[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016088744A1 - Resin sheet and printed wiring board - Google Patents

Resin sheet and printed wiring board Download PDF

Info

Publication number
WO2016088744A1
WO2016088744A1 PCT/JP2015/083715 JP2015083715W WO2016088744A1 WO 2016088744 A1 WO2016088744 A1 WO 2016088744A1 JP 2015083715 W JP2015083715 W JP 2015083715W WO 2016088744 A1 WO2016088744 A1 WO 2016088744A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
insulating layer
resin sheet
acrylonitrile
Prior art date
Application number
PCT/JP2015/083715
Other languages
French (fr)
Japanese (ja)
Inventor
秀和 出井
誠司 四家
恵一 長谷部
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2016562629A priority Critical patent/JP6638887B2/en
Publication of WO2016088744A1 publication Critical patent/WO2016088744A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/14Modified phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a resin sheet and a printed wiring board useful as a material for an insulating layer of a printed wiring board.
  • Patent Document 1 discloses a technique of adding liquid rubber for improving crack resistance from the viewpoint of improving handling properties.
  • the document includes (A) a ring structure-containing polymer resin that is a hydrogenated product of a ring-opening polymer of a norbornene monomer having at least one functional group of an acid anhydride group and a carboxyl group, and (B) curing.
  • a resin composition containing an epoxy compound as an agent, (C) an imidazole compound having a ring structure-containing substituent, and (D) a liquid rubber that is liquid polybutadiene is disclosed.
  • Patent Document 2 discloses a technique using a rubber component for the purpose of improving adhesiveness.
  • the rubber component may be solid or liquid at room temperature (25 ° C.), but it is described that it is preferably liquid from the viewpoint of improving fluidity.
  • Patent Document 3 discloses that a cured product of a curable resin composition containing a mixture of a cyanate ester resin composition and an acrylonitrile-butadiene copolymer or a pre-reacted product has excellent flexibility and good elasticity. Is described.
  • Patent Document 1 can improve crack resistance, but does not describe any concept of high glass transition temperature.
  • Patent Document 2 is excellent in adhesiveness and fluidity, the document does not describe the flexibility of the semi-cured resin sheet at all.
  • Patent Document 3 describes that the resin sheet obtained from the resin composition has excellent flexibility and elasticity, but does not describe any flexibility of the semi-cured resin sheet. Moreover, the concept of the adhesiveness of the conductor layer formed by plating and the resin layer is not described at all.
  • the present invention has been made in view of the problems described above, and its purpose is to provide an excellent handling property when used as an insulating layer in a printed wiring board material, and an insulating layer and a conductor layer formed on the surface thereof by plating. It is providing the resin sheet which is excellent in adhesiveness, and has a high glass transition temperature when fully cured, and a printed wiring board using the resin sheet.
  • the present inventors have selected a resin sheet comprising an outer layer that is one type selected from the group consisting of a polymer film, a metal foil, and a metal film, and an insulating layer laminated on the outer layer.
  • the insulating layer is an epoxy compound (A), a cyanate ester compound (B), an inorganic filler (C), and a first acrylonitrile-butadiene rubber having a weight average molecular weight measured by GPC of 100,000 or more. It has been found that the above problems can be solved by (D) and a resin sheet containing acrylonitrile-butadiene rubber (E) having a weight average molecular weight of 1,000 to 30,000, and the present invention has been achieved.
  • a resin sheet comprising an outer layer that is any one selected from the group consisting of a polymer film, a metal foil, and a metal film, and an insulating layer laminated on the outer layer,
  • the insulating layer is an epoxy compound (A), a cyanate ester compound (B), an inorganic filler (C), and a first acrylonitrile-butadiene rubber (D) having a weight average molecular weight measured by GPC of 100,000 or more.
  • a second acrylonitrile-butadiene rubber (E) having a weight average molecular weight of 1,000 to 30,000.
  • the insulating layer is obtained by applying a resin composition containing the components (A) to (E) on the outer layer, and then drying and solidifying by heating or reduced pressure.
  • [8] A printed wiring comprising the insulating layer according to any one of [1] to [7], which is laminated on a circuit board having a core substrate and a conductor circuit formed on the core substrate. Board.
  • the conductor layer includes a conductor layer formed by a semi-additive method or a conductor layer formed by a subtractive method.
  • the conductor layer includes a conductor layer obtained by etching an outer layer made of the metal foil or metal film according to [1].
  • the resin sheet of the present invention exhibits at least one, preferably all of the following effects (1) to (4).
  • the resin sheet is excellent in flexibility (handling property).
  • (4) It has a high glass transition temperature.
  • One aspect of the present invention is a resin sheet including an outer layer that is one type selected from the group consisting of a polymer film, a metal foil, and a metal film, and an insulating layer laminated on the outer layer,
  • the insulating layer is a resin sheet containing the components (A) to (E).
  • X to Y includes X and Y which are their end values.
  • X or Y means either X or Y or both.
  • a composition containing components (A) to (E) and other components described later as required is referred to as a “resin composition”.
  • a layer provided on the outer layer and containing the resin composition and having no fluidity at room temperature is referred to as an “insulating layer”.
  • the insulating layer may contain a solvent.
  • the curable resin in the insulating layer is uncured or partially reacted but is curable.
  • a fluid having fluidity that contains the resin composition and a solvent and can be applied to the outer layer at room temperature is referred to as “varnish”.
  • each component will be described.
  • Epoxy compound (A) The epoxy compound (A) used in the present invention is an organic compound having at least one epoxy group.
  • the number of epoxy groups per molecule of the epoxy compound (A) is 1 or more.
  • the number of the epoxy groups is more preferably 2 or more.
  • a conventionally well-known epoxy resin can be used as an epoxy compound (A).
  • an epoxy compound (A) only 1 type may be used and 2 or more types may be used together.
  • Examples of the epoxy compound (A) include a biphenyl aralkyl type epoxy compound (epoxy group-containing biphenyl aralkyl resin), a naphthalene type epoxy compound (an epoxy group-containing compound having a naphthalene skeleton: a naphthalene bifunctional epoxy compound), and a bisnaphthalene type epoxy.
  • a biphenyl aralkyl type epoxy compound epoxy group-containing biphenyl aralkyl resin
  • a naphthalene type epoxy compound an epoxy group-containing compound having a naphthalene skeleton: a naphthalene bifunctional epoxy compound
  • a bisnaphthalene type epoxy an epoxy group-containing compound having a naphthalene skeleton: a naphthalene bifunctional epoxy compound
  • an epoxy compound having a structure obtained by epoxidizing a certain resin or compound is referred to as “ ⁇ epoxy compound” in the name of the resin or compound. May be expressed.
  • epoxy compound (A) biphenylaralkyl type epoxy compound, naphthalene type epoxy compound, bisnaphthalene type epoxy compound, aromatic from the viewpoints of adhesion between the insulating layer and the plated conductor layer and flame retardancy
  • Hydrocarbon formaldehyde epoxy compounds include aromatic hydrocarbon formaldehyde resins obtained by polymerizing aromatic hydrocarbons such as benzene, toluene and xylene with formaldehyde, and hydroxyl-containing aromatic carbonization such as phenol and xylenol.
  • Compounds modified with hydrogen and further epoxidized with hydroxyl groups compounds with epoxidized hydroxyl groups of aromatic hydrocarbon formaldehyde resins obtained by polymerizing hydroxyl-containing aromatic hydrocarbons such as phenol and xylenol with formaldehyde, etc.
  • Anthraquinone Epoxy compounds, naphthol aralkyl-type epoxy compounds, and xylok type epoxy compound is preferably one or more members selected from the group consisting of.
  • the biphenyl aralkyl type epoxy compound is preferably a compound represented by the formula (1).
  • the combustion resistance of the insulating layer can be improved.
  • each R 1 independently represents a hydrogen atom or a methyl group.
  • N 1 represents an integer of 1 or more.
  • the content of the epoxy compound (A) in the present invention is not particularly limited, but from the viewpoint of heat resistance and curability, the range of 20 to 80 parts by mass is preferable with respect to 100 parts by mass of the resin solid content of the insulating layer, preferably 30 to 70.
  • the range of parts by mass is particularly suitable.
  • the “resin solid content of the insulating layer” is a component excluding the inorganic filler (C) in the insulating layer.
  • the insulating layer may contain a solvent.
  • the resin solid content in the insulating layer is a component excluding the inorganic filler (C) and the solvent. Therefore, the resin solid content of 100 parts by mass means that when the inorganic filler (C) and the solvent in the insulating layer are included, the total of components excluding the solvent is 100 parts by mass.
  • epoxy compound (A) off-the-shelf products having various structures are commercially available, and they can be appropriately obtained and used. Moreover, you may manufacture an epoxy compound (A) using a well-known various manufacturing method. Examples of such a production method include a method of obtaining or synthesizing a hydroxyl group-containing compound having a desired skeleton, modifying the hydroxyl group by a known method, and epoxidizing (introducing an epoxy group).
  • the cyanate ester compound (B) used in the present invention is not particularly limited as long as it is a compound having a cyanate group (cyanate ester group). Specifically, naphthol aralkyl type cyanate ester compound (cyanate group-containing naphthol aralkyl resin), aromatic hydrocarbon formaldehyde type cyanate ester compound (cyanate group-containing aromatic hydrocarbon formaldehyde resin), biphenyl aralkyl type cyanate ester compound (Cyanato group-containing biphenyl aralkyl resin), novolac-type cyanate ester compound (cyanato group-containing novolak resin), and the like.
  • naphthol aralkyl type cyanate ester compound cyanate group-containing naphthol aralkyl resin
  • aromatic hydrocarbon formaldehyde type cyanate ester compound cyanate group-containing aromatic hydrocarbon formaldehyde resin
  • biphenyl aralkyl type cyanate ester compound C
  • cyanate ester compounds (B) impart excellent properties such as high chemical resistance, high glass transition temperature, and low thermal expansion in the insulating layer of the present invention, and therefore can be suitably used in the present invention. .
  • cyanate ester compound (B) having a structure obtained by cyanating (cyanate esterification) a certain resin or compound is referred to as the name of the resin or compound. It may be indicated with the description “-type cyanate ester compound”.
  • cyanate ester compound (B) a naphthol aralkyl type cyanide is provided from the viewpoint of providing the insulating layer of the present invention having excellent flame retardancy, high curability, and high glass transition temperature of the cured product.
  • aromatic hydrocarbon formaldehyde type cyanate ester compound preferably, aromatic hydrocarbon formaldehyde resin obtained by polymerizing aromatic hydrocarbon such as benzene, toluene, xylene and the like with formaldehyde, phenol, Hydroxyl group-containing aromatic hydrocarbon formaldehyde obtained by polymerizing hydroxyl group-containing aromatic hydrocarbons such as phenol and xylenol with formaldehyde modified with hydroxyl group-containing aromatic hydrocarbons such as xylenol and further hydroxylating the hydroxyl group Compounds in which the hydroxyl group of the resin is cyanated ), And one member selected from the group consisting of biphenyl aralkyl type cyanate ester compound, or two or more are particularly preferred.
  • aromatic hydrocarbon formaldehyde resin obtained by polymerizing aromatic hydrocarbon such as benzene, toluene, xylene and the like with formaldehyde
  • phenol Hydroxyl group-containing aromatic
  • a compound represented by the formula (2) is preferable.
  • each R 2 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
  • N 2 represents an integer of 1 or more.
  • novolac-type cyanate ester compound a compound represented by the formula (3) or the formula (4) is preferable.
  • R 3 represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
  • N 3 represents an integer of 1 or more.
  • R 4 represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
  • N 4 represents an integer of 1 or more.
  • the content of the cyanate ester compound (B) in the present invention is not particularly limited, but is preferably in the range of 20 to 40 parts by mass with respect to 100 parts by mass of the resin solid content of the insulating layer, from the viewpoint of heat resistance and curability. A range of 25 to 35 parts by mass is particularly suitable.
  • cyanate ester compound (B) off-the-shelf products with various structures are commercially available, and can be obtained and used as appropriate. Moreover, you may manufacture a cyanate ester compound (B) using a well-known various manufacturing method. Examples of such production methods include a method of obtaining or synthesizing a hydroxyl group-containing compound having a desired skeleton, and modifying the hydroxyl group by a known method to form cyanate. Examples of the method for cyanating a hydroxyl group include the method described in Ian Hamerton, “Chemistry and Technology of Cyanate Ester Resins,” “Blackie Academic & Professional”.
  • the inorganic filler (C) used in the present invention is not particularly limited, but examples include silica (for example, natural silica, fused silica, amorphous silica, hollow silica, etc.), an aluminum compound (for example, boehmite, aluminum hydroxide, Alumina etc.), magnesium compounds (eg magnesium oxide, magnesium hydroxide etc.), calcium compounds (eg calcium carbonate etc.), molybdenum compounds (eg molybdenum oxide, zinc molybdate etc.), talc (eg natural talc, calcined talc etc.), Examples include mica (mica), glass (for example, short fiber glass, spherical glass, fine powder glass (for example, E glass, T glass, D glass, etc.)) and the like. These inorganic fillers (C) may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
  • silica for example, natural silica, fused silica, amorphous si
  • the inorganic filler (C) is preferably one or more selected from the group consisting of silica, aluminum hydroxide, alumina, boehmite, magnesium oxide and magnesium hydroxide.
  • silica is preferable as the inorganic filler (C), and among them, fused silica is particularly preferable.
  • fused silica include SFP-130MC manufactured by Denki Kagaku Kogyo Co., Ltd., SC2050-MB, SC2500-SQ, SC4500-SQ manufactured by Admatechs Co., Ltd., and the like.
  • the inorganic filler (C) it is also preferable to use magnesium hydroxide or magnesium oxide alone or in combination with other inorganic fillers such as silica. Magnesium hydroxide and magnesium hydroxide have the effect of improving the flame resistance.
  • magnesium hydroxide examples include “Echo Mug Z-10” and “Echo Mug PZ-1” manufactured by Tateho Chemical Co., Ltd., “Magsees N”, “Magsees S” manufactured by Kamishima Chemical Co., Ltd., “ “Magsees EP”, “Magsees EP2-A”, MGZ-1, MGZ-3, MGZ-6R manufactured by Sakai Chemical Industry Co., Ltd., “Kisuma 5”, “Kisuma 5A” manufactured by Kyowa Chemical Industry Co., Ltd., “ Kisma 5P "and the like.
  • Specific examples of magnesium oxide include FNM-G manufactured by Tateho Chemical Industry Co., Ltd., SMO, SMO-0.1, SMO-S-0.5 manufactured by Sakai Chemical Industry Co., Ltd., and the like.
  • the average particle diameter of the inorganic filler (C) is not limited, but is preferably 0.01 to 5.0 ⁇ m and more preferably 0.2 to 2.0 ⁇ m from the viewpoint of improving the productivity of the resin sheet.
  • the “average particle diameter” of the inorganic filler (C) means the median diameter of the inorganic filler (C).
  • the median diameter refers to the number or mass of particles on the larger particle size side and the number on the smaller particle size side when the particle size distribution of the powder is divided into two based on a certain particle size.
  • the mass means a particle size that occupies 50% of the total powder.
  • the average particle diameter (median diameter) of the inorganic filler (C) is measured by a wet laser diffraction / scattering method.
  • the content of the inorganic filler (C) in the present invention is not limited, but from the viewpoint of obtaining high plating peel strength while reducing the thermal expansion of the insulating layer, the resin solid content of 100 parts by mass of the insulating layer, The amount is preferably 50 to 300 parts by mass, and more preferably 70 to 250 parts by mass. In addition, when using together 2 or more types of inorganic fillers (C), it is preferable that these total amount satisfy
  • the first acrylonitrile-butadiene rubber (D) used in the present invention is uncrosslinked and has a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of 100,000 or more. .
  • the first acrylonitrile-butadiene rubber (D) preferably has a Mooney viscosity of 20 or more.
  • Mooney viscosity (ML1 + 4,100 ° C.) is a viscosity measured in accordance with JISK6300-1, using an L rotor, with a preheating time of 1 minute, a rotor operating time of 4 minutes, and a temperature of 100 ° C. It is an index to represent.
  • the torque acting on the rotor shaft is 8.30 N ⁇ m, 100 (Mooney unit) and when 0.083 N ⁇ m is 1 (Mooney unit), the Mooney viscosity and torque are in a linear relationship.
  • the Mooney viscosity can be calculated from the measured torque.
  • Examples of the first acrylonitrile-butadiene rubber (D) include N220S manufactured by JSR Corporation.
  • the content X of the first acrylonitrile-butadiene rubber (D) in the present invention is not particularly limited, but from the viewpoint of obtaining flexibility while reducing the thermal expansion of the insulating layer, the resin solid content of the insulating layer is 100 mass. Preferably, 0 ⁇ X ⁇ 15 parts by mass, and more preferably 3 ⁇ X ⁇ 10 parts by mass. When two or more kinds of the first acrylonitrile-butadiene rubber (D) are used in combination, the total amount of these preferably satisfies the above ratio.
  • Acrylonitrile in the first acrylonitrile-butadiene rubber (D) is preferably 37 to 43% by mass from the viewpoint of the flexibility of the resin sheet and the adhesion between the insulating layer and the conductor layer formed on the surface thereof.
  • the first acrylonitrile-butadiene rubber (D) preferably has no functional group. This is because the functional group causes cross-linking and reduces the flexibility of the rubber. Examples of the functional group include a carboxyl group, an epoxy group, a vinyl group, and an amino group.
  • the second acrylonitrile-butadiene rubber (E) used in the present invention is uncrosslinked and has a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent. 1,000 to 30,000.
  • the second acrylonitrile-butadiene rubber (E) preferably has a Mooney viscosity of 1 or less.
  • Examples of the second acrylonitrile-butadiene rubber (E) include N280 manufactured by JSR Corporation.
  • the acrylonitrile content in the second acrylonitrile-butadiene rubber (E) may be the same as the content in (D), but is preferably 25 to 35% by mass from the viewpoint of availability. Similarly to the component (D), the second acrylonitrile-butadiene rubber (E) preferably has no functional group.
  • the content Y of the second acrylonitrile-butadiene rubber (E) in the present invention is not limited, but from the viewpoint of obtaining flexibility while reducing the thermal expansion of the insulating layer, the resin solid content of the insulating layer is 100 parts by mass. On the other hand, 0 ⁇ Y ⁇ 15 parts by mass is preferable, and 3 ⁇ Y ⁇ 10 parts by mass is more preferable. When two or more kinds of the second acrylonitrile-butadiene rubber (E) are used in combination, the total amount of these preferably satisfies the above ratio.
  • the mass part of the first acrylonitrile-butadiene rubber (D) in the present invention is X and the mass part of the second acrylonitrile-butadiene rubber (E) is Y
  • the total content X + Y is not particularly limited, From the viewpoint of obtaining flexibility while improving the compatibility of acrylonitrile-butadiene rubber in the resin, it is preferable that 0 ⁇ X + Y ⁇ 15 parts by mass with respect to 100 parts by mass of the resin solid content of the insulating layer. More preferably, ⁇ X + Y ⁇ 10 parts by mass.
  • the insulating layer of the present invention includes acrylonitrile-butadiene rubber having a bimodal molecular weight distribution.
  • excellent flexibility and low surface roughness can be imparted to the resin sheet.
  • this reason is not limited, it is guessed as follows.
  • high stress relaxation is achieved by the high molecular weight component (D) and flexibility is improved, it is easy to aggregate when it is only this, and it is easy to collapse as a large lump from the sheet surface, and the surface roughness becomes high.
  • the low molecular weight component (E) makes it possible to moderately suppress the aggregation of (D).
  • the maleimide compound (F) used is not particularly limited as long as it is a compound having a maleimide group, and specifically, bis (4-maleimidophenyl) methane, 2,2-bis ⁇ 4- (4-maleimide) Phenoxy) -phenyl ⁇ propane, bis (3,5-dimethyl-4-maleimidophenyl) methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4-maleimide) Phenyl) methane, tris (4-maleimidophenyl) methane, a maleimide compound represented by the formula (5), a long-chain alkyl bismaleimide represented by the formula (6), and the like.
  • the maleimide compound represented by the formula (5) is preferable from the viewpoint of moisture absorption heat resistance and flame resistance.
  • Commercially available products can be used as the compound, and examples thereof include KMI Kasei Co., Ltd. BMI-2300.
  • each R 5 independently represents a hydrogen atom or a methyl group.
  • N 5 is in the range of 1 to 10 as an average value.
  • a long-chain alkyl bismaleimide represented by the formula (6) is preferable to use.
  • Commercially available products can be used as the compound, and examples thereof include BMI-1000P manufactured by KAI Kasei Co., Ltd.
  • n 6 represents an integer of 1 to 30
  • the content of the maleimide compound (F) in the present invention is preferably 5 to 50 parts by mass, more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the resin solid content of the insulating layer.
  • the amount of bismaleimide is in the range of 5 to 50 parts by mass, good moisture absorption heat resistance can be obtained.
  • the insulating layer of the present invention may contain a silane coupling agent for the purpose of improving moisture absorption heat resistance.
  • a silane coupling agent if it is a silane coupling agent generally used for the surface treatment of an inorganic substance, it will not be limited.
  • aminosilane-based silane coupling agents for example, ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane
  • epoxysilane-based silane coupling agents for example, ⁇ -Glycidoxypropyltrimethoxysilane, etc.
  • vinylsilane-based silane coupling agents eg, ⁇ -methacryloxypropyltrimethoxysilane
  • cationic silane-based silane coupling agents eg, N- ⁇ - (N-vinylbenzyl) Aminoethyl) - ⁇ -aminopropyltrimethoxysilane hydrochloride
  • phenylsilane-based silane coupling agents and the like.
  • These silane coupling agents may be used alone or in combination of two or more in any combination and ratio.
  • the silane coupling agent When the silane coupling agent is used, its content is not limited, but from the viewpoint of improving moisture absorption heat resistance, the ratio of the silane coupling agent to the inorganic filler (C) is 0.05 to 5% by mass. Preferably, the content is 0.1 to 3% by mass. In addition, when using together 2 or more types of silane coupling agents, it is preferable that these total amount satisfy
  • the insulating layer of the present invention may contain a wetting and dispersing agent for the purpose of improving the productivity of the resin sheet.
  • the wetting and dispersing agent is not limited as long as it is a wetting and dispersing agent generally used in paints and the like. Specific examples include Disperbyk-110, -111, -180, -161, BYK-W996, -W9010, and -W903 manufactured by Big Chemie Japan.
  • One of these wetting and dispersing agents may be used alone, or two or more thereof may be used in any combination and ratio.
  • the wetting dispersant When the wetting dispersant is used, its content is not limited, but from the viewpoint of improving the productivity of the resin sheet, the ratio of the wetting dispersant to the inorganic filler (C) is 0.1 to 5% by mass. Preferably, the content is 0.5 to 3% by mass. In addition, when using 2 or more types of wet dispersing agents together, it is preferable that these total amount satisfy
  • the insulating layer of the present invention may contain a curing accelerator for the purpose of adjusting the curing speed.
  • a hardening accelerator it is well-known as hardening accelerators, such as an epoxy compound and a cyanate ester compound, and if it is generally used, it will not specifically limit.
  • organometallic salts containing metals such as copper, zinc, cobalt, nickel, manganese (for example, zinc octylate, cobalt naphthenate, nickel octylate, manganese octylate, etc.), imidazoles, and derivatives thereof (for example, 2 -Ethyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 2,4,5-triphenylimidazole etc.), tertiary amines (eg triethylamine, tributylamine etc.) and the like.
  • These hardening accelerators may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the curing accelerator When the curing accelerator is used, its content is not limited, but from the viewpoint of obtaining a high glass transition temperature, the ratio of the curing accelerator is 0.01 to 5 mass with respect to 100 mass parts of the resin solid content of the insulating layer. Part is preferable, and 0.05 to 4 parts by mass is more preferable. In addition, when using 2 or more types of hardening accelerators together, it is preferable that these total amount satisfy
  • the insulating layer of the present invention may contain other various polymer compounds or flame retardant compounds as long as the desired properties are not impaired.
  • the polymer compound and the flame retardant compound are not limited as long as they are generally used.
  • the polymer compound include various thermosetting resins and thermoplastic resins, oligomers thereof, and elastomers.
  • flame retardant compounds include phosphorus-containing compounds (eg, phosphate esters, melamine phosphate, phosphorus-containing epoxy resins), nitrogen-containing compounds (eg, melamine, benzoguanamine, etc.), oxazine ring-containing compounds, silicone compounds, and the like. Can be mentioned. These polymer compounds or flame retardant compounds may be used alone or in combination of two or more in any combination and ratio.
  • the insulating layer of the present invention may contain various additives for various purposes within a range where the intended characteristics are not impaired.
  • additives include UV absorbers, antioxidants, photopolymerization initiators, fluorescent brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, Examples include brighteners. These additives may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • [I-8. varnish ⁇ The components (A) to (E) and, if necessary, the other components described above can be dissolved or dispersed in a solvent to obtain a varnish.
  • a solvent is not limited as long as it can suitably dissolve or disperse the above-described components and does not impair the intended effect of the present invention.
  • Specific examples include alcohols (methanol, ethanol, propanol etc.), ketones (eg acetone, methyl ethyl ketone, methyl isobutyl ketone etc.), amides (eg dimethylacetamide, dimethylformamide etc.), aromatic hydrocarbons (eg toluene) , Xylene, etc.).
  • These organic solvents may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the resin sheet of the present invention has the above-described insulating layer of the present invention on the outer layer.
  • the outer layer is not particularly limited, and a polymer film, metal foil, or metal film can be used.
  • the polymer film include polyvinyl chloride, polyvinylidene chloride, polybutene, polybutadiene, polyurethane, ethylene-vinyl oxide copolymer, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and other polyesters, polyethylene, polypropylene, and ethylene.
  • polyester, polyimide, and polyamide are particularly preferable, and among them, polyethylene terephthalate, which is a kind of polyester, is particularly preferable.
  • the thickness of the polymer film is not particularly limited, and may be, for example, 0.002 to 0.1 mm.
  • the metal foil or metal film include a foil or film made of a metal such as copper or aluminum. Among them, a copper foil or a copper film is preferable, and an electrolytic copper foil, a rolled copper foil, a copper alloy film, or the like is particularly preferable. Can be used for The metal foil or metal film may be subjected to a known surface treatment such as nickel treatment or cobalt treatment. The thickness of the metal foil or metal film can be appropriately adjusted depending on the intended use, but is preferably in the range of 5 to 70 ⁇ m, for example.
  • the method for producing the resin sheet of the present invention by forming the insulating layer of the present invention on the above outer layer is not limited.
  • coating the above-mentioned varnish on the surface of the above-mentioned outer layer, drying under heating or reduced pressure, removing the solvent, and solidifying the varnish can be mentioned.
  • the drying conditions are not particularly limited, but drying is performed so that the content ratio of the solvent to the total amount of the insulating layer thus formed is usually 10 parts by mass or less, preferably 5 parts by mass or less.
  • the conditions for achieving such drying vary depending on the amount of the organic solvent in the varnish.
  • the drying is performed for about 3 to 10 minutes under heating conditions of 50 to 160 ° C. You can do it.
  • the thickness of the insulating layer in the resin sheet of the present invention is not limited, but it is 0.1 to 500 ⁇ m from the viewpoint of better removing light volatiles during drying and more effectively and reliably functioning as a resin sheet. The range of is preferable.
  • the resin composition does not contain a solvent and has fluidity, the resin composition may be used like a varnish to form an insulating layer.
  • the former is the layer. Excellent uniformity and adhesion to the outer layer.
  • the resin sheet of the present invention can be used as a build-up material for printed wiring boards.
  • the insulating layer of the present invention constitutes the insulating layer in the printed wiring board.
  • the insulating layer in the printed wiring board is usually cured.
  • the printed wiring board will be described in detail below.
  • the printed wiring board of this invention can be obtained by using the resin sheet of this invention as a buildup material with respect to a core base material.
  • the core substrate is a substrate that becomes a core in the build-up method, and is a metal foil-clad laminate in which the resin insulating layer is completely cured.
  • a conductor circuit is formed by a metal foil of a metal foil-clad laminate usually used in the industry, or a conductor layer obtained by peeling and plating the metal foil.
  • the core base material is mainly a conductive layer (circuit) patterned on one or both sides of a glass epoxy substrate, metal substrate, polyester substrate, polyimide substrate, BT resin substrate, thermosetting polyphenylene ether substrate or the like. It means what was done. Further, when the multilayer printed wiring board is manufactured, an intermediate product inner circuit board on which an insulating layer or a conductor layer is to be further formed is also included in the circuit board referred to in the present invention.
  • the surface of the conductor layer (circuit) is preferably subjected to a roughening treatment in advance by a blackening treatment or the like from the viewpoint of adhesion of the insulating layer to the circuit board.
  • the insulating layer of the resin sheet of the present invention is cured to constitute the insulating layer in the printed wiring board.
  • the resin sheet of the present invention when using the resin sheet of the present invention as a build-up material, by treating the insulating layer surface of the resin sheet by a conventional method, by forming a wiring pattern (conductor layer) by plating on the insulating layer surface, The printed wiring board of the present invention is obtained.
  • the surface treatment for the insulating layer is performed from the viewpoint of improving the adhesion between the insulating layer and the plated conductor layer, removing smear, and the like.
  • Examples of the surface treatment include desmear treatment and silane coupling treatment.
  • the desmear treatment preferably includes swelling, surface roughening and smear dissolution, and neutralization treatment.
  • the roughening treatment is preferably carried out with a swelling agent and an alkaline oxidizing agent, and the neutralization treatment is preferably carried out with an acidic reducing agent.
  • two acrylonitrile-butadiene rubbers having different molecular weights are used.
  • the roughening treatment also serves to remove smear generated by the drilling process.
  • the roughening state varies depending on the degree of curing of the insulating layer, it is preferable to select optimum conditions for the later-described lamination molding conditions in combination with the subsequent roughening treatment conditions and plating conditions.
  • the roughening treatment first swells the surface insulating layer using a swelling agent.
  • the swelling agent is not limited as long as the wettability of the surface insulating layer is improved and the surface insulating layer can be swollen to the extent that oxidative decomposition is promoted in the next surface roughening and smear dissolution treatment. Examples include alkaline solutions and surfactant solutions.
  • the swollen surface is treated with an oxidizing agent, and the surface is oxidatively decomposed and roughened.
  • oxidizing agent examples include an alkaline permanganate solution, and preferred specific examples include an aqueous potassium permanganate solution and an aqueous sodium permanganate solution.
  • Such oxidant treatment is called wet desmear, but in addition to the wet desmear, other known roughening treatments such as dry desmear by plasma treatment or UV treatment, mechanical polishing by buffing, sandblasting, etc. are carried out in an appropriate combination May be.
  • reducing agent examples include amine-based reducing agents, and preferred specific examples include acidic aqueous solutions such as hydroxylamine sulfate aqueous solution, ethylenediaminetetraacetic acid aqueous solution, and nitrilotriacetic acid aqueous solution.
  • the surface roughness of the insulating layer after the roughening treatment is preferably small.
  • the Rz value is preferably 4.0 ⁇ m or less, more preferably 2.0 ⁇ m or less. Since the surface irregularities after the roughening treatment are determined according to the degree of curing of the insulating layer, the conditions of the roughening treatment, etc., it is preferable to select optimum conditions for obtaining the desired surface irregularities.
  • the insulating layer of the present invention is extremely suitable because it can ensure adhesion with the plated conductor layer even if the surface roughness is low.
  • Examples of a method for forming a wiring pattern (conductor layer) by plating include a semi-additive method, a full additive method, and a subtractive method. Among these, the semi-additive method is preferable from the viewpoint of forming a fine wiring pattern.
  • the pattern forming method by the semi-additive method after forming a thin conductor layer on the surface of the insulating layer by electroless plating, etc., electrolytic plating is selectively performed using a plating resist (pattern plating), and then the plating resist And a method of forming a wiring pattern by etching an appropriate amount of the whole.
  • a method of forming a pattern by a full additive method there is a method of forming a wiring pattern by performing pattern formation in advance using a plating resist on the surface of an insulating layer and selectively attaching electroless plating or the like.
  • An example of a pattern forming method using the subtractive method is a method of forming a wiring pattern by forming a conductive layer on the surface of an insulating layer by plating and then selectively removing the conductive layer using an etching resist. It is done. Or when the outer layer of a resin sheet is metal foil or a metal film, these can be etched and a wiring pattern can also be formed.
  • the pattern formation by the semi-additive method is performed by combining electroless plating and electrolytic plating. In this case, it is preferable to perform drying after the electroless plating and after the electrolytic plating. Drying after electroless plating is preferably performed at 80 to 180 ° C. for 10 to 120 minutes, for example, and drying after electrolytic plating is preferably performed at 130 to 220 ° C. for 10 to 120 minutes, for example. . Since the electroless plating layer is superior to the electroplating layer in layer uniformity, the two can be distinguished.
  • the resin sheet of the present invention may be subjected to hole processing.
  • This processing is performed for forming via holes, through holes, and the like.
  • the hole processing is performed by using any one of known methods such as NC drill, carbon dioxide laser, UV laser, YAG laser, plasma, or a combination of two or more if necessary.
  • the printed wiring board of the present invention can be a multilayer printed wiring board.
  • an inner layer circuit is formed thereon, and the resulting circuit is subjected to blackening treatment to obtain an inner layer circuit board.
  • the resin sheet of the present invention is arranged on one side or both sides of the inner layer circuit board thus obtained, and further a metal foil (for example, copper or aluminum) or a release film (polyethylene film, polypropylene film, polycarbonate film, polyethylene terephthalate film, A multilayer printed wiring board is manufactured by repeating the operation of disposing a film having a release agent applied to the surface of an ethylenetetrafluoroethylene copolymer film or the like on the outside thereof and performing lamination molding.
  • a metal foil for example, copper or aluminum
  • a release film polyethylene film, polypropylene film, polycarbonate film, polyethylene terephthalate film
  • a multilayer printed wiring board is manufactured by repeating the operation of disposing a film having a release agent applied to the surface of an ethylenetetrafluoroethylene copolymer film or the like on the outside thereof and performing lamination molding.
  • Lamination molding uses a technique generally used for lamination molding of ordinary laminates for printed wiring boards, such as a multistage press, a multistage vacuum press, a laminator, a vacuum laminator, an autoclave molding machine, etc., and the temperature is, for example, 100 to 300 C., pressure is, for example, 0.1 to 100 kgf / cm 2 (about 9.8 kPa to about 38 MPa), and heating time is appropriately selected within a range of, for example, 30 seconds to 5 hours. If necessary, post-curing may be performed at a temperature of 150 to 300 ° C. to adjust the degree of curing.
  • n 7 is an average value ranging from 3 to 4.
  • a reactor equipped with a thermometer, a stirrer, a dropping funnel and a reflux condenser was previously cooled to 0 to 5 ° C. with a saline solution, to which 7.47 g (0.122 mol) of cyanogen chloride and 35% hydrochloric acid 9. 75 g (0.0935 mol), 76 ml of water, and 44 ml of methylene chloride were charged.
  • the ⁇ -naphthol aralkyl resin represented by the following formula (8) (SN485, OH group equivalent: 214 g / eq. Softening) was maintained with stirring while maintaining the temperature in the reactor at ⁇ 5 to + 5 ° C. and the pH at 1 or less.
  • n 8 is in the range from 3 to 4 as an average value.
  • Example 1 As an epoxy compound (A), a MEK solution (nonvolatile content 70% by mass) of 83.1 parts by mass of a biphenyl aralkyl type epoxy compound (NC-3000-FH, epoxy equivalent: 320 g / eq., Manufactured by Nippon Kayaku Co., Ltd.) (58.2 parts by mass in terms of nonvolatile content), methyl ethyl ketone (hereinafter referred to as the cyanate ester compound (B)) of the ⁇ -naphthol aralkyl type cyanate ester compound (cyanate equivalent: 261 g / eq.) Obtained in Synthesis Example 1.
  • a MEK solution nonvolatile content 70% by mass
  • NC-3000-FH epoxy equivalent: 320 g / eq., Manufactured by Nippon Kayaku Co., Ltd.
  • B methyl ethyl ketone
  • MEK may be abbreviated.) 58 parts by mass (non-volatile content: 50% by mass) solution (29 mass parts in terms of non-volatile content), novolac maleimide compound (BMI) represented by the following formula (5) as maleimide compound -2300, manufactured by Kay Kasei Co., Ltd.) 4.9 parts by mass, bismaleimide compound (BMI-1000P, Kay A (Made by Kasei Co., Ltd.) 4.9 parts by mass, DMAc solution of 2,4,5-triphenylimidazole (manufactured by Wako Pure Chemical Industries) as a curing accelerator (non-volatile content 20% by mass) 15 parts by mass (3 in terms of non-volatile content) Part by mass) and 0.8 parts by mass (0.08 parts by mass in terms of nonvolatile content) of MEK solution of zinc octylate (nonvolatile content 10% by mass) were dissolved or dispersed in MEK.
  • BMI novolac maleimide
  • inorganic filler (C) 85.7 parts by mass of magnesium oxide MEK slurry (SMO-0.4, manufactured by Sakai Chemical Industry Co., Ltd., average particle size 0.4 ⁇ m, nonvolatile component 70% by mass) 60 parts by mass), phenylaminosilane-treated silica MEK slurry (SC2050-MTX, manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m, nonvolatile component 70% by mass) 107.1 parts by mass (in terms of nonvolatile content) 75 parts by mass) was added.
  • SMO-0.4 magnesium oxide MEK slurry
  • SC2050-MTX phenylaminosilane-treated silica MEK slurry
  • the mixture is stirred for 30 minutes using a high-speed stirring device, and the epoxy compound (A), the cyanate ester compound (B), the inorganic filler (C), the first acrylonitrile-butadiene rubber (D), the second A varnish containing acrylonitrile-butadiene rubber (E) was obtained.
  • This varnish was applied to a 38 ⁇ m thick polyethylene terephthalate film (TR1-38, manufactured by Unitika Co., Ltd.) with a release agent coated on the surface and dried by heating at 100 ° C. for 3 minutes to form an insulating layer.
  • TR1-38 polyethylene terephthalate film
  • a resin sheet having a terephthalate film as an outer layer was obtained.
  • each R 5 independently represents a hydrogen atom or a methyl group.
  • N 5 is in the range of 1 to 10 as an average value.
  • the insulating layer surface of the obtained resin sheet was placed on the inner layer circuit board, and after vacuuming (5.0 MPa or less) for 30 seconds using a vacuum laminator (manufactured by Nichigo Morton), the pressure was 10 kgf / cm 2 , Lamination molding was performed at a temperature of 100 ° C. for 30 seconds. Furthermore, the printed wiring board was obtained by performing lamination molding for 60 seconds at a pressure of 10 kgf / cm 2 and a temperature of 100 ° C. The obtained printed wiring board was dried at 180 ° C. for 60 minutes to sufficiently advance the curing to obtain a printed wiring board.
  • Example 2 An MEK solution of ⁇ -naphthol aralkyl type cyanate ester compound (non-volatile content: 50% by mass) of 55.6 parts by mass (27.8 parts by mass in terms of non-volatile content), biphenyl aralkyl type epoxy compound (NC-3000-FH) The amount of MEK solution (nonvolatile content 70% by mass) used was 79.3 parts by mass (55.5 parts by mass in terms of nonvolatile content), the amount of bismaleimide compound (BMI-1000P) used was 4.6 parts by mass, and novolak maleimide.
  • MEK solution nonvolatile content 70% by mass
  • BMI-1000P bismaleimide compound
  • the amount of compound (BMI-2300) used is 4.6 parts by mass, and the amount of MEK solution (nonvolatile content 20% by mass) of the first acrylonitrile-butadiene rubber (N215SL) is 19 parts by mass (3. 8 parts by mass), and the amount of the second acrylonitrile-butadiene rubber (N280) MEK solution (non-volatile content 20% by mass) used was 19 parts by mass ( Except for in the volatile content basis and 3.8 parts by weight), the same procedure as in Example 1 to adjust the varnish, to give a resin sheet and a printed wiring board using the same.
  • Example 3 The amount of MEK solution of ⁇ -naphthol aralkyl-type cyanate ester compound (non-volatile content 50% by mass) used was 54 parts by mass (27 mass parts in terms of non-volatile content), and the MEK of biphenyl aralkyl-type epoxy compound (NC-3000-FH) 77.1 parts by mass (54.0 parts by mass in terms of nonvolatile content) of the solution (nonvolatile content 70% by mass), 4.5 parts by mass of the bismaleimide compound (BMI-1000P), novolac maleimide compound
  • the amount of (BMI-2300) used is 4.5 parts by mass, and the amount of the first acrylonitrile-butadiene rubber (N215SL) MEK solution (nonvolatile content 20% by mass) is 25 parts by mass (5.0% in terms of nonvolatile content).
  • Example 4 The amount of ⁇ -naphthol aralkyl-type cyanate compound MEK solution (non-volatile content 50% by mass) used was 55.6 parts by mass (27.8 parts by mass in terms of non-volatile content), and the biphenyl aralkyl-type epoxy compound (NC-3000- FH) MEK solution (non-volatile content: 70% by mass) was used in an amount of 79.3 parts by mass (55.5 parts by mass in terms of non-volatile content), and the bismaleimide compound (BMI-1000P) was used in an amount of 4.6 parts by mass.
  • NC-3000- FH biphenyl aralkyl-type epoxy compound
  • BMI-1000P bismaleimide compound
  • Example 5 The amount of MEK solution of ⁇ -naphthol aralkyl-type cyanate ester compound (non-volatile content 50% by mass) used was 54 parts by mass (27 mass parts in terms of non-volatile content), and the MEK of biphenyl aralkyl-type epoxy compound (NC-3000-FH) 77.1 parts by mass (54.0 parts by mass in terms of nonvolatile content) of the solution (nonvolatile content 70% by mass), 4.5 parts by mass of the bismaleimide compound (BMI-1000P), novolac maleimide compound
  • the amount of (BMI-2300) used is 4.5 parts by mass, and the amount of MEK solution (non-volatile content 20% by mass) of solid acrylonitrile-butadiene rubber (N215SL) is 25 parts by mass (5.0 parts by mass in terms of non-volatile content).
  • Example 2 25 parts by mass (non-volatile) of MEK solution (non-volatile content 20% by mass) of liquid acrylonitrile-butadiene rubber (N280) Except that the amount of phenylaminosilane-treated silica MEK slurry (SC2050-MTX, nonvolatile content 70% by mass) used was 178.6 parts by mass (125% by mass in terms of nonvolatile content).
  • the varnish was adjusted in the same manner as in Example 1 to obtain a resin sheet and a printed wiring board using the resin sheet.
  • Example 6 The amount of MEK solution of ⁇ -naphthol aralkyl-type cyanate ester compound (non-volatile content 50% by mass) used was 54 parts by mass (27 mass parts in terms of non-volatile content), and the MEK of biphenyl aralkyl-type epoxy compound (NC-3000-FH) 77.1 parts by mass (54.0 parts by mass in terms of nonvolatile content) of the solution (nonvolatile content 70% by mass), 4.5 parts by mass of the bismaleimide compound (BMI-1000P), novolac maleimide compound
  • the amount of (BMI-2300) used is 4.5 parts by mass, and the amount of MEK solution (non-volatile content 20% by mass) of solid acrylonitrile-butadiene rubber (N215SL) is 25 parts by mass (5.0 parts by mass in terms of non-volatile content).
  • Example 2 25 parts by mass (non-volatile) of MEK solution (non-volatile content 20% by mass) of liquid acrylonitrile-butadiene rubber (N280) Except that the amount of phenylaminosilane-treated silica MEK slurry (SC2050-MTX, nonvolatile content 70% by mass) was 285.7 parts by mass (nonvolatile component equivalent 200 parts by mass)
  • the varnish was adjusted in the same manner as in Example 1 to obtain a resin sheet and a printed wiring board using the resin sheet.
  • Comparative Example 1 The amount of solid acrylonitrile-butadiene rubber (N215SL) MEK solution (non-volatile content 20% by mass) used was 15 parts by mass (3 mass parts in terms of non-volatile content), and liquid acrylonitrile-butadiene rubber (N280) MEK solution (non-volatile content 20). A varnish was prepared in the same manner as in Example 1 except that the amount used was 0 parts by mass to obtain a resin sheet and a printed wiring board using the same.
  • N215SL solid acrylonitrile-butadiene rubber
  • N280 liquid acrylonitrile-butadiene rubber
  • the amount of novolak maleimide compound (BMI-2300) used is 4.3 parts by mass, and the amount of solid acrylonitrile-butadiene rubber (N215SL) MEK solution (non-volatile content: 20% by mass) is 75 parts by mass (15% in terms of non-volatile content). Part by mass), and the amount of liquid acrylonitrile-butadiene rubber (N280) MEK solution (non-volatile content 20% by mass) used is 0 part by mass.
  • N215SL solid acrylonitrile-butadiene rubber
  • N280 liquid acrylonitrile-butadiene rubber
  • Comparative Example 5 The amount of solid acrylonitrile-butadiene rubber (N215SL) MEK solution (non-volatile content 20% by mass) used is 0 parts by mass, and the amount of liquid acrylonitrile-butadiene rubber (N280) MEK solution (non-volatile content 20% by mass) used is 15% by mass.
  • the varnish was adjusted in the same manner as in Example 1 except that the content was 3 parts by weight (3 parts by weight in terms of nonvolatile content) to obtain a resin sheet and a printed wiring board using the same.
  • the amount of novolak maleimide compound (BMI-2300) used is 4.3 parts by mass
  • the amount of solid acrylonitrile-butadiene rubber (N215SL) MEK solution (nonvolatile content 20% by mass) is 0 parts by mass
  • the can in the same manner as in Example 1 to adjust the varnish, to give a resin sheet and a printed wiring board using the same.
  • Electroless copper plating process (used chemical name: MCD-PL, MDP-2, MAT-SP, MAB-4-C, MEL-3-APEA ver. 2) manufactured by Uemura Kogyo Co., Ltd. on the exposed insulating layer Then, electroless copper plating of about 0.8 ⁇ m was applied and dried at 130 ° C. for 1 hour. Subsequently, electrolytic copper plating was performed so that the thickness of the plated copper was 18 ⁇ m, and drying was performed at 180 ° C. for 1 hour. In this way, a sample in which a conductor layer (plated copper) having a thickness of 18 ⁇ m was formed on the insulating layer was prepared and subjected to the following evaluation.
  • the resin sheet of the present invention when used as a material for an insulating layer of a printed wiring board, various effects such as excellent handling of the resin sheet and excellent adhesion between the insulating layer and the plated conductor layer, etc. Therefore, it is extremely useful as a material for an insulating layer of a printed wiring board.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

The purpose is to provide a resin sheet serviceable as an insulating layer in a printed wiring board material, the resin sheet including a resin composition which, when made into a resin sheet, has excellent ease of handling, as well as affording excellent cohesion between the insulating layer and a conducting layer formed by plating the surface thereof. This resin sheet includes an outer layer of any one material selected from the group consisting of polymer films, metal foils, and metal films, and an insulating layer laminated onto the outer layer, wherein the insulating layer contains an epoxy compound (A), a cyanic acid ester compound (B), an inorganic filler (C), a first acrylonitrile-butadiene rubber (D) having a weight-average molecular weight, measured by GPC, of 100,000 or greater, and a second acrylonitrile-butadiene rubber (E) having a weight-average molecular weight of 1,000-30,000.

Description

樹脂シート及びプリント配線板Resin sheet and printed wiring board
 本発明は、プリント配線板の絶縁層の材料として有用な樹脂シート及びプリント配線板に関する。 The present invention relates to a resin sheet and a printed wiring board useful as a material for an insulating layer of a printed wiring board.
 近年、電子機器の小型化、高性能化が進んでいる。多層プリント配線板は、電子部品の実装密度を向上させるため、導体配線の微細化が進んでおり、その配線形成技術が望まれている。絶縁層上に高密度の微細配線を形成する方法としては、無電解めっきのみで導体層を形成するアディティブ法や、無電解めっきで全面に薄い銅層を形成した後に電解めっきで導体層を形成し、そのあとに薄い銅層をフラッシュエッチングするセミアディティブ法などが知られている。 In recent years, electronic devices are becoming smaller and higher performance. In multilayer printed wiring boards, in order to improve the mounting density of electronic components, miniaturization of conductor wiring is progressing, and the wiring forming technology is desired. As a method of forming high-density fine wiring on the insulating layer, an additive method in which a conductor layer is formed only by electroless plating, or a conductor layer is formed by electrolytic plating after forming a thin copper layer on the entire surface by electroless plating. Then, a semi-additive method for flash-etching a thin copper layer after that is known.
 絶縁層表面の粗度は、後工程のフラッシュエッチング処理において、物理アンカー深部のめっきを除去できなくなってしまうため、極力小さくすることが望ましい。一方、絶縁層表面の粗度が小さいことで導体層と絶縁層間の密着強度は小さくなる傾向にある。よって、絶縁層表面の粗度が小さくても導体層との界面密着強度が高い絶縁層樹脂組成物が求められている。 It is desirable to reduce the roughness of the surface of the insulating layer as much as possible because the plating in the deep part of the physical anchor cannot be removed in the flash etching process in the subsequent process. On the other hand, since the roughness of the surface of the insulating layer is small, the adhesion strength between the conductor layer and the insulating layer tends to decrease. Therefore, there is a demand for an insulating layer resin composition having a high interface adhesion strength with a conductor layer even when the roughness of the insulating layer surface is small.
 また、多層プリント配線板の小型化、高密度化により、多層プリント配線板に用いられる積層板を薄型化する検討が盛んに行なわれている。多層プリント配線板の薄型化に伴い、絶縁層についても薄型化が求められ、ガラスクロスを含まず、ハンドリング性の良い樹脂シートの検討が求められている。薄型化に伴い、実装信頼性の低下及び多層プリント配線板の反りの拡大という問題が生じるため、絶縁層の材料となる樹脂組成物には、高密着性、高ガラス転移温度も求められている。 In addition, due to the miniaturization and high density of multilayer printed wiring boards, studies are being actively conducted to reduce the thickness of laminated boards used in multilayer printed wiring boards. As the multilayer printed wiring board becomes thinner, the insulating layer is also required to be thinner, and a resin sheet that does not contain glass cloth and has good handling properties is required. Along with the reduction in thickness, problems such as a decrease in mounting reliability and an increase in warpage of the multilayer printed wiring board arise, so that the resin composition used as the material for the insulating layer is also required to have high adhesion and a high glass transition temperature. .
 これに対して各種取り組みがなされてきた。例えば特許文献1にはハンドリング性を高める観点から、耐クラック性向上のために液状ゴムを添加する技術が開示されている。具体的に当該文献には(A)酸無水物基及びカルボキシル基の少なくとも一方の官能基を有する、ノルボルネン系モノマーの開環重合体水素添加物である環構造含有重合体樹脂、(B)硬化剤としてのエポキシ化合物、(C)環構造含有の置換基を有するイミダゾール化合物及び(D)液状ポリブタジエンである液状ゴムを含有する樹脂組成物が開示されている。 In response to this, various efforts have been made. For example, Patent Document 1 discloses a technique of adding liquid rubber for improving crack resistance from the viewpoint of improving handling properties. Specifically, the document includes (A) a ring structure-containing polymer resin that is a hydrogenated product of a ring-opening polymer of a norbornene monomer having at least one functional group of an acid anhydride group and a carboxyl group, and (B) curing. A resin composition containing an epoxy compound as an agent, (C) an imidazole compound having a ring structure-containing substituent, and (D) a liquid rubber that is liquid polybutadiene is disclosed.
 特許文献2には、接着性向上を目的にゴム成分を使用する技術が開示されている。ゴム成分は、室温(25℃)で固形でも液状でもよいが、流動性向上の観点から、液状であることが好ましいと記載されている。 Patent Document 2 discloses a technique using a rubber component for the purpose of improving adhesiveness. The rubber component may be solid or liquid at room temperature (25 ° C.), but it is described that it is preferably liquid from the viewpoint of improving fluidity.
 特許文献3には、シアン酸エステル系樹脂組成物とアクリロニトリル-ブタジエン共重合体との混合物または予備反応物を含む硬化性樹脂組成物の硬化体が、屈曲性に優れ、良好な弾性を有することが記載されている。 Patent Document 3 discloses that a cured product of a curable resin composition containing a mixture of a cyanate ester resin composition and an acrylonitrile-butadiene copolymer or a pre-reacted product has excellent flexibility and good elasticity. Is described.
特許第4277440号公報Japanese Patent No. 4277440 国際公開第2013/042724号パンフレットInternational Publication No. 2013/042724 Pamphlet 特開昭56-157424号公報JP-A-56-157424
 しかしながら、特許文献1に記載の方法では、耐クラック性の改善が可能であるが、当該文献には高ガラス転移温度という概念は一切記載されていない。 However, the method described in Patent Document 1 can improve crack resistance, but does not describe any concept of high glass transition temperature.
 また、特許文献2に記載の方法では、接着性や流動性には優れるものの、当該文献には半硬化状態の樹脂シートの可撓性については一切記載されていない。 Further, although the method described in Patent Document 2 is excellent in adhesiveness and fluidity, the document does not describe the flexibility of the semi-cured resin sheet at all.
 さらに、特許文献3には、樹脂組成物から得られる樹脂シートについて、屈曲性及び弾性が優れる旨の記載があるものの、半硬化状態の樹脂シートの可撓性については一切記載されていない。また、めっきにより形成される導体層と樹脂層の密着性という概念も一切記載されていない。 Furthermore, Patent Document 3 describes that the resin sheet obtained from the resin composition has excellent flexibility and elasticity, but does not describe any flexibility of the semi-cured resin sheet. Moreover, the concept of the adhesiveness of the conductor layer formed by plating and the resin layer is not described at all.
 本発明は上記の課題に鑑みてなされたもので、その目的は、プリント配線板材料における絶縁層に使用した場合に、ハンドリング性に優れ、絶縁層とその表面にめっき形成される導体層との密着性に優れ、完全硬化した際のガラス転移温度が高い樹脂シート、及びこれを用いたプリント配線板を提供することである。 The present invention has been made in view of the problems described above, and its purpose is to provide an excellent handling property when used as an insulating layer in a printed wiring board material, and an insulating layer and a conductor layer formed on the surface thereof by plating. It is providing the resin sheet which is excellent in adhesiveness, and has a high glass transition temperature when fully cured, and a printed wiring board using the resin sheet.
 本発明者らは鋭意検討した結果、高分子フィルム、金属箔及び金属フィルムからなる群から選択される、いずれか一種である外層と、当該外層上に積層された絶縁層とを含む樹脂シートであって、当該絶縁層が、エポキシ化合物(A)、シアン酸エステル化合物(B)、無機充填材(C)、GPCにより測定した重量平均分子量が100,000以上である第一のアクリロニトリル-ブタジエンゴム(D)及び前記重量平均分子量が1,000~30,000であるアクリロニトリル-ブタジエンゴム(E)を含有する樹脂シートにより、上記課題が解決されることを見出し本発明に到達した。
[1]高分子フィルム、金属箔及び金属フィルムからなる群から選択される、いずれか一種である外層と、当該外層上に積層された絶縁層とを含む樹脂シートであって、
 当該絶縁層が、エポキシ化合物(A)、シアン酸エステル化合物(B)、無機充填材(C)、GPCにより測定した重量平均分子量が100,000以上である第一のアクリロニトリル-ブタジエンゴム(D)及び前記重量平均分子量が1,000~30,000である第二のアクリロニトリル-ブタジエンゴム(E)を含有する、樹脂シート。
[2]前記第一のアクリロニトリル-ブタジエンゴム(D)の含有量Xが、樹脂固形分100質量部に対し、0<X<15質量部である、[1]に記載の樹脂シート。
[3]前記第二のアクリロニトリル-ブタジエンゴム(E)の含有量Yが、樹脂固形分100質量部に対し、0<Y<15質量部である、[1]又は[2]に記載の樹脂シート。
[4]前記第一のアクリロニトリル-ブタジエンゴム(D)の含有量Xと、第二のアクリロニトリル-ブタジエンゴム(E)の含有量Yの合計X+Yが、樹脂固形分100質量部に対し、0<X+Y<15質量部である、[1]~[3]のいずれか一項に記載の樹脂シート。
[5]前記絶縁層が、マレイミド化合物(F)をさらに含む、[1]~[4]のいずれか一項に記載の樹脂シート。
[6]前記高分子フィルムが、ポリエステル、ポリイミド及びポリアミドからなる群から選択される、いずれか一種である[1]~[5]のいずれか一項に記載の樹脂シート。
[7]前記絶縁層が、前記成分(A)~(E)を含む樹脂組成物を外層上に塗布した後、加熱又は減圧下で乾燥し、固化して得られたものである、[1]~[6]のいずれか一項に記載の樹脂シート。
[8]コア基材とコア基材上に形成された導体回路とを有する回路基板上に積層された、[1]~[7]のいずれか一項に記載の絶縁層を備える、プリント配線板。
[9]前記絶縁層が表面処理されており、当該表面の上にパターン形成された導体層を備える、[8]のプリント配線板。
[10]前記表面処理が、膨潤剤及びアルカリ性酸化剤による粗化処理、並びに酸性還元剤による中和処理を含むデスミア処理である、[9]に記載のプリント配線板。
[11]前記導体層が、セミアディティブ法により形成された導体層又はサブトラクティブ法により形成された導体層を含む、[9]又は[10]に記載のプリント配線板。
[12]前記導体層が、[1]に記載の金属箔又は金属フィルムからなる外層をエッチングして得られた導体層を含む、[9]又は[10]に記載のプリント配線板。
As a result of earnest studies, the present inventors have selected a resin sheet comprising an outer layer that is one type selected from the group consisting of a polymer film, a metal foil, and a metal film, and an insulating layer laminated on the outer layer. The insulating layer is an epoxy compound (A), a cyanate ester compound (B), an inorganic filler (C), and a first acrylonitrile-butadiene rubber having a weight average molecular weight measured by GPC of 100,000 or more. It has been found that the above problems can be solved by (D) and a resin sheet containing acrylonitrile-butadiene rubber (E) having a weight average molecular weight of 1,000 to 30,000, and the present invention has been achieved.
[1] A resin sheet comprising an outer layer that is any one selected from the group consisting of a polymer film, a metal foil, and a metal film, and an insulating layer laminated on the outer layer,
The insulating layer is an epoxy compound (A), a cyanate ester compound (B), an inorganic filler (C), and a first acrylonitrile-butadiene rubber (D) having a weight average molecular weight measured by GPC of 100,000 or more. And a second acrylonitrile-butadiene rubber (E) having a weight average molecular weight of 1,000 to 30,000.
[2] The resin sheet according to [1], wherein the content X of the first acrylonitrile-butadiene rubber (D) is 0 <X <15 parts by mass with respect to 100 parts by mass of the resin solid content.
[3] The resin according to [1] or [2], wherein the content Y of the second acrylonitrile-butadiene rubber (E) is 0 <Y <15 parts by mass with respect to 100 parts by mass of the resin solid content. Sheet.
[4] The sum X + Y of the content X of the first acrylonitrile-butadiene rubber (D) and the content Y of the second acrylonitrile-butadiene rubber (E) is 0 < The resin sheet according to any one of [1] to [3], wherein X + Y <15 parts by mass.
[5] The resin sheet according to any one of [1] to [4], wherein the insulating layer further contains a maleimide compound (F).
[6] The resin sheet according to any one of [1] to [5], wherein the polymer film is any one selected from the group consisting of polyester, polyimide, and polyamide.
[7] The insulating layer is obtained by applying a resin composition containing the components (A) to (E) on the outer layer, and then drying and solidifying by heating or reduced pressure. [1 ]-The resin sheet as described in any one of [6].
[8] A printed wiring comprising the insulating layer according to any one of [1] to [7], which is laminated on a circuit board having a core substrate and a conductor circuit formed on the core substrate. Board.
[9] The printed wiring board according to [8], wherein the insulating layer is surface-treated and includes a conductor layer patterned on the surface.
[10] The printed wiring board according to [9], wherein the surface treatment is a desmear treatment including a roughening treatment with a swelling agent and an alkaline oxidizing agent, and a neutralization treatment with an acidic reducing agent.
[11] The printed wiring board according to [9] or [10], wherein the conductor layer includes a conductor layer formed by a semi-additive method or a conductor layer formed by a subtractive method.
[12] The printed wiring board according to [9] or [10], wherein the conductor layer includes a conductor layer obtained by etching an outer layer made of the metal foil or metal film according to [1].
 本発明の樹脂シートは、以下の(1)~(4)の効果の少なくとも何れか、好ましくは全てを発揮する。
(1)樹脂シートの可撓性(ハンドリング性)に優れる。
(2)絶縁層とその表面にめっき形成される導体層との密着性に優れる。
(3)基材表面粗度が小さい。
(4)高いガラス転移温度を有する。
The resin sheet of the present invention exhibits at least one, preferably all of the following effects (1) to (4).
(1) The resin sheet is excellent in flexibility (handling property).
(2) Excellent adhesion between the insulating layer and the conductor layer formed on the surface thereof.
(3) The substrate surface roughness is small.
(4) It has a high glass transition temperature.
 本発明の一態様は、高分子フィルム、金属箔及び金属フィルムからなる群から選択される、いずれか一種である外層と、当該外層上に積層された絶縁層とを含む樹脂シートであって、当該絶縁層が、前記成分(A)~(E)を含有する、樹脂シートである。 One aspect of the present invention is a resin sheet including an outer layer that is one type selected from the group consisting of a polymer film, a metal foil, and a metal film, and an insulating layer laminated on the outer layer, The insulating layer is a resin sheet containing the components (A) to (E).
 以下、本発明を詳細に説明する。本発明において「X~Y」はその端値であるX及びYを含む。また「X又はY」はX、Yのいずれか、或いは双方を意味する。 Hereinafter, the present invention will be described in detail. In the present invention, “X to Y” includes X and Y which are their end values. “X or Y” means either X or Y or both.
 本発明において、成分(A)~(E)及び必要に応じて後述する他の成分を含む組成物を「樹脂組成物」という。外層の上に設けられた層であって、樹脂組成物を含み室温で流動性を持たない層を「絶縁層」という。後述するように当該絶縁層は溶媒を含む場合がある。また、当該絶縁層は他の材料と接着されて使用されるので硬化可能である必要がある。具体的には、当該絶縁層中の硬化性樹脂は未硬化、または一部が反応しているが硬化可能な状態にある。前記樹脂組成物と溶媒を含み、室温で外層に塗布できる流動性を有する液体を「ワニス」という。以下、各成分について説明する。 In the present invention, a composition containing components (A) to (E) and other components described later as required is referred to as a “resin composition”. A layer provided on the outer layer and containing the resin composition and having no fluidity at room temperature is referred to as an “insulating layer”. As will be described later, the insulating layer may contain a solvent. Further, since the insulating layer is used by being bonded to another material, it needs to be curable. Specifically, the curable resin in the insulating layer is uncured or partially reacted but is curable. A fluid having fluidity that contains the resin composition and a solvent and can be applied to the outer layer at room temperature is referred to as “varnish”. Hereinafter, each component will be described.
〔I-1.エポキシ化合物(A)〕
 本発明に使用されるエポキシ化合物(A)は、少なくとも1個のエポキシ基を有する有機化合物である。エポキシ化合物(A)の1分子当たりのエポキシ基の数は、1以上である。該エポキシ基の数は2以上であることがより好ましい。
[I-1. Epoxy compound (A)]
The epoxy compound (A) used in the present invention is an organic compound having at least one epoxy group. The number of epoxy groups per molecule of the epoxy compound (A) is 1 or more. The number of the epoxy groups is more preferably 2 or more.
 エポキシ化合物(A)としては、従来公知のエポキシ樹脂を用いることができる。エポキシ化合物(A)は、1種類のみが用いられてもよく、2種類以上が併用されてもよい。 A conventionally well-known epoxy resin can be used as an epoxy compound (A). As for an epoxy compound (A), only 1 type may be used and 2 or more types may be used together.
 エポキシ化合物(A)としては、例えば、ビフェニルアラルキル型エポキシ化合物(エポキシ基含有ビフェニルアラルキル樹脂)、ナフタレン型エポキシ化合物(ナフタレン骨格を有するエポキシ基含有化合物:ナフタレン2官能型エポキシ化合物)、ビスナフタレン型エポキシ化合物(ビスナフタレン骨格を有するエポキシ基含有化合物:ナフタレン4官能型エポキシ化合物)、芳香族炭化水素ホルムアルデヒド型エポキシ化合物(エポキシ基含有芳香族炭化水素ホルムアルデヒド樹脂)、アントラキノン型エポキシ化合物(アントラキノン骨格を有するエポキシ基含有化合物)、ナフトールアラルキル型エポキシ化合物(エポキシ基含有ナフトールアラルキル樹脂)、ザイロック型エポキシ化合物(エポキシ基含有ザイロック樹脂)、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキ樹脂、ビスフェノールAノボラック型エポキシ樹脂、3官能フェノール型エポキシ化合物(3官能フェノール骨格を有するエポキシ基含有化合物)、4官能フェノール型エポキシ化合物(4官能フェノール骨格を有するエポキシ基含有化合物)、ビフェニル型エポキシ樹脂(ビフェニル骨格を有するエポキシ基含有化合物)、アラルキルノボラック型エポキシ樹脂、トリアジン骨格エポキシ化合物(トリアジン骨格含有エポキシ樹脂)脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、グリシジルアミン、グリシジルエステル、ブタジエン等の二重結合含有化合物の二重結合をエポキシ化した化合物、及び、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物、等が挙げられる。 Examples of the epoxy compound (A) include a biphenyl aralkyl type epoxy compound (epoxy group-containing biphenyl aralkyl resin), a naphthalene type epoxy compound (an epoxy group-containing compound having a naphthalene skeleton: a naphthalene bifunctional epoxy compound), and a bisnaphthalene type epoxy. Compound (epoxy group-containing compound having bisnaphthalene skeleton: naphthalene tetrafunctional epoxy compound), aromatic hydrocarbon formaldehyde type epoxy compound (epoxy group-containing aromatic hydrocarbon formaldehyde resin), anthraquinone type epoxy compound (epoxy having anthraquinone skeleton) Group-containing compound), naphthol aralkyl type epoxy compound (epoxy group-containing naphthol aralkyl resin), zylock type epoxy compound (epoxy group-containing zylock resin), Sphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol A novolak type epoxy resin, trifunctional phenol type epoxy compound (epoxy group-containing compound having trifunctional phenol skeleton), tetrafunctional phenol type epoxy compound (tetrafunctional phenol skeleton) Epoxy group-containing compound), biphenyl type epoxy resin (epoxy group-containing compound having biphenyl skeleton), aralkyl novolak type epoxy resin, triazine skeleton epoxy compound (triazine skeleton containing epoxy resin) alicyclic epoxy resin, polyol type epoxy resin A compound obtained by epoxidizing a double bond of a double bond-containing compound such as glycidylamine, glycidyl ester, and butadiene, and a reaction of a hydroxyl group-containing silicone resin with epichlorohydrin. That compound, and the like.
 なお、上記例示に記すように、本明細書では、ある樹脂又は化合物をエポキシ化して得られる構造を有するエポキシ化合物を、その樹脂又は化合物の名称に「~型エポキシ化合物」との記載を付して表す場合がある。 As described in the above examples, in this specification, an epoxy compound having a structure obtained by epoxidizing a certain resin or compound is referred to as “˜epoxy compound” in the name of the resin or compound. May be expressed.
 これらの中でも、エポキシ化合物(A)としては、絶縁層とめっき導体層との密着性及び難燃性等の観点から、ビフェニルアラルキル型エポキシ化合物、ナフタレン型エポキシ化合物、ビスナフタレン型エポキシ化合物、芳香族炭化水素ホルムアルデヒド型エポキシ化合物(好ましい例としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素をホルムアルデヒドと重合して得られた芳香族炭化水素ホルムアルデヒド樹脂を、フェノール、キシレノール等の水酸基含有芳香族炭化水素で変性し、更に当該水酸基をエポキシ化した化合物や、フェノール、キシレノール等の水酸基含有芳香族炭化水素をホルムアルデヒドと重合して得られた芳香族炭化水素ホルムアルデヒド樹脂の当該水酸基をエポキシ化した化合物等)、アントラキノン型エポキシ化合物、ナフトールアラルキル型エポキシ化合物、及びザイロック型エポキシ化合物、からなる群から選択される1種又は2種以上であることが好ましい。 Among these, as the epoxy compound (A), biphenylaralkyl type epoxy compound, naphthalene type epoxy compound, bisnaphthalene type epoxy compound, aromatic from the viewpoints of adhesion between the insulating layer and the plated conductor layer and flame retardancy Hydrocarbon formaldehyde epoxy compounds (preferred examples include aromatic hydrocarbon formaldehyde resins obtained by polymerizing aromatic hydrocarbons such as benzene, toluene and xylene with formaldehyde, and hydroxyl-containing aromatic carbonization such as phenol and xylenol. Compounds modified with hydrogen and further epoxidized with hydroxyl groups, compounds with epoxidized hydroxyl groups of aromatic hydrocarbon formaldehyde resins obtained by polymerizing hydroxyl-containing aromatic hydrocarbons such as phenol and xylenol with formaldehyde, etc. ), Anthraquinone Epoxy compounds, naphthol aralkyl-type epoxy compounds, and xylok type epoxy compound is preferably one or more members selected from the group consisting of.
 ビフェニルアラルキル型エポキシ化合物としては、式(1)で表される化合物が好ましい。この好ましいビフェニルアラルキル型エポキシ化合物の使用により、絶縁層の耐燃焼性を向上することができる。 The biphenyl aralkyl type epoxy compound is preferably a compound represented by the formula (1). By using this preferable biphenyl aralkyl type epoxy compound, the combustion resistance of the insulating layer can be improved.
Figure JPOXMLDOC01-appb-C000001
(式中、Rは各々独立に、水素原子又はメチル基を表す。nは1以上の整数を示す。)
Figure JPOXMLDOC01-appb-C000001
(In the formula, each R 1 independently represents a hydrogen atom or a methyl group. N 1 represents an integer of 1 or more.)
 本発明におけるエポキシ化合物(A)の含有量は特に限定されないが、耐熱性及び硬化性の観点から、絶縁層の樹脂固形分100質量部に対し、20~80質量部範囲が好ましく、30~70質量部の範囲が特に好適である。ここで、「絶縁層の樹脂固形分」とは、絶縁層における無機充填材(C)を除いた成分である。後述するように、ワニスで絶縁層が製造された場合、絶縁層は溶媒を含みうる。この場合、絶縁層中の樹脂固形分は無機充填材(C)および溶媒を除いた成分である。よって、樹脂固形分100質量部とは、絶縁層における無機充填材(C)及び溶媒を含む場合は当該溶媒をも除いた成分の合計が100質量部であることをいう。 The content of the epoxy compound (A) in the present invention is not particularly limited, but from the viewpoint of heat resistance and curability, the range of 20 to 80 parts by mass is preferable with respect to 100 parts by mass of the resin solid content of the insulating layer, preferably 30 to 70. The range of parts by mass is particularly suitable. Here, the “resin solid content of the insulating layer” is a component excluding the inorganic filler (C) in the insulating layer. As will be described later, when the insulating layer is manufactured with varnish, the insulating layer may contain a solvent. In this case, the resin solid content in the insulating layer is a component excluding the inorganic filler (C) and the solvent. Therefore, the resin solid content of 100 parts by mass means that when the inorganic filler (C) and the solvent in the insulating layer are included, the total of components excluding the solvent is 100 parts by mass.
 エポキシ化合物(A)としては、様々な構造の既製品が市販されており、それらを適宜入手して用いることができる。また、公知の種々の製法を用いて、エポキシ化合物(A)を製造してもよい。斯かる製法の例としては、所望の骨格を有する水酸基含有化合物を入手又は合成し、当該水酸基を公知の手法により修飾してエポキシ化(エポキシ基導入)する方法等が挙げられる。 As the epoxy compound (A), off-the-shelf products having various structures are commercially available, and they can be appropriately obtained and used. Moreover, you may manufacture an epoxy compound (A) using a well-known various manufacturing method. Examples of such a production method include a method of obtaining or synthesizing a hydroxyl group-containing compound having a desired skeleton, modifying the hydroxyl group by a known method, and epoxidizing (introducing an epoxy group).
〔I-2.シアン酸エステル化合物(B)〕
 本発明に使用されるシアン酸エステル化合物(B)は、シアナト基(シアン酸エステル基)を有する化合物であれば特に限定されない。具体的には、ナフトールアラルキル型シアン酸エステル化合物(シアナト基含有ナフトールアラルキル樹脂)、芳香族炭化水素ホルムアルデヒド型シアン酸エステル化合物(シアナト基含有芳香族炭化水素ホルムアルデヒド樹脂)、ビフェニルアラルキル型シアン酸エステル化合物(シアナト基含有ビフェニルアラルキル樹脂)、及びノボラック型シアン酸エステル化合物(シアナト基含有ノボラック樹脂)、等が挙げられる。
[I-2. Cyanate ester compound (B)]
The cyanate ester compound (B) used in the present invention is not particularly limited as long as it is a compound having a cyanate group (cyanate ester group). Specifically, naphthol aralkyl type cyanate ester compound (cyanate group-containing naphthol aralkyl resin), aromatic hydrocarbon formaldehyde type cyanate ester compound (cyanate group-containing aromatic hydrocarbon formaldehyde resin), biphenyl aralkyl type cyanate ester compound (Cyanato group-containing biphenyl aralkyl resin), novolac-type cyanate ester compound (cyanato group-containing novolak resin), and the like.
 これらのシアン酸エステル化合物(B)は、本発明の絶縁層において高耐薬品性、高ガラス転移温度、低熱膨張性等の優れた特性を付与するので、本発明において好適に使用することができる。 These cyanate ester compounds (B) impart excellent properties such as high chemical resistance, high glass transition temperature, and low thermal expansion in the insulating layer of the present invention, and therefore can be suitably used in the present invention. .
 なお、上記例示に記すように、本明細書では、ある樹脂又は化合物をシアナト化(シアン酸エステル化)して得られる構造を有するシアン酸エステル化合物(B)を、その樹脂又は化合物の名称に「~型シアン酸エステル化合物」との記載を付して表す場合がある。 In addition, as described in the above examples, in this specification, a cyanate ester compound (B) having a structure obtained by cyanating (cyanate esterification) a certain resin or compound is referred to as the name of the resin or compound. It may be indicated with the description “-type cyanate ester compound”.
 これらの中でも、シアン酸エステル化合物(B)としては、難燃性に優れ、硬化性が高く、かつ硬化物のガラス転移温度が高い本発明の絶縁層を提供するという観点から、ナフトールアラルキル型シアン酸エステル化合物、芳香族炭化水素ホルムアルデヒド型シアン酸エステル化合物(好ましい例としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素をホルムアルデヒドと重合して得られた芳香族炭化水素ホルムアルデヒド樹脂を、フェノール、キシレノール等の水酸基含有芳香族炭化水素で変性し、更に当該水酸基をシアナト化した化合物や、フェノール、キシレノール等の水酸基含有芳香族炭化水素をホルムアルデヒドと重合して得られた水酸基含有芳香族炭化水素ホルムアルデヒド樹脂の当該水酸基をシアナト化した化合物等)、及びビフェニルアラルキル型シアン酸エステル化合物からなる群から選択される1種又は2種以上が特に好ましい。 Among these, as the cyanate ester compound (B), a naphthol aralkyl type cyanide is provided from the viewpoint of providing the insulating layer of the present invention having excellent flame retardancy, high curability, and high glass transition temperature of the cured product. Acid ester compound, aromatic hydrocarbon formaldehyde type cyanate ester compound (preferably, aromatic hydrocarbon formaldehyde resin obtained by polymerizing aromatic hydrocarbon such as benzene, toluene, xylene and the like with formaldehyde, phenol, Hydroxyl group-containing aromatic hydrocarbon formaldehyde obtained by polymerizing hydroxyl group-containing aromatic hydrocarbons such as phenol and xylenol with formaldehyde modified with hydroxyl group-containing aromatic hydrocarbons such as xylenol and further hydroxylating the hydroxyl group Compounds in which the hydroxyl group of the resin is cyanated ), And one member selected from the group consisting of biphenyl aralkyl type cyanate ester compound, or two or more are particularly preferred.
 ナフトールアラルキル型シアン酸エステル化合物としては、式(2)で表される化合物が好ましい。 As the naphthol aralkyl type cyanate ester compound, a compound represented by the formula (2) is preferable.
Figure JPOXMLDOC01-appb-C000002
(式中、Rは各々独立に水素原子又はメチル基を表し、中でも水素原子が好ましい。nは1以上の整数を示す。)
Figure JPOXMLDOC01-appb-C000002
(In the formula, each R 2 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable. N 2 represents an integer of 1 or more.)
 ノボラック型シアン酸エステル化合物としては、式(3)又は式(4)で表される化合物が好ましい。 As the novolac-type cyanate ester compound, a compound represented by the formula (3) or the formula (4) is preferable.
Figure JPOXMLDOC01-appb-C000003
(式中、Rは水素原子又はメチル基を表し、中でも水素原子が好ましい。nは1以上の整数を示す。)
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 3 represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable. N 3 represents an integer of 1 or more.)
Figure JPOXMLDOC01-appb-C000004
(式中、Rは水素原子又はメチル基を表し、中でも水素原子が好ましい。nは1以上の整数を示す。)
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 4 represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable. N 4 represents an integer of 1 or more.)
 本発明におけるシアン酸エステル化合物(B)の含有量は特に限定されないが、耐熱性及び硬化性の観点から、絶縁層の樹脂固形分100質量部に対し、20~40質量部の範囲が好ましく、25~35質量部の範囲が特に好適である。 The content of the cyanate ester compound (B) in the present invention is not particularly limited, but is preferably in the range of 20 to 40 parts by mass with respect to 100 parts by mass of the resin solid content of the insulating layer, from the viewpoint of heat resistance and curability. A range of 25 to 35 parts by mass is particularly suitable.
 シアン酸エステル化合物(B)としては、様々な構造の既製品が市販されており、それら適宜入手して用いることができる。また、公知の種々の製法を用いて、シアン酸エステル化合物(B)を製造してもよい。斯かる製法の例としては、所望の骨格を有する水酸基含有化合物を入手又は合成し、当該水酸基を公知の手法により修飾してシアナト化する方法等が挙げられる。水酸基をシアナト化する手法としては、例えば、Ian Hamerton,“Chemistry and Technology of Cyanate Ester Resins,”Blackie Academic & Professionalに記載の手法が挙げられる。 As the cyanate ester compound (B), off-the-shelf products with various structures are commercially available, and can be obtained and used as appropriate. Moreover, you may manufacture a cyanate ester compound (B) using a well-known various manufacturing method. Examples of such production methods include a method of obtaining or synthesizing a hydroxyl group-containing compound having a desired skeleton, and modifying the hydroxyl group by a known method to form cyanate. Examples of the method for cyanating a hydroxyl group include the method described in Ian Hamerton, “Chemistry and Technology of Cyanate Ester Resins,” “Blackie Academic & Professional”.
〔I-3.無機充填材(C)〕
 本発明に使用される無機充填材(C)は、特に制限されないが、例としては、シリカ(例えば天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ等)、アルミニウム化合物(例えばベーマイト、水酸化アルミニウム、アルミナ等)、マグネシウム化合物(例えば酸化マグネシウム、水酸化マグネシウム等)、カルシウム化合物(例えば炭酸カルシウム等)、モリブデン化合物(例えば酸化モリブデン、モリブデン酸亜鉛等)、タルク(例えば天然タルク、焼成タルク等)、マイカ(雲母)、ガラス(例えば短繊維状ガラス、球状ガラス、微粉末ガラス(例えばEガラス、Tガラス、Dガラス等)等)などが挙げられる。これらの無機充填材(C)は、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
[I-3. Inorganic filler (C)]
The inorganic filler (C) used in the present invention is not particularly limited, but examples include silica (for example, natural silica, fused silica, amorphous silica, hollow silica, etc.), an aluminum compound (for example, boehmite, aluminum hydroxide, Alumina etc.), magnesium compounds (eg magnesium oxide, magnesium hydroxide etc.), calcium compounds (eg calcium carbonate etc.), molybdenum compounds (eg molybdenum oxide, zinc molybdate etc.), talc (eg natural talc, calcined talc etc.), Examples include mica (mica), glass (for example, short fiber glass, spherical glass, fine powder glass (for example, E glass, T glass, D glass, etc.)) and the like. These inorganic fillers (C) may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
 これらの中でも、無機充填材(C)としては、シリカ、水酸化アルミニウム、アルミナ、ベーマイト、酸化マグネシウム及び水酸化マグネシウムからなる群から選択される1種又は2種以上が好適である。 Among these, the inorganic filler (C) is preferably one or more selected from the group consisting of silica, aluminum hydroxide, alumina, boehmite, magnesium oxide and magnesium hydroxide.
 特に、低熱膨張性の観点から、無機充填材(C)としては、シリカが好ましく、その中でも溶融シリカが特に好ましい。溶融シリカの具体例としては、電気化学工業(株)製のSFP-130MC等、(株)アドマテックス製のSC2050―MB、SC2500―SQ、SC4500-SQ等が挙げられる。 Particularly, from the viewpoint of low thermal expansion, silica is preferable as the inorganic filler (C), and among them, fused silica is particularly preferable. Specific examples of the fused silica include SFP-130MC manufactured by Denki Kagaku Kogyo Co., Ltd., SC2050-MB, SC2500-SQ, SC4500-SQ manufactured by Admatechs Co., Ltd., and the like.
 また、無機充填材(C)としては、水酸化マグネシウム又は酸化マグネシウムを単独で、或いはシリカ等の他の無機充填材との組み合わせで使用することも好ましい。水酸化マグネシウム及び水酸化マグネシウムは、耐燃性を向上させる効果がある。水酸化マグネシウムの具体例としては、タテホ化学工業(株)製の「エコーマグZ-10」、「エコーマグPZ-1」、神島化学工業(株)製の「マグシーズN」、「マグシーズS」、「マグシーズEP」、「マグシーズEP2-A」、堺化学工業(株)製のMGZ-1、MGZ-3、MGZ-6R、協和化学工業(株)製の「キスマ5」、「キスマ5A」、「キスマ5P」等が挙げられる。酸化マグネシウムの具体例としては、タテホ化学工業(株)製のFNM-G、堺化学工業(株)製のSMO、SMO-0.1、SMO-S-0.5等が挙げられる。 Also, as the inorganic filler (C), it is also preferable to use magnesium hydroxide or magnesium oxide alone or in combination with other inorganic fillers such as silica. Magnesium hydroxide and magnesium hydroxide have the effect of improving the flame resistance. Specific examples of magnesium hydroxide include “Echo Mug Z-10” and “Echo Mug PZ-1” manufactured by Tateho Chemical Co., Ltd., “Magsees N”, “Magsees S” manufactured by Kamishima Chemical Co., Ltd., “ “Magsees EP”, “Magsees EP2-A”, MGZ-1, MGZ-3, MGZ-6R manufactured by Sakai Chemical Industry Co., Ltd., “Kisuma 5”, “Kisuma 5A” manufactured by Kyowa Chemical Industry Co., Ltd., “ Kisma 5P "and the like. Specific examples of magnesium oxide include FNM-G manufactured by Tateho Chemical Industry Co., Ltd., SMO, SMO-0.1, SMO-S-0.5 manufactured by Sakai Chemical Industry Co., Ltd., and the like.
 無機充填材(C)の平均粒子径は、限定されないが、樹脂シートの製造性向上の観点からは、0.01~5.0μmが好ましく、0.2~2.0μmがより好ましい。なお、本明細書において無機充填材(C)の「平均粒子径」とは、無機充填材(C)のメジアン径を意味する。ここでメジアン径とは、ある粒子径を基準として粉体の粒度分布を2つに分けた場合に、より粒径が大きい側の粒子の個数又は質量と、より粒径が小さい側の個数又は質量とが、全粉体の夫々50%を占めるような粒子径を意味する。無機充填材(C)の平均粒子径(メジアン径)は、湿式レーザー回折・散乱法により測定される。 The average particle diameter of the inorganic filler (C) is not limited, but is preferably 0.01 to 5.0 μm and more preferably 0.2 to 2.0 μm from the viewpoint of improving the productivity of the resin sheet. In the present specification, the “average particle diameter” of the inorganic filler (C) means the median diameter of the inorganic filler (C). Here, the median diameter refers to the number or mass of particles on the larger particle size side and the number on the smaller particle size side when the particle size distribution of the powder is divided into two based on a certain particle size. The mass means a particle size that occupies 50% of the total powder. The average particle diameter (median diameter) of the inorganic filler (C) is measured by a wet laser diffraction / scattering method.
 本発明における無機充填材(C)の含有量は、限定されないが、絶縁層の熱膨張化を低減しながら高いめっきピール強度を得る観点からは、絶縁層の樹脂固形分100質量部に対し、50~300質量部とすることが好ましく、70~250質量部とすることが好ましい。なお、2種類以上の無機充填材(C)を併用する場合には、これらの合計量が上記比率を満たすことが好ましい。 The content of the inorganic filler (C) in the present invention is not limited, but from the viewpoint of obtaining high plating peel strength while reducing the thermal expansion of the insulating layer, the resin solid content of 100 parts by mass of the insulating layer, The amount is preferably 50 to 300 parts by mass, and more preferably 70 to 250 parts by mass. In addition, when using together 2 or more types of inorganic fillers (C), it is preferable that these total amount satisfy | fills the said ratio.
〔I-4.重量平均分子量100,000以上である第一のアクリロニトリル-ブタジエンゴム(D)〕
 本発明で使用される第一のアクリロニトリル-ブタジエンゴム(D)は、未架橋であり、ゲル・パーミエーション・クロマトグラフィー(GPC)で測定される重量平均分子量(Mw)が100,000以上である。
[I-4. First acrylonitrile-butadiene rubber (D) having a weight average molecular weight of 100,000 or more]
The first acrylonitrile-butadiene rubber (D) used in the present invention is uncrosslinked and has a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of 100,000 or more. .
 第一のアクリロニトリル-ブタジエンゴム(D)はムーニー粘度が20以上であることが好ましい。ここで、ムーニー粘度(ML1+4,100℃)とは、JISK6300-1に準拠し、Lローターを用い、予熱時間が1分間、ローター作動時間が4分間、温度が100℃の条件で測定した粘度を表す指標である。ローターのシャフトに作用するトルクが8.30N・mの時を100(ムーニー単位)、0.083N・mの時を1(ムーニー単位)とし、ムーニー粘度とトルクが線形関係にあるため、得られたトルクからムーニー粘度が算出できる。第一のアクリロニトリル-ブタジエンゴム(D)としては、例えばJSR(株)製のN220S等が挙げられる。 The first acrylonitrile-butadiene rubber (D) preferably has a Mooney viscosity of 20 or more. Here, Mooney viscosity (ML1 + 4,100 ° C.) is a viscosity measured in accordance with JISK6300-1, using an L rotor, with a preheating time of 1 minute, a rotor operating time of 4 minutes, and a temperature of 100 ° C. It is an index to represent. When the torque acting on the rotor shaft is 8.30 N · m, 100 (Mooney unit) and when 0.083 N · m is 1 (Mooney unit), the Mooney viscosity and torque are in a linear relationship. The Mooney viscosity can be calculated from the measured torque. Examples of the first acrylonitrile-butadiene rubber (D) include N220S manufactured by JSR Corporation.
 本発明における第一のアクリロニトリル-ブタジエンゴム(D)の含有量Xは、特に限定されないが、絶縁層の熱膨張を低減しながら可撓性を得る観点からは、絶縁層の樹脂固形分100質量部に対し、0<X<15質量部とすることが好ましく、3<X<10質量部とすることがより好ましい。なお、2種類以上の第一のアクリロニトリル-ブタジエンゴム(D)を併用する場合には、これらの合計量が上記比率を満たすことが好ましい。 The content X of the first acrylonitrile-butadiene rubber (D) in the present invention is not particularly limited, but from the viewpoint of obtaining flexibility while reducing the thermal expansion of the insulating layer, the resin solid content of the insulating layer is 100 mass. Preferably, 0 <X <15 parts by mass, and more preferably 3 <X <10 parts by mass. When two or more kinds of the first acrylonitrile-butadiene rubber (D) are used in combination, the total amount of these preferably satisfies the above ratio.
 第一のアクリロニトリル-ブタジエンゴム(D)中のアクリロニトリルは、樹脂シートの可撓性、絶縁層とその表面にめっき形成される導体層との密着性等の観点から、37~43質量%が好ましい。また、第一のアクリロニトリル-ブタジエンゴム(D)は官能基を有さないことが好ましい。官能基は架橋を引き起こしゴムの柔軟性を低下させるからである。官能基としてはカルボキシル基、エポキシ基、ビニル基、アミノ基等が例示できる。 Acrylonitrile in the first acrylonitrile-butadiene rubber (D) is preferably 37 to 43% by mass from the viewpoint of the flexibility of the resin sheet and the adhesion between the insulating layer and the conductor layer formed on the surface thereof. . The first acrylonitrile-butadiene rubber (D) preferably has no functional group. This is because the functional group causes cross-linking and reduces the flexibility of the rubber. Examples of the functional group include a carboxyl group, an epoxy group, a vinyl group, and an amino group.
〔I-5.重量平均分子量1,000~30,000である第二のアクリロニトリル-ブタジエンゴム(E)〕
 本発明で使用される、第二のアクリロニトリル-ブタジエンゴム(E)は、未架橋であり、テトラヒドロフランを溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)で測定される重量平均分子量(Mw)が1,000~30,000である。第二のアクリロニトリル-ブタジエンゴム(E)はムーニー粘度が1以下であることが好ましい。第二のアクリロニトリル-ブタジエンゴム(E)としては、例えばJSR(株)製のN280等が挙げられる。
[I-5. Second acrylonitrile-butadiene rubber (E) having a weight average molecular weight of 1,000 to 30,000]
The second acrylonitrile-butadiene rubber (E) used in the present invention is uncrosslinked and has a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent. 1,000 to 30,000. The second acrylonitrile-butadiene rubber (E) preferably has a Mooney viscosity of 1 or less. Examples of the second acrylonitrile-butadiene rubber (E) include N280 manufactured by JSR Corporation.
 第二のアクリロニトリル-ブタジエンゴム(E)中のアクリロニトリル含有量は、(D)中の含有量と同じであってもよいが、入手容易性等の観点から25~35質量%が好ましい。また、成分(D)と同様に、第二のアクリロニトリル-ブタジエンゴム(E)は官能基を有さないことが好ましい。 The acrylonitrile content in the second acrylonitrile-butadiene rubber (E) may be the same as the content in (D), but is preferably 25 to 35% by mass from the viewpoint of availability. Similarly to the component (D), the second acrylonitrile-butadiene rubber (E) preferably has no functional group.
 本発明における第二のアクリロニトリル-ブタジエンゴム(E)の含有量Yは限定されないが、絶縁層の熱膨張を低減しながら可撓性を得る観点からは、絶縁層の樹脂固形分100質量部に対し、0<Y<15質量部とすることが好ましく、3<Y<10質量部とすることがより好ましい。なお、2種類以上の第二のアクリロニトリル-ブタジエンゴム(E)を併用する場合には、これらの合計量が上記比率を満たすことが好ましい。 The content Y of the second acrylonitrile-butadiene rubber (E) in the present invention is not limited, but from the viewpoint of obtaining flexibility while reducing the thermal expansion of the insulating layer, the resin solid content of the insulating layer is 100 parts by mass. On the other hand, 0 <Y <15 parts by mass is preferable, and 3 <Y <10 parts by mass is more preferable. When two or more kinds of the second acrylonitrile-butadiene rubber (E) are used in combination, the total amount of these preferably satisfies the above ratio.
 本発明における第一のアクリロニトリル-ブタジエンゴム(D)の質量部をX、および第二のアクリロニトリル-ブタジエンゴム(E)の質量部をYとしたとき、合計含有量X+Yは、特に限定されないが、樹脂中におけるアクリロニトリル-ブタジエンゴムの相溶性を改善しつつ、可撓性を得る観点からは、絶縁層の樹脂固形分100質量部に対し、0<X+Y<15質量部とすることが好ましく、3<X+Y<10質量部とすることがより好ましい。 When the mass part of the first acrylonitrile-butadiene rubber (D) in the present invention is X and the mass part of the second acrylonitrile-butadiene rubber (E) is Y, the total content X + Y is not particularly limited, From the viewpoint of obtaining flexibility while improving the compatibility of acrylonitrile-butadiene rubber in the resin, it is preferable that 0 <X + Y <15 parts by mass with respect to 100 parts by mass of the resin solid content of the insulating layer. More preferably, <X + Y <10 parts by mass.
 XとYの比は限定されないが、X:Y=1:(0.5~2)が好ましく、X:Y=1:(0.8~1.2)がより好ましい。 Although the ratio of X and Y is not limited, X: Y = 1: (0.5 to 2) is preferable, and X: Y = 1: (0.8 to 1.2) is more preferable.
 本発明では、分子量及び粘度の異なる二種のアクリロニトリル-ブタジエンゴムを用いる。すなわち本発明の絶縁層は二峰性の分子量分布を有するアクリロニトリル-ブタジエンゴムを含む。これにより樹脂シートに優れた可撓性及び低い表面粗度を付与できる。この理由は限定されないが次のように推察される。高分子量成分(D)により高い応力緩和が達成されて可撓性が向上するが、これのみであると凝集しやすくなりシート表面から大きな塊として崩落しやすくなり、表面粗度が高くなる。しかし低分子量成分(E)を併用することにより(D)の凝集を適度に抑制することが可能となる。 In the present invention, two kinds of acrylonitrile-butadiene rubbers having different molecular weights and viscosities are used. That is, the insulating layer of the present invention includes acrylonitrile-butadiene rubber having a bimodal molecular weight distribution. Thereby, excellent flexibility and low surface roughness can be imparted to the resin sheet. Although this reason is not limited, it is guessed as follows. Although high stress relaxation is achieved by the high molecular weight component (D) and flexibility is improved, it is easy to aggregate when it is only this, and it is easy to collapse as a large lump from the sheet surface, and the surface roughness becomes high. However, the combined use of the low molecular weight component (E) makes it possible to moderately suppress the aggregation of (D).
〔I-6.マレイミド化合物(F)〕
 本発明においては、絶縁層の吸湿耐熱性を向上させる場合に、マレイミド化合物(F)を使用することが好ましい。使用されるマレイミド化合物(F)としてはマレイミド基を有する化合物であれば、特に限定されず、具体的には、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、トリス(4-マレイミドフェニル)メタン、式(5)で表されるマレイミド化合物、式(6)で表される長鎖アルキルビスマレイミドなどが挙げられる。
[I-6. Maleimide Compound (F)]
In the present invention, it is preferable to use the maleimide compound (F) when improving the moisture absorption heat resistance of the insulating layer. The maleimide compound (F) used is not particularly limited as long as it is a compound having a maleimide group, and specifically, bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimide) Phenoxy) -phenyl} propane, bis (3,5-dimethyl-4-maleimidophenyl) methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4-maleimide) Phenyl) methane, tris (4-maleimidophenyl) methane, a maleimide compound represented by the formula (5), a long-chain alkyl bismaleimide represented by the formula (6), and the like.
 この中でも吸湿耐熱性、耐燃性の観点から式(5)で表されるマレイミド化合物が好ましい。該化合物は市販品を用いることができ、そのような例としては、ケイ・アイ化成(株)製、BMI-2300等がある。 Among these, the maleimide compound represented by the formula (5) is preferable from the viewpoint of moisture absorption heat resistance and flame resistance. Commercially available products can be used as the compound, and examples thereof include KMI Kasei Co., Ltd. BMI-2300.
Figure JPOXMLDOC01-appb-C000005
(式中、Rは各々独立に、水素原子又はメチル基を表す。nは平均値として1~10の範囲である。)
Figure JPOXMLDOC01-appb-C000005
(In the formula, each R 5 independently represents a hydrogen atom or a methyl group. N 5 is in the range of 1 to 10 as an average value.)
 また、高いめっきピール強度を得る観点からは、式(6)で表される長鎖アルキルビスマレイミドを用いることが好ましい。該化合物は市販品を用いることができ、例としては、ケイ・アイ化成(株)製BMI-1000P等がある。 Further, from the viewpoint of obtaining high plating peel strength, it is preferable to use a long-chain alkyl bismaleimide represented by the formula (6). Commercially available products can be used as the compound, and examples thereof include BMI-1000P manufactured by KAI Kasei Co., Ltd.
Figure JPOXMLDOC01-appb-C000006
(式中nは、1以上30以下の整数を示す。)
Figure JPOXMLDOC01-appb-C000006
(Wherein n 6 represents an integer of 1 to 30)
 なお、これらマレイミド化合物のプレポリマー、もしくはマレイミド化合物とアミン化合物のプレポリマーなどの形で配合する事もでき、1種もしくは2種以上を適宜混合して使用することも可能である。 In addition, it can also mix | blend in the form of the prepolymer of these maleimide compounds, or the prepolymer of a maleimide compound and an amine compound, and it is also possible to mix 1 type (s) or 2 or more types as appropriate.
 本発明におけるマレイミド化合物(F)の含有量は、絶縁層の樹脂固形分100質量部に対し、5~50質量部が好ましく、より好ましくは、5~20質量部である。ビスマレイミドの配合量が5~50質量部の範囲であれば、良好な吸湿耐熱性を得ることができる。 The content of the maleimide compound (F) in the present invention is preferably 5 to 50 parts by mass, more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the resin solid content of the insulating layer. When the amount of bismaleimide is in the range of 5 to 50 parts by mass, good moisture absorption heat resistance can be obtained.
〔I-7.その他の成分〕
 本発明においては、前記成分(A)~(E)の他に、その他の1又は2種以上の成分を含有していてもよい。
[I-7. Other ingredients
In the present invention, in addition to the components (A) to (E), one or more other components may be contained.
 例えば、本発明の絶縁層は吸湿耐熱性向上の目的で、シランカップリング剤を含有してもよい。シランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、限定されない。具体例としては、アミノシラン系シランカップリング剤(例えばγ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン等)、エポキシシラン系シランカップリング剤(例えばγ-グリシドキシプロピルトリメトキシシラン等)、ビニルシラン系シランカップリング剤(例えばγ-メタアクリロキシプロピルトリメトキシシラン等)、カチオン性シラン系シランカップリング剤(例えばN-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩等)、フェニルシラン系シランカップリング剤等が挙げられる。これらのシランカップリング剤は、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 For example, the insulating layer of the present invention may contain a silane coupling agent for the purpose of improving moisture absorption heat resistance. As a silane coupling agent, if it is a silane coupling agent generally used for the surface treatment of an inorganic substance, it will not be limited. Specific examples include aminosilane-based silane coupling agents (for example, γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane), and epoxysilane-based silane coupling agents (for example, γ -Glycidoxypropyltrimethoxysilane, etc.), vinylsilane-based silane coupling agents (eg, γ-methacryloxypropyltrimethoxysilane), cationic silane-based silane coupling agents (eg, N-β- (N-vinylbenzyl) Aminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride), phenylsilane-based silane coupling agents, and the like. These silane coupling agents may be used alone or in combination of two or more in any combination and ratio.
 シランカップリング剤を使用する場合、その含有量は限定されないが、吸湿耐熱性向上の観点からは、無機充填材(C)に対して、シランカップリング剤の比率を0.05~5質量%とすることが好ましく、0.1~3質量%とすることがより好ましい。なお、2種以上のシランカップリング剤を併用する場合には、これらの合計量が上記比率を満たすことが好ましい。 When the silane coupling agent is used, its content is not limited, but from the viewpoint of improving moisture absorption heat resistance, the ratio of the silane coupling agent to the inorganic filler (C) is 0.05 to 5% by mass. Preferably, the content is 0.1 to 3% by mass. In addition, when using together 2 or more types of silane coupling agents, it is preferable that these total amount satisfy | fills the said ratio.
 また、本発明の絶縁層は、樹脂シートの製造性向上等の目的で、湿潤分散剤を含有してもよい。湿潤分散剤としては、一般に塗料等に使用されている湿潤分散剤であれば、限定されない。具体例としては、ビッグケミー・ジャパン(株)製のDisperbyk-110、同-111、同-180、同-161、BYK-W996、同-W9010、同-W903等が挙げられる。これらの湿潤分散剤は、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 The insulating layer of the present invention may contain a wetting and dispersing agent for the purpose of improving the productivity of the resin sheet. The wetting and dispersing agent is not limited as long as it is a wetting and dispersing agent generally used in paints and the like. Specific examples include Disperbyk-110, -111, -180, -161, BYK-W996, -W9010, and -W903 manufactured by Big Chemie Japan. One of these wetting and dispersing agents may be used alone, or two or more thereof may be used in any combination and ratio.
 湿潤分散剤を使用する場合、その含有量は限定されないが、樹脂シートの製造性向上の観点からは、無機充填材(C)に対して、湿潤分散剤の比率を0.1~5質量%とすることが好ましく、0.5~3質量%とすることがより好ましい。なお、2種以上の湿潤分散剤を併用する場合には、これらの合計量が上記比率を満たすことが好ましい。 When the wetting dispersant is used, its content is not limited, but from the viewpoint of improving the productivity of the resin sheet, the ratio of the wetting dispersant to the inorganic filler (C) is 0.1 to 5% by mass. Preferably, the content is 0.5 to 3% by mass. In addition, when using 2 or more types of wet dispersing agents together, it is preferable that these total amount satisfy | fills the said ratio.
 また、本発明の絶縁層は、硬化速度の調整等の目的で、硬化促進剤を含有してもよい。硬化促進剤としては、エポキシ化合物やシアン酸エステル化合物等の硬化促進剤として公知であり、一般に使用されるものであれば、特に限定されない。具体例としては、銅、亜鉛、コバルト、ニッケル、マンガン等の金属を含む有機金属塩類(例えばオクチル酸亜鉛、ナフテン酸コバルト、オクチル酸ニッケル、オクチル酸マンガン等)、イミダゾール類及びその誘導体(例えば2-エチル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2,4,5-トリフェニルイミダゾール等)、第3級アミン(例えばトリエチルアミン、トリブチルアミン等)等が挙げられる。これらの硬化促進剤は、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 The insulating layer of the present invention may contain a curing accelerator for the purpose of adjusting the curing speed. As a hardening accelerator, it is well-known as hardening accelerators, such as an epoxy compound and a cyanate ester compound, and if it is generally used, it will not specifically limit. Specific examples include organometallic salts containing metals such as copper, zinc, cobalt, nickel, manganese (for example, zinc octylate, cobalt naphthenate, nickel octylate, manganese octylate, etc.), imidazoles, and derivatives thereof (for example, 2 -Ethyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 2,4,5-triphenylimidazole etc.), tertiary amines (eg triethylamine, tributylamine etc.) and the like. These hardening accelerators may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
 硬化促進剤を使用する場合、その含有量は限定されないが、高いガラス転移温度を得る観点からは、絶縁層の樹脂固形分100質量部に対し、硬化促進剤の比率を0.01~5質量部とすることが好ましく、0.05~4質量部とすることがより好ましい。なお、2種以上の硬化促進剤を併用する場合には、これらの合計量が上記比率を満たすことが好ましい。 When the curing accelerator is used, its content is not limited, but from the viewpoint of obtaining a high glass transition temperature, the ratio of the curing accelerator is 0.01 to 5 mass with respect to 100 mass parts of the resin solid content of the insulating layer. Part is preferable, and 0.05 to 4 parts by mass is more preferable. In addition, when using 2 or more types of hardening accelerators together, it is preferable that these total amount satisfy | fills the said ratio.
 また、本発明の絶縁層は、所期の特性が損なわれない範囲において、その他の種々の高分子化合物又は難燃性化合物等を含有してもよい。高分子化合物及び難燃性化合物としては、一般に使用されているものであれば限定されない。高分子化合物の例としては、各種の熱硬化性樹脂及び熱可塑性樹脂並びにそのオリゴマー、エラストマー類等が挙げられる。難燃性化合物の例としては、リン含有化合物(例えばリン酸エステル、リン酸メラミン、リン含有エポキシ樹脂等)、窒素含有化合物(例えばメラミン、ベンゾグアナミン等)、オキサジン環含有化合物、シリコーン系化合物等が挙げられる。これらの高分子化合物又は難燃性化合物は、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 The insulating layer of the present invention may contain other various polymer compounds or flame retardant compounds as long as the desired properties are not impaired. The polymer compound and the flame retardant compound are not limited as long as they are generally used. Examples of the polymer compound include various thermosetting resins and thermoplastic resins, oligomers thereof, and elastomers. Examples of flame retardant compounds include phosphorus-containing compounds (eg, phosphate esters, melamine phosphate, phosphorus-containing epoxy resins), nitrogen-containing compounds (eg, melamine, benzoguanamine, etc.), oxazine ring-containing compounds, silicone compounds, and the like. Can be mentioned. These polymer compounds or flame retardant compounds may be used alone or in combination of two or more in any combination and ratio.
 また、本発明の絶縁層には、所期の特性が損なわれない範囲において、種々の目的により、各種の添加剤を含有していてもよい。添加剤の例としては、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光沢剤等が挙げられる。これらの添加剤は、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 In addition, the insulating layer of the present invention may contain various additives for various purposes within a range where the intended characteristics are not impaired. Examples of additives include UV absorbers, antioxidants, photopolymerization initiators, fluorescent brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, Examples include brighteners. These additives may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
〔I-8.ワニス〕
 前記成分(A)~(E)及び必要に応じて前記のその他の成分を溶媒に溶解又は分散させてワニスとすることができる。斯かるワニスは、後述する本発明の樹脂シートを作製する際に好適である。溶媒としては、上述の成分を各々好適に溶解又は分散させることができ、且つ、本発明の所期の効果を損なわないものであれば限定されない。具体例としては、アルコール類(メタノール、エタノール、プロパノール等)、ケトン類(例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等)、アミド類(例えばジメチルアセトアミド、ジメチルホルムアミド等)、芳香族炭化水素類(例えばトルエン、キシレン等)等が挙げられる。これらの有機溶剤は、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
[I-8. varnish〕
The components (A) to (E) and, if necessary, the other components described above can be dissolved or dispersed in a solvent to obtain a varnish. Such varnish is suitable when producing the resin sheet of this invention mentioned later. The solvent is not limited as long as it can suitably dissolve or disperse the above-described components and does not impair the intended effect of the present invention. Specific examples include alcohols (methanol, ethanol, propanol etc.), ketones (eg acetone, methyl ethyl ketone, methyl isobutyl ketone etc.), amides (eg dimethylacetamide, dimethylformamide etc.), aromatic hydrocarbons (eg toluene) , Xylene, etc.). These organic solvents may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
〔II-1.樹脂シート〕
 本発明の樹脂シートは、外層上に、上述した本発明の絶縁層を有する。当該樹脂シートを用いてプリント配線板を製造する場合等は必要に応じて、外層を樹脂シートから剥離又はエッチングしてもよい。
[II-1. Resin sheet)
The resin sheet of the present invention has the above-described insulating layer of the present invention on the outer layer. When manufacturing a printed wiring board using the said resin sheet, you may peel or etch an outer layer from a resin sheet as needed.
 上記外層としては、特に限定されないが、高分子フィルム、金属箔又は金属フィルムを使用することができる。高分子フィルムの具体例としては、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリブテン、ポリブタジエン、ポリウレタン、エチレン‐酸化ビニル共重合体、ポリエチレンテレフタレート、ポリエチレンナフタレート及びポリブチレンテレフタレート等のポリエステル、ポリエチレン、ポリプロピレン、エチレン‐プロピレン共重合体、ポリメチルペンテン、ポリイミド及びポリアミドからなる群より選ばれる少なくとも1種以上の樹脂を含有するフィルム、並びにこれらのフィルムの表面に離型剤を塗布した離型フィルムが挙げられ、これらの中でも、特にポリエステル、ポリイミド、ポリアミドが好ましく、その中でもポリエステルの一種である、ポリエチレンテレフタレートが特に好ましい。 The outer layer is not particularly limited, and a polymer film, metal foil, or metal film can be used. Specific examples of the polymer film include polyvinyl chloride, polyvinylidene chloride, polybutene, polybutadiene, polyurethane, ethylene-vinyl oxide copolymer, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and other polyesters, polyethylene, polypropylene, and ethylene. -A film containing at least one resin selected from the group consisting of propylene copolymer, polymethylpentene, polyimide and polyamide, and a release film obtained by applying a release agent to the surface of these films, Among these, polyester, polyimide, and polyamide are particularly preferable, and among them, polyethylene terephthalate, which is a kind of polyester, is particularly preferable.
 また、高分子フィルムの厚さは特に限定されず、例えば、0.002~0.1mmであってもよい。金属箔又は金属フィルムの具体例としては、銅やアルミニウム等の金属からなる箔又はフィルムが挙げられ、中でも銅箔又は銅フィルムが好ましく、特に電解銅箔、圧延銅箔、銅合金フィルム等が好適に使用できる。金属箔又は金属フィルムには、例えばニッケル処理やコバルト処理等、公知の表面処理が施されていてもよい。金属箔又は金属フィルムの厚さは、使用用途によって適宜調整することができるが、例えば5~70μmの範囲が好適である。 Further, the thickness of the polymer film is not particularly limited, and may be, for example, 0.002 to 0.1 mm. Specific examples of the metal foil or metal film include a foil or film made of a metal such as copper or aluminum. Among them, a copper foil or a copper film is preferable, and an electrolytic copper foil, a rolled copper foil, a copper alloy film, or the like is particularly preferable. Can be used for The metal foil or metal film may be subjected to a known surface treatment such as nickel treatment or cobalt treatment. The thickness of the metal foil or metal film can be appropriately adjusted depending on the intended use, but is preferably in the range of 5 to 70 μm, for example.
 上述の外層上に、本発明の絶縁層を形成して本発明の樹脂シートを製造する方法は、限定されない。例えば前述のワニスを、上述の外層の表面に塗布し、加熱又は減圧下で乾燥し、溶媒を除去してワニスを固化させる手法等が挙げられる。乾燥条件は特に限定されないが、このようにして形成された絶縁層の総量に対する溶媒の含有比率が通常10質量部以下、好ましくは5質量部以下となるように乾燥させる。斯かる乾燥を達成する条件は、ワニス中の有機溶媒量によっても異なるが、例えば30~60質量部の有機溶剤を含むワニスの場合、50~160℃の加熱条件下で3~10分程度乾燥させればよい。本発明の樹脂シートにおける絶縁層の厚さは限定されないが、乾燥時に軽揮発分をより良好に除去する観点、及び樹脂シートとしての機能をより有効かつ確実に奏する観点から、0.1~500μmの範囲が好適である。樹脂組成物が溶媒を含まずとも流動性を有する場合は、当該樹脂組成物をワニスのように使用して絶縁層を形成してもよい。 The method for producing the resin sheet of the present invention by forming the insulating layer of the present invention on the above outer layer is not limited. For example, the method of apply | coating the above-mentioned varnish on the surface of the above-mentioned outer layer, drying under heating or reduced pressure, removing the solvent, and solidifying the varnish can be mentioned. The drying conditions are not particularly limited, but drying is performed so that the content ratio of the solvent to the total amount of the insulating layer thus formed is usually 10 parts by mass or less, preferably 5 parts by mass or less. The conditions for achieving such drying vary depending on the amount of the organic solvent in the varnish. For example, in the case of a varnish containing 30 to 60 parts by mass of the organic solvent, the drying is performed for about 3 to 10 minutes under heating conditions of 50 to 160 ° C. You can do it. The thickness of the insulating layer in the resin sheet of the present invention is not limited, but it is 0.1 to 500 μm from the viewpoint of better removing light volatiles during drying and more effectively and reliably functioning as a resin sheet. The range of is preferable. When the resin composition does not contain a solvent and has fluidity, the resin composition may be used like a varnish to form an insulating layer.
 なお、ワニスまたは流動性を有する樹脂組成物から形成された絶縁層と、これとは異なる方法(樹脂を溶融してプレスする等)で形成された方法とを比較すると、前者の方が層の均一性や外層との密着性に優れる。 In addition, when the insulating layer formed from the resin composition having varnish or fluidity is compared with a method formed by a different method (such as melting and pressing the resin), the former is the layer. Excellent uniformity and adhesion to the outer layer.
 本発明の樹脂シートは、プリント配線板のビルドアップ材料として使用可能である。本発明の樹脂シートを用いて形成されたプリント配線板においては、本発明の絶縁層がプリント配線板における絶縁層を構成することになる。プリント配線板における絶縁層は通常は硬化されている。プリント配線板については以下に詳述する。 The resin sheet of the present invention can be used as a build-up material for printed wiring boards. In the printed wiring board formed using the resin sheet of the present invention, the insulating layer of the present invention constitutes the insulating layer in the printed wiring board. The insulating layer in the printed wiring board is usually cured. The printed wiring board will be described in detail below.
〔II-2.プリント配線板〕
 コア基材に対し本発明の樹脂シートをビルドアップ材として用いることにより本発明のプリント配線板を得ることができる。コア基材とはビルドアップ工法において芯となる基板であり、樹脂絶縁層が完全硬化した金属箔張積層板である。コア基材の表面には通常当業界で用いられる金属箔張積層板の金属箔、又は金属箔を剥離した後にめっきするなどして得られる導体層により導体回路を形成する。
[II-2. (Printed wiring board)
The printed wiring board of this invention can be obtained by using the resin sheet of this invention as a buildup material with respect to a core base material. The core substrate is a substrate that becomes a core in the build-up method, and is a metal foil-clad laminate in which the resin insulating layer is completely cured. On the surface of the core substrate, a conductor circuit is formed by a metal foil of a metal foil-clad laminate usually used in the industry, or a conductor layer obtained by peeling and plating the metal foil.
 コア基材とは、主として、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等の基板の片面又は両面にパターン加工された導体層(回路)が形成されたものをいう。また、多層プリント配線板を製造する際に、さらに絶縁層又は導体層が形成されるべき中間製造物の内層回路基板も本発明でいう回路基板に含まれる。なお、導体層(回路)表面は黒化処理等により予め粗化処理が施されていることが絶縁層の回路基板への密着性の観点から好ましい。 The core base material is mainly a conductive layer (circuit) patterned on one or both sides of a glass epoxy substrate, metal substrate, polyester substrate, polyimide substrate, BT resin substrate, thermosetting polyphenylene ether substrate or the like. It means what was done. Further, when the multilayer printed wiring board is manufactured, an intermediate product inner circuit board on which an insulating layer or a conductor layer is to be further formed is also included in the circuit board referred to in the present invention. The surface of the conductor layer (circuit) is preferably subjected to a roughening treatment in advance by a blackening treatment or the like from the viewpoint of adhesion of the insulating layer to the circuit board.
 本発明の樹脂シートの絶縁層が硬化されて、プリント配線板における絶縁層を構成することになる。 The insulating layer of the resin sheet of the present invention is cured to constitute the insulating layer in the printed wiring board.
 具体的に、本発明の樹脂シートをビルドアップ材料として用いる場合は、常法により、当該樹脂シートの絶縁層表面処理し、絶縁層表面にめっきにより配線パターン(導体層)を形成することにより、本発明のプリント配線板が得られる。 Specifically, when using the resin sheet of the present invention as a build-up material, by treating the insulating layer surface of the resin sheet by a conventional method, by forming a wiring pattern (conductor layer) by plating on the insulating layer surface, The printed wiring board of the present invention is obtained.
 必要に応じてその他の各種の工程(例えば、ビアホール、スルーホール等を形成する穴加工処理等)を加えてもよい。 Other various processes (for example, hole processing for forming via holes, through holes, etc.) may be added as necessary.
 以下、本発明のプリント配線板を製造するための各工程について説明する。 Hereinafter, each process for manufacturing the printed wiring board of the present invention will be described.
 1)表面処理
 絶縁層に対する表面処理は、絶縁層とめっき導体層との密着性の向上や、スミア除去等の観点から実施される。表面処理としては、デスミア処理、シランカップリング処理等がある。デスミア処理は膨潤化、表面粗化及びスミア溶解、及び中和処理を含むことが好ましい。粗化処理は膨潤剤及びアルカリ性酸化剤によって実施され、中和処理は酸性の還元剤により実施されることが好ましい。本発明では、分子量の異なる2つのアクリロニトリル-ブタジエンゴムを用いるが、このゴムを含む絶縁層をこのような方法で表面処理することで、崩落痕を小さくすることができ、低表面粗度を達成できる。
1) Surface treatment The surface treatment for the insulating layer is performed from the viewpoint of improving the adhesion between the insulating layer and the plated conductor layer, removing smear, and the like. Examples of the surface treatment include desmear treatment and silane coupling treatment. The desmear treatment preferably includes swelling, surface roughening and smear dissolution, and neutralization treatment. The roughening treatment is preferably carried out with a swelling agent and an alkaline oxidizing agent, and the neutralization treatment is preferably carried out with an acidic reducing agent. In the present invention, two acrylonitrile-butadiene rubbers having different molecular weights are used. By subjecting the insulating layer containing this rubber to surface treatment by such a method, collapse marks can be reduced and low surface roughness can be achieved. it can.
 粗化処理は、孔あけ工程により生じたスミアの除去も兼ねることがより好ましい。この場合、絶縁層の硬化度の違いにより、粗化状態が異なるため、後述の積層成形の条件は、その後の粗化処理条件やめっき条件との組み合わせで最適な条件を選ぶことが好ましい。 It is more preferable that the roughening treatment also serves to remove smear generated by the drilling process. In this case, since the roughening state varies depending on the degree of curing of the insulating layer, it is preferable to select optimum conditions for the later-described lamination molding conditions in combination with the subsequent roughening treatment conditions and plating conditions.
 好ましい態様において粗化処理は、まず膨潤剤を用いて表面絶縁層を膨潤させる。膨潤剤としては、表面絶縁層の濡れ性が向上し、次の表面粗化及びスミア溶解処理において酸化分解が促進される程度にまで表面絶縁層を膨潤させることができるものであれば制限されない。例としては、アルカリ溶液、界面活性剤溶液等が挙げられる。 In a preferred embodiment, the roughening treatment first swells the surface insulating layer using a swelling agent. The swelling agent is not limited as long as the wettability of the surface insulating layer is improved and the surface insulating layer can be swollen to the extent that oxidative decomposition is promoted in the next surface roughening and smear dissolution treatment. Examples include alkaline solutions and surfactant solutions.
 次いで膨潤した表面を酸化剤で処理して、表面を酸化分解し粗化する。このとき当該処理で生じたスミアも除去する。酸化剤としては、例えばアルカリ性の過マンガン酸塩溶液等が挙げられ、好適な具体例としては、過マンガン酸カリウム水溶液、過マンガン酸ナトリウム水溶液等が挙げられる。斯かる酸化剤処理はウェットデスミアと呼ばれるが、当該ウェットデスミアに加えて、プラズマ処理やUV処理によるドライデスミア、バフ等による機械研磨、サンドブラスト等の他の公知の粗化処理を、適宜組み合わせて実施してもよい。 Next, the swollen surface is treated with an oxidizing agent, and the surface is oxidatively decomposed and roughened. At this time, smear generated in the process is also removed. Examples of the oxidizing agent include an alkaline permanganate solution, and preferred specific examples include an aqueous potassium permanganate solution and an aqueous sodium permanganate solution. Such oxidant treatment is called wet desmear, but in addition to the wet desmear, other known roughening treatments such as dry desmear by plasma treatment or UV treatment, mechanical polishing by buffing, sandblasting, etc. are carried out in an appropriate combination May be.
 さらに中和処理によって、前処理で使用した酸化剤を還元剤で中和する。還元剤としては、アミン系還元剤が挙げられ、好適な具体例としては、ヒドロキシルアミン硫酸塩水溶液、エチレンジアミン四酢酸水溶液、ニトリロ三酢酸水溶液等の酸性水溶液が挙げられる。 Further, neutralize the oxidizing agent used in the pretreatment with a reducing agent. Examples of the reducing agent include amine-based reducing agents, and preferred specific examples include acidic aqueous solutions such as hydroxylamine sulfate aqueous solution, ethylenediaminetetraacetic acid aqueous solution, and nitrilotriacetic acid aqueous solution.
 微細配線パターンを形成する上で、粗化処理後の絶縁層の表面凹凸は小さい方が好ましい。具体的には、Rz値で4.0μm以下が好ましく、より好ましくは2.0μm以下である。粗化処理後の表面凹凸は、絶縁層の硬化度や粗化処理の条件等に応じて決まるため、所望の表面凹凸を得るための最適条件を選ぶことが好ましい。特に、本発明の絶縁層は、表面粗度が低くても、めっき導体層との密着性を確保することができ、極めて好適である。 In forming a fine wiring pattern, the surface roughness of the insulating layer after the roughening treatment is preferably small. Specifically, the Rz value is preferably 4.0 μm or less, more preferably 2.0 μm or less. Since the surface irregularities after the roughening treatment are determined according to the degree of curing of the insulating layer, the conditions of the roughening treatment, etc., it is preferable to select optimum conditions for obtaining the desired surface irregularities. In particular, the insulating layer of the present invention is extremely suitable because it can ensure adhesion with the plated conductor layer even if the surface roughness is low.
 2)導体層の形成
 めっきにより配線パターン(導体層)を形成する方法としては、セミアディティブ法、フルアディティブ法、サブトラクティブ法等が挙げられる。中でも、微細配線パターンを形成する観点からは、セミアディティブ法が好ましい。
2) Formation of conductor layer Examples of a method for forming a wiring pattern (conductor layer) by plating include a semi-additive method, a full additive method, and a subtractive method. Among these, the semi-additive method is preferable from the viewpoint of forming a fine wiring pattern.
 セミアディティブ法でパターン形成する手法の例としては、絶縁層表面に無電解めっき等により薄い導体層を形成した後、めっきレジストを用いて選択的に電解めっきを施し(パターンめっき)、その後めっきレジストを剥離し、全体を適量エッチングして配線パターン形成する手法が挙げられる。 As an example of the pattern forming method by the semi-additive method, after forming a thin conductor layer on the surface of the insulating layer by electroless plating, etc., electrolytic plating is selectively performed using a plating resist (pattern plating), and then the plating resist And a method of forming a wiring pattern by etching an appropriate amount of the whole.
 フルアディティブ法でパターン形成する手法の例としては、絶縁層表面にめっきレジストを用いて予めパターン形成を行い、選択的に無電解めっき等を付着させることにより配線パターンを形成する手法が挙げられる。 As an example of a method of forming a pattern by a full additive method, there is a method of forming a wiring pattern by performing pattern formation in advance using a plating resist on the surface of an insulating layer and selectively attaching electroless plating or the like.
 サブトラクティブ法でパターン形成する手法の例としては、絶縁層表面にめっきにより導体層を形成した後、エッチングレジストを用いて選択的に導体層を除去することにより、配線パターンを形成する手法が挙げられる。あるいは、樹脂シートの外層が金属箔又は金属フィルムである場合、これらをエッチングして配線パターンを形成することもできる。 An example of a pattern forming method using the subtractive method is a method of forming a wiring pattern by forming a conductive layer on the surface of an insulating layer by plating and then selectively removing the conductive layer using an etching resist. It is done. Or when the outer layer of a resin sheet is metal foil or a metal film, these can be etched and a wiring pattern can also be formed.
 めっきにより配線パターンを形成する際に、絶縁層と導体層との密着強度を向上させる観点から、めっきの後に乾燥を行うことが好ましい。セミアディティブ法によるパターン形成では、無電解めっきと電解めっきとを組み合わせて行うが、その際、無電解めっきの後と、電解めっきの後に、それぞれ乾燥を行うことが好ましい。無電解めっき後の乾燥は、例えば80~180℃で10~120分に亘って行うことが好ましく、電解めっき後の乾燥は、例えば130~220℃で10~120分に亘って行うことが好ましい。無電解めっき層は電界めっき層に比べて層の均一性に優れるので、両者の識別は可能である。 When forming a wiring pattern by plating, it is preferable to dry after plating from the viewpoint of improving the adhesion strength between the insulating layer and the conductor layer. The pattern formation by the semi-additive method is performed by combining electroless plating and electrolytic plating. In this case, it is preferable to perform drying after the electroless plating and after the electrolytic plating. Drying after electroless plating is preferably performed at 80 to 180 ° C. for 10 to 120 minutes, for example, and drying after electrolytic plating is preferably performed at 130 to 220 ° C. for 10 to 120 minutes, for example. . Since the electroless plating layer is superior to the electroplating layer in layer uniformity, the two can be distinguished.
 3)その他
 プリント配線板を製造するために、本発明の樹脂シートには穴加工処理がなされてもよい。当該処理はビアホール、スルーホール等の形成のために実施される。穴加工処理は、NCドリル、炭酸ガスレーザー、UVレーザー、YAGレーザー、プラズマ等の公知の方法のうち何れか1種を用い、或いは必要により2種以上を組み合わせて行う。
3) Others In order to manufacture a printed wiring board, the resin sheet of the present invention may be subjected to hole processing. This processing is performed for forming via holes, through holes, and the like. The hole processing is performed by using any one of known methods such as NC drill, carbon dioxide laser, UV laser, YAG laser, plasma, or a combination of two or more if necessary.
 本発明のプリント配線板は、多層プリント配線板とすることも可能である。例えば、めっき処理を実施した本発明の積層板を形成した後、これに内層回路を形成し、得られた回路に黒化処理を実施して、内層回路板とする。こうして得られた内層回路板の片面又は両面に、本発明の樹脂シートを配置し、更に金属箔(例えば銅やアルミニウム等)又は離型フィルム(ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム、ポリエチレンテレフタレートフィルム、エチレンテトラフルオロエチレン共重合体フィルム等の表面に離型剤を塗布したフィルム)をその外側に配置する、という操作を繰り返し、積層成形することにより、多層プリント配線板が製造される。 The printed wiring board of the present invention can be a multilayer printed wiring board. For example, after forming the laminated board of the present invention that has been subjected to plating treatment, an inner layer circuit is formed thereon, and the resulting circuit is subjected to blackening treatment to obtain an inner layer circuit board. The resin sheet of the present invention is arranged on one side or both sides of the inner layer circuit board thus obtained, and further a metal foil (for example, copper or aluminum) or a release film (polyethylene film, polypropylene film, polycarbonate film, polyethylene terephthalate film, A multilayer printed wiring board is manufactured by repeating the operation of disposing a film having a release agent applied to the surface of an ethylenetetrafluoroethylene copolymer film or the like on the outside thereof and performing lamination molding.
 積層成形は、通常のプリント配線板用積層板の積層成形に一般に使用される手法、例えば、多段プレス、多段真空プレス、ラミネーター、真空ラミネーター、オートクレーブ成形機等を使用し、温度は例えば100~300℃、圧力は例えば0.1~100kgf/cm(約9.8kPa~約38MPa)、加熱時間は例えば30秒~5時間の範囲で適宜選択して行う。また、必要に応じて、例えば150~300℃の温度で後硬化を行い、硬化度を調整してもいい。 Lamination molding uses a technique generally used for lamination molding of ordinary laminates for printed wiring boards, such as a multistage press, a multistage vacuum press, a laminator, a vacuum laminator, an autoclave molding machine, etc., and the temperature is, for example, 100 to 300 C., pressure is, for example, 0.1 to 100 kgf / cm 2 (about 9.8 kPa to about 38 MPa), and heating time is appropriately selected within a range of, for example, 30 seconds to 5 hours. If necessary, post-curing may be performed at a temperature of 150 to 300 ° C. to adjust the degree of curing.
 以下に合成例、実施例及び比較例を示し、本発明を詳細に説明するが、本発明はこれらに限定されない。 Synthesis Examples, Examples and Comparative Examples are shown below to describe the present invention in detail, but the present invention is not limited to these.
〔シアン酸エステル化合物の製造〕
 合成例1:α-ナフトールアラルキル型シアン酸エステル化合物(7)の合成
[Production of cyanate ester compound]
Synthesis Example 1: Synthesis of α-naphthol aralkyl-type cyanate compound (7)
Figure JPOXMLDOC01-appb-C000007
(式中、nは平均値として3から4までの範囲である。)
Figure JPOXMLDOC01-appb-C000007
(In the formula, n 7 is an average value ranging from 3 to 4.)
 温度計、攪拌器、滴下漏斗及び還流冷却器を取りつけた反応器を予め食塩水により0~5℃に冷却しておき、そこへ塩化シアン7.47g(0.122mol)、35%塩酸9.75g(0.0935mol)、水76ml、及び塩化メチレン44mlを仕込んだ。 A reactor equipped with a thermometer, a stirrer, a dropping funnel and a reflux condenser was previously cooled to 0 to 5 ° C. with a saline solution, to which 7.47 g (0.122 mol) of cyanogen chloride and 35% hydrochloric acid 9. 75 g (0.0935 mol), 76 ml of water, and 44 ml of methylene chloride were charged.
 この反応器内の温度を-5~+5℃、pHを1以下に保ちながら、撹拌下、下記式(8)で表されるα-ナフトールアラルキル樹脂(SN485、OH基当量:214g/eq.軟化点:86℃、新日鐵化学(株)製)20g(0.0935mol)、及びトリエチルアミン14.16g(0.14mol)を塩化メチレン92mlに溶解した溶液を滴下漏斗により1時間かけて滴下し、滴下終了後、更にトリエチルアミン4.72g(0.047mol)を15分間かけて滴下した。 The α-naphthol aralkyl resin represented by the following formula (8) (SN485, OH group equivalent: 214 g / eq. Softening) was maintained with stirring while maintaining the temperature in the reactor at −5 to + 5 ° C. and the pH at 1 or less. Point: A solution prepared by dissolving 20 g (0.0935 mol) of 86 ° C, Nippon Steel Chemical Co., Ltd.) and 14.16 g (0.14 mol) of triethylamine in 92 ml of methylene chloride was added dropwise over 1 hour using a dropping funnel. After completion of the dropwise addition, 4.72 g (0.047 mol) of triethylamine was further added dropwise over 15 minutes.
Figure JPOXMLDOC01-appb-C000008
(式中、nは平均値として3から4までの範囲である。)
Figure JPOXMLDOC01-appb-C000008
(In the formula, n 8 is in the range from 3 to 4 as an average value.)
 滴下終了後、同温度で15分間撹拌後、反応液を分液し、有機相を分取した。得られた有機相を水100mlで2回洗浄した後、エバポレーターにより減圧下で塩化メチレンを留去し、最終的に80℃で1時間濃縮乾固させて、上記式(7)で表されるα-ナフトールアラルキル樹脂のシアン酸エステル化物(α-ナフトールアラルキル型シアン酸エステル化合物)23.5gを得た。 After completion of dropping, the reaction solution was separated after stirring at the same temperature for 15 minutes, and the organic phase was separated. The obtained organic phase was washed twice with 100 ml of water, and then methylene chloride was distilled off under reduced pressure using an evaporator. Finally, the mixture was concentrated to dryness at 80 ° C. for 1 hour, and expressed by the above formula (7). 23.5 g of cyanate esterified product of α-naphthol aralkyl resin (α-naphthol aralkyl type cyanate ester compound) was obtained.
〔ワニス及び樹脂シートの作製〕
 実施例1
 エポキシ化合物(A)として、ビフェニルアラルキル型エポキシ化合物(NC-3000-FH、エポキシ当量:320g/eq.、日本化薬(株)製)のMEK溶液(不揮発分70質量%)83.1質量部(不揮発分換算で58.2質量部)、シアン酸エステル化合物(B)として、合成例1により得られたα-ナフトールアラルキル型シアン酸エステル化合物(シアネート当量:261g/eq.)のメチルエチルケトン(以下「MEK」と略す場合がある。)溶液(不揮発分50質量%)58質量部(不揮発分換算で29質量部)、マレイミド化合物として、下記式(5)で表されるノボラック型マレイミド化合物(BMI-2300、ケイ・アイ化成(株)製)4.9質量部、ビスマレイミド化合物(BMI-1000P、ケイ・アイ化成(株)製)4.9質量部、硬化促進剤として2,4,5-トリフェニルイミダゾール(和光純薬製)のDMAc溶液(不揮発分20質量%)15質量部(不揮発分換算で3質量部)及びオクチル酸亜鉛のMEK溶液(不揮発分10質量%)0.8質量部(不揮発分換算で0.08質量部)をMEKに溶解又は分散させた。続いて第一のアクリロニトリル-ブタジエンゴム(D)として、アクリロニトリル-ブタジエンゴム(N215SL、JSR(株)、重量平均分子量約144,000(アジレント・テクノロジー社製のGPCにて測定)、ムーニー粘度45)のMEK溶液(不揮発性分20質量%)7.5質量部(不揮発分換算で1.5質量部)、第二のアクリロニトリル-ブタジエンゴム(E)として、アクリロニトリル-ブタジエンゴム(N280、JSR(株)、重量平均分子量約9,000(アジレント・テクノロジー社製のGPCにて測定))のMEK溶液(不揮発性成分20質量%)7.5質量部(不揮発分換算で1.5質量部)を添加した。さらに、無機充填材(C)として、酸化マグネシウムMEKスラリー(SMO-0.4、堺化学工業(株)製、平均粒子径0.4μm、不揮発性成分70質量%)85.7質量部(不揮発分換算で60質量部)、フェニルアミノシラン処理シリカMEKスラリー(SC2050-MTX、アドマテックス(株)製、平均粒子径0.5μm、不揮発性成分70質量%)107.1質量部(不揮発分換算で75質量部)を添加した。添加後、高速攪拌装置を用いて30分間攪拌して、エポキシ化合物(A)、シアン酸エステル化合物(B)、無機充填材(C)、第一のアクリロニトリル-ブタジエンゴム(D)、第二のアクリロニトリル-ブタジエンゴム(E)を含むワニスを得た。このワニスを、表面に離型剤をコートした厚さ38μmのポリエチレンテレフタレートフィルム(TR1-38、ユニチカ(株)製)に塗布し、100℃で3分間加熱乾燥して絶縁層を形成し、ポリエチレンテレフタレートフィルムを外層とした樹脂シートを得た。
[Production of varnish and resin sheet]
Example 1
As an epoxy compound (A), a MEK solution (nonvolatile content 70% by mass) of 83.1 parts by mass of a biphenyl aralkyl type epoxy compound (NC-3000-FH, epoxy equivalent: 320 g / eq., Manufactured by Nippon Kayaku Co., Ltd.) (58.2 parts by mass in terms of nonvolatile content), methyl ethyl ketone (hereinafter referred to as the cyanate ester compound (B)) of the α-naphthol aralkyl type cyanate ester compound (cyanate equivalent: 261 g / eq.) Obtained in Synthesis Example 1. "MEK" may be abbreviated.) 58 parts by mass (non-volatile content: 50% by mass) solution (29 mass parts in terms of non-volatile content), novolac maleimide compound (BMI) represented by the following formula (5) as maleimide compound -2300, manufactured by Kay Kasei Co., Ltd.) 4.9 parts by mass, bismaleimide compound (BMI-1000P, Kay A (Made by Kasei Co., Ltd.) 4.9 parts by mass, DMAc solution of 2,4,5-triphenylimidazole (manufactured by Wako Pure Chemical Industries) as a curing accelerator (non-volatile content 20% by mass) 15 parts by mass (3 in terms of non-volatile content) Part by mass) and 0.8 parts by mass (0.08 parts by mass in terms of nonvolatile content) of MEK solution of zinc octylate (nonvolatile content 10% by mass) were dissolved or dispersed in MEK. Subsequently, as the first acrylonitrile-butadiene rubber (D), acrylonitrile-butadiene rubber (N215SL, JSR, weight average molecular weight of about 144,000 (measured by GPC manufactured by Agilent Technologies), Mooney viscosity 45) MEK solution (non-volatile content 20% by mass) 7.5 parts by mass (1.5 parts by mass in terms of non-volatile content), as the second acrylonitrile-butadiene rubber (E), acrylonitrile-butadiene rubber (N280, JSR Co., Ltd.) ), MEK solution (non-volatile component 20 mass%) of 7.5 mass parts (1.5 mass parts in terms of non-volatile content) having a weight average molecular weight of about 9,000 (measured by GPC manufactured by Agilent Technologies). Added. Further, as the inorganic filler (C), 85.7 parts by mass of magnesium oxide MEK slurry (SMO-0.4, manufactured by Sakai Chemical Industry Co., Ltd., average particle size 0.4 μm, nonvolatile component 70% by mass) 60 parts by mass), phenylaminosilane-treated silica MEK slurry (SC2050-MTX, manufactured by Admatechs Co., Ltd., average particle size 0.5 μm, nonvolatile component 70% by mass) 107.1 parts by mass (in terms of nonvolatile content) 75 parts by mass) was added. After the addition, the mixture is stirred for 30 minutes using a high-speed stirring device, and the epoxy compound (A), the cyanate ester compound (B), the inorganic filler (C), the first acrylonitrile-butadiene rubber (D), the second A varnish containing acrylonitrile-butadiene rubber (E) was obtained. This varnish was applied to a 38 μm thick polyethylene terephthalate film (TR1-38, manufactured by Unitika Co., Ltd.) with a release agent coated on the surface and dried by heating at 100 ° C. for 3 minutes to form an insulating layer. A resin sheet having a terephthalate film as an outer layer was obtained.
Figure JPOXMLDOC01-appb-C000009
(式中、Rは各々独立に、水素原子又はメチル基を表す。nは平均値として1~10の範囲である。)
Figure JPOXMLDOC01-appb-C000009
(In the formula, each R 5 independently represents a hydrogen atom or a methyl group. N 5 is in the range of 1 to 10 as an average value.)
〔内層回路基板の作製〕
 内層回路を形成したガラス布基材BT樹脂両面銅張積層板(銅箔厚さ18μm、基板厚み0.2mm、三菱ガス化学(株)製CCL-HL832NX type A)の両面をメック(株)製CZ8100にて1μmエッチングして銅表面の粗化処理を行い、内層回路基板を得た。
[Production of inner circuit board]
Glass cloth base material BT resin double-sided copper-clad laminate with inner layer circuit (copper foil thickness 18μm, substrate thickness 0.2mm, Mitsubishi Gas Chemical Co., Ltd. CCL-HL832NX type A) manufactured by MEC The copper surface was roughened by 1 μm etching with CZ8100 to obtain an inner layer circuit board.
〔プリント配線板の作製〕
 得られた樹脂シートの絶縁層面を内層回路基板上に配置し、真空ラミネーター(ニチゴー・モートン製)を用いて、30秒間真空引き(5.0MPa以下)を行った後、圧力10kgf/cm、温度100℃で30秒間の積層成形を行った。さらに圧力10kgf/cm、温度100℃で60秒間の積層成形を行うことでプリント配線板を得た。得られたプリント配線板を180℃で60分間乾燥することで、硬化を十分に進行させプリント配線板を得た。
[Production of printed wiring board]
The insulating layer surface of the obtained resin sheet was placed on the inner layer circuit board, and after vacuuming (5.0 MPa or less) for 30 seconds using a vacuum laminator (manufactured by Nichigo Morton), the pressure was 10 kgf / cm 2 , Lamination molding was performed at a temperature of 100 ° C. for 30 seconds. Furthermore, the printed wiring board was obtained by performing lamination molding for 60 seconds at a pressure of 10 kgf / cm 2 and a temperature of 100 ° C. The obtained printed wiring board was dried at 180 ° C. for 60 minutes to sufficiently advance the curing to obtain a printed wiring board.
 実施例2
 α-ナフトールアラルキル型シアン酸エステル化合物のMEK溶液(不揮発分50質量%)を55.6質量部(不揮発分換算で27.8質量部)、ビフェニルアラルキル型エポキシ化合物(NC-3000-FH)のMEK溶液(不揮発分70質量%)の使用量を79.3質量部(不揮発分換算で55.5質量部)、ビスマレイミド化合物(BMI-1000P)の使用量を4.6質量部、ノボラックマレイミド化合物(BMI-2300)の使用量を4.6質量部、第一のアクリロニトリル-ブタジエンゴム(N215SL)のMEK溶液(不揮発分20質量%)の使用量を19質量部(不揮発分換算で3.8質量部)、第二のアクリロニトリル-ブタジエンゴム(N280)のMEK溶液(不揮発分20質量%)の使用量を19質量部(不揮発分換算で3.8質量部)とした以外は、実施例1と同様にしてワニスを調整し、樹脂シート及びそれを用いたプリント配線板を得た。
Example 2
An MEK solution of α-naphthol aralkyl type cyanate ester compound (non-volatile content: 50% by mass) of 55.6 parts by mass (27.8 parts by mass in terms of non-volatile content), biphenyl aralkyl type epoxy compound (NC-3000-FH) The amount of MEK solution (nonvolatile content 70% by mass) used was 79.3 parts by mass (55.5 parts by mass in terms of nonvolatile content), the amount of bismaleimide compound (BMI-1000P) used was 4.6 parts by mass, and novolak maleimide. The amount of compound (BMI-2300) used is 4.6 parts by mass, and the amount of MEK solution (nonvolatile content 20% by mass) of the first acrylonitrile-butadiene rubber (N215SL) is 19 parts by mass (3. 8 parts by mass), and the amount of the second acrylonitrile-butadiene rubber (N280) MEK solution (non-volatile content 20% by mass) used was 19 parts by mass ( Except for in the volatile content basis and 3.8 parts by weight), the same procedure as in Example 1 to adjust the varnish, to give a resin sheet and a printed wiring board using the same.
 実施例3
 α-ナフトールアラルキル型シアン酸エステル化合物のMEK溶液(不揮発分50質量%)の使用量を54質量部(不揮発分換算で27質量部)、ビフェニルアラルキル型エポキシ化合物(NC-3000-FH)のMEK溶液(不揮発分70質量%)の使用量を77.1質量部(不揮発分換算で54.0質量部)、ビスマレイミド化合物(BMI-1000P)の使用量を4.5質量部、ノボラックマレイミド化合物(BMI-2300)の使用量を4.5質量部、第一のアクリロニトリル-ブタジエンゴム(N215SL)のMEK溶液(不揮発分20質量%)の使用量を25質量部(不揮発分換算で5.0質量部)、第二のアクリロニトリル-ブタジエンゴム(N280)のMEK溶液(不揮発分20質量%)の使用量を25質量部(不揮発分換算で5.0質量部)とした以外は、実施例1と同様にしてワニスを調整し、樹脂シート及びそれを用いたプリント配線板を得た。
Example 3
The amount of MEK solution of α-naphthol aralkyl-type cyanate ester compound (non-volatile content 50% by mass) used was 54 parts by mass (27 mass parts in terms of non-volatile content), and the MEK of biphenyl aralkyl-type epoxy compound (NC-3000-FH) 77.1 parts by mass (54.0 parts by mass in terms of nonvolatile content) of the solution (nonvolatile content 70% by mass), 4.5 parts by mass of the bismaleimide compound (BMI-1000P), novolac maleimide compound The amount of (BMI-2300) used is 4.5 parts by mass, and the amount of the first acrylonitrile-butadiene rubber (N215SL) MEK solution (nonvolatile content 20% by mass) is 25 parts by mass (5.0% in terms of nonvolatile content). Mass part), and the amount of the second acrylonitrile-butadiene rubber (N280) MEK solution (non-volatile content 20% by mass) used is 25 parts by mass ( Except that in volatile content equivalent 5.0 parts by weight) and, in the same manner as in Example 1 to adjust the varnish, to give a resin sheet and a printed wiring board using the same.
 実施例4
 α-ナフトールアラルキル型シアン酸エステル化合物のMEK溶液(不揮発分50質量%)の使用量を55.6質量部(不揮発分換算で27.8質量部)、ビフェニルアラルキル型エポキシ化合物(NC-3000-FH)のMEK溶液(不揮発分70質量%)の使用量を79.3質量部(不揮発分換算で55.5質量部)、ビスマレイミド化合物(BMI-1000P)の使用量を4.6質量部、ノボラックマレイミド化合物(BMI-2300)の使用量を4.6質量部、第一のアクリロニトリル-ブタジエンゴム(N215SL)のMEK溶液(不揮発分20質量%)の使用量を9.5質量部(不揮発分換算で1.9質量部)、液状アクリロニトリル-ブタジエンゴム(N280)のMEK溶液(不揮発分20質量%)の使用量を28質量部(不揮発分換算で5.6質量部)とした以外は、実施例1と同様にしてワニスを調整し、樹脂シート及びそれを用いたプリント配線板を得た。
Example 4
The amount of α-naphthol aralkyl-type cyanate compound MEK solution (non-volatile content 50% by mass) used was 55.6 parts by mass (27.8 parts by mass in terms of non-volatile content), and the biphenyl aralkyl-type epoxy compound (NC-3000- FH) MEK solution (non-volatile content: 70% by mass) was used in an amount of 79.3 parts by mass (55.5 parts by mass in terms of non-volatile content), and the bismaleimide compound (BMI-1000P) was used in an amount of 4.6 parts by mass. , 4.6 parts by mass of the novolak maleimide compound (BMI-2300) and 9.5 parts by mass (nonvolatile) of the MEK solution of the first acrylonitrile-butadiene rubber (N215SL) (nonvolatile content 20% by mass). 1.9 parts by mass), and the amount of liquid acrylonitrile-butadiene rubber (N280) MEK solution (non-volatile content 20% by mass) used was 28 Except that the amount portion (5.6 parts by mass in terms of a non-volatile component), in the same manner as in Example 1 to adjust the varnish, to give a resin sheet and a printed wiring board using the same.
 実施例5
 α-ナフトールアラルキル型シアン酸エステル化合物のMEK溶液(不揮発分50質量%)の使用量を54質量部(不揮発分換算で27質量部)、ビフェニルアラルキル型エポキシ化合物(NC-3000-FH)のMEK溶液(不揮発分70質量%)の使用量を77.1質量部(不揮発分換算で54.0質量部)、ビスマレイミド化合物(BMI-1000P)の使用量を4.5質量部、ノボラックマレイミド化合物(BMI-2300)の使用量を4.5質量部、固形アクリロニトリル-ブタジエンゴム(N215SL)のMEK溶液(不揮発分20質量%)の使用量を25質量部(不揮発分換算で5.0質量部)、液状アクリロニトリル-ブタジエンゴム(N280)のMEK溶液(不揮発分20質量%)の使用量を25質量部(不揮発分換算で5.0質量部)、フェニルアミノシラン処理シリカMEKスラリー(SC2050-MTX、不揮発分70質量%)の使用量を178.6質量部(不揮発分換算で125質量部)とした以外は、実施例1と同様にしてワニスを調整し、樹脂シート及びそれを用いたプリント配線板を得た。
Example 5
The amount of MEK solution of α-naphthol aralkyl-type cyanate ester compound (non-volatile content 50% by mass) used was 54 parts by mass (27 mass parts in terms of non-volatile content), and the MEK of biphenyl aralkyl-type epoxy compound (NC-3000-FH) 77.1 parts by mass (54.0 parts by mass in terms of nonvolatile content) of the solution (nonvolatile content 70% by mass), 4.5 parts by mass of the bismaleimide compound (BMI-1000P), novolac maleimide compound The amount of (BMI-2300) used is 4.5 parts by mass, and the amount of MEK solution (non-volatile content 20% by mass) of solid acrylonitrile-butadiene rubber (N215SL) is 25 parts by mass (5.0 parts by mass in terms of non-volatile content). ), 25 parts by mass (non-volatile) of MEK solution (non-volatile content 20% by mass) of liquid acrylonitrile-butadiene rubber (N280) Except that the amount of phenylaminosilane-treated silica MEK slurry (SC2050-MTX, nonvolatile content 70% by mass) used was 178.6 parts by mass (125% by mass in terms of nonvolatile content). The varnish was adjusted in the same manner as in Example 1 to obtain a resin sheet and a printed wiring board using the resin sheet.
 実施例6
 α-ナフトールアラルキル型シアン酸エステル化合物のMEK溶液(不揮発分50質量%)の使用量を54質量部(不揮発分換算で27質量部)、ビフェニルアラルキル型エポキシ化合物(NC-3000-FH)のMEK溶液(不揮発分70質量%)の使用量を77.1質量部(不揮発分換算で54.0質量部)、ビスマレイミド化合物(BMI-1000P)の使用量を4.5質量部、ノボラックマレイミド化合物(BMI-2300)の使用量を4.5質量部、固形アクリロニトリル-ブタジエンゴム(N215SL)のMEK溶液(不揮発分20質量%)の使用量を25質量部(不揮発分換算で5.0質量部)、液状アクリロニトリル-ブタジエンゴム(N280)のMEK溶液(不揮発分20質量%)の使用量を25質量部(不揮発分換算で5.0質量部)、フェニルアミノシラン処理シリカMEKスラリー(SC2050-MTX、不揮発分70質量%)の使用量を285.7質量部(不揮発分換算で200質量部)とした以外は、実施例1と同様にしてワニスを調整し、樹脂シート及びそれを用いたプリント配線板を得た。
Example 6
The amount of MEK solution of α-naphthol aralkyl-type cyanate ester compound (non-volatile content 50% by mass) used was 54 parts by mass (27 mass parts in terms of non-volatile content), and the MEK of biphenyl aralkyl-type epoxy compound (NC-3000-FH) 77.1 parts by mass (54.0 parts by mass in terms of nonvolatile content) of the solution (nonvolatile content 70% by mass), 4.5 parts by mass of the bismaleimide compound (BMI-1000P), novolac maleimide compound The amount of (BMI-2300) used is 4.5 parts by mass, and the amount of MEK solution (non-volatile content 20% by mass) of solid acrylonitrile-butadiene rubber (N215SL) is 25 parts by mass (5.0 parts by mass in terms of non-volatile content). ), 25 parts by mass (non-volatile) of MEK solution (non-volatile content 20% by mass) of liquid acrylonitrile-butadiene rubber (N280) Except that the amount of phenylaminosilane-treated silica MEK slurry (SC2050-MTX, nonvolatile content 70% by mass) was 285.7 parts by mass (nonvolatile component equivalent 200 parts by mass) The varnish was adjusted in the same manner as in Example 1 to obtain a resin sheet and a printed wiring board using the resin sheet.
 比較例1
 固形アクリロニトリル-ブタジエンゴム(N215SL)のMEK溶液(不揮発分20質量%)の使用量を15質量部(不揮発分換算で3質量部)、液状アクリロニトリル-ブタジエンゴム(N280)のMEK溶液(不揮発分20質量%)の使用量を0質量部とした以外は、実施例1と同様にしてワニスを調整し、樹脂シート及びそれを用いたプリント配線板を得た。
Comparative Example 1
The amount of solid acrylonitrile-butadiene rubber (N215SL) MEK solution (non-volatile content 20% by mass) used was 15 parts by mass (3 mass parts in terms of non-volatile content), and liquid acrylonitrile-butadiene rubber (N280) MEK solution (non-volatile content 20). A varnish was prepared in the same manner as in Example 1 except that the amount used was 0 parts by mass to obtain a resin sheet and a printed wiring board using the same.
 比較例2
 α-ナフトールアラルキル型シアン酸エステル化合物のMEK溶液(不揮発分50質量%)の使用量を56.8質量部(不揮発分換算で28.4質量部)、ビフェニルアラルキル型エポキシ化合物(NC-3000-FH)のMEK溶液(不揮発分70質量%)の使用量を81.4質量部(不揮発分換算で57.0質量部)、ビスマレイミド化合物(BMI-1000P)の使用量を4.8質量部、ノボラックマレイミド化合物(BMI-2300)の使用量を4.8質量部、固形アクリロニトリル-ブタジエンゴム(N215SL)のMEK溶液(不揮発分20質量%)の使用量を25質量部(不揮発分換算で5質量部)、液状アクリロニトリル-ブタジエンゴム(N280)のMEK溶液(不揮発分20質量%)の使用量を0質量部とした以外は、実施例1と同様にしてワニスを調整し、樹脂シート及びそれを用いたプリント配線板を得た。
Comparative Example 2
The amount of the MEK solution of α-naphthol aralkyl-type cyanate ester compound (non-volatile content 50% by mass) used was 56.8 parts by mass (28.4 parts by mass in terms of non-volatile content), and the biphenyl aralkyl-type epoxy compound (NC-3000- FH) MEK solution (non-volatile content: 70% by mass) was used in an amount of 81.4 parts by mass (57.0 parts by mass in terms of non-volatile content), and the bismaleimide compound (BMI-1000P) was used in an amount of 4.8 parts by mass. , 4.8 parts by mass of the novolak maleimide compound (BMI-2300) and 25 parts by mass of the MEK solution (non-volatile content 20 mass%) of solid acrylonitrile-butadiene rubber (N215SL) (5 in terms of non-volatile content) Mass part), and the amount of liquid acrylonitrile-butadiene rubber (N280) MEK solution (non-volatile content 20% by mass) used is 0 part by mass. Otherwise, in the same manner as in Example 1 to adjust the varnish, to give a resin sheet and a printed wiring board using the same.
 比較例3
 α-ナフトールアラルキル型シアン酸エステル化合物のMEK溶液(不揮発分50質量%)の使用量を54質量部(不揮発分換算で27質量部)、ビフェニルアラルキル型エポキシ化合物(NC-3000-FH)のMEK溶液(不揮発分70質量%)の使用量を77.1質量部(不揮発分換算で54.0質量部)、ビスマレイミド化合物(BMI-1000P)の使用量を4.5質量部、ノボラックマレイミド化合物(BMI-2300)の使用量を4.5質量部、固形アクリロニトリル-ブタジエンゴム(N215SL)のMEK溶液(不揮発分20質量%)の使用量を50質量部(不揮発分換算で10質量部)、液状アクリロニトリル-ブタジエンゴム(N280)のMEK溶液(不揮発分20質量%)の使用量を0質量部とした以外は、実施例1と同様にしてワニスを調整し、樹脂シート及びそれを用いたプリント配線板を得た。
Comparative Example 3
The amount of MEK solution of α-naphthol aralkyl-type cyanate ester compound (non-volatile content 50% by mass) used was 54 parts by mass (27 mass parts in terms of non-volatile content), and the MEK of biphenyl aralkyl-type epoxy compound (NC-3000-FH) 77.1 parts by mass (54.0 parts by mass in terms of nonvolatile content) of the solution (nonvolatile content 70% by mass), 4.5 parts by mass of the bismaleimide compound (BMI-1000P), novolac maleimide compound The amount of (BMI-2300) used is 4.5 parts by mass, the amount of the solid acrylonitrile-butadiene rubber (N215SL) MEK solution (nonvolatile content 20% by mass) is 50 parts by mass (10 parts by mass in terms of nonvolatile content), Except for the amount of liquid acrylonitrile-butadiene rubber (N280) MEK solution (non-volatile content 20% by mass) used was 0 parts by mass , In the same manner as in Example 1 to adjust the varnish, to give a resin sheet and a printed wiring board using the same.
 比較例4
 α-ナフトールアラルキル型シアン酸エステル化合物のMEK溶液(不揮発分50質量%)の使用量を51.0質量部(不揮発分換算で25.5質量部)、ビフェニルアラルキル型エポキシ化合物(NC-3000-FH)のMEK溶液(不揮発分70質量%)の使用量を72.9質量部(不揮発分換算で51.0質量部)、ビスマレイミド化合物(BMI-1000P)の使用量を4.3質量部、ノボラックマレイミド化合物(BMI-2300)の使用量を4.3質量部、固形アクリロニトリル-ブタジエンゴム(N215SL)のMEK溶液(不揮発分20質量%)の使用量を75質量部(不揮発分換算で15質量部)、液状アクリロニトリル-ブタジエンゴム(N280)のMEK溶液(不揮発分20質量%)の使用量を0質量部とした以外は、実施例1と同様にしてワニスを調整し、樹脂シート及びそれを用いたプリント配線板を得た。
Comparative Example 4
The amount of the MEK solution of α-naphthol aralkyl-type cyanate ester compound (non-volatile content 50% by mass) used is 51.0 parts by mass (25.5 parts by mass in terms of non-volatile content), and the biphenyl aralkyl-type epoxy compound (NC-3000- FH) MEK solution (non-volatile content: 70% by mass) was used in an amount of 72.9 parts by mass (51.0 parts by mass in terms of non-volatile content) and the bismaleimide compound (BMI-1000P) was used in an amount of 4.3 parts by mass. The amount of novolak maleimide compound (BMI-2300) used is 4.3 parts by mass, and the amount of solid acrylonitrile-butadiene rubber (N215SL) MEK solution (non-volatile content: 20% by mass) is 75 parts by mass (15% in terms of non-volatile content). Part by mass), and the amount of liquid acrylonitrile-butadiene rubber (N280) MEK solution (non-volatile content 20% by mass) used is 0 part by mass. Other than the can, in the same manner as in Example 1 to adjust the varnish, to give a resin sheet and a printed wiring board using the same.
 比較例5
 固形アクリロニトリル-ブタジエンゴム(N215SL)のMEK溶液(不揮発分20質量%)の使用量を0質量部、液状アクリロニトリル-ブタジエンゴム(N280)のMEK溶液(不揮発分20質量%)の使用量を15質量部(不揮発分換算で3質量部)とした以外は、実施例1と同様にしてワニスを調整し、樹脂シート及びそれを用いたプリント配線板を得た。
Comparative Example 5
The amount of solid acrylonitrile-butadiene rubber (N215SL) MEK solution (non-volatile content 20% by mass) used is 0 parts by mass, and the amount of liquid acrylonitrile-butadiene rubber (N280) MEK solution (non-volatile content 20% by mass) used is 15% by mass. The varnish was adjusted in the same manner as in Example 1 except that the content was 3 parts by weight (3 parts by weight in terms of nonvolatile content) to obtain a resin sheet and a printed wiring board using the same.
 比較例6
 α-ナフトールアラルキル型シアン酸エステル化合物のMEK溶液(不揮発分50質量%)の使用量を56.8質量部(不揮発分換算で28.4質量部)、ビフェニルアラルキル型エポキシ化合物(NC-3000-FH)のMEK溶液(不揮発分70質量%)の使用量を81.4質量部(不揮発分換算で57.0質量部)、ビスマレイミド化合物(BMI-1000P)の使用量を4.8質量部、ノボラックマレイミド化合物(BMI-2300)の使用量を4.8質量部、固形アクリロニトリル-ブタジエンゴム(N215SL)のMEK溶液(不揮発分20質量%)の使用量を0質量部、液状アクリロニトリル-ブタジエンゴム(N280)のMEK溶液(不揮発分20質量%)の使用量を25質量部(不揮発分換算で5質量部)とした以外は、実施例1と同様にしてワニスを調整し、樹脂シート及びそれを用いたプリント配線板を得た。
Comparative Example 6
The amount of the MEK solution of α-naphthol aralkyl-type cyanate ester compound (non-volatile content 50% by mass) used was 56.8 parts by mass (28.4 parts by mass in terms of non-volatile content), and the biphenyl aralkyl-type epoxy compound (NC-3000- FH) MEK solution (non-volatile content: 70% by mass) was used in an amount of 81.4 parts by mass (57.0 parts by mass in terms of non-volatile content), and the bismaleimide compound (BMI-1000P) was used in an amount of 4.8 parts by mass. , 4.8 parts by mass of novolac maleimide compound (BMI-2300), 0 parts by mass of MEK solution (non-volatile content 20% by mass) of solid acrylonitrile-butadiene rubber (N215SL), liquid acrylonitrile-butadiene rubber The amount of MEK solution (non-volatile content: 20% by mass) of (N280) is 25 parts by mass (5 parts by mass in terms of non-volatile content). Otherwise, in the same manner as in Example 1 to adjust the varnish, to give a resin sheet and a printed wiring board using the same.
 比較例7
 α-ナフトールアラルキル型シアン酸エステル化合物のMEK溶液(不揮発分50質量%)の使用量を54質量部(不揮発分換算で27質量部)、ビフェニルアラルキル型エポキシ化合物(NC-3000-FH)のMEK溶液(不揮発分70質量%)の使用量を77.1質量部(不揮発分換算で54.0質量部)、ビスマレイミド化合物(BMI-1000P)の使用量を4.5質量部、ノボラックマレイミド化合物(BMI-2300)の使用量を4.5質量部、固形アクリロニトリル-ブタジエンゴム(N215SL)のMEK溶液(不揮発分20質量%)の使用量を0質量部、液状アクリロニトリル-ブタジエンゴム(N280)のMEK溶液(不揮発分20質量%)の使用量を50質量部(不揮発分換算で10質量部)とした以外は、実施例1と同様にしてワニスを調整し、樹脂シート及びそれを用いたプリント配線板を得た。
Comparative Example 7
The amount of MEK solution of α-naphthol aralkyl-type cyanate ester compound (non-volatile content 50% by mass) used was 54 parts by mass (27 mass parts in terms of non-volatile content), and the MEK of biphenyl aralkyl-type epoxy compound (NC-3000-FH) 77.1 parts by mass (54.0 parts by mass in terms of nonvolatile content) of the solution (nonvolatile content 70% by mass), 4.5 parts by mass of the bismaleimide compound (BMI-1000P), novolac maleimide compound The amount of (BMI-2300) used is 4.5 parts by mass, the amount of solid acrylonitrile-butadiene rubber (N215SL) MEK solution (non-volatile content 20% by mass) is 0 part by mass, and liquid acrylonitrile-butadiene rubber (N280) is used. Except for the amount of MEK solution (non-volatile content 20% by mass) used to be 50 parts by mass (non-volatile content equivalent 10 parts by mass) , In the same manner as in Example 1 to adjust the varnish, to give a resin sheet and a printed wiring board using the same.
 比較例8
 α-ナフトールアラルキル型シアン酸エステル化合物のMEK溶液(不揮発分50質量%)の使用量を51.0質量部(不揮発分換算で25.5質量部)、ビフェニルアラルキル型エポキシ化合物(NC-3000-FH)のMEK溶液(不揮発分70質量%)の使用量を72.9質量部(不揮発分換算で51.0質量部)、ビスマレイミド化合物(BMI-1000P)の使用量を4.3質量部、ノボラックマレイミド化合物(BMI-2300)の使用量を4.3質量部、固形アクリロニトリル-ブタジエンゴム(N215SL)のMEK溶液(不揮発分20質量%)の使用量を0質量部、液状アクリロニトリル-ブタジエンゴム(N280)のMEK溶液(不揮発分20質量%)の使用量を75質量部(不揮発分換算で15質量部)とした以外は、実施例1と同様にしてワニスを調整し、樹脂シート及びそれを用いたプリント配線板を得た。
Comparative Example 8
The amount of the MEK solution of α-naphthol aralkyl-type cyanate ester compound (non-volatile content 50% by mass) used is 51.0 parts by mass (25.5 parts by mass in terms of non-volatile content), and the biphenyl aralkyl-type epoxy compound (NC-3000- FH) MEK solution (non-volatile content: 70% by mass) was used in an amount of 72.9 parts by mass (51.0 parts by mass in terms of non-volatile content) and the bismaleimide compound (BMI-1000P) was used in an amount of 4.3 parts by mass. The amount of novolak maleimide compound (BMI-2300) used is 4.3 parts by mass, the amount of solid acrylonitrile-butadiene rubber (N215SL) MEK solution (nonvolatile content 20% by mass) is 0 parts by mass, and liquid acrylonitrile-butadiene rubber 75 parts by mass (15 parts by mass in terms of nonvolatile content) of MEK solution (N280) (N20) Other than the can, in the same manner as in Example 1 to adjust the varnish, to give a resin sheet and a printed wiring board using the same.
〔樹脂シートの評価〕
(1)可撓性
 実施例1~6及び比較例1~8の手順により作製された樹脂シートを用い、樹脂シートのハンドリング性を確認するため、得られた樹脂シート100mm×100mmのサンプルを180°折り曲げて、クラックの発生有無を目視で観察した。クラックが発生してないものを「a」とした。続いてクラックが発生したものについては、φ15mmの棒に樹脂シートを巻きつけた際にクラックが発生するかどうかを目視で観察。クラックが発生してないものを「b」とした。上記全ての評価でクラックが発生してしまったものを「c」とした。結果を表1に示した。
[Evaluation of resin sheet]
(1) Flexibility Using the resin sheets produced by the procedures of Examples 1 to 6 and Comparative Examples 1 to 8, in order to confirm the handleability of the resin sheet, the obtained resin sheet 100 mm × 100 mm sample was 180. The sample was bent and visually observed for the occurrence of cracks. The thing in which the crack did not generate | occur | produced was set to "a". Subsequently, for those with cracks, visually observed whether cracks occur when a resin sheet is wrapped around a 15 mm diameter rod. The thing in which the crack did not generate | occur | produced was set as "b". The case where cracks occurred in all the above evaluations was designated as “c”. The results are shown in Table 1.
〔プリント配線板の評価〕
 プリント配線板の湿式粗化処理と導体層めっき
 実施例1~6及び比較例1~8で得られたプリント配線板から外層を剥離した。露出した絶縁層に対し、上村工業製の無電解銅めっきプロセス(使用薬液名:MCD-PL、MDP-2、MAT-SP、MAB-4-C、MEL-3-APEA ver.2)にて、約0.8μmの無電解銅めっきを施し、130℃で1時間の乾燥を行った。続いて、電解銅めっきをめっき銅の厚みが18μmになるように施し、180℃で1時間の乾燥を行った。こうして、絶縁層上に厚さ18μmの導体層(めっき銅)が形成されたサンプルを作製し、以下の評価に供した。
[Evaluation of printed wiring board]
Wet roughening treatment of printed wiring board and conductor layer plating The outer layer was peeled from the printed wiring boards obtained in Examples 1 to 6 and Comparative Examples 1 to 8. Electroless copper plating process (used chemical name: MCD-PL, MDP-2, MAT-SP, MAB-4-C, MEL-3-APEA ver. 2) manufactured by Uemura Kogyo Co., Ltd. on the exposed insulating layer Then, electroless copper plating of about 0.8 μm was applied and dried at 130 ° C. for 1 hour. Subsequently, electrolytic copper plating was performed so that the thickness of the plated copper was 18 μm, and drying was performed at 180 ° C. for 1 hour. In this way, a sample in which a conductor layer (plated copper) having a thickness of 18 μm was formed on the insulating layer was prepared and subjected to the following evaluation.
(2)めっき銅接着力
 上記手順により作製されたサンプルを用い、めっき銅の接着力をJIS C6481に準じて3回測定し、平均値を求めた。電解銅めっき後の乾燥で膨れたサンプルに関しては、膨れていない部分を用いて評価を行った。結果を表1に示した。
(2) Plating copper adhesive force Using the sample prepared by the above procedure, the adhesive strength of the plated copper was measured three times according to JIS C6481, and the average value was obtained. About the sample swollen by the drying after electrolytic copper plating, it evaluated using the part which is not swollen. The results are shown in Table 1.
(3)表面粗さ
 上記手順により作製されたサンプルの表層めっき銅をエッチング後、レーザー顕微鏡(キーエンス製VK-9500)を用いて、3000倍の画像により、絶縁層表面のRz(10点平均粗さ)およびRa(算術平均粗さ)を求めた。結果を表1に示した。
(3) Surface roughness After etching the surface layer plated copper of the sample prepared by the above procedure, the Rz (10-point average roughness) of the insulating layer surface was measured by using a laser microscope (VK-9500, manufactured by Keyence) at a magnification of 3000 times. ) And Ra (arithmetic mean roughness). The results are shown in Table 1.
(4)最大崩落サイズ
 上記手順により作成されたサンプルは、無電解めっき工程において粗面化処理されており、粗面化液が浸食することでアクリロニトリル-ブタジエンゴムが脱落した崩落痕を形成する。SEM-EDX(JEOL製JSM-6460LA)を用いて、1000倍の画像および10000倍の画像から、崩落痕の直径が最大となるものを選択し、最大崩落サイズを求めた。結果を表1に示した。
(4) Maximum Collapse Size The sample prepared by the above procedure is roughened in the electroless plating process, and forms a collapse mark in which the acrylonitrile-butadiene rubber has fallen off when the roughening solution is eroded. Using SEM-EDX (JEOL's JSM-6460LA), the image with the maximum collapse mark diameter was selected from the 1000 × image and the 10,000 × image, and the maximum collapse size was determined. The results are shown in Table 1.
(5)ガラス転移温度(Tg)
 180℃、2時間硬化させた絶縁層厚さ0.05mmの樹脂シートを用い、熱機械分析装置(TAインスツルメント製Q800)で25℃から250℃まで毎分10℃で昇温し、ガラス転移温度を測定した。結果を表1に示した。
(5) Glass transition temperature (Tg)
Using a resin sheet with an insulating layer thickness of 0.05 mm cured at 180 ° C. for 2 hours, the temperature was raised from 25 ° C. to 250 ° C. at 10 ° C. per minute with a thermomechanical analyzer (TA Instruments Q800), and glass The transition temperature was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 本発明の樹脂シートは、上述のように、プリント配線板の絶縁層の材料として用いた場合、樹脂シートのハンドリング性に優れ、絶縁層とめっき導体層との密着性に優れる等、各種の効果を発揮することから、プリント配線板の絶縁層の材料として極めて有用である。
 
As described above, when the resin sheet of the present invention is used as a material for an insulating layer of a printed wiring board, various effects such as excellent handling of the resin sheet and excellent adhesion between the insulating layer and the plated conductor layer, etc. Therefore, it is extremely useful as a material for an insulating layer of a printed wiring board.

Claims (12)

  1.  高分子フィルム、金属箔及び金属フィルムからなる群から選択される、いずれか一種である外層と、当該外層上に積層された絶縁層とを含む樹脂シートであって、
     当該絶縁層が、エポキシ化合物(A)、シアン酸エステル化合物(B)、無機充填材(C)、GPCにより測定した重量平均分子量が100,000以上である第一のアクリロニトリル-ブタジエンゴム(D)及び前記重量平均分子量が1,000~30,000である第二のアクリロニトリル-ブタジエンゴム(E)を含有する、樹脂シート。
    A resin sheet comprising an outer layer that is one type selected from the group consisting of a polymer film, a metal foil and a metal film, and an insulating layer laminated on the outer layer,
    The insulating layer is an epoxy compound (A), a cyanate ester compound (B), an inorganic filler (C), and a first acrylonitrile-butadiene rubber (D) having a weight average molecular weight measured by GPC of 100,000 or more. And a second acrylonitrile-butadiene rubber (E) having a weight average molecular weight of 1,000 to 30,000.
  2.  前記第一のアクリロニトリル-ブタジエンゴム(D)の含有量Xが、樹脂固形分100質量部に対し、0<X<15質量部である、請求項1に記載の樹脂シート。 The resin sheet according to claim 1, wherein the content X of the first acrylonitrile-butadiene rubber (D) is 0 <X <15 parts by mass with respect to 100 parts by mass of the resin solid content.
  3.  前記第二のアクリロニトリル-ブタジエンゴム(E)の含有量Yが、樹脂固形分100質量部に対し、0<Y<15質量部である、請求項1又は2に記載の樹脂シート。 3. The resin sheet according to claim 1, wherein the content Y of the second acrylonitrile-butadiene rubber (E) is 0 <Y <15 parts by mass with respect to 100 parts by mass of the resin solid content.
  4.  前記第一のアクリロニトリル-ブタジエンゴム(D)の含有量Xと、第二のアクリロニトリル-ブタジエンゴム(E)の含有量Yの合計X+Yが、樹脂固形分100質量部に対し、0<X+Y<15質量部である、請求項1~3のいずれか一項に記載の樹脂シート。 The total X + Y of the content X of the first acrylonitrile-butadiene rubber (D) and the content Y of the second acrylonitrile-butadiene rubber (E) is 0 <X + Y <15 with respect to 100 parts by mass of the resin solid content. The resin sheet according to any one of claims 1 to 3, which is a part by mass.
  5.  前記絶縁層が、マレイミド化合物(F)をさらに含む、請求項1~4のいずれか一項に記載の樹脂シート。 The resin sheet according to any one of claims 1 to 4, wherein the insulating layer further contains a maleimide compound (F).
  6.  前記高分子フィルムが、ポリエステル、ポリイミド及びポリアミドからなる群から選択される、いずれか一種である請求項1~5のいずれか一項に記載の樹脂シート。 The resin sheet according to any one of claims 1 to 5, wherein the polymer film is any one selected from the group consisting of polyester, polyimide and polyamide.
  7.  前記絶縁層が、前記成分(A)~(E)を含む樹脂組成物を外層上に塗布した後、加熱又は減圧下で乾燥し、固化して得られたものである、請求項1~6のいずれか一項に記載の樹脂シート。 The insulating layer is obtained by applying a resin composition containing the components (A) to (E) on the outer layer, and then drying and solidifying by heating or under reduced pressure. The resin sheet as described in any one of these.
  8.  コア基材とコア基材上に形成された導体回路とを有する回路基板上に積層された、請求項1~7のいずれか一項に記載の絶縁層を備える、プリント配線板。 A printed wiring board comprising the insulating layer according to any one of claims 1 to 7, which is laminated on a circuit board having a core base material and a conductor circuit formed on the core base material.
  9.  前記絶縁層が表面処理されており、当該表面の上にパターン形成された導体層を備える、請求項8のプリント配線板。 The printed wiring board according to claim 8, wherein the insulating layer is surface-treated and includes a conductor layer patterned on the surface.
  10.  前記表面処理が、膨潤剤及びアルカリ性酸化剤による粗化処理、並びに酸性還元剤による中和処理を含むデスミア処理である、請求項9に記載のプリント配線板。 10. The printed wiring board according to claim 9, wherein the surface treatment is a desmear treatment including a roughening treatment with a swelling agent and an alkaline oxidizing agent and a neutralization treatment with an acidic reducing agent.
  11.  前記導体層が、セミアディティブ法により形成された導体層又はサブトラクティブ法により形成された導体層を含む、請求項9又は10に記載のプリント配線板。 The printed wiring board according to claim 9 or 10, wherein the conductor layer includes a conductor layer formed by a semi-additive method or a conductor layer formed by a subtractive method.
  12.  前記導体層が、請求項1に記載の金属箔又は金属フィルムからなる外層をエッチングして得られた導体層を含む、請求項9又は10に記載のプリント配線板。
     
    The printed wiring board according to claim 9 or 10, wherein the conductor layer includes a conductor layer obtained by etching an outer layer made of the metal foil or metal film according to claim 1.
PCT/JP2015/083715 2014-12-01 2015-12-01 Resin sheet and printed wiring board WO2016088744A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016562629A JP6638887B2 (en) 2014-12-01 2015-12-01 Resin sheet and printed wiring board

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014242918 2014-12-01
JP2014-242918 2014-12-01
JP2014264481 2014-12-26
JP2014-264481 2014-12-26
JP2015-016965 2015-01-30
JP2015016965 2015-01-30
JP2015-039901 2015-03-02
JP2015039901 2015-03-02

Publications (1)

Publication Number Publication Date
WO2016088744A1 true WO2016088744A1 (en) 2016-06-09

Family

ID=56091686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083715 WO2016088744A1 (en) 2014-12-01 2015-12-01 Resin sheet and printed wiring board

Country Status (3)

Country Link
JP (1) JP6638887B2 (en)
TW (1) TWI680867B (en)
WO (1) WO2016088744A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003314A1 (en) * 2016-06-29 2018-01-04 三菱瓦斯化学株式会社 Resin composition, resin sheet, multilayer printed circuit board, and semiconductor device
KR20190022517A (en) * 2016-06-29 2019-03-06 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, resin sheet, multilayer printed wiring board and semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7262918B2 (en) * 2017-06-08 2023-04-24 日本発條株式会社 Laminates for circuit boards, metal base circuit boards and power modules
JP6909171B2 (en) * 2018-02-12 2021-07-28 株式会社巴川製紙所 Adhesive sheet for manufacturing semiconductor devices and manufacturing method of semiconductor devices using it
JP6999459B2 (en) * 2018-03-22 2022-01-18 太陽インキ製造株式会社 Dry films, cured products, and electronic components

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54157189A (en) * 1978-06-01 1979-12-11 Nitto Electric Ind Co Ltd Treatment of surface of plastic base for metal coating
JPS60186579A (en) * 1984-03-05 1985-09-24 Mitsui Petrochem Ind Ltd Flame-resistant adhesive compositon
JPS61188411A (en) * 1985-02-15 1986-08-22 Nippon Zeon Co Ltd Epoxy resin composition for sealing semiconductor
JPH10337807A (en) * 1997-06-06 1998-12-22 Mitsubishi Gas Chem Co Inc Ultra-thin copper foil with b-stage resin and its manufacture
JPH1154914A (en) * 1997-08-06 1999-02-26 Mitsubishi Gas Chem Co Inc Manufacturing built-up multilayered printed wiring board
JP2003246843A (en) * 2002-02-26 2003-09-05 Mitsubishi Gas Chem Co Inc Curable resin composition
JP2004193458A (en) * 2002-12-13 2004-07-08 Mitsubishi Gas Chem Co Inc Method for manufacturing multilayer printed circuit board
JP2007262126A (en) * 2006-03-27 2007-10-11 Toray Ind Inc Adhesive composition for flexible printed circuit, cover-lay film using the same, copper-clad laminate, adhesive sheet and lead frame fixing tape
JP2014205755A (en) * 2013-04-11 2014-10-30 住友ベークライト株式会社 Resin composition for primer layer formation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082209A (en) * 1998-06-30 2000-03-21 Hitachi Maxell Ltd Magnetic card
JP2012102288A (en) * 2010-11-12 2012-05-31 Yokohama Rubber Co Ltd:The Rubber composition for studless tire tread

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54157189A (en) * 1978-06-01 1979-12-11 Nitto Electric Ind Co Ltd Treatment of surface of plastic base for metal coating
JPS60186579A (en) * 1984-03-05 1985-09-24 Mitsui Petrochem Ind Ltd Flame-resistant adhesive compositon
JPS61188411A (en) * 1985-02-15 1986-08-22 Nippon Zeon Co Ltd Epoxy resin composition for sealing semiconductor
JPH10337807A (en) * 1997-06-06 1998-12-22 Mitsubishi Gas Chem Co Inc Ultra-thin copper foil with b-stage resin and its manufacture
JPH1154914A (en) * 1997-08-06 1999-02-26 Mitsubishi Gas Chem Co Inc Manufacturing built-up multilayered printed wiring board
JP2003246843A (en) * 2002-02-26 2003-09-05 Mitsubishi Gas Chem Co Inc Curable resin composition
JP2004193458A (en) * 2002-12-13 2004-07-08 Mitsubishi Gas Chem Co Inc Method for manufacturing multilayer printed circuit board
JP2007262126A (en) * 2006-03-27 2007-10-11 Toray Ind Inc Adhesive composition for flexible printed circuit, cover-lay film using the same, copper-clad laminate, adhesive sheet and lead frame fixing tape
JP2014205755A (en) * 2013-04-11 2014-10-30 住友ベークライト株式会社 Resin composition for primer layer formation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003314A1 (en) * 2016-06-29 2018-01-04 三菱瓦斯化学株式会社 Resin composition, resin sheet, multilayer printed circuit board, and semiconductor device
CN109415491A (en) * 2016-06-29 2019-03-01 三菱瓦斯化学株式会社 Resin combination, resin sheet, multilayer printed circuit board and semiconductor device
KR20190022517A (en) * 2016-06-29 2019-03-06 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, resin sheet, multilayer printed wiring board and semiconductor device
KR20190022480A (en) * 2016-06-29 2019-03-06 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, resin sheet, multilayer printed wiring board and semiconductor device
JPWO2018003314A1 (en) * 2016-06-29 2019-04-18 三菱瓦斯化学株式会社 Resin composition, resin sheet, multilayer printed wiring board and semiconductor device
TWI744332B (en) * 2016-06-29 2021-11-01 日商三菱瓦斯化學股份有限公司 Resin composition, resin sheet, multilayer printed wiring board, and semiconductor device
KR102324898B1 (en) * 2016-06-29 2021-11-10 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, resin sheet, multilayer printed wiring board and semiconductor device
KR102324899B1 (en) 2016-06-29 2021-11-10 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, resin sheet, multilayer printed wiring board and semiconductor device
CN109415491B (en) * 2016-06-29 2022-05-03 三菱瓦斯化学株式会社 Resin composition, resin sheet, multilayer printed wiring board, and semiconductor device

Also Published As

Publication number Publication date
JPWO2016088744A1 (en) 2017-09-07
JP6638887B2 (en) 2020-01-29
TWI680867B (en) 2020-01-01
TW201636211A (en) 2016-10-16

Similar Documents

Publication Publication Date Title
JP6481610B2 (en) Resin composition for printed wiring board material, and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using the same
JP6065845B2 (en) Resin composition for printed wiring board material, and prepreg, resin sheet, metal foil-clad laminate and printed wiring board using the same
JP5556222B2 (en) Resin composition
WO2010024391A1 (en) Laminate and method for producing laminate
JP2020023714A (en) Resin material and multilayer printed board
JP2016006187A (en) Resin composition
TW201311805A (en) Resin composition for printed wiring boards
WO2017033784A1 (en) Metal foil with resin layer, metal-clad laminate, and method for producing printed wiring board
JP2007224242A (en) Thermosetting resin composition, resin film in b stage and multilayer build-up base plate
JP6638887B2 (en) Resin sheet and printed wiring board
JP6931542B2 (en) Cured resin composition, resin composition and multilayer substrate
JP2016010964A (en) Resin sheet and printed wiring board
JP2014024970A (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board
JP6819921B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
KR102645236B1 (en) Copper foil with an insulating resin layer
JP5398087B2 (en) Adhesive for heat dissipation substrate and heat dissipation substrate
JP5752071B2 (en) B-stage film and multilayer substrate
JP6761572B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
WO2014045625A1 (en) Insulating resin film, pre-cured product, laminate, and multi-layer substrate
JP2006328214A (en) Thermosetting resin composition, resin film, and film-attached product
JP6398096B2 (en) Resin structure, and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using the same
JP6653065B2 (en) Resin sheet and printed wiring board
WO2022034871A1 (en) Copper foil with resin layer and laminate using same
JP6485728B2 (en) Resin composition for printed wiring board material, prepreg, resin sheet, metal foil-clad laminate and printed wiring board using the same
TWI735441B (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865112

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562629

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865112

Country of ref document: EP

Kind code of ref document: A1