WO2016088610A1 - Magnesium air battery having plurality of cells - Google Patents
Magnesium air battery having plurality of cells Download PDFInfo
- Publication number
- WO2016088610A1 WO2016088610A1 PCT/JP2015/082978 JP2015082978W WO2016088610A1 WO 2016088610 A1 WO2016088610 A1 WO 2016088610A1 JP 2015082978 W JP2015082978 W JP 2015082978W WO 2016088610 A1 WO2016088610 A1 WO 2016088610A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnesium
- air battery
- positive electrode
- cells
- negative electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/04—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
- H01M12/06—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a magnesium-air battery that generates power using magnesium and oxygen, and particularly to a structure having a plurality of cells.
- Patent document 1 is disclosing the battery which connected the magnesium battery in series in this way.
- an object of the present invention is to improve current duration and discharge capacity in a magnesium-air battery having a plurality of cells.
- the present invention is a magnesium air battery that generates electricity using magnesium and oxygen, Multiple cells, A case in which the plurality of cells are stacked and accommodated so that a positive electrode and a negative electrode between adjacent cells are in contact with each other;
- the cell is A negative electrode made of magnesium or a magnesium alloy;
- a positive electrode active body arranged in contact with the positive electrode and supplying oxygen;
- An electrolyte layer disposed between the positive electrode active body and the negative electrode and holding an electrolyte during operation;
- the positive and negative electrodes between the adjacent cells can be configured as a magnesium-air battery in which a conductive adhesive layer made of a conductive material is provided to adhere the positive and negative electrodes.
- the conductor metal of the positive electrode for example, copper or stainless steel can be used.
- the positive electrode active material for example, at least a part of activated carbon and manganese dioxide can be used. These may be used alone or in combination. Further, it may be used in a solid state or may be used after being powdered and laminated on a sheet.
- the positive electrode and the negative electrode between adjacent cells can be adhered to each other by the conductive adhesive layer.
- voltage and conductivity can be improved according to the following principle.
- the reason why a sufficient voltage could not be obtained in the conventional structure will be described.
- a minute gap exists between the positive electrode and the negative electrode between adjacent cells, and the electrolytic solution may permeate here.
- the electrolytic solution penetrates between the positive electrode and the negative electrode, an electromotive force is generated therebetween.
- the direction of the electromotive force is opposite to the electromotive force generated by the cell.
- the voltage generated in the cell is inhibited, so that a sufficient voltage cannot be obtained.
- the conductive adhesive layer can suppress the penetration of the electrolytic solution between the positive electrode and the negative electrode between the cells. Therefore, generation
- the conductive adhesive layer can take various forms as long as it has adhesiveness that allows the cells to adhere to such an extent that the penetration of the electrolyte solution can be suppressed, and can secure a current flow between the cells. be able to.
- the conductive adhesive layer may be formed of an adhesive tape in which a conductive adhesive material is applied to one side of the conductor metal. According to this aspect, adhesion between cells can be easily realized by sticking the adhesive tape to the negative electrode.
- the adhesive tape since the adhesive tape uses the conductor metal, it can also serve as a positive electrode. Therefore, if the adhesive tape of the said aspect is used, while adhering between cells, the positive electrode of an adjacent cell can also be formed simultaneously and there exists an advantage which can manufacture a magnesium air battery easily.
- the adhesive tape in the said aspect should just be what integrated the conductor metal and the electroconductive adhesive material.
- the conductor metal does not have to be a foil such as copper or stainless steel, and may be a plate having a predetermined thickness.
- the shape and width of the adhesive tape are arbitrary.
- the above-mentioned pressure-sensitive adhesive tape may be obtained by attaching a conductive double-sided tape to a conductive metal.
- the conductive adhesive layer may be a conductive paste.
- a conductive paste for example, an acrylic paint or the like mixed with carbon or metal powder can be used.
- the conductive paste may contain 90% by weight or more of metal powder. By doing so, sufficient conductivity can be ensured.
- the metal powder may be composed of a metal other than aluminum.
- Aluminum may generate a strong film on the surface of the negative electrode due to oxidation, and by avoiding this, the conductivity can be further increased.
- the metal powder preferably contains tin, silver, copper, nickel, zinc, molybdenum, lead, and alloys thereof. These have the advantage of being relatively easy to obtain. A single kind of metal powder may be used, or a plurality of kinds may be mixed and used.
- the resistance of the conductive adhesive layer is preferably 0.6 ohm / square inch or less. It was confirmed that the effect is particularly obtained in such a range.
- the electrolyte contained in the electrolyte layer is held as a solid in a portion that can be eluted in the electrolyte layer in a state before the start of power generation,
- the case may include a supply mechanism for supplying an amount of water that can realize the elution from the outside.
- the electrolyte layer in the said aspect can be set as a tank form or a water holding body form.
- the tank type is a method in which the electrolyte layer is constituted by a tank that stores an electrolytic solution in a state where at least a part of the negative electrode and the positive electrode active body is immersed.
- the water holding body format is a method in which the electrolyte layer is constituted by a water holding body that contacts at least part of the negative electrode and the positive electrode active body and absorbs and holds the electrolytic solution.
- the water holding body type has an advantage that liquid leakage is easily suppressed.
- the supply mechanism for supplying water from the outside can be a through hole formed in the lower surface of the case.
- the size and number of the through holes are arbitrary. By so doing, when the lower surface of the magnesium-air battery is immersed in a container in which water or the like is stored, water penetrates into the case and power generation can be started.
- the water-retaining body type is more preferable because water can be sucked into the water-retaining body by the water-absorbing body.
- an electrolyte containing an aqueous solution of aminopolycarboxylate exhibiting alkalinity is preferable.
- aminopolycarboxylic acid ethylenediaminetetraacetic acid tetrasodium (EDTA4Na), ethylenediaminetetraacetic acid trisodium (EDTA3Na), nitrilotriacetic acid trisodium (NTA3Na), hydroxyethylethylenediaminetriacetic acid trisodium (HEDTA3Na), triethylenetetramine- N, N, N ′, N ′′, N ′′, N ′′ ′ hexasodium (TTHA6Na) and ethylenediamine-N, N′-trisuccinate (EDDSH3Na) are preferably used.
- sodium hydroxide may be added.
- the following problems are generally pointed out in relation to the pH of the electrolyte.
- self-discharge that is, electrons eluted from magnesium or magnesium alloy on the negative electrode side react with hydrogen ions on the negative electrode to generate hydrogen gas.
- the electrolytic solution is alkaline, magnesium hydroxide, that is, Mg (OH) 2 is generated on the surface of the magnesium, and a passive film that does not allow electricity or ions to pass therethrough is formed, so that no current flows.
- the aminopolycarboxylate used in the electrolyte in the above embodiment has at least one —N (CH 2 COOH) 2 and can stably chelate with magnesium ions.
- the electrolyte solution of the magnesium-air battery is made alkaline by avoiding the problem that the electrolyte solution of the magnesium-air battery is acidic, and by using an aminopolycarboxylate salt that forms a chelate bond with magnesium ions. The problem which arises below can also be avoided and it becomes possible to improve the electric power generation continuation time and discharge capacity of a magnesium air cell.
- this invention can also be comprised in aspects, such as a manufacturing method which manufactures a magnesium air battery other than a magnesium air battery. In these manufacturing methods, it is possible to reflect the various features described above.
- a method of manufacturing a magnesium air battery that generates electricity using magnesium and oxygen Preparing a case in which a plurality of cells constituting the magnesium-air battery are stacked and accommodated so that a positive electrode and a negative electrode between adjacent cells are in contact with each other; Preparing a negative electrode made of magnesium or a magnesium alloy; Preparing a positive electrode made of a conductive metal; Configuring a positive electrode activator for supplying oxygen and placing it in contact with the positive electrode; Forming an electrolyte layer for holding an electrolyte during operation and forming a cell by disposing between the positive electrode active body and the negative electrode; Laminating a plurality of cells sandwiching a conductive adhesive layer made of a conductive material and adhering the positive electrode and the negative electrode to the positive electrode and the negative electrode between adjacent cells; It is good also as a manufacturing method of a magnesium air battery provided with the step which accommodates this laminated
- a 1st manufacturing method is a method of manufacturing a magnesium air battery by forming a cell and laminating
- a method of manufacturing a magnesium air battery that generates electricity using magnesium and oxygen Preparing a case in which a plurality of cells constituting the magnesium-air battery are stacked and accommodated so that a positive electrode and a negative electrode between adjacent cells are in contact with each other; Preparing a negative electrode made of magnesium or a magnesium alloy; Applying a conductive metal tape coated with a conductive adhesive on one side of the conductive metal to one side of the negative electrode; and Furthermore, a positive electrode active body for supplying oxygen and an electrolyte layer for holding an electrolytic solution during operation are configured, and the negative electrode, the conductor metal, the positive electrode active body, the electrolyte layer in this order, or the positive electrode active body, the electrolyte layer Forming a plurality of cell preliminary bodies laminated in the order of negative electrode and conductor metal; Configuring the laminate by sequentially laminating the plurality of cell preliminary bodies so that a plurality of cells in which the positive electrode active body and the electrolyte layer are interposed
- the second manufacturing method is a method in which a conductive adhesive layer between cells is formed by attaching a conductive metal tape to the negative electrode, and then a plurality of laminated bodies are formed and stored in a case. Also by this method, a magnesium air battery can be manufactured through the conductive adhesive layer, and the various effects described above can be obtained.
- FIG. 1 is an explanatory view showing the appearance of a magnesium air battery 10 in the embodiment.
- the magnesium-air battery 10 of the embodiment is configured to start power generation by immersing the lower part in water.
- the structure and power generation capacity will be described below.
- the magnesium-air battery 10 has a structure in which a plurality of cells are incorporated in a resin case 11. A recess 12 that is recessed in the width direction is formed above the case 11, and a terminal 13 for connecting to an external circuit is provided here.
- the terminal 13 has a structure in which a part of the conductive metal constituting the electrode of the cell is exposed. You may make it provide the terminal 13 separately from the electrode of a cell.
- the lower side of the figure shows the state of the magnesium air battery 10 as viewed from below.
- a step portion 11s is formed on the lower surface of the case 11, and a cap 15 in which a plurality of through holes 16 are formed is fitted and sealed.
- the terminal 13 for connecting to an external circuit is provided on the upper side, even when the magnesium air battery 10 is soaked in water as described above, the battery is connected to the external circuit without worrying about a short circuit or the like. Can be connected.
- the terminal 13 is formed at the upper end.
- the terminal 13 may be provided above the water level during power generation. It can be provided at any position above the half of the case 11.
- a reference line 14 is drawn as a reference for immersing the magnesium-air battery in water at the start of power generation.
- the reference line 14 is only a guideline, and power generation can be started even if the water level is slightly lower than the reference line 14.
- FIG. 2 is an explanatory diagram showing the internal structure of the magnesium-air battery 10 in the example. The state of the AA cross section in the perspective view (FIG. 1) is schematically shown. As shown in the figure, the magnesium-air battery 10 is sealed with four cells 20 stacked in a case 11 and a conductive metal plate 28 stacked on one end. The number of cells 20 can be arbitrarily set. The lower side of the case 11 is sealed with a cap 15 in which a through hole 16 is formed.
- Cell 20 [1] and cell 20 [2] are two adjacent cells. Any two of the four cells may be considered.
- Each cell 20 has a structure in which four layers are stacked. The planar shape of each layer is 50 mm long ⁇ 25 mm wide.
- the positive electrode 21 can be formed of a conductive metal such as stainless steel or copper.
- a conductive copper foil tape was used for the positive electrode 21 between adjacent cells, and a stainless steel plate was used for the positive electrode 21 on the end face.
- the copper foil tape 1181 copper foil tape (resistance 0.005 ohm / square inch) manufactured by 3M Company can be used.
- a conductive double-sided tape may be applied to the copper plate or stainless steel plate as the positive electrode 21.
- the conductive double-sided tape in such a case, for example, 60252 (resistance: 0.05 to 0.2 ohm / square inch) manufactured by Tesa and 60262 (resistance: 0.02 to 0.2 ohm / square inch) manufactured by Tesa are used. Can be used.
- the positive electrode active body 22 is a layer in which activated carbon powder is laminated. Instead of activated carbon, manganese dioxide or the like may be used.
- the electrolyte layer 23 is composed of a separator sheet holding an electrolyte.
- the negative electrode 24 is made of a magnesium alloy AZ31.
- Magnesium may be used. Two adjacent cells 20 [1] and 20 [2] are arranged in series such that the positive electrode 21 of the cell 20 [1] is in contact with the negative electrode 24 of the cell 20 [2].
- the positive electrode 21 of the cell 20 located at the left end in the drawing and a part of the upper end of the metal plate 28 are configured to be exposed from the case 11 and function as the terminal 13 described in FIG.
- a conductive adhesive layer 30 is formed between the cells 20 [1] and 20 [2].
- the adhesive surface of the conductive copper foil tape described above forms the conductive adhesive layer 30.
- Electrolyte layer The structure of the electrolyte layer 23 will be described in more detail.
- the separator sheet is a composite material of pulp and nonwoven fabric, and its weight density is about 100 to 1000 grams / square meter.
- the electrolytic solution is an aqueous solution in which nitrilotriacetic acid trisodium (NTA3Na) 10% and potassium chloride (KCl) 0.1% are mixed in a weight ratio.
- NTA3Na nitrilotriacetic acid trisodium
- KCl potassium chloride
- An aqueous solution in which 0.2% of potassium chloride is added to tetrasodium ethylenediaminetetraacetate (EDTA4Na) may be used.
- the above electrolyte solution is infiltrated into the separator sheet and then dried to form the electrolyte layer 23.
- the electrolyte layer 23 manufactured in this way does not contain a liquid before the start of power generation, there is no concern that liquid leakage occurs when the magnesium-air battery 10 is stored.
- the separator sheet absorbs water, and nitrilotriacetic acid trisodium (NTA3Na), potassium chloride (KCl), and the like previously retained are eluted. Will function as.
- the electrolyte solution of this example exhibits an alkalinity of about pH 8-13. Therefore, it is possible to avoid self-discharge that occurs when the electrolyte is acidic.
- the electrolyte layer 23 includes trisodium ethylenediaminetetraacetate (EDTA3Na), diethylenetriaminepentaacetic acid pentasodium (DTPA5Na), hydroxyethylethylenediaminetriacetic acid trisodium (HEDTA3Na), triethylenetetramine-N, N, N ′, N ", N", N "'hexasodium (TTHA6Na), N- (2-hydroxyethyl) iminodisodium (HIDA2Na), N, N-di (2-hydroxyethyl) glycine monosodium (DHEGNa), glutamic acid diacetic acid Tetrasodium (GLDA4Na), ethylenediamine-N, N′-disuccinate triso
- FIG. 3 is an explanatory view showing a problem in the magnesium-air battery. Similar to the enlarged view in FIG. 2, two adjacent cells 20 [1] and 20 [2] are shown in an enlarged manner. However, in this example, unlike the example (FIG. 2), the conductive adhesive layer 30 is not formed between the cells 20 [1] and 20 [2]. In such a state, the electrolyte solution permeates between the positive electrode 21 of the cell 20 [1] and the negative electrode 24 of the cell 20 [2], and an unintended electrolyte layer 23C is formed.
- a counter electromotive voltage is generated between the positive electrode 21 of the cell 20 [1] and the negative electrode 24 of the cell 20 [2] as illustrated.
- magnesium oxide or magnesium hydroxide is laminated on the surface of the negative electrode due to a reaction between magnesium or a magnesium alloy of the negative electrode 24 and the electrolytic solution, thereby forming a nonconductor 24A.
- the nonconductor 24A obstructs the conductivity of the positive electrode 21 of the cell 20 [1] and the negative electrode 24 of the cell 20 [2], and increases the internal resistance.
- the conductive adhesive layer 30 is formed between the positive electrode 21 of the cell 20 [1] and the negative electrode 24 of the cell 20 [2], the penetration of the electrolytic solution is suppressed. Can do. Therefore, the generation of the electromotive force in the reverse direction and the formation of the nonconductor 24A can be suppressed, and the voltage and conductivity of the magnesium-air battery can be improved.
- FIG. 4 is a graph showing the measurement results of the power generation duration time of the magnesium-air battery in the example.
- Curve C1 represents the relationship between the current and elapsed time from the magnesium-air battery of the example.
- 118M copper foil tape (resistance 0.005 ohm / in 2) manufactured by 3M was used as the positive electrode 21 and the conductive adhesive layer 30 between the cells, and a stainless plate was used as the positive electrode 21 on the end face.
- the negative electrode 24 is made of a magnesium alloy AZ31.
- the average current up to 24 hours was 15.5 mA in the comparative example and 19.8 mA in the example. Further, the current capacity obtained by integrating the current values every hour was 388 mAh in the comparative example and 495 mAh in the first example. The average current and current capacity were both improved by about 28% in the example compared to the comparative example.
- the current value suddenly changes in the vicinity of about 15 hours (portion surrounded by a broken-line ellipse in the drawing) because water is supplied to the magnesium battery. With this water supply, the current value increased by 1.1 mA in the comparative example and 2.9 mA in the example.
- the difference in current value was increased from 2.0 mA to 3.8 mA by water supply.
- the formation of non-conductors between the cells progresses with time (see FIG. 3), so that it is difficult for the current value to recover even when water is supplied. It is considered that the presence of 30 can suppress the formation of a nonconductor.
- both the voltage and the current can be improved due to the presence of the conductive adhesive layer 30.
- FIG. 5 is a flowchart showing the manufacturing process of the magnesium-air battery.
- the magnesium air battery of an Example can be manufactured in the procedure demonstrated below.
- each part is prepared (step 20).
- the parts mean the case 11, the positive electrode 21, the negative electrode 24, and the like shown in FIG.
- the electrolyte layer 23 can be prepared by impregnating an electrolyte solution into a separator sheet and drying it.
- the copper foil tape 21 is attached to the negative electrode 24 (step S22).
- the pasted state is shown in the figure.
- the adhesive surface of the copper foil tape 21 forms the conductive adhesive layer 30.
- step S24 the electrolyte layer 23, the positive electrode active body 22 and the like are stacked to form a stacked body in which a plurality of cells are stacked. Since what is formed in step S22 is a positive electrode and a negative electrode between cells, a stainless steel plate is separately attached to the positive electrode 21E and the negative electrode 24E on the end face. Finally, the laminated body thus manufactured is stored in a case (step S26).
- the magnesium-air battery of the example can be manufactured through the above steps. Note that it is not always necessary to prepare all the parts first, and they may be appropriately prepared when performing the steps after step S22.
- Example 2 the magnesium-air battery of Example 2 will be described.
- a copper foil tape was used to form a conductive adhesive layer, but Example 2 differs in that a conductive paste is used.
- the configuration of the battery itself is the same as that of Example 1 in terms of the entire structure (see FIG. 1) and the internal structure (see FIG. 2).
- the magnesium-air battery of Example 2 can be manufactured by the following method.
- FIG. 6 is a flowchart showing a manufacturing process as a modified example of the magnesium-air battery in the second embodiment.
- each part is prepared (step S10). Parts to be prepared are the same as those in the first embodiment. Moreover, you may make it prepare parts suitably when performing a subsequent process.
- each cell is assembled (step S12).
- the assembly of the cell 20 is shown in the figure.
- the positive electrode 21, the positive electrode active body 22, the electrolyte layer 23, and the negative electrode 24 may be sequentially stacked. Since the magnesium-air battery of the embodiment accommodates four cells, it is preferable to manufacture the cells 20 as a set of four sets. Both the cell located at the end and the cell located in the middle may have the same structure.
- the four cells are stacked through the adhesive, that is, the conductive paste, and the stacked body is assembled (step S14).
- the assembly situation is shown in the figure.
- a conductive adhesive layer 30A made of a conductive paste is formed between adjacent cells 20 [1] and 20 [2].
- the laminated body manufactured in this way is stored in a case (step S16).
- the magnesium-air battery of Example 2 can be manufactured through the above steps.
- the conductive paste can be generated, for example, by mixing carbon or metal powder with an acrylic paint or the like.
- acrylic paint 5 wt%, carbon powder 5 wt%, tin / silver / copper alloy powder 90 wt% (tin 96.5 wt%, silver 3.0 wt%, copper 0.5 wt% Alloy powder, particle size 10-40 micrometers) was used.
- the thickness of the conductive adhesive layer 30A was approximately 10 micrometers.
- the resistance value of the conductive adhesive layer 30A at this time was 0.4 to 0.6 ohm / square inch.
- the metal powder may be used as the metal powder. Moreover, you may use what powdered metals, such as Cu, Sn, Ag, Zn, Ni, and Pb, alone. However, it is preferable that the metal powder does not contain aluminum. This is because if aluminum is contained, a strong oxide film may be formed on the surface of the negative electrode. However, this does not mean that the metal powder should not contain any aluminum.
- a curve C2 in FIG. 4 is a measurement result according to the second embodiment. The content of FIG. 4 will be described again.
- FIG. 4 shows a measurement of the relationship between current and elapsed time.
- Curve C1 is the result obtained with the magnesium-air battery of Example 1.
- the curve C2 is the result according to Example 2.
- Curve C3 is the result of a magnesium-air battery that does not have the conductive adhesive layer 30 as a comparative example. As shown in FIG. 4, it can be seen that the performance of the magnesium-air battery according to Example 2 is the same as that of Example 1.
- the current capacity obtained by integrating the current values every hour was 388 mAh in the comparative example and 471 mAh in the example 2, showing an improvement of about 21%.
- the voltage and current can be improved by the presence of the conductive adhesive layer.
- the magnesium-air battery of the present invention does not need to have all the various features described above, and can be configured by omitting a part or combining them as appropriate. In addition to the above-described embodiments, various modifications can be configured as described below.
- FIG. 7 is a graph showing the effect of the electrolytic solution of the magnesium-air battery. In the structure without the conductive adhesive layer, the effect of changing the electrolyte was shown.
- FIG. 7B shows the discharge capacity when a 10 ohm fixed resistor is connected as a load by an external circuit.
- Curves C11 and C21 are obtained by adding potassium chloride O.D. to 6% ethylenediaminetetraacetic acid tetrasodium (EDTA4Na). It is a result at the time of using the aqueous solution mixed by 2% weight ratio as electrolyte solution.
- Curves C12 and C22 are the same as in Examples 1 and 2, in the case where an aqueous solution obtained by mixing 10% nitrilotriacetic acid trisodium salt (NTA3Na) and potassium chloride (KCl) 0.1% as an electrolyte was used. It is a result.
- Curves C13 and C23 are measurement results when the electrolytic solution is a 10% aqueous solution of potassium chloride as a comparative example.
- the comparative example (curve C13) can obtain a high current value at the beginning of the measurement, but the current value suddenly decreases after 4 hours, and becomes less than 2 mA after about 10 hours. I can't get the brightness.
- the curve C11 and the curve C12 a current value of 10 mA or more is obtained even after 24 hours, and it can be seen that the power generation duration time is significantly improved.
- the discharge capacity in the comparative example (curve C23), a high output voltage was obtained at the beginning of the measurement, but the discharge capacity was about 450 mAh / g due to the short duration of power generation.
- the discharge capacity is about 1900 mAh / g for both the curve C21 and the curve C22, which is about 4 times that of the comparative example.
- FIG. 7 shows an example in which an electrolytic solution containing an aqueous solution of ethylenepolytetraacetic acid tetrasodium (EDTA4Na) or nitrilotriacetic acid trisodium (NTA3Na), that is, an aminopolycarboxylate salt exhibiting alkalinity is shown.
- EDTA4Na ethylenepolytetraacetic acid tetrasodium
- NTA3Na nitrilotriacetic acid trisodium
- tetrasodium ethylenediaminetetraacetate EDTA4Na
- trisodium ethylenediaminetetraacetate EDTA3Na
- trisodium nitrilotriacetate NTA3Na
- trisodium hydroxyethylethylenediamine triacetate HEDTA3Na
- triethylenetetramine-N, N, N ', N ", N", N "' hexasodium ethylenediamine-N, N'-trisuccinic disodium acid (EDDSH3Na), etc.
- These aminopolycarboxylates When the alkalinity is very weak, sodium hydroxide may be added. The reason why the performance of the battery is improved by using these as the electrolytic solution is as follows.
- the following problems are generally pointed out in relation to the pH of the electrolyte.
- the electrolytic solution is acidic, self-discharge, that is, electrons eluted from magnesium or magnesium alloy on the negative electrode side react with hydrogen ions on the negative electrode to generate hydrogen gas.
- the electrolytic solution is alkaline, magnesium hydroxide, that is, Mg (OH) 2 is generated on the surface of the magnesium, and a passive film that does not allow electricity or ions to pass therethrough is formed, so that no current flows.
- the aminopolycarboxylate used in the electrolyte in the above embodiment has at least one —N (CH 2 COOH) 2 and can stably chelate with magnesium ions.
- the electrolyte solution of the magnesium-air battery is made alkaline by avoiding the problem that the electrolyte solution of the magnesium-air battery is acidic, and by using an aminopolycarboxylate salt that forms a chelate bond with magnesium ions. The problem which arises below can also be avoided and it becomes possible to improve the electric power generation continuation time and discharge capacity of a magnesium air cell.
- the electrolytic solution does not necessarily have to be an aminopolycarboxylate aqueous solution, and in the example shown as a comparative example in FIG. 7, a conductive adhesive layer is provided between adjacent cells. The effect of improving the voltage and current can be obtained.
- maintains solid electrolyte in the electrolyte layer 23 was shown in the state before electric power generation. Instead, the electrolyte can be held at various sites that can be eluted into the electrolyte layer 23, for example, the contact surface between the negative electrode 24 and the electrolyte layer 23, or the contact surface between the positive electrode active body 22 and the electrolyte layer 23. Or the like.
- the solid electrolyte is held in the electrolyte layer 23 and power generation is started by adding water. However, the electrolyte solution may be held in advance in the electrolyte layer 23. Good.
- FIG. 8 is an explanatory diagram showing the internal structure of the magnesium-air battery 10A according to a modification.
- the modified magnesium-air battery 10A as in the embodiment, four cells 20A are stacked in series inside resin cases 11A and 11B, and a metal plate 28A serving as an electrode is stacked on the negative electrode side.
- the cases 11A and 11B are in the shape of a container whose bottom surface is also closed, and the cell 20A and the metal plate 28A are enclosed by covering the lower case 11A with the upper case 11B and bonding them.
- a through hole 18 is provided on the upper surface of the case 11B, from which an electrolytic solution can be injected.
- the structure of the cell 20A is shown at the bottom of the figure.
- the positive electrode 21, the positive electrode active body 22, and the negative electrode 24 are the same as those in the example.
- a spacer 23A is attached instead of the electrolyte layer in the embodiment.
- the cylindrical spacer 23A is stopped by a pin 23B penetrating from the positive electrode 21 to the negative electrode 24.
- the head of the pin 23B is drawn so as to protrude from the surfaces of the positive electrode 21 and the negative electrode 24, but the head of the pin 23B is connected to the positive electrode 21 so that the positive electrode 21 and the negative electrode 24 of the adjacent cell 20A can be easily contacted. It is preferable to process so as not to protrude from the negative electrode 24.
- the spacer 23A can be mounted in various structures such as adhesion, in addition to using the pin 23B.
- a conductive adhesive layer is formed between adjacent cells as in Examples 1 and 2.
- a predetermined gap is formed between the positive electrode active body 22 and the negative electrode 24 by the spacer 23A, and functions as a tank that stores the electrolyte together with the cases 11A and 11B.
- the electrolytic solution is injected from the through hole 18, the entire inside of the case 11 ⁇ / b> A is filled with the electrolytic solution, so that the portion between the positive electrode active body 22 and the negative electrode 24 functions as an electrolyte layer that contributes to power generation.
- a solid electrolyte may be held on any part in the case 11 or on the surfaces of the positive electrode 21, the positive electrode active body 22, and the negative electrode 24. .
- the spacer 23A is not necessarily provided between the positive electrode active body 22 and the negative electrode 24, and a groove for fixing the positive electrode active body 22 and the negative electrode 24 with a predetermined interval may be provided on the inner surface of the case 11B. Good.
- the present invention can be used to improve the power generation duration and discharge capacity of a magnesium-air battery having a plurality of cells.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Hybrid Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
[Problem] To improve the current continuation time and the discharge capacity of a magnesium air battery having a plurality of cells. [Solution] A magnesium air battery 10 comprising a case 11 having: four cells 20 layered therein and enclosed in a state in which a conductive metal plate 28 is laminated on one end; and the lower surface thereof being sealed by a cap 15 having a through-hole 16 formed therein. Each cell 20 comprises: a stainless steel positive electrode 21; a positive electrode active substance 22 including an activated carbon; an electrolyte layer 23 comprising a separator plate holding an electrolyte; and a negative electrode 24 comprising a magnesium alloy AZ31. Osmosis of the electrolyte between cells is suppressed as a result of providing a conductive adhesive layer 30 between the cells. As a result, occurrence of counter electromotive voltage between cells and generation of magnesium hydroxide can be suppressed and the continuous power generation period and discharge capacity can be improved.
Description
本発明は、マグネシウムと酸素を用いて発電するマグネシウム空気電池に関し、特にセルを複数有する場合の構造に関する。
The present invention relates to a magnesium-air battery that generates power using magnesium and oxygen, and particularly to a structure having a plurality of cells.
近年、負極側にマグネシウムまたはマグネシウム合金を用い、正極側に空気中の酸素を用いるマグネシウム空気電池が開発されている。マグネシウム空気電池における正極および負極での反応は、次の通りである。
正極側:O2+2H2O+4e-→4OH-
負極側:2Mg+3OH-→2Mg2++4e- In recent years, magnesium-air batteries using magnesium or a magnesium alloy on the negative electrode side and oxygen in the air on the positive electrode side have been developed. The reaction at the positive electrode and the negative electrode in the magnesium-air battery is as follows.
Positive electrode side: O 2 + 2H 2 O + 4e − → 4OH −
Negative electrode side: 2Mg + 3OH − → 2Mg 2+ + 4e −
正極側:O2+2H2O+4e-→4OH-
負極側:2Mg+3OH-→2Mg2++4e- In recent years, magnesium-air batteries using magnesium or a magnesium alloy on the negative electrode side and oxygen in the air on the positive electrode side have been developed. The reaction at the positive electrode and the negative electrode in the magnesium-air battery is as follows.
Positive electrode side: O 2 + 2H 2 O + 4e − → 4OH −
Negative electrode side: 2Mg + 3OH − → 2Mg 2+ + 4e −
マグネシウム空気電池においても、他の電池と同様、必要な電圧を得るために、ケース内に複数のセルを直列に接続した状態で収納する方法がとられている。特許文献1は、このようにマグネシウム電池を直列接続した電池を開示している。
Also in the magnesium-air battery, in order to obtain a necessary voltage as in other batteries, a method of storing a plurality of cells connected in series in a case is used. Patent document 1 is disclosing the battery which connected the magnesium battery in series in this way.
しかし、マグネシウム空気電池の場合、隣接するセルの正極と負極とを接触させる形でケースに収納し、複数のセルを直列接続させても、電圧が十分に向上しないことが見いだされた。単位セルの電圧をV0ボルトとすると、n個のセルを直列接続すれば単純計算でV0×nボルトの電圧が得られるはずであるが、現実に得られる電圧は、これよりも低いものとなってしまい、放電容量が低下してしまうのである。
本発明は、かかる状況下、複数のセルを有するマグネシウム空気電池において電流継続時間および放電容量を向上させることを目的とする。 However, in the case of a magnesium-air battery, it has been found that the voltage is not sufficiently improved even when the positive and negative electrodes of adjacent cells are accommodated in a case and a plurality of cells are connected in series. If the voltage of the unit cell is V0 volts, a voltage of V0 × n volts should be obtained by simple calculation if n cells are connected in series, but the voltage actually obtained is lower than this. As a result, the discharge capacity is reduced.
Under such circumstances, an object of the present invention is to improve current duration and discharge capacity in a magnesium-air battery having a plurality of cells.
本発明は、かかる状況下、複数のセルを有するマグネシウム空気電池において電流継続時間および放電容量を向上させることを目的とする。 However, in the case of a magnesium-air battery, it has been found that the voltage is not sufficiently improved even when the positive and negative electrodes of adjacent cells are accommodated in a case and a plurality of cells are connected in series. If the voltage of the unit cell is V0 volts, a voltage of V0 × n volts should be obtained by simple calculation if n cells are connected in series, but the voltage actually obtained is lower than this. As a result, the discharge capacity is reduced.
Under such circumstances, an object of the present invention is to improve current duration and discharge capacity in a magnesium-air battery having a plurality of cells.
本発明は、マグネシウムと酸素を用いて発電するマグネシウム空気電池であって、
複数のセルと、
該複数のセルを、隣接するセル間の正極と負極とが接触するように積層して収容するケースとを有し、
前記セルは、
マグネシウムまたはマグネシウム合金からなる負極と、
導電体金属からなる正極と、
前記正極に接して配置され、酸素を供給する正極活性体と、
前記正極活性体と前記負極との間に配置され、作動時に電解液を保持するための電解質層とを備えており、
前記隣接するセル間の正極と負極には、導電性材料からなり前記正極と負極とを粘着する導電性粘着層が設けられているマグネシウム空気電池として構成することができる。
正極の導電体金属としては、例えば、銅またはステンレスなどを用いることができる。
正極活性体は、例えば、活性炭および二酸化マンガンの少なくとも一部を用いることができる。これらは、単独で用いても良いし、混合して用いても良い。また、固形の状態で用いても良いし、粉末状にした上でシート上に積層等して用いても良い。 The present invention is a magnesium air battery that generates electricity using magnesium and oxygen,
Multiple cells,
A case in which the plurality of cells are stacked and accommodated so that a positive electrode and a negative electrode between adjacent cells are in contact with each other;
The cell is
A negative electrode made of magnesium or a magnesium alloy;
A positive electrode made of a conductive metal;
A positive electrode active body arranged in contact with the positive electrode and supplying oxygen;
An electrolyte layer disposed between the positive electrode active body and the negative electrode and holding an electrolyte during operation;
The positive and negative electrodes between the adjacent cells can be configured as a magnesium-air battery in which a conductive adhesive layer made of a conductive material is provided to adhere the positive and negative electrodes.
As the conductor metal of the positive electrode, for example, copper or stainless steel can be used.
As the positive electrode active material, for example, at least a part of activated carbon and manganese dioxide can be used. These may be used alone or in combination. Further, it may be used in a solid state or may be used after being powdered and laminated on a sheet.
複数のセルと、
該複数のセルを、隣接するセル間の正極と負極とが接触するように積層して収容するケースとを有し、
前記セルは、
マグネシウムまたはマグネシウム合金からなる負極と、
導電体金属からなる正極と、
前記正極に接して配置され、酸素を供給する正極活性体と、
前記正極活性体と前記負極との間に配置され、作動時に電解液を保持するための電解質層とを備えており、
前記隣接するセル間の正極と負極には、導電性材料からなり前記正極と負極とを粘着する導電性粘着層が設けられているマグネシウム空気電池として構成することができる。
正極の導電体金属としては、例えば、銅またはステンレスなどを用いることができる。
正極活性体は、例えば、活性炭および二酸化マンガンの少なくとも一部を用いることができる。これらは、単独で用いても良いし、混合して用いても良い。また、固形の状態で用いても良いし、粉末状にした上でシート上に積層等して用いても良い。 The present invention is a magnesium air battery that generates electricity using magnesium and oxygen,
Multiple cells,
A case in which the plurality of cells are stacked and accommodated so that a positive electrode and a negative electrode between adjacent cells are in contact with each other;
The cell is
A negative electrode made of magnesium or a magnesium alloy;
A positive electrode made of a conductive metal;
A positive electrode active body arranged in contact with the positive electrode and supplying oxygen;
An electrolyte layer disposed between the positive electrode active body and the negative electrode and holding an electrolyte during operation;
The positive and negative electrodes between the adjacent cells can be configured as a magnesium-air battery in which a conductive adhesive layer made of a conductive material is provided to adhere the positive and negative electrodes.
As the conductor metal of the positive electrode, for example, copper or stainless steel can be used.
As the positive electrode active material, for example, at least a part of activated carbon and manganese dioxide can be used. These may be used alone or in combination. Further, it may be used in a solid state or may be used after being powdered and laminated on a sheet.
本発明によれば、隣接するセル間の正極と負極との間を導電性粘着層によって密着させることができる。この結果、次に示す原理によって電圧および導電性を向上させることができる。
まず、従来の構造において十分な電圧が得られなかった原因を説明する。従来の構造では、隣接するセル間の正極と負極との間に微小ながらも隙間が存在し、電解液がここに浸透することがあった。正極と負極との間に電解液が浸透すると、その間に起電力が発生する。この起電力の向きは、セルによって生じる起電力とは逆方向となる。この結果、セルで生じる電圧を阻害するため、十分な電圧が得られなかったのである。
また、セル間に隙間が存在し、電解液が浸透すると、負極のマグネシウムまたはマグネシウム合金と電解液との反応によって負極表面上に酸化マグネシウムや水酸化マグネシウムが積層して不導体が形成されてしまう。かかる不導体は隣接するセル間の導電性を阻害し、内部抵抗を増加させることになる。
これに対し、本発明では、導電性粘着層によって、セル間の正極と負極との間への電解液の浸透を抑制することができる。従って、上述した逆方向の起電力の発生および不導体の形成を抑制することができ、マグネシウム空気電池の電流継続時間および放電容量を向上させることができる。 According to the present invention, the positive electrode and the negative electrode between adjacent cells can be adhered to each other by the conductive adhesive layer. As a result, voltage and conductivity can be improved according to the following principle.
First, the reason why a sufficient voltage could not be obtained in the conventional structure will be described. In the conventional structure, a minute gap exists between the positive electrode and the negative electrode between adjacent cells, and the electrolytic solution may permeate here. When the electrolytic solution penetrates between the positive electrode and the negative electrode, an electromotive force is generated therebetween. The direction of the electromotive force is opposite to the electromotive force generated by the cell. As a result, the voltage generated in the cell is inhibited, so that a sufficient voltage cannot be obtained.
In addition, when there is a gap between the cells and the electrolytic solution penetrates, magnesium oxide or magnesium hydroxide is laminated on the negative electrode surface due to the reaction between the negative electrode magnesium or magnesium alloy and the electrolytic solution, and a nonconductor is formed. . Such a nonconductor impedes conductivity between adjacent cells and increases internal resistance.
On the other hand, in the present invention, the conductive adhesive layer can suppress the penetration of the electrolytic solution between the positive electrode and the negative electrode between the cells. Therefore, generation | occurrence | production of the electromotive force of the reverse direction mentioned above and formation of a nonconductor can be suppressed, and the electric current continuation time and discharge capacity of a magnesium air cell can be improved.
まず、従来の構造において十分な電圧が得られなかった原因を説明する。従来の構造では、隣接するセル間の正極と負極との間に微小ながらも隙間が存在し、電解液がここに浸透することがあった。正極と負極との間に電解液が浸透すると、その間に起電力が発生する。この起電力の向きは、セルによって生じる起電力とは逆方向となる。この結果、セルで生じる電圧を阻害するため、十分な電圧が得られなかったのである。
また、セル間に隙間が存在し、電解液が浸透すると、負極のマグネシウムまたはマグネシウム合金と電解液との反応によって負極表面上に酸化マグネシウムや水酸化マグネシウムが積層して不導体が形成されてしまう。かかる不導体は隣接するセル間の導電性を阻害し、内部抵抗を増加させることになる。
これに対し、本発明では、導電性粘着層によって、セル間の正極と負極との間への電解液の浸透を抑制することができる。従って、上述した逆方向の起電力の発生および不導体の形成を抑制することができ、マグネシウム空気電池の電流継続時間および放電容量を向上させることができる。 According to the present invention, the positive electrode and the negative electrode between adjacent cells can be adhered to each other by the conductive adhesive layer. As a result, voltage and conductivity can be improved according to the following principle.
First, the reason why a sufficient voltage could not be obtained in the conventional structure will be described. In the conventional structure, a minute gap exists between the positive electrode and the negative electrode between adjacent cells, and the electrolytic solution may permeate here. When the electrolytic solution penetrates between the positive electrode and the negative electrode, an electromotive force is generated therebetween. The direction of the electromotive force is opposite to the electromotive force generated by the cell. As a result, the voltage generated in the cell is inhibited, so that a sufficient voltage cannot be obtained.
In addition, when there is a gap between the cells and the electrolytic solution penetrates, magnesium oxide or magnesium hydroxide is laminated on the negative electrode surface due to the reaction between the negative electrode magnesium or magnesium alloy and the electrolytic solution, and a nonconductor is formed. . Such a nonconductor impedes conductivity between adjacent cells and increases internal resistance.
On the other hand, in the present invention, the conductive adhesive layer can suppress the penetration of the electrolytic solution between the positive electrode and the negative electrode between the cells. Therefore, generation | occurrence | production of the electromotive force of the reverse direction mentioned above and formation of a nonconductor can be suppressed, and the electric current continuation time and discharge capacity of a magnesium air cell can be improved.
導電性粘着層は、電解液の浸透を抑制することができる程度にセル間を密着させることができる粘着性を備え、セル間の電流の流れを確保できるものであれば、種々の態様をとることができる。
第1の態様として、
前記導電性粘着層は、前記導電体金属の片面に導電性粘着材料が塗布された粘着テープによって形成されているものとしてもよい。
かかる態様によれば、負極に粘着テープを貼り付けることによって、容易にセル間の密着を実現することができる。また、粘着テープは導電体金属を用いているため、正極を兼用することもできる。従って、上記態様の粘着テープを用いればセル間を密着させながら、隣接するセルの正極も同時に形成することができ、容易にマグネシウム空気電池を製造することができる利点がある。
上記態様における粘着テープは、導電体金属と導電性粘着材料が一体化したものであればよい。例えば、導電体金属は、銅またはステンレスなどの箔である必要はなく、所定の厚さを有する板状のものであってもよい。また、粘着テープの形状や幅は任意である。
上述の粘着テープは、導電体金属に導電性の両面テープを貼付したものであってもよい。 The conductive adhesive layer can take various forms as long as it has adhesiveness that allows the cells to adhere to such an extent that the penetration of the electrolyte solution can be suppressed, and can secure a current flow between the cells. be able to.
As a first aspect,
The conductive adhesive layer may be formed of an adhesive tape in which a conductive adhesive material is applied to one side of the conductor metal.
According to this aspect, adhesion between cells can be easily realized by sticking the adhesive tape to the negative electrode. Moreover, since the adhesive tape uses the conductor metal, it can also serve as a positive electrode. Therefore, if the adhesive tape of the said aspect is used, while adhering between cells, the positive electrode of an adjacent cell can also be formed simultaneously and there exists an advantage which can manufacture a magnesium air battery easily.
The adhesive tape in the said aspect should just be what integrated the conductor metal and the electroconductive adhesive material. For example, the conductor metal does not have to be a foil such as copper or stainless steel, and may be a plate having a predetermined thickness. Moreover, the shape and width of the adhesive tape are arbitrary.
The above-mentioned pressure-sensitive adhesive tape may be obtained by attaching a conductive double-sided tape to a conductive metal.
第1の態様として、
前記導電性粘着層は、前記導電体金属の片面に導電性粘着材料が塗布された粘着テープによって形成されているものとしてもよい。
かかる態様によれば、負極に粘着テープを貼り付けることによって、容易にセル間の密着を実現することができる。また、粘着テープは導電体金属を用いているため、正極を兼用することもできる。従って、上記態様の粘着テープを用いればセル間を密着させながら、隣接するセルの正極も同時に形成することができ、容易にマグネシウム空気電池を製造することができる利点がある。
上記態様における粘着テープは、導電体金属と導電性粘着材料が一体化したものであればよい。例えば、導電体金属は、銅またはステンレスなどの箔である必要はなく、所定の厚さを有する板状のものであってもよい。また、粘着テープの形状や幅は任意である。
上述の粘着テープは、導電体金属に導電性の両面テープを貼付したものであってもよい。 The conductive adhesive layer can take various forms as long as it has adhesiveness that allows the cells to adhere to such an extent that the penetration of the electrolyte solution can be suppressed, and can secure a current flow between the cells. be able to.
As a first aspect,
The conductive adhesive layer may be formed of an adhesive tape in which a conductive adhesive material is applied to one side of the conductor metal.
According to this aspect, adhesion between cells can be easily realized by sticking the adhesive tape to the negative electrode. Moreover, since the adhesive tape uses the conductor metal, it can also serve as a positive electrode. Therefore, if the adhesive tape of the said aspect is used, while adhering between cells, the positive electrode of an adjacent cell can also be formed simultaneously and there exists an advantage which can manufacture a magnesium air battery easily.
The adhesive tape in the said aspect should just be what integrated the conductor metal and the electroconductive adhesive material. For example, the conductor metal does not have to be a foil such as copper or stainless steel, and may be a plate having a predetermined thickness. Moreover, the shape and width of the adhesive tape are arbitrary.
The above-mentioned pressure-sensitive adhesive tape may be obtained by attaching a conductive double-sided tape to a conductive metal.
第2の態様として、前記導電性粘着層は、導電性ペーストであるものとしてもよい。
導電性ペーストとしては、例えば、アクリル塗料等にカーボンや金属粉などを混ぜたものなどを用いることができる。 As a second aspect, the conductive adhesive layer may be a conductive paste.
As the conductive paste, for example, an acrylic paint or the like mixed with carbon or metal powder can be used.
導電性ペーストとしては、例えば、アクリル塗料等にカーボンや金属粉などを混ぜたものなどを用いることができる。 As a second aspect, the conductive adhesive layer may be a conductive paste.
As the conductive paste, for example, an acrylic paint or the like mixed with carbon or metal powder can be used.
上記導電性ペーストは、90重量%以上の金属粉末を含むものとしてもよい。こうすることによって、十分な導電性を確保することができる。
The conductive paste may contain 90% by weight or more of metal powder. By doing so, sufficient conductivity can be ensured.
また、金属粉末はアルミニウム以外の金属で構成されているものとしてもよい。アルミニウムは、酸化によって負極の表面に強固な膜を生成することがあるため、これを避けることによって、より導電性を高めることができる。
Further, the metal powder may be composed of a metal other than aluminum. Aluminum may generate a strong film on the surface of the negative electrode due to oxidation, and by avoiding this, the conductivity can be further increased.
さらに、金属粉末は、錫、銀、銅、ニッケル、亜鉛、モリブデン、鉛およびこれらの合金の粉末を含むものとすることが好ましい。これらは、比較的入手しやすい利点がある。金属粉末は、単一種類を用いても良いし、複数種類を混合して用いても良い。
Furthermore, the metal powder preferably contains tin, silver, copper, nickel, zinc, molybdenum, lead, and alloys thereof. These have the advantage of being relatively easy to obtain. A single kind of metal powder may be used, or a plurality of kinds may be mixed and used.
粘着テープ、導電性ペーストなど導電性粘着層の態様に関わらず、
本発明のマグネシウム空気電池において、
前記導電性粘着層の抵抗は、0.6オーム/平方インチ以下であることが好ましい。かかる範囲で特に効果が得られることが確認された。 Regardless of the mode of the conductive adhesive layer, such as adhesive tape and conductive paste,
In the magnesium-air battery of the present invention,
The resistance of the conductive adhesive layer is preferably 0.6 ohm / square inch or less. It was confirmed that the effect is particularly obtained in such a range.
本発明のマグネシウム空気電池において、
前記導電性粘着層の抵抗は、0.6オーム/平方インチ以下であることが好ましい。かかる範囲で特に効果が得られることが確認された。 Regardless of the mode of the conductive adhesive layer, such as adhesive tape and conductive paste,
In the magnesium-air battery of the present invention,
The resistance of the conductive adhesive layer is preferably 0.6 ohm / square inch or less. It was confirmed that the effect is particularly obtained in such a range.
また、本発明のマグネシウム空気電池においては、
前記電解質層に含まれる電解質を、発電開始前の状態において、前記電解質層に溶出可能な部位に固体として保持しており、
前記ケースは、前記溶出を実現できる量の水を外部から供給するための供給機構を備えているものとしてもよい。 In the magnesium-air battery of the present invention,
The electrolyte contained in the electrolyte layer is held as a solid in a portion that can be eluted in the electrolyte layer in a state before the start of power generation,
The case may include a supply mechanism for supplying an amount of water that can realize the elution from the outside.
前記電解質層に含まれる電解質を、発電開始前の状態において、前記電解質層に溶出可能な部位に固体として保持しており、
前記ケースは、前記溶出を実現できる量の水を外部から供給するための供給機構を備えているものとしてもよい。 In the magnesium-air battery of the present invention,
The electrolyte contained in the electrolyte layer is held as a solid in a portion that can be eluted in the electrolyte layer in a state before the start of power generation,
The case may include a supply mechanism for supplying an amount of water that can realize the elution from the outside.
こうすることにより、発電開始前の状態では電池内には固体しか存在しないため、液漏れの心配なく保管することができる。また、外部から水を供給するだけで簡便に発電を開始させることができる。
上記態様における電解質層の構成としては、タンク形式または保水体形式とすることができる。
タンク形式とは、電解質層を負極および正極活性体の少なくとも一部を浸す状態で電解液を貯蔵するタンクによって構成する方法である。
保水体形式とは、電解質層を負極および正極活性体に少なくとも一部で接触し、電解液を吸収し保持する保水体によって構成する方法である。保水体形式は、液漏れを抑制しやすい利点がある。 By doing so, since only the solid exists in the battery before the start of power generation, it can be stored without worrying about liquid leakage. In addition, power generation can be started simply by supplying water from the outside.
As a structure of the electrolyte layer in the said aspect, it can be set as a tank form or a water holding body form.
The tank type is a method in which the electrolyte layer is constituted by a tank that stores an electrolytic solution in a state where at least a part of the negative electrode and the positive electrode active body is immersed.
The water holding body format is a method in which the electrolyte layer is constituted by a water holding body that contacts at least part of the negative electrode and the positive electrode active body and absorbs and holds the electrolytic solution. The water holding body type has an advantage that liquid leakage is easily suppressed.
上記態様における電解質層の構成としては、タンク形式または保水体形式とすることができる。
タンク形式とは、電解質層を負極および正極活性体の少なくとも一部を浸す状態で電解液を貯蔵するタンクによって構成する方法である。
保水体形式とは、電解質層を負極および正極活性体に少なくとも一部で接触し、電解液を吸収し保持する保水体によって構成する方法である。保水体形式は、液漏れを抑制しやすい利点がある。 By doing so, since only the solid exists in the battery before the start of power generation, it can be stored without worrying about liquid leakage. In addition, power generation can be started simply by supplying water from the outside.
As a structure of the electrolyte layer in the said aspect, it can be set as a tank form or a water holding body form.
The tank type is a method in which the electrolyte layer is constituted by a tank that stores an electrolytic solution in a state where at least a part of the negative electrode and the positive electrode active body is immersed.
The water holding body format is a method in which the electrolyte layer is constituted by a water holding body that contacts at least part of the negative electrode and the positive electrode active body and absorbs and holds the electrolytic solution. The water holding body type has an advantage that liquid leakage is easily suppressed.
外部から水を供給するための供給機構は、ケースの下面に形成された貫通孔であるものとすることができる。貫通孔の大きさおよび数は任意である。
こうすることにより、水等を貯めた容器にマグネシウム空気電池の下面を浸すと、ケース内に水が浸透し、発電を開始することができる。保水体形式では、保水体の吸水性によって、保水体内に水を吸い上げることができるため、より好ましい。 The supply mechanism for supplying water from the outside can be a through hole formed in the lower surface of the case. The size and number of the through holes are arbitrary.
By so doing, when the lower surface of the magnesium-air battery is immersed in a container in which water or the like is stored, water penetrates into the case and power generation can be started. The water-retaining body type is more preferable because water can be sucked into the water-retaining body by the water-absorbing body.
こうすることにより、水等を貯めた容器にマグネシウム空気電池の下面を浸すと、ケース内に水が浸透し、発電を開始することができる。保水体形式では、保水体の吸水性によって、保水体内に水を吸い上げることができるため、より好ましい。 The supply mechanism for supplying water from the outside can be a through hole formed in the lower surface of the case. The size and number of the through holes are arbitrary.
By so doing, when the lower surface of the magnesium-air battery is immersed in a container in which water or the like is stored, water penetrates into the case and power generation can be started. The water-retaining body type is more preferable because water can be sucked into the water-retaining body by the water-absorbing body.
本発明では、電解質も種々のものを活用できるが、アルカリ性を示すアミノポリカルボン酸塩の水溶液を含む電解液とすることが好ましい。特に、アミノポリカルボン酸として、エチレンジアミン四酢酸四ナトリウム(EDTA4Na)、エチレンジアミン四酢酸三ナトリウム(EDTA3Na)、ニトリロ三酢酸三ナトリウム(NTA3Na)、ヒドロキシエチルエチレンジアミン三酢酸三ナトリウム(HEDTA3Na)、トリエチレンテトラミン-N,N,N’,N”,N”,N”’六ナトリウム(TTHA6Na)、エチレンジアミン-N,N’-ジコハク酸三ナトリウム(EDDSH3Na)の少なくとも一つとすることが好ましい。これらは、単独で用いても良いし、混合して用いても良い。これらのアミノポリカルボン酸塩において、アルカリ性が非常に弱い場合などには、水酸化ナトリウムを添加するなどしてもよい。
In the present invention, various electrolytes can be used, but an electrolyte containing an aqueous solution of aminopolycarboxylate exhibiting alkalinity is preferable. In particular, as aminopolycarboxylic acid, ethylenediaminetetraacetic acid tetrasodium (EDTA4Na), ethylenediaminetetraacetic acid trisodium (EDTA3Na), nitrilotriacetic acid trisodium (NTA3Na), hydroxyethylethylenediaminetriacetic acid trisodium (HEDTA3Na), triethylenetetramine- N, N, N ′, N ″, N ″, N ″ ′ hexasodium (TTHA6Na) and ethylenediamine-N, N′-trisuccinate (EDDSH3Na) are preferably used. In these aminopolycarboxylates, when the alkalinity is very weak, sodium hydroxide may be added.
マグネシウム空気電池については、電解液のpHと関連して、一般に次のような課題が指摘されている。電解液が酸性の場合、自己放電、即ち負極側のマグネシウムまたはマグネシウム合金から溶出された電子が、負極上で水素イオンと反応し、水素ガスを発生してしまう。一方、電解液がアルカリ性の場合、マグネシウム表面に水酸化マグネシウム、即ちMg(OH)2が生成され、電気もイオンも通さない不動態膜を形成するため、電流が流れなくなってしまう。
しかし、上記態様において電解質で用いるアミノポリカルボン酸塩は、少なくとも1つの-N(CH2COOH)2を有しており、マグネシウムイオンと安定的にキレート結合することができるため、アミノポリカルボン酸塩がマグネシウムイオンとキレート結合することにより、水酸化マグネシウムの発生を抑制でき、不動態膜の形成を抑制することができる。また、電解液はアルカリ性となるから、酸性下で生じる自己放電の問題も自然と回避することができる。従って、上記態様では、電解液を敢えてアルカリ性にすることによって、マグネシウム空気電池の電解液が酸性下で生じる課題を回避するとともに、マグネシウムイオンとキレート結合を生じるアミノポリカルボン酸塩を用いることによってアルカリ性下で生じる課題も回避することができ、マグネシウム空気電池の発電継続時間および放電容量を向上させることが可能となる。 Regarding the magnesium-air battery, the following problems are generally pointed out in relation to the pH of the electrolyte. When the electrolytic solution is acidic, self-discharge, that is, electrons eluted from magnesium or magnesium alloy on the negative electrode side react with hydrogen ions on the negative electrode to generate hydrogen gas. On the other hand, when the electrolytic solution is alkaline, magnesium hydroxide, that is, Mg (OH) 2 is generated on the surface of the magnesium, and a passive film that does not allow electricity or ions to pass therethrough is formed, so that no current flows.
However, the aminopolycarboxylate used in the electrolyte in the above embodiment has at least one —N (CH 2 COOH) 2 and can stably chelate with magnesium ions. When the salt is chelate-bonded with magnesium ions, generation of magnesium hydroxide can be suppressed and formation of a passive film can be suppressed. In addition, since the electrolytic solution becomes alkaline, the problem of self-discharge that occurs under acidic conditions can be naturally avoided. Therefore, in the above-described embodiment, the electrolyte solution of the magnesium-air battery is made alkaline by avoiding the problem that the electrolyte solution of the magnesium-air battery is acidic, and by using an aminopolycarboxylate salt that forms a chelate bond with magnesium ions. The problem which arises below can also be avoided and it becomes possible to improve the electric power generation continuation time and discharge capacity of a magnesium air cell.
しかし、上記態様において電解質で用いるアミノポリカルボン酸塩は、少なくとも1つの-N(CH2COOH)2を有しており、マグネシウムイオンと安定的にキレート結合することができるため、アミノポリカルボン酸塩がマグネシウムイオンとキレート結合することにより、水酸化マグネシウムの発生を抑制でき、不動態膜の形成を抑制することができる。また、電解液はアルカリ性となるから、酸性下で生じる自己放電の問題も自然と回避することができる。従って、上記態様では、電解液を敢えてアルカリ性にすることによって、マグネシウム空気電池の電解液が酸性下で生じる課題を回避するとともに、マグネシウムイオンとキレート結合を生じるアミノポリカルボン酸塩を用いることによってアルカリ性下で生じる課題も回避することができ、マグネシウム空気電池の発電継続時間および放電容量を向上させることが可能となる。 Regarding the magnesium-air battery, the following problems are generally pointed out in relation to the pH of the electrolyte. When the electrolytic solution is acidic, self-discharge, that is, electrons eluted from magnesium or magnesium alloy on the negative electrode side react with hydrogen ions on the negative electrode to generate hydrogen gas. On the other hand, when the electrolytic solution is alkaline, magnesium hydroxide, that is, Mg (OH) 2 is generated on the surface of the magnesium, and a passive film that does not allow electricity or ions to pass therethrough is formed, so that no current flows.
However, the aminopolycarboxylate used in the electrolyte in the above embodiment has at least one —N (CH 2 COOH) 2 and can stably chelate with magnesium ions. When the salt is chelate-bonded with magnesium ions, generation of magnesium hydroxide can be suppressed and formation of a passive film can be suppressed. In addition, since the electrolytic solution becomes alkaline, the problem of self-discharge that occurs under acidic conditions can be naturally avoided. Therefore, in the above-described embodiment, the electrolyte solution of the magnesium-air battery is made alkaline by avoiding the problem that the electrolyte solution of the magnesium-air battery is acidic, and by using an aminopolycarboxylate salt that forms a chelate bond with magnesium ions. The problem which arises below can also be avoided and it becomes possible to improve the electric power generation continuation time and discharge capacity of a magnesium air cell.
本発明において、上述した特徴は、必ずしも全てを備えている必要はなく、適宜、その一部を省略したり、組み合わせたりしてもよい。また、本発明は、マグネシウム空気電池の他、マグネシウム空気電池を製造する製造方法などの態様で構成することもできる。これらの製造方法において、上述の種々の特徴を反映させることも可能である。
In the present invention, the above-described features are not necessarily all provided, and some of them may be omitted or combined as appropriate. Moreover, this invention can also be comprised in aspects, such as a manufacturing method which manufactures a magnesium air battery other than a magnesium air battery. In these manufacturing methods, it is possible to reflect the various features described above.
例えば、第1の製造方法としては、
マグネシウムと酸素を用いて発電するマグネシウム空気電池の製造方法であって、
前記マグネシウム空気電池を構成する複数のセルを、隣接するセル間の正極と負極とが接触するように積層して収容するケースを準備するステップと、
マグネシウムまたはマグネシウム合金からなる負極を準備するステップと、
導電体金属からなる正極を準備するステップと、
酸素を供給する正極活性体を構成し、前記正極に接して配置するステップと、
作動時に電解液を保持するための電解質層を構成し、前記正極活性体と前記負極との間に配置することによりセルを形成するステップと、
隣接するセル間の正極と負極に、導電性材料からなり前記正極と負極とを粘着する導電性粘着層を挟んで複数のセルを積層するステップと、
該積層された複数のセルを前記ケースに収納するステップとを備えるマグネシウム空気電池の製造方法としてもよい。 For example, as the first manufacturing method,
A method of manufacturing a magnesium air battery that generates electricity using magnesium and oxygen,
Preparing a case in which a plurality of cells constituting the magnesium-air battery are stacked and accommodated so that a positive electrode and a negative electrode between adjacent cells are in contact with each other;
Preparing a negative electrode made of magnesium or a magnesium alloy;
Preparing a positive electrode made of a conductive metal;
Configuring a positive electrode activator for supplying oxygen and placing it in contact with the positive electrode;
Forming an electrolyte layer for holding an electrolyte during operation and forming a cell by disposing between the positive electrode active body and the negative electrode;
Laminating a plurality of cells sandwiching a conductive adhesive layer made of a conductive material and adhering the positive electrode and the negative electrode to the positive electrode and the negative electrode between adjacent cells;
It is good also as a manufacturing method of a magnesium air battery provided with the step which accommodates this laminated | stacked several cell in the said case.
マグネシウムと酸素を用いて発電するマグネシウム空気電池の製造方法であって、
前記マグネシウム空気電池を構成する複数のセルを、隣接するセル間の正極と負極とが接触するように積層して収容するケースを準備するステップと、
マグネシウムまたはマグネシウム合金からなる負極を準備するステップと、
導電体金属からなる正極を準備するステップと、
酸素を供給する正極活性体を構成し、前記正極に接して配置するステップと、
作動時に電解液を保持するための電解質層を構成し、前記正極活性体と前記負極との間に配置することによりセルを形成するステップと、
隣接するセル間の正極と負極に、導電性材料からなり前記正極と負極とを粘着する導電性粘着層を挟んで複数のセルを積層するステップと、
該積層された複数のセルを前記ケースに収納するステップとを備えるマグネシウム空気電池の製造方法としてもよい。 For example, as the first manufacturing method,
A method of manufacturing a magnesium air battery that generates electricity using magnesium and oxygen,
Preparing a case in which a plurality of cells constituting the magnesium-air battery are stacked and accommodated so that a positive electrode and a negative electrode between adjacent cells are in contact with each other;
Preparing a negative electrode made of magnesium or a magnesium alloy;
Preparing a positive electrode made of a conductive metal;
Configuring a positive electrode activator for supplying oxygen and placing it in contact with the positive electrode;
Forming an electrolyte layer for holding an electrolyte during operation and forming a cell by disposing between the positive electrode active body and the negative electrode;
Laminating a plurality of cells sandwiching a conductive adhesive layer made of a conductive material and adhering the positive electrode and the negative electrode to the positive electrode and the negative electrode between adjacent cells;
It is good also as a manufacturing method of a magnesium air battery provided with the step which accommodates this laminated | stacked several cell in the said case.
第1の製造方法は、セルを形成してから、導電性粘着層を挟んで複数のセルを積層することにより、マグネシウム空気電池を製造する方法である。
導電性粘着層を挟むことにより、先に説明した種々の効果を得ることができる。 A 1st manufacturing method is a method of manufacturing a magnesium air battery by forming a cell and laminating | stacking a several cell on both sides of a conductive adhesion layer.
By sandwiching the conductive adhesive layer, the various effects described above can be obtained.
導電性粘着層を挟むことにより、先に説明した種々の効果を得ることができる。 A 1st manufacturing method is a method of manufacturing a magnesium air battery by forming a cell and laminating | stacking a several cell on both sides of a conductive adhesion layer.
By sandwiching the conductive adhesive layer, the various effects described above can be obtained.
また、第2の製造方法として、
マグネシウムと酸素を用いて発電するマグネシウム空気電池の製造方法であって、
前記マグネシウム空気電池を構成する複数のセルを、隣接するセル間の正極と負極とが接触するように積層して収容するケースを準備するステップと、
マグネシウムまたはマグネシウム合金からなる負極を準備するステップと、
導電体金属の片面に導電性粘着剤が塗布された導電体金属テープを、前記負極の片面に貼付するステップと、
さらに、酸素を供給する正極活性体と、作動時に電解液を保持するための電解質層を構成し、前記負極、導電体金属、正極活性体、電解質層の順、または前記正極活性体、電解質層、負極、導電体金属の順に積層したセル予備体を複数形成するステップと、
前記負極と導電体金属との間に前記正極活性体および電解質層が介在したセルが複数形成されるように、前記前記複数のセル予備体を順次積層して積層体を構成するステップと、
前記積層体の両端に、前記セルが形成されるよう前記負極または前記導電体金属を補充して、前記ケースに収納するステップとを備えるマグネシウム空気電池の製造方法としてもよい。 As a second manufacturing method,
A method of manufacturing a magnesium air battery that generates electricity using magnesium and oxygen,
Preparing a case in which a plurality of cells constituting the magnesium-air battery are stacked and accommodated so that a positive electrode and a negative electrode between adjacent cells are in contact with each other;
Preparing a negative electrode made of magnesium or a magnesium alloy;
Applying a conductive metal tape coated with a conductive adhesive on one side of the conductive metal to one side of the negative electrode; and
Furthermore, a positive electrode active body for supplying oxygen and an electrolyte layer for holding an electrolytic solution during operation are configured, and the negative electrode, the conductor metal, the positive electrode active body, the electrolyte layer in this order, or the positive electrode active body, the electrolyte layer Forming a plurality of cell preliminary bodies laminated in the order of negative electrode and conductor metal;
Configuring the laminate by sequentially laminating the plurality of cell preliminary bodies so that a plurality of cells in which the positive electrode active body and the electrolyte layer are interposed between the negative electrode and the conductive metal are formed;
It is good also as a manufacturing method of a magnesium air battery provided with the step which replenishes the said negative electrode or the said conductor metal so that the said cell may be formed in the both ends of the said laminated body, and accommodates in the said case.
マグネシウムと酸素を用いて発電するマグネシウム空気電池の製造方法であって、
前記マグネシウム空気電池を構成する複数のセルを、隣接するセル間の正極と負極とが接触するように積層して収容するケースを準備するステップと、
マグネシウムまたはマグネシウム合金からなる負極を準備するステップと、
導電体金属の片面に導電性粘着剤が塗布された導電体金属テープを、前記負極の片面に貼付するステップと、
さらに、酸素を供給する正極活性体と、作動時に電解液を保持するための電解質層を構成し、前記負極、導電体金属、正極活性体、電解質層の順、または前記正極活性体、電解質層、負極、導電体金属の順に積層したセル予備体を複数形成するステップと、
前記負極と導電体金属との間に前記正極活性体および電解質層が介在したセルが複数形成されるように、前記前記複数のセル予備体を順次積層して積層体を構成するステップと、
前記積層体の両端に、前記セルが形成されるよう前記負極または前記導電体金属を補充して、前記ケースに収納するステップとを備えるマグネシウム空気電池の製造方法としてもよい。 As a second manufacturing method,
A method of manufacturing a magnesium air battery that generates electricity using magnesium and oxygen,
Preparing a case in which a plurality of cells constituting the magnesium-air battery are stacked and accommodated so that a positive electrode and a negative electrode between adjacent cells are in contact with each other;
Preparing a negative electrode made of magnesium or a magnesium alloy;
Applying a conductive metal tape coated with a conductive adhesive on one side of the conductive metal to one side of the negative electrode; and
Furthermore, a positive electrode active body for supplying oxygen and an electrolyte layer for holding an electrolytic solution during operation are configured, and the negative electrode, the conductor metal, the positive electrode active body, the electrolyte layer in this order, or the positive electrode active body, the electrolyte layer Forming a plurality of cell preliminary bodies laminated in the order of negative electrode and conductor metal;
Configuring the laminate by sequentially laminating the plurality of cell preliminary bodies so that a plurality of cells in which the positive electrode active body and the electrolyte layer are interposed between the negative electrode and the conductive metal are formed;
It is good also as a manufacturing method of a magnesium air battery provided with the step which replenishes the said negative electrode or the said conductor metal so that the said cell may be formed in the both ends of the said laminated body, and accommodates in the said case.
第2の製造方法は、負極に導電体金属テープを貼り付けることによってセル間の導電性粘着層を形成しておき、その後、複数の積層体を構成してケースに収納する方法である。
かかる方法によっても、導電性粘着層を介したマグネシウム空気電池を製造することができ、先に説明した種々の効果を得ることができる。 The second manufacturing method is a method in which a conductive adhesive layer between cells is formed by attaching a conductive metal tape to the negative electrode, and then a plurality of laminated bodies are formed and stored in a case.
Also by this method, a magnesium air battery can be manufactured through the conductive adhesive layer, and the various effects described above can be obtained.
かかる方法によっても、導電性粘着層を介したマグネシウム空気電池を製造することができ、先に説明した種々の効果を得ることができる。 The second manufacturing method is a method in which a conductive adhesive layer between cells is formed by attaching a conductive metal tape to the negative electrode, and then a plurality of laminated bodies are formed and stored in a case.
Also by this method, a magnesium air battery can be manufactured through the conductive adhesive layer, and the various effects described above can be obtained.
図1は、実施例におけるマグネシウム空気電池10の外観を示す説明図である。実施例のマグネシウム空気電池10は、水に下方を浸すことによって発電を開始するよう構成されている。以下、その構造および発電能力について説明する。
FIG. 1 is an explanatory view showing the appearance of a magnesium air battery 10 in the embodiment. The magnesium-air battery 10 of the embodiment is configured to start power generation by immersing the lower part in water. The structure and power generation capacity will be described below.
A.全体構造:
マグネシウム空気電池10は、樹脂製のケース11内に、複数のセルが組み込まれた構造となっている。ケース11の上方には幅方向に凹んだ凹部12が形成されており、ここに外部の回路に接続するための端子13が設けられている。本実施例では、端子13は、セルの電極を構成する導電性の金属の一部を露出させる構造としている。セルの電極とは別に端子13を設けるようにしてもよい。 A. Overall structure:
The magnesium-air battery 10 has a structure in which a plurality of cells are incorporated in a resin case 11. A recess 12 that is recessed in the width direction is formed above the case 11, and a terminal 13 for connecting to an external circuit is provided here. In this embodiment, the terminal 13 has a structure in which a part of the conductive metal constituting the electrode of the cell is exposed. You may make it provide the terminal 13 separately from the electrode of a cell.
マグネシウム空気電池10は、樹脂製のケース11内に、複数のセルが組み込まれた構造となっている。ケース11の上方には幅方向に凹んだ凹部12が形成されており、ここに外部の回路に接続するための端子13が設けられている。本実施例では、端子13は、セルの電極を構成する導電性の金属の一部を露出させる構造としている。セルの電極とは別に端子13を設けるようにしてもよい。 A. Overall structure:
The magnesium-
図の下側に、マグネシウム空気電池10を下方から見た状態を示した。図示する通り、ケース11の下面には、段部11sが形成され、複数の貫通孔16が形成されたキャップ15がはめ込まれて封印されている。水を蓄えた容器等に、キャップ15を下面にしてマグネシウム空気電池10を浸すことによって、貫通孔16を通じてケース11内に水が浸透し、発電を開始することができる。
The lower side of the figure shows the state of the magnesium air battery 10 as viewed from below. As shown in the figure, a step portion 11s is formed on the lower surface of the case 11, and a cap 15 in which a plurality of through holes 16 are formed is fitted and sealed. By immersing the magnesium-air battery 10 in a container or the like in which water is stored with the cap 15 as the bottom surface, water penetrates into the case 11 through the through hole 16 and power generation can be started.
本実施例では、外部の回路に接続するための端子13は、上方に設けられているため、このようにマグネシウム空気電池10を水に浸しているときでも、短絡等の心配なく外部回路に電池を接続することが可能である。本実施例では、上端に端子13が形成されているが、端子13が水に浸かることを回避するという観点からは、端子13は発電時の水位よりも上方に設けられていればよく、例えば、ケース11の半分より上側の任意の位置に設けることができる。
In this embodiment, since the terminal 13 for connecting to an external circuit is provided on the upper side, even when the magnesium air battery 10 is soaked in water as described above, the battery is connected to the external circuit without worrying about a short circuit or the like. Can be connected. In the present embodiment, the terminal 13 is formed at the upper end. However, from the viewpoint of avoiding the terminal 13 being immersed in water, the terminal 13 may be provided above the water level during power generation. It can be provided at any position above the half of the case 11.
ケース11の側面には、発電開始時にマグネシウム空気電池を水に浸す基準となる基準線14が描かれている。もっとも、基準線14は、目安に過ぎず、基準線14よりも水位が多少低くても発電を開始することは可能である。
On the side surface of the case 11, a reference line 14 is drawn as a reference for immersing the magnesium-air battery in water at the start of power generation. However, the reference line 14 is only a guideline, and power generation can be started even if the water level is slightly lower than the reference line 14.
B.内部構造:
(1)セルの構成:
図2は、実施例におけるマグネシウム空気電池10の内部構造を示す説明図である。斜視図(図1)におけるA-A断面の様子を模式的に示した。
図示するように、マグネシウム空気電池10には、ケース11内に、4つのセル20が積層され、さらに一端に導電性の金属板28が積層された状態で、封入されている。セル20の数は任意に設定可能である。ケース11の下側は、貫通孔16が形成されたキャップ15によって封印されている。 B. Internal structure:
(1) Cell configuration:
FIG. 2 is an explanatory diagram showing the internal structure of the magnesium-air battery 10 in the example. The state of the AA cross section in the perspective view (FIG. 1) is schematically shown.
As shown in the figure, the magnesium-air battery 10 is sealed with four cells 20 stacked in a case 11 and a conductive metal plate 28 stacked on one end. The number of cells 20 can be arbitrarily set. The lower side of the case 11 is sealed with a cap 15 in which a through hole 16 is formed.
(1)セルの構成:
図2は、実施例におけるマグネシウム空気電池10の内部構造を示す説明図である。斜視図(図1)におけるA-A断面の様子を模式的に示した。
図示するように、マグネシウム空気電池10には、ケース11内に、4つのセル20が積層され、さらに一端に導電性の金属板28が積層された状態で、封入されている。セル20の数は任意に設定可能である。ケース11の下側は、貫通孔16が形成されたキャップ15によって封印されている。 B. Internal structure:
(1) Cell configuration:
FIG. 2 is an explanatory diagram showing the internal structure of the magnesium-
As shown in the figure, the magnesium-
図の下側に、セル20の拡大図を示した。セル20[1]、セル20[2]は隣接する2つのセルである。4つのセルのうち、いずれの2つと考えても良い。各セル20は、4つの層を積層した構造となっている。各層の平面形状は、縦50mm×横25mmである。
正極21は、ステンレスや銅などの導電性の金属で形成することができる。本実施例では隣接するセル間の正極21には導電性銅箔テープを用い、端面の正極21には、ステンレス板を用いた。銅箔テープとしては、3M社製の1181銅箔テープ(抵抗0.005オーム/平方インチ)を用いることができる。
銅箔テープに代えて、正極21として、銅板またはステンレス板に、導電性両面テープを貼付して用いても良い。かかる場合の導電性両面テープとしては、例えば、Tesa社製60252(抵抗0.05~0.2オーム/平方インチ)、Tesa社製60262(抵抗0.02~0.2オーム/平方インチ)を用いることができる。
正極活性体22は、活性炭粉末を積層した層である。活性炭に代えて二酸化マンガンなどを用いても良い。
電解質層23は、電解質を保持したセパレータシートで構成されている。
負極24は、マグネシウム合金AZ31で形成されている。マグネシウムを用いても良い。
隣接する2つのセル20[1]、20[2]は、セル20[2]の負極24に、セル20[1]の正極21が接触するように、直列に配置されている。図中の左端に位置するセル20の正極21と、金属板28の上端の一部がケース11から露出するように構成されており、図1で説明した端子13として機能する。
セル20[1]、20[2]の間には、導電性粘着層30が形成されている。本実施例では、上述した導電性銅箔テープの粘着面が導電性粘着層30を形成することになる。 An enlarged view of thecell 20 is shown at the bottom of the figure. Cell 20 [1] and cell 20 [2] are two adjacent cells. Any two of the four cells may be considered. Each cell 20 has a structure in which four layers are stacked. The planar shape of each layer is 50 mm long × 25 mm wide.
Thepositive electrode 21 can be formed of a conductive metal such as stainless steel or copper. In this example, a conductive copper foil tape was used for the positive electrode 21 between adjacent cells, and a stainless steel plate was used for the positive electrode 21 on the end face. As the copper foil tape, 1181 copper foil tape (resistance 0.005 ohm / square inch) manufactured by 3M Company can be used.
Instead of the copper foil tape, a conductive double-sided tape may be applied to the copper plate or stainless steel plate as thepositive electrode 21. As the conductive double-sided tape in such a case, for example, 60252 (resistance: 0.05 to 0.2 ohm / square inch) manufactured by Tesa and 60262 (resistance: 0.02 to 0.2 ohm / square inch) manufactured by Tesa are used. Can be used.
The positive electrodeactive body 22 is a layer in which activated carbon powder is laminated. Instead of activated carbon, manganese dioxide or the like may be used.
Theelectrolyte layer 23 is composed of a separator sheet holding an electrolyte.
Thenegative electrode 24 is made of a magnesium alloy AZ31. Magnesium may be used.
Two adjacent cells 20 [1] and 20 [2] are arranged in series such that thepositive electrode 21 of the cell 20 [1] is in contact with the negative electrode 24 of the cell 20 [2]. The positive electrode 21 of the cell 20 located at the left end in the drawing and a part of the upper end of the metal plate 28 are configured to be exposed from the case 11 and function as the terminal 13 described in FIG.
Aconductive adhesive layer 30 is formed between the cells 20 [1] and 20 [2]. In this embodiment, the adhesive surface of the conductive copper foil tape described above forms the conductive adhesive layer 30.
正極21は、ステンレスや銅などの導電性の金属で形成することができる。本実施例では隣接するセル間の正極21には導電性銅箔テープを用い、端面の正極21には、ステンレス板を用いた。銅箔テープとしては、3M社製の1181銅箔テープ(抵抗0.005オーム/平方インチ)を用いることができる。
銅箔テープに代えて、正極21として、銅板またはステンレス板に、導電性両面テープを貼付して用いても良い。かかる場合の導電性両面テープとしては、例えば、Tesa社製60252(抵抗0.05~0.2オーム/平方インチ)、Tesa社製60262(抵抗0.02~0.2オーム/平方インチ)を用いることができる。
正極活性体22は、活性炭粉末を積層した層である。活性炭に代えて二酸化マンガンなどを用いても良い。
電解質層23は、電解質を保持したセパレータシートで構成されている。
負極24は、マグネシウム合金AZ31で形成されている。マグネシウムを用いても良い。
隣接する2つのセル20[1]、20[2]は、セル20[2]の負極24に、セル20[1]の正極21が接触するように、直列に配置されている。図中の左端に位置するセル20の正極21と、金属板28の上端の一部がケース11から露出するように構成されており、図1で説明した端子13として機能する。
セル20[1]、20[2]の間には、導電性粘着層30が形成されている。本実施例では、上述した導電性銅箔テープの粘着面が導電性粘着層30を形成することになる。 An enlarged view of the
The
Instead of the copper foil tape, a conductive double-sided tape may be applied to the copper plate or stainless steel plate as the
The positive electrode
The
The
Two adjacent cells 20 [1] and 20 [2] are arranged in series such that the
A
(2)電解質層:
電解質層23の構造についてさらに詳細に説明する。
セパレータシートは、パルプと不織布の混成素材であり、その重量密度は、100~1000グラム/平方メートル程度となっている。
電解液はニトリロ三酢酸三ナトリウム(NTA3Na)10%と塩化カリウム(KCl)0.1%との重量比で混合した水溶液である。エチレンジアミン四酢酸四ナトリウム(EDTA4Na)に、塩化カリウムを0.2%添加した水溶液としてもよい。マグネシウム空気電池10を製造する際には、セパレータシートに対して、上述の電解液を浸透させた後、これを乾燥させて電解質層23を形成する。このように製造された電解質層23は、発電開始前は、液体を含んでいないため、マグネシウム空気電池10を保存する際に液漏れなどが生じる心配がない。
発電を開始時に、マグネシウム空気電池10を水に浸すと、セパレータシートが水を吸収し、予め保持されていたニトリロ三酢酸三ナトリウム(NTA3Na)および塩化カリウム(KCl)等が溶出するため、電解液として機能するようになる。 (2) Electrolyte layer:
The structure of theelectrolyte layer 23 will be described in more detail.
The separator sheet is a composite material of pulp and nonwoven fabric, and its weight density is about 100 to 1000 grams / square meter.
The electrolytic solution is an aqueous solution in which nitrilotriacetic acid trisodium (NTA3Na) 10% and potassium chloride (KCl) 0.1% are mixed in a weight ratio. An aqueous solution in which 0.2% of potassium chloride is added to tetrasodium ethylenediaminetetraacetate (EDTA4Na) may be used. When manufacturing the magnesium-air battery 10, the above electrolyte solution is infiltrated into the separator sheet and then dried to form the electrolyte layer 23. Since the electrolyte layer 23 manufactured in this way does not contain a liquid before the start of power generation, there is no concern that liquid leakage occurs when the magnesium-air battery 10 is stored.
When the magnesium-air battery 10 is immersed in water at the start of power generation, the separator sheet absorbs water, and nitrilotriacetic acid trisodium (NTA3Na), potassium chloride (KCl), and the like previously retained are eluted. Will function as.
電解質層23の構造についてさらに詳細に説明する。
セパレータシートは、パルプと不織布の混成素材であり、その重量密度は、100~1000グラム/平方メートル程度となっている。
電解液はニトリロ三酢酸三ナトリウム(NTA3Na)10%と塩化カリウム(KCl)0.1%との重量比で混合した水溶液である。エチレンジアミン四酢酸四ナトリウム(EDTA4Na)に、塩化カリウムを0.2%添加した水溶液としてもよい。マグネシウム空気電池10を製造する際には、セパレータシートに対して、上述の電解液を浸透させた後、これを乾燥させて電解質層23を形成する。このように製造された電解質層23は、発電開始前は、液体を含んでいないため、マグネシウム空気電池10を保存する際に液漏れなどが生じる心配がない。
発電を開始時に、マグネシウム空気電池10を水に浸すと、セパレータシートが水を吸収し、予め保持されていたニトリロ三酢酸三ナトリウム(NTA3Na)および塩化カリウム(KCl)等が溶出するため、電解液として機能するようになる。 (2) Electrolyte layer:
The structure of the
The separator sheet is a composite material of pulp and nonwoven fabric, and its weight density is about 100 to 1000 grams / square meter.
The electrolytic solution is an aqueous solution in which nitrilotriacetic acid trisodium (NTA3Na) 10% and potassium chloride (KCl) 0.1% are mixed in a weight ratio. An aqueous solution in which 0.2% of potassium chloride is added to tetrasodium ethylenediaminetetraacetate (EDTA4Na) may be used. When manufacturing the magnesium-
When the magnesium-
本実施例の電解液は、pH8~13程度のアルカリ性を示す。従って、電解液が酸性下で生じる自己放電を回避することができる。
電解質層23には、この他、エチレンジアミン四酢酸三ナトリウム(EDTA3Na)、ジエチレントリアミン五酢酸五ナトリウム(DTPA5Na)、ヒドロキシエチルエチレンジアミン三酢酸三ナトリウム(HEDTA3Na)、 トリエチレンテトラミン-N,N,N’,N”,N”,N”’六ナトリウム(TTHA6Na)、N-(2-ヒドロキシエチル)イミノ二ナトリウム(HIDA2Na)、N,N-ジ(2-ヒドロキシエチル)グリシン一ナトリウム(DHEGNa)、グルタミン酸二酢酸四ナトリウム(GLDA4Na)、およびエチレンジアミン-N,N’-ジコハク酸三ナトリウム(EDDSH3Na)などを用いてもよい。また、電解液のpHが、8以下となるような場合には、水酸化ナトリウムなどのアルカリ性物質を合わせて保持しておいてもよい。 The electrolyte solution of this example exhibits an alkalinity of about pH 8-13. Therefore, it is possible to avoid self-discharge that occurs when the electrolyte is acidic.
In addition to this, theelectrolyte layer 23 includes trisodium ethylenediaminetetraacetate (EDTA3Na), diethylenetriaminepentaacetic acid pentasodium (DTPA5Na), hydroxyethylethylenediaminetriacetic acid trisodium (HEDTA3Na), triethylenetetramine-N, N, N ′, N ", N", N "'hexasodium (TTHA6Na), N- (2-hydroxyethyl) iminodisodium (HIDA2Na), N, N-di (2-hydroxyethyl) glycine monosodium (DHEGNa), glutamic acid diacetic acid Tetrasodium (GLDA4Na), ethylenediamine-N, N′-disuccinate trisodium (EDDSH3Na), etc. may be used, and when the pH of the electrolyte is 8 or less, sodium hydroxide, etc. These alkaline substances may be held together.
電解質層23には、この他、エチレンジアミン四酢酸三ナトリウム(EDTA3Na)、ジエチレントリアミン五酢酸五ナトリウム(DTPA5Na)、ヒドロキシエチルエチレンジアミン三酢酸三ナトリウム(HEDTA3Na)、 トリエチレンテトラミン-N,N,N’,N”,N”,N”’六ナトリウム(TTHA6Na)、N-(2-ヒドロキシエチル)イミノ二ナトリウム(HIDA2Na)、N,N-ジ(2-ヒドロキシエチル)グリシン一ナトリウム(DHEGNa)、グルタミン酸二酢酸四ナトリウム(GLDA4Na)、およびエチレンジアミン-N,N’-ジコハク酸三ナトリウム(EDDSH3Na)などを用いてもよい。また、電解液のpHが、8以下となるような場合には、水酸化ナトリウムなどのアルカリ性物質を合わせて保持しておいてもよい。 The electrolyte solution of this example exhibits an alkalinity of about pH 8-13. Therefore, it is possible to avoid self-discharge that occurs when the electrolyte is acidic.
In addition to this, the
C.作用:
次に、実施例における導電性粘着層30を用いない場合に生じる課題を説明した後、実施例におけるマグネシウム空気電池の作用について説明する。
図3は、マグネシウム空気電池における課題を示す説明図である。図2中の拡大図と同様、隣接する2つのセル20[1]、20[2]を拡大して示した。ただし、この例では、実施例(図2)と異なり、セル20[1]、20[2]の間に導電性粘着層30は形成されていない。
かかる状態では、セル20[1]の正極21と、セル20[2]の負極24との間に、電解液が浸透し、意図しない電解質層23Cが形成されてしまう。この結果、セル20[1]の正極21と、セル20[2]の負極24との間に、図示するように逆起電圧が発生する。また、負極24のマグネシウムまたはマグネシウム合金と電解液との反応によって負極表面上に酸化マグネシウムや水酸化マグネシウムが積層して不導体24Aが形成されてしまう。かかる不導体24Aはセル20[1]の正極21と、セル20[2]の負極24の導電性を阻害し、内部抵抗を増加させることになる。
これに対し、実施例では、セル20[1]の正極21と、セル20[2]の負極24との間に導電性粘着層30が形成されているため、電解液の浸透を抑制することができる。従って、上述した逆方向の起電力の発生および不導体24Aの形成を抑制することができ、マグネシウム空気電池の電圧および導電性を向上させることができる。 C. Action:
Next, after describing the problems that occur when the conductiveadhesive layer 30 in the example is not used, the operation of the magnesium-air battery in the example will be described.
FIG. 3 is an explanatory view showing a problem in the magnesium-air battery. Similar to the enlarged view in FIG. 2, two adjacent cells 20 [1] and 20 [2] are shown in an enlarged manner. However, in this example, unlike the example (FIG. 2), the conductiveadhesive layer 30 is not formed between the cells 20 [1] and 20 [2].
In such a state, the electrolyte solution permeates between thepositive electrode 21 of the cell 20 [1] and the negative electrode 24 of the cell 20 [2], and an unintended electrolyte layer 23C is formed. As a result, a counter electromotive voltage is generated between the positive electrode 21 of the cell 20 [1] and the negative electrode 24 of the cell 20 [2] as illustrated. In addition, magnesium oxide or magnesium hydroxide is laminated on the surface of the negative electrode due to a reaction between magnesium or a magnesium alloy of the negative electrode 24 and the electrolytic solution, thereby forming a nonconductor 24A. The nonconductor 24A obstructs the conductivity of the positive electrode 21 of the cell 20 [1] and the negative electrode 24 of the cell 20 [2], and increases the internal resistance.
On the other hand, in the embodiment, since the conductiveadhesive layer 30 is formed between the positive electrode 21 of the cell 20 [1] and the negative electrode 24 of the cell 20 [2], the penetration of the electrolytic solution is suppressed. Can do. Therefore, the generation of the electromotive force in the reverse direction and the formation of the nonconductor 24A can be suppressed, and the voltage and conductivity of the magnesium-air battery can be improved.
次に、実施例における導電性粘着層30を用いない場合に生じる課題を説明した後、実施例におけるマグネシウム空気電池の作用について説明する。
図3は、マグネシウム空気電池における課題を示す説明図である。図2中の拡大図と同様、隣接する2つのセル20[1]、20[2]を拡大して示した。ただし、この例では、実施例(図2)と異なり、セル20[1]、20[2]の間に導電性粘着層30は形成されていない。
かかる状態では、セル20[1]の正極21と、セル20[2]の負極24との間に、電解液が浸透し、意図しない電解質層23Cが形成されてしまう。この結果、セル20[1]の正極21と、セル20[2]の負極24との間に、図示するように逆起電圧が発生する。また、負極24のマグネシウムまたはマグネシウム合金と電解液との反応によって負極表面上に酸化マグネシウムや水酸化マグネシウムが積層して不導体24Aが形成されてしまう。かかる不導体24Aはセル20[1]の正極21と、セル20[2]の負極24の導電性を阻害し、内部抵抗を増加させることになる。
これに対し、実施例では、セル20[1]の正極21と、セル20[2]の負極24との間に導電性粘着層30が形成されているため、電解液の浸透を抑制することができる。従って、上述した逆方向の起電力の発生および不導体24Aの形成を抑制することができ、マグネシウム空気電池の電圧および導電性を向上させることができる。 C. Action:
Next, after describing the problems that occur when the conductive
FIG. 3 is an explanatory view showing a problem in the magnesium-air battery. Similar to the enlarged view in FIG. 2, two adjacent cells 20 [1] and 20 [2] are shown in an enlarged manner. However, in this example, unlike the example (FIG. 2), the conductive
In such a state, the electrolyte solution permeates between the
On the other hand, in the embodiment, since the conductive
D.効果:
図4は、実施例におけるマグネシウム空気電池の発電継続時間の計測結果を示すグラフである。
曲線C1は、実施例のマグネシウム空気電池による電流と経過時間との関係を表している。具体的な構成としては、セル間の正極21および導電性粘着層30として3M社製の1181銅箔テープ(抵抗0.005オーム/平方インチ)を用い、端面の正極21としてはステンレス板を用いている。また、負極24は、マグネシウム合金AZ31で形成されている。また、電解質層23は、パルプと不織布の混成素材に、電解液としてニトリロ三酢酸三ナトリウム(NTA3Na)10%と塩化カリウム(KCl)0.1%との重量比で混合した水溶液を用いた。電流を計測する場合に電池に接続する負荷としては、弾丸型白色LED(Vf=2.8V、53ルーメンス/W、実用的な明るさが得られる電流域は2mA以上)を使用した。
曲線C2については、実施例2で説明する。
曲線C3は、比較例として導電性粘着層30を有しないマグネシウム空気電池の結果を示している。比較例の電池の構造は、導電性粘着層30を有していない点、セル間の正極21が銅箔テープではなくステンレス板で形成されている点以外は、実施例と同様である。 D. effect:
FIG. 4 is a graph showing the measurement results of the power generation duration time of the magnesium-air battery in the example.
Curve C1 represents the relationship between the current and elapsed time from the magnesium-air battery of the example. Specifically, 118M copper foil tape (resistance 0.005 ohm / in 2) manufactured by 3M was used as thepositive electrode 21 and the conductive adhesive layer 30 between the cells, and a stainless plate was used as the positive electrode 21 on the end face. ing. The negative electrode 24 is made of a magnesium alloy AZ31. For the electrolyte layer 23, an aqueous solution obtained by mixing a mixed material of pulp and nonwoven fabric with a weight ratio of trisodium nitrilotriacetate (NTA3Na) 10% and potassium chloride (KCl) 0.1% as an electrolytic solution was used. A bullet-type white LED (Vf = 2.8 V, 53 lumens / W, current range where practical brightness can be obtained is 2 mA or more) was used as a load connected to the battery when measuring current.
The curve C2 will be described in the second embodiment.
Curve C3 shows the result of a magnesium-air battery that does not have the conductiveadhesive layer 30 as a comparative example. The structure of the battery of the comparative example is the same as that of the example except that the conductive adhesive layer 30 is not provided and the positive electrode 21 between cells is formed of a stainless steel plate instead of a copper foil tape.
図4は、実施例におけるマグネシウム空気電池の発電継続時間の計測結果を示すグラフである。
曲線C1は、実施例のマグネシウム空気電池による電流と経過時間との関係を表している。具体的な構成としては、セル間の正極21および導電性粘着層30として3M社製の1181銅箔テープ(抵抗0.005オーム/平方インチ)を用い、端面の正極21としてはステンレス板を用いている。また、負極24は、マグネシウム合金AZ31で形成されている。また、電解質層23は、パルプと不織布の混成素材に、電解液としてニトリロ三酢酸三ナトリウム(NTA3Na)10%と塩化カリウム(KCl)0.1%との重量比で混合した水溶液を用いた。電流を計測する場合に電池に接続する負荷としては、弾丸型白色LED(Vf=2.8V、53ルーメンス/W、実用的な明るさが得られる電流域は2mA以上)を使用した。
曲線C2については、実施例2で説明する。
曲線C3は、比較例として導電性粘着層30を有しないマグネシウム空気電池の結果を示している。比較例の電池の構造は、導電性粘着層30を有していない点、セル間の正極21が銅箔テープではなくステンレス板で形成されている点以外は、実施例と同様である。 D. effect:
FIG. 4 is a graph showing the measurement results of the power generation duration time of the magnesium-air battery in the example.
Curve C1 represents the relationship between the current and elapsed time from the magnesium-air battery of the example. Specifically, 118M copper foil tape (resistance 0.005 ohm / in 2) manufactured by 3M was used as the
The curve C2 will be described in the second embodiment.
Curve C3 shows the result of a magnesium-air battery that does not have the conductive
図4に示す結果によれば、24時間までの平均電流は、比較例で15.5mA、実施例で19.8mAであった。また、1時間毎の電流値を積算した電流容量は、比較例で388mAh、実施例1で495mAhであった。平均電流および電流容量ともに、比較例に対して実施例では、約28%の向上が見られた。
図4中のグラフにおいて、約15時間付近で電流値が急激に変化しているのは(図中の破線楕円で囲った部分)、マグネシウム電池への給水を行ったことによるものである。この給水により、電流値が、比較例では1.1mA、実施例では2.9mA上昇した。電流値の差は、給水によって2.0mAから3.8mAに拡大した。比較例の場合、時間の経過とともに、セル間での不導体の形成が進むため(図3参照)、給水しても電流値の回復が生じにくくなるのに対し、実施例では導電性粘着層30の存在により不導体の形成を抑制できることになるものと考えられる。
このように、実施例のマグネシウム空気電池によれば、導電性粘着層30が存在することにより、電圧、電流ともに向上させることができる。 According to the results shown in FIG. 4, the average current up to 24 hours was 15.5 mA in the comparative example and 19.8 mA in the example. Further, the current capacity obtained by integrating the current values every hour was 388 mAh in the comparative example and 495 mAh in the first example. The average current and current capacity were both improved by about 28% in the example compared to the comparative example.
In the graph in FIG. 4, the current value suddenly changes in the vicinity of about 15 hours (portion surrounded by a broken-line ellipse in the drawing) because water is supplied to the magnesium battery. With this water supply, the current value increased by 1.1 mA in the comparative example and 2.9 mA in the example. The difference in current value was increased from 2.0 mA to 3.8 mA by water supply. In the case of the comparative example, the formation of non-conductors between the cells progresses with time (see FIG. 3), so that it is difficult for the current value to recover even when water is supplied. It is considered that the presence of 30 can suppress the formation of a nonconductor.
Thus, according to the magnesium-air battery of the example, both the voltage and the current can be improved due to the presence of the conductiveadhesive layer 30.
図4中のグラフにおいて、約15時間付近で電流値が急激に変化しているのは(図中の破線楕円で囲った部分)、マグネシウム電池への給水を行ったことによるものである。この給水により、電流値が、比較例では1.1mA、実施例では2.9mA上昇した。電流値の差は、給水によって2.0mAから3.8mAに拡大した。比較例の場合、時間の経過とともに、セル間での不導体の形成が進むため(図3参照)、給水しても電流値の回復が生じにくくなるのに対し、実施例では導電性粘着層30の存在により不導体の形成を抑制できることになるものと考えられる。
このように、実施例のマグネシウム空気電池によれば、導電性粘着層30が存在することにより、電圧、電流ともに向上させることができる。 According to the results shown in FIG. 4, the average current up to 24 hours was 15.5 mA in the comparative example and 19.8 mA in the example. Further, the current capacity obtained by integrating the current values every hour was 388 mAh in the comparative example and 495 mAh in the first example. The average current and current capacity were both improved by about 28% in the example compared to the comparative example.
In the graph in FIG. 4, the current value suddenly changes in the vicinity of about 15 hours (portion surrounded by a broken-line ellipse in the drawing) because water is supplied to the magnesium battery. With this water supply, the current value increased by 1.1 mA in the comparative example and 2.9 mA in the example. The difference in current value was increased from 2.0 mA to 3.8 mA by water supply. In the case of the comparative example, the formation of non-conductors between the cells progresses with time (see FIG. 3), so that it is difficult for the current value to recover even when water is supplied. It is considered that the presence of 30 can suppress the formation of a nonconductor.
Thus, according to the magnesium-air battery of the example, both the voltage and the current can be improved due to the presence of the conductive
E.製造方法:
図5はマグネシウム空気電池の製造工程を示すフローチャートである。実施例のマグネシウム空気電池は、以下に説明する手順で製造することができる。
まず、最初に、各パーツを準備する(ステップ20)。パーツとしては、図2に示したケース11、正極21、負極24などを意味する。正極21としては、セル間の正極用の銅箔テープおよび端面用のステンレス板の2種類を用意することになる。電解質層23は、電解液をセパレータシートに含浸させて乾燥させることによって準備できる。
次に負極24に銅箔テープ21を貼り付ける(ステップS22)。図中に貼り付けた状態を示した。この工程によって、銅箔テープ21の粘着面が、導電性粘着層30を形成することになる。
次に、電解質層23、正極活性体22等を積層して、複数セルが積層された積層体を形成する(ステップS24)。ステップS22で形成されているのは、セル間の正極および負極であるから、端面の正極21Eおよび負極24Eは別途、ステンレス板を取り付ける。
最後に、こうして製造された積層体を、ケースに収納する(ステップS26)。
以上の工程によって実施例のマグネシウム空気電池を製造することができる。なお、各パーツは、必ずしも最初に全てを準備する必要はなく、ステップS22以降の工程を実行する際に適宜、準備するものとしてもよい。 E. Production method:
FIG. 5 is a flowchart showing the manufacturing process of the magnesium-air battery. The magnesium air battery of an Example can be manufactured in the procedure demonstrated below.
First, each part is prepared (step 20). The parts mean thecase 11, the positive electrode 21, the negative electrode 24, and the like shown in FIG. As the positive electrode 21, two types of copper foil tape for positive electrode between cells and a stainless steel plate for end face are prepared. The electrolyte layer 23 can be prepared by impregnating an electrolyte solution into a separator sheet and drying it.
Next, thecopper foil tape 21 is attached to the negative electrode 24 (step S22). The pasted state is shown in the figure. By this step, the adhesive surface of the copper foil tape 21 forms the conductive adhesive layer 30.
Next, theelectrolyte layer 23, the positive electrode active body 22 and the like are stacked to form a stacked body in which a plurality of cells are stacked (step S24). Since what is formed in step S22 is a positive electrode and a negative electrode between cells, a stainless steel plate is separately attached to the positive electrode 21E and the negative electrode 24E on the end face.
Finally, the laminated body thus manufactured is stored in a case (step S26).
The magnesium-air battery of the example can be manufactured through the above steps. Note that it is not always necessary to prepare all the parts first, and they may be appropriately prepared when performing the steps after step S22.
図5はマグネシウム空気電池の製造工程を示すフローチャートである。実施例のマグネシウム空気電池は、以下に説明する手順で製造することができる。
まず、最初に、各パーツを準備する(ステップ20)。パーツとしては、図2に示したケース11、正極21、負極24などを意味する。正極21としては、セル間の正極用の銅箔テープおよび端面用のステンレス板の2種類を用意することになる。電解質層23は、電解液をセパレータシートに含浸させて乾燥させることによって準備できる。
次に負極24に銅箔テープ21を貼り付ける(ステップS22)。図中に貼り付けた状態を示した。この工程によって、銅箔テープ21の粘着面が、導電性粘着層30を形成することになる。
次に、電解質層23、正極活性体22等を積層して、複数セルが積層された積層体を形成する(ステップS24)。ステップS22で形成されているのは、セル間の正極および負極であるから、端面の正極21Eおよび負極24Eは別途、ステンレス板を取り付ける。
最後に、こうして製造された積層体を、ケースに収納する(ステップS26)。
以上の工程によって実施例のマグネシウム空気電池を製造することができる。なお、各パーツは、必ずしも最初に全てを準備する必要はなく、ステップS22以降の工程を実行する際に適宜、準備するものとしてもよい。 E. Production method:
FIG. 5 is a flowchart showing the manufacturing process of the magnesium-air battery. The magnesium air battery of an Example can be manufactured in the procedure demonstrated below.
First, each part is prepared (step 20). The parts mean the
Next, the
Next, the
Finally, the laminated body thus manufactured is stored in a case (step S26).
The magnesium-air battery of the example can be manufactured through the above steps. Note that it is not always necessary to prepare all the parts first, and they may be appropriately prepared when performing the steps after step S22.
F.実施例2の構造、製造方法および効果:
次に実施例2のマグネシウム空気電池について説明する。実施例1では、導電性粘着層を形成するために銅箔テープを用いたが、実施例2では導電性ペーストを用いる点で相違する。電池の構成自体は全体構造(図1参照)および内部構造(図2参照)ともに実施例1と同様である。
実施例2のマグネシウム空気電池は、次の方法で製造することができる。
図6は、実施例2におけるマグネシウム空気電池の変形例としての製造工程を示すフローチャートである。
実施例2においても、まず各パーツを準備する(ステップS10)。準備すべきパーツは実施例1と同様である。また、パーツは、以降の工程を実行する際に適宜、準備するようにしてもよい。
次に、各セルを組み立てる(ステップS12)。図中にセル20の組み立てを示した。先に図2で構造を説明した通り、正極21、正極活性体22、電解質層23、および負極24を順次、積層すればよい。実施例のマグネシウム空気電池には、4つのセルを収納するから、セル20は4組をセットにして製造することが好ましい。端に位置するセル、中間に位置するセルともに同じ構造で構わない。
セルの組み立てが完了すると、粘着剤、即ち導電性ペーストを介して4つのセルを積層し、積層体を組み立てる(ステップS14)。図中に組み立て状況を図示した。隣接するセル20[1]、20[2]の間に導電性ペーストによる導電性粘着層30Aが形成されている。
最後に、こうして製造された積層体を、ケースに収納する(ステップS16)。以上の工程によって実施例2のマグネシウム空気電池を製造することができる。 F. Structure, manufacturing method and effects of Example 2:
Next, the magnesium-air battery of Example 2 will be described. In Example 1, a copper foil tape was used to form a conductive adhesive layer, but Example 2 differs in that a conductive paste is used. The configuration of the battery itself is the same as that of Example 1 in terms of the entire structure (see FIG. 1) and the internal structure (see FIG. 2).
The magnesium-air battery of Example 2 can be manufactured by the following method.
FIG. 6 is a flowchart showing a manufacturing process as a modified example of the magnesium-air battery in the second embodiment.
Also in Example 2, first, each part is prepared (step S10). Parts to be prepared are the same as those in the first embodiment. Moreover, you may make it prepare parts suitably when performing a subsequent process.
Next, each cell is assembled (step S12). The assembly of thecell 20 is shown in the figure. As described above with reference to FIG. 2, the positive electrode 21, the positive electrode active body 22, the electrolyte layer 23, and the negative electrode 24 may be sequentially stacked. Since the magnesium-air battery of the embodiment accommodates four cells, it is preferable to manufacture the cells 20 as a set of four sets. Both the cell located at the end and the cell located in the middle may have the same structure.
When the assembly of the cells is completed, the four cells are stacked through the adhesive, that is, the conductive paste, and the stacked body is assembled (step S14). The assembly situation is shown in the figure. A conductiveadhesive layer 30A made of a conductive paste is formed between adjacent cells 20 [1] and 20 [2].
Finally, the laminated body manufactured in this way is stored in a case (step S16). The magnesium-air battery of Example 2 can be manufactured through the above steps.
次に実施例2のマグネシウム空気電池について説明する。実施例1では、導電性粘着層を形成するために銅箔テープを用いたが、実施例2では導電性ペーストを用いる点で相違する。電池の構成自体は全体構造(図1参照)および内部構造(図2参照)ともに実施例1と同様である。
実施例2のマグネシウム空気電池は、次の方法で製造することができる。
図6は、実施例2におけるマグネシウム空気電池の変形例としての製造工程を示すフローチャートである。
実施例2においても、まず各パーツを準備する(ステップS10)。準備すべきパーツは実施例1と同様である。また、パーツは、以降の工程を実行する際に適宜、準備するようにしてもよい。
次に、各セルを組み立てる(ステップS12)。図中にセル20の組み立てを示した。先に図2で構造を説明した通り、正極21、正極活性体22、電解質層23、および負極24を順次、積層すればよい。実施例のマグネシウム空気電池には、4つのセルを収納するから、セル20は4組をセットにして製造することが好ましい。端に位置するセル、中間に位置するセルともに同じ構造で構わない。
セルの組み立てが完了すると、粘着剤、即ち導電性ペーストを介して4つのセルを積層し、積層体を組み立てる(ステップS14)。図中に組み立て状況を図示した。隣接するセル20[1]、20[2]の間に導電性ペーストによる導電性粘着層30Aが形成されている。
最後に、こうして製造された積層体を、ケースに収納する(ステップS16)。以上の工程によって実施例2のマグネシウム空気電池を製造することができる。 F. Structure, manufacturing method and effects of Example 2:
Next, the magnesium-air battery of Example 2 will be described. In Example 1, a copper foil tape was used to form a conductive adhesive layer, but Example 2 differs in that a conductive paste is used. The configuration of the battery itself is the same as that of Example 1 in terms of the entire structure (see FIG. 1) and the internal structure (see FIG. 2).
The magnesium-air battery of Example 2 can be manufactured by the following method.
FIG. 6 is a flowchart showing a manufacturing process as a modified example of the magnesium-air battery in the second embodiment.
Also in Example 2, first, each part is prepared (step S10). Parts to be prepared are the same as those in the first embodiment. Moreover, you may make it prepare parts suitably when performing a subsequent process.
Next, each cell is assembled (step S12). The assembly of the
When the assembly of the cells is completed, the four cells are stacked through the adhesive, that is, the conductive paste, and the stacked body is assembled (step S14). The assembly situation is shown in the figure. A conductive
Finally, the laminated body manufactured in this way is stored in a case (step S16). The magnesium-air battery of Example 2 can be manufactured through the above steps.
導電性ペーストは、例えば、アクリル系塗料などにカーボンや金属粉末を混合することで生成することができる。実施例2では、アクリル系塗料5重量%、カーボン粉末5重量%、錫・銀・銅合金粉末90重量%(錫96.5重量%、銀3.0重量%、銅0.5重量%の合金粉末、粒径10~40マイクロメートル)を用いた。また、導電性粘着層30Aの厚さは、略10マイクロメートルとした。このときの導電性粘着層30Aの抵抗値は、0.4~0.6オーム/平方インチであった。
金属粉末は、この他、SnZnBi系、SnCu系、SnAgInBi系、SnZnAl系、CuNi系などを用いても良い。また、Cu、Sn、Ag、Zn、Ni、Pbなどの金属を単体で粉末にしたものを用いても良い。
ただし、金属粉末には、アルミニウムを含まないことが好ましい。アルミニウムを含有すると、負極の表面に強固な酸化皮膜を形成するおそれがあるからである。もっとも、金属粉末にアルミニウムを一切、含んではいけないという趣旨ではない。 The conductive paste can be generated, for example, by mixing carbon or metal powder with an acrylic paint or the like. In Example 2, acrylic paint 5 wt%, carbon powder 5 wt%, tin / silver / copper alloy powder 90 wt% (tin 96.5 wt%, silver 3.0 wt%, copper 0.5 wt% Alloy powder, particle size 10-40 micrometers) was used. The thickness of the conductiveadhesive layer 30A was approximately 10 micrometers. The resistance value of the conductive adhesive layer 30A at this time was 0.4 to 0.6 ohm / square inch.
In addition, SnZnBi-based, SnCu-based, SnAgInBi-based, SnZnAl-based, CuNi-based, etc. may be used as the metal powder. Moreover, you may use what powdered metals, such as Cu, Sn, Ag, Zn, Ni, and Pb, alone.
However, it is preferable that the metal powder does not contain aluminum. This is because if aluminum is contained, a strong oxide film may be formed on the surface of the negative electrode. However, this does not mean that the metal powder should not contain any aluminum.
金属粉末は、この他、SnZnBi系、SnCu系、SnAgInBi系、SnZnAl系、CuNi系などを用いても良い。また、Cu、Sn、Ag、Zn、Ni、Pbなどの金属を単体で粉末にしたものを用いても良い。
ただし、金属粉末には、アルミニウムを含まないことが好ましい。アルミニウムを含有すると、負極の表面に強固な酸化皮膜を形成するおそれがあるからである。もっとも、金属粉末にアルミニウムを一切、含んではいけないという趣旨ではない。 The conductive paste can be generated, for example, by mixing carbon or metal powder with an acrylic paint or the like. In Example 2, acrylic paint 5 wt%, carbon powder 5 wt%, tin / silver / copper alloy powder 90 wt% (tin 96.5 wt%, silver 3.0 wt%, copper 0.5 wt% Alloy powder, particle size 10-40 micrometers) was used. The thickness of the conductive
In addition, SnZnBi-based, SnCu-based, SnAgInBi-based, SnZnAl-based, CuNi-based, etc. may be used as the metal powder. Moreover, you may use what powdered metals, such as Cu, Sn, Ag, Zn, Ni, and Pb, alone.
However, it is preferable that the metal powder does not contain aluminum. This is because if aluminum is contained, a strong oxide film may be formed on the surface of the negative electrode. However, this does not mean that the metal powder should not contain any aluminum.
実施例2のマグネシウム空気電池によっても、実施例1と同様に電圧および電流が向上する効果が確認できた。図4における曲線C2が実施例2による計測結果である。
改めて図4の内容を説明する。図4は、電流と経過時間との関係を計測したものである。電流を計測する場合に電池に接続する負荷としては、弾丸型白色LED(Vf=2.8V、53ルーメンス/W、実用的な明るさが得られる電流域は2mA以上)を使用した。
曲線C1は、実施例1のマグネシウム空気電池による結果である。
曲線C2については、実施例2による結果である。上述の通り、アクリル系塗料5重量%、カーボン粉末5重量%、錫・銀・銅合金粉末90重量%の導電性ペーストを用い、導電性粘着層30Aの厚さは、略10マイクロメートルとした。
曲線C3は、比較例として導電性粘着層30を有しないマグネシウム空気電池の結果である。
図4に示す通り、実施例2によるマグネシウム空気電池も実施例1と同等の性能が得られていることがわかる。1時間毎の電流値を積算した電流容量は、比較例で388mAh、実施例2で471mAhであり、約21%の向上が見られた。 Also with the magnesium-air battery of Example 2, the effect of improving the voltage and current was confirmed as in Example 1. A curve C2 in FIG. 4 is a measurement result according to the second embodiment.
The content of FIG. 4 will be described again. FIG. 4 shows a measurement of the relationship between current and elapsed time. A bullet-type white LED (Vf = 2.8 V, 53 lumens / W, current range where practical brightness can be obtained is 2 mA or more) was used as a load connected to the battery when measuring current.
Curve C1 is the result obtained with the magnesium-air battery of Example 1.
The curve C2 is the result according to Example 2. As described above, a conductive paste of 5 wt% acrylic paint, 5 wt% carbon powder, and 90 wt% tin / silver / copper alloy powder was used, and the thickness of the conductiveadhesive layer 30 </ b> A was approximately 10 micrometers. .
Curve C3 is the result of a magnesium-air battery that does not have the conductiveadhesive layer 30 as a comparative example.
As shown in FIG. 4, it can be seen that the performance of the magnesium-air battery according to Example 2 is the same as that of Example 1. The current capacity obtained by integrating the current values every hour was 388 mAh in the comparative example and 471 mAh in the example 2, showing an improvement of about 21%.
改めて図4の内容を説明する。図4は、電流と経過時間との関係を計測したものである。電流を計測する場合に電池に接続する負荷としては、弾丸型白色LED(Vf=2.8V、53ルーメンス/W、実用的な明るさが得られる電流域は2mA以上)を使用した。
曲線C1は、実施例1のマグネシウム空気電池による結果である。
曲線C2については、実施例2による結果である。上述の通り、アクリル系塗料5重量%、カーボン粉末5重量%、錫・銀・銅合金粉末90重量%の導電性ペーストを用い、導電性粘着層30Aの厚さは、略10マイクロメートルとした。
曲線C3は、比較例として導電性粘着層30を有しないマグネシウム空気電池の結果である。
図4に示す通り、実施例2によるマグネシウム空気電池も実施例1と同等の性能が得られていることがわかる。1時間毎の電流値を積算した電流容量は、比較例で388mAh、実施例2で471mAhであり、約21%の向上が見られた。 Also with the magnesium-air battery of Example 2, the effect of improving the voltage and current was confirmed as in Example 1. A curve C2 in FIG. 4 is a measurement result according to the second embodiment.
The content of FIG. 4 will be described again. FIG. 4 shows a measurement of the relationship between current and elapsed time. A bullet-type white LED (Vf = 2.8 V, 53 lumens / W, current range where practical brightness can be obtained is 2 mA or more) was used as a load connected to the battery when measuring current.
Curve C1 is the result obtained with the magnesium-air battery of Example 1.
The curve C2 is the result according to Example 2. As described above, a conductive paste of 5 wt% acrylic paint, 5 wt% carbon powder, and 90 wt% tin / silver / copper alloy powder was used, and the thickness of the conductive
Curve C3 is the result of a magnesium-air battery that does not have the conductive
As shown in FIG. 4, it can be seen that the performance of the magnesium-air battery according to Example 2 is the same as that of Example 1. The current capacity obtained by integrating the current values every hour was 388 mAh in the comparative example and 471 mAh in the example 2, showing an improvement of about 21%.
G.変形例:
以上の実施例1、2で説明した通り、本実施例のマグネシウム空気電池によれば、導電性粘着層の存在により、電圧および電流を向上させることができる。
本発明のマグネシウム空気電池は、上述した種々の特徴を全て備えている必要はなく、適宜、一部を省略したり組み合わせたりして構成することが可能である。また、上述の実施例の他、以下に示すように種々の変形例を構成することもできる。 G. Variations:
As described in Examples 1 and 2 above, according to the magnesium-air battery of this example, the voltage and current can be improved by the presence of the conductive adhesive layer.
The magnesium-air battery of the present invention does not need to have all the various features described above, and can be configured by omitting a part or combining them as appropriate. In addition to the above-described embodiments, various modifications can be configured as described below.
以上の実施例1、2で説明した通り、本実施例のマグネシウム空気電池によれば、導電性粘着層の存在により、電圧および電流を向上させることができる。
本発明のマグネシウム空気電池は、上述した種々の特徴を全て備えている必要はなく、適宜、一部を省略したり組み合わせたりして構成することが可能である。また、上述の実施例の他、以下に示すように種々の変形例を構成することもできる。 G. Variations:
As described in Examples 1 and 2 above, according to the magnesium-air battery of this example, the voltage and current can be improved by the presence of the conductive adhesive layer.
The magnesium-air battery of the present invention does not need to have all the various features described above, and can be configured by omitting a part or combining them as appropriate. In addition to the above-described embodiments, various modifications can be configured as described below.
(1)電解液の変形例:
図7は、マグネシウム空気電池の電解液による効果を示すグラフである。導電性粘着層を備えない構造において、電解液を変化させたときの影響を示した。図7(a)は外部回路として、弾丸型白色LED(Vf=2.8V、53ルーメンス/w、実用的な明るさが得られる電流域は2mA以上)を接続した場合の電流の変化を表している。図7(b)は外部回路による負荷として、10オームの固定抵抗器を接続した場合の放電容量を表している。 (1) Variation of electrolyte solution:
FIG. 7 is a graph showing the effect of the electrolytic solution of the magnesium-air battery. In the structure without the conductive adhesive layer, the effect of changing the electrolyte was shown. FIG. 7A shows a change in current when a bullet type white LED (Vf = 2.8V, 53 lumens / w, current range where practical brightness is obtained is 2 mA or more) is connected as an external circuit. ing. FIG. 7B shows the discharge capacity when a 10 ohm fixed resistor is connected as a load by an external circuit.
図7は、マグネシウム空気電池の電解液による効果を示すグラフである。導電性粘着層を備えない構造において、電解液を変化させたときの影響を示した。図7(a)は外部回路として、弾丸型白色LED(Vf=2.8V、53ルーメンス/w、実用的な明るさが得られる電流域は2mA以上)を接続した場合の電流の変化を表している。図7(b)は外部回路による負荷として、10オームの固定抵抗器を接続した場合の放電容量を表している。 (1) Variation of electrolyte solution:
FIG. 7 is a graph showing the effect of the electrolytic solution of the magnesium-air battery. In the structure without the conductive adhesive layer, the effect of changing the electrolyte was shown. FIG. 7A shows a change in current when a bullet type white LED (Vf = 2.8V, 53 lumens / w, current range where practical brightness is obtained is 2 mA or more) is connected as an external circuit. ing. FIG. 7B shows the discharge capacity when a 10 ohm fixed resistor is connected as a load by an external circuit.
曲線C11および曲線C21は、エチレンジアミン四酢酸四ナトリウム(EDTA4Na)6%に塩化カリウムO.2%の重量比で混合させた水溶液を電解液として用いた場合の結果である。曲線C12および曲線C22は、実施例1、2と同様、ニトリロ三酢酸三ナトリウム(NTA3Na)10%と塩化カリウム(KCl)0.1%の重量比で混合させた水溶液を電解液とした場合の結果である。曲線C13および曲線C23は、比較例として、電解液を塩化カリウムの10%水溶液とした場合の計測結果である。
Curves C11 and C21 are obtained by adding potassium chloride O.D. to 6% ethylenediaminetetraacetic acid tetrasodium (EDTA4Na). It is a result at the time of using the aqueous solution mixed by 2% weight ratio as electrolyte solution. Curves C12 and C22 are the same as in Examples 1 and 2, in the case where an aqueous solution obtained by mixing 10% nitrilotriacetic acid trisodium salt (NTA3Na) and potassium chloride (KCl) 0.1% as an electrolyte was used. It is a result. Curves C13 and C23 are measurement results when the electrolytic solution is a 10% aqueous solution of potassium chloride as a comparative example.
図示する通り、比較例(曲線C13)は、測定開始当初は高い電流値を得られるが、4時間経過後から急激に電流値が低下し、約10時間経過後には2mA以下となり、実用的な明るさが得られなくなった。これに対して曲線C11および曲線C12では、24時間経過後でも10mA以上の電流値が得られており、発電継続時間が大幅に向上していることが分かる。
また放電容量を見ると、比較例(曲線C23)では、測定開始当初は高い出力電圧が得られたが、発電継続時聞が短いため放電容量は約450mAh/gとなっている。一方、放電容量は、曲線C21、曲線C22ではともに約1900mAh/gとなっており、比較例の約4倍となっていることが分かる。 As shown in the figure, the comparative example (curve C13) can obtain a high current value at the beginning of the measurement, but the current value suddenly decreases after 4 hours, and becomes less than 2 mA after about 10 hours. I can't get the brightness. On the other hand, in the curve C11 and the curve C12, a current value of 10 mA or more is obtained even after 24 hours, and it can be seen that the power generation duration time is significantly improved.
In terms of the discharge capacity, in the comparative example (curve C23), a high output voltage was obtained at the beginning of the measurement, but the discharge capacity was about 450 mAh / g due to the short duration of power generation. On the other hand, the discharge capacity is about 1900 mAh / g for both the curve C21 and the curve C22, which is about 4 times that of the comparative example.
また放電容量を見ると、比較例(曲線C23)では、測定開始当初は高い出力電圧が得られたが、発電継続時聞が短いため放電容量は約450mAh/gとなっている。一方、放電容量は、曲線C21、曲線C22ではともに約1900mAh/gとなっており、比較例の約4倍となっていることが分かる。 As shown in the figure, the comparative example (curve C13) can obtain a high current value at the beginning of the measurement, but the current value suddenly decreases after 4 hours, and becomes less than 2 mA after about 10 hours. I can't get the brightness. On the other hand, in the curve C11 and the curve C12, a current value of 10 mA or more is obtained even after 24 hours, and it can be seen that the power generation duration time is significantly improved.
In terms of the discharge capacity, in the comparative example (curve C23), a high output voltage was obtained at the beginning of the measurement, but the discharge capacity was about 450 mAh / g due to the short duration of power generation. On the other hand, the discharge capacity is about 1900 mAh / g for both the curve C21 and the curve C22, which is about 4 times that of the comparative example.
上述の通り、マグネシウム空気電池の性能は、電解質によって大きくことなることが分かる。図7中では、エチレンジアミン四酢酸四ナトリウム(EDTA4Na)またはニトリロ三酢酸三ナトリウム(NTA3Na)、即ちアルカリ性を示すアミノポリカルボン酸塩の水溶液を含む電解液とした場合の例を示した。他に、エチレンジアミン四酢酸四ナトリウム(EDTA4Na)、エチレンジアミン四酢酸三ナトリウム(EDTA3Na)、ニトリロ三酢酸三ナトリウム(NTA3Na)、ヒドロキシエチルエチレンジアミン三酢酸三ナトリウム(HEDTA3Na)、トリエチレンテトラミン-N,N,N’,N”,N”,N”’六ナトリウム(TTHA6Na)、エチレンジアミン-N,N’-ジコハク酸三ナトリウム(EDDSH3Na)などを単体または混合して用いても良い。これらのアミノポリカルボン酸塩において、アルカリ性が非常に弱い場合などには、水酸化ナトリウムを添加するなどしてもよい。
これらを電解液として用いることにより電池の性能が向上する理由は次の通りである。 As described above, it can be seen that the performance of the magnesium-air battery greatly depends on the electrolyte. FIG. 7 shows an example in which an electrolytic solution containing an aqueous solution of ethylenepolytetraacetic acid tetrasodium (EDTA4Na) or nitrilotriacetic acid trisodium (NTA3Na), that is, an aminopolycarboxylate salt exhibiting alkalinity is shown. In addition, tetrasodium ethylenediaminetetraacetate (EDTA4Na), trisodium ethylenediaminetetraacetate (EDTA3Na), trisodium nitrilotriacetate (NTA3Na), trisodium hydroxyethylethylenediamine triacetate (HEDTA3Na), triethylenetetramine-N, N, N ', N ", N", N "' hexasodium (TTHA6Na), ethylenediamine-N, N'-trisuccinic disodium acid (EDDSH3Na), etc. may be used alone or in combination. These aminopolycarboxylates When the alkalinity is very weak, sodium hydroxide may be added.
The reason why the performance of the battery is improved by using these as the electrolytic solution is as follows.
これらを電解液として用いることにより電池の性能が向上する理由は次の通りである。 As described above, it can be seen that the performance of the magnesium-air battery greatly depends on the electrolyte. FIG. 7 shows an example in which an electrolytic solution containing an aqueous solution of ethylenepolytetraacetic acid tetrasodium (EDTA4Na) or nitrilotriacetic acid trisodium (NTA3Na), that is, an aminopolycarboxylate salt exhibiting alkalinity is shown. In addition, tetrasodium ethylenediaminetetraacetate (EDTA4Na), trisodium ethylenediaminetetraacetate (EDTA3Na), trisodium nitrilotriacetate (NTA3Na), trisodium hydroxyethylethylenediamine triacetate (HEDTA3Na), triethylenetetramine-N, N, N ', N ", N", N "' hexasodium (TTHA6Na), ethylenediamine-N, N'-trisuccinic disodium acid (EDDSH3Na), etc. may be used alone or in combination. These aminopolycarboxylates When the alkalinity is very weak, sodium hydroxide may be added.
The reason why the performance of the battery is improved by using these as the electrolytic solution is as follows.
一般にマグネシウム空気電池については、電解液のpHと関連して、一般に次のような課題が指摘されている。電解液が酸性の場合、自己放電、即ち負極側のマグネシウムまたはマグネシウム合金から溶出された電子が、負極上で水素イオンと反応し、水素ガスを発生してしまう。一方、電解液がアルカリ性の場合、マグネシウム表面に水酸化マグネシウム、即ちMg(OH)2が生成され、電気もイオンも通さない不動態膜を形成するため、電流が流れなくなってしまう。
しかし、上記態様において電解質で用いるアミノポリカルボン酸塩は、少なくとも1つの-N(CH2COOH)2を有しており、マグネシウムイオンと安定的にキレート結合することができるため、アミノポリカルボン酸塩がマグネシウムイオンとキレート結合することにより、水酸化マグネシウムの発生を抑制でき、不動態膜の形成を抑制することができる。また、電解液はアルカリ性となるから、酸性下で生じる自己放電の問題も自然と回避することができる。従って、上記態様では、電解液を敢えてアルカリ性にすることによって、マグネシウム空気電池の電解液が酸性下で生じる課題を回避するとともに、マグネシウムイオンとキレート結合を生じるアミノポリカルボン酸塩を用いることによってアルカリ性下で生じる課題も回避することができ、マグネシウム空気電池の発電継続時間および放電容量を向上させることが可能となるのである。 In general, regarding the magnesium-air battery, the following problems are generally pointed out in relation to the pH of the electrolyte. When the electrolytic solution is acidic, self-discharge, that is, electrons eluted from magnesium or magnesium alloy on the negative electrode side react with hydrogen ions on the negative electrode to generate hydrogen gas. On the other hand, when the electrolytic solution is alkaline, magnesium hydroxide, that is, Mg (OH) 2 is generated on the surface of the magnesium, and a passive film that does not allow electricity or ions to pass therethrough is formed, so that no current flows.
However, the aminopolycarboxylate used in the electrolyte in the above embodiment has at least one —N (CH 2 COOH) 2 and can stably chelate with magnesium ions. When the salt is chelate-bonded with magnesium ions, generation of magnesium hydroxide can be suppressed and formation of a passive film can be suppressed. In addition, since the electrolytic solution becomes alkaline, the problem of self-discharge that occurs under acidic conditions can be naturally avoided. Therefore, in the above-described embodiment, the electrolyte solution of the magnesium-air battery is made alkaline by avoiding the problem that the electrolyte solution of the magnesium-air battery is acidic, and by using an aminopolycarboxylate salt that forms a chelate bond with magnesium ions. The problem which arises below can also be avoided and it becomes possible to improve the electric power generation continuation time and discharge capacity of a magnesium air cell.
しかし、上記態様において電解質で用いるアミノポリカルボン酸塩は、少なくとも1つの-N(CH2COOH)2を有しており、マグネシウムイオンと安定的にキレート結合することができるため、アミノポリカルボン酸塩がマグネシウムイオンとキレート結合することにより、水酸化マグネシウムの発生を抑制でき、不動態膜の形成を抑制することができる。また、電解液はアルカリ性となるから、酸性下で生じる自己放電の問題も自然と回避することができる。従って、上記態様では、電解液を敢えてアルカリ性にすることによって、マグネシウム空気電池の電解液が酸性下で生じる課題を回避するとともに、マグネシウムイオンとキレート結合を生じるアミノポリカルボン酸塩を用いることによってアルカリ性下で生じる課題も回避することができ、マグネシウム空気電池の発電継続時間および放電容量を向上させることが可能となるのである。 In general, regarding the magnesium-air battery, the following problems are generally pointed out in relation to the pH of the electrolyte. When the electrolytic solution is acidic, self-discharge, that is, electrons eluted from magnesium or magnesium alloy on the negative electrode side react with hydrogen ions on the negative electrode to generate hydrogen gas. On the other hand, when the electrolytic solution is alkaline, magnesium hydroxide, that is, Mg (OH) 2 is generated on the surface of the magnesium, and a passive film that does not allow electricity or ions to pass therethrough is formed, so that no current flows.
However, the aminopolycarboxylate used in the electrolyte in the above embodiment has at least one —N (CH 2 COOH) 2 and can stably chelate with magnesium ions. When the salt is chelate-bonded with magnesium ions, generation of magnesium hydroxide can be suppressed and formation of a passive film can be suppressed. In addition, since the electrolytic solution becomes alkaline, the problem of self-discharge that occurs under acidic conditions can be naturally avoided. Therefore, in the above-described embodiment, the electrolyte solution of the magnesium-air battery is made alkaline by avoiding the problem that the electrolyte solution of the magnesium-air battery is acidic, and by using an aminopolycarboxylate salt that forms a chelate bond with magnesium ions. The problem which arises below can also be avoided and it becomes possible to improve the electric power generation continuation time and discharge capacity of a magnesium air cell.
もっとも、本発明において電解液は、必ずしもアミノポリカルボン酸塩の水溶液でなくてはならないという訳ではなく、図7の比較例として示した例においても、隣接するセル間に導電性粘着層を設けることによる電圧および電流の向上効果は得ることができる。
However, in the present invention, the electrolytic solution does not necessarily have to be an aminopolycarboxylate aqueous solution, and in the example shown as a comparative example in FIG. 7, a conductive adhesive layer is provided between adjacent cells. The effect of improving the voltage and current can be obtained.
(2) 実施例では、発電前の状態では、固体の電解質を電解質層23に保持する例を示した。これに代えて、電解質は、電解質層23に溶出可能な種々の部位に保持することができ、例えば、負極24と電解質層23との接触面、正極活性体22と電解質層23との接触面などに保持してもよい。
(3) 実施例では、電解質層23に固体の電解質を保持しておき、水を加えることで発電を開始する例を示したが、電解質層23に予め電解液を保持しておくものとしてもよい。
(4) 実施例では、電解質層23にセパレータシートを用いた例を示したが、電解質層23は以下に示すように液体を貯蔵するタンクとしてもよい。 (2) In the Example, the example which hold | maintains solid electrolyte in theelectrolyte layer 23 was shown in the state before electric power generation. Instead, the electrolyte can be held at various sites that can be eluted into the electrolyte layer 23, for example, the contact surface between the negative electrode 24 and the electrolyte layer 23, or the contact surface between the positive electrode active body 22 and the electrolyte layer 23. Or the like.
(3) In the embodiment, the solid electrolyte is held in theelectrolyte layer 23 and power generation is started by adding water. However, the electrolyte solution may be held in advance in the electrolyte layer 23. Good.
(4) In the embodiment, an example in which a separator sheet is used for theelectrolyte layer 23 is shown. However, the electrolyte layer 23 may be a tank for storing a liquid as described below.
(3) 実施例では、電解質層23に固体の電解質を保持しておき、水を加えることで発電を開始する例を示したが、電解質層23に予め電解液を保持しておくものとしてもよい。
(4) 実施例では、電解質層23にセパレータシートを用いた例を示したが、電解質層23は以下に示すように液体を貯蔵するタンクとしてもよい。 (2) In the Example, the example which hold | maintains solid electrolyte in the
(3) In the embodiment, the solid electrolyte is held in the
(4) In the embodiment, an example in which a separator sheet is used for the
図8は、変形例におけるマグネシウム空気電池10Aの内部構造を示す説明図である。変形例のマグネシウム空気電池10Aは、実施例と同様、樹脂のケース11A、11Bの内部に4つのセル20Aが直列に積層され、負極側には電極となる金属板28Aが積層されている。
ただしケース11A、11Bは下面も閉じた容器状となっており、下側のケース11Aに上側のケース11Bをかぶせて接着等することで、セル20A、金属板28Aを封入している。
ケース11Bの上面には貫通孔18が設けられており、ここから電解液を注入可能となっている。 FIG. 8 is an explanatory diagram showing the internal structure of the magnesium-air battery 10A according to a modification. In the modified magnesium-air battery 10A, as in the embodiment, four cells 20A are stacked in series inside resin cases 11A and 11B, and a metal plate 28A serving as an electrode is stacked on the negative electrode side.
However, the cases 11A and 11B are in the shape of a container whose bottom surface is also closed, and the cell 20A and the metal plate 28A are enclosed by covering the lower case 11A with the upper case 11B and bonding them.
A throughhole 18 is provided on the upper surface of the case 11B, from which an electrolytic solution can be injected.
ただしケース11A、11Bは下面も閉じた容器状となっており、下側のケース11Aに上側のケース11Bをかぶせて接着等することで、セル20A、金属板28Aを封入している。
ケース11Bの上面には貫通孔18が設けられており、ここから電解液を注入可能となっている。 FIG. 8 is an explanatory diagram showing the internal structure of the magnesium-
However, the
A through
図の下側にセル20Aの構造を示した。正極21、正極活性体22、負極24は、それぞれ実施例と同じである。変形例では、実施例における電解質層に代えて、スペーサ23Aが取り付けられている。変形例では、筒状のスペーサ23Aを正極21から負極24まで貫通するピン23Bで止める構造とした。図示の便宜上、ピン23Bの頭は正極21、負極24の表面より突出して描いてあるが、隣接するセル20Aの正極21と負極24とが接触しやすいよう、ピン23Bの頭は、正極21と負極24から突出させないよう加工しておくことが好ましい。スペーサ23Aの取り付けは、ピン23Bを用いる他、接着など種々の構造が可能である。
隣接するセル間には、実施例1、2と同様、導電性粘着層が形成されている。 The structure of thecell 20A is shown at the bottom of the figure. The positive electrode 21, the positive electrode active body 22, and the negative electrode 24 are the same as those in the example. In the modification, a spacer 23A is attached instead of the electrolyte layer in the embodiment. In the modification, the cylindrical spacer 23A is stopped by a pin 23B penetrating from the positive electrode 21 to the negative electrode 24. For convenience of illustration, the head of the pin 23B is drawn so as to protrude from the surfaces of the positive electrode 21 and the negative electrode 24, but the head of the pin 23B is connected to the positive electrode 21 so that the positive electrode 21 and the negative electrode 24 of the adjacent cell 20A can be easily contacted. It is preferable to process so as not to protrude from the negative electrode 24. The spacer 23A can be mounted in various structures such as adhesion, in addition to using the pin 23B.
A conductive adhesive layer is formed between adjacent cells as in Examples 1 and 2.
隣接するセル間には、実施例1、2と同様、導電性粘着層が形成されている。 The structure of the
A conductive adhesive layer is formed between adjacent cells as in Examples 1 and 2.
各セルにおいては、スペーサ23Aによって、正極活性体22と負極24との間には所定の間隙が形成されており、ケース11A、11Bと合わせて電解液を貯蔵するタンクとして機能する。電解液を貫通孔18から注入すると、ケース11Aの内部全体が、電解液で満たされるため、正極活性体22と負極24との間の部分が発電に寄与する電解質層として機能することになる。
変形例においても、例えば、発電前の状態では、ケース11内のいずれかの部分や、正極21、正極活性体22および負極24の表面などに固体の電解質を保持しておくようにしてもよい。こうしておくことにより、貫通孔18から水を注入すれば、予め保持された電解質が溶けだして電解液となるため、発電を開始することができる。
正極活性体22と負極24との間は、必ずしもスペーサ23Aを設ける必要はなく、ケース11Bの内面に、所定の間隔をあけて正極活性体22と負極24を固定する溝を設けるなどしてもよい。 In each cell, a predetermined gap is formed between the positive electrodeactive body 22 and the negative electrode 24 by the spacer 23A, and functions as a tank that stores the electrolyte together with the cases 11A and 11B. When the electrolytic solution is injected from the through hole 18, the entire inside of the case 11 </ b> A is filled with the electrolytic solution, so that the portion between the positive electrode active body 22 and the negative electrode 24 functions as an electrolyte layer that contributes to power generation.
Also in the modification, for example, in a state before power generation, a solid electrolyte may be held on any part in thecase 11 or on the surfaces of the positive electrode 21, the positive electrode active body 22, and the negative electrode 24. . In this way, when water is injected from the through hole 18, the electrolyte retained in advance is melted and becomes an electrolytic solution, so that power generation can be started.
Thespacer 23A is not necessarily provided between the positive electrode active body 22 and the negative electrode 24, and a groove for fixing the positive electrode active body 22 and the negative electrode 24 with a predetermined interval may be provided on the inner surface of the case 11B. Good.
変形例においても、例えば、発電前の状態では、ケース11内のいずれかの部分や、正極21、正極活性体22および負極24の表面などに固体の電解質を保持しておくようにしてもよい。こうしておくことにより、貫通孔18から水を注入すれば、予め保持された電解質が溶けだして電解液となるため、発電を開始することができる。
正極活性体22と負極24との間は、必ずしもスペーサ23Aを設ける必要はなく、ケース11Bの内面に、所定の間隔をあけて正極活性体22と負極24を固定する溝を設けるなどしてもよい。 In each cell, a predetermined gap is formed between the positive electrode
Also in the modification, for example, in a state before power generation, a solid electrolyte may be held on any part in the
The
以上、本発明の実施例および変形例について説明した。本発明は、実施例等で説明した全ての特徴を備えている必要はなく、適宜、その一部を省略したり組み合わせたりしてもよい。
In the above, the Example and modification of this invention were demonstrated. The present invention need not have all the features described in the embodiments and the like, and some of them may be omitted or combined as appropriate.
本発明は、複数セルを有するマグネシウム空気電池の発電継続時間、放電容量向上のために利用可能である。
The present invention can be used to improve the power generation duration and discharge capacity of a magnesium-air battery having a plurality of cells.
10、10A…マグネシウム空気電池
11、11A、11B…ケース
11s…段部
12…凹部
13…端子
14…基準線
15…キャップ
16…貫通孔
20、20A…セル
21、21E…正極
22…正極活性体
23、23C…電解質層
23A…スペーサ
23B…ピン
24。24E…負極
24A…不導体
28、28A…金属板
30、30A…導電性粘着層
DESCRIPTION OF SYMBOLS 10, 10A ... Magnesium air battery 11, 11A, 11B ... Case 11s ... Step part 12 ... Recess 13 ... Terminal 14 ... Reference line 15 ... Cap 16 ... Through- hole 20, 20A ... Cell 21, 21E ... Positive electrode 22 ... Positive electrode active body 23, 23C ... Electrolyte layer 23A ... Spacer 23B ... Pin 24. 24E ... Negative electrode 24A ... Non-conductor 28, 28A ... Metal plate 30, 30A ... Conductive adhesive layer
11、11A、11B…ケース
11s…段部
12…凹部
13…端子
14…基準線
15…キャップ
16…貫通孔
20、20A…セル
21、21E…正極
22…正極活性体
23、23C…電解質層
23A…スペーサ
23B…ピン
24。24E…負極
24A…不導体
28、28A…金属板
30、30A…導電性粘着層
DESCRIPTION OF
Claims (9)
- マグネシウムと酸素を用いて発電するマグネシウム空気電池であって、
複数のセルと、
該複数のセルを、隣接するセル間の正極と負極とが接触するように積層し、該積層したセルと電解液が接触して、隣接するセルの電解質層にも電解液が浸透する状態で収容するケースとを有し、
前記セルは、
マグネシウムまたはマグネシウム合金からなる負極と、
導電体金属からなる正極と、
前記正極に接して配置され、酸素を供給する正極活性体と、
前記正極活性体と前記負極との間に配置され、作動時に電解液を保持するための電解質層とを備えており、
前記隣接するセル間の正極と負極には、導電性材料からなり前記正極と負極とを粘着する導電性粘着層が設けられているマグネシウム空気電池。 A magnesium-air battery that generates electricity using magnesium and oxygen,
Multiple cells,
The plurality of cells are stacked such that the positive electrode and the negative electrode between adjacent cells are in contact with each other, the stacked cells are in contact with the electrolyte solution, and the electrolyte solution penetrates into the electrolyte layer of the adjacent cell. A housing case,
The cell is
A negative electrode made of magnesium or a magnesium alloy;
A positive electrode made of a conductive metal;
A positive electrode active body arranged in contact with the positive electrode and supplying oxygen;
An electrolyte layer disposed between the positive electrode active body and the negative electrode and holding an electrolyte during operation;
A magnesium-air battery in which a positive electrode and a negative electrode between the adjacent cells are each provided with a conductive adhesive layer made of a conductive material that adheres the positive electrode and the negative electrode. - 請求項1記載のマグネシウム空気電池であって、
前記導電性粘着層と前記正極は、該正極を構成する前記導電体金属の片面に導電性粘着材料が塗布された粘着テープによって形成されているマグネシウム空気電池。 The magnesium-air battery according to claim 1,
The said conductive adhesive layer and the said positive electrode are magnesium air batteries currently formed with the adhesive tape by which the conductive adhesive material was apply | coated to the single side | surface of the said conductor metal which comprises this positive electrode. - 前記導電性粘着層は、導電性ペーストである請求項1記載のマグネシウム空気電池。 The magnesium-air battery according to claim 1, wherein the conductive adhesive layer is a conductive paste.
- 前記導電性ペーストは、90重量%以上の金属粉末を含む請求項3記載のマグネシウム空気電池。 The magnesium-air battery according to claim 3, wherein the conductive paste contains 90% by weight or more of metal powder.
- 請求項4記載のマグネシウム空気電池であって、
前記金属粉末はアルミニウム以外の金属で構成されているマグネシウム電池。 The magnesium-air battery according to claim 4,
The magnesium battery in which the metal powder is made of a metal other than aluminum. - 請求項4または5記載のマグネシウム空気電池であって、
前記金属粉末は、錫、銀、銅、ニッケル、亜鉛、モリブデン、鉛およびこれらの合金の粉末を含むマグネシウム空気電池。 The magnesium-air battery according to claim 4 or 5,
The metal powder is a magnesium-air battery including powder of tin, silver, copper, nickel, zinc, molybdenum, lead and alloys thereof. - 請求項1~6いずれか記載のマグネシウム空気電池であって、
前記導電性粘着層の抵抗は、3.87オーム/平方センチメートル以下であるマグネシウム空気電池。 A magnesium-air battery according to any one of claims 1 to 6,
The magnesium-air battery, wherein the conductive adhesive layer has a resistance of 3.87 ohms / square centimeter or less. - 請求項1~7記載のマグネシウム空気電池であって、
前記電解質層に含まれる電解質を、発電開始前の状態において、前記電解質層に溶出可能な部位に固体として保持しており、
前記ケースは、前記溶出を実現できる量の水を外部から供給するための供給機構を備えているマグネシウム空気電池。 The magnesium-air battery according to any one of claims 1 to 7,
The electrolyte contained in the electrolyte layer is held as a solid in a portion that can be eluted in the electrolyte layer in a state before the start of power generation,
The said case is a magnesium air battery provided with the supply mechanism for supplying the quantity of water which can implement | achieve the said elution from the outside. - マグネシウムと酸素を用いて発電するマグネシウム空気電池の製造方法であって、
前記マグネシウム空気電池を構成する複数のセルを、隣接するセル間の正極と負極とが接触するように積層し、該積層したセルと電解液が接触して、隣接するセルの電解質層にも電解液が浸透する状態で収容するケースを準備するステップと、
マグネシウムまたはマグネシウム合金からなる負極を準備するステップと、
導電体金属からなる正極を準備するステップと、
酸素を供給する正極活性体を構成し、前記正極に接して配置するステップと、
作動時に電解液を保持するための電解質層を構成し、前記正極活性体と前記負極との間に配置することによりセルを形成するステップと、
隣接するセル間の正極と負極に、導電性材料からなり前記正極と負極とを粘着する導電性粘着層を挟んで複数のセルを積層するステップと、
該積層された複数のセルを前記ケースに収納するステップとを備えるマグネシウム空気電池の製造方法。
A method of manufacturing a magnesium air battery that generates electricity using magnesium and oxygen,
A plurality of cells constituting the magnesium-air battery are stacked so that a positive electrode and a negative electrode between adjacent cells are in contact with each other, and the stacked cells and the electrolytic solution are in contact with each other, and the electrolyte layer of the adjacent cells is also electrolyzed. Preparing a case to be accommodated in a state where the liquid penetrates;
Preparing a negative electrode made of magnesium or a magnesium alloy;
Preparing a positive electrode made of a conductive metal;
Configuring a positive electrode activator for supplying oxygen and placing it in contact with the positive electrode;
Forming an electrolyte layer for holding an electrolyte during operation and forming a cell by disposing between the positive electrode active body and the negative electrode;
Laminating a plurality of cells sandwiching a conductive adhesive layer made of a conductive material and adhering the positive electrode and the negative electrode to the positive electrode and the negative electrode between adjacent cells;
A method of manufacturing a magnesium-air battery comprising: storing the plurality of stacked cells in the case.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014244573A JP5847283B1 (en) | 2014-12-03 | 2014-12-03 | Magnesium-air battery with multiple cells |
JP2014-244573 | 2014-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016088610A1 true WO2016088610A1 (en) | 2016-06-09 |
Family
ID=55169236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/082978 WO2016088610A1 (en) | 2014-12-03 | 2015-11-25 | Magnesium air battery having plurality of cells |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5847283B1 (en) |
WO (1) | WO2016088610A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116024470A (en) * | 2022-12-05 | 2023-04-28 | 太原理工大学 | Magnesium-silver alloy and preparation method and application thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021073635A (en) * | 2017-01-11 | 2021-05-13 | 幸信 森 | Nickel-magnesium cell |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5236729A (en) * | 1975-09-17 | 1977-03-22 | Boeicho Gijutsu Kenkyu Honbuch | Water activated primary cell |
JPS56175969U (en) * | 1980-05-29 | 1981-12-25 | ||
JPH07262981A (en) * | 1994-03-24 | 1995-10-13 | Fuji Elelctrochem Co Ltd | Flat assembled-type battery |
JPH11185729A (en) * | 1997-12-18 | 1999-07-09 | Kenta Yamamoto | Battery and battery auxiliary component |
JP2000502206A (en) * | 1995-12-20 | 2000-02-22 | パワーペーパーリミテッド | Flexible thin-layer open electrochemical cell |
JP2009135079A (en) * | 2007-11-01 | 2009-06-18 | Nissan Motor Co Ltd | Bipolar type secondary battery, battery pack connecting a plurality of bipolar type secondary batteries, and vehicle mounting those batteries |
WO2013018769A1 (en) * | 2011-08-02 | 2013-02-07 | 一般社団法人 Suwei | Magnesium metal-air battery |
JP2013037999A (en) * | 2011-08-10 | 2013-02-21 | Toyota Motor Corp | Metal-air battery |
JP2013073765A (en) * | 2011-09-28 | 2013-04-22 | National Institute For Materials Science | Thin positive electrode structure, method of manufacturing the same, and thin lithium air battery |
JP2014194920A (en) * | 2013-11-05 | 2014-10-09 | Dainippon Printing Co Ltd | Electrode for air cell and air cell module using the same |
JP2014194887A (en) * | 2013-03-29 | 2014-10-09 | Nissan Motor Co Ltd | Liquid injection air cell |
JP2014203636A (en) * | 2013-04-04 | 2014-10-27 | 日産自動車株式会社 | Air cell, and battery pack using the same |
-
2014
- 2014-12-03 JP JP2014244573A patent/JP5847283B1/en not_active Expired - Fee Related
-
2015
- 2015-11-25 WO PCT/JP2015/082978 patent/WO2016088610A1/en active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5236729A (en) * | 1975-09-17 | 1977-03-22 | Boeicho Gijutsu Kenkyu Honbuch | Water activated primary cell |
JPS56175969U (en) * | 1980-05-29 | 1981-12-25 | ||
JPH07262981A (en) * | 1994-03-24 | 1995-10-13 | Fuji Elelctrochem Co Ltd | Flat assembled-type battery |
JP2000502206A (en) * | 1995-12-20 | 2000-02-22 | パワーペーパーリミテッド | Flexible thin-layer open electrochemical cell |
JPH11185729A (en) * | 1997-12-18 | 1999-07-09 | Kenta Yamamoto | Battery and battery auxiliary component |
JP2009135079A (en) * | 2007-11-01 | 2009-06-18 | Nissan Motor Co Ltd | Bipolar type secondary battery, battery pack connecting a plurality of bipolar type secondary batteries, and vehicle mounting those batteries |
WO2013018769A1 (en) * | 2011-08-02 | 2013-02-07 | 一般社団法人 Suwei | Magnesium metal-air battery |
JP2013037999A (en) * | 2011-08-10 | 2013-02-21 | Toyota Motor Corp | Metal-air battery |
JP2013073765A (en) * | 2011-09-28 | 2013-04-22 | National Institute For Materials Science | Thin positive electrode structure, method of manufacturing the same, and thin lithium air battery |
JP2014194887A (en) * | 2013-03-29 | 2014-10-09 | Nissan Motor Co Ltd | Liquid injection air cell |
JP2014203636A (en) * | 2013-04-04 | 2014-10-27 | 日産自動車株式会社 | Air cell, and battery pack using the same |
JP2014194920A (en) * | 2013-11-05 | 2014-10-09 | Dainippon Printing Co Ltd | Electrode for air cell and air cell module using the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116024470A (en) * | 2022-12-05 | 2023-04-28 | 太原理工大学 | Magnesium-silver alloy and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5847283B1 (en) | 2016-01-20 |
JP2016110728A (en) | 2016-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5192613B2 (en) | Magnesium metal air battery | |
JP2011181382A (en) | Magnesium air cell | |
JP2003297374A (en) | Flexible thin layer open electrochemical cell | |
US10608243B2 (en) | Batteries with replaceable zinc cartridges | |
CN205960032U (en) | Extranal packing body and power storage device for power storage device | |
CA2513454A1 (en) | Flexible thin printed battery with gelled electrolyte and method of manufacturing same | |
WO2014168155A1 (en) | Water battery | |
JP2013530505A (en) | Battery cell connector, method of manufacturing battery cell connector, battery, battery system, and vehicle | |
CN105140459B (en) | Electric energy storage device | |
CN108242530A (en) | A kind of lithium slurry battery and its negative plate | |
JP5646104B1 (en) | Magnesium air battery | |
JP5847283B1 (en) | Magnesium-air battery with multiple cells | |
JP2009283218A (en) | Nonaqueous electrolyte secondary battery | |
JP6068499B2 (en) | Manufacturing method of battery cell with novel structure | |
JP6053817B2 (en) | Manufacturing method of battery cell with novel structure | |
WO2014013433A1 (en) | Gas-shield-electrode and composite bifunctional air-electrode using the same for use in metal-air batteries | |
US20090220861A1 (en) | Method for producing alkaline battery, and alkaline battery | |
JP5841466B2 (en) | Metal electrode, metal electrode manufacturing method, and magnesium battery | |
JP2010524173A (en) | Multilayer cathode structure with silver-containing layer for small cells | |
US20150064570A1 (en) | Thin and flexible electrochemical cells | |
JP2007173220A (en) | Alkaline battery and method for producing the same | |
JP2015153490A (en) | air battery | |
KR102266054B1 (en) | Transparent Electrode and Metal Air Secondary Batteries containing the same | |
WO2017010129A1 (en) | Electrochemical device | |
JP5393735B2 (en) | Metal oxygen battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15864351 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15864351 Country of ref document: EP Kind code of ref document: A1 |