) ), Isoprene rubber, butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene copolymer, styrene / butadiene / styrene block copolymer and hydrogenated product thereof, styrene / isoprene / styrene block copolymer and hydrogenated product thereof Thermoplastic polymers such as products, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (F P), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), ethylene / tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE) ), Fluororesin such as polyvinyl fluoride (PVF), vinylidene fluoride-hexafluoropropylene fluororubber (VDF-HFP fluoropolymer), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluororubber (VDF-HFP) -TFE fluorine rubber), vinylidene fluoride-pentafluoropropylene fluorine rubber (VDF-PFP fluorine rubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene Fluorine rubber (VDF-PFP-TFE fluorine rubber), vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene fluorine rubber (VDF-PFMVE-TFE fluorine rubber), vinylidene fluoride-chlorotrifluoroethylene fluorine Examples thereof include vinylidene fluoride type fluoro rubber such as rubber (VDF-CTFE type fluoro rubber), epoxy resin and the like. These binders may be used independently and may use 2 or more types together.
正極活物質層におけるバインダの含有量は、好ましくは1~10質量%であり、より好ましくは1~8質量%である。
The binder content in the positive electrode active material layer is preferably 1 to 10% by mass, more preferably 1 to 8% by mass.
(導電助剤)
導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、ケッチェンブラック、アセチレンブラック等のカーボンブラックが挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。 (Conductive aid)
The conductive assistant refers to an additive that is blended in order to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer. Examples of the conductive assistant include carbon black such as ketjen black and acetylene black. When the active material layer contains a conductive additive, an electronic network inside the active material layer is effectively formed, which can contribute to improvement of the output characteristics of the battery.
導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、ケッチェンブラック、アセチレンブラック等のカーボンブラックが挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。 (Conductive aid)
The conductive assistant refers to an additive that is blended in order to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer. Examples of the conductive assistant include carbon black such as ketjen black and acetylene black. When the active material layer contains a conductive additive, an electronic network inside the active material layer is effectively formed, which can contribute to improvement of the output characteristics of the battery.
正極活物質層における導電助剤の含有量は、好ましくは1~10質量%であり、より好ましくは1~8質量%である。導電助剤の配合比(含有量)を上記範囲内に規定することで以下の効果が発現される。すなわち、電極反応を阻害することなく、電子伝導性を十分に担保することができ、電極密度の低下によるエネルギー密度の低下を抑制でき、ひいては電極密度の向上によるエネルギー密度の向上を図ることができるのである。
The content of the conductive additive in the positive electrode active material layer is preferably 1 to 10% by mass, more preferably 1 to 8% by mass. By defining the blending ratio (content) of the conductive assistant within the above range, the following effects are exhibited. That is, the electron conductivity can be sufficiently ensured without hindering the electrode reaction, the decrease in the energy density due to the decrease in the electrode density can be suppressed, and as a result, the energy density can be improved due to the increase in the electrode density. It is.
(その他の成分)
電解質塩(リチウム塩)としては、Li(C2F5SO2)2N、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3等が挙げられる。 (Other ingredients)
Examples of the electrolyte salt (lithium salt) include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.
電解質塩(リチウム塩)としては、Li(C2F5SO2)2N、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3等が挙げられる。 (Other ingredients)
Examples of the electrolyte salt (lithium salt) include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.
イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
Examples of the ion conductive polymer include polyethylene oxide (PEO) and polypropylene oxide (PPO) polymers.
正極(正極活物質層)は、通常のスラリーを塗布(コーティング)する方法のほか、混練法、スパッタ法、蒸着法、CVD法、PVD法、イオンプレーティング法および溶射法のいずれかの方法によって形成することができる。
The positive electrode (positive electrode active material layer) can be applied by any one of a kneading method, a sputtering method, a vapor deposition method, a CVD method, a PVD method, an ion plating method, and a thermal spraying method in addition to a method of applying (coating) a normal slurry. Can be formed.
[負極活物質層]
負極活物質層15は、負極活物質として、Si含有合金を必須に含む。 [Negative electrode active material layer]
The negative electrodeactive material layer 15 essentially contains a Si-containing alloy as a negative electrode active material.
負極活物質層15は、負極活物質として、Si含有合金を必須に含む。 [Negative electrode active material layer]
The negative electrode
(Si含有合金)
本実施形態において、負極活物質としてのSi含有合金は、非晶質または低結晶性のケイ素を主成分とする母相中に、遷移金属のケイ化物を含むシリサイド相が分散されてなる構造を有し、所定の組成を有するものである。 (Si-containing alloy)
In the present embodiment, the Si-containing alloy as the negative electrode active material has a structure in which a silicide phase containing a transition metal silicide is dispersed in a parent phase mainly composed of amorphous or low crystalline silicon. And having a predetermined composition.
本実施形態において、負極活物質としてのSi含有合金は、非晶質または低結晶性のケイ素を主成分とする母相中に、遷移金属のケイ化物を含むシリサイド相が分散されてなる構造を有し、所定の組成を有するものである。 (Si-containing alloy)
In the present embodiment, the Si-containing alloy as the negative electrode active material has a structure in which a silicide phase containing a transition metal silicide is dispersed in a parent phase mainly composed of amorphous or low crystalline silicon. And having a predetermined composition.
上述したように、本実施形態における負極活物質を構成するSi含有合金は、まず、非晶質(アモルファス)または低結晶性のケイ素を主成分とする母相を備えている。このように、母相を構成するケイ素が非晶質または低結晶性であると、高容量でかつサイクル耐久性に優れた電気デバイスが提供されうる。
As described above, the Si-containing alloy constituting the negative electrode active material in the present embodiment is first provided with a parent phase mainly composed of amorphous or amorphous silicon. As described above, when the silicon constituting the parent phase is amorphous or has low crystallinity, an electric device having a high capacity and excellent cycle durability can be provided.
ケイ素含有合金を構成する母相は、ケイ素を主成分として含有する相であり、好ましくはSi単相(Siのみからなる相)である。この母相(Siを主成分とする相)は、本実施形態の電気デバイス(リチウムイオン二次電池)の作動時にリチウムイオンの吸蔵・放出に関与する相であり、電気化学的にLiと反応可能な相である。Si単相である場合、重量あたりおよび体積あたりに多量のLiを吸蔵・放出することが可能である。ただし、Siは電子伝導性に乏しいことから、母相にはリンやホウ素などの微量の添加元素や遷移金属などが含まれていてもよい。なお、この母相(Siを主成分とする相)は、後述するシリサイド相よりもアモルファス化していることが好ましい。かような構成とすることにより、負極活物質(ケイ素含有合金)をより高容量なものとすることができる。なお、母相がシリサイド相よりもアモルファス化しているか否かは、電子線回折分析により確認することができる。具体的には、電子線回折分析によると、単結晶相については二次元点配列のネットパターン(格子状のスポット)が得られ、多結晶相についてはデバイシェラーリング(回折環)が得られ、アモルファス相についてはハローパターンが得られる。これを利用することで、上記の確認が可能となるのである。
The parent phase constituting the silicon-containing alloy is a phase containing silicon as a main component, and is preferably a Si single phase (phase consisting of only Si). This parent phase (phase containing Si as a main component) is a phase involved in occlusion / release of lithium ions during operation of the electrical device (lithium ion secondary battery) of the present embodiment, and electrochemically reacts with Li. It is a possible phase. In the case of the Si single phase, it is possible to occlude and release a large amount of Li per weight and per volume. However, since Si has poor electron conductivity, the parent phase may contain a small amount of additive elements such as phosphorus and boron, transition metals, and the like. In addition, it is preferable that this parent phase (phase containing Si as a main component) is made amorphousr than a silicide phase described later. With such a configuration, the negative electrode active material (silicon-containing alloy) can have a higher capacity. Whether or not the parent phase is more amorphous than the silicide phase can be confirmed by electron beam diffraction analysis. Specifically, according to the electron diffraction analysis, a net pattern (lattice spot) of a two-dimensional dot arrangement is obtained for a single crystal phase, and a Debye-Scherrer ring (diffraction ring) is obtained for a polycrystalline phase, A halo pattern is obtained for the amorphous phase. By using this, the above confirmation becomes possible.
一方、本実施形態における負極活物質を構成するケイ素含有合金は、上記母相に加えて、当該母相中に分散されてなる遷移金属のケイ化物(シリサイドとも称する)を含むシリサイド相をも含んでいる。このシリサイド相は、遷移金属のケイ化物(例えばTiSi2)を含むことで母相との親和性に優れ、特に充電時の体積膨張における結晶界面での割れを抑制することができる。さらに、シリサイド相は母相と比較して電子伝導性および硬度の観点で優れている。このため、シリサイド相は母相の低い電子伝導性を改善し、かつ膨張時の応力に対して活物質の形状を維持する役割をも担っている。
On the other hand, the silicon-containing alloy constituting the negative electrode active material in the present embodiment also includes a silicide phase containing a transition metal silicide (also referred to as silicide) dispersed in the parent phase in addition to the parent phase. It is out. This silicide phase contains a transition metal silicide (eg, TiSi 2 ), so that it has excellent affinity with the parent phase, and can particularly suppress cracking at the crystal interface due to volume expansion during charging. Furthermore, the silicide phase is superior in terms of electron conductivity and hardness compared to the parent phase. For this reason, the silicide phase plays a role of improving the low electron conductivity of the parent phase and maintaining the shape of the active material against the stress during expansion.
シリサイド相には複数の相が存在していてもよく、例えば遷移金属元素MとSiとの組成比が異なる2相以上(例えば、MSi2およびMSi)が存在していてもよい。また、異なる遷移金属元素とのケイ化物を含むことにより、2相以上が存在していてもよい。ここで、シリサイド相に含まれる遷移金属の種類について特に制限はないが、好ましくはTi、Zr、Ni、Cu、およびFeからなる群より選ばれる少なくとも1種であり、より好ましくはTiまたはZrであり、特に好ましくはTiである。これらの元素は、ケイ化物を形成した際に他の元素のケイ化物よりも高い電子伝導度を示し、かつ高い強度を有するものである。特に遷移金属元素がTiである場合のシリサイドであるTiSi2は、非常に優れた電子伝導性を示すため、好ましい。
A plurality of phases may exist in the silicide phase. For example, two or more phases (for example, MSi 2 and MSi) having different composition ratios between the transition metal element M and Si may exist. Moreover, two or more phases may exist by including a silicide with different transition metal elements. Here, the type of transition metal contained in the silicide phase is not particularly limited, but is preferably at least one selected from the group consisting of Ti, Zr, Ni, Cu, and Fe, and more preferably Ti or Zr. Yes, particularly preferably Ti. These elements have a higher electron conductivity and higher strength than silicides of other elements when silicides are formed. In particular, TiSi 2 which is silicide when the transition metal element is Ti is preferable because it exhibits very excellent electron conductivity.
特に、遷移金属元素MがSiであり、シリサイド相に組成比が異なる2相以上(例えば、TiSi2およびTiSi)が存在する場合は、シリサイド相の50質量%以上、好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上、最も好ましくは100質量%がTiSi2相である。
In particular, when the transition metal element M is Si and there are two or more phases having different composition ratios in the silicide phase (for example, TiSi 2 and TiSi), the silicide phase is 50 mass% or more, preferably 80 mass% or more, More preferably, 90% by mass or more, particularly preferably 95% by mass or more, and most preferably 100% by mass is the TiSi 2 phase.
上記シリサイド相のサイズについて特に制限はないが、好ましい実施形態において、シリサイド相のサイズは50nm以下である。かような構成とすることにより、負極活物質(ケイ素含有合金)をより高容量なものとすることができる。
The size of the silicide phase is not particularly limited, but in a preferred embodiment, the size of the silicide phase is 50 nm or less. With such a configuration, the negative electrode active material (silicon-containing alloy) can have a higher capacity.
本発明において、負極活物質を構成するケイ素含有合金は、下記化学式(I)で表される組成を有するものである。
In the present invention, the silicon-containing alloy constituting the negative electrode active material has a composition represented by the following chemical formula (I).
上記化学式(I)において、Aは、不可避不純物であり、Mは、1または2以上の遷移金属元素であり、x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0≦y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。
In the above chemical formula (I), A is an inevitable impurity, M is one or more transition metal elements, and x, y, z, and a represent mass% values, where 0 <X <100, 0 ≦ y <100, 0 <z <100, and 0 ≦ a <0.5, and x + y + z + a = 100.
上記化学式(I)から明らかなように、本発明の好ましい実施形態に係るケイ素含有合金(SixSnyMzAaの組成を有するもの)は、SiおよびM(遷移金属)の二元系であるか(y=0の場合)、Si、SnおよびM(遷移金属)の三元系である(y>0の場合)。なかでも、Si、SnおよびM(遷移金属)の三元系であることが、サイクル耐久性の観点からはより好ましい。また、本明細書において「不可避不純物」とは、Si含有合金において、原料中に存在したり、製造工程において不可避的に混入したりするものを意味する。当該不可避不純物は、本来は不要なものであるが、微量であり、Si合金の特性に影響を及ぼさないため、許容されている不純物である。
As is apparent from the chemical formula (I), the silicon-containing alloy (having the composition of Si x Sn y M z A a ) according to a preferred embodiment of the present invention is a binary system of Si and M (transition metal). (When y = 0) or a ternary system of Si, Sn and M (transition metal) (when y> 0). Among these, a ternary system of Si, Sn, and M (transition metal) is more preferable from the viewpoint of cycle durability. Further, in the present specification, the “inevitable impurities” means an Si-containing alloy that exists in a raw material or is inevitably mixed in a manufacturing process. The inevitable impurities are originally unnecessary impurities, but are a very small amount and do not affect the characteristics of the Si alloy.
本実施形態において特に好ましくは、負極活物質(ケイ素含有合金)への添加元素(M;遷移金属)としてTiを選択し、さらに必要に応じて第2添加元素としてSnを添加することで、Li合金化の際に、アモルファス-結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質(例えば、炭素系負極活物質)よりも高容量のものとなる。したがって、本発明の好ましい実施形態によると、上記化学式(I)で表される組成において、Mがチタン(Ti)であることが好ましく、Mとしてチタンを含むSi-Sn-Tiの三元系であることがより好ましい。
In the present embodiment, particularly preferably, Ti is selected as an additive element (M; transition metal) to the negative electrode active material (silicon-containing alloy), and Sn is added as a second additive element as necessary. In alloying, the cycle life can be improved by suppressing the amorphous-crystal phase transition. This also increases the capacity of conventional negative electrode active materials (for example, carbon-based negative electrode active materials). Therefore, according to a preferred embodiment of the present invention, in the composition represented by the chemical formula (I), M is preferably titanium (Ti), and M is a ternary system of Si—Sn—Ti containing titanium. More preferably.
ここでLi合金化の際、アモルファス-結晶の相転移を抑制するのは、Si材料ではSiとLiとが合金化する際、アモルファス状態から結晶状態へ転移し大きな体積変化(約4倍)を起こすため、粒子自体が壊れてしまい活物質としての機能が失われるためである。そのためアモルファス-結晶の相転移を抑制することで、粒子自体の崩壊を抑制し活物質としての機能(高容量)を保持することができ、サイクル寿命も向上させることができるものである。かかる添加元素を選定することにより、高容量で高サイクル耐久性を有するSi合金負極活物質を提供できる。
Here, in the case of Li alloying, the amorphous-crystal phase transition is suppressed because, in the Si material, when Si and Li are alloyed, the amorphous state transitions to the crystalline state and a large volume change (about 4 times) occurs. This is because the particles themselves are broken and the function as an active material is lost. Therefore, by suppressing the amorphous-crystal phase transition, it is possible to suppress the collapse of the particles themselves, maintain the function as the active material (high capacity), and improve the cycle life. By selecting such an additive element, a Si alloy negative electrode active material having a high capacity and high cycle durability can be provided.
上記化学式(I)の組成において、遷移金属M(特にTi)の組成比zは、7<z<100であることが好ましく、10<z<100であることがより好ましく、15<z<100であることがさらに好ましく、20≦z<100であることが特に好ましい。遷移金属M(特にTi)の組成比zをこのような範囲とすることにより、サイクル特性をより一層向上させることができる。
In the composition of the chemical formula (I), the composition ratio z of the transition metal M (particularly Ti) is preferably 7 <z <100, more preferably 10 <z <100, and 15 <z <100. It is more preferable that 20 ≦ z <100. By setting the composition ratio z of the transition metal M (particularly Ti) within such a range, the cycle characteristics can be further improved.
より好ましくは、化学式(I)における前記x、y、およびzは、下記数式(1)または(2):
More preferably, the x, y, and z in the chemical formula (I) are represented by the following formula (1) or (2):
を満たすことが好ましい。各成分含有量が上記範囲内にあると、1000Ah/gを超える初期放電容量を得ることができ、サイクル寿命についても90%(50サイクル)を超えうる。
It is preferable to satisfy. When the content of each component is within the above range, an initial discharge capacity exceeding 1000 Ah / g can be obtained, and the cycle life can also exceed 90% (50 cycles).
なお、当該負極活物質の上記特性のさらなる向上を図る観点からは、遷移金属M(特にTi)の含有量は7質量%超の範囲とすることが望ましい。すなわち、前記x、y、およびzが、下記数式(3)または(4):
In addition, from the viewpoint of further improving the above characteristics of the negative electrode active material, the content of the transition metal M (particularly Ti) is preferably in the range of more than 7% by mass. That is, the x, y, and z are represented by the following formula (3) or (4):
を満たすことが好ましい。これにより、サイクル特性をよりいっそう向上させることが可能となる。
It is preferable to satisfy. As a result, the cycle characteristics can be further improved.
そして、より良好なサイクル耐久性を確保する観点から、前記x、y、およびzが、下記数式(5)または(6):
From the viewpoint of ensuring better cycle durability, the x, y, and z are represented by the following formula (5) or (6):
を満たすことが好ましい。
It is preferable to satisfy.
そして、初期放電容量およびサイクル耐久性の観点から、本実施形態の負極活物質では、前記x、y、およびzが、下記数式(7):
From the viewpoint of initial discharge capacity and cycle durability, in the negative electrode active material of the present embodiment, the x, y, and z are expressed by the following formula (7):
を満たすことが好ましい。
It is preferable to satisfy.
なお、Aは上述のように、原料や製法に由来する上記3成分以外の不純物(不可避不純物)である。前記aは、0≦a<0.5であり、0≦a<0.1であることが好ましい。
Note that, as described above, A is an impurity (unavoidable impurity) other than the above three components derived from the raw materials and the manufacturing method. The a is 0 ≦ a <0.5, and preferably 0 ≦ a <0.1.
本実施形態における負極活物質を構成するケイ素含有合金は、CuKα1線を用いたX線回折測定において、2θ=24~33°の範囲におけるSiの(111)面の回折ピーク強度Aに対する、2θ=37~45°の範囲における遷移金属のケイ化物の回折ピーク強度Bの比の値(B/A)が0.41以上である点に特徴を有している。この比の値(B/A)は、好ましくは0.89以上であり、さらに好ましくは2.55以上であり、特に好ましくは7.07以上である。なお、本願において、上記回折ピークの強度比を算出するためのX線回折分析は、後述する実施例の欄に記載の手法を用いて行うものとする。
The silicon-containing alloy constituting the negative electrode active material in the present embodiment has a 2θ = value corresponding to the diffraction peak intensity A on the (111) plane of Si in the range of 2θ = 24 to 33 ° in the X-ray diffraction measurement using CuKα1 ray. It is characterized in that the value (B / A) of the diffraction peak intensity B of the transition metal silicide in the range of 37 to 45 ° is 0.41 or more. The value of this ratio (B / A) is preferably 0.89 or more, more preferably 2.55 or more, and particularly preferably 7.07 or more. In the present application, the X-ray diffraction analysis for calculating the intensity ratio of the diffraction peaks is performed using the method described in the column of Examples described later.
ここで、2θ=24~33°の範囲におけるSiの(111)面の回折ピーク強度Aは、以下のようにして求めることができる(後述する実施例で作製される負極A1の結果に対応する図5Aを参照)。
Here, the diffraction peak intensity A of the (111) plane of Si in the range of 2θ = 24 to 33 ° can be obtained as follows (corresponding to the result of the negative electrode A1 manufactured in an example described later). See FIG. 5A).
まず、X線回折分析により得られた回折スペクトルにおいて、2θ=24°における垂線と回折スペクトルとが交わる点をaとする。同様に、2θ=33°における垂線とX線路回折スペクトルとが交わる点をbとする。ここで、線分abをベースラインとし、Siの(111)面の回折ピーク(2θ=約28.5°)における垂線と当該ベースラインとが交わる点をcとする。そして、Siの(111)面の回折ピーク(2θ=約28.5°)の頂点dと点cとを結ぶ線分cdの長さとして、Siの(111)面の回折ピーク強度Aを求めることができる。
First, in the diffraction spectrum obtained by X-ray diffraction analysis, a point where a perpendicular line at 2θ = 24 ° and the diffraction spectrum intersect is defined as a. Similarly, let b be the point where the perpendicular at 2θ = 33 ° and the X-ray diffraction spectrum intersect. Here, a line segment ab is defined as a base line, and a point at which a perpendicular line at the diffraction peak (2θ = about 28.5 °) of the Si (111) plane intersects the base line is defined as c. Then, the diffraction peak intensity A of the Si (111) plane is obtained as the length of the line segment cd connecting the vertex d and the point c of the diffraction peak (2θ = about 28.5 °) of the Si (111) plane. be able to.
同様に、2θ=37~45°の範囲における遷移金属のケイ化物の回折ピーク強度Bは、以下のようにして求めることができる。以下では、遷移金属のケイ化物がTiSi2である場合を例に挙げて説明する。
Similarly, the diffraction peak intensity B of the transition metal silicide in the range of 2θ = 37 to 45 ° can be obtained as follows. Hereinafter, the case where the silicide of the transition metal is TiSi 2 will be described as an example.
まず、X線回折分析により得られた回折スペクトルにおいて、2θ=37°における垂線と回折スペクトルとが交わる点をeとする。同様に、2θ=45°における垂線とX線路回折スペクトルとが交わる点をfとする。ここで、線分efをベースラインとし、TiSi2の回折ピーク(2θ=約39°)における垂線と当該ベースラインとが交わる点をgとする。そして、TiSi2の回折ピーク(2θ=約39°)の頂点hと点gとを結ぶ線分ghの長さとして、TiSi2の回折ピーク強度Bを求めることができる。
First, in the diffraction spectrum obtained by X-ray diffraction analysis, let e be the point where the perpendicular and diffraction spectrum at 2θ = 37 ° intersect. Similarly, let f be the point where the perpendicular at 2θ = 45 ° and the X-ray diffraction spectrum intersect. Here, the line segment ef is the base line, and g is the point where the perpendicular line at the TiSi 2 diffraction peak (2θ = about 39 °) and the base line intersect. Then, the diffraction peak intensity B of TiSi 2 can be obtained as the length of the line segment gh connecting the vertex h of the diffraction peak of TiSi 2 (2θ = about 39 °) and the point g.
ここで、Siの(111)面の回折ピーク強度Aおよび遷移金属のケイ化物の回折ピーク強度Bそれぞれの具体的な値については特に制限はないが、Siの(111)面の回折ピーク強度Aは、好ましくは6000~25000(cps)であり、より好ましくは6000~15000である。また、遷移金属のケイ化物の回折ピーク強度Bは、好ましくは9000~46000(cps)であり、より好ましくは25000~46000(cps)である。AおよびBをこれらの範囲内の値に制御することによって、上述した回折ピークの強度比(B/A)を確実に達成しやすくなるという利点がある。
Here, specific values of the diffraction peak intensity A of the Si (111) plane and the diffraction peak intensity B of the transition metal silicide are not particularly limited, but the diffraction peak intensity A of the Si (111) plane is not particularly limited. Is preferably 6000 to 25000 (cps), more preferably 6000 to 15000. The diffraction peak intensity B of the transition metal silicide is preferably 9000 to 46000 (cps), more preferably 25000 to 46000 (cps). By controlling A and B to values within these ranges, there is an advantage that the above-described diffraction peak intensity ratio (B / A) can be easily achieved.
本実施形態における負極活物質を構成するケイ素含有合金の粒子径は特に制限されないが、平均粒子径として、好ましくは0.1~20μmであり、より好ましくは0.2~10μmである。
The particle diameter of the silicon-containing alloy constituting the negative electrode active material in the present embodiment is not particularly limited, but the average particle diameter is preferably 0.1 to 20 μm, more preferably 0.2 to 10 μm.
(負極活物質の製造方法)
本実施形態に係る負極活物質(Si含有合金)の製造方法について特に制限はなく、従来公知の知見が適宜参照されうるが、本願では、X線回折分析による回折ピークの強度比B/Aの値を上述したような範囲内のものとするための製造方法の一例として、以下のような工程を有する製造方法が提供される。 (Method for producing negative electrode active material)
There is no particular limitation on the method for producing the negative electrode active material (Si-containing alloy) according to this embodiment, and conventionally known knowledge can be referred to as appropriate, but in this application, the intensity ratio B / A of the diffraction peak by X-ray diffraction analysis is As an example of a manufacturing method for setting the value within the above-described range, a manufacturing method having the following steps is provided.
本実施形態に係る負極活物質(Si含有合金)の製造方法について特に制限はなく、従来公知の知見が適宜参照されうるが、本願では、X線回折分析による回折ピークの強度比B/Aの値を上述したような範囲内のものとするための製造方法の一例として、以下のような工程を有する製造方法が提供される。 (Method for producing negative electrode active material)
There is no particular limitation on the method for producing the negative electrode active material (Si-containing alloy) according to this embodiment, and conventionally known knowledge can be referred to as appropriate, but in this application, the intensity ratio B / A of the diffraction peak by X-ray diffraction analysis is As an example of a manufacturing method for setting the value within the above-described range, a manufacturing method having the following steps is provided.
まず、ケイ素含有合金の原料を混合して混合粉末を得る工程を行う。この工程では、得られる負極活物質(ケイ素含有合金)の組成を考慮して、当該合金の原料を混合する。当該合金の原料としては、負極活物質として必要な元素の比率を実現できれば、その形態などは特に限定されない。例えば、負極活物質を構成する元素単体を、目的とする比率に混合したものや、目的とする元素比率を有する合金、固溶体、または金属間化合物を用いることができる。また、通常は粉末状態の原料を混合する。これにより、原料からなる混合粉末が得られる。なお、原料中のケイ素(Si)とチタン(Ti)との組成比を調節することにより、上記回折ピークの強度比(B/A)を制御可能である。例えば、Siに対するTiの組成比を大きくすると、強度比(B/A)を大きくすることができる。
First, a process for obtaining a mixed powder by mixing raw materials of a silicon-containing alloy is performed. In this step, in consideration of the composition of the obtained negative electrode active material (silicon-containing alloy), raw materials for the alloy are mixed. The raw material of the alloy is not particularly limited as long as the ratio of elements necessary as the negative electrode active material can be realized. For example, it is possible to use a single element constituting the negative electrode active material mixed in a target ratio, an alloy having a target element ratio, a solid solution, or an intermetallic compound. Usually, raw materials in a powder state are mixed. Thereby, the mixed powder which consists of a raw material is obtained. The intensity ratio (B / A) of the diffraction peak can be controlled by adjusting the composition ratio between silicon (Si) and titanium (Ti) in the raw material. For example, when the composition ratio of Ti to Si is increased, the strength ratio (B / A) can be increased.
続いて、上記で得られた混合粉末に対して合金化処理を行う。これにより、電気デバイス用負極活物質として用いることが可能なケイ素含有合金が得られる。
Subsequently, an alloying process is performed on the mixed powder obtained above. Thereby, the silicon-containing alloy which can be used as a negative electrode active material for electric devices is obtained.
合金化処理の手法としては、固相法、液相法、気相法があるが、例えば、メカニカルアロイ法やアークプラズマ溶融法、鋳造法、ガスアトマイズ法、液体急冷法、イオンビームスパッタリング法、真空蒸着法、メッキ法、気相化学反応法などが挙げられる。なかでも、メカニカルアロイ法を用いて合金化処理を行うことが好ましい。メカニカルアロイ法により合金化処理を行うことで、相の状態の制御を容易に行うことができるため、好ましい。また、合金化処理を行う前に、原材料を溶融する工程や前記溶融した溶融物を急冷して凝固させる工程が含まれてもよい。
Examples of alloying methods include a solid phase method, a liquid phase method, and a gas phase method. For example, a mechanical alloy method, an arc plasma melting method, a casting method, a gas atomizing method, a liquid quenching method, an ion beam sputtering method, a vacuum method, and the like. Examples include vapor deposition, plating, and gas phase chemical reaction. Especially, it is preferable to perform an alloying process using a mechanical alloy method. It is preferable to perform the alloying process by the mechanical alloy method because the phase state can be easily controlled. Further, before the alloying treatment, a step of melting the raw material and a step of rapidly cooling and solidifying the molten material may be included.
本形態に係る製造方法では、上述した合金化処理を行う。これにより、上述したような母相/シリサイド相からなる構造とすることができる。特に、合金化処理の時間が24時間以上であれば、所望のサイクル耐久性を発揮させうる負極活物質(Si含有合金)を得ることができる。なお、合金化処理の時間は、好ましくは30時間以上であり、より好ましくは36時間以上であり、さらに好ましくは42時間以上であり、特に好ましくは48時間以上である。このように、合金化処理に要する時間を長くすることによっても、回折ピークの強度比(B/A)を大きくすることができる。なお、合金化処理のための時間の上限値は特に設定されないが、通常は72時間以下であればよい。
In the manufacturing method according to this embodiment, the alloying process described above is performed. Thereby, it can be set as the structure which consists of a mother phase / silicide phase as mentioned above. In particular, when the alloying time is 24 hours or longer, a negative electrode active material (Si-containing alloy) capable of exhibiting desired cycle durability can be obtained. The alloying treatment time is preferably 30 hours or more, more preferably 36 hours or more, still more preferably 42 hours or more, and particularly preferably 48 hours or more. As described above, the diffraction peak intensity ratio (B / A) can also be increased by increasing the time required for the alloying treatment. In addition, although the upper limit of the time for alloying process is not set in particular, it may usually be 72 hours or less.
上述した手法による合金化処理は、通常乾式雰囲気下で行われるが、合金化処理後の粒度分布は大小の幅が非常に大きい場合がある。このため、粒度を整えるための粉砕処理および/または分級処理を行うことが好ましい。
The alloying treatment by the method described above is usually performed in a dry atmosphere, but the particle size distribution after the alloying treatment may be very large or small. For this reason, it is preferable to perform the grinding | pulverization process and / or classification process for adjusting a particle size.
以上、負極活物質層に必須に含まれる所定の合金について説明したが、負極活物質層はその他の負極活物質を含んでいてもよい。上記所定の合金以外の負極活物質としては、天然黒鉛、人造黒鉛、カーボンブラック、活性炭、カーボンファイバー、コークス、ソフトカーボン、もしくはハードカーボンなどのカーボン、SiやSnなどの純金属や上記所定の組成比を外れる合金系活物質、あるいはTiO、Ti2O3、TiO2、もしくはSiO2、SiO、SnO2などの金属酸化物、Li4/3Ti5/3O4もしくはLi7MnNなどのリチウムと遷移金属との複合酸化物(複合窒化物)、Li-Pb系合金、Li-Al系合金、Liなどが挙げられる。ただし、上記所定の合金を負極活物質として用いることにより奏される作用効果を十分に発揮させるという観点からは、負極活物質の全量100質量%に占める上記所定の合金の含有量は、好ましくは50~100質量%であり、より好ましくは80~100質量%であり、さらに好ましくは90~100質量%であり、特に好ましくは95~100質量%であり、最も好ましくは100質量%である。
As described above, the predetermined alloy included in the negative electrode active material layer has been described, but the negative electrode active material layer may contain other negative electrode active materials. Examples of the negative electrode active material other than the predetermined alloy include natural graphite, artificial graphite, carbon black, activated carbon, carbon fiber, coke, soft carbon, carbon such as hard carbon, pure metal such as Si and Sn, and the predetermined composition. Alloy-based active material out of ratio, or metal oxide such as TiO, Ti 2 O 3 , TiO 2 , SiO 2 , SiO, SnO 2 , lithium such as Li 4/3 Ti 5/3 O 4 or Li 7 MnN And transition metal complex oxides (composite nitrides), Li—Pb alloys, Li—Al alloys, Li, and the like. However, from the viewpoint of sufficiently exerting the effects exhibited by using the predetermined alloy as the negative electrode active material, the content of the predetermined alloy in the total amount of 100% by mass of the negative electrode active material is preferably It is 50 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, particularly preferably 95 to 100% by mass, and most preferably 100% by mass.
負極活物質層は、下記式(1)で表される負極活物質を含有する。
The negative electrode active material layer contains a negative electrode active material represented by the following formula (1).
式(1)において、αは負極活物質層における各成分の重量%を表し、40<α≦98である。
In the formula (1), α represents the weight percent of each component in the negative electrode active material layer, and 40 <α ≦ 98.
式(1)から明らかなように、負極活物質層におけるSi含有合金からなる負極活物質の含有量は40質量%超98質量%以下である。
As is clear from the formula (1), the content of the negative electrode active material made of the Si-containing alloy in the negative electrode active material layer is more than 40 mass% and 98 mass% or less.
本実施形態において、負極活物質層は上述した負極活物質のほか、バインダおよび導電助剤を含むことが好ましい。また、必要に応じて、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。これらの具体的な種類や負極活物質層における好ましい含有量については、正極活物質層の説明の欄において上述した形態が同様に採用されうるため、ここでは詳細な説明を省略する。
In the present embodiment, the negative electrode active material layer preferably contains a binder and a conductive additive in addition to the negative electrode active material described above. Further, if necessary, it further contains other additives such as an electrolyte (polymer matrix, ion conductive polymer, electrolytic solution, etc.) and a lithium salt for increasing the ion conductivity. About these specific types and preferable contents in the negative electrode active material layer, the above-described embodiments in the column of the description of the positive electrode active material layer can be similarly adopted, and thus detailed description thereof is omitted here.
各活物質層(集電体片面の活物質層)の厚さについて特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さは、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性を考慮し、通常1~500μm程度、好ましくは2~100μmである。
The thickness of each active material layer (active material layer on one side of the current collector) is not particularly limited, and conventionally known knowledge about the battery can be appropriately referred to. As an example, the thickness of each active material layer is usually about 1 to 500 μm, preferably 2 to 100 μm, taking into consideration the intended use of the battery (emphasis on output, energy, etc.) and ion conductivity.
<集電体>
集電体(11、12)は導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。 <Current collector>
The current collectors (11, 12) are made of a conductive material. The size of the current collector is determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used.
集電体(11、12)は導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。 <Current collector>
The current collectors (11, 12) are made of a conductive material. The size of the current collector is determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used.
集電体の厚さについても特に制限はない。集電体の厚さは、通常は1~100μm程度である。
There is no particular limitation on the thickness of the current collector. The thickness of the current collector is usually about 1 to 100 μm.
集電体の形状についても特に制限されない。図1に示す積層型電池10では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができる。
The shape of the current collector is not particularly limited. In the laminated battery 10 shown in FIG. 1, in addition to the current collector foil, a mesh shape (such as an expanded grid) can be used.
なお、負極活物質をスパッタ法等により薄膜合金を負極集電体12上に直接形成する場合には、集電箔を用いることが好ましい。
In the case where the negative electrode active material is formed directly on the negative electrode current collector 12 by sputtering or the like, it is preferable to use a current collector foil.
集電体を構成する材料に特に制限はない。例えば、金属や、導電性高分子材料または非導電性高分子材料に導電性フィラーが添加された樹脂が採用されうる。
There are no particular restrictions on the materials that make up the current collector. For example, a metal or a resin in which a conductive filler is added to a conductive polymer material or a non-conductive polymer material can be employed.
具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位、集電体へのスパッタリングによる負極活物質の密着性等の観点からは、アルミニウム、ステンレス、銅、ニッケルが好ましい。
Specifically, examples of the metal include aluminum, nickel, iron, stainless steel, titanium, and copper. In addition to these, a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals can be preferably used. Moreover, the foil by which aluminum is coat | covered on the metal surface may be sufficient. Of these, aluminum, stainless steel, copper, and nickel are preferable from the viewpoints of electronic conductivity, battery operating potential, and adhesion of the negative electrode active material by sputtering to the current collector.
また、導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、およびポリオキサジアゾールなどが挙げられる。かような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化または集電体の軽量化の点において有利である。
Also, examples of the conductive polymer material include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. Since such a conductive polymer material has sufficient conductivity without adding a conductive filler, it is advantageous in terms of facilitating the manufacturing process or reducing the weight of the current collector.
非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、またはポリスチレン(PS)などが挙げられる。かような非導電性高分子材料は、優れた耐電位性または耐溶媒性を有しうる。
Non-conductive polymer materials include, for example, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA) , Polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), or polystyrene (PS). Such a non-conductive polymer material may have excellent potential resistance or solvent resistance.
上記の導電性高分子材料または非導電性高分子材料には、必要に応じて導電性フィラーが添加されうる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために必然的に導電性フィラーが必須となる。
A conductive filler may be added to the conductive polymer material or the non-conductive polymer material as necessary. In particular, when the resin used as the base material of the current collector is made of only a non-conductive polymer, a conductive filler is inevitably necessary to impart conductivity to the resin.
導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性、またはリチウムイオン遮断性に優れた材料として、金属および導電性カーボンなどが挙げられる。金属としては、特に制限はないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、Sb、およびKからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に制限はない。好ましくは、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバー、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群より選択される少なくとも1種を含むものである。
The conductive filler can be used without particular limitation as long as it has a conductivity. For example, metals, conductive carbon, etc. are mentioned as a material excellent in electroconductivity, electric potential resistance, or lithium ion barrier | blocking property. The metal is not particularly limited, but at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, Sb, and K, or these metals It is preferable to contain an alloy or metal oxide containing. Moreover, there is no restriction | limiting in particular as electroconductive carbon. Preferably, it includes at least one selected from the group consisting of acetylene black, vulcan, black pearl, carbon nanofiber, ketjen black, carbon nanotube, carbon nanohorn, carbon nanoballoon, and fullerene.
導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には、5~35重量%程度である。
The amount of the conductive filler added is not particularly limited as long as it is an amount capable of imparting sufficient conductivity to the current collector, and is generally about 5 to 35% by weight.
<セパレータ(電解質層)>
セパレータは、電解質を保持して正極と負極との間のリチウムイオン伝導性を確保する機能、および正極と負極との間の隔壁としての機能を有する。 <Separator (electrolyte layer)>
The separator has a function of holding an electrolyte and ensuring lithium ion conductivity between the positive electrode and the negative electrode, and a function as a partition wall between the positive electrode and the negative electrode.
セパレータは、電解質を保持して正極と負極との間のリチウムイオン伝導性を確保する機能、および正極と負極との間の隔壁としての機能を有する。 <Separator (electrolyte layer)>
The separator has a function of holding an electrolyte and ensuring lithium ion conductivity between the positive electrode and the negative electrode, and a function as a partition wall between the positive electrode and the negative electrode.
セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。
Examples of the form of the separator include a separator made of a porous sheet made of a polymer or fiber that absorbs and holds the electrolyte and a nonwoven fabric separator.
ポリマーないし繊維からなる多孔性シートのセパレータとしては、例えば、微多孔質(微多孔膜)を用いることができる。該ポリマーないし繊維からなる多孔性シートの具体的な形態としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;これらを複数積層した積層体(例えば、PP/PE/PPの3層構造をした積層体など)、ポリイミド、アラミド、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HFP)等の炭化水素系樹脂、ガラス繊維などからなる微多孔質(微多孔膜)セパレータが挙げられる。
As the separator of the porous sheet made of polymer or fiber, for example, a microporous (microporous film) can be used. Specific examples of the porous sheet made of the polymer or fiber include polyolefins such as polyethylene (PE) and polypropylene (PP); a laminate in which a plurality of these are laminated (for example, three layers of PP / PE / PP) And a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
微多孔質(微多孔膜)セパレータの厚みとして、使用用途により異なることから一義的に規定することはできない。1例を示せば、電気自動車(EV)やハイブリッド電気自動車(HEV)、燃料電池自動車(FCV)などのモータ駆動用二次電池などの用途においては、単層あるいは多層で4~60μmであることが望ましい。前記微多孔質(微多孔膜)セパレータの微細孔径は、最大で1μm以下(通常、数十nm程度の孔径である)であることが望ましい。
The thickness of the microporous (microporous membrane) separator cannot be uniquely defined because it varies depending on the intended use. For example, in applications such as secondary batteries for driving motors such as electric vehicles (EV), hybrid electric vehicles (HEV), and fuel cell vehicles (FCV), it is 4 to 60 μm in a single layer or multiple layers. Is desirable. The fine pore diameter of the microporous (microporous membrane) separator is desirably 1 μm or less (usually a pore diameter of about several tens of nm).
不織布セパレータとしては、綿、レーヨン、アセテート、ナイロン、ポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなど従来公知のものを、単独または混合して用いる。また、不織布のかさ密度は、含浸させた高分子ゲル電解質により十分な電池特性が得られるものであればよく、特に制限されるべきものではない。さらに、不織布セパレータの厚さは、電解質層と同じであればよく、好ましくは5~200μmであり、特に好ましくは10~100μmである。
As the nonwoven fabric separator, cotton, rayon, acetate, nylon, polyester; polyolefins such as PP and PE; conventionally known ones such as polyimide and aramid are used alone or in combination. The bulk density of the nonwoven fabric is not particularly limited as long as sufficient battery characteristics can be obtained by the impregnated polymer gel electrolyte. Furthermore, the thickness of the nonwoven fabric separator may be the same as that of the electrolyte layer, and is preferably 5 to 200 μm, particularly preferably 10 to 100 μm.
また、上述したように、セパレータは、電解質を含む。電解質としては、かような機能を発揮できるものであれば特に制限されないが、液体電解質またはゲルポリマー電解質が用いられる。ゲルポリマー電解質を用いることにより、電極間距離の安定化が図られ、分極の発生が抑制され、耐久性(サイクル特性)が向上する。
Also, as described above, the separator includes an electrolyte. The electrolyte is not particularly limited as long as it can exhibit such a function, but a liquid electrolyte or a gel polymer electrolyte is used. By using the gel polymer electrolyte, the distance between the electrodes is stabilized, the occurrence of polarization is suppressed, and the durability (cycle characteristics) is improved.
液体電解質は、リチウムイオンのキャリヤーとしての機能を有する。電解液層を構成する液体電解質は、可塑剤である有機溶媒に支持塩であるリチウム塩が溶解した形態を有する。用いられる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート等のカーボネート類が例示される。また、リチウム塩としては、Li(CF3SO2)2N、Li(C2F5SO2)2N、LiPF6、LiBF4、LiClO4、LiAsF6、LiTaF6、LiCF3SO3等の電極の活物質層に添加されうる化合物が同様に採用されうる。液体電解質は、上述した成分以外の添加剤をさらに含んでもよい。かような化合物の具体例としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、エチルビニレンカーボネート、ジエチルビニレンカーボネート、ビニルエチレンカーボネート、1,2-ジビニルエチレンカーボネート、1-メチル-1-ビニルエチレンカーボネート、1-メチル-2-ビニルエチレンカーボネート、1-エチル-1-ビニルエチレンカーボネート、1-エチル-2-ビニルエチレンカーボネート、ビニルビニレンカーボネート、アリルエチレンカーボネート、ビニルオキシメチルエチレンカーボネート、アリルオキシメチルエチレンカーボネート、アクリルオキシメチルエチレンカーボネート、メタクリルオキシメチルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、エチニルオキシメチルエチレンカーボネート、プロパルギルオキシエチレンカーボネート、メチレンエチレンカーボネート、1,1-ジメチル-2-メチレンエチレンカーボネートなどが挙げられる。なかでも、ビニレンカーボネート、メチルビニレンカーボネート、ビニルエチレンカーボネートが好ましく、ビニレンカーボネート、ビニルエチレンカーボネートがより好ましい。これらの環式炭酸エステルは、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
The liquid electrolyte functions as a lithium ion carrier. The liquid electrolyte constituting the electrolytic solution layer has a form in which a lithium salt as a supporting salt is dissolved in an organic solvent as a plasticizer. Examples of the organic solvent used include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate. As the lithium salt, Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF such 6, LiCF 3 SO 3 A compound that can be added to the active material layer of the electrode can be similarly employed. The liquid electrolyte may further contain additives other than the components described above. Specific examples of such compounds include, for example, vinylene carbonate, methyl vinylene carbonate, dimethyl vinylene carbonate, phenyl vinylene carbonate, diphenyl vinylene carbonate, ethyl vinylene carbonate, diethyl vinylene carbonate, vinyl ethylene carbonate, 1,2-divinyl ethylene carbonate. 1-methyl-1-vinylethylene carbonate, 1-methyl-2-vinylethylene carbonate, 1-ethyl-1-vinylethylene carbonate, 1-ethyl-2-vinylethylene carbonate, vinyl vinylene carbonate, allyl ethylene carbonate, vinyl Oxymethyl ethylene carbonate, allyloxymethyl ethylene carbonate, acryloxymethyl ethylene carbonate, methacrylate Oxy methylethylene carbonate, ethynyl ethylene carbonate, propargyl carbonate, ethynyloxy methylethylene carbonate, propargyloxy ethylene carbonate, methylene carbonate, etc. 1,1-dimethyl-2-methylene-ethylene carbonate. Among these, vinylene carbonate, methyl vinylene carbonate, and vinyl ethylene carbonate are preferable, and vinylene carbonate and vinyl ethylene carbonate are more preferable. These cyclic carbonates may be used alone or in combination of two or more.
ゲルポリマー電解質は、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記の液体電解質が注入されてなる構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導性を遮断することで容易になる点で優れている。マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HEP)、ポリ(メチルメタクリレート(PMMA)およびこれらの共重合体等が挙げられる。
The gel polymer electrolyte has a configuration in which the above liquid electrolyte is injected into a matrix polymer (host polymer) made of an ion conductive polymer. The use of a gel polymer electrolyte as the electrolyte is superior in that the fluidity of the electrolyte is lost and the ion conductivity between the layers is easily cut off. Examples of the ion conductive polymer used as the matrix polymer (host polymer) include polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene glycol (PEG), polyacrylonitrile (PAN), polyvinylidene fluoride-hexafluoropropylene ( PVdF-HEP), poly (methyl methacrylate (PMMA), and copolymers thereof.
ゲル電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
The matrix polymer of gel electrolyte can express excellent mechanical strength by forming a crosslinked structure. In order to form a crosslinked structure, thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte using an appropriate polymerization initiator. A polymerization treatment may be performed.
また、セパレータとしては多孔質基体に耐熱絶縁層が積層されたセパレータ(耐熱絶縁層付セパレータ)であることが好ましい。耐熱絶縁層は、無機粒子およびバインダを含むセラミック層である。耐熱絶縁層付セパレータは融点または熱軟化点が150℃以上、好ましくは200℃以上である耐熱性の高いものを用いる。耐熱絶縁層を有することによって、温度上昇の際に増大するセパレータの内部応力が緩和されるため熱収縮抑制効果が得られうる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。また、耐熱絶縁層を有することによって、耐熱絶縁層付セパレータの機械的強度が向上し、セパレータの破膜が起こりにくい。さらに、熱収縮抑制効果および機械的強度の高さから、電池の製造工程でセパレータがカールしにくくなる。
Further, the separator is preferably a separator in which a heat-resistant insulating layer is laminated on a porous substrate (a separator with a heat-resistant insulating layer). The heat resistant insulating layer is a ceramic layer containing inorganic particles and a binder. As the separator with a heat-resistant insulating layer, a highly heat-resistant separator having a melting point or a heat softening point of 150 ° C. or higher, preferably 200 ° C. or higher is used. By having the heat-resistant insulating layer, the internal stress of the separator that increases when the temperature rises is relieved, so that the effect of suppressing thermal shrinkage can be obtained. As a result, it is possible to prevent the induction of a short circuit between the electrodes of the battery, so that the battery configuration is unlikely to deteriorate in performance due to a temperature rise. Moreover, by having a heat-resistant insulating layer, the mechanical strength of the separator with a heat-resistant insulating layer is improved, and it is difficult for the separator to break. Furthermore, the separator is less likely to curl in the battery manufacturing process due to the effect of suppressing thermal shrinkage and high mechanical strength.
耐熱絶縁層における無機粒子は、耐熱絶縁層の機械的強度や熱収縮抑制効果に寄与する。無機粒子として使用される材料は特に制限されない。例えば、ケイ素、アルミニウム、ジルコニウム、チタンの酸化物(SiO2、Al2O3、ZrO2、TiO2)、水酸化物、および窒化物、ならびにこれらの複合体が挙げられる。これらの無機粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来のものであってもよいし、人工的に製造されたものであってもよい。また、これらの無機粒子は1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。これらのうち、コストの観点から、シリカ(SiO2)またはアルミナ(Al2O3)を用いることが好ましく、アルミナ(Al2O3)を用いることがより好ましい。
The inorganic particles in the heat resistant insulating layer contribute to the mechanical strength and heat shrinkage suppressing effect of the heat resistant insulating layer. The material used as the inorganic particles is not particularly limited. Examples thereof include silicon, aluminum, zirconium, titanium oxides (SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 ), hydroxides and nitrides, and composites thereof. These inorganic particles may be derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine and mica, or may be artificially produced. Moreover, only 1 type may be used individually for these inorganic particles, and 2 or more types may be used together. Of these, silica (SiO 2 ) or alumina (Al 2 O 3 ) is preferably used, and alumina (Al 2 O 3 ) is more preferably used from the viewpoint of cost.
耐熱性粒子の目付けは、特に限定されるものではないが、5~15g/m2であることが好ましい。この範囲であれば、十分なイオン伝導性が得られ、また、耐熱強度を維持する点で好ましい。
The basis weight of the heat-resistant particles is not particularly limited, but is preferably 5 to 15 g / m 2 . If it is this range, sufficient ion conductivity will be acquired and it is preferable at the point which maintains heat resistant strength.
耐熱絶縁層におけるバインダは、無機粒子どうしや、無機粒子と樹脂多孔質基体層とを接着させる役割を有する。当該バインダによって、耐熱絶縁層が安定に形成され、また多孔質基体層および耐熱絶縁層の間の剥離を防止される。
The binder in the heat-resistant insulating layer has a role of adhering the inorganic particles and the inorganic particles to the resin porous substrate layer. By the binder, the heat resistant insulating layer is stably formed, and peeling between the porous substrate layer and the heat resistant insulating layer is prevented.
耐熱絶縁層に使用されるバインダは、特に制限はなく、例えば、カルボキシメチルセルロース(CMC)、ポリアクリロニトリル、セルロース、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン-ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、アクリル酸メチルなどの化合物がバインダとして用いられうる。このうち、カルボキシメチルセルロース(CMC)、アクリル酸メチル、またはポリフッ化ビニリデン(PVDF)を用いることが好ましい。これらの化合物は、1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。
The binder used for the heat-resistant insulating layer is not particularly limited. For example, carboxymethyl cellulose (CMC), polyacrylonitrile, cellulose, ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene-butadiene rubber (SBR), isoprene rubber A compound such as butadiene rubber, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), or methyl acrylate can be used as the binder. Of these, carboxymethylcellulose (CMC), methyl acrylate, or polyvinylidene fluoride (PVDF) is preferably used. As for these compounds, only 1 type may be used independently and 2 or more types may be used together.
耐熱絶縁層におけるバインダの含有量は、耐熱絶縁層100重量%に対して、2~20重量%であることが好ましい。バインダの含有量が2重量%以上であると、耐熱絶縁層と多孔質基体層との間の剥離強度を高めることができ、セパレータの耐振動性を向上させることができる。一方、バインダの含有量が20重量%以下であると、無機粒子の隙間が適度に保たれるため、十分なリチウムイオン伝導性を確保することができる。
The binder content in the heat-resistant insulating layer is preferably 2 to 20% by weight with respect to 100% by weight of the heat-resistant insulating layer. When the binder content is 2% by weight or more, the peel strength between the heat-resistant insulating layer and the porous substrate layer can be increased, and the vibration resistance of the separator can be improved. On the other hand, when the binder content is 20% by weight or less, the gap between the inorganic particles is appropriately maintained, so that sufficient lithium ion conductivity can be ensured.
耐熱絶縁層付セパレータの熱収縮率は、150℃、2gf/cm2条件下、1時間保持後にMD、TDともに10%以下であることが好ましい。このような耐熱性の高い材質を用いることで、正極発熱量が高くなり電池内部温度が150℃に達してもセパレータの収縮を有効に防止することができる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。
The thermal contraction rate of the separator with a heat-resistant insulating layer is preferably 10% or less for both MD and TD after holding for 1 hour at 150 ° C. and 2 gf / cm 2 . By using such a material having high heat resistance, it is possible to effectively prevent the separator from contracting even if the positive electrode heat generation amount increases and the battery internal temperature reaches 150 ° C. As a result, it is possible to prevent the induction of a short circuit between the electrodes of the battery, so that the battery configuration is unlikely to deteriorate in performance due to a temperature rise.
<集電板(タブ)>
リチウムイオン二次電池においては、電池外部に電流を取り出す目的で、集電体に電気的に接続された集電板(タブ)が外装材であるラミネートフィルムの外部に取り出されている。 <Current collector plate (tab)>
In a lithium ion secondary battery, a current collector plate (tab) electrically connected to a current collector is taken out of a laminate film as an exterior material for the purpose of taking out current outside the battery.
リチウムイオン二次電池においては、電池外部に電流を取り出す目的で、集電体に電気的に接続された集電板(タブ)が外装材であるラミネートフィルムの外部に取り出されている。 <Current collector plate (tab)>
In a lithium ion secondary battery, a current collector plate (tab) electrically connected to a current collector is taken out of a laminate film as an exterior material for the purpose of taking out current outside the battery.
集電板を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板(正極タブ)と負極集電板(負極タブ)とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
The material constituting the current collector plate is not particularly limited, and a known highly conductive material conventionally used as a current collector plate for a lithium ion secondary battery can be used. As a constituent material of the current collector plate, for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable. Note that the same material may be used for the positive electrode current collector plate (positive electrode tab) and the negative electrode current collector plate (negative electrode tab), or different materials may be used.
また、図2に示すタブ58、59の取り出しに関しても、特に制限されるものではない。正極タブ58と負極タブ59とを同じ辺から引き出すようにしてもよいし、正極タブ58と負極タブ59をそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、図2に示すものに制限されるものではない。また、巻回型のリチウムイオン電池では、タブに変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。
Also, the tabs 58 and 59 shown in FIG. 2 are not particularly limited. The positive electrode tab 58 and the negative electrode tab 59 may be drawn out from the same side, or the positive electrode tab 58 and the negative electrode tab 59 may be divided into a plurality of parts and taken out from each side, as shown in FIG. It is not limited to. Further, in a wound type lithium ion battery, instead of a tab, for example, a terminal may be formed using a cylindrical can (metal can).
<シール部>
シール部は、直列積層型電池に特有の部材であり、電解質層の漏れを防止する機能を有する。このほかにも、電池内で隣り合う集電体同士が接触したり、積層電極の端部の僅かな不ぞろいなどによる短絡が起こったりするのを防止することもできる。 <Seal part>
The seal portion is a member unique to the serially stacked battery and has a function of preventing leakage of the electrolyte layer. In addition to this, it is possible to prevent current collectors adjacent in the battery from coming into contact with each other and a short circuit due to a slight unevenness at the end of the laminated electrode.
シール部は、直列積層型電池に特有の部材であり、電解質層の漏れを防止する機能を有する。このほかにも、電池内で隣り合う集電体同士が接触したり、積層電極の端部の僅かな不ぞろいなどによる短絡が起こったりするのを防止することもできる。 <Seal part>
The seal portion is a member unique to the serially stacked battery and has a function of preventing leakage of the electrolyte layer. In addition to this, it is possible to prevent current collectors adjacent in the battery from coming into contact with each other and a short circuit due to a slight unevenness at the end of the laminated electrode.
シール部の構成材料としては、特に制限されないが、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、エポキシ樹脂、ゴム、ポリイミド等が用いられうる。これらのうち、耐蝕性、耐薬品性、製膜性、経済性などの観点からは、ポリオレフィン樹脂を用いることが好ましい。
The constituent material of the seal part is not particularly limited, but polyolefin resin such as polyethylene and polypropylene, epoxy resin, rubber, polyimide and the like can be used. Among these, it is preferable to use a polyolefin resin from the viewpoints of corrosion resistance, chemical resistance, film-forming property, economy, and the like.
<正極端子リードおよび負極端子リード>
負極および正極端子リードの材料は、公知の積層型二次電池で用いられるリードを用いることができる。なお、電池外装材から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆するのが好ましい。 <Positive terminal lead and negative terminal lead>
As a material for the negative electrode and the positive electrode terminal lead, a lead used in a known laminated secondary battery can be used. In addition, the parts removed from the battery exterior material should be heat-insulating so that they do not affect products (for example, automobile parts, especially electronic devices) by touching peripheral devices or wiring and causing leakage. It is preferable to coat with a heat shrinkable tube or the like.
負極および正極端子リードの材料は、公知の積層型二次電池で用いられるリードを用いることができる。なお、電池外装材から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆するのが好ましい。 <Positive terminal lead and negative terminal lead>
As a material for the negative electrode and the positive electrode terminal lead, a lead used in a known laminated secondary battery can be used. In addition, the parts removed from the battery exterior material should be heat-insulating so that they do not affect products (for example, automobile parts, especially electronic devices) by touching peripheral devices or wiring and causing leakage. It is preferable to coat with a heat shrinkable tube or the like.
<外装材;ラミネートフィルム>
外装材としては、従来公知の金属缶ケースを用いることができる。そのほか、図1に示すようなラミネートフィルム22を外装材として用いて、発電要素17をパックしてもよい。ラミネートフィルムは、例えば、ポリプロピレン、アルミニウム、ナイロンがこの順に積層されてなる3層構造として構成されうる。このようなラミネートフィルムを用いることにより、外装材の開封、容量回復材の添加、外装材の再封止を容易に行うことができる。 <Exterior material; Laminate film>
A conventionally known metal can case can be used as the exterior material. In addition, thepower generation element 17 may be packed using a laminate film 22 as shown in FIG. The laminate film can be configured as a three-layer structure in which, for example, polypropylene, aluminum, and nylon are laminated in this order. By using such a laminate film, it is possible to easily open the exterior material, add the capacity recovery material, and reseal the exterior material.
外装材としては、従来公知の金属缶ケースを用いることができる。そのほか、図1に示すようなラミネートフィルム22を外装材として用いて、発電要素17をパックしてもよい。ラミネートフィルムは、例えば、ポリプロピレン、アルミニウム、ナイロンがこの順に積層されてなる3層構造として構成されうる。このようなラミネートフィルムを用いることにより、外装材の開封、容量回復材の添加、外装材の再封止を容易に行うことができる。 <Exterior material; Laminate film>
A conventionally known metal can case can be used as the exterior material. In addition, the
<リチウムイオン二次電池の製造方法>
リチウムイオン二次電池の製造方法は特に制限されず、公知の方法により製造されうる。具体的には、(1)電極の作製、(2)単電池層の作製、(3)発電要素の作製、および(4)積層型電池の製造を含む。以下、リチウムイオン二次電池の製造方法について一例を挙げて説明するが、これに限定されるものではない。 <Method for producing lithium ion secondary battery>
The manufacturing method in particular of a lithium ion secondary battery is not restrict | limited, It can manufacture by a well-known method. Specifically, it includes (1) production of electrodes, (2) production of single cell layers, (3) production of power generation elements, and (4) production of stacked batteries. Hereinafter, although an example is given and demonstrated about the manufacturing method of a lithium ion secondary battery, it is not limited to this.
リチウムイオン二次電池の製造方法は特に制限されず、公知の方法により製造されうる。具体的には、(1)電極の作製、(2)単電池層の作製、(3)発電要素の作製、および(4)積層型電池の製造を含む。以下、リチウムイオン二次電池の製造方法について一例を挙げて説明するが、これに限定されるものではない。 <Method for producing lithium ion secondary battery>
The manufacturing method in particular of a lithium ion secondary battery is not restrict | limited, It can manufacture by a well-known method. Specifically, it includes (1) production of electrodes, (2) production of single cell layers, (3) production of power generation elements, and (4) production of stacked batteries. Hereinafter, although an example is given and demonstrated about the manufacturing method of a lithium ion secondary battery, it is not limited to this.
(1)電極(正極および負極)の作製
電極(正極または負極)は、例えば、活物質スラリー(正極活物質スラリーまたは負極活物質スラリー)を調製し、当該活物質スラリーを集電体上に塗布、乾燥し、次いでプレスすることにより作製されうる。前記活物質スラリーは、上述した活物質(正極活物質または負極活物質)、バインダ、導電助剤および溶媒を含む。 (1) Production of electrodes (positive electrode and negative electrode) The electrode (positive electrode or negative electrode) is prepared, for example, by preparing an active material slurry (positive electrode active material slurry or negative electrode active material slurry) and applying the active material slurry onto a current collector. It can be made by drying, then pressing. The active material slurry includes the above-described active material (positive electrode active material or negative electrode active material), a binder, a conductive additive, and a solvent.
電極(正極または負極)は、例えば、活物質スラリー(正極活物質スラリーまたは負極活物質スラリー)を調製し、当該活物質スラリーを集電体上に塗布、乾燥し、次いでプレスすることにより作製されうる。前記活物質スラリーは、上述した活物質(正極活物質または負極活物質)、バインダ、導電助剤および溶媒を含む。 (1) Production of electrodes (positive electrode and negative electrode) The electrode (positive electrode or negative electrode) is prepared, for example, by preparing an active material slurry (positive electrode active material slurry or negative electrode active material slurry) and applying the active material slurry onto a current collector. It can be made by drying, then pressing. The active material slurry includes the above-described active material (positive electrode active material or negative electrode active material), a binder, a conductive additive, and a solvent.
前記溶媒としては、特に制限されず、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミド、シクロヘキサン、ヘキサン、水等が用いられうる。
The solvent is not particularly limited, and N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylformamide, cyclohexane, hexane, water and the like can be used.
活物質スラリーの集電体への塗布方法としては、特に制限されず、スクリーン印刷法、スプレーコート法、静電スプレーコート法、インクジェット法、ドクターブレード法等が挙げられる。
The method for applying the active material slurry to the current collector is not particularly limited, and examples thereof include a screen printing method, a spray coating method, an electrostatic spray coating method, an ink jet method, and a doctor blade method.
集電体の表面に形成された塗膜の乾燥方法としては、特に制限されず、塗膜中の溶媒の少なくとも一部が除去されればよい。当該乾燥方法としては、加熱が挙げられる。乾燥条件(乾燥時間、乾燥温度など)は、適用する活物質スラリーに含有される溶媒の揮発速度、活物質スラリーの塗布量等に応じて適宜設定されうる。なお、溶媒は一部が残存していてもよい。残存した溶媒は、後述のプレス工程等で除去されうる。
The method for drying the coating film formed on the surface of the current collector is not particularly limited as long as at least a part of the solvent in the coating film is removed. An example of the drying method is heating. Drying conditions (drying time, drying temperature, etc.) can be appropriately set according to the volatilization rate of the solvent contained in the applied active material slurry, the coating amount of the active material slurry, and the like. A part of the solvent may remain. The remaining solvent can be removed by a press process described later.
プレス手段としては、特に限定されず、例えば、カレンダーロール、平板プレス等が用いられうる。
The pressing means is not particularly limited, and for example, a calendar roll, a flat plate press, or the like can be used.
(2)単電池層の作製
単電池層は、(1)で作製した電極(正極および負極)を、電解質層を介して積層させることにより作製されうる。 (2) Production of single cell layer The single cell layer can be produced by laminating the electrodes (positive electrode and negative electrode) produced in (1) via an electrolyte layer.
単電池層は、(1)で作製した電極(正極および負極)を、電解質層を介して積層させることにより作製されうる。 (2) Production of single cell layer The single cell layer can be produced by laminating the electrodes (positive electrode and negative electrode) produced in (1) via an electrolyte layer.
(3)発電要素の作製
発電要素は、単電池層の出力および容量、電池として必要とする出力および容量等を適宜考慮し、前記単電池層を積層して作製されうる。 (3) Production of power generation element The power generation element can be produced by laminating the single cell layers in consideration of the output and capacity of the single cell layer, the output and capacity required for the battery, and the like.
発電要素は、単電池層の出力および容量、電池として必要とする出力および容量等を適宜考慮し、前記単電池層を積層して作製されうる。 (3) Production of power generation element The power generation element can be produced by laminating the single cell layers in consideration of the output and capacity of the single cell layer, the output and capacity required for the battery, and the like.
(4)積層型電池の製造
電池の構成としては、角形、ペーパー型、積層型、円筒型、コイン型等、種々の形状を採用することができる。また構成部品の集電体や絶縁板等は特に限定されるものではなく、上記の形状に応じて選定すればよい。しかし、本実施形態では積層型電池が好ましい。積層型電池は、上記で得られた発電要素の集電体にリードを接合し、これらの正極リードまたは負極リードを、正極タブまたは負極タブに接合する。そして、正極タブおよび負極タブが電池外部に露出するように、発電要素をラミネートシート中に入れ、注液機により電解液を注液してから真空に封止することにより積層型電池が製造されうる。 (4) Manufacture of laminated battery As the structure of the battery, various shapes such as a rectangular shape, a paper shape, a laminated shape, a cylindrical shape, and a coin shape can be adopted. Further, the current collector and insulating plate of the component parts are not particularly limited, and may be selected according to the above shape. However, in the present embodiment, a stacked battery is preferable. In the stacked battery, a lead is joined to the current collector of the power generation element obtained above, and the positive electrode lead or the negative electrode lead is joined to the positive electrode tab or the negative electrode tab. A power generation element is placed in a laminate sheet so that the positive electrode tab and the negative electrode tab are exposed to the outside of the battery, and an electrolytic solution is injected with a liquid injector and then sealed in a vacuum to produce a stacked battery. sell.
電池の構成としては、角形、ペーパー型、積層型、円筒型、コイン型等、種々の形状を採用することができる。また構成部品の集電体や絶縁板等は特に限定されるものではなく、上記の形状に応じて選定すればよい。しかし、本実施形態では積層型電池が好ましい。積層型電池は、上記で得られた発電要素の集電体にリードを接合し、これらの正極リードまたは負極リードを、正極タブまたは負極タブに接合する。そして、正極タブおよび負極タブが電池外部に露出するように、発電要素をラミネートシート中に入れ、注液機により電解液を注液してから真空に封止することにより積層型電池が製造されうる。 (4) Manufacture of laminated battery As the structure of the battery, various shapes such as a rectangular shape, a paper shape, a laminated shape, a cylindrical shape, and a coin shape can be adopted. Further, the current collector and insulating plate of the component parts are not particularly limited, and may be selected according to the above shape. However, in the present embodiment, a stacked battery is preferable. In the stacked battery, a lead is joined to the current collector of the power generation element obtained above, and the positive electrode lead or the negative electrode lead is joined to the positive electrode tab or the negative electrode tab. A power generation element is placed in a laminate sheet so that the positive electrode tab and the negative electrode tab are exposed to the outside of the battery, and an electrolytic solution is injected with a liquid injector and then sealed in a vacuum to produce a stacked battery. sell.
(5)活性化処理など
さらに、本実施形態では、上記により得られた積層型電池の性能および耐久性を高める観点から、さらに、以下の条件で初充電処理、ガス除去処理および活性化処理を行うことが好ましい(実施例1参照)。この場合には、ガス除去処理ができるように、上記(4)の積層型電池の製造において、封止する際に、矩形形状にラミネートシート(外装材)の3辺を熱圧着により完全に封止(本封止)し、残る1辺は、熱圧着で仮封止しておく。残る1辺は、例えば、クリップ留め等により開閉自在にしてもよいが、量産化(生産効率)の観点からは、熱圧着で仮封止するのがよい。この場合には、圧着する温度、圧力を調整するだけでよいためである。熱圧着で仮封止した場合には、軽く力を加えることで開封でき、ガス抜き後、再度、熱圧着で仮封止してもよいし、最後的には熱圧着で完全に封止(本封止)すればよい。 (5) Activation treatment, etc. Further, in this embodiment, from the viewpoint of enhancing the performance and durability of the laminated battery obtained as described above, the initial charge treatment, gas removal treatment and activation treatment are further performed under the following conditions. Preferably it is done (see Example 1). In this case, the three sides of the laminate sheet (exterior material) are completely sealed in a rectangular shape by thermocompression when sealing in the production of the laminated battery of (4) so that the gas removal treatment can be performed. Stop (main sealing), and the remaining one side is temporarily sealed by thermocompression bonding. The remaining one side may be freely opened and closed by, for example, clip fastening, but from the viewpoint of mass production (production efficiency), it is preferable to temporarily seal the side by thermocompression bonding. In this case, it is only necessary to adjust the temperature and pressure for pressure bonding. When temporarily sealed by thermocompression, it can be opened by lightly applying force, and after degassing, it may be sealed again by thermocompression, or finally completely sealed by thermocompression ( Main sealing).
さらに、本実施形態では、上記により得られた積層型電池の性能および耐久性を高める観点から、さらに、以下の条件で初充電処理、ガス除去処理および活性化処理を行うことが好ましい(実施例1参照)。この場合には、ガス除去処理ができるように、上記(4)の積層型電池の製造において、封止する際に、矩形形状にラミネートシート(外装材)の3辺を熱圧着により完全に封止(本封止)し、残る1辺は、熱圧着で仮封止しておく。残る1辺は、例えば、クリップ留め等により開閉自在にしてもよいが、量産化(生産効率)の観点からは、熱圧着で仮封止するのがよい。この場合には、圧着する温度、圧力を調整するだけでよいためである。熱圧着で仮封止した場合には、軽く力を加えることで開封でき、ガス抜き後、再度、熱圧着で仮封止してもよいし、最後的には熱圧着で完全に封止(本封止)すればよい。 (5) Activation treatment, etc. Further, in this embodiment, from the viewpoint of enhancing the performance and durability of the laminated battery obtained as described above, the initial charge treatment, gas removal treatment and activation treatment are further performed under the following conditions. Preferably it is done (see Example 1). In this case, the three sides of the laminate sheet (exterior material) are completely sealed in a rectangular shape by thermocompression when sealing in the production of the laminated battery of (4) so that the gas removal treatment can be performed. Stop (main sealing), and the remaining one side is temporarily sealed by thermocompression bonding. The remaining one side may be freely opened and closed by, for example, clip fastening, but from the viewpoint of mass production (production efficiency), it is preferable to temporarily seal the side by thermocompression bonding. In this case, it is only necessary to adjust the temperature and pressure for pressure bonding. When temporarily sealed by thermocompression, it can be opened by lightly applying force, and after degassing, it may be sealed again by thermocompression, or finally completely sealed by thermocompression ( Main sealing).
(初充電処理)
電池のエージング処理は、以下のように実施することが好ましい。25℃にて、定電流充電法で0.05C、4時間の充電(SOC約20%)を行う。次いで、25℃にて0.1Cレートで4.45Vまで充電した後、充電を止め、その状態(SOC約70%)で約2日間(48時間)保持する。 (First charging process)
The battery aging treatment is preferably performed as follows. At 25 ° C., a constant current charging method is used for 0.05 C for 4 hours (SOC approximately 20%). Next, after charging to 4.45 V at a 0.1 C rate at 25 ° C., the charging is stopped, and the state (SOC is about 70%) is maintained for about 2 days (48 hours).
電池のエージング処理は、以下のように実施することが好ましい。25℃にて、定電流充電法で0.05C、4時間の充電(SOC約20%)を行う。次いで、25℃にて0.1Cレートで4.45Vまで充電した後、充電を止め、その状態(SOC約70%)で約2日間(48時間)保持する。 (First charging process)
The battery aging treatment is preferably performed as follows. At 25 ° C., a constant current charging method is used for 0.05 C for 4 hours (SOC approximately 20%). Next, after charging to 4.45 V at a 0.1 C rate at 25 ° C., the charging is stopped, and the state (SOC is about 70%) is maintained for about 2 days (48 hours).
(最初(1回目)のガス除去処理)
次に、最初(1回目)のガス除去処理として、以下の処理を行う。まず、熱圧着で仮封止した1辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行って仮封止を行う。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させる。 (First (first) gas removal process)
Next, the following process is performed as the first (first) gas removal process. First, one side temporarily sealed by thermocompression bonding is opened, gas is removed at 10 ± 3 hPa for 5 minutes, and then thermocompression bonding is performed again to perform temporary sealing. Further, pressurization with a roller (surface pressure 0.5 ± 0.1 MPa) is performed, and the electrode and the separator are sufficiently adhered.
次に、最初(1回目)のガス除去処理として、以下の処理を行う。まず、熱圧着で仮封止した1辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行って仮封止を行う。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させる。 (First (first) gas removal process)
Next, the following process is performed as the first (first) gas removal process. First, one side temporarily sealed by thermocompression bonding is opened, gas is removed at 10 ± 3 hPa for 5 minutes, and then thermocompression bonding is performed again to perform temporary sealing. Further, pressurization with a roller (surface pressure 0.5 ± 0.1 MPa) is performed, and the electrode and the separator are sufficiently adhered.
(活性化処理)
次に、活性化処理法として、以下の電気化学前処理法を行う。 (Activation process)
Next, the following electrochemical pretreatment method is performed as an activation treatment method.
次に、活性化処理法として、以下の電気化学前処理法を行う。 (Activation process)
Next, the following electrochemical pretreatment method is performed as an activation treatment method.
まず、25℃にて、定電流充電法で0.1Cで電圧が4.45Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを2回行う。同様に、25℃にて、定電流充電法で0.1Cで4.55Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回、0.1Cで4.65Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行う。更に、25℃にて、定電流充電法で、0.1Cで4.75Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行えばよい。
First, the battery is charged at 25 ° C. by a constant current charging method until the voltage reaches 4.45 V at 0.1 C, and then discharged twice to 2.0 V at 0.1 C. Similarly, after charging at 25 ° C. to 4.55 V at 0.1 C by the constant current charging method, a cycle of discharging to 2.0 V at 0.1 C once is 4.65 V at 0.1 C. The battery is charged until it reaches 0, and then discharged once at 0.1 C to 2.0 V. Furthermore, a cycle of charging at 0.1 C to 4.75 V by a constant current charging method at 25 ° C. and then discharging to 0.1 V at 0.1 C may be performed once.
なお、ここでは、活性化処理法として、定電流充電法を用い、電圧を終止条件とした場合の電気化学前処理法を例として記載しているが、充電方式は定電流定電圧充電法を用いても構わない。また、終止条件は電圧以外にも電荷量や時間を用いても構わない。
In this example, the constant current charging method is used as the activation processing method, and the electrochemical pretreatment method when the voltage is set as the termination condition is described as an example, but the charging method is a constant current constant voltage charging method. You may use. Further, as the termination condition, a charge amount or time may be used in addition to the voltage.
(最後(2回目)のガス除去処理)
次に、最初(1回目)のガス除去処理として、以下の処理を行う。まず、熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行って本封止を行う。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させる。 (Last (second) gas removal process)
Next, the following process is performed as the first (first) gas removal process. First, one side temporarily sealed by thermocompression bonding is opened, gas is removed at 10 ± 3 hPa for 5 minutes, and then thermocompression bonding is performed again to perform main sealing. Further, pressurization with a roller (surface pressure 0.5 ± 0.1 MPa) is performed, and the electrode and the separator are sufficiently adhered.
次に、最初(1回目)のガス除去処理として、以下の処理を行う。まず、熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行って本封止を行う。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させる。 (Last (second) gas removal process)
Next, the following process is performed as the first (first) gas removal process. First, one side temporarily sealed by thermocompression bonding is opened, gas is removed at 10 ± 3 hPa for 5 minutes, and then thermocompression bonding is performed again to perform main sealing. Further, pressurization with a roller (surface pressure 0.5 ± 0.1 MPa) is performed, and the electrode and the separator are sufficiently adhered.
本実施形態では、上記した初充電処理、ガス除去処理及び活性化処理を行うことにより、得られた電池の性能および耐久性を高めることができる。
In the present embodiment, the performance and durability of the obtained battery can be improved by performing the initial charging process, the gas removal process, and the activation process described above.
[組電池]
組電池は、電池を複数個接続して構成した物である。詳しくは少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可能になる。 [Battery]
The assembled battery is configured by connecting a plurality of batteries. Specifically, at least two or more are used, and are configured by serialization, parallelization, or both. Capacitance and voltage can be freely adjusted by paralleling in series.
組電池は、電池を複数個接続して構成した物である。詳しくは少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可能になる。 [Battery]
The assembled battery is configured by connecting a plurality of batteries. Specifically, at least two or more are used, and are configured by serialization, parallelization, or both. Capacitance and voltage can be freely adjusted by paralleling in series.
電池が複数、直列にまたは並列に接続して装脱着可能な小型の組電池を形成することもできる。そして、この装脱着可能な小型の組電池をさらに複数、直列に又は並列に接続して、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池を形成することもできる。何個の電池を接続して組電池を作製するか、また、何段の小型組電池を積層して大容量の組電池を作製するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めればよい。
It is also possible to form a small assembled battery that can be attached and detached by connecting a plurality of batteries in series or in parallel. Then, a plurality of small assembled batteries that can be attached and detached are connected in series or in parallel to provide a large capacity and large capacity suitable for vehicle drive power supplies and auxiliary power supplies that require high volume energy density and high volume output density. An assembled battery having an output can also be formed. How many batteries are connected to make an assembled battery, and how many small assembled batteries are stacked to make a large-capacity assembled battery depends on the battery capacity of the mounted vehicle (electric vehicle) It may be determined according to the output.
[車両]
本実施形態に係るリチウムイオン二次電池をはじめとした本発明の電気デバイスは、長期使用しても放電容量が維持され、サイクル特性が良好である。さらに、体積エネルギー密度が高い。電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの車両用途においては、電気・携帯電子機器用途と比較して、高容量、大型化が求められるとともに、長寿命化が必要となる。したがって、上記リチウムイオン二次電池(電気デバイス)は、車両用の電源として、例えば、車両駆動用電源や補助電源に好適に利用することができる。 [vehicle]
The electric device of the present invention including the lithium ion secondary battery according to the present embodiment maintains a discharge capacity even when used for a long time, and has good cycle characteristics. Furthermore, the volume energy density is high. Vehicle applications such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles require higher capacity, larger size, and longer life than electric and portable electronic devices. . Therefore, the lithium ion secondary battery (electric device) can be suitably used as a vehicle power source, for example, as a vehicle driving power source or an auxiliary power source.
本実施形態に係るリチウムイオン二次電池をはじめとした本発明の電気デバイスは、長期使用しても放電容量が維持され、サイクル特性が良好である。さらに、体積エネルギー密度が高い。電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの車両用途においては、電気・携帯電子機器用途と比較して、高容量、大型化が求められるとともに、長寿命化が必要となる。したがって、上記リチウムイオン二次電池(電気デバイス)は、車両用の電源として、例えば、車両駆動用電源や補助電源に好適に利用することができる。 [vehicle]
The electric device of the present invention including the lithium ion secondary battery according to the present embodiment maintains a discharge capacity even when used for a long time, and has good cycle characteristics. Furthermore, the volume energy density is high. Vehicle applications such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles require higher capacity, larger size, and longer life than electric and portable electronic devices. . Therefore, the lithium ion secondary battery (electric device) can be suitably used as a vehicle power source, for example, as a vehicle driving power source or an auxiliary power source.
具体的には、電池またはこれらを複数個組み合わせてなる組電池を車両に搭載することができる。本発明では、長期信頼性および出力特性に優れた高寿命の電池を構成できることから、こうした電池を搭載するとEV走行距離の長いプラグインハイブリッド電気自動車や、一充電走行距離の長い電気自動車を構成できる。電池またはこれらを複数個組み合わせてなる組電池を、例えば、自動車ならばハイブリット車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)に用いることにより高寿命で信頼性の高い自動車となるからである。ただし、用途が自動車に限定されるわけではなく、例えば、他の車両、例えば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの載置用電源として利用することも可能である。
Specifically, a battery or an assembled battery formed by combining a plurality of these batteries can be mounted on the vehicle. In the present invention, since a battery having a long life with excellent long-term reliability and output characteristics can be configured, a plug-in hybrid electric vehicle having a long EV mileage or an electric vehicle having a long charge mileage can be formed by mounting such a battery. . For example, in the case of a car, a hybrid car, a fuel cell car, an electric car (four-wheeled vehicles (passenger cars, trucks, buses, commercial vehicles, light cars, etc.) This is because it can be used for motorcycles (including motorcycles) and tricycles) to provide a long-life and highly reliable automobile. However, the application is not limited to automobiles. For example, it can be applied to various power sources for moving vehicles such as other vehicles, for example, trains, and power sources for mounting such as uninterruptible power supplies. It is also possible to use as.
以下、実施例および比較例を用いてさらに詳細に説明するが、本発明は以下の実施例のみに何ら限定されるわけではない。
Hereinafter, although it demonstrates in detail using an Example and a comparative example, this invention is not necessarily limited only to the following Examples.
[実施例1]
(固溶体正極活物質C1)
(チタンクエン酸錯体水溶液の調製)
無水クエン酸(分子量192.12g/mol)60g(0.3mol)をアセトン400mlに加え、60℃に加温し溶解した。次いで、チタンテトライソプロポキシド(分子量284.22g/mol)56g(0.2mol)を加え、沈殿を形成させた。この液を吸引濾過し沈殿物(薄黄色)を得た。 [Example 1]
(Solid solution positive electrode active material C1)
(Preparation of aqueous solution of titanium citrate complex)
60 g (0.3 mol) of anhydrous citric acid (molecular weight 192.12 g / mol) was added to 400 ml of acetone and heated to 60 ° C. to dissolve. Next, 56 g (0.2 mol) of titanium tetraisopropoxide (molecular weight 284.22 g / mol) was added to form a precipitate. This liquid was subjected to suction filtration to obtain a precipitate (light yellow).
(固溶体正極活物質C1)
(チタンクエン酸錯体水溶液の調製)
無水クエン酸(分子量192.12g/mol)60g(0.3mol)をアセトン400mlに加え、60℃に加温し溶解した。次いで、チタンテトライソプロポキシド(分子量284.22g/mol)56g(0.2mol)を加え、沈殿を形成させた。この液を吸引濾過し沈殿物(薄黄色)を得た。 [Example 1]
(Solid solution positive electrode active material C1)
(Preparation of aqueous solution of titanium citrate complex)
60 g (0.3 mol) of anhydrous citric acid (molecular weight 192.12 g / mol) was added to 400 ml of acetone and heated to 60 ° C. to dissolve. Next, 56 g (0.2 mol) of titanium tetraisopropoxide (molecular weight 284.22 g / mol) was added to form a precipitate. This liquid was subjected to suction filtration to obtain a precipitate (light yellow).
沈殿物にH2O(200ml)を加え、50~60℃に加温し溶解した。この溶液を1日以上静置して不溶物を沈降させた後、濾過し、不溶物を除去し、チタンクエン酸錯体水溶液を得た。Ti濃度は、TiO2(分子量79.87g/mol)として5.0重量%であった。
H 2 O (200 ml) was added to the precipitate and heated to 50-60 ° C. to dissolve. This solution was allowed to stand for 1 day or longer to precipitate insoluble matters, and then filtered to remove insoluble matters, thereby obtaining a titanium citrate complex aqueous solution. The Ti concentration was 5.0% by weight as TiO 2 (molecular weight 79.87 g / mol).
(固溶体正極活物質C1の調製)
Li1.5[Ni0.450Mn0.750[Li]0.20Ti0.10]Oz
チタンクエン酸錯体水溶液(TiO2として5.0重量%)15.97gに、酢酸マンガン・4水和物(分子量245.09g/mol)14.71g、酢酸ニッケル・4水和物(分子量248.84g/mol)7.47g、酢酸リチウム・2水和物(分子量102.02g/mol)14.57gを順に加えた。得られた混合物を、200℃~300℃に加熱し溶融溶解した。次に、スプレードライ装置を用い、得られた溶融溶解液(スラリー)を200℃~400℃で加熱噴霧し、乾燥した。得られた乾燥粉末を、140℃~250℃で12時間真空乾燥した後、450℃で12時間仮焼成した。その後、900℃で12時間本焼成した。 (Preparation of solid solution positive electrode active material C1)
Li 1.5 [Ni 0.450 Mn 0.750 [Li] 0.20 Ti 0.10 ] O z
15.97 g of titanium citrate complex aqueous solution (5.0 wt% as TiO 2 ), 14.71 g of manganese acetate tetrahydrate (molecular weight 245.09 g / mol), nickel acetate tetrahydrate (molecular weight 248. 84 g / mol) 7.47 g and lithium acetate dihydrate (molecular weight 102.02 g / mol) 14.57 g were sequentially added. The obtained mixture was heated to 200 ° C. to 300 ° C. to melt and dissolve. Next, using a spray drying apparatus, the obtained melted solution (slurry) was sprayed by heating at 200 ° C. to 400 ° C. and dried. The obtained dry powder was vacuum-dried at 140 ° C. to 250 ° C. for 12 hours and then calcined at 450 ° C. for 12 hours. Thereafter, the main baking was performed at 900 ° C. for 12 hours.
Li1.5[Ni0.450Mn0.750[Li]0.20Ti0.10]Oz
チタンクエン酸錯体水溶液(TiO2として5.0重量%)15.97gに、酢酸マンガン・4水和物(分子量245.09g/mol)14.71g、酢酸ニッケル・4水和物(分子量248.84g/mol)7.47g、酢酸リチウム・2水和物(分子量102.02g/mol)14.57gを順に加えた。得られた混合物を、200℃~300℃に加熱し溶融溶解した。次に、スプレードライ装置を用い、得られた溶融溶解液(スラリー)を200℃~400℃で加熱噴霧し、乾燥した。得られた乾燥粉末を、140℃~250℃で12時間真空乾燥した後、450℃で12時間仮焼成した。その後、900℃で12時間本焼成した。 (Preparation of solid solution positive electrode active material C1)
Li 1.5 [Ni 0.450 Mn 0.750 [Li] 0.20 Ti 0.10 ] O z
15.97 g of titanium citrate complex aqueous solution (5.0 wt% as TiO 2 ), 14.71 g of manganese acetate tetrahydrate (molecular weight 245.09 g / mol), nickel acetate tetrahydrate (molecular weight 248. 84 g / mol) 7.47 g and lithium acetate dihydrate (molecular weight 102.02 g / mol) 14.57 g were sequentially added. The obtained mixture was heated to 200 ° C. to 300 ° C. to melt and dissolve. Next, using a spray drying apparatus, the obtained melted solution (slurry) was sprayed by heating at 200 ° C. to 400 ° C. and dried. The obtained dry powder was vacuum-dried at 140 ° C. to 250 ° C. for 12 hours and then calcined at 450 ° C. for 12 hours. Thereafter, the main baking was performed at 900 ° C. for 12 hours.
上記のようにして得た固溶体正極活物質C1の組成は以下の通りであった。
組成式: Li1.5[Ni0.450Mn0.750[Li]0.20Ti0.10]Oz
a+b+c+d+e=1.5、d=0.20、a+b+c+e=1.30、e=0.10
(X線回折測定)
得られた固溶体正極活物質について、X線回折により、結晶構造および結晶性の評価をした。X線源にはCu-Kα線を用い、測定条件は管電圧40KV、管電流20mA、走査速度2°/分、発散スリット幅0.5°、受光スリット幅0.15°で行った。 The composition of the solid solution positive electrode active material C1 obtained as described above was as follows.
Composition formula: Li 1.5 [Ni 0.450 Mn 0.750 [Li] 0.20 Ti 0.10 ] O z
a + b + c + d + e = 1.5, d = 0.20, a + b + c + e = 1.30, e = 0.10
(X-ray diffraction measurement)
The obtained solid solution positive electrode active material was evaluated for crystal structure and crystallinity by X-ray diffraction. Cu-Kα rays were used as the X-ray source, and the measurement conditions were a tube voltage of 40 KV, a tube current of 20 mA, a scanning speed of 2 ° / min, a divergence slit width of 0.5 °, and a light receiving slit width of 0.15 °.
組成式: Li1.5[Ni0.450Mn0.750[Li]0.20Ti0.10]Oz
a+b+c+d+e=1.5、d=0.20、a+b+c+e=1.30、e=0.10
(X線回折測定)
得られた固溶体正極活物質について、X線回折により、結晶構造および結晶性の評価をした。X線源にはCu-Kα線を用い、測定条件は管電圧40KV、管電流20mA、走査速度2°/分、発散スリット幅0.5°、受光スリット幅0.15°で行った。 The composition of the solid solution positive electrode active material C1 obtained as described above was as follows.
Composition formula: Li 1.5 [Ni 0.450 Mn 0.750 [Li] 0.20 Ti 0.10 ] O z
a + b + c + d + e = 1.5, d = 0.20, a + b + c + e = 1.30, e = 0.10
(X-ray diffraction measurement)
The obtained solid solution positive electrode active material was evaluated for crystal structure and crystallinity by X-ray diffraction. Cu-Kα rays were used as the X-ray source, and the measurement conditions were a tube voltage of 40 KV, a tube current of 20 mA, a scanning speed of 2 ° / min, a divergence slit width of 0.5 °, and a light receiving slit width of 0.15 °.
図3に、比較のためTiを含まない下記組成の正極活物質C0、
組成式: Li1.5[Ni0.450Mn0.850[Li]0.20Ti0.00]Oz
のX線回折パターンを示す。さらに、図4に固溶体正極活物質C1のX線回折パターンを示す。 FIG. 3 shows a positive electrode active material C0 having the following composition that does not contain Ti for comparison.
Composition formula: Li 1.5 [Ni 0.450 Mn 0.850 [Li] 0.20 Ti 0.00 ] O z
The X-ray diffraction pattern of is shown. Further, FIG. 4 shows an X-ray diffraction pattern of the solid solution positive electrode active material C1.
組成式: Li1.5[Ni0.450Mn0.850[Li]0.20Ti0.00]Oz
のX線回折パターンを示す。さらに、図4に固溶体正極活物質C1のX線回折パターンを示す。 FIG. 3 shows a positive electrode active material C0 having the following composition that does not contain Ti for comparison.
Composition formula: Li 1.5 [Ni 0.450 Mn 0.850 [Li] 0.20 Ti 0.00 ] O z
The X-ray diffraction pattern of is shown. Further, FIG. 4 shows an X-ray diffraction pattern of the solid solution positive electrode active material C1.
図3および図4には、20-23°に固溶体系に特徴的な超格子構造に帰属されるピークが認められる。さらに、図4では、36.5-37.5(101)と44-45°(104)および64-65°(108)/65-66(110)のピークが僅かに低角度側へシフトすることが観測された。また、スピネル相に帰属される回折ピークは、いずれの試料においても認められなかった。
3 and 4 show a peak attributed to the superlattice structure characteristic of the solid solution system at 20-23 °. Furthermore, in FIG. 4, the peaks at 36.5-37.5 (101) and 44-45 ° (104) and 64-65 ° (108) / 65-66 (110) are slightly shifted to the lower angle side. It was observed. Further, no diffraction peak attributed to the spinel phase was observed in any sample.
(集電体の片面に正極活物質層を形成した正極C1の作製)
(正極用スラリーの組成)
正極用スラリーは下記組成とした。 (Preparation of positive electrode C1 having a positive electrode active material layer formed on one side of a current collector)
(Composition of slurry for positive electrode)
The positive electrode slurry had the following composition.
(正極用スラリーの組成)
正極用スラリーは下記組成とした。 (Preparation of positive electrode C1 having a positive electrode active material layer formed on one side of a current collector)
(Composition of slurry for positive electrode)
The positive electrode slurry had the following composition.
正極活物質:上記で得られたTi置換固溶体正極活物質C1 9.4重量部
導電助剤: 燐片状黒鉛 0.15重量部
アセチレンブラック 0.15重量部
バインダ: ポリフッ化ビニリデン(PVDF) 0.3重量部
溶媒: N-メチル-2-ピロリドン(NMP) 8.2重量部。 Cathode active material: Ti-substituted solid solution cathode active material C1 obtained above 9.4 parts by weight Conductive aid: flake graphite 0.15 parts by weight Acetylene black 0.15 parts by weight Binder: Polyvinylidene fluoride (PVDF) 0 .3 parts by weight Solvent: 8.2 parts by weight of N-methyl-2-pyrrolidone (NMP).
導電助剤: 燐片状黒鉛 0.15重量部
アセチレンブラック 0.15重量部
バインダ: ポリフッ化ビニリデン(PVDF) 0.3重量部
溶媒: N-メチル-2-ピロリドン(NMP) 8.2重量部。 Cathode active material: Ti-substituted solid solution cathode active material C1 obtained above 9.4 parts by weight Conductive aid: flake graphite 0.15 parts by weight Acetylene black 0.15 parts by weight Binder: Polyvinylidene fluoride (PVDF) 0 .3 parts by weight Solvent: 8.2 parts by weight of N-methyl-2-pyrrolidone (NMP).
この組成を式(2)に当てはめると、e=94となり、式(2)の要件を満足する。
When this composition is applied to the formula (2), e = 94, which satisfies the requirement of the formula (2).
(正極用スラリーの製造)
上記組成の正極用スラリーを次のように調製した。まず、50mlのディスポカップに、溶媒(NMP)にバインダを溶解した20%バインダ溶液2.0重量部に溶媒(NMP)4.0重量部を加え、攪拌脱泡機(自転公転ミキサー:あわとり錬太郎AR-100)で1分間攪拌してバインダ希釈溶液を作製した。次に、このバインダ希釈液に、導電助剤0.4重量部と固溶体正極活物質C1 9.2重量部、および溶媒(NMP)2.6重量部を加え、攪拌脱泡機で3分間攪拌して正極用スラリー(固形分濃度55重量%)とした。 (Production of positive electrode slurry)
A positive electrode slurry having the above composition was prepared as follows. First, 4.0 parts by weight of a solvent (NMP) is added to 2.0 parts by weight of a 20% binder solution obtained by dissolving a binder in a solvent (NMP) into a 50 ml disposable cup, and a stirring defoaming machine (spinning revolving mixer: Awatori) A binder diluted solution was prepared by stirring for 1 minute with Rentaro AR-100). Next, 0.4 parts by weight of a conductive additive, 9.2 parts by weight of a solid solution positive electrode active material C1, and 2.6 parts by weight of a solvent (NMP) are added to the binder dilution, and the mixture is stirred for 3 minutes with a stirring deaerator. Thus, a positive electrode slurry (solid content concentration 55% by weight) was obtained.
上記組成の正極用スラリーを次のように調製した。まず、50mlのディスポカップに、溶媒(NMP)にバインダを溶解した20%バインダ溶液2.0重量部に溶媒(NMP)4.0重量部を加え、攪拌脱泡機(自転公転ミキサー:あわとり錬太郎AR-100)で1分間攪拌してバインダ希釈溶液を作製した。次に、このバインダ希釈液に、導電助剤0.4重量部と固溶体正極活物質C1 9.2重量部、および溶媒(NMP)2.6重量部を加え、攪拌脱泡機で3分間攪拌して正極用スラリー(固形分濃度55重量%)とした。 (Production of positive electrode slurry)
A positive electrode slurry having the above composition was prepared as follows. First, 4.0 parts by weight of a solvent (NMP) is added to 2.0 parts by weight of a 20% binder solution obtained by dissolving a binder in a solvent (NMP) into a 50 ml disposable cup, and a stirring defoaming machine (spinning revolving mixer: Awatori) A binder diluted solution was prepared by stirring for 1 minute with Rentaro AR-100). Next, 0.4 parts by weight of a conductive additive, 9.2 parts by weight of a solid solution positive electrode active material C1, and 2.6 parts by weight of a solvent (NMP) are added to the binder dilution, and the mixture is stirred for 3 minutes with a stirring deaerator. Thus, a positive electrode slurry (
(正極用スラリーの塗布・乾燥)
20μm厚のアルミニウム集電体の片面に、上記正極用スラリーを自動塗工装置(テスター産業製ドクターブレード:PI-1210自動塗工装置)により塗布した。続いて、この正極用スラリーを塗布した集電体について、ホットプレートにて乾燥(100℃~110℃、乾燥時間30分)を行い、正極活物質層に残留するNMP量を0.02重量%以下として、シート状正極を形成した。 (Application and drying of positive electrode slurry)
The positive electrode slurry was applied to one side of an aluminum current collector with a thickness of 20 μm using an automatic coating apparatus (Doctor blade manufactured by Tester Sangyo: PI-1210 automatic coating apparatus). Subsequently, the current collector coated with the positive electrode slurry was dried on a hot plate (100 ° C. to 110 ° C., dryingtime 30 minutes), and the amount of NMP remaining in the positive electrode active material layer was 0.02 wt%. A sheet-like positive electrode was formed as follows.
20μm厚のアルミニウム集電体の片面に、上記正極用スラリーを自動塗工装置(テスター産業製ドクターブレード:PI-1210自動塗工装置)により塗布した。続いて、この正極用スラリーを塗布した集電体について、ホットプレートにて乾燥(100℃~110℃、乾燥時間30分)を行い、正極活物質層に残留するNMP量を0.02重量%以下として、シート状正極を形成した。 (Application and drying of positive electrode slurry)
The positive electrode slurry was applied to one side of an aluminum current collector with a thickness of 20 μm using an automatic coating apparatus (Doctor blade manufactured by Tester Sangyo: PI-1210 automatic coating apparatus). Subsequently, the current collector coated with the positive electrode slurry was dried on a hot plate (100 ° C. to 110 ° C., drying
(正極のプレス)
上記シート状正極を、ローラープレスをかけて圧縮成形し、切断して、正極を作製した。この際、正極C1の放電容量が5.55mAh/cm2となるように、正極活物質の放電容量と正極スラリー組成とを考慮し、塗布量を調整した(以下の負極C2~C12も同様)。 (Positive electrode press)
The sheet-like positive electrode was compression-molded with a roller press and cut to produce a positive electrode. At this time, the coating amount was adjusted in consideration of the discharge capacity of the positive electrode active material and the positive electrode slurry composition so that the discharge capacity of the positive electrode C1 was 5.55 mAh / cm 2 (the same applies to the following negative electrodes C2 to C12). .
上記シート状正極を、ローラープレスをかけて圧縮成形し、切断して、正極を作製した。この際、正極C1の放電容量が5.55mAh/cm2となるように、正極活物質の放電容量と正極スラリー組成とを考慮し、塗布量を調整した(以下の負極C2~C12も同様)。 (Positive electrode press)
The sheet-like positive electrode was compression-molded with a roller press and cut to produce a positive electrode. At this time, the coating amount was adjusted in consideration of the discharge capacity of the positive electrode active material and the positive electrode slurry composition so that the discharge capacity of the positive electrode C1 was 5.55 mAh / cm 2 (the same applies to the following negative electrodes C2 to C12). .
(正極の乾燥)
次に、上記手順で作製した正極を用い真空乾燥炉にて乾燥処理を行った。乾燥炉内部に正極を設置した後、室温(25℃)にて減圧(100mmHg(1.33×104Pa))し乾燥炉内の空気を除去した。続いて、窒素ガスを流通(100cm3/分)しながら、10℃/分で120℃まで昇温し、120℃で再度減圧して炉内の窒素を排気したまま12時間保持した後、室温まで降温した。こうして正極表面の水分を除去した正極C1を得た。 (Dry cathode)
Next, the drying process was performed in the vacuum drying furnace using the positive electrode produced in the said procedure. After the positive electrode was installed inside the drying furnace, the pressure in the room was reduced (100 mmHg (1.33 × 10 4 Pa)) at room temperature (25 ° C.) to remove the air in the drying furnace. Subsequently, while flowing nitrogen gas (100 cm 3 / min), the temperature was raised to 120 ° C. at 10 ° C./min, the pressure was reduced again at 120 ° C., and nitrogen was maintained in the furnace for 12 hours. The temperature was lowered. In this way, a positive electrode C1 from which moisture on the positive electrode surface was removed was obtained.
次に、上記手順で作製した正極を用い真空乾燥炉にて乾燥処理を行った。乾燥炉内部に正極を設置した後、室温(25℃)にて減圧(100mmHg(1.33×104Pa))し乾燥炉内の空気を除去した。続いて、窒素ガスを流通(100cm3/分)しながら、10℃/分で120℃まで昇温し、120℃で再度減圧して炉内の窒素を排気したまま12時間保持した後、室温まで降温した。こうして正極表面の水分を除去した正極C1を得た。 (Dry cathode)
Next, the drying process was performed in the vacuum drying furnace using the positive electrode produced in the said procedure. After the positive electrode was installed inside the drying furnace, the pressure in the room was reduced (100 mmHg (1.33 × 10 4 Pa)) at room temperature (25 ° C.) to remove the air in the drying furnace. Subsequently, while flowing nitrogen gas (100 cm 3 / min), the temperature was raised to 120 ° C. at 10 ° C./min, the pressure was reduced again at 120 ° C., and nitrogen was maintained in the furnace for 12 hours. The temperature was lowered. In this way, a positive electrode C1 from which moisture on the positive electrode surface was removed was obtained.
(集電箔の片面に活物質層を形成した負極A1の作製)
(Si含有合金の製造)
負極活物質であるSi含有合金として、Si80Sn10Ti10(単位は質量%、以下同じ)を用いた。なお、上記Si含有合金は、メカニカルアロイ法により製造した。具体的には、ドイツ フリッチュ社製遊星ボールミル装置P-6を用いて、ジルコニア製粉砕ポットにジルコニア製粉砕ボールおよび合金の原料粉末を投入し、600rpm、24時間かけて合金化させ(合金化処理)、その後400rpmで1時間、粉砕処理を実施した。なお、得られたSi含有合金(負極活物質)粉末の平均粒子径は0.3μmであった。 (Preparation of negative electrode A1 in which an active material layer is formed on one side of the current collector foil)
(Manufacture of Si-containing alloys)
Si 80 Sn 10 Ti 10 (unit: mass%, hereinafter the same) was used as the Si-containing alloy as the negative electrode active material. The Si-containing alloy was produced by a mechanical alloy method. Specifically, using a planetary ball mill device P-6 manufactured by Fricht, Germany, zirconia pulverized balls and alloy raw material powders were put into a zirconia pulverized pot and alloyed at 600 rpm for 24 hours (alloying treatment). ), And then pulverization was performed at 400 rpm for 1 hour. The average particle size of the obtained Si-containing alloy (negative electrode active material) powder was 0.3 μm.
(Si含有合金の製造)
負極活物質であるSi含有合金として、Si80Sn10Ti10(単位は質量%、以下同じ)を用いた。なお、上記Si含有合金は、メカニカルアロイ法により製造した。具体的には、ドイツ フリッチュ社製遊星ボールミル装置P-6を用いて、ジルコニア製粉砕ポットにジルコニア製粉砕ボールおよび合金の原料粉末を投入し、600rpm、24時間かけて合金化させ(合金化処理)、その後400rpmで1時間、粉砕処理を実施した。なお、得られたSi含有合金(負極活物質)粉末の平均粒子径は0.3μmであった。 (Preparation of negative electrode A1 in which an active material layer is formed on one side of the current collector foil)
(Manufacture of Si-containing alloys)
Si 80 Sn 10 Ti 10 (unit: mass%, hereinafter the same) was used as the Si-containing alloy as the negative electrode active material. The Si-containing alloy was produced by a mechanical alloy method. Specifically, using a planetary ball mill device P-6 manufactured by Fricht, Germany, zirconia pulverized balls and alloy raw material powders were put into a zirconia pulverized pot and alloyed at 600 rpm for 24 hours (alloying treatment). ), And then pulverization was performed at 400 rpm for 1 hour. The average particle size of the obtained Si-containing alloy (negative electrode active material) powder was 0.3 μm.
(負極用スラリーの組成)
負極用スラリーは下記組成とした。 (Composition of slurry for negative electrode)
The negative electrode slurry had the following composition.
負極用スラリーは下記組成とした。 (Composition of slurry for negative electrode)
The negative electrode slurry had the following composition.
負極活物質:Si含有合金(Si80Sn10Ti10) 80重量部
導電助剤: SuperP 5重量部
バインダ: ポリイミド 15重量部
溶媒: N-メチル-2-ピロリドン(NMP) 適量。 Negative electrode active material: Si-containing alloy (Si 80 Sn 10 Ti 10 ) 80 parts by weight Conductive auxiliary agent: SuperP 5 parts by weight Binder:Polyimide 15 parts by weight Solvent: N-methyl-2-pyrrolidone (NMP) Appropriate amount.
導電助剤: SuperP 5重量部
バインダ: ポリイミド 15重量部
溶媒: N-メチル-2-ピロリドン(NMP) 適量。 Negative electrode active material: Si-containing alloy (Si 80 Sn 10 Ti 10 ) 80 parts by weight Conductive auxiliary agent: SuperP 5 parts by weight Binder:
この組成を式(1)に当てはめると、α=80となり、式(1)の要件を満足する。
When this composition is applied to the formula (1), α = 80, which satisfies the requirement of the formula (1).
(負極用スラリーの製造)
上記組成の負極用スラリーを次のように調製した。まず溶媒(NMP)に、バインダを溶解したバインダ溶液を加えて、攪拌脱泡機で1分間攪拌してバインダ希釈溶液を作製した。このバインダ希釈液に、導電助剤、負極活物質粉末、および溶媒(NMP)を加え、攪拌脱泡機で3分間攪拌して負極用スラリーとした。 (Manufacture of negative electrode slurry)
A negative electrode slurry having the above composition was prepared as follows. First, a binder solution in which a binder was dissolved was added to a solvent (NMP), and the mixture was stirred for 1 minute with a stirring deaerator to prepare a binder diluted solution. A conductive additive, negative electrode active material powder, and a solvent (NMP) were added to the binder dilution, and the mixture was stirred for 3 minutes with a stirring deaerator to obtain a negative electrode slurry.
上記組成の負極用スラリーを次のように調製した。まず溶媒(NMP)に、バインダを溶解したバインダ溶液を加えて、攪拌脱泡機で1分間攪拌してバインダ希釈溶液を作製した。このバインダ希釈液に、導電助剤、負極活物質粉末、および溶媒(NMP)を加え、攪拌脱泡機で3分間攪拌して負極用スラリーとした。 (Manufacture of negative electrode slurry)
A negative electrode slurry having the above composition was prepared as follows. First, a binder solution in which a binder was dissolved was added to a solvent (NMP), and the mixture was stirred for 1 minute with a stirring deaerator to prepare a binder diluted solution. A conductive additive, negative electrode active material powder, and a solvent (NMP) were added to the binder dilution, and the mixture was stirred for 3 minutes with a stirring deaerator to obtain a negative electrode slurry.
(負極用スラリーの塗布・乾燥)
10μm厚の電解銅集電体の片面に、上記負極用スラリーを自動塗工装置により塗布した。続いて、この負極スラリーを塗布した集電体について、ホットプレートにて乾燥(100℃~110℃、乾燥時間30分)を行い、負極活物質層に残留するNMP量を0.02重量%以下として、シート状負極を形成した。 (Application and drying of slurry for negative electrode)
The negative electrode slurry was applied to one side of a 10 μm thick electrolytic copper current collector using an automatic coating apparatus. Subsequently, the current collector coated with the negative electrode slurry was dried on a hot plate (100 ° C. to 110 ° C., dryingtime 30 minutes), and the amount of NMP remaining in the negative electrode active material layer was 0.02 wt% or less. A sheet-like negative electrode was formed.
10μm厚の電解銅集電体の片面に、上記負極用スラリーを自動塗工装置により塗布した。続いて、この負極スラリーを塗布した集電体について、ホットプレートにて乾燥(100℃~110℃、乾燥時間30分)を行い、負極活物質層に残留するNMP量を0.02重量%以下として、シート状負極を形成した。 (Application and drying of slurry for negative electrode)
The negative electrode slurry was applied to one side of a 10 μm thick electrolytic copper current collector using an automatic coating apparatus. Subsequently, the current collector coated with the negative electrode slurry was dried on a hot plate (100 ° C. to 110 ° C., drying
(負極のプレス)
得られたシート状負極を、ローラープレスをかけて圧縮成形し、切断して、負極を作製した。この際、負極A1の放電容量が5.83mAh/cm2となるように、負極活物質の放電容量と負極スラリー組成とを考慮し、塗布量を調整した(以下の負極A2~A5も同様)。この負極の表面を観察したところ、クラックの発生は見られなかった。 (Negative electrode press)
The obtained sheet-like negative electrode was compression-molded with a roller press and cut to prepare a negative electrode. At this time, the coating amount was adjusted in consideration of the discharge capacity of the negative electrode active material and the negative electrode slurry composition so that the discharge capacity of the negative electrode A1 was 5.83 mAh / cm 2 (the same applies to the following negative electrodes A2 to A5). . When the surface of this negative electrode was observed, no cracks were observed.
得られたシート状負極を、ローラープレスをかけて圧縮成形し、切断して、負極を作製した。この際、負極A1の放電容量が5.83mAh/cm2となるように、負極活物質の放電容量と負極スラリー組成とを考慮し、塗布量を調整した(以下の負極A2~A5も同様)。この負極の表面を観察したところ、クラックの発生は見られなかった。 (Negative electrode press)
The obtained sheet-like negative electrode was compression-molded with a roller press and cut to prepare a negative electrode. At this time, the coating amount was adjusted in consideration of the discharge capacity of the negative electrode active material and the negative electrode slurry composition so that the discharge capacity of the negative electrode A1 was 5.83 mAh / cm 2 (the same applies to the following negative electrodes A2 to A5). . When the surface of this negative electrode was observed, no cracks were observed.
(電極の乾燥)
次に、上記手順で作製した負極を用い真空乾燥炉にて乾燥処理を行った。乾燥炉内部に負極を設置した後、室温(25℃)にて減圧(100mmHg(1.33×104Pa))し乾燥炉内の空気を除去した。続いて、窒素ガスを流通(100cm3/分)しながら、10℃/分で325℃まで昇温し、325℃で再度減圧して炉内の窒素を排気したまま24時間保持した後、室温まで降温した。こうして負極表面の水分を除去して、負極A1を得た。 (Dry electrode)
Next, the drying process was performed in the vacuum drying furnace using the negative electrode produced in the said procedure. After installing the negative electrode inside the drying furnace, the air in the drying furnace was removed under reduced pressure (100 mmHg (1.33 × 10 4 Pa)) at room temperature (25 ° C.). Subsequently, while flowing nitrogen gas (100 cm 3 / min), the temperature was raised to 325 ° C. at 10 ° C./min, the pressure was reduced again at 325 ° C. and the nitrogen in the furnace was kept exhausted for 24 hours, The temperature was lowered. In this way, moisture on the surface of the negative electrode was removed to obtain a negative electrode A1.
次に、上記手順で作製した負極を用い真空乾燥炉にて乾燥処理を行った。乾燥炉内部に負極を設置した後、室温(25℃)にて減圧(100mmHg(1.33×104Pa))し乾燥炉内の空気を除去した。続いて、窒素ガスを流通(100cm3/分)しながら、10℃/分で325℃まで昇温し、325℃で再度減圧して炉内の窒素を排気したまま24時間保持した後、室温まで降温した。こうして負極表面の水分を除去して、負極A1を得た。 (Dry electrode)
Next, the drying process was performed in the vacuum drying furnace using the negative electrode produced in the said procedure. After installing the negative electrode inside the drying furnace, the air in the drying furnace was removed under reduced pressure (100 mmHg (1.33 × 10 4 Pa)) at room temperature (25 ° C.). Subsequently, while flowing nitrogen gas (100 cm 3 / min), the temperature was raised to 325 ° C. at 10 ° C./min, the pressure was reduced again at 325 ° C. and the nitrogen in the furnace was kept exhausted for 24 hours, The temperature was lowered. In this way, moisture on the surface of the negative electrode was removed to obtain a negative electrode A1.
[正極C1の容量確認]
[コインセルの作製]
上記により得られた正極C1(直径15mmに打抜き)とリチウム箔(本城金属株式会社製、直径16mm、厚さ200μm)からなる対極とをセパレータ(直径17mm、セルガード社製セルガード2400)を介して対向させたのち、電解液を注入することによってCR2032型コインセルを作製した。 [Capacity confirmation of positive electrode C1]
[Production of coin cell]
The positive electrode C1 obtained by the above (punching to a diameter of 15 mm) and a counter electrode made of a lithium foil (Honjo Metal Co., Ltd., diameter 16 mm, thickness 200 μm) are passed through a separator (diameter 17 mm, Cellguard Cellguard 2400). After facing each other, an electrolytic solution was injected to produce a CR2032-type coin cell.
[コインセルの作製]
上記により得られた正極C1(直径15mmに打抜き)とリチウム箔(本城金属株式会社製、直径16mm、厚さ200μm)からなる対極とをセパレータ(直径17mm、セルガード社製セルガード2400)を介して対向させたのち、電解液を注入することによってCR2032型コインセルを作製した。 [Capacity confirmation of positive electrode C1]
[Production of coin cell]
The positive electrode C1 obtained by the above (punching to a diameter of 15 mm) and a counter electrode made of a lithium foil (Honjo Metal Co., Ltd., diameter 16 mm, thickness 200 μm) are passed through a separator (
なお、上記電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を1:1の容積比で混合した混合非水溶媒中に、LiPF6(六フッ化リン酸リチウム)を1Mの濃度となるように溶解させたものを用いた。
As the above electrolyte solution, ethylene carbonate (EC) and diethyl carbonate (DEC) 1: in a mixed nonaqueous solvent were mixed at a volume ratio, the concentration of LiPF 6 a (lithium hexafluorophosphate) 1M What was dissolved so that it might become was used.
充放電試験機(北斗電工株式会社製HJ0501SM8A)を使用し、298K(25℃)の温度に設定された恒温槽(エスペック株式会社製PFU-3K)中で、活性化処理を行った。
Using a charge / discharge tester (HJ0501SM8A manufactured by Hokuto Denko Co., Ltd.), activation treatment was performed in a thermostatic chamber (PFU-3K manufactured by Espec Co., Ltd.) set at a temperature of 298K (25 ° C.).
[活性化処理]
25℃にて、定電流充電法で0.1Cで電圧が4.45Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを2回行った。同様に、25℃にて、定電流充電法で0.1Cで4.55Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回、0.1Cで4.65Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行った。更に、25℃にて、定電流充電法で、0.1Cで4.75Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行った。 [Activation processing]
After charging at 25 ° C. by a constant current charging method at 0.1 C until the voltage reached 4.45 V, a cycle of discharging to 0.1 V at 0.1 C was performed twice. Similarly, after charging at 25 ° C. to 4.55 V at 0.1 C by the constant current charging method, a cycle of discharging to 2.0 V at 0.1 C once is 4.65 V at 0.1 C. After being charged until it was, a cycle of discharging to 2.0 V at 0.1 C was performed once. Furthermore, the battery was charged at 25 ° C. by a constant current charging method until it reached 4.75 V at 0.1 C, and then discharged once to 2.0 V at 0.1 C.
25℃にて、定電流充電法で0.1Cで電圧が4.45Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを2回行った。同様に、25℃にて、定電流充電法で0.1Cで4.55Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回、0.1Cで4.65Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行った。更に、25℃にて、定電流充電法で、0.1Cで4.75Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行った。 [Activation processing]
After charging at 25 ° C. by a constant current charging method at 0.1 C until the voltage reached 4.45 V, a cycle of discharging to 0.1 V at 0.1 C was performed twice. Similarly, after charging at 25 ° C. to 4.55 V at 0.1 C by the constant current charging method, a cycle of discharging to 2.0 V at 0.1 C once is 4.65 V at 0.1 C. After being charged until it was, a cycle of discharging to 2.0 V at 0.1 C was performed once. Furthermore, the battery was charged at 25 ° C. by a constant current charging method until it reached 4.75 V at 0.1 C, and then discharged once to 2.0 V at 0.1 C.
[ラミネートセルの作製]
上記で得られた正極C1を、活物質層面積;縦2.5cm×横2.0cmになるように切り出し、これら2枚を集電体同士が向き合うようにして、未塗工面(アルミニウム集電箔のスラリーを塗工していない面)を合わせて集電体部分をスポット溶接した。これにより、外周部をスポット溶接により一体化された2枚重ねの集電箔の両面に正極活物質層を有する正極を形成した。その後、さらに集電体部分にアルミニウムの正極タブ(正極集電板)を溶接して正極C11を形成した。すなわち、正極C11は、集電箔の両面に正極活物質層が形成された構成である。 [Production of laminate cell]
The positive electrode C1 obtained above was cut out so as to have an active material layer area of 2.5 cm in length and 2.0 cm in width, and the two current collectors faced each other, so that the uncoated surface (aluminum current collector) The current collector portion was spot welded together with the surface not coated with the foil slurry. This formed the positive electrode which has a positive electrode active material layer on both surfaces of the two-ply current collector foil with which the outer peripheral part was integrated by spot welding. Thereafter, an aluminum positive electrode tab (positive electrode current collector plate) was further welded to the current collector portion to form a positive electrode C11. That is, the positive electrode C11 has a configuration in which a positive electrode active material layer is formed on both surfaces of the current collector foil.
上記で得られた正極C1を、活物質層面積;縦2.5cm×横2.0cmになるように切り出し、これら2枚を集電体同士が向き合うようにして、未塗工面(アルミニウム集電箔のスラリーを塗工していない面)を合わせて集電体部分をスポット溶接した。これにより、外周部をスポット溶接により一体化された2枚重ねの集電箔の両面に正極活物質層を有する正極を形成した。その後、さらに集電体部分にアルミニウムの正極タブ(正極集電板)を溶接して正極C11を形成した。すなわち、正極C11は、集電箔の両面に正極活物質層が形成された構成である。 [Production of laminate cell]
The positive electrode C1 obtained above was cut out so as to have an active material layer area of 2.5 cm in length and 2.0 cm in width, and the two current collectors faced each other, so that the uncoated surface (aluminum current collector) The current collector portion was spot welded together with the surface not coated with the foil slurry. This formed the positive electrode which has a positive electrode active material layer on both surfaces of the two-ply current collector foil with which the outer peripheral part was integrated by spot welding. Thereafter, an aluminum positive electrode tab (positive electrode current collector plate) was further welded to the current collector portion to form a positive electrode C11. That is, the positive electrode C11 has a configuration in which a positive electrode active material layer is formed on both surfaces of the current collector foil.
一方、上記で得られた負極A1を、活物質層面積;縦2.7cm×横2.2cmになるように切り出し、その後、さらに集電体部分に電解銅の負極タブを溶接して負極A11を形成した。すなわち、負極A11は、集電体の片面に負極活物質層が形成された構成である。
On the other hand, the negative electrode A1 obtained above was cut out so as to have an active material layer area of 2.7 cm in length and 2.2 cm in width, and then a negative electrode tab of electrolytic copper was further welded to the current collector portion to form a negative electrode A11. Formed. That is, the negative electrode A11 has a structure in which a negative electrode active material layer is formed on one surface of a current collector.
これらタブを溶接した負極A11と、正極C11との間に多孔質ポリプロピレン製セパレータ(S)(縦3.0cm×横2.5cm、厚さ25μm、空孔率55%)を挟んで5層からなる積層型の発電要素を作製した。積層型の発電要素の構成は、負極(片面)/セパレータ/正極(両面)/セパレータ/負極(片面)の構成、すなわち、A11-(S)-C11-(S)-A11の順に積層された構成とした。次いで、アルミラミネートフィルム製外装材(縦3.5cm×横3.5cm)で発電要素の両側を挟み込み、3辺を熱圧着封止して上記発電要素を収納した。この発電要素に、電解液0.8cm3(上記5層構成の場合、2セル構成となり、1セル当たたりの注液量0.4cm3)を注入した後、残りの1辺を熱圧着で仮封止し、ラミネート型電池を作製した。電解液を電極細孔内に十分に浸透させるため、面圧0.5Mpaで加圧しながら、25℃にて24時間保持した。
A porous polypropylene separator (S) (length 3.0 cm × width 2.5 cm, thickness 25 μm, porosity 55%) is sandwiched between the negative electrode A11 to which these tabs are welded and the positive electrode C11. A laminated power generation element was produced. The structure of the stacked type power generation element is the structure of negative electrode (single side) / separator / positive electrode (both sides) / separator / negative electrode (single side), that is, A11- (S) -C11- (S) -A11. The configuration. Next, both sides of the power generation element were sandwiched with an aluminum laminate film exterior material (length 3.5 cm × width 3.5 cm), and the above power generation element was accommodated by thermocompression sealing at three sides. After injecting an electrolyte solution of 0.8 cm 3 into this power generation element (in the case of the above five-layer structure, it becomes a two-cell structure and the amount of liquid injected per cell is 0.4 cm 3 ), the remaining one side is thermocompression bonded. Was temporarily sealed to prepare a laminated battery. In order to sufficiently infiltrate the electrolyte into the electrode pores, the electrolyte was held at 25 ° C. for 24 hours while being pressurized at a surface pressure of 0.5 Mpa.
なお、電解液の調製では、まず、エチレンカーボネート(EC)30体積%とジエチルカーボネート(DEC)70体積%の混合溶媒に、1.0MのLiPF6(電解質)を溶解した。その後、添加剤として作用するフルオロリン酸リチウムとして、ジフルオロリン酸リチウム(LiPO2F2)を1.8重量%、メチレンメタンジスルホン酸(MMDS)1.5重量%を溶解したものを、電解液として用いた。
In the preparation of the electrolytic solution, first, 1.0 M LiPF 6 (electrolyte) was dissolved in a mixed solvent of 30% by volume of ethylene carbonate (EC) and 70% by volume of diethyl carbonate (DEC). Thereafter, lithium lithium fluorophosphate (LiPO 2 F 2 ) 1.8% by weight and methylenemethane disulfonic acid (MMDS) 1.5% by weight as lithium fluorophosphate acting as an additive were dissolved in an electrolytic solution. Used as.
以下の実施例では、実施例1に準じて正極および負極を作製した。すなわち、以下に特記したこと以外は、上述した実施例1と同様にして正極および負極を作製した。
In the following examples, a positive electrode and a negative electrode were produced according to Example 1. That is, a positive electrode and a negative electrode were produced in the same manner as in Example 1 described above except as otherwise noted below.
まず、正極については、固溶体正極活物質の組成を下記の表1に示すように変更したこと以外は正極C1と同様にして、正極C2~C12を作製した。
First, for the positive electrode, positive electrodes C2 to C12 were prepared in the same manner as the positive electrode C1, except that the composition of the solid solution positive electrode active material was changed as shown in Table 1 below.
(負極A2)
Si含有合金(負極活物質)の組成をSi70Sn15Ti15へと変更したこと以外は、上述した負極A1と同様の手法により、負極活物質および負極を作製した。なお、得られたSi含有合金(負極活物質)粉末の平均粒子径は0.3μmであった。 (Negative electrode A2)
A negative electrode active material and a negative electrode were produced in the same manner as the negative electrode A1 described above, except that the composition of the Si-containing alloy (negative electrode active material) was changed to Si 70 Sn 15 Ti 15 . The average particle size of the obtained Si-containing alloy (negative electrode active material) powder was 0.3 μm.
Si含有合金(負極活物質)の組成をSi70Sn15Ti15へと変更したこと以外は、上述した負極A1と同様の手法により、負極活物質および負極を作製した。なお、得られたSi含有合金(負極活物質)粉末の平均粒子径は0.3μmであった。 (Negative electrode A2)
A negative electrode active material and a negative electrode were produced in the same manner as the negative electrode A1 described above, except that the composition of the Si-containing alloy (negative electrode active material) was changed to Si 70 Sn 15 Ti 15 . The average particle size of the obtained Si-containing alloy (negative electrode active material) powder was 0.3 μm.
(負極A3)
Si含有合金(負極活物質)の組成をSi59Sn22Ti19へと変更し、ケイ素含有合金を作製する際の合金化処理の時間を25時間へと変更したこと以外は、上述した負極A1と同様の手法により、負極活物質および負極を作製した。なお、得られたSi含有合金(負極活物質)粉末の平均粒子径は0.3μmであった。 (Negative electrode A3)
The negative electrode A1 described above, except that the composition of the Si-containing alloy (negative electrode active material) was changed to Si 59 Sn 22 Ti 19 and the time of alloying treatment for producing the silicon-containing alloy was changed to 25 hours. A negative electrode active material and a negative electrode were prepared in the same manner as described above. The average particle size of the obtained Si-containing alloy (negative electrode active material) powder was 0.3 μm.
Si含有合金(負極活物質)の組成をSi59Sn22Ti19へと変更し、ケイ素含有合金を作製する際の合金化処理の時間を25時間へと変更したこと以外は、上述した負極A1と同様の手法により、負極活物質および負極を作製した。なお、得られたSi含有合金(負極活物質)粉末の平均粒子径は0.3μmであった。 (Negative electrode A3)
The negative electrode A1 described above, except that the composition of the Si-containing alloy (negative electrode active material) was changed to Si 59 Sn 22 Ti 19 and the time of alloying treatment for producing the silicon-containing alloy was changed to 25 hours. A negative electrode active material and a negative electrode were prepared in the same manner as described above. The average particle size of the obtained Si-containing alloy (negative electrode active material) powder was 0.3 μm.
(負極A4)
Si含有合金(負極活物質)を作製する際の合金化処理の時間を50時間へと変更したこと以外は、上述した負極A3と同様の手法により、負極活物質および負極を作製した。なお、得られたSi含有合金(負極活物質)粉末の平均粒子径は0.3μmであった。 (Negative electrode A4)
A negative electrode active material and a negative electrode were prepared by the same method as that of the negative electrode A3 described above, except that the time of alloying treatment for preparing the Si-containing alloy (negative electrode active material) was changed to 50 hours. The average particle size of the obtained Si-containing alloy (negative electrode active material) powder was 0.3 μm.
Si含有合金(負極活物質)を作製する際の合金化処理の時間を50時間へと変更したこと以外は、上述した負極A3と同様の手法により、負極活物質および負極を作製した。なお、得られたSi含有合金(負極活物質)粉末の平均粒子径は0.3μmであった。 (Negative electrode A4)
A negative electrode active material and a negative electrode were prepared by the same method as that of the negative electrode A3 described above, except that the time of alloying treatment for preparing the Si-containing alloy (negative electrode active material) was changed to 50 hours. The average particle size of the obtained Si-containing alloy (negative electrode active material) powder was 0.3 μm.
(負極A5)
Si含有合金の組成をSi90Ti10へと変更したこと以外は、上述した負極A1と同様の手法により、負極活物質および負極を作製した。なお、得られたケイ素含有合金(負極活物質)粉末の平均粒子径は0.3μmであった。 (Negative electrode A5)
A negative electrode active material and a negative electrode were prepared in the same manner as the negative electrode A1 described above, except that the composition of the Si-containing alloy was changed to Si 90 Ti 10 . In addition, the average particle diameter of the obtained silicon-containing alloy (negative electrode active material) powder was 0.3 μm.
Si含有合金の組成をSi90Ti10へと変更したこと以外は、上述した負極A1と同様の手法により、負極活物質および負極を作製した。なお、得られたケイ素含有合金(負極活物質)粉末の平均粒子径は0.3μmであった。 (Negative electrode A5)
A negative electrode active material and a negative electrode were prepared in the same manner as the negative electrode A1 described above, except that the composition of the Si-containing alloy was changed to Si 90 Ti 10 . In addition, the average particle diameter of the obtained silicon-containing alloy (negative electrode active material) powder was 0.3 μm.
[負極活物質の組織構造の分析]
上述した負極A1~A5の作製に用いたそれぞれの負極活物質(Si含有合金)の組織構造を電子回折法により分析した結果、負極A1~A5のいずれについてもシリサイド相(TiSi2)の結晶性を示す回折スポットおよびハローパターンが観察され、母相であるアモルファスSi相中に結晶性のシリサイド相が分散した組織構造を有することが確認された。 [Analysis of the structure of the anode active material]
As a result of analyzing the structure of each of the negative electrode active materials (Si-containing alloys) used for the preparation of the negative electrodes A1 to A5 by the electron diffraction method, the crystallinity of the silicide phase (TiSi 2 ) for any of the negative electrodes A1 to A5. A diffraction spot and a halo pattern were observed, and it was confirmed that the amorphous Si phase as a parent phase had a structure in which crystalline silicide phases were dispersed.
上述した負極A1~A5の作製に用いたそれぞれの負極活物質(Si含有合金)の組織構造を電子回折法により分析した結果、負極A1~A5のいずれについてもシリサイド相(TiSi2)の結晶性を示す回折スポットおよびハローパターンが観察され、母相であるアモルファスSi相中に結晶性のシリサイド相が分散した組織構造を有することが確認された。 [Analysis of the structure of the anode active material]
As a result of analyzing the structure of each of the negative electrode active materials (Si-containing alloys) used for the preparation of the negative electrodes A1 to A5 by the electron diffraction method, the crystallinity of the silicide phase (TiSi 2 ) for any of the negative electrodes A1 to A5. A diffraction spot and a halo pattern were observed, and it was confirmed that the amorphous Si phase as a parent phase had a structure in which crystalline silicide phases were dispersed.
また、上述した負極A1~A5の作製に用いたそれぞれの負極活物質(Si含有合金)の組織構造をX線回折測定法により分析した。X線回折測定法に用いた装置および条件は以下の通りである。
Further, the structure of each of the negative electrode active materials (Si-containing alloys) used for the production of the negative electrodes A1 to A5 described above was analyzed by an X-ray diffraction measurement method. The apparatus and conditions used for the X-ray diffraction measurement method are as follows.
装置名:リガク社製、X線回折装置(SmartLab9kW)
電圧・電流:45kV・200mA
X線波長:CuKα1
ここで、それぞれの負極活物質(Si含有合金)について取得されたX線回折スペクトルを図5A~図5Eに示す。また、これらのX線回折スペクトルから得られる2θ=24~33°の範囲におけるSiの(111)面の回折ピーク強度Aに対する、2θ=37~45°の範囲におけるTiSi2の回折ピーク強度Bの比の値(B/A)を下記の表2~6に示す。なお、このX線回折分析により、ケイ素含有合金に含まれるTiはすべてシリサイド(TiSi2)相として存在していることも確認された。 Device name: X-ray diffractometer (SmartLab9kW) manufactured by Rigaku Corporation
Voltage / Current: 45kV / 200mA
X-ray wavelength: CuKα1
Here, X-ray diffraction spectra obtained for the respective negative electrode active materials (Si-containing alloys) are shown in FIGS. 5A to 5E. Further, the diffraction peak intensity B of TiSi 2 in the range of 2θ = 37 to 45 ° with respect to the diffraction peak intensity A of the (111) plane of Si in the range of 2θ = 24 to 33 ° obtained from these X-ray diffraction spectra. The ratio values (B / A) are shown in Tables 2 to 6 below. This X-ray diffraction analysis also confirmed that all Ti contained in the silicon-containing alloy was present as a silicide (TiSi 2 ) phase.
電圧・電流:45kV・200mA
X線波長:CuKα1
ここで、それぞれの負極活物質(Si含有合金)について取得されたX線回折スペクトルを図5A~図5Eに示す。また、これらのX線回折スペクトルから得られる2θ=24~33°の範囲におけるSiの(111)面の回折ピーク強度Aに対する、2θ=37~45°の範囲におけるTiSi2の回折ピーク強度Bの比の値(B/A)を下記の表2~6に示す。なお、このX線回折分析により、ケイ素含有合金に含まれるTiはすべてシリサイド(TiSi2)相として存在していることも確認された。 Device name: X-ray diffractometer (SmartLab9kW) manufactured by Rigaku Corporation
Voltage / Current: 45kV / 200mA
X-ray wavelength: CuKα1
Here, X-ray diffraction spectra obtained for the respective negative electrode active materials (Si-containing alloys) are shown in FIGS. 5A to 5E. Further, the diffraction peak intensity B of TiSi 2 in the range of 2θ = 37 to 45 ° with respect to the diffraction peak intensity A of the (111) plane of Si in the range of 2θ = 24 to 33 ° obtained from these X-ray diffraction spectra. The ratio values (B / A) are shown in Tables 2 to 6 below. This X-ray diffraction analysis also confirmed that all Ti contained in the silicon-containing alloy was present as a silicide (TiSi 2 ) phase.
次いで、上記で得られた正極C1~C12と、上記で得られた負極A1~A5とを、下記の表2~6に示すように組み合わせて、実施例1に準じて電池を作製した(実施例1~48および比較例1~12)。
Next, the positive electrodes C1 to C12 obtained above and the negative electrodes A1 to A5 obtained above were combined as shown in the following Tables 2 to 6 to produce a battery according to Example 1 (implementation). Examples 1 to 48 and comparative examples 1 to 12).
その後、上記で得られた各電池の発電要素を評価セル取り付け冶具にセットし、正極リードと負極リードを発電要素の各タブ端部に取り付け、試験を行った。
Thereafter, the power generation element of each battery obtained above was set on an evaluation cell mounting jig, and a positive electrode lead and a negative electrode lead were attached to each tab end of the power generation element, and a test was performed.
[電池特性の評価]
上記で作製したラミネート型電池に対して、以下の条件で初充電処理および活性化処理を行い、性能を評価した。 [Evaluation of battery characteristics]
The laminate type battery produced above was subjected to initial charge treatment and activation treatment under the following conditions, and performance was evaluated.
上記で作製したラミネート型電池に対して、以下の条件で初充電処理および活性化処理を行い、性能を評価した。 [Evaluation of battery characteristics]
The laminate type battery produced above was subjected to initial charge treatment and activation treatment under the following conditions, and performance was evaluated.
(初充電処理)
電池のエージング処理は、以下のように実施した。25℃にて、定電流充電法で0.05C、4時間の充電(SOC約20%)を行った。次いで、25℃にて0.1Cレートで4.45Vまで充電した後、充電を止め、その状態(SOC約70%)で約2日間(48時間)保持した。 (First charging process)
The battery aging treatment was performed as follows. At 25 ° C., the battery was charged at a constant current charging method of 0.05 C for 4 hours (SOC approximately 20%). Next, after charging to 4.45 V at a 0.1 C rate at 25 ° C., the charging was stopped and the state (SOC about 70%) was maintained for about 2 days (48 hours).
電池のエージング処理は、以下のように実施した。25℃にて、定電流充電法で0.05C、4時間の充電(SOC約20%)を行った。次いで、25℃にて0.1Cレートで4.45Vまで充電した後、充電を止め、その状態(SOC約70%)で約2日間(48時間)保持した。 (First charging process)
The battery aging treatment was performed as follows. At 25 ° C., the battery was charged at a constant current charging method of 0.05 C for 4 hours (SOC approximately 20%). Next, after charging to 4.45 V at a 0.1 C rate at 25 ° C., the charging was stopped and the state (SOC about 70%) was maintained for about 2 days (48 hours).
(ガス除去処理1)
熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行い仮封止を行った。さらに、ローラーで加圧(面圧0.5±0.1MPa)成形し電極とセパレータとを十分に密着させた。 (Gas removal treatment 1)
One side temporarily sealed by thermocompression bonding was opened, gas was removed at 10 ± 3 hPa for 5 minutes, and then thermocompression bonding was performed again to perform temporary sealing. Further, pressurization with a roller (surface pressure 0.5 ± 0.1 MPa) was performed, and the electrode and the separator were sufficiently adhered.
熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行い仮封止を行った。さらに、ローラーで加圧(面圧0.5±0.1MPa)成形し電極とセパレータとを十分に密着させた。 (Gas removal treatment 1)
One side temporarily sealed by thermocompression bonding was opened, gas was removed at 10 ± 3 hPa for 5 minutes, and then thermocompression bonding was performed again to perform temporary sealing. Further, pressurization with a roller (surface pressure 0.5 ± 0.1 MPa) was performed, and the electrode and the separator were sufficiently adhered.
(活性化処理)
25℃にて、定電流充電法で0.1Cで電圧が4.45Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを2回行った。同様に、25℃にて、定電流充電法で0.1Cで4.55Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回、0.1Cで4.65Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行った。更に、25℃にて、定電流充電法で、0.1Cで4.75Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行った。 (Activation process)
After charging at 25 ° C. by a constant current charging method at 0.1 C until the voltage reached 4.45 V, a cycle of discharging to 0.1 V at 0.1 C was performed twice. Similarly, after charging at 25 ° C. to 4.55 V at 0.1 C by the constant current charging method, a cycle of discharging to 2.0 V at 0.1 C once is 4.65 V at 0.1 C. After being charged until it was, a cycle of discharging to 2.0 V at 0.1 C was performed once. Furthermore, the battery was charged at 25 ° C. by a constant current charging method until it reached 4.75 V at 0.1 C, and then discharged once to 2.0 V at 0.1 C.
25℃にて、定電流充電法で0.1Cで電圧が4.45Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを2回行った。同様に、25℃にて、定電流充電法で0.1Cで4.55Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回、0.1Cで4.65Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行った。更に、25℃にて、定電流充電法で、0.1Cで4.75Vとなるまで充電した後、0.1Cで2.0Vまで放電するサイクルを1回行った。 (Activation process)
After charging at 25 ° C. by a constant current charging method at 0.1 C until the voltage reached 4.45 V, a cycle of discharging to 0.1 V at 0.1 C was performed twice. Similarly, after charging at 25 ° C. to 4.55 V at 0.1 C by the constant current charging method, a cycle of discharging to 2.0 V at 0.1 C once is 4.65 V at 0.1 C. After being charged until it was, a cycle of discharging to 2.0 V at 0.1 C was performed once. Furthermore, the battery was charged at 25 ° C. by a constant current charging method until it reached 4.75 V at 0.1 C, and then discharged once to 2.0 V at 0.1 C.
(ガス除去処理2)
熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行い本封止を行った。さらに、ローラーで加圧(面圧0.5±0.1MPa)成形し電極とセパレータとを十分に密着させた。 (Gas removal process 2)
One side temporarily sealed by thermocompression bonding was opened, gas was removed at 10 ± 3 hPa for 5 minutes, and then thermocompression bonding was performed again to perform main sealing. Further, pressurization with a roller (surface pressure 0.5 ± 0.1 MPa) was performed, and the electrode and the separator were sufficiently adhered.
熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行い本封止を行った。さらに、ローラーで加圧(面圧0.5±0.1MPa)成形し電極とセパレータとを十分に密着させた。 (Gas removal process 2)
One side temporarily sealed by thermocompression bonding was opened, gas was removed at 10 ± 3 hPa for 5 minutes, and then thermocompression bonding was performed again to perform main sealing. Further, pressurization with a roller (surface pressure 0.5 ± 0.1 MPa) was performed, and the electrode and the separator were sufficiently adhered.
(サイクル耐久性の評価)
上記で作製した各リチウムイオン二次電池(コインセル)について以下の充放電試験条件に従ってサイクル耐久性評価を行った。 (Evaluation of cycle durability)
Each of the lithium ion secondary batteries (coin cells) produced above was evaluated for cycle durability according to the following charge / discharge test conditions.
上記で作製した各リチウムイオン二次電池(コインセル)について以下の充放電試験条件に従ってサイクル耐久性評価を行った。 (Evaluation of cycle durability)
Each of the lithium ion secondary batteries (coin cells) produced above was evaluated for cycle durability according to the following charge / discharge test conditions.
(充放電試験条件)
1)充放電試験機:HJ0501SM8A(北斗電工株式会社製)
2)充放電条件[充電過程]0.3C、2V→10mV(定電流・定電圧モード)
[放電過程]0.3C、10mV→2V(定電流モード)
3)恒温槽:PFU-3K(エスペック株式会社製)
4)評価温度:300K(27℃)。 (Charge / discharge test conditions)
1) Charge / discharge tester: HJ0501SM8A (Hokuto Denko Co., Ltd.)
2) Charging / discharging conditions [charging process] 0.3C, 2V → 10mV (constant current / constant voltage mode)
[Discharge process] 0.3C, 10mV → 2V (constant current mode)
3) Thermostatic bath: PFU-3K (Espec Corp.)
4) Evaluation temperature: 300K (27 ° C.).
1)充放電試験機:HJ0501SM8A(北斗電工株式会社製)
2)充放電条件[充電過程]0.3C、2V→10mV(定電流・定電圧モード)
[放電過程]0.3C、10mV→2V(定電流モード)
3)恒温槽:PFU-3K(エスペック株式会社製)
4)評価温度:300K(27℃)。 (Charge / discharge test conditions)
1) Charge / discharge tester: HJ0501SM8A (Hokuto Denko Co., Ltd.)
2) Charging / discharging conditions [charging process] 0.3C, 2V → 10mV (constant current / constant voltage mode)
[Discharge process] 0.3C, 10mV → 2V (constant current mode)
3) Thermostatic bath: PFU-3K (Espec Corp.)
4) Evaluation temperature: 300K (27 ° C.).
評価用セルは、充放電試験機を使用して、上記評価温度に設定された恒温槽中にて、充電過程(評価用電極へのLi挿入過程をいう)では、定電流・定電圧モードとし、0.1mAにて2Vから10mVまで充電した。その後、放電過程(評価用電極からのLi脱離過程をいう)では、定電流モードとし、0.3C、10mVから2Vまで放電した。以上の充放電サイクルを1サイクルとして、同じ充放電条件にて、初期サイクル(1サイクル)~100サイクルまで充放電試験を行った。そして、1サイクル目の放電容量に対する100サイクル目の放電容量の割合(放電容量維持率[%])を求めた結果を、下記の表2~6に示す。
The evaluation cell is set to the constant current / constant voltage mode in the charging process (referring to the Li insertion process to the evaluation electrode) in the thermostat set to the above evaluation temperature using a charge / discharge tester. The battery was charged from 2 V to 10 mV at 0.1 mA. Thereafter, in a discharge process (referring to a Li desorption process from the electrode for evaluation), a constant current mode was set and discharge was performed from 0.3 C, 10 mV to 2 V. The charge / discharge test was conducted from the initial cycle (1 cycle) to 100 cycles under the same charge / discharge conditions with the above charge / discharge cycle as one cycle. The results of determining the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the first cycle (discharge capacity retention rate [%]) are shown in Tables 2 to 6 below.
表2~6に示す結果から明らかなように、本発明に係る電気デバイスである実施例1~48のリチウムイオン二次電池では、比較例1~12と比べて、優れたサイクル特性(100サイクル目の容量維持率)が達成されていることがわかる。
As is apparent from the results shown in Tables 2 to 6, the lithium ion secondary batteries of Examples 1 to 48, which are electrical devices according to the present invention, have excellent cycle characteristics (100 cycles) compared to Comparative Examples 1 to 12. It can be seen that the eye capacity retention ratio has been achieved.
10、50 リチウムイオン二次電池、
11 負極集電体、
12 正極集電体、
13 負極活物質層、
15 正極活物質層、
17 セパレータ、
19 単電池層、
21、57 発電要素、
25 負極集電板、
27 正極集電板、
29、52 電池外装材、
58 正極タブ、
59 負極タブ。 10, 50 lithium ion secondary battery,
11 negative electrode current collector,
12 positive electrode current collector,
13 negative electrode active material layer,
15 positive electrode active material layer,
17 separator,
19 cell layer,
21, 57 power generation element,
25 negative current collector,
27 positive current collector,
29, 52 Battery exterior material,
58 positive electrode tab,
59 Negative electrode tab.
11 負極集電体、
12 正極集電体、
13 負極活物質層、
15 正極活物質層、
17 セパレータ、
19 単電池層、
21、57 発電要素、
25 負極集電板、
27 正極集電板、
29、52 電池外装材、
58 正極タブ、
59 負極タブ。 10, 50 lithium ion secondary battery,
11 negative electrode current collector,
12 positive electrode current collector,
13 negative electrode active material layer,
15 positive electrode active material layer,
17 separator,
19 cell layer,
21, 57 power generation element,
25 negative current collector,
27 positive current collector,
29, 52 Battery exterior material,
58 positive electrode tab,
59 Negative electrode tab.
Claims (15)
- 正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、
負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、
セパレータと、
を含む発電要素を有する電気デバイスであって、
前記負極活物質層が、下記式(1):
で表される負極活物質を含有し、
前記正極活物質層が、下記式(2):
で表される正極活物質を含有し、
この際、前記Si含有合金は、非晶質または低結晶性のケイ素を主成分とする母相中に、遷移金属のケイ化物を含むシリサイド相が分散されてなる構造を有し、下記化学式(I):
で表される組成を有し、前記Si含有合金のCuKα1線を用いたX線回折測定において、2θ=24~33°の範囲におけるSiの(111)面の回折ピーク強度Aに対する、2θ=37~45°の範囲における遷移金属のケイ化物の回折ピーク強度Bの比の値(B/A)が0.41以上であり、
かつ、前記固溶体正極活物質は、下記式(3):
で表される組成を有する固溶体からなる、電気デバイス。 A positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on the surface of the positive electrode current collector;
A negative electrode in which a negative electrode active material layer containing a negative electrode active material is formed on the surface of the negative electrode current collector;
A separator;
An electrical device having a power generation element comprising:
The negative electrode active material layer has the following formula (1):
Containing a negative electrode active material represented by
The positive electrode active material layer has the following formula (2):
A positive electrode active material represented by
In this case, the Si-containing alloy has a structure in which a silicide phase containing a silicide of a transition metal is dispersed in a parent phase mainly composed of amorphous or low crystalline silicon. I):
In the X-ray diffraction measurement using the CuKα1 line of the Si-containing alloy, 2θ = 37 with respect to the diffraction peak intensity A of the (111) plane of Si in the range of 2θ = 24 to 33 °. The value (B / A) of the diffraction peak intensity B of the transition metal silicide in the range of ˜45 ° is 0.41 or more,
And the said solid solution positive electrode active material is following formula (3):
An electrical device comprising a solid solution having a composition represented by: - 前記B/Aが0.89以上である、請求項1に記載の電気デバイス。 The electric device according to claim 1, wherein the B / A is 0.89 or more.
- 前記B/Aが2.55以上である、請求項2に記載の電気デバイス。 The electric device according to claim 2, wherein the B / A is 2.55 or more.
- 前記B/Aが7.07以上である、請求項3に記載の電気デバイス。 The electric device according to claim 3, wherein the B / A is 7.07 or more.
- Siの(111)面の回折ピーク強度A(cps)が6000~25000であり、遷移金属のケイ化物の回折ピーク強度B(cps)が9000~46000である、請求項1~4のいずれか1項に記載の電気デバイス。 5. The diffraction peak intensity A (cps) of Si (111) plane is 6000 to 25000, and the diffraction peak intensity B (cps) of transition metal silicide is 9000 to 46000. The electrical device according to item.
- Siの(111)面の回折ピーク強度A(cps)が6000~15000であり、遷移金属のケイ化物の回折ピーク強度B(cps)が25000~46000である、請求項1~5のいずれか1項に記載の電気デバイス。 The diffraction peak intensity A (cps) of the Si (111) plane is 6000 to 15000, and the diffraction peak intensity B (cps) of the transition metal silicide is 25000 to 46000. The electrical device according to item.
- 前記母相は、前記シリサイド相よりもアモルファス化している、請求項1~6のいずれか1項に記載の電気デバイス。 The electric device according to any one of claims 1 to 6, wherein the matrix phase is more amorphous than the silicide phase.
- 前記シリサイド相のサイズが50nm以下である、請求項1~7のいずれか1項に記載の電気デバイス。 The electric device according to any one of claims 1 to 7, wherein a size of the silicide phase is 50 nm or less.
- 前記化学式(I)において、Mはチタン(Ti)である、請求項1~8のいずれか1項に記載の電気デバイス。 The electric device according to any one of claims 1 to 8, wherein M is titanium (Ti) in the chemical formula (I).
- 前記化学式(I)において、7<z<100である、請求項1~9のいずれか1項に記載の電気デバイス。 10. The electrical device according to claim 1, wherein 7 <z <100 in the chemical formula (I).
- 前記固溶体正極活物質は、X線回折(XRD)測定において、20-23°、35-40°(101)、42-45°(104)および64-65(108)/65-66(110)に、岩塩型層状構造を示す回折ピークを有する、請求項1~10のいずれか1項に記載の電気デバイス。 The solid solution positive electrode active material has 20-23 °, 35-40 ° (101), 42-45 ° (104) and 64-65 (108) / 65-66 (110) in X-ray diffraction (XRD) measurement. The electric device according to any one of claims 1 to 10, which has a diffraction peak showing a rock salt type layered structure.
- 前記固溶体正極活物質は、X線回折(XRD)測定において、岩塩型層状構造の回折ピーク以外に帰属されるピークを実質的に有していない、請求項1~11のいずれか1項に記載の電気デバイス。 The solid solution positive electrode active material according to any one of claims 1 to 11, which has substantially no peak attributed to other than a diffraction peak of a rock salt type layered structure in X-ray diffraction (XRD) measurement. Electrical devices.
- 前記固溶体正極活物質が、X線回折(XRD)測定において、35-40°(101)に3つの回折ピークを有し、42-45°(104)に1つの回折ピークを有する、請求項1~12のいずれか1項に記載の電気デバイス。 The solid solution positive electrode active material has three diffraction peaks at 35-40 ° (101) and one diffraction peak at 42-45 ° (104) in X-ray diffraction (XRD) measurement. The electrical device according to any one of 1 to 12.
- 前記固溶体正極活物質が、X線回折(XRD)測定において、20-23°、35.5-36.5°(101)、43.5-44.5°(104)および64-65(108)/65-66(110)に回折ピークを有する、請求項1~13のいずれか1項に記載の電気デバイス。 The solid solution positive electrode active material was measured at 20-23 °, 35.5-36.5 ° (101), 43.5-44.5 ° (104) and 64-65 (108) in X-ray diffraction (XRD) measurement. The electrical device according to any one of claims 1 to 13, which has a diffraction peak at) / 65-66 (110).
- リチウムイオン二次電池である、請求項1~14のいずれか1項に記載の電気デバイス。 The electrical device according to any one of claims 1 to 14, which is a lithium ion secondary battery.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016564522A JP6380553B2 (en) | 2014-12-17 | 2014-12-17 | Electrical device |
PCT/JP2014/083481 WO2016098215A1 (en) | 2014-12-17 | 2014-12-17 | Electrical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/083481 WO2016098215A1 (en) | 2014-12-17 | 2014-12-17 | Electrical device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016098215A1 true WO2016098215A1 (en) | 2016-06-23 |
Family
ID=56126138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/083481 WO2016098215A1 (en) | 2014-12-17 | 2014-12-17 | Electrical device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6380553B2 (en) |
WO (1) | WO2016098215A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018073570A (en) * | 2016-10-27 | 2018-05-10 | 日産自動車株式会社 | Nonaqueous electrolyte secondary battery |
JP2019003814A (en) * | 2017-06-14 | 2019-01-10 | 日産自動車株式会社 | Electric device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004311429A (en) * | 2003-03-26 | 2004-11-04 | Canon Inc | Electrode material for lithium secondary battery, electrode structure having the electrode material, and secondary battery having the electrode structure |
JP2004335272A (en) * | 2003-05-08 | 2004-11-25 | Matsushita Electric Ind Co Ltd | Negative electrode material for nonaqueous electrolyte secondary battery |
WO2006129415A1 (en) * | 2005-06-03 | 2006-12-07 | Matsushita Electric Industrial Co., Ltd. | Rechargeable battery with nonaqueous electrolyte and process for producing negative electrode |
JP2007165300A (en) * | 2005-11-17 | 2007-06-28 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery |
JP2013187016A (en) * | 2012-03-07 | 2013-09-19 | Hitachi Chemical Co Ltd | Composite material, method for producing the same, anode for lithium-ion secondary battery, and lithium-ion secondary battery |
WO2014058068A1 (en) * | 2012-10-12 | 2014-04-17 | 日産自動車株式会社 | Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing positive electrode active substance for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell |
WO2014185343A1 (en) * | 2013-05-13 | 2014-11-20 | 日産自動車株式会社 | Positive electrode active material containing solid solution active material, positive electrode containing said positive electrode active material, and nonaqueous electrolyte secondary battery using said positive electrode |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150303465A1 (en) * | 2012-11-22 | 2015-10-22 | Nissan Motor Co., Ltd. | Negative electrode for electric device and electric device using the same |
-
2014
- 2014-12-17 WO PCT/JP2014/083481 patent/WO2016098215A1/en active Application Filing
- 2014-12-17 JP JP2016564522A patent/JP6380553B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004311429A (en) * | 2003-03-26 | 2004-11-04 | Canon Inc | Electrode material for lithium secondary battery, electrode structure having the electrode material, and secondary battery having the electrode structure |
JP2004335272A (en) * | 2003-05-08 | 2004-11-25 | Matsushita Electric Ind Co Ltd | Negative electrode material for nonaqueous electrolyte secondary battery |
WO2006129415A1 (en) * | 2005-06-03 | 2006-12-07 | Matsushita Electric Industrial Co., Ltd. | Rechargeable battery with nonaqueous electrolyte and process for producing negative electrode |
JP2007165300A (en) * | 2005-11-17 | 2007-06-28 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery |
JP2013187016A (en) * | 2012-03-07 | 2013-09-19 | Hitachi Chemical Co Ltd | Composite material, method for producing the same, anode for lithium-ion secondary battery, and lithium-ion secondary battery |
WO2014058068A1 (en) * | 2012-10-12 | 2014-04-17 | 日産自動車株式会社 | Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing positive electrode active substance for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell |
WO2014185343A1 (en) * | 2013-05-13 | 2014-11-20 | 日産自動車株式会社 | Positive electrode active material containing solid solution active material, positive electrode containing said positive electrode active material, and nonaqueous electrolyte secondary battery using said positive electrode |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018073570A (en) * | 2016-10-27 | 2018-05-10 | 日産自動車株式会社 | Nonaqueous electrolyte secondary battery |
JP2019003814A (en) * | 2017-06-14 | 2019-01-10 | 日産自動車株式会社 | Electric device |
Also Published As
Publication number | Publication date |
---|---|
JP6380553B2 (en) | 2018-08-29 |
JPWO2016098215A1 (en) | 2017-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6252602B2 (en) | Electrical device | |
JP6202106B2 (en) | Electrical device | |
JP6187602B2 (en) | Electrical device | |
WO2017187637A1 (en) | Non-aqueous electrolyte secondary battery | |
JP6327361B2 (en) | Electrical device | |
JP6252600B2 (en) | Electrical device | |
JP6202107B2 (en) | Electrical device | |
JP2018063920A (en) | Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof | |
JP6252604B2 (en) | Electrical device | |
JP6380553B2 (en) | Electrical device | |
JP6737091B2 (en) | Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP6380554B2 (en) | Electrical device | |
JP6252603B2 (en) | Electrical device | |
JP6962015B2 (en) | Electrical device | |
JP6252601B2 (en) | Electrical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14908425 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016564522 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14908425 Country of ref document: EP Kind code of ref document: A1 |