WO2016091016A1 - Procédé basé sur une transformation décisive de marqueur de noyau pour séparer des globules blancs collés - Google Patents
Procédé basé sur une transformation décisive de marqueur de noyau pour séparer des globules blancs collés Download PDFInfo
- Publication number
- WO2016091016A1 WO2016091016A1 PCT/CN2015/092590 CN2015092590W WO2016091016A1 WO 2016091016 A1 WO2016091016 A1 WO 2016091016A1 CN 2015092590 W CN2015092590 W CN 2015092590W WO 2016091016 A1 WO2016091016 A1 WO 2016091016A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- white blood
- blood cell
- image
- binary image
- cell
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
- G06T2207/20152—Watershed segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30024—Cell structures in vitro; Tissue sections in vitro
Definitions
- the invention belongs to the field of biomedical engineering, and particularly relates to a method for blocking adhesion white blood cells based on a nuclear transformation watershed transformation.
- the examination of white blood cells is an important part of clinical tests.
- the inflammation or other diseases in the body can cause the total number of white blood cells and the percentage of various white blood cells to change. Therefore, checking the total number of white blood cells and white blood cell classification counts is an important method for assisting diagnosis.
- the cell image analysis and recognition system has been studied in recent years. Its main task is to segment the collected image by automatic analysis, segment the individual cells, calculate the relevant characteristic parameters of individual cells, and identify the number of different cells.
- white blood cell segmentation directly affects the results of the next steps of cell feature extraction and classification.
- white blood cell segmentation is the most challenging step.
- image segmentation algorithms based on multi-spectral techniques
- image segmentation algorithms based on color models, commonly used color models are RGB, HSI, CMYK, etc.
- Mathematical morphology algorithm image segmentation such as the snake algorithm to segment the cytoplasm on the basis of the nucleus, the traditional watershed algorithm to solve the cell adhesion problem
- image segmentation algorithm based on fuzzy mathematics, such as fuzzy C-means algorithm, K-means clustering segmentation of white blood cells Wait.
- fuzzy C-means algorithm K-means clustering segmentation of white blood cells Wait.
- the splitting process takes a long time.
- the segmented image is limited by the white blood cell bank.
- the object of the present invention is to overcome the above-mentioned deficiencies of the prior art, and to provide a method for blocking leukocyte differentiation based on nuclear marker watershed transformation, which solves the problem of peripheral blood adhesion leukocyte segmentation.
- the algorithm is simple and time-consuming, and it has good robustness to different cell bank different forms of adhesion leukocyte segmentation and precise segmentation of white blood cell nuclei.
- a method for segmentation of adhesion white blood cells based on watershed transformation of nuclear markers comprising the following steps:
- the specific method of the step (1) is: observing the grayscale image in the matlab, determining the gray value of the white blood cell nucleus, the red blood cell and the background; calculating the global threshold T of the gray histogram by the graythresh function, and then using the im2bw function pair
- the grayscale image is thresholded to obtain the binogram of white blood cells and red blood cells.
- the gray histogram is analyzed.
- the fraction of the white blood cells is segmented by the im2bw function threshold to obtain the white matter nuclei only.
- Binary image I analyzing the B component image, analyzing the pixel values of the red blood cell and white blood cell nuclear color in the image, and obtaining the binary image III containing only the white blood cell core and the red blood cell region by global threshold segmentation technology;
- step (5) The specific method of the step (5) is:
- the target cell nucleus is determined to be a nucleus nucleus, wherein the area is represented by the number of pixels in the white blood cell area; at this time, the centroid coordinate position of the two target nucleus is obtained, and the two targets are Perform centroid-linked operation to form a nuclear nucleus of the lobulated nucleus as an internal seed point;
- step (7) The specific method of the step (7) is:
- the target cell disappears, the cell is not treated; if the target number is increased, the multiple targets after corrosion are used as a new internal seed point to perform a watershed transformation based on distance transformation, and the watershed ridge is displayed on the target adhesion cell, adhesion
- the cells can be separated;
- the method is simple to operate, and it takes a short time.
- the watershed transformation based on the inner nucleus of the nucleus is proposed, which avoids the occurrence of over-segmentation and improves the stability of the watershed transformation adhesion segmentation.
- a new method for segmentation of peripheral blood adhesion leukocytes is proposed.
- the algorithm has high segmentation precision and strong stability, which is superior to traditional algorithms.
- Figure 1 is a flow chart of peripheral blood adhesion leukocyte segmentation system
- Figure 2 shows images of peripheral blood cells from two different illuminations
- FIG. 3 shows the white matter nuclear I segmentation binary map
- FIG. 4 shows the effect of white blood cell and red blood cell II segmentation
- Figure 5 shows the effect of white blood cell nucleus and red blood cell III segmentation
- FIG. 6 shows the red blood cell IV segmentation effect
- Figure 8 shows the segmented nuclear X-value map
- Figure 9 shows the internal seed point VI binary map
- Figure 10 shows the preliminary segmentation of the white blood cell Y binary map.
- FIG 11 shows the watershed ridge obtained by X
- FIG. 12 shows the result of the first watershed transformation VII-1
- FIG. 13 shows the result of the first watershed transformation VII-2
- FIG. 14 shows the separation of the precise white blood cell core Z1
- FIG. 15 shows the separation of precise white blood cells Z2
- a specific implementation process of a peripheral blood adhesion white blood cell image segmentation algorithm based on nuclear labeling is as follows:
- white blood cell recognition medical experts usually distinguish white blood cells and red blood cells according to their characteristics such as color and shape, and discriminate white blood cell types based on information such as texture and space.
- a multi-user peripheral blood cell formation cell bank was collected, and the white blood cells were segmented from the perspective of color and space. The characteristics of the color channel of the cell bank image were analyzed.
- White space is precisely segmented by color space and morphological manipulation.
- Adhesion problems present in leukocytes can be accurately and stably differentiated by leukocyte adhesion by improved nuclear marker-based watershed transformation. The algorithm is simple and easy to operate, and can effectively solve the problem of cell adhesion.
- the cell images under different illuminations of different cell banks are shown in Fig. 2, which has higher segmentation rate and good robustness.
- the white blood cell binarized images may have some red blood cells and other impurities or cell adhesions, but the number and morphology of white blood cells remain intact, there is no problem of leukocyte missing or white blood cell defects, and inaccurate white blood cell segmentation. It is realized by binarized image subtraction technology.
- the segmentation method is: firstly, the original RGB color image is converted into a gray space with a pixel range of 0 to 1. By setting different thresholds, the threshold value of the gray image is 0.5 and the threshold segmentation based on the ostu adaptive threshold segmentation technique is respectively performed.
- the ostu-based adaptive threshold segmentation can be used to obtain the binary image of the white blood cell nucleus and the red blood cell III, as shown in Fig. 5.
- the image of erythrocyte IV can be obtained by subtracting the white blood cell nuclear map I from the binary image of the white blood cell nucleus and the red blood cell.
- the white blood cell and red blood cell binary map II minus the red blood cell binary map V can obtain an inaccurate white blood cell binary image V, as shown in FIG.
- the internal seeds are also obtained from the nuclear nuclei.
- the cell nucleus is taken as an internal seed to determine the number of white blood cells and to resolve the adhesion problems of white blood cells.
- the method of obtaining the nucleus is to first convert the original RGB color image into the HSI space, and extract the G and S channel components of the two spaces respectively. Observe the G component and find that the white blood cell and platelet pixel values are small, and other components have larger pixels. Value, observe the S component can be found, white blood cells and platelets have larger pixel values, other components have smaller pixel values, normalize the two-channel components, and then subtract the pixel values to enhance the nuclear image. .
- the binarization and morphological processing of the obtained enhanced image can obtain a nuclear binary image X, and the segmentation effect is shown in FIG.
- the nucleus of the nucleus in the leukocyte is multinuclear
- the centroid is connected to each other, and the multinucleus becomes a nucleus.
- the number of white blood cells be determined, but also the internal seed of the watershed transformation.
- Solve cell adhesion problems For the adhesion of leukocyte nucleus in leukocytes, a flat disc structural element with a radius of 1 is created, and a morphological corrosion operation is performed on the target nuclei to obtain a seed point of the adherent nuclei.
- the internal seed image obtained by the method is as shown in FIG.
- a cell nucleus corresponds to a white blood cell
- an internal seed binary image VI determines the number of white blood cells.
- a large area of impurity such as excess red blood cells in the image V can be removed.
- the logical and subsequent images of the two are used as the marker images, and the inaccurate white blood cell image V is used as a mask to perform a morphological reconstruction operation to obtain an accurate white blood cell binarization map.
- Y is the external seed, as shown in Figure 10.
- the binary image Z1 can be solved by the binary image VII-2 and the binary image X, and the separated nuclear binary image Z1 is shown in FIG.
- the binary image VII-2 may contain impurities such as red blood cells, and the binary image Z1 is used as a marker image, and VII-2 is used as a mask to perform a morphological reconstruction operation on the two to obtain a precise white blood cell binary value.
- Image Z2 as shown in FIG.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
L'invention concerne un procédé basé sur une transformation décisive de marqueur de noyau pour séparer des globules blancs collés. Premièrement, une image RVB d'origine est entrée, un problème difficile commun lors du traitement d'images de leucocytes du sang périphérique et de leucocytes de la moelle épinière est découvert ; ensuite, des transformations d'espace couleur HIS et LUV et d'espace d'échelle de gris sont réalisées sur l'image d'origine et des caractéristiques d'images de composantes de chaque canal sont analysées ; ensuite, une segmentation de seuil et une soustraction d'image sont réalisées sur une composante B et une image d'échelle de gris pour acquérir une image de globule blanc contenant certaines impuretés ; immédiatement après, un groupe de globules blancs nucléés est acquis au moyen d'une technique d'amélioration d'image pour servir de cible marquée ; puis des opérations morphologiques et des transformations décisives sont réalisées sur le groupe de globules blancs nucléés et l'image de globule blanc contenant les impuretés pour éliminer les impuretés afin de produire une image de globule blanc précise et résoudre le problème d'adhérence de cellule ; et enfin, des globules blancs cibles sont fixés et transformés au niveau d'un espace LUV, l'image de globule blanc est groupée à partir des perspectives d'espace et de couleur pour produire un noyau de globule blanc précis.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410778791.0A CN104392460B (zh) | 2014-12-12 | 2014-12-12 | 一种基于胞核标记分水岭变换的粘连白细胞分割方法 |
CN201410778791.0 | 2014-12-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016091016A1 true WO2016091016A1 (fr) | 2016-06-16 |
Family
ID=52610358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/092590 WO2016091016A1 (fr) | 2014-12-12 | 2015-10-23 | Procédé basé sur une transformation décisive de marqueur de noyau pour séparer des globules blancs collés |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104392460B (fr) |
WO (1) | WO2016091016A1 (fr) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108830874A (zh) * | 2018-04-19 | 2018-11-16 | 麦克奥迪(厦门)医疗诊断系统有限公司 | 一种数字病理全切片图像空白区域自动分割方法 |
CN110499233A (zh) * | 2019-08-27 | 2019-11-26 | 广东环凯生物科技有限公司 | 一种用于菌落计数器的光源系统、计数器和计数方法 |
CN110595959A (zh) * | 2019-04-19 | 2019-12-20 | 齐鲁工业大学 | 一种糖膏颗粒粒度分析系统及分析方法 |
CN110610490A (zh) * | 2019-09-11 | 2019-12-24 | 哈尔滨理工大学 | 一种病变细胞图像中白细胞的定位方法 |
CN110782440A (zh) * | 2019-10-22 | 2020-02-11 | 华中农业大学 | 一种作物籽粒性状测量方法 |
CN111681185A (zh) * | 2020-06-10 | 2020-09-18 | 合肥工业大学 | 一种基于沥青混合料X-ray扫描图像的有限元建模方法 |
CN111797742A (zh) * | 2020-06-28 | 2020-10-20 | 扬州大学广陵学院 | 一种小麦胚乳蛋白体面积的测定方法 |
CN112233107A (zh) * | 2020-11-04 | 2021-01-15 | 安徽大学 | 基于图像处理技术的葵花籽品级分类方法 |
CN112396618A (zh) * | 2020-11-12 | 2021-02-23 | 北京科技大学 | 一种基于图像处理的晶界提取及晶粒度测量方法 |
CN112668565A (zh) * | 2020-12-10 | 2021-04-16 | 中国科学院西安光学精密机械研究所 | 一种针对具有遮挡形变的圆形目标判读方法 |
CN112785571A (zh) * | 2021-01-20 | 2021-05-11 | 浙江理工大学 | 一种基于改进分水岭的名优茶嫩叶识别分割方法 |
CN112907545A (zh) * | 2021-02-25 | 2021-06-04 | 湖州师范学院 | 基于图像处理的种子芽长与根长检测方法 |
CN112907558A (zh) * | 2021-03-15 | 2021-06-04 | 南京农业大学 | 油菜籽粒千粒重的全自动图像测定方法 |
CN113240663A (zh) * | 2021-05-31 | 2021-08-10 | 西安建筑科技大学 | 一种基于边缘响应融合算法的传送带矿石粒度检测方法 |
CN113538345A (zh) * | 2021-06-29 | 2021-10-22 | 嵊州市浙江工业大学创新研究院 | 一种基于图像处理的工业瓶罐器件计数方法 |
CN113570628A (zh) * | 2021-07-30 | 2021-10-29 | 西安科技大学 | 一种基于活动轮廓模型的白细胞分割方法 |
CN113744184A (zh) * | 2021-07-27 | 2021-12-03 | 江苏农林职业技术学院 | 一种基于图像处理的乌鳢卵子计数方法 |
CN114067114A (zh) * | 2021-11-12 | 2022-02-18 | 燕山大学 | 一种基于藻类细胞形态的面积核分割计数方法 |
CN115620075A (zh) * | 2022-12-16 | 2023-01-17 | 南昌大学 | 白细胞分类模型用数据集的生成方法、系统及设备 |
WO2023220913A1 (fr) * | 2022-05-17 | 2023-11-23 | 京东方科技集团股份有限公司 | Procédé de traitement d'image de cellule, dispositif électronique et support de stockage |
CN117392154A (zh) * | 2023-12-07 | 2024-01-12 | 华侨大学 | 一种相衬显微细胞图像分割方法及系统 |
CN117575977A (zh) * | 2024-01-17 | 2024-02-20 | 锦恒科技(大连)有限公司 | 一种用于卵巢组织分析的卵泡区域增强方法 |
CN118570397A (zh) * | 2024-07-31 | 2024-08-30 | 山东济矿鲁能煤电股份有限公司阳城煤矿 | 煤矿主井井底积煤与尾绳的3d图像生成与分析系统 |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104392460B (zh) * | 2014-12-12 | 2015-11-04 | 山东大学 | 一种基于胞核标记分水岭变换的粘连白细胞分割方法 |
CN104751462B (zh) * | 2015-03-29 | 2018-12-14 | 迈克医疗电子有限公司 | 一种基于多特征非线性组合的白细胞分割方法 |
CN105139383B (zh) * | 2015-08-11 | 2018-08-10 | 北京理工大学 | 基于定义圆hsv颜色空间的医学图像分割方法 |
CN107492088B (zh) * | 2016-06-11 | 2020-12-04 | 青岛华晶生物技术有限公司 | 一种妇科显微图像中白细胞自动识别与统计方法 |
CN106327490A (zh) * | 2016-08-22 | 2017-01-11 | 中国计量大学 | 一种基于白细胞检测的细胞核分割方法 |
CN106875394B (zh) * | 2016-12-22 | 2020-01-10 | 浙江工业大学 | 相差显微镜细胞主要信息粘连情况的分离与分组方法 |
CN107220647B (zh) * | 2017-06-05 | 2020-03-31 | 中国农业大学 | 一种叶片交叉条件下作物中心点定位方法及系统 |
CN107527343B (zh) * | 2017-08-31 | 2019-11-26 | 山东省农业科学院科技信息研究所 | 一种基于图像处理的双孢蘑菇分级方法 |
CN107705298B (zh) * | 2017-09-19 | 2021-02-05 | 浙江农林大学 | 一种检测心肌细胞核独立情况和粘连情况的方法及系统 |
CN108257124B (zh) * | 2018-01-23 | 2020-08-25 | 江苏康尚生物医疗科技有限公司 | 一种基于图像的白细胞计数方法和系统 |
CN108918481A (zh) * | 2018-04-26 | 2018-11-30 | 南昌大学 | 一种脐静脉内皮细胞荧光分析系统 |
CN108805865B (zh) * | 2018-05-22 | 2019-12-10 | 杭州智微信息科技有限公司 | 一种基于饱和度聚类的骨髓白细胞定位方法 |
CN110135271A (zh) * | 2019-04-19 | 2019-08-16 | 上海依智医疗技术有限公司 | 一种细胞分类方法及装置 |
CN110110807B (zh) * | 2019-05-16 | 2023-01-03 | 福州大学 | 一种基于改进K-means及卷积神经网络的白细胞提取和分类方法 |
CN110060229A (zh) * | 2019-05-29 | 2019-07-26 | 武汉兰丁医学高科技有限公司 | 一种骨髓白细胞的细胞自动定位分割方法 |
CN110223305B (zh) * | 2019-06-12 | 2021-09-10 | 志诺维思(北京)基因科技有限公司 | 细胞分割方法、装置及可读存储介质 |
CN110363762B (zh) * | 2019-07-23 | 2023-03-14 | 腾讯医疗健康(深圳)有限公司 | 细胞检测方法、装置、智能显微镜系统和可读存储介质 |
CN110619640B (zh) * | 2019-08-26 | 2022-02-01 | 济南大学 | 一种基于骨髓细胞图像的粒细胞检测方法及系统 |
CN111091571B (zh) * | 2019-12-12 | 2024-05-14 | 珠海圣美生物诊断技术有限公司 | 细胞核分割方法、装置、电子设备及计算机可读存储介质 |
CN111504885B (zh) * | 2020-04-04 | 2022-03-15 | 电子科技大学 | 一种基于机器视觉的全自动血涂片形态分析装置的分析方法 |
CN112070722A (zh) * | 2020-08-14 | 2020-12-11 | 厦门骁科码生物科技有限公司 | 一种荧光原位杂交细胞核分割方法及系统 |
CN112614142B (zh) * | 2020-12-25 | 2023-05-30 | 华侨大学 | 一种基于多通道图像融合的细胞弱标签制作方法及系统 |
CN113763404B (zh) * | 2021-09-24 | 2023-06-06 | 湖南工业大学 | 基于优化标记和边缘约束分水岭算法的泡沫图像分割方法 |
CN114926398B (zh) * | 2022-04-18 | 2024-03-29 | 太原理工大学 | 基于深度学习图像处理的粘连外周血细胞分割方法 |
CN114565608A (zh) * | 2022-04-26 | 2022-05-31 | 华伦医疗用品(深圳)有限公司 | 一种内窥镜Ai图像识别方法及系统 |
CN116580041B (zh) * | 2023-05-30 | 2024-06-18 | 山东第一医科大学附属眼科研究所(山东省眼科研究所、山东第一医科大学附属青岛眼科医院) | 基于voronoi图的角膜内皮细胞边界分割方法和装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102013102A (zh) * | 2010-12-01 | 2011-04-13 | 华中科技大学 | 一种图像中的粘连细胞分割方法 |
CN103473739A (zh) * | 2013-08-15 | 2013-12-25 | 华中科技大学 | 一种基于支持向量机的白细胞图像精确分割方法与系统 |
CN103985119A (zh) * | 2014-05-08 | 2014-08-13 | 山东大学 | 一种彩色血细胞图像中白细胞的细胞质和细胞核分割方法 |
CN104392460A (zh) * | 2014-12-12 | 2015-03-04 | 山东大学 | 一种基于胞核标记分水岭变换的粘连白细胞分割方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102044069B (zh) * | 2010-12-01 | 2012-05-09 | 华中科技大学 | 一种白细胞图像分割方法 |
CN103020639A (zh) * | 2012-11-27 | 2013-04-03 | 河海大学 | 一种白细胞自动识别计数方法 |
-
2014
- 2014-12-12 CN CN201410778791.0A patent/CN104392460B/zh active Active
-
2015
- 2015-10-23 WO PCT/CN2015/092590 patent/WO2016091016A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102013102A (zh) * | 2010-12-01 | 2011-04-13 | 华中科技大学 | 一种图像中的粘连细胞分割方法 |
CN103473739A (zh) * | 2013-08-15 | 2013-12-25 | 华中科技大学 | 一种基于支持向量机的白细胞图像精确分割方法与系统 |
CN103985119A (zh) * | 2014-05-08 | 2014-08-13 | 山东大学 | 一种彩色血细胞图像中白细胞的细胞质和细胞核分割方法 |
CN104392460A (zh) * | 2014-12-12 | 2015-03-04 | 山东大学 | 一种基于胞核标记分水岭变换的粘连白细胞分割方法 |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108830874A (zh) * | 2018-04-19 | 2018-11-16 | 麦克奥迪(厦门)医疗诊断系统有限公司 | 一种数字病理全切片图像空白区域自动分割方法 |
CN110595959A (zh) * | 2019-04-19 | 2019-12-20 | 齐鲁工业大学 | 一种糖膏颗粒粒度分析系统及分析方法 |
CN110595959B (zh) * | 2019-04-19 | 2023-03-21 | 齐鲁工业大学 | 一种糖膏颗粒粒度分析系统及分析方法 |
CN110499233A (zh) * | 2019-08-27 | 2019-11-26 | 广东环凯生物科技有限公司 | 一种用于菌落计数器的光源系统、计数器和计数方法 |
CN110610490A (zh) * | 2019-09-11 | 2019-12-24 | 哈尔滨理工大学 | 一种病变细胞图像中白细胞的定位方法 |
CN110782440A (zh) * | 2019-10-22 | 2020-02-11 | 华中农业大学 | 一种作物籽粒性状测量方法 |
CN111681185A (zh) * | 2020-06-10 | 2020-09-18 | 合肥工业大学 | 一种基于沥青混合料X-ray扫描图像的有限元建模方法 |
CN111681185B (zh) * | 2020-06-10 | 2023-03-21 | 合肥工业大学 | 一种基于沥青混合料X-ray扫描图像的有限元建模方法 |
CN111797742A (zh) * | 2020-06-28 | 2020-10-20 | 扬州大学广陵学院 | 一种小麦胚乳蛋白体面积的测定方法 |
CN111797742B (zh) * | 2020-06-28 | 2024-04-19 | 扬州大学广陵学院 | 一种小麦胚乳蛋白体面积的测定方法 |
CN112233107A (zh) * | 2020-11-04 | 2021-01-15 | 安徽大学 | 基于图像处理技术的葵花籽品级分类方法 |
CN112233107B (zh) * | 2020-11-04 | 2022-10-25 | 安徽大学 | 基于图像处理技术的葵花籽品级分类方法 |
CN112396618A (zh) * | 2020-11-12 | 2021-02-23 | 北京科技大学 | 一种基于图像处理的晶界提取及晶粒度测量方法 |
CN112396618B (zh) * | 2020-11-12 | 2022-02-18 | 北京科技大学 | 一种基于图像处理的晶界提取及晶粒度测量方法 |
CN112668565A (zh) * | 2020-12-10 | 2021-04-16 | 中国科学院西安光学精密机械研究所 | 一种针对具有遮挡形变的圆形目标判读方法 |
CN112668565B (zh) * | 2020-12-10 | 2023-02-14 | 中国科学院西安光学精密机械研究所 | 一种针对具有遮挡形变的圆形目标判读方法 |
CN112785571A (zh) * | 2021-01-20 | 2021-05-11 | 浙江理工大学 | 一种基于改进分水岭的名优茶嫩叶识别分割方法 |
CN112785571B (zh) * | 2021-01-20 | 2024-04-12 | 浙江理工大学 | 一种基于改进分水岭的名优茶嫩叶识别分割方法 |
CN112907545B (zh) * | 2021-02-25 | 2023-10-10 | 湖州师范学院 | 基于图像处理的种子芽长与根长检测方法 |
CN112907545A (zh) * | 2021-02-25 | 2021-06-04 | 湖州师范学院 | 基于图像处理的种子芽长与根长检测方法 |
CN112907558A (zh) * | 2021-03-15 | 2021-06-04 | 南京农业大学 | 油菜籽粒千粒重的全自动图像测定方法 |
CN112907558B (zh) * | 2021-03-15 | 2023-11-17 | 南京农业大学 | 油菜籽粒千粒重的全自动图像测定方法 |
CN113240663A (zh) * | 2021-05-31 | 2021-08-10 | 西安建筑科技大学 | 一种基于边缘响应融合算法的传送带矿石粒度检测方法 |
CN113538345A (zh) * | 2021-06-29 | 2021-10-22 | 嵊州市浙江工业大学创新研究院 | 一种基于图像处理的工业瓶罐器件计数方法 |
CN113744184A (zh) * | 2021-07-27 | 2021-12-03 | 江苏农林职业技术学院 | 一种基于图像处理的乌鳢卵子计数方法 |
CN113570628A (zh) * | 2021-07-30 | 2021-10-29 | 西安科技大学 | 一种基于活动轮廓模型的白细胞分割方法 |
CN113570628B (zh) * | 2021-07-30 | 2024-04-02 | 西安科技大学 | 一种基于活动轮廓模型的白细胞分割方法 |
CN114067114A (zh) * | 2021-11-12 | 2022-02-18 | 燕山大学 | 一种基于藻类细胞形态的面积核分割计数方法 |
CN114067114B (zh) * | 2021-11-12 | 2024-05-03 | 燕山大学 | 一种基于藻类细胞形态的面积核分割计数方法 |
WO2023220913A1 (fr) * | 2022-05-17 | 2023-11-23 | 京东方科技集团股份有限公司 | Procédé de traitement d'image de cellule, dispositif électronique et support de stockage |
CN115620075A (zh) * | 2022-12-16 | 2023-01-17 | 南昌大学 | 白细胞分类模型用数据集的生成方法、系统及设备 |
CN117392154B (zh) * | 2023-12-07 | 2024-04-12 | 华侨大学 | 一种相衬显微细胞图像分割方法及系统 |
CN117392154A (zh) * | 2023-12-07 | 2024-01-12 | 华侨大学 | 一种相衬显微细胞图像分割方法及系统 |
CN117575977B (zh) * | 2024-01-17 | 2024-04-02 | 锦恒科技(大连)有限公司 | 一种用于卵巢组织分析的卵泡区域增强方法 |
CN117575977A (zh) * | 2024-01-17 | 2024-02-20 | 锦恒科技(大连)有限公司 | 一种用于卵巢组织分析的卵泡区域增强方法 |
CN118570397A (zh) * | 2024-07-31 | 2024-08-30 | 山东济矿鲁能煤电股份有限公司阳城煤矿 | 煤矿主井井底积煤与尾绳的3d图像生成与分析系统 |
Also Published As
Publication number | Publication date |
---|---|
CN104392460B (zh) | 2015-11-04 |
CN104392460A (zh) | 2015-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016091016A1 (fr) | Procédé basé sur une transformation décisive de marqueur de noyau pour séparer des globules blancs collés | |
Lee et al. | Segmentation of overlapping cervical cells in microscopic images with superpixel partitioning and cell-wise contour refinement | |
CN104484877B (zh) | 一种基于Meanshift聚类和形态学操作的AML细胞分割方法 | |
CN110120042B (zh) | 一种基于slic超像素和自动阈值分割的农作物图像病虫害区域提取方法 | |
CN108320289B (zh) | 一种基于稀疏表示和形态学操作的骨髓细胞分割方法 | |
CN108615239B (zh) | 基于阈值技术和灰度投影的舌图像分割方法 | |
CN107316311B (zh) | 细胞核图像轮廓捕获设备及其方法 | |
Duan et al. | A WBC segmentation methord based on HSI color space | |
CN111860538A (zh) | 一种基于图像处理的舌体颜色鉴别方法和装置 | |
Maji et al. | An automated method for counting and characterizing red blood cells using mathematical morphology | |
EP2988270A1 (fr) | Procédé d'évaluation de volume du mésappariement de pénombre dans l'accident vasculaire cérébral ischémique aigu et système associé | |
CN116912255B (zh) | 一种用于卵巢组织分析的卵泡区域分割方法 | |
Pandit et al. | Survey on automatic rbc detection and counting | |
CN113450325B (zh) | 一种甲状腺结节良恶性识别装置 | |
Sholeh | White blood cell segmentation for fresh blood smear images | |
CN104933723B (zh) | 基于稀疏表示的舌图像分割方法 | |
Malathi et al. | A survey on plant leaf disease detection using image processing techniques | |
CN111222371A (zh) | 舌下静脉特征提取装置及方法 | |
CN110458042B (zh) | 一种荧光ctc中的探针数目检测方法 | |
CN114581658A (zh) | 一种基于计算机视觉的目标检测方法及装置 | |
CN106372593B (zh) | 一种基于血管收敛的视盘区定位方法 | |
CN108629780B (zh) | 基于颜色分解和阈值技术的舌图像分割方法 | |
Zheng et al. | White blood cell segmentation based on visual attention mechanism and model fitting | |
Pavithra et al. | White blood cell analysis using watershed and circular hough transform technique | |
CN110543802A (zh) | 眼底图像中左右眼识别方法与装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15866531 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15866531 Country of ref document: EP Kind code of ref document: A1 |